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Abstract

In this paper we discuss an optimization-based approach for minimum-cost seismic retrofitting of
hysteretic frames with nonlinear fluid viscous dampers. The proposed approach accounts also for for
moment-axial interaction in the structural elements, to consider a more realistic coupling between
added dampers and retrofitted structure. The design variables of the problem are the damping coef-
ficients of the dampers. Indirectly, the design involves also the stiffness coefficients of the supporting
braces. In the optimization analysis, we minimize a realistic retrofitting cost function with constraints
on inter-story drifts under a suite of ground motion records. The cost function includes costs related
to the topological and mechanical properties of the dampers’ designs. The structure is modeled with
a mixed finite element approach, where the hysteretic behavior is defined at the beams’ and columns’
cross-sections level. We consider damper-brace elements with a visco-elastic behavior characterized by
the Maxwell model. The dampers’ viscous behavior is defined by a fractional power law. Promising re-
sults obtained for a two-story, a nine-story, and a twenty-story 2-D frames are presented and discussed.

Keywords: seismic retrofitting, optimization, hysteretic structures, viscous dampers, Maxwell model.

1 Introduction

Recently, with the revival of tall building construction, new research efforts have been directed towards
the study of the seismic performance of high-rise buildings. One of the outcome has been the Tall
Building Initiative (TBI) of the Pacific Earthquake Engineering Research Center (PEER). The phase
I of the TBI has been focusing on the development of background documents and guidelines for the
construction of new high-rise buildings [1, 2]. A more sensitive topic seems to be the seismic performance
of existing tall building that were constructed when the knowledge and the understanding regarding the
construction of high-rise structures under seismic hazards was much less advanced. After the assessment
of the condition of the structures damaged during the 1994 Northridge earthquake it became clear that
many of the existing high-rise structures where not safe enough in the eventuality of an earthquake. In
fact, in nearly two hundred steel moment resisting frames (SMRFs) with pre-Northridge connections,
brittle beam-to-column connection failures were encountered [3]. As a result, phase II of the TBI focuses
on the study of the seismic performance and feasible retrofitting solutions for this type of structures.

A number of different approaches for the seismic retrofitting of tall buildings are available [4]. One
approach consists of increasing the deformation capacity of existing connections. Nevertheless, it was
noted that with ductile connections and columns’ splices, large inter-story drifts demand and residual
displacements were encountered [4]. Hence, the cost required to retrofit the ductile connections in the
post-earthquake phase makes this type of approach economically prohibitive. The search for a more
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economical retrofitting strategy able to reduce deformation demands, and the tendency of the structure
to form weak-story mechanisms led to the seismic retrofitting of tall buildings with fluid viscous dampers
[5]. The use of passive energy dissipation systems is gaining much attention from both researchers and
practitioners, and the reader is referred to the comprehensive textbooks for more details [6, 7]. The design
of added fluid viscous dampers includes several key steps, such as the selection of the locations in the
structure for dampers within given architectural constraints, the sizing of the dampers (typically done by
selecting their damping coefficients), and the minimization of the associated cost. Identifying economical
dampers’ distributions and sizes that improve the behavior of a given structure to a desired performance
level is not intuitive. Moreover, different configurations of dampers may lead to very different behaviors
and final costs of the retrofitted structure [8].

A promising direction for the solution of this type of seismic retrofitting problem, seems to be the
development of approaches for the distribution and sizing of viscous dampers based on optimization.
Several authors focused on the optimization-based seismic retrofitting of linear structures with linear
viscous dampers [9, 10, 11, 12, 13, 14, 15, 16, 17]. However, there are structures whose behavior can
not be expected to be linear in the eventuality of severe seismic events, even if a reasonable amount of
damping is added to the structure. This category could include, for example, irregular structures and
tall buildings. The use of linear analysis tools may fail to give a good estimate of the structural response
in these cases. This will also be demonstrated through the examples in this paper. Hence, nonlinear
analysis tools are required. Nonlinear analysis tools are also needed when a more detailed study of the
structural response due to the coupling of an added damping system is required. The use of nonlinear
viscous dampers, in fact, if on the one hand may reduce inter-story drifts and story accelerations, on
the other hand may increase further the axial forces in the columns and hence reduce the columns’
capacity for bending moments. This may be particularly relevant in the case of tall buildings, where
the columns at the bottom stories may undergo large compression states. With respect to this, there
are several contributions of authors that focused on the retrofitting of nonlinear structures with linear
dampers [18, 19, 20, 21, 22, 23, 24, 25].

From the dampers’ modeling side, when viscous dampers are modeled as pure dashpots their sup-
porting braces are implicitly assumed as infinitely stiff. This may be an inadequate assumption since
braces have an upper limit in terms of axial stiffness. Recently, it was also observed that considering a
more realistic finite stiffness of the brace would significantly affect the damper-brace mechanical behavior
[26]. Moreover, nowadays viscous dampers with a nonlinear force-velocity behavior are considered by re-
searchers [27, 28, 29, 30, 31], engineers [32], and producers [33]. Nonlinear dampers also proved to be able
to achieve the same level of response reduction of a structure retrofitted with linear viscous dampers, but
with smaller forces in the nonlinear dampers case [34]. And since the dampers’ manufacturing cost de-
pends on their peak guaranteed force [35], using viscous dampers with a nonlinear behavior may have also
economical advantages. Motivated by these considerations, Pollini et al. [36] considered the minimum-
cost seismic retrofitting of 3-D structures equipped with nonlinear viscous dampers. The damper-brace
elements were modeled through the Maxwell model for visco-elasticity [16], and the dampers-brace ele-
ments were placed and sized with a gradient-based algorithm while minimizing a realistic cost function.
Nonetheless, the retrofitted structures were assumed to remain elastic. Recently, Gidaris and Taflanidis
[37] presented an optimization-based approach for the minimization of the life-cycle cost for nonlinear
structures with nonlinear dampers. This indeed presents another step towards a more realistic structural
model. Nonetheless, zero order methods were used for the optimization. Using such methods, the com-
putational effort involved is usually very large. This highlights the need for a computationally efficient
method for the optimal seismic retrofitting of nonlinear structures using nonlinear dampers.

The approach presented and discussed in this paper constitutes an additional contribution to the
retrofitting problem of nonlinear structures with nonlinear fluid viscous dampers, through a practical
and computationally efficient optimization-based approach. The proposed approach originates from pre-
vious work of the authors, where the minimum-cost seismic retrofitting of linear structures with linear[17]
and nonlinear[36] fluid viscous dampers was considered. However, in the eventuality of more severe seis-
mic excitations, a nonlinear structural response should be considered. Thus, herein we will consider
beam-column elements with a nonlinear hysteretic behavior defined at the element sections level. In the
case of tall buildings, the columns at the lowers stories may undergo large compression states during an
earthquake. Additionally, the presence of fluid viscous dampers in the structure may further increase the
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axial compression in the columns, and as a consequence their moment capacity may be reduced. Hence,
we will include also a simplified interaction model between axial force and bending moment in the ele-
ments. From a computational point of view, the analysis of nonlinear structures with nonlinear dampers
represents the most demanding analysis problem. In turn, the complex behavior of such mechanical sys-
tems, and in particular the M-N interaction in the columns, also results in a highly nonlinear optimization
problem. Additionally, large scale structures are characterized by large numbers of design variables such
as those related to the dampers’ size and placement in the structure. To avoid a prohibitive computa-
tional effort required by the optimization process, it is desirable to rely on a gradient-based optimization
approach. In particular, we will consider damper-brace elements made of a spring and a nonlinear dash-
pot in series. In this way it will be possible to account for the stiffening contribution of the braces and
of the dampers, and for the damping property of the viscous dampers. As in Pollini et al. [36], here
too a realistic retrofitting cost formulation is minimized. In each potential location, the optimization
algorithm determines if a damper is needed or not. If a damper is needed, it is also determined which
size-group it belongs to. Each size-group is characterized by nonlinear damper-brace elements with the
same mechanical properties. The size-groups are limited in number to achieve final practical designs, but
their properties are not predefined and are optimized simultaneously within a single problem formulation.
Inter-story drifts are constrained to allowable values. These are evaluated with nonlinear time-history
analyses considering realistic ground motions. Initially, to create benchmark results for comparison, the
problem is formulated as a mixed-integer optimization problem, and is solved with a Genetic Algorithm
(GA). Subsequently, the initial mixed-integer problem formulation is translated into a continuous one.
This allows the solution of the nonlinear programming problem through a gradient-based Sequential Lin-
ear Programming approach (SLP), which reduces significantly the computational cost required for its
solution. Final practical designs are achieved by means of material interpolation functions. It should be
noted that with none of the two optimization algorithms considered (i.e. GA and SLP) there is a formal
guarantee that the final design solution will be also the global minima of the optimization problem at
hand.

The remainder of the article is organized as follows: In Sec. 2 we present the governing equations of the
problem. The mixed-integer programming problem formulation is introduced in Sec. 3, with details on
the parametrization of the design variables, the performance index, and the cost function considered. In
Sec. 4 the mixed-integer programming problem is approximated with a continuous optimization problem
formulation. The details for this approximation are given in dedicated sections. Next, in Sec. 5 the
results regarding the optimization of a two-story, a nine-story, and a twenty-story frame are presented.
In Sec. 6 some final considerations and conclusions are drawn.

2 Governing equations

In this section, we discuss the models considered for the structural elements and the nonlinear fluid
viscous dampers. In particular, we first present the force-based finite element model adopted for the
beam elements, and the model used for the characterization of the damper-brace behavior. We conclude
this section by presenting the system of equations for the dynamic equilibrium of the structural systems
considered, with a brief overview of the algorithm adopted for the response analysis.

2.1 Beam finite element: A mixed formulation

We consider a Euler-Bernoulli beam element type, which is appropriate for slender beam-column elements.
The finite element formulation has a mixed form [38], as presented by Spacone et al. in Reference [39]
and Reference [40]. In particular, the global equilibrium equations of the structure are written through
the direct stiffness method (i.e. the degrees of freedom are the nodal displacements) which allows to sum
up the contributions of all the elements for the assembly of the structure stiffness matrix and resisting
forces. However, at the element level in the mixed formulation considered herein forces are interpolated
rather than displacements (i.e. the degrees of freedom are the nodal forces). The forces’ interpolation
is exact, and it leads to a consistent state determination which does not add additional intrinsic ap-
proximations. However, the state determination of the mixed finite element approach considered herein
is more complex than that of more traditional displacement-based finite element approaches, and it is
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Figure 1: Structural model: beam finite element, and element domain of interaction.

governed by nonlinear equations. Hence, the state determination is performed through an additional
iterative procedure.

2.1.1 Force-based beam element

We consider the element presented in Fig. 1(a). The independent nodal forces will be denoted with Q̄,
and the independent nodal displacements with q̄. They act on a system that can be seen as the element
"without rigid body modes".

In our formulation we consider a simplified linear elastic axial behavior defined at the element level.
With reference to a beam element h without rigid body modes we have that:

Q̄1,h =
EAh
Lh

q̄1,h (1)

where Q̄1,h is the axial force in the element without rigid body modes, E is the Young’s modulus (e.g. for
steel E = 200 GPa), Ah is the section area of the element, Lh is the length of the element, and q̄1,h its axial
elongation. We will consider a nonlinear hysteretic bending behavior of the structure, defined at the beam
sections level. The potential formation of local instabilities due to local buckling as well as instabilities
due to lateral torsional buckling of the elements will not be accounted for. In particular, we will consider
a fixed number of control sections where the bending behavior is evaluated during the dynamic analysis.
The behavior of the control sections is defined in terms of a differential moment-curvature (i.e. M − χ)
relation. In this work we considered a hysteretic model developed by Sivaselvan and Reinhorn [41], even
though any moment-curvature relation can be considered as long as it is formulated with a differentiable
form. The model considered herein is the following:

Ṁk
h =

aEIh + (1− a)EIh

1− 0.5

∣∣∣∣∣Mk,∗
h

M∗y,h

∣∣∣∣∣
N (

sgn
(
Mk,∗
h χ̇kh

)
+ 1
) χ̇kh (2)

with:
Mk,∗
h = Mk

h − aEIhχkh, M∗y,h = (1− a)My,h. (3)

In Eq. (2) and Eq. (3) Ṁk
h and χ̇kh are the time derivatives of the moment Mk

h and curvature χkh of the
section k of the element h; Ih is the section inertia of the element; My,h is the section yielding moment
calculated through the product of the yielding stress fy and the plastic section modulus Wpl; a is the
ratio between the residual secondary stiffness in the post yielding range, and the initial elastic stiffness
(e.g. a = 2%); sgn(·) is the sign function. The moment in one of the control sections is calculated by
interpolating the end moments.

2.1.2 N-M interaction

We consider a simplified coupled behavior between the axial force and the bending moment in each
element. In particular, in a time-step i the current value of the yielding moment of a generic element h,
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Mh
y,i, depends on the value of the axial force in the pevious time-step, Nh

i−1. This type of interaction was
inspired by the one adopted in the structural analysis software Ruaumoko [42]. The interaction can be
formulated as follows:

Mh
y,i =

∣∣∣∣∣−
(
Mh
pl

Nh
pl

)∣∣∣Nh
i−1

∣∣∣+Mh
pl

∣∣∣∣∣ . (4)

Fig. 1(b) shows the graphical representation of the N −M interaction domain. As it can be seen from
Eq. (4) and its representation in Fig. 1(b), the interaction model that we consider is symmetric with
respect to the axial force and the bending moment. This type of behavior could represent the one for
steel elements. However, this should not be seen as a restriction or a limitation. In fact the methodology
discussed here can accommodate other types of models for the N −M interaction, as long as they are
formulated with differentiable mathematical formulations. It should be noted that the formulation of
Eq. (4) is differentiable except when the argument of the absolute value functions (i.e. |·|) is equal to
zero. However, since we will calculate the gradients of the functions involved considering the discretized
version of the problem formulation, the arguments of the absolute value functions will be most likely
never exactly equal to zero. Thus, from a numerical point of view, we can consider Eq. (4) differentiable.

2.1.3 Element state determination

In a mixed formulation, the quantities in input and output in the state determination are the same as in
a displacement-based formulation. That is, in input we have the element nodal displacements, q, and in
output we have the nodal forces and the element stiffness, Q and K. The state formulation of a mixed
finite element formulation relies on the exact interpolation of the nodal forces in order to calculate the
generalized stresses (i.e. N(x), M(x)) along the beam axis. Since the quantities in input (i.e. q) are not
those actually interpolated (i.e. Q), there is the so called lack-of-fit that causes the state determination
of the mixed finite element formulation adopted herein to be more complicated and governed by a set
of nonlinear equations. As a consequence, the state determination is not straight forward as in the
displacement-based formulation, and it requires an iterative procedure. For more details regarding the
element state determination considered in this paper the reader is referred to Spacone et al. [39]

2.2 Damper-brace element formulation

We model the dampers with the Maxwell’s model considering a spring and a dashpot in series, as shown
in Fig. 2. The spring accounts for the stiffening property of the damper and its supporting member, and
the dashpot for its viscous property.

uel(t)

kd cd, α

uvd(t)

u(t), fd(t)

Figure 2: Nonlinear viscous damper modeled with the Maxwell’s model.

The first order differential equation that defines the behavior of the damper-brace element is the following:

ḟd(t) = kd

(
u̇(t)− sgn (fd(t))

(
|fd(t)|
cd

) 1
α

)
(5)

where: kd accounts for the stiffness of the brace and of the damper; u̇(t) is the relative velocity between
the damper elements ends at time t; sgn() is the sign function; fd(t) is the force in the damper at time
t; cd the damping coefficient of the dashpot; and α the exponent of the fractional power law that defines
the nonlinear force-velocity behavior of the dashpot. In this work we consider a fixed ratio ρ between
the stiffness coefficient kd and the damping coefficient cd. This ratio can affect how the damper element
will behave and the ease with which its first order differential equation can be approximated numerically.
For the tuning procedure of the parameter ρ we relied on the procedure discussed in Pollini et al.[36]
During the nonlinear time-history structural analysis, the response of each damper in each time-step is
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approximated with a 4-th order Runge-Kutta method as suggested by Kasai and Oohara [43]. A similar
approach has been used in [44] and by the authors in Reference [45].

2.2.1 Equations of motion

The equations for the dynamic equilibrium of the structural systems considered are the following:

Mü(t) + Csu̇(t) + Fs(t) + Fd(t) = −Meag(t), ∀ t = t0, . . . , tf (6)

where: M is the mass matrix; Cs is the inherent damping matrix; Fs(t) is the vector of the resisting
forces of the structural elements at time t; Fd(t) is the vector of the resisting forces of the dampers at
time t; e is the influence vector and it represents the displacements of the masses resulting from static
application of a unit ground displacement. Essentially, it distributes the acceleration over the degrees
of freedom of the structure affected by the ground motion; ag(t) the ground acceleration record as a
function of time; ü(t), u̇(t), u(t) are the acceleration, velocity and displacement vectors of the degrees of
freedom of the system at time t. The initial conditions are:

u(0) = u0, u̇(0) = 0, Fs(0) = Fs,0, Fd(0) = 0 (7)

and they are evaluated with a static analysis considering the gravity loads.
To build the mass matrix M we consider two concentrated masses at the ends of each beam element.

These masses account for the structural weight, and the loads carried by the structure. The matrix Cs is
the inherent Rayleigh damping matrix, and it is built considering the initial stiffness matrix. It should be
noted that in the case of inelastic dynamic analysis, the Rayleigh damping matrix may lead to un-realistic
damping forces and moments on the onset of yielding [47]. However, when added dampers are used, as
in the work discussed herein, this source of inconsistency may be disregarded and the Rayleigh damping
matrix can be considered [48]. For the integration scheme we rely on a time stepping algorithm based on
the Newmark-β method: in particular we relied on the Newmark-β average acceleration method.

The algorithm for the solution of the nonlinear dynamic equilibrium equations is subdivided into
three nested loops: The outer is the loop denoted by the index k, and it follows the time discretization of
the problem. In each step, we apply the load Pk = −Meag,k on the structure and we want to calculate
the response vectors of the structure and the associated resisting forces of the elements (i.e. uk, u̇k, ük,
Fs,k, and Fd,k); The second, loop denoted by the index i, contains the state determination of the whole
structure. Essentially, in this loop the goal is to calculate the displacements, velocities and accelerations
of the structure and the resisting forces caused by the applied loads Pk (i.e. uik, u̇ik, üik, Fis,k, and Fid,k).
In the algorithm used in this work, this is achieved by means of the Newton-Raphson method. Moreover,
it is in this loop that the vector of the dampers’ forces is approximated with a 4-th order Runge-Kutta
approximation[49, 45]; The inner loop is denoted by the index j. In this loop the state determination
for each element is contained. The input are the nodal displacements and velocities of each element, and
the goal is to calculate a compatible distribution of curvatures, associated to an equilibrated distribution
of moments. The output are the nodal forces and the stiffness of each element. These quantities are
then assembled to verify the convergence to an equilibrium state in the loop denoted by i. Also in this
loop, the state determination for the elements is performed with the Newton-Raphson method. For more
details on the element state determination considered the reader is referred to Spacone et al. [39]

3 Optimization problem formulation

In this section, we present the optimization problem for the seismic retrofitting of frames with fluid viscous
dampers. Important aspects of the problem formulation that will be discussed are: The parametrization of
the design variables of the problem (i.e. the dampers’ damping coefficients), which includes both discrete
and continuous variables that allow to identify final discrete and practical designs without predefining
any aspect of the problem beforehand; The retrofitting cost function which will be minimized in the
optimization analysis; And last, the constrained structural performance indices.
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3.1 Parametrization of the design variables

The retrofitting methodology discussed herein consists of allocating and sizing nonlinear fluid viscous
dampers and their supporting braces in Nd predefined potential locations of a given frame. In each
location we allow as many as two damper-brace elements. Either one of two available sizes can be
assigned to the damper-brace elements. The two available size are also variables of the problem. Thus,
the final designs are characterized by two size-groups, where for size-group we intend a group of dampers
with the same mechanical properties. The size is defined by a damping coefficient. Therefore, we want to
determine the damping coefficients cd,i of each i-th damper, that are collected in the vector cd. Through
the ratio ρ, the design is indirectly extended also to the associated stiffness coefficients kd,i, collected in
the vector kd. The vector of damping coefficients is:

cd = c̄dD(x1)(y11 + (y2 − y1)x2), kd = ρ cd (8)

In Eq. (8), D(·) is the diagonal matrix operator that transforms a vector into a diagonal matrix (similarly
to the diag(·)Matlab function). The parameter c̄d represents the maximum damping coefficient available,
and it is predefined. The vector 1 has unit entries and size 2Nd × 1. The vector x1 has binary entries,
and it describes the existence of a damper in each potential locations: A value of zero in the i-th entry of
the vector means that the i-th damper does not exist, while a value of one that the damper exists. Also
x2 is a vector with binary entries, and it represents the association of each existing damper to one of the
two available size-groups. In the case of x2,i equal to zero, the i-th damper belongs to the first size-group.
In the case of x2,i equal to one, the i-th damper belongs to the second size-group. The dimensions of
the vectors cd, x1, and x2 are 2Nd× 1. The two available damping coefficients that characterize the two
size-groups are:

c̄1 = c̄d y1; c̄2 = c̄d y2. (9)

In Eq. (9), y1 and y2 are two continuous design variables that scale the maximum available damping
coefficient c̄d. The column vector x collects all the variables of the problem: xT =

[
xT1 ,x

T
2 , y1, y2

]
.

3.2 Objective cost function

One of the main objectives of the work herein discussed is to identify minimum-cost retrofitting designs.
Therefore, the goal is to minimize a realistic formulation of the costs associated to the retrofitting designs.
In particular, the cost function considered, which is the objective function in the optimization problem,
is composed of three components: J = Jl + Jm + Jp. The first component was presented in Reference
[17] and here it has been adjusted to accommodate a slightly different problem formulation. The second
component was presented first in Reference [36]. The third cost component is common to both the works
just mentioned.

The first component Jl considers the number of locations in which dampers are installed. This cost
includes all the aspects related to the preparation of the structure for the damper installation and the
architectural constraint that this installation will represent. Moreover, in case of retrofitting, the removal
of existing nonstructural components can also be considered. We allow the algorithm to allocate as
many as two dampers in each potential location. This cost component is formulated so that it will be
more expensive to allocate a damper in an empty potential location than to allocate the same damper
in a location where a damper already exists. This is because the location will be considered as already
"opened" and the associated costs already covered. The first component of the cost is defined as follows:

Jl = xT1 Cl (10)

where Cl is a 2Nd × 1 vector in which the i-th component is a cost component related to the i-th
component of x1. The vector Cl is defined as follows:

Cl =D(Cl1)
[
1 1 . . . 0 0

]T
+

D(Cl2)
[
0 0 . . . 1 + (1.5 + Cl1(1)

Cl2(Nd+1))(1− x1(1)) . . . 1 + (1.5 + Cl1(Nd)
Cl2(Nd+Nd)

)(1− x1(Nd))
]T
(11)
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where Cl1 represents the specific cost of installation of the first damper in a potential location, its
dimensions are 2Nd × 1 and it has the first Nd elements different from zero; Cl2 represents the cost for
each potential location of adding the second damper assuming the first damper is already installed at
that location, its dimensions are 2Nd × 1 and it has the last Nd elements different from zero. Both Cl1

and Cl2 are vectors defined by the user. Because Cl1(k) ≥ Cl2(k+Nd) ∀k, the cost of installing the first
damper in a potential location is larger than the cost of installing the second one, provided that the first
damper is already installed. The vector that multiplies D(Cl1) has the first Nd entries equal to one, and
the remaining equal to zero. The vector that multiplies D(Cl2) has the first Nd entries equal to zero, and
the remaining Nd are defined so that it will be more expensive to first allocate the second damper in an
empty location than to allocate the first one in the same location: Referring to the i-th location, in the
first case the cost will be Cl1(i) + 2.5×Cl2(i+Nd) while in the second case only Cl1(i).

The second cost component, Jm, represents the manufacturing cost of the dampers. In principle,
the manufacturing cost of viscous dampers depends on the peak stroke and on the square root of the
peak force of the most loaded damper of each size-group [35]. We assume, in fact, that all dampers of
a specific size-group are designed so to have the same capacity. Since we are constraining inter-story
drifts, also the peak stroke of the dampers is indirectly limited. As a consequence, it does not affect
significantly the cost. Therefore, the manufacturing cost is defined as the square root of the peak force of
the most loaded damper from each size-group, multiplied by the number of dampers of the corresponding
size-group. Formally, it is written as follows:

Jm = Cm

{
xT1 (1− x2)

[
max
i

(
f̂d1,i

)]0.5
+ xT1 x2

[
max
i

(
f̂d2,i

)]0.5}
(12)

where: Cm is a coefficient used to homogenize the units of measure of Jm to the units of measure of Jl
and Jp; xT1 (1− x2) is the number of dampers of the first size-group; xT1 x2 is the number of dampers of
the second size-group. Additionally:

f̂d1 =
[
f̂d1,1 . . . f̂d1,i . . . f̂d1,Nd

]T
= D (1− x2) f̂d,

f̂d2 =
[
f̂d2,1 . . . f̂d2,i . . . f̂d2,Nd

]T
= D (x2) f̂d,

f̂d = max
t

(|fd(t)|)

(13)

f̂d is the vector of the peak forces in time for all dampers; the vector f̂d1 has the components of f̂d which
belong to dampers of the first size-group, while f̂d2 those of the second size-group.

Modern seismic codes require to test one damper prototype from each size-group to verify its force-
velocity behavior. As a results, we consider an additional cost component, Jp. This component is
formulated so that the number of different size-groups of dampers actually used for retrofitting should
be minimized:

Jp = Cp
[
H(xT1 (1− x2)) +H(xT1 x2)

]
; H(x) =

{
1 for x > 0

0 for x = 0
(14)

where Cp is the cost of prototype testing and design. The function H is the Heaviside step function. We
observe that: If all dampers are of the first size then Jp will be equal to Cp × [1 + 0]; If all dampers are
of the second size then Jp will be equal to Cp × [0 + 1]; In case dampers of both sizes exist then Jp will
be equal to Cp × [1 + 1].

3.3 Response constraints

We are now considering the seismic retrofitting of 2-D hysteretic frames using nonlinear fluid viscous
dampers. The retrofitting solution is achieved while considering constraints on the structural perfor-
mance. In general, there are several local responses of interests related to the structural performance and
damage such as inter-story drifts, total story accelerations, among others [16]. In what follows we will
focus on inter-story drifts, as it has been shown that in many cases inter-story drifts are a good measure
of both structural and non-structural damage [50]. In particular, the peak inter-story drift normalized
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by the allowable value is chosen as the local performance index for the structures considered:

dc,i = max
t

(|di(t)/dallow|) ≤ 1 ∀i = 1, . . . , Ndrifts (15)

where the inter-story drift di(t) is the i-th constrained inter-story drift at time t; dallow its maximum
allowable value (e.g. 1% of the story height).

3.4 Mixed-integer problem formulation

The mixed-integer formulation of the optimization problem discussed herein that we would like to solve,
is presented in (Prob1) (Sec. 4.2). For optimizing the distribution and size of a single damper size-group,
only the x1 and y1 variables are necessary, thus it can be seen as a particular case. The problem (Prob1)
can be solved, for example, with a Genetic Algorithm (GA). The results obtained solving (Prob1) with a
GA will be used for comparison in Sec. 5. It should be noted that in this work we consider a maximum
allowable damping coefficient set a priori: c̄d. Moreover, since we consider dampers with a significant
nonlinear viscous behavior, the maximum peak force that they can produce is indirectly constrained
by their nonlinear mechanical behavior (defined by the exponent α in Eq. (5)) and by the predefined
maximum available damping coefficient c̄d.

4 Gradient-based optimization

The computational effort required for the solution of the mixed-integer programming problem (Prob1)
may be very high and in many cases prohibitive. Therefore, in the following we approximate (Prob1)
with a continuous problem formulation that is solved with a lighter computational approach. Particular
attention is given to achieving final practical (i.e. discrete) solutions. To this end, first we introduce the
material interpolation functions used to promote the convergence towards final solutions characterized
by crisp 0-1 distributions of the final values of the variables x1,i and x2,i. Since the continuous problem
is solved with a gradient-based algorithm, all the functions involved need to be differentiable. For this
reason, we approximate two cost components and the constraints with differentiable approximations of
the original formulations. We also reduce the number of constraints to one by aggregating them. This
reduces the number of additional analyses required for the calculation of the constraints’ gradients, or in
other words the computational cost of the sensitivity analysis.

4.1 Damping interpolation

In the process of approximating (Prob1) with a continuous formulation we relax all the variables’ defini-
tions, so that in the final formulation they will all be continuous. As a consequence, the variables x1 and
x2, which in principle were binary, now can assume the intermediate values between zero and one. These
variables have a physical meaning only when they are equal to either zero or one, as was explained in Sec.
3.1. Therefore, we understand that their intermediate values should be avoided. Hence, we introduce in
the problem formulation the so-called material interpolation functions. Their purpose is to penalize the
intermediate values of the variables contained in the vectors x1 and x2 making them uneconomical, thus
implicitly pushing the optimizer towards a preference of their boundary (i.e. 0, 1) values.

These functions traditionally come from the field of structural topology and discrete material opti-
mization. SIMP (Solid Isotropic Material with Penalization) is the most popular, and it proved to be
very effective in a wide range of applications [51, 52]. Similarly, also RAMP (Rational Approximation of
Material Properties) is a material interpolation function based on the same main idea [53]. Recently, the
material interpolation functions have been introduced also in the context of optimization-based seismic
retrofitting. Both SIMP and RAMP proved to be very effective for achieving final discrete solutions
[15, 17, 36]. In the optimization problem presented herein, SIMP was chosen for the final problem formu-
lation because it proved to be more effective and promising in leading the optimizer towards final discrete
solutions. In this case, in fact, a combination of two SIMP functions has been applied to the vectors x1

and x2 in the damping formulation as follows [54, 55, 56, 57]:

c̃d,i = c̄d x
p
1,i

(
y1 + (y2 − y1)xp2,i

)
, i = 1, . . . , 2Nd. (16)
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In Eq. (16) for p = 1 we have a linear interpolation of the damping. For increasing values of p, the
penalizing effect on the values of x1 and x2 between zero and one increases.

4.2 Final problem formulation and computational considerations

The continuous formulation of the optimization problem that we actually solve is presented in (Prob2),

where for x1 ∈ IR2Nd , xp1 =
[
xp1,1 . . . x

p
1,2Nd

]T
. The same definition applies to xp2. The problem (Prob2) is

highly nonlinear and nonconvex, and it has been solved with a modified Sequential Linear Programming
approach (SLP) based on first order information. Hence, the cost components Jm and Jp have been
approximated with differentiable formulations as in Pollini et al. [36]. The formulation of the nonlinear
constraints on the inter-story drifts (Eq. (15)) has also a non-differentiable function, maxt. Thus, in
(Prob2) the function maxt in Eq. (15) was approximated with a r-norm differentiable formulation (i.e.
d̃c). Additionally, in order to reduce the number of sensitivity analyses from Ndrifts to one, we aggregated
the inter-story drift constraints into a single constraint (i.e. d̃c). More details regarding the constraint
approximation and aggregation can be found in Reference[59] and Reference[36]. It should be noted that
both r and q in (Prob2) are high numbers in order to obtain good approximations of the max function.
The possibility of considering multiple ground acceleration records simultaneously has been discussed by
the authors in Reference [17]. Here too, as we rely on a similar optimization approach, the methodology
could accommodate multiple acceleration records, that could be seen as multiple load conditions. In
what follows we discuss several aspects of the optimization algorithm.

min
x

J(x)

s.t.: dc,i = max
t

(∣∣∣∣ di(t)dallow

∣∣∣∣) ≤ 1, i = 1, . . . , Ndrifts

x1,j = {0, 1} j = 1, . . . , 2Nd

x2,j = {0, 1} j = 1, . . . , 2Nd

0 ≤ y1 < y2 ≤ 1

with: Mü(t) + Csu̇(t) + Fs(t) + Fd(t) = −Meag(t)
u(0) = u0, u̇(0) = 0, Fs(0) = Fs,0, Fd(0) = 0

cd = c̄dD(x1)(y11 + (y2 − y1)x2), kd = ρcd.

(Prob1)

min
x

J̃(x)

s.t.: d̃c =
1TDq+1

(
d̃c
)

1

1TDq
(
d̃c
)

1
≤ 1

0 ≤ x1,j ≤ 1 j = 1, . . . , 2Nd

0 ≤ x2,j ≤ 1 j = 1, . . . , 2Nd

0 ≤ y1 < y2 ≤ 1

with: Mü(t) + Csu̇(t) + Fs(t) + Fd(t) = −Meag(t)
u(0) = u0, u̇(0) = 0, Fs(0) = Fs,0, Fd(0) = 0

c̃d = c̄dD(xp1) (y11 + (y2 − y1) xp2) , k̃d = ρc̃d

d̃c =

(
1

tf

∫ tf

0
(D−1(dallow)D(Hu(t)))rdt

) 1
r

1.

(Prob2)
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4.2.1 Sensitivity analysis

The optimization procedure adopted for the solution of (Prob2) is iterative, and it solves a sequence
of linearized approximations of the problem at hand. For this reason, the first-order derivatives of
the objective function and of the aggregated inter-story drift constraint need to be calculated. The
calculation of the objective function gradient in (Prob2) (i.e. ∇xJ̃) does not require any particular
procedure, because it is formulated directly in terms of the variables of the problem. The gradient of the
aggregated constraint (i.e. ∇xd̃c), on the other hand, requires an adjoint sensitivity analysis. To ensure
the consistency of the sensitivity calculated, we relied on the discretize-then-differentiate adjoint variable
method, similarly to Reference [45]. Ultimately, the outcome of adjoint sensitivity analysis is the vector
∇Tcd d̃c =

[
∂d̃c
∂cd 1

. . . ∂d̃c
∂cdNd

]
. The complete derivatives are computed with the chain rule:

dd̃c
dx1

=
dc̃d
dx1

∂d̃c
∂c̃d

;
dd̃c
dx2

=
dc̃d
dx2

∂d̃c
∂c̃d

;
dd̃c
dy1

=
dc̃d
dy1

∂d̃c
∂c̃d

;
dd̃c
dy2

=
dc̃d
dy2

∂d̃c
∂c̃d

. (17)

4.2.2 Continuation scheme

The optimization problem (Prob2) is based on a few nonlinear components that increase its complexity,
such as: the penalized damping coefficients, Eq. (16); the differentiable approximations of the max
functions adopted for d̃c and d̃c in (Prob2); the differentiable approximation of the Heaviside step function
used in the reformulation of the third cost component J̃p[36]. These components are characterized by the
parameters p, s, r, q, β, that need to assume high values in order to produce meaningful approximations.
It is known that it is convenient to increase these parameters gradually in a stepwise manner, known
also as a continuation scheme. In particular, the parameters p and s are increased by a fraction of their
value every time a local convergence criterion in a continuation step is satisfied for a certain number
of iterations. The criterion requires the norm of the variables’ updates to be smaller than a certain
tolerance for five consecutive iterations, that is: ‖xk − xk−1‖ ≤ εp,s. It was also observed that it is more
convenient to start the optimization analysis with small but noticeable initial values of these parameters.
The parameters r and q increase every iteration with a constant step-size; β, and the cost parameters
Cl and Cp, are scaled by the coefficient s which varies between zero and one. Moreover, conservative
moving limits are imposed in the solution of the linear subproblems. As a consequence, the updates of
the variables x1, x2, y1, y2, are found in a neighborhood of the solution of the previous subproblem.
More details regarding these parameters are given in the numerical examples.

4.2.3 Management of the constraints

As it was already mentioned, (Prob2) was solved with a modified Sequential Linear Programming
approach[19], in which in every iteration a linear subproblem is solved. Compared to traditional SLP ap-
proaches [60, 61], the algorithm discussed herein is a "modified" version because the subproblems expand,
as in each iteration the new linearized constraint is added to the set of constraints considered. Due to the
non-convexity of the problem at hand, and in particular of the aggregated constraint, it may happen that
a constraint is active even though the current solution strictly falls into the feasible domain. In other
words, it may happen that a constraint cuts the feasible domain directing the algorithm towards too
conservative solutions. This is clearly shown in Fig. 4 of Reference [19]. The SLP algorithm considered
in this work was modified in order to nullify and disregard these undesired constraints in the subsequent
iterations.

4.2.4 Convergence to a discrete solution

The problem that we are discussing is a penalized continuous optimization problem. Therefore, initially
for low values of the penalization the algorithm converges towards a continuous solution. Through the
iterations, as the penalization (i.e. the parameter p) grows, the algorithm progressively converges towards
solutions characterized by values of the variables x1 and x2 that approach their boundaries. However,
during initial numerical experiments it proved to be quite challenging to converge to clean final discrete
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solutions, characterized by crisp distributions of 0-1 values for the vectors x1 and x2. To improve this
aspect, we modified the objective function to be minimized as in Reference [36]:

Jtot = (1− p

pmax
)J̃ + c̄d

p

pmax
Jbinary (18)

where Jbinary is defined as follows [62, 63]:

Jbinary = xT1 (1− x1) + xT2 (1− x2) + y1 + y2 (19)

For given values of y1 and y2, the function Jbinary is at its minimum when all the values of x1 and x2 are
binary. For intermediate values of x1 and x2, Jbinary is different from zero and positive. Jbinary is also
multiplied by c̄d so that numerically the two components of Jtot have comparable values. The purpose
of Jbinary is to assist the material interpolation functions (Eq. (16)) in driving the algorithm towards
final discrete solutions. In fact, for small values of the penalization p, the function to be minimized is
Jtot ∼= J̃ . As a consequence, the algorithm is driven towards initial minimum-cost continuous design
solutions. When the penalization grows, the intermediate values of x1 and x2 become uneconomical:
the algorithm starts to identify solutions more discrete. Simultaneously, the influence of the component
Jbinary on the total cost increases, while the effect of J̃ decreases, so for high values of p: Jtot ∼= Jbinary.
The algorithm is pushed towards a preference of final solutions that are binary with respect to x1 and x2.
This allows the translation of the initial continuous damping distribution into the closest mixed-integer
solution.

4.2.5 Convergence criteria

The optimization process is assumed to have reached the final optimized solution if: The parameters p
and s are equal to their maximum predefined values, that is pmax and smax; The norm of the update of
the design variables in the current k -th iteration is smaller than a predefined value ||xk − xk−1||2 ≤ ε;
The maximum normalized inter-story drift d̃c is smaller than or equal to the allowable one, dallow, with
a certain tolerance. More details regarding these parameters will be given in Sec. 5.

5 Numerical examples

In the following section, we present and discuss three numerical applications: the seismic retrofitting of
a two-story frame, a nine-story frame, and a twenty-story frame. In the nine-story frame, we predefined
nine potential locations for dampers in the central bay. In the twenty-story frame, we did not predefine
any number of potential locations for dampers, allowing the algorithm to place dampers in all the 100
locations identified by story-bay intersections. The result is nine "cells" where a total of 18 dampers
could be placed in the nine-story frame (two dampers per location), and 100 "cells" where a total of
200 dampers could be placed in the twenty-story frame (also two dampers per location). The continuous
problem formulation (Prob2) was solved with a SLP approach, that was implemented in Matlab by the
authors. The nine-story frame was optimized also by solving the mixed-integer problem formulation
(Prob1) by using Matlab’s built-in GA. The results achieved with the two formulations are used to
compare the final dampers’ distributions, and the computational effort required by the optimization
analyses.

5.1 Two-story frame: An illustrative example

The first numerical application that we discuss is a two-story frame that was first considered by Lavan [64]
for the seismic retrofitting with linear viscous dampers, Fig. 3(a). We believe that this example allows a
better understanding of the approach discussed herein, since it allows a more clear graphic representation
of the problem. The frame is subject to the ground acceleration record SE03 from the ensemble SE 10%
in 50 years [65]. In particular, we considered the first 10 seconds of the record. The bay width is 5.0 m,
and the story height is 3.0 m. The frame has 12 degrees of freedom: two translations and one rotation
for each node. The bending stiffness of the columns is EI = 45000 kN/m2, and the beams’ bending
stiffness is EI = 90000 kN/m2. Axial deformations in this case are neglected. The yielding moment of
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m2 m2

kd2 cd2, α

m1 m1

kd1 cd1, α

ag(t)

(a) Scheme of the two-story
frame considered in Sec. 5.1.
The variables are cd1(x11, y1)
and cd2(x12, y1), for a given
value of ρ and α.

(b) Contour of the cost component J̃m (blue) and of the aggre-
gated constraint (red) in the example of Sec. 5.1. Each blue
circle represent the optimal solution of each sub-linear program-
ming problem; the green circle represents the optimal solution of
the continuous problem for low values of the penalization p; the
black circle represent the final optimized solution

Figure 3: Two-story frame with two potential dampers and one dampers’ size-group available

the columns is My = 63.5 kNm, the yielding moment in the lower beam is My = 72.0 kNm, and the
yielding moment in the upper beam is My = 40.7 kNm. We considered 5% of critical damping for the
first and second modes, whose periods are 0.3547 sec and 0.1124 sec respectively, in order to build the
Rayleigh damping matrix of the structure. We considered a total mass for each story equal to 27 ton, so
that m1 = m2 = 13.5 ton. The exponent α of the dampers was set to 0.35, and the ratio ρ was set to 1.
We considered a maximum allowable inter-story drift equal to dallow = 0.9 cm.

The retrofitting problem was solved considering only its continuous formulation, i.e. (Prob2). In
particular, we allowed as many as one damper in each location chosen from only one available size-group.
Therefore, in this case the variables of the problem were only three: x1 = [x1,1 x1,2]

T and y1, and they
were all initialized to 1. The maximum allowable value for the inter-story drifts was set to dallow = 0.9
cm; the maximum damping value available was set to c̄d = 75 kN

(
s
mm

)α. It should be noted that only
the first and second cost components are considered in this application, and that the vector with the cost
parameters of the first cost component in this example was Cl = Cl[1 1]T , with Cl = 25 and Cm = 1
kN−0.5. With regards to the continuation scheme of the SLP algorithm: the parameter p was increased
from 1 to 3 by steps of 0.05; the parameter s was increased from 0.5 to 1 by steps of 0.01; the parameters
r and q were initialized to 103 and increased indefinitely by steps of 10.

Fig. 3(b) represents the design domain, in terms of cd1 and cd2. It shows also the contour of the second
component of the objective function (i.e. J̃m) in blue, and the contour of the aggregated normalized
constraint in red. Each blue circle represents the optimized solution of each sub-linear programming
problem. The black circle represents the final optimized solution, achived after 155 iterations. It is
possible to observe that initially the algorithm converges towards the global optimal solution of the
continuous problem, which is represented by the green circle. As the optimization progresses, and the
penalization of the SIMP functions increases, the algorithm is pushed towards a preference of crisp
0 − 1 final values of the variables x1,1 and x1,2 resulting in a discrete final solution: cd1 = cd2 = 46.58
kN( s

mm)α. In correspondence of the final optimized solution, the objective function was J̃ = 81.19 and
a small constraint violation, of approximately 0.1% of dallow (i.e. 0.009 mm), was observed. However,
from an engineering point of view this type of constraint violation is negligible.
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5.2 Nine-story frame with 18 potential dampers

In this example, we consider the north-south moment resisting frame of a nine-story building. The
detailed description of the structure considered can be found in Reference [66]. With this example, we
would like to compare the solution achieved with the gradient-based approach discussed in this paper
with the one achieved with a GA. The solutions are compared in terms of dampers distributions, and
computational efforts. In this case, we defined nine potential locations for dampers as shown in Fig. 4,
allowing a total of eighteen dampers to be potentially placed. The technical details of the frame can be
found in Refrence [66].

For this example, the coefficient ρ of the damper-brace elements was defined according to the proce-
dure presented in Reference [36]. However, after numerical tests it was noticed that assigning the same
parameter ρ to all the dampers did not give the desired results. The dampers placed at higher stories
tended to behave more as spring elements due to the participation of higher modes in the vibration of
the higher stories. In fact, the output response of the dampers placed at higher stories revealed that they
were experiencing higher frequencies of vibration, compared to the dampers at the bottom stories. For
this reason, we modified the dampers’ tuning procedure, and we considered in the tuning the first three
modes of vibration of the structure. In particular, we considered ω1 for the dampers in locations 1 − 3,
ω2 for the dampers in locations 4− 6, and ω3 for the dampers in locations 7− 9. Additionally, since the
stories had different heights, different values of allowable inter-story drifts were considered for tuning.
The allowable value for the inter-story drift of the first story above ground was set to 5.49 cm, and for all
the remaining stories it was set to 3.96 cm. Thus, we assigned to the damper-brace elements four different
values of the parameters ρ depending on their location in the structure: ρ1 = 0.5690, ρ2−3 = 0.5194,
ρ4−6 = 0.8838, and ρ7−9 = 1.1389. The subscripts identify the location to which each ρ coefficient refers
to (Fig. 4).

Ground

1st

Base

Potential locations for dampers

ag(t)

2nd
3rd
4th
5th
6th
7th
8th
9th

1

2
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Figure 4: Potential locations for dampers in the nine-story moment resisting frame of Sec. 5.2

Regarding the ground motion acceleration, out of the ensemble LA 10% in 50 years [67], LA05 was
considered acting in the horizontal direction since it proved to cause the largest inter-story drift in the
frame without dampers. In these examples, we considered 5% of critical damping for the first and the fifth
modes in order to build the Rayleigh damping matrix of the structures. In Table 1 the numerical values
of several parameters involved in the problem formulation are presented. It should be noted that the cost
components different from zero of the vector Cl1 and Cl2 were all equal in the numerical experiments.
Thus, with reference to Eq. (11), the non-zero components of Cl1 were equal to Cl1, and similarly for
Cl2 the non-zero components were equal to Cl2. Moreover, the coefficient β was used only in the SLP
algorithm. In the GA, in fact, a true non-differentiable Heaviside step function was considered. Table 2
lists the initial and final values, and the step sizes through which the parameters of the continuation
scheme of the SLP algorithm are initialized and increased.

In the SLP algorithm we defined three criteria for convergence to be satisfied simultaneously: The
first requires the parameters p, and s to reach their maximum value; The second requires the update of
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Table 1: Values of the parameters used in the numerical examples of Sec. 5.2 (h is the story height)
Parameter dallow c̄d α Cl1 Cl2 Cm Cp β

[as h] [kN
(

s
mm

)α
] [#] [#] [#] [1/kN0.5] [#] [#]

Value h
100 500 0.35 100 50 1 50 100

Table 2: Values of the parameters of the continuation scheme of the SLP algorithm in Sec. 5.2
Parameter p s r q
Initial value 1.5 0.1 100 100
Increment 0.25 p 0.25 s 10 10
Final value 100 1 ∞ ∞

the variables xk − xk−1 between two consecutive iterations to be smaller or equal to the 15% of xk−1;
The third requires all the actual drifts to be smaller than the allowable value with a tolerance of 5%.

In the GA implementation, the population size was set to 350. In order to guarantee the convergence
of the algorithm to a global optimum with high probability, five different analyses were performed, of
which the best solution was chosen. In this case we defined two criteria for convergence: The first halts
the algorithm when the number of generations (i.e. iterations) reaches the maximum number allowable
Generations – 500; The second halts the algorithm when the weighted average relative change in the best
fitness function value over StallGenLimit generations is less than or equal to TolFun. StallGenLimit
is an integer set to 50, and TolFun is a positive scalar set to 10−6.

In the SLP solution, a move limit of 0.1 was considered. The process converged after 159 iterations
(approximately 3 hours and 20 minutes on a PC with a quad-core Intel processor at 3.60GHz). Only one
damping coefficient was actually assigned to the existing dampers. The optimized value for the damping
coefficient was c̄2 = 378.05 kN

(
s
mm

)α. There was a small constraint violation in correspondence of the
optimized solution at the first story (i.e. the second potential location for dampers), and the maximum
drift was above the allowable value by 0.21% (i.e. 0.008 cm). With GA, the analysis that led to the best
solution converged after 73 iterations (approximately 4 days for the single GA analysis using 12 CPUs on
a computer cluster hosted and maintained by the Division for Computing and Information Systems at
the Technion - Israel Institute of Technology [68]), leading to a final distribution of dampers characterized
by only one damping coefficient: c̄2 = 497.49 kN

(
s
mm

)α.The optimized distribution and damper sizes
obtained with the two algorithms are shown in Fig. 5(a), and in Fig. 5(b).

Table 3 provides a comparison of the solutions achieved. It is possible to observe that the solutions
achieved with the two methods are characterized by similar topologies (Fig. 5(a) and Fig. 5(b)), and a
final cost higher by 7.86% in the case of the SLP solution. In fact the two algorithms chose to distribute
the dampers in the same locations. The solutions differ in the optimized sizes of the dampers’ groups
and in the total damping added in each location. This was already observed by the authors in previous
work [17, 36], and it can be justified by the high non-convexity of the problem that causes the presence of
several local minima in proximity of the global optima. The main advantage in solving this optimization
problem with a gradient-based approach is the significant reduction in computational effort and time
needed to achieve a good solution, compared to that of a GA. In fact, SLP required a number of time-
history analyses smaller by 2.605 orders of magnitude compared to that of GA. To get a satisfying solution
with a GA we needed to consider a big population and to repeat several times the optimization analysis.
In this case we considered a population of 350 individuals, meaning that the algorithm performed 350
time-history analyses in each iteration, and we repeated the optimization process 5 times. On the other
hand, the SLP needed to compute two time-history analyses each iteration for just one optimization
process: one for the structural response (nonlinear) and one for the evaluation of the constraint gradient
(linear).

We performed an additional optimization analysis, this time considering a linear elastic behavior of the
structure while optimizing nonlinear dampers. The goal was to check whether a retrofitting design solution
obtained while considering a linear elastic structural behavior would have been appropriate also in the case
of a nonlinear hysteretic behavior of the same structure. In this case, we solved the retrofitting problem
only with the gradient-based approach (i.e. SLP). In the SLP algorithm, the maximum allowable damping

15



(a) SLP - Final damping distribution having 9 potential
locations for dampers (Sec. 5.2). Compared to GA, the so-
lution obtained with SLP requires one additional damper.
Only one size-group of dampers is actually present in the

solution: c̄2 = 378.05

(
kN

(
s
mm

)α)
(b) GA - Final damping distribution having 9 potential
locations for dampers (Sec. 5.2). Compared to SLP, the
solution obtained with GA requires one less damper. Only
one size-group of dampers is actually present in the solu-

tion: c̄2 = 497.49

(
kN

(
s
mm

)α)

Figure 5: Nine-story frame: optimized dampers distributions achieved with SLP and GA

Table 3: Solutions achieved in Ex. 5.2 considering the record LA05. For the nonlinear structure, compared
to GA SLP provides a solution with a similar cost, a small constraint violation, but with a computational
effort smaller by 2.605 orders of magnitude

J̃ , J
dc,max
dallow

c̄1 c̄2 Time-history analyses
[#] [kN( s

mm)α] [kN( s
mm)α] (Sensitivity analyses

are also counted in SLP)
SLP (nonlinear structure) 995.56 1.0006 (0.06%) N/A 391.08 2 · 159 ≈ 102.502

GA (nonlinear structure) 923.04 1 (0.00%) N/A 497.49 5 · 73 · 350 ≈ 105.106

SLP (linear structure) 909.57 1.0015 (0.15%) N/A 451.26 2 · 171 ≈ 102.534

c̄d was set 750 kN( s
mm)α. The values of all the remaining parameters were identical to the previous

example. The process converged after 169 iterations. The algorithm placed two dampers in location 1,
and one damper only in locations 2, 3, 6, and 7. Only one damping coefficient was actually assigned
to the existing dampers: c̄2 = 477.21 kN

(
s
mm

)α. Within the elastic behavior assumption, there was a
small constraint violation at the ground story (corresponding to the first potential location for dampers)
in correspondence of the optimized solution, and the maximum drift was above the allowable value by
0.09% (i.e. 0.005 cm). In Table 3 we provide the details of the final optimized solution. The solution
achieved considering a linear elastic behavior of the structure was then tested on the same structure,
but allowing a hysteretic nonlinear structural behavior. In this case, a large constraint (i.e. inter-story
drift) violation was observed, of approximately 13% of the allowable value. It is possible to conclude that
for this specific design case it would not be safe to rely on a more simplified problem formulation (i.e.
considering a linear elastic structural behavior) in order to identify an effective distribution of dampers.
The structural behavior considered strongly influences the final optimized dampers’ distribution, and its
associated structural performance.

In the numerical applications discussed in this section we considered one level of seismic hazard
associated to a predefined level of expected structural performance of the retrofitted structure. This
was expressed in terms of a constraint on the maximum allowable inter-story drift, and for the seismic
excitation considered only a limited amount of plasticity in the structure was expected. However, in
Performance Based Seismic Design more severe levels of seismic excitation could be considered leading
to larger deformation and plasticity demands. In these cases, dampers’ distributions obtained under the
assumption of linear structural behavior are expected to cause more significant drift constraints violations
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(a) SLP - Structure with nonlinear hys-
teretic behavior. Final damping distri-
bution having 100 potential locations for
dampers (Sec. 5.3) and allowing up to
two dampers in each location chosen from
only one available size-group (c̄1 = 540.29
kN

(
s
mm

)α)

(b) SLP - Structure with linear behavior.
Final damping distribution having 100 po-
tential locations for dampers (Sec. 5.3) and
allowing up to two dampers in each location
chosen from only one available size-group
(c̄1 = 404.01 kN

(
s
mm

)α)
Figure 6: Twenty-story frame: optimized damper distributions achieved with SLP considering a nonlinear
and linear structural behavior

if a nonlinear behavior is allowed.

5.3 Twenty-story frame with 200 potential dampers

The last example that we discuss concerns the retrofitting of a twenty-story moment resisting frame. The
details of the structure considered can also be found in Reference [66]. With this example we would like
to show the capability of the methodology discussed herein to handle large scale problems for the seismic
retrofitting of tall buildings. We allowed the algorithm to place up to two dampers in all the five bays of
each of the 20 stories of the building above ground, for a total of 100 potential locations for dampers and
200 dampers to be potentially placed. To reduce the combinatorial nature of the problem, we allowed the
dampers to be chosen out of only one available size-group. Hence, only variables x1 and y1 characterized
the problem. Here too, as in Sec. 5.2, we relied on a modified tuning procedure for the parameter ρ of
the dampers. In fact, we considered the first five modes of the structure: ω1 for the dampers in stories
1 − 4, ω2 for the dampers in stories 5 − 8, ω3 for the dampers in locations 9 − 12, ω4 for the dampers
in locations 13− 16, and finally ω5 for the dampers in locations 17− 20. Due to the differences between
the stories in terms of allowable inter-story drifts, six different values of ρ were identified: ρ1 = 0.4383,
ρ2−4 = 0.4074, ρ5−8 = 0.5857, ρ9−12 = 0.7089, ρ13−16 = 0.7988, and ρ17−20 = 0.8786. The subscripts
define the story to which each ρ coefficient refers to. Also in this example, the allowable value for the
inter-story drift of the first story above ground was set to 5.49 cm, and for all the remaining stories it
was set to 3.96 cm. The record LA04 was selected out of the ensemble LA 10% in 50 years [67], since
it proved to cause the largest inter-story drift in the bare frame. Since only one size-group of dampers
was considered in this example, the cost function was characterized by the first two components only:
J̃ = Jl + J̃m. All the parameters’ settings were identical to the example of Sec. 5.2, the only differences
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being: c̄d = 1000 kN
(

s
mm

)α, the parameter s initiated to 0.25, and incremental steps of 50 in every
iteration for the parameters r and q.

This example was solved only with SLP, because GA failed to converge to final feasible optimized
dampers’ distributions. In the SLP algorithm, a more conservative moving limit of 0.025 was considered.
The process converged after 180 iterations (approximately 16 hours and 24 minutes on a PC with a
quad-core Intel processor at 3.60GHz). The optimized value for the damping coefficient was c̄2 = 540.29
kN

(
s
mm

)α. Fig. 6(a) shows the final dampers’ distribution. It can be observed that the dampers are not
distributed symmetrically in the structure. In fact, there are a few aspects that make the problem not
symmetric: the ground motion is applied in one direction in Eq. (6), in the columns there is a initial axial
force resulting from a preliminary static analysis, and we consider a nonlinear structural behavior. There
was a small constraint violation in correspondence of the optimized solution at the fourth story above
ground, and the maximum drift was above the allowable value by 0.05% (i.e. 0.002 cm). Additionally, it
was also observed that the axial forces at the bottom story in the structure with the optimized dampers’
distribution were well within the elastic range.

In Table 4 we provide the details of the final optimized solution. An attempt to solve this problem
using GA was made. In this case, the GA did not succeed in converging to a final optimized solution.
The failure of the GA can probably be explained by the increased computational cost required for each
response analysis of this large scale structure and by the increased combinatorial nature of the problem
at hand. These two aspects together increase extremely the computational time required to converge to
any satisfactory optimized solution. Additionally, a GA may produce intermediate designs characterized
by dummy dampers’ distributions and sizes remarkably unfeasible, especially in the initial generations
(i.e. iterations). For these designs, the algorithm for the time-history analysis may be pushed to its
limits in terms of converging to equilibrium points in every time-step. In large scale applications like the
one described in this section, genetic algorithms are expected to required prohibitive computational costs
and hence time, and in some cases they may even fail. In such cases, the only viable option may be to
use more efficient gradient-based optimization methodologies, like the one discussed herein.

Table 4: Solutions in Sec. 5.3 considering the record LA04, 100 potential locations for dampers, and only
one available size-group.

J̃
dc,max
dallow

c̄1 Time-history analyses
[#] [kN( s

mm)α] (Sensitivity analyses
are also counted in SLP)

SLP (nonlinear structure) 3841.56 1.0005 (0.05%) 540.29 2 · 180 ≈ 102.556

SLP (linear structure) 3338.58 1.0001 (0.01%) 404.01 2 · 174 ≈ 102.542

Also for this structure, we performed an additional optimization analysis considering a linear elastic
structural behavior while optimizing nonlinear dampers. The goal was to check whether a retrofitting
design solution obtained while considering a linear elastic structural behavior would have been appropriate
also in the case of a nonlinear hysteretic behavior of the same structure. In this case, the solution
obtained considering a linear elastic behavior (Fig. 6(b)) was significantly different from the one obtained
considering a nonlinear structural behavior (Fig. 6(a)), in particular with respect to the dampers’ number
and distribution in the structure. The solution achieved considering a linear elastic behavior of the
structure was then tested on the same structure, but allowing a hysteretic nonlinear structural behavior.
In this case, a large constraint (i.e. inter-story drift) violation was observed, of approximately 40% of
the allowable value. In particular, large plastic deformations were observed in several beams at the
lower stories, and only a small amount of plasticity occurred in the columns of the ground floor. It
is possible to conclude that also in this design case it would not be safe to rely on a more simplified
problem formulation (i.e. considering a linear elastic structural behavior) in order to identify an effective
distribution of dampers. The large constraint violation observed reveals the importance of the structural
behavior considered in obtaining an effective optimized dampers’ distribution. Additionally, it would not
be trivial to define how the solution obtained considering a linear structural behavior should be modified
so that it satisfies the constraint requirement when a nonlinear structural behavior is allowed. In fact,
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the two solutions (i.e. Fig. 6(a) and Fig. 6(b)) are characterized by significantly different topologies and
dampers’ size.

6 Final considerations

In this paper, we discussed the problem of optimal seismic retrofitting of hysteretic frames with nonlinear
fluid viscous dampers. The retrofitting approach consists of allocating and sizing nonlinear fluid viscous
dampers and their supporting braces based on optimization. A realistic retrofitting cost function is
minimized, considering the costs associated to the dampers’ distribution in a structure, size, and prototype
testing. The inter-story drifts are constrained to prescribed allowable values, collocating the approach
discussed herein in the context of Performance Based Seismic Engineering. The responses of interest are
computed with nonlinear time-history analyses considering realistic ground motions.

Major contributions of the approach presented herein are: the simultaneous nonlinear behavior of the
dampers and of the structure. We consider also the axial force and bending moment interaction in the
elements, and we allow the plasticity to spread along the beam-column elements; the formulation of a
retrofitting problem that leads to final practical and realistic minimum-cost design solutions; the solution
of the optimization problem with a computationally efficient gradient-based procedure. The approach
presented in this paper is of particular interest in the case of seismic retrofitting for severe ground motions,
especially for irregular and tall buildings, where the occurrence of plasticity in the structural elements
and the effect of the dampers on the columns’ axial forces at the lower stories need to be considered
carefully. This represents the first application of this type, where the seismic retrofitting problem with
viscous dampers is actually solved for hysteretic structures with nonlinear dampers in a gradient-based
framework.

The numerical results showed how the proposed methodology successfully solved realistic design
cases. We first discussed a simple application, that allows a more clear graphic understanding of the
methodology adopted. Next, we applied the proposed approach to the seismic retrofitting of a realistic
nine-story frame where both SLP and GA converged to similar final designs. With both algorithms, the
solutions obtained should be considered as local minima, since with none of the algorithms considered it
is possible to guarantee the convergence to the global minima of the problem. In both cases the designs
were not intuitive, and significantly different from a more practical and intuitive solution where dampers
would have been distributed along the full structure height with equal damping coefficients. If on the
one hand the results achieved with the two algorithms were in good agreement in terms of structural
performance and cost, on the other hand they also revealed a significant advantage of the gradient-based
algorithm in terms of computational effort. The second and third applications also showed that, in some
cases, optimizing the dampers assuming a linear behavior of the damped structure, may not be adequate.
Last, we showed the capability of the approach to handle large scale applications, such as the seismic
retrofitting of a twenty-story frame with potential dampers in all bays. This application represents a
new contribution of this kind, and opens up new possibilities in the context of seismic retrofitting of
nonlinear tall buildings. The potential of the approach presented became even more evident in the last
numerical application, where the complexity of the problem formulation, and therefore of the analysis,
significantly increased due to the simultaneous nonlinearity of the structure and of the dampers. The
balance between the quality of the final solution and the effort required to achieve it, makes gradient-
based approaches currently the only viable computational option for this type of applications. In many
cases, in fact, practitioners dispose of limited computational resources and time for their realistic and
complex applications, where genetic algorithms would require prohibitive computational efforts. In these
cases, we expect that the proposed methodology will promote the optimization-based seismic retrofitting
on nonlinear structures with fluid viscous dampers.
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