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1 Introduction and overview

An important aspect of doing experiments by positron annihilation lifetime spectroscopy (PALS)

is to be able to reliably analyse the measured spectra in order to extract physically meaningful

parameters. A number of computer programs have been developed over the last many years by

various authors for this purpose. Most of these programs have used various methods of least

squares fitting of a model function to the experimental data [1–20], while others carry out a

direct deconvolution of the measured spectra using different criteria for obtaining the optimal

solution [21–28]. At our laboratory we have concentrated on developing programs for least squares

fitting of positron lifetime spectra.

1.1 Acknowledgements

The development of PALSfit programs, including the present report, has been supported by

the Technical University of Denmark (AIT Department and Department of Energy Conversion

and Storage). Also the input and inspiring questions from colleagues world-wide have been much

appreciated. Thanks are due to Dr. Tetsuya Hirade for allowing us to apply his PALGEN program

for further development of spectrum simulation tools, and to Dr. Anne Margrethe Larsen who

resolved several issues about the LATEX typesetting system. Niels Jørgen Pedersen (deceased) was

involved in the early phases of this project.

1.2 PALSfit3

PALSfit Version 3, or PALSfit3 for short, is our most recent software of this kind. It is based

on the well tested PATFIT and PALSfit (Version 1 and 2) software [8, 13, 29], which have been

used extensively by the positron annihilation community. Now PALSfit3 allows each lifetime

component to be fitted not only with a simple decaying exponential, but also with a broadened

decaying exponential function. The reason for introducing broadening of lifetimes arises from the

fact that if all lifetime components are assumed to be simple decaying exponentials, it is very

difficult, if not impossible, to reliably separate groups of components whose lifetime values are

close. This is due to the fact that when fitting a sum of simple decaying exponentials, a very

strong correlation exists between such lifetimes. Hence, instead of assuming several individual

lifetime components in the analysis, we allow in PALSfit3 that many components with close

lifetimes may be joined into just one component which in principle is a decaying exponential, but

with a lifetime that can have a distribution of values (this distribution has been assumed to be

a so-called log-normal distribution). In addition, a number of new graphics displays are provided

to ease the selection of some input parameters and to display results of spectrum analyses.

The two cornerstones in PALSfit3 are the following least-squares fitting modules:

� POSITRONFIT extracts lifetimes and intensities from lifetime spectra.
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� RESOLUTIONFIT determines the lifetime spectrometer time resolution function to be used

in POSITRONFIT analyses.

Correspondingly PALSfit3 may run in either of two modes, producing a POSITRONFIT analysis

or a RESOLUTIONFIT analysis, respectively.

Common for both modules is that a model function will be fitted to a measured spectrum. This

model function consists of a function (representing the physics of the positron decay) which is

convoluted with the experimental time resolution function, plus a constant background. The

‘physics function’ consists of a sum of decaying exponentials each of which may be broadened

by convolution with a log-normal distribution (only in POSITRONFIT). The time resolution

function is described by a sum of Gaussians which may be displaced with respect to each other.

Various types of constraints may be imposed on the fitting parameters.

A correction for the contribution to a measured lifetime spectrum from positrons annihilating

outside the sample can be made during the POSITRONFIT analysis.

Figure 1 shows an example of a POSITRONFIT ‘Spectrum setup’ window. Various additional

tabs at the bottom of the window can be selected to enter or change input data (‘Resolution

function’, ‘Background and Area’ and ‘Lifetimes and Corrections’) or display results of analyses

(‘Graphics’, ‘Text output’ and ‘Multispectrum plot’) and finally ’Clean-up’.

In RESOLUTIONFIT, parameters determining the shape of the resolution function can be fit-

ted, normally by analysing lifetime spectra which contain mainly one component. The extracted

resolution function may then be used in POSITRONFIT to analyse more complicated spec-

tra. PALSfit3 can easily feed the resolution function determined by RESOLUTIONFIT into

POSITRONFIT. In the latter program the shape of the resolution function is fixed.

In the following, Chapter 2 presents a brief overview of the PALSfit3 model. In Chapter 3 follows a

detailed description of the PALSfit3 input and output, while Chapter 4 conveys some experiences

we and others have gained with PALSfit3 and its predecessors.

Appendices A–C contain the mathematical and statistical details which constitute the foundation

for the programs. Appendix D deals with quality checks of the programs, carried out by statistical

analyses of the results from fitting a long series of simulated spectra as well as by comparing results

obtained by both PALSfit3 and LT programs (Giebel and Kansy [16]). Appendix E discusses

“Exclusion of channels”, a new feature in PALSfit3.

PALSfit3 is available from the website www.palsfit.dk.

A contemporary edition of the PATFIT package, roughly equivalent to PALSfit3 without its GUI,

is available too. It contains command-driven versions of POSITRONFIT and RESOLUTIONFIT

and might be useful for batch processing under Windows or in a Linux environment where it is

also available.
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Fig. 1 An example of a window in the PALSfit3 program, which shows a spectrum to be analysed,

some of the input parameters for the analysis as well as icons, buttons, menus and tabs that are

used to define the analysis and to display the results in numerical or graphical form.

2 About PALSfit

2.1 General fitting criterion

Common for POSITRONFIT and RESOLUTIONFIT is that they fit a parameterized model

function to a distribution (a “spectrum”) of experimental data values yi. In the actual case these

are count numbers which are recorded in “channels”. We use the least-squares criterion, i.e. we

seek values of the k model parameters b1, . . . , bk that minimizes

ϕ =

n∑
i=1

wi(yi − fi(b1, . . . , bk))
2 (1)

where n is the number of data values, fi(b1, . . . , bk) the model prediction corresponding to data

value no. i, and wi a fixed weight attached to i; in this work we use “statistical weighting”,

wi =
1

s2i
(2)

where s2i is the variance of yi. As some of the parameters enter our models nonlinearly, we must

use an iterative fitting technique. In PALSfit we use separable least-square methods to obtain

the parameter estimates. Details of the solution methods and the statistical inferences are given

in Appendix A. As a result of the calculations, a number of fitting parameters are estimated

that characterize the fitted model function and hence the measured spectrum (e.g. lifetimes and

intensities). A number of different constraints may be imposed on the fitting parameters. The

two most important types of constraints are that 1) a parameter can be fixed to a certain value,
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and 2) a linear combination of lifetime intensities is put equal to zero (this latter constraint can

be used to fix the ratio of intensities).

2.2 The POSITRONFIT model

Let us first consider the “simple” POSITRONFIT model, i.e. without any broadening of com-

ponents. In this case the model function is a sum of decaying exponentials convoluted with the

resolution function of the lifetime spectrometer, plus a constant background. Each exponential

corresponds to a single lifetime component. Let t be the time, k0 the number of lifetime com-

ponents, aj the decay function for component j, R the time-resolution function, and B the

background. The resulting expression is given in full detail in Appendix B, Section 6.1; here we

state the model in an annotated form using the symbol ∗ for convolution:

f(t) =

k0∑
j=1

(aj ∗R)(t) + B (3)

where

aj(τ) =

{
Aj exp(−(τ − T0)/τj), τ > T0
0, τ < T0

(4)

In (4) τj is the mean lifetime of the jth component, and Aj is a pre-exponential factor. The

integral ∫ ∞

T0

Aj exp(−(τ − T0)/τj) dτ = Ajτj (5)

is called the area or the absolute intensity of the component. If not for the resolution function R,

t = T0 would be the onset time for the decaying exponentials, hence T0 is called “time-zero”. We

assume, furthermore, that R is given by a weighted sum of kg Gaussians which may be displaced

with respect to each other:

R(τ) =

kg∑
p=1

ωpGp(τ) (6)

where

Gp(τ) =
1√
2πsp

exp
(
− (τ −∆p)

2

2s2p

)
(7)

and
kg∑
p=1

ωp = 1 (8)

The Gaussian (7) is centered around the shift ∆p. Its standard deviation sp is related to its Full

Width at Half Maximum by

FWHMp = 2
√
2 ln 2 sp ≈ 2.3548 sp (9)

We also see that ∫ ∞

−∞
R(τ)dτ = 1 (10)

The technical term Full-Width Half-Maximum, or FWHM, is often used to describe a measured

distribution. In practice, this distribution is normally assumed to be symmetric. However, in

PALSfit3 we shall use it for skew distributions, too.

Regarding the time scale, the choices of t = 0 and the time unit are arbitrary. Considering the

actual physical experiment, the positron annihilation lifetimes τj are often measured in ns. In

this physical time representation all the other temporal model parameters in (3–10), i.e. t, τ , T0,

∆p, and sp, would be in ns too, and it is natural to set T0 = 0.
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However, for some of the quantities it is more convenient to use a time scale directly related

to the spectrum recording system. Let the spectrum be recorded in nch channels, numbered

ich = 1, 2, . . . , nch. Each channel represents a time slot whose common width will be used as the

time unit. We let channel No. ich begin at t = ich − 1 and end at t = ich. This implies that t = 0

corresponds to the beginning of the first channel. In this channel scale the “time-zero” T0 will

usually take some positive fractional value, say T0 = 120.36. The time t defined in this way is

called the channel time.

Our way of defining the channel time is by no means standard. Others may prefer to let t = 0 fall

in the middle of a channel, or may choose to number the channels 0, 1, 2, . . . In earlier versions of

our software t = 0 corresponded to the left end of a fictive channel 0. Of course such differences

have no influence on the analysis itself, except for the nominal value of T0. The scales for physical

time and channel time are assumed to be connected by a fixed parameter C:

1 channel = C ns (11)

The curve given by (3) is continuous, but since the spectra are recorded in channels of a multichan-

nel analyser or similar, this curve shall for proper comparison be transformed into a histogram

by integration over intervals each being one channel wide.

If all the nch channels in the spectrum are used in the least-squares analysis by (1), we have

n = nch and we simply identify the channel number ich with the data value number i from (1).

Thus we substitute for fi in (1) the channel average of the model count,

fi =

∫ i

i−1

f(t) dt, i = 1, . . . , n (12)

with f(t) given by (3), so that (12) is fitted to the measured spectrum. However, often only a

subset of the channels are used in the analysis. If this subset starts in channel imin
ch and ends in

imax
ch (inclusive), where

1 ≤ imin
ch ≤ imax

ch ≤ nch (13)

we should generalize (12) to

fi =

∫ imin
ch +i−1

imin
ch +i−2

f(t) dt, i = 1, . . . , n (14)

where now

n = imax
ch − imin

ch + 1 (15)

In any case, we obtain as the result a model for the least-squares analysis of the form

fi =

k0∑
j=1

Fij + B (16)

where Fij is the contribution from lifetime component j in spectrum channel imin
ch + i − 1. (We

relegate the full write-up of Fij to Appendix B, Section 6.1.) We recall that fi in (12), (14), and

(16) corresponds to fi(b1, . . . , bk) in Section 2.1, formula (1).

The fitting parameters in POSITRONFIT are the lifetimes (τj), the relative intensities defined

as

Ij =
Ajτj∑k0

k=1Akτk
(17)

the time-zero (T0), and the background (B). Each of these parameters may be fixed to a chosen

value. In another type of constraint you may put one or more linear combinations of intensities

equal to zero in the fitting, i.e.
k0∑
j=1

hljIj = 0 (18)
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These constraints can be used to fix ratios of intensities. Finally, it is possible to fix the total

area of the spectrum in the fitting,

k0∑
j=1

Ajτj + background area = constant (19)

This may be a useful option if, for example, the peak region of the measured spectrum is not

included in the analysis.

The necessary mathematical processing of the POSITRONFIT model for the least-squares anal-

ysis is outlined in Appendix B, Section 6.1.

2.3 The log-normal extension

Until now we have assumed that each lifetime component consists of a decaying exponential

function (convoluted with a resolution function) with a single decay rate (equal to the inverse of

the lifetime τ∗). We may say that its probability density function (pdf) is a delta function,

f(τ) = δ(τ − τ∗) (20)

Sometimes it is more realistic to assume that a lifetime may have some continuous distribution,

see e.g. [12,23,30]. We shall here consider the case where one (or more) of the lifetimes obeys the

log-normal distribution which is implemented in PALSfit3.

Let us recapitulate the general properties of the log-normal distribution. We say that the stochas-

tic variable τ has a log-normal distribution if ln τ has a normal distribution,

ln τ ∼ N(ln τ∗, σ
2
∗) (21)

for some positive τ∗ and σ∗. Thus the mean and variance of ln τ are ln τ∗ and σ2
∗, respectively .

To find F , the cumulative distribution function (CDF) of τ , we note that

F (x) = P{τ < x} = P
{ ln τ − ln τ∗

σ∗
<

lnx− ln τ∗
σ∗

}
(22)

In terms of the CDF for N(0,1),

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 t

2

dt =
1

2

(
1 + erf

( x√
2

))
(23)

eq. (22) can be written

F (x) = Φ
( lnx− ln τ∗

σ∗

)
(24)

Taking the derivative, this gives the pdf of τ :

f(τ) =
1

τσ∗
√
2π

exp
(
− 1

2σ2
∗
(ln τ − ln τ∗)

2
)

(25)

with support (0,∞). In the limit σ∗ → 0 (25) tends to (20). We see from (24) that τ∗ equals

the median value for the log-normal distribution; σ∗ is dimensionless and is sometimes called the

scale or the shape parameter. The mean and variance are

E[τ ] = τm = τ∗ exp(
1
2σ

2
∗) (26)

Var[τ ] = σ2 = τ2∗ exp(σ2
∗)(exp(σ

2
∗)− 1) (27)

Hence the standard deviation is

σ = τ∗ exp(
1
2σ

2
∗)
√

exp(σ2
∗)− 1 (28)

and the coefficient of variation is√
Var[τ ]

E[τ ]
=

σ

τm
=

√
exp(σ2

∗)− 1 (29)
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We see that when the parameter σ∗ is small, it is approximately equal to the coefficient of

variation. By solving the equation
d

dτ
ln(f(τ)) = 0 (30)

for τ , where f(τ) is given by (25), we find that the most probable τ -value (mode) for the log-

normal distribution is

τmax = τ∗ exp(−σ2
∗) (31)

The log-normal distribution is completely specified by either of the parameter sets (τ∗, σ∗) or

(τm, σ). The relation between the two sets was given in (26–27); the inverse transformation reads

τ∗ =
τ2m√
σ2 + τ2m

(32)

σ2
∗ = ln

(
1 +

σ2

τ2m

)
(33)

The Full Width at Half Maximum is given by

FWHM = 2τ∗ exp(−σ2
∗) sinh(

√
2 ln 2σ∗) (34)

or, equivalently

FWHM = 2τ4m(σ
2 + τ2m)

− 3
2 sinh

[√
2 ln 2 · ln(1 + σ2/τ2m)

]
(35)

In POSITRONFIT we use the representation (τ∗, σ∗) for internal calculations, while (τm, σ) is used

for input and output. More details related to POSITRONFIT and the log-normal distribution

are given in Appendix C.

2.4 Source correction

Normally in an experiment a fraction α of the positrons will not annihilate in the sample, but

for example in the source or at surfaces. In POSITRONFIT it is possible to make a correction

for this (“source correction”). First, the raw spectrum data are fitted in a first iteration cycle.

Then, the spectrum for the source correction is subtracted from the raw spectrum. The corrected

spectrum is then fitted in a second iteration cycle. In this second cycle it is optional to choose

another number of lifetime components as well as type and number of constraints than were used

in the first iteration cycle. The source correction spectrum f si itself is composed of ks lifetime

components and expressed in analogy with (16) (with B = 0) as follows:

f si =

ks∑
j=1

F s
ij (36)

If τ sj and As
j are the lifetime and pre-exponential factor, respectively, of source-correction com-

ponent j, then
ks∑
j=1

As
jτ

s
j = α

k0∑
j=1

Ajτj (37)

Log-normal broadening of the source-correction lifetime components is accepted.

2.5 The RESOLUTIONFIT model

The RESOLUTIONFIT model function is basically the same as for POSITRONFIT, Eqs. (3–16).

A few additional formulas relevant to RESOLUTIONFIT are given in Appendix B, Section 6.2.

The purpose of RESOLUTIONFIT is to extract the shape of the resolution function. The widths

and shifts (Eqs. (9) and (7)) of the Gaussians in the resolution function are therefore included as
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fitting parameters. In order not to have too many fitting parameters, the intensities of the Gaus-

sians are fixed parameters. For the same reason it is normally advisable to determine resolution

functions by fitting only simple lifetime spectra, i.e. spectra containing only one major lifetime

component. The extracted resolution function may then be used in POSITRONFIT to analyse

more complicated spectra. Along the same line, RESOLUTIONFIT does not include as many

features as does POSITRONFIT, e.g. there is no source correction and there are no constraints

possible on time-zero or on the area. Moreover, log-normal broadening of lifetime components is

not available. The background can be free or fixed, just like in POSITRONFIT.

Hence, the fitting parameters in RESOLUTIONFIT are the lifetimes (τj), their relative intensities

(Ij), the background (B), the time-zero (T0), and the widths and shifts of the Gaussians in the

resolution function. Each of these parameters, except T0, may be constrained to a fixed value

and, as in POSITRONFIT, linear combinations of lifetime intensities may be constrained to zero

in the fitting. At least one shift must be fixed.

3 Input and output

PALSfit requires — together with the spectrum to be analysed — a set of input data, e.g. some

characteristic parameters of the lifetime spectrometer, guesses of the parameters to be fitted, and

possible constraints on these parameters. For one analysis of the spectrum, these data shall be

organised in a block structured dataset which is saved in a so-called control file. In order to carry

out several analyses of the same spectrum or of different spectra, several datasets may be stacked

in the same control file.

The most direct way to generate datasets and control files is to run PALSfit and edit the input

data by using the PALSfit menus. Nevertheless there might be situations where an inspection

or an external editing of the content of a control file is required. For example, as mentioned

in Chapter 1, it may be useful in certain situations (batch processing) to run the command-

driven PATFIT programs POSITRONFIT and RESOLUTIONFIT directly. In that case you will

also need to know the structure of the input files. Note that PATFIT and PALSfit are input-

compatible.

In any case, the knowledge of the structure of the control files may give the user a good overview

of the capabilities of PALSfit3. Therefore, in the following we shall describe the contents of the

control files for POSITRONFIT and RESOLUTIONFIT in some detail.

Each dataset in a control file is partitioned into a number of data blocks, corresponding roughly

to the menus in PALSfit. Each block is initiated by a block header. For example, the first block

header reads

POSITRONFIT DATA BLOCK 1: OUTPUT OPTIONS

in the case of POSITRONFIT, and similarly for RESOLUTIONFIT.

3.1 PALSfit3 input

As mentioned above, PALSfit3 can interactively generate and/or edit the control file for either

POSITRONFIT or RESOLUTIONFIT. Previously generated control files can be used as default

input values. A number of checks on the consistency of the generated control data are built into

PALSfit3. PALSfit3 is largely self-explanatory regarding input editing.

11



3.2 POSITRONFIT control file

A sample PALSfit3 control file for POSITRONFIT with a single dataset is shown below:

POSITRONFIT DATA BLOCK 1: OUTPUT OPTIONS

0000

POSITRONFIT DATA BLOCK 2: SPECTRUM

2049

(/,(i6,9i7))

.\Test_Spectra-Polymer.DAT

37200 PVAC, T=414K

0

POSITRONFIT DATA BLOCK 3: CHANNEL RANGES. TIME SCALE. TIME-ZERO.

5

2000

275

2000

0.026800

G

285.000

POSITRONFIT DATA BLOCK 4: RESOLUTION FUNCTION

3

0.23960 0.25460 0.29840

75.000 13.000 12.000

0.00000 0.08020 -0.10380

POSITRONFIT DATA BLOCK 5: LIFETIMES AND INTENSITY CONSTRAINTS

3

GGG

0.2000 0.5000 3.2000

FFF

0.0000 0.0000 0.0000

0

POSITRONFIT DATA BLOCK 6: BACKGROUND CONSTRAINTS

1

1400

2000

POSITRONFIT DATA BLOCK 7: AREA CONSTRAINTS

0

POSITRONFIT DATA BLOCK 8: SOURCE CORRECTION

2

0.3803 2.0000

0.0000 0.0000

86.9972 13.0028

9.1957

1

3

GGG

0.1500 0.4000 3.2000

FGF

0.0000 0.2000 0.0000

-1

-3.0000 0.0000 1.0000

—————————————

Block 1 contains output options:

Apart from the block header there is only one record. It contains normally 4 integer keys1 in its

first 4 positions. Each key is either 0 or 1. The value 1 causes some output action to be taken,

whereas 0 omits this action. The actions of the 4 keys are:

1. Write input echo to result file

2. Write each iteration output to result file

1In fact, the record may contain an additional key which is not an output option but an indicator of the
so-called log-normal fineness, see Appendix C, Section 7.4.
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3. Write residual plot to result file

4. Write correlation matrix to result file

Regardless of these keys, POSITRONFIT always produces the Main Output, cf. Section 3.4.

—————————————

Block 2 contains the spectrum:

The first record (after the block header) contains the integer NCH, which is the total number of

channels in the spectrum.

Next record contains a description of precisely how the spectrum values are “formatted” in the

file—expressed as a so-called FORMAT in the programming language FORTRAN [31].

After this, two text records follow. In the first a name of a spectrum file is given. (Even when

INSPEC = 1 (see below) this name should be present, but is in that case not used by the

program.) In the second record an identification label of the spectrum is given.

The next record contains the integer INSPEC taking a value of either 0 or 1. INSPEC = 1 means

that the spectrum is an intrinsic part of the present control file. In this case the next record should

be a text line with an identification label for the spectrum. The subsequent records are supposed

to hold the NCH spectrum values. On the other hand, INSPEC = 0 means that the spectrum is

expected to reside in an external spectrum file with the file name entered above. The program

opens this file (which may contain several spectra) and scans it for a record whose start matches

the identification label. After a successful match, the matching (text) line and the spectrum itself

are read from the subsequent records in exactly the same way as in the case INSPEC = 1.

—————————————

Block 3 contains information related to the measuring system:

The first 2 records (after the block header) contain 2 channel numbers ICHA1 and ICHA2. These

numbers are lower and upper bounds for the definition of a total area range.

The next 2 records contain also 2 channel numbers ICHMIN and ICHMAX. These define in the

same way the channel range which is used in the least-squares analysis.

The next record contains the channel width C measured in ns, cf. (11) in Section 2.2.

The last 2 records in the block deal with T0 (time=0 channel number, may be fractional). First

comes a constraint flag being either a G or an F. G stands for guessed (i.e. free) T0, F stands for

fixed T0. The other record contains the initial (guessed or fixed) value of T0.

Rules for proper channel specifications are given in Section 3.7.

—————————————

Block 4 contains input for definition of the resolution function:

The first record (after the block header) contains the number kg of Gaussian components in the

resolution function.

Each of the next 3 records contains kg numbers. In the first record we have the full widths at half

maxima of the Gaussians (in ns), FWHMj , j = 1, . . . , kg, in the second their relative intensities

(in percent) ωj , j = 1, . . . , kg, and in the third their peak displacements (in ns) ∆tj , j = 1, . . . , kg.

—————————————
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Block 5 contains data for lifetime components and intensity constraints:

The first record (after the block header) contains the number k0 of lifetime components assumed

in the model.

Each of the next 4 records contains k0 data. In the first we have the constraint flags (G = guessed,

F = fixed) for the lifetimes (mean values in case of log-normal broadening). The second record

contains the initial values (guessed or fixed) for each of the k0 lifetimes. In the standard case

of no log-normal broadening of the lifetime components, the 3rd record should contain the flags

F (=fixed), while the 4th should contain k0 zeroes. In the case of log-normal broadening (=

standard deviation), the 3rd record should contain the flags F or G, while the 4th should contain

the initial values (guessed or fixed) for each of the k0 broadenings.

The next record after this contains an integer m denoting the number and type of intensity

constraints. |m| is equal to the number of constraints; m itself may be positive, negative, or zero.

If m = 0 there is no further input data in the block. If m > 0, m of the relative intensities are

fixed. In this case the next data item is a pair of records with the numbers jl, l = 1, . . . ,m and

Ijl , l = 1, . . . ,m; here jl is the term number (the succession agreeing with the lifetimes on the

previous record) associated with constraint number l, and Ijl is the corresponding fixed relative

intensity (in percent). If m < 0, |m| linear combinations of the intensities are equal to zero. In

this case |m| records follow, each containing the k0 coefficients hlj , j = 1, . . . , k0 to the intensities

for one of the linear combinations, cf. equation (18) in Section 2.2.

—————————————

Block 6 contains data related to the background:

The first record (after the block header) contains an integer indicator KB, assuming one of the

values 0, 1, or 2. KB = 0 means a free background (to be fitted); in this case no more data follows

in this block. If KB = 1 the background is fixed to the spectrum average from channel ICHBG1

to channel ICHBG2. These two channel numbers follow on the next 2 records. If KB = 2, the

background is fixed to an input value which is entered on the next record.

—————————————

Block 7 contains input for constraining the total area:

The first record (after the block header) holds an integer indicator KAR, assuming one of the

values 0, 1, or 2. KAR = 0 means no area constraint; in this case no more data follows in this

block. If KAR > 0, the area between two specified channel limits ICHBEG and ICHEND will be

fixed, and these channel numbers follow on the next two records. If KAR = 1, the area is fixed

to the measured spectrum, and no more input will be needed. If KAR = 2 the area is fixed to an

input value which is entered on the next record.

—————————————

Block 8 contains source correction data:

The first record (after the block header) contains an integer ks denoting the number of components

in the source correction spectrum. ks = 0 means no source correction, in which case the present

block contains no more data.

If ks > 0, the next 3 records contain the lifetimes τ sj , the lifetime broadenings σs
j and the relative

intensities (in percent) Isj , j = 1, . . . , ks for the source correction terms.

On the next record is the number α which is the percentage of positrons that annihilate in the

source, cf. equation (37) in Section 2.4.
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Then follows a record with an integer ISEC. When ISEC = 0 the new iteration cycle after the

source correction starts from parameter guesses equal to the converged values from the first

(correction-free) cycle. ISEC = 1 tells that the second cycle starts from new input data. These

2nd-cycle input data are now entered in exactly the same way as the 1st-cycle data in Block 5.

ISEC = 2 works as ISEC = 1, but with the additional possibility of changing the status of T0;

in this case two more records follow, the first containing the constraint flag (G = guessed, F =

fixed) for T0 and the second the value of T0.

—————————————

With the end of Block 8 the entire POSITRONFIT dataset is completed. However, as previously

mentioned, PALSfit3 accepts multiple datasets in the same POSITRONFIT control file.

3.3 RESOLUTIONFIT control file

A sample PALSfit3 control file for RESOLUTIONFIT with a single dataset is shown below:

RESOLUTIONFIT DATA BLOCK 1: OUTPUT OPTIONS

0000

RESOLUTIONFIT DATA BLOCK 2: SPECTRUM

1023

(/,(10i7))

.\Test_spectra-Metal.DAT

51108 Cu-ann

0

RESOLUTIONFIT DATA BLOCK 3: CHANNEL RANGES. TIME SCALE. TIME-ZERO.

3

1023

175

1000

0.015800

194.000

RESOLUTIONFIT DATA BLOCK 4: RESOLUTION FUNCTION

3

GGG

0.25000 0.20000 0.35000

70.000 20.000 10.000

FGG

0.00000 -0.04000 -0.02500

RESOLUTIONFIT DATA BLOCK 5: LIFETIMES AND INTENSITY CONSTRAINTS

3

FFG

0.1100 0.1800 0.4000

0

RESOLUTIONFIT DATA BLOCK 6: BACKGROUND CONSTRAINTS

0

—————————————

Block 1 contains output options:

It is identical to the corresponding block in the POSITRONFIT control file (but of course the

name RESOLUTIONFIT must appear in the block header).

—————————————

Block 2 contains the spectrum:

It is identical to the corresponding block in the POSITRONFIT control file.

15



—————————————

Block 3 contains information related to the measuring system:

It is identical to the corresponding block in the POSITRONFIT control file, except for the status

of T0. In RESOLUTIONFIT the last record always contains a guessed value of T0, so there is no

preceding G or F flag.

Rules for proper channel specifications are given in Section 3.7.

—————————————

Block 4 contains input for definition and initialization of the resolution function:

The first record (after the block header) contains the number kg of Gaussian components in

the resolution function. Each of the next two records contains kg data. In the first we have

the constraint flags (G=guessed, F=fixed) for the Gaussian widths. The second contains the

initial values (guessed or fixed) of the full widths at half maxima of the Gaussians (in ns),

FWHMini
j , j = 1, . . . , kg. The next record contains the kg Gaussian component intensities in

percent, ωj , j = 1, . . . , kg. The last two records in the block contain again kg data each. First,

we have the constraint flags (G=guessed, F=fixed) for the Gaussian shifts; notice that not all

the shifts can be free. Next, we have the initial (guessed or fixed) peak displacements (in ns),

∆ini
j , j = 1, . . . , kg.

—————————————

Block 5 contains data for the lifetime components in the lifetime spectrum as well

as constraints on their relative intensities:

It is the similar to the corresponding block in the POSITRONFIT control file, but without the

two records about the log-normal input.

—————————————

Block 6 contains data related to the background:

It is identical to the corresponding block in the POSITRONFIT control file.

—————————————

This completes the RESOLUTIONFIT dataset. Multiple datasets can be handled in the same

way as for POSITRONFIT.

3.4 PALSfit3 output

After a successful POSITRONFIT or RESOLUTIONFIT analysis PALSfit3 presents the results

of the analysis in several output files as well as in graphical displays. The most important of the

files is the Analysis report (result file) the content of which is displayed automatically after the

analysis comes to an end. It can also be viewed by choosing the “Analysis Report” tab. It has

the following contents:

a) An edited result section, which is the Main Output for the analysis. It contains the final

estimates of the fitting parameters and their standard deviations. In addition, all the guessed

input parameters as well as information on constraints are quoted. Furthermore, three statistical
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numbers, “chi-square”, “reduced chi-square”, and “significance of imperfect model” are shown.

They inform about the agreement between the measured spectrum and the model function (Ap-

pendix A, Section 5.3). A few key numbers are displayed for quick reference, giving the number of

components and the various types of constraints; they are identified by letters or abbreviations.

b) An input echo (optional). This is a raw copy of all the input data contained in the dataset.

c) Fitting parameters after each iteration (optional). The parameters shown are internal; after

convergence they may need a transformation prior to presentation in the Main Output.

d) An estimated correlation matrix for the parameters (optional). This matrix and its interpre-

tation is discussed in Appendix A, Section 5.3.

As indicated above, the outputs b)–d) are optional, while the Main Output is always produced.

In addition to the Main output, two ‘graphics files’ (*.pfg and *.pft from POSITRONFIT, *.rfg

and *.rft from RESOLUTIONFIT) are produced (and may optionally be saved). They contain

data necessary for the generation of plots of measured and fitted spectra. These plots will be

displayed by choosing the tab “Graphics” or the tab “Multispectrum plot”.

3.5 POSITRONFIT main output

In the following we give an example of the Main Output part of a POSITRONFIT analysis

report produced by PALSfit3, with a brief explanation of its contents (for details about the input

possibilities consult Section 3.2):

PALSfit - Version 3.251 26-apr-2022 - Licensed to Morten Eldrup

Input file:

C:\Users\moel\Documents\PALSfit\PALSfit3\Tests-for-report\PVAc-test-rep.pfc

P O S I T R O N F I T . Version 3.251 Job time 11:38:50.43 23-MAY-22

************************************************************************

37200 PVAC, T=414K

in file: .\Test_Spectra-Polymer.DAT

************************************************************************

Dataset 1 LT LN LX SX IX BG TZ AR GA

3 0 0 0 0 1 0 0 3

Time scale ns/channel : 0.026800

Area range starts in ch 5 and ends in ch 2000

Fit range starts in ch 275 and ends in ch 2000

----------------- I n i t i a l P a r a m e t e r s -----------------

Resolution function:

FWHM (ns) : 0.2396 0.2546 0.2984

Intensities (%) : 75.0000 13.0000 12.0000

Shifts (ns) : 0.0000 0.0802 -0.1038

Time-zero (ch.no) : 285.0000G

Lifetimes (ns) : 0.2000G 0.5000G 3.2000G

Background fixed to mean from ch 1400 to ch 2000 = 551.1963

----- R e s u l t s b e f o r e s o u r c e c o r r e c t i o n -----

Convergence obtained after 5 iterations

Chi-square = 1768.66 with 1719 degrees of freedom

Lifetimes (ns) : 0.2191 0.4635 3.2092

Intensities (%) : 22.4624 50.7573 26.7803

Time-zero (channel no.) : 285.0458

Total area from fit : 3.93911E+06 from table : 3.94045E+06

------------------- S o u r c e C o r r e c t i o n -------------------

Lifetimes (ns) : 0.3803 2.0000

Intensities (%) : 86.9972 13.0028

Total (%) : 9.1957
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--------- I n i t i a l 2 n d c y c l e P a r a m e t e r s --------

Lifetimes (ns) : 0.1500G 0.4000G 3.2000G

Sigma (ns) : 0.0000F 0.2000G 0.0000F

Lin.comb.coeff. : -3.0000 0.0000 1.0000

####################### F i n a l R e s u l t s #######################

Dataset 1 LT LN LX SX IX BG TZ AR GA

3 1 0 0 -1 1 0 0 3

Convergence obtained after 8 additional iterations

Chi-square = 1776.83 with 1719 degrees of freedom

Reduced chi-square = chi-square/dof = 1.034 with std deviation 0.034

Significance of imperfect model = 83.81 %

Lifetimes (ns) : 0.1667 0.4265 3.2757

Std deviations : 0.0055 0.0015 0.0142

Sigma (ns) : 0.0000 0.1102 0.0000

Std deviations : fixed 0.0063 fixed

Intensities(%) LC : 9.3713 62.5150 28.1138

Std deviations : 0.0420 0.1679 0.1259

Mean lifetime(ns) : 1.2032

Std deviation : 0.0026

Background (counts/channel) : 551.1963

Std deviation : mean

Time-zero (channel no.) : 285.0628

Std deviation : 0.0149

Total area from fit : 3.67870E+06 from table : 3.67939E+06

######################### P o s i t r o n F i t ########################

Time for this job: 0.48 seconds.

This output was obtained by running PALSfit3 with the dataset in Section 3.2. It does not

represent a typical analysis of a spectrum, but rather illustrates a number of program features.

After a heading which contains the spectrum headline, key numbers (’indicators’) are displayed in

the upper right hand corner. These indicators may optionally be added to the output by checking

the option “Extra info in Analysis Report” (in the menu ’Output Options’).

LT indicates the number of lifetime components (k0), LN of these are log-normally distributed, LX

is the number of fixed lifetimes, SX the number of fixed lifetime broadenings, IX the number and

type of intensity constraints (a positive number for fixed intensities, a negative number for linear

combinations of intensities, i.e. the number m, Section 3.2, Block 5), BG the type of background

constraint (KB, Section 3.2, Block 6), TZ whether time-zero is free or fixed (0 = free, 1 = fixed),

AR the type of area constraint (KAR, Section 3.2, Block 7), and GA the number of Gaussians used

to describe the time resolution function (kg). The rest of the upper part of the output reproduces

various input parameters, such as those for the resolution function (the shape of which is fixed),

and the initial values (G for guessed and F for fixed) of the fitting parameters for the first iteration

cycle.

The next part (“Results before source correction”) contains the outcome of the first iteration

cycle. If convergence could not be obtained, a message will be given and the iteration procedure

discontinued, but still the obtained results are presented. Then follows information about the

goodness of the fit (Appendix A, Section 5.3).

The next part (“Source correction” and “Initial 2nd Cycle Parameters”) shows the parameters

18



of the chosen source correction, which accounts for those positrons that annihilate outside the

sample. It is followed by optional initial values of the fitting parameters for the second iteration

cycle.

The “Final Results” part contains the number of iterations in the final cycle, followed by three

lines with information about the goodness of the fit (Appendix A, Section 5.3). Then follows a sur-

vey of the final estimates of the fitted (and fixed) parameters and their standard deviations. The

“LC” in the intensity line indicates that we have intensity constraints of the linear-combination

type (cf. the negative IX in the upper right hand corner). The “total area from fit” is calculated

as
∑

j Ajτj plus the background inside the “area range” specified in the beginning of the Main

Output. The “total area from table” is the total number of counts in the (source corrected)

measured spectrum inside the “area range”.

3.6 RESOLUTIONFIT main output

Below you find an example of the Main Output from a RESOLUTIONFIT analysis by PALSfit,

with a brief explanation of its contents (for more details about the input possibilities consult

Section 3.3):

PALSfit - Version 3.251 26-apr-2022 - Licensed to Morten Eldrup

Input file:

C:\Users\moel\Documents\PALSfit\PALSfit3\Tests-for-report\Cu-ann.rfc

R E S O L U T I O N F I T Version 3.251 Job time 11:55:04.96 23-MAY-22

************************************************************************

51108 Cu-ann

in file: .\Test_spectra-Metal.DAT

************************************************************************

Dataset 1

Time scale(ns/channel) : 0.015800

Area range starts in ch 3 and ends in ch 1023

Fit range starts in ch 175 and ends in ch 1000

----------------- I n i t i a l P a r a m e t e r s -----------------

Resolution function:

FWHM (ns) : 0.2500G 0.2000G 0.3500G

Intensities (%) : 70.0000 20.0000 10.0000

Shifts (ns) : 0.0000F -0.0400G -0.0250G

Time-zero(ch.no.) : 194.0000

Lifetimes (ns) : 0.1100F 0.1800F 0.4000G

####################### F i n a l r e s u l t s #######################

Convergence obtained after 6 iterations

Chi-square = 842.59 with 815 degrees of freedom

Reduced chi-square = Chi-square/dof = 1.034 with std deviation 0.050

Significance of imperfect model = 75.56 %

------------------------------------------------------------------------

Resolution function: GA WX SX

3 0 1

FWHM (ns) : 0.2504 0.1921 0.2969

Std deviations : 0.0026 0.0048 0.0385

Intensities (%) : 70.0000 20.0000 10.0000

Shifts (ns) : 0.0000 -0.0438 -0.0607

Std deviations : fixed 0.0093 0.0412

------------------------------------------------------------------------

Lifetime components: LT LX IX

3 2 0

Lifetimes (ns) : 0.1100 0.1800 0.4594
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Std deviations : fixed fixed 0.0160

Intensities (%) : 82.2079 14.8386 2.9535

Std deviations : 0.7790 0.9797 0.2206

------------------------------------------------------------------------

Background: B

0

Background (Counts/channel) : 150.6070

Std deviation : 0.4937

Time-zero (Channel no.) : 193.5894

Std deviation : 0.3573

Total area From fit : 2.81744E+06 From table : 2.82156E+06

Shape parameters for resolution curve (ns):

N 2 5 10 30 100 300 1000

FW at 1/N 0.2435 0.3756 0.4532 0.5584 0.6598 0.7444 0.8301

MIDP at 1/N 0.0031 0.0057 0.0063 0.0054 0.0022 -0.0021 -0.0073

Peak position of resolution curve: Channel # 192.3999

###################### R e s o l u t i o n f i t #######################

Time for this job: 0.14 seconds.

This output was obtained by running PALSfit3 with the dataset listed in Section 3.3.

After a heading which includes the spectrum headline, the upper part of the output reproduces

various input parameters (’indicators’) in a way that is very similar to the POSITRONFIT output.

These indicators may optionally be added to the output by checking the option “Extra info in

Analysis Report” (in the menu ’Output Options’).

The important difference (compared to POSITRONFIT) is that in RESOLUTIONFIT all the

FWHMs and all of the shifts except one, may be fitting parameters. If the background is fixed

to a mean value between certain channel limits, these limits as well as the resulting background

value are displayed.

In the “Final Results” part, the number of iterations used to obtain convergence is given first.

The next three lines contain information about how good the fit is, similar to the main output

from POSITRONFIT (for definition of the terms see Appendix A, Section 5.3).

Next follows the estimated values of the fitted (and fixed) parameters and their standard de-

viations (for fixed parameters fixed is written instead of the standard deviation). This part is

divided into three, one giving the parameters for the resolution curve, one with the lifetimes

and their intensities, and one showing the background. Each part has one or three key numbers

displayed in the upper right hand corner. For the resolution function the GA indicates the number

of Gaussians (kg), WX the number of fixed widths, and SX the number of fixed shifts. For the

lifetime components the LT indicates the number of these (k0), LX the number of fixed lifetimes,

and IX the number and type of intensity constraints. As in POSITRONFIT, a positive value of

IX means fixed intensities, while a negative value indicates constraints on linear combinations of

intensities, the absolute value giving the number of constraints. Finally the background output

follows, where B indicates the type of background constraint (KB, Section 3.3, Block 6), and after

the estimated time-zero the “total area from fit” and “total area from table” are given, both

calculated as in POSITRONFIT.

For easy comparison of the extracted resolution curve with other such curves, a table of the full

width of this curve at different fractions of its peak value is displayed, as well as of the midpoints

of the curve compared to the peak position. The latter number clearly shows possible asymmetries

in the resolution curve. Also the channel number of the position of the peak (maximum value) of

the resolution curve is given.
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3.7 Channel ranges
As we saw in the description of the control files for POSITRONFIT (P) and RESOLUTIONFIT

(R) in Sections 3.2 and 3.3, the data blocks contain a number of integers defining various kinds

of channel ranges. Each range is an interval [M,N ] and is thus equal to the set of integers i

satisfying M ≤ i ≤ N . Using the same acronyms for the channel limits as before, we can collect

all the channel ranges in the following table:

Name Definition Program Symbol Lines in PALSfit3 graphics

Total range [1,NCH] P R T None

Area range [ICHA1,ICHA2] P R A Red

Fit range [ICHMIN,ICHMAX] P R F Green

Background range [ICHBG1,ICHBG2] P R B Blue

Fixed-area range [ICHBEG,ICHEND] P Af Brown

The first three ranges are always present while the existence of the two latter depends on optional

constraints. There are certain restrictions on the ranges T , F , A, B, Af (when present). All must

be nonempty subsets of T , and all the remaining must be subsets of A. Thus in formal terms:

∅ ⊂ A ⊆ T (38)

∅ ⊂ F ⊆ A (39)

∅ ⊂ B ⊆ A (40)

∅ ⊂ Af ⊆ A (41)

These restrictions are exhaustive. If a restriction is violated, PALSfit3 makes a suitable modifi-

cation of the range in order to amend the problem and tries to continue. (On the other hand,

PATFIT refuses to make an analysis in such a case.)

4 Experience with PALSfit

In this section we shall give a short account of some of the experiences we (and others) have had

with PALSfit3 and its predecessor versions, in particular the program components POSITRON-

FIT and RESOLUTIONFIT. In general, these fitting programs have proved to be very reliable

and easy to use. Further discussion can be found in [8,29], from which we shall quote frequently

in the remaining part of the present Chapter.

The aim of fitting measured spectra will normally be to extract as much information as possible

from the spectra. This often entails that one tries to resolve as many lifetime components as pos-

sible. However, this has to be done with great care. Because of the correlations between the fitting

parameters, and between the fitting parameters and other input parameters, the final estimates

of the parameters may be very sensitive to small uncertainties in the input parameters. Therefore,

in general, extreme caution should be exercised in the interpretation of the fitted parameters.

This is further discussed in e.g. [32–40]. In this connection, an advantage of the software is the

possibility of various types of constraints which makes it possible to select meaningful numbers

and types of fitting parameters.

4.1 POSITRONFIT experience

The experience gained with POSITRONFIT over a number of years shows that for metallic

systems with lifetimes in the range 0.1 – 0.5 ns it is possible to obtain information about at

most three lifetime components in unconstrained analyses [41–43] while in some insulators where
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positronium is formed, up to four components (unconstrained analysis) may be extracted, e.g.

[44–47]. (This does not mean of course that the spectra cannot be composed of more components

than these numbers. This problem is briefly discussed in, e.g. [32,39]. Various other aspects of the

analysis of positron lifetime spectra are discussed in for example [30, 48–50]). In this connection

it is very useful to be able to change the number of components from the first to the second

iteration cycle. In this way, the spectrum can be fitted with two different numbers of components

within the same analysis (it is also advantageous to use this feature when a source correction

removes, e.g., a long-lived lifetime component from the raw spectrum).

In our experience POSITRONFIT always produces the same estimates of the fitted parameters

after convergence, irrespective of the initial guesses (except in some extreme cases). However,

others have informed us that for spectra containing very many counts (of the order of 107) one

may obtain different results, depending upon the initial guesses of the fitting parameters, i.e.

local minima exist in the χ2 as function of the fitting parameters; these minima are often quite

shallow. When this happens, POSITRONFIT as well as most other least-squares fitting codes

are in trouble, because they just find some local minimum. From a single fitting you cannot know

whether the absolute minimum in the parameter space has been found. The problem of “global

minimization” is much harder to solve, but even if we could locate the deepest minimum we would

have no guarantee that this would give the “best” parameter values from a physical point of view.

In such cases it may be necessary to make several analyses of each spectrum with different initial

parameter guesses or measure more than one spectrum under the same conditions, until enough

experience has been gained about the analysis behaviour for a certain type of spectra.

The important particular feature of PALSfit3, compared to previous versions of PALSfit is that in

POSITRONFIT each lifetime component may be broadened by a log-normal distribution, whose

width is characterized by its standard deviation σ. These widths may be fixed or act as fitting

parameters. During the fitting procedure it may happen that a σ becomes increasingly smaller (i.e.

approaching zero) thus indicating that the lifetime component is essentially a simple exponential

decay. In such cases POSITRONFIT neglects the broadening and continues the fitting procedure

with a simple decaying exponential instead (Appendix C, Section 7.5). If such an event has taken

place during the fitting, it will be indicated on the top of the Main output.

4.2 RESOLUTIONFIT experience

When using a software component as RESOLUTIONFIT an important question of course is

whether it is possible in practice to separate the resolution function reliably from the lifetime

components. Our experience and that of others [6, 7, 9, 39, 47] suggest that this separation is

possible, although in general great care is necessary to obtain well-defined results [8, 39]. The

reason for this is the same as mentioned above, viz. that more than one minimum for χ2 may

exist.

From a practical point of view the question arises as to whether there is too strong correlation

between some of the parameters defining the resolution function and the lifetime parameters, in

particular when three Gaussians (or more) are used to describe the resolution function. As in the

example used in this report (Sections 3.3 and 3.6), we have often measured annealed copper in

order to deduce the resolution function. Even with different settings of the lifetime spectrometer,

the copper lifetime normally comes out from a RESOLUTIONFIT analysis within a few ps

(statistical scatter) of 110 ps (in agreement with results of others, e.g. [51]). Thus, the lifetime

is well-defined and separable from the resolution function, even though many parameters are

free to vary in the fitting procedure. However, because of the many parameters used to describe

the resolution function, one frequently experiences that two (or more) different sets of resolution

function parameters may be obtained from the same spectrum in different analyses, if different

initial guesses are applied. The lifetimes and intensities come out essentially the same in the
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different analyses, the fits are almost equally good, and a comparison of the widths at the various

heights of the resolution curves obtained in the analyses show that they are essentially identical.

Thus, in spite of the many fitting parameters (i.e. so many that the same resolution curve may be

described by more than one set of parameters), it still seems possible to separate the lifetimes and

resolution function reliably, at least when the lifetime spectrum contains a short-lived component

of about 80–90 % intensity or more.

On the other hand, one cannot be sure that the lifetimes can always be separated easily from

the resolution function. If, for example, the initial guesses for the fitting parameters are far from

the correct parameters, the result of the fitting may be that, for instance, the fitted resolution

function is strongly asymmetrical thereby describing in part the slope of the spectrum which

arises from the shorter lifetime component. This latter component will then come out with a

shorter lifetime than the correct one. Such cases — where the resolution function parameters will

be strongly correlated to the main lifetime — will be more likely the shorter the lifetime is and

the broader the resolution function is.

In principle, it is impossible from the analysis alone to decide whether lifetimes and resolution

function are properly separated. However, in practice it will normally be feasible. If the main

lifetime and the resolution curve parameters are strongly correlated, it is an indication that

they are not properly separated. This correlation may be seen by looking for the changes in the

lifetimes or resolution function when a small change is made in one of the resolution function

parameters (intensity or one of the fitting parameters using a constraint). Other indications that

the lifetimes and resolution function are not properly separated will be that the resulting lifetime

deviates appreciably from established values for the particular material or that the half width

of the resolution function deviates clearly from the width measured directly with, e.g., a Co-60

source. If the lifetime and the resolution function cannot be separated without large uncertainties

on both, one may have to constrain the lifetime to an average or otherwise determined value.

Thus, it will always be possible to extract a resolution function from a suitably chosen lifetime

spectrum.

A separate question is whether a sum of Gaussians can give a proper representation of the “true”

lifetime spectrometer resolution curve, or if some other functional form, e.g., a Gaussian convo-

luted with two exponentials [6, 9], is better. Of course, it will depend on the detailed shape of

the spectrometer resolution curve, but practical experience seems to show that the two descrip-

tions give only small differences in the extracted shape of the curve [9, 39], and the better the

resolution is, the less does a small difference influence the extracted lifetime parameters [39]. The

sum-of-Gaussians used in PALSfit was chosen because such a sum in principle can represent any

shape.

Once a resolution function has been determined from one lifetime measurement, another problem

arises: Can this function be used directly for another set of measurements? This problem is

not directly related to the software, but we shall discuss it briefly here. The accuracy of the

determined resolution function will of course depend on the validity of the basic assumption

about the measured lifetime spectrum from which it is extracted. This assumption is that the

spectrum consists of a known number of lifetime components (e.g. essentially only one as discussed

above) in the form of decaying exponentials convoluted with the resolution function. However,

this “ideal” spectrum may be distorted in various ways in a real measurement. For example,

instead of one lifetime, the sample may give rise to two almost equal lifetimes which cannot be

separated. This will, of course, influence the resulting resolution function. So will source or surface

components which cannot be clearly separated from the main component. Another disturbance of

the spectrum may be caused by gamma-quanta which are scattered from one detector to the other

in the lifetime spectrometer. Such scattered photons may give rise to quite large distortions of a

lifetime spectrum. How large they are will depend on energy window settings and source-sample-

detector arrangement of the lifetime spectrometer [39, 52, 53]. (Apart from the distortions, these

spectrometer characteristics will, of course, also influence the width and shape of the correct
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resolution function.) In digital lifetime spectrometers it seems possible to discriminate more

efficiently against some of these undesired distortions of measured spectra [54–56].

Finally, by means of an example let us briefly outline the way we try to obtain the most accurate

resolution function for a set of measurements. Let us say that we do a series of measurements

under similar conditions (e.g. an annealing sequence for a defect-containing metal sample). In

between we measure an annealed reference sample of the same metal, with — as far as possible

— the same source and in the same physical arrangement, and thereby determine the resolution

curve. This is done for example on January 2, 7, 12, etc. to keep track of possible small changes

due to electronic drift. We then make reasonable interpolations between these resolution curves

and use the interpolated values in the analysis of the lifetime spectra for the defect containing

samples. Sometimes it is not feasible to always measure the annealed sample in exactly the same

physical arrangement as the defect containing sample (for example if the annealing sequence takes

place in a cryostat). Then we determine resolution curves from measurements on the annealed

sample inside and outside the cryostat (the results may be slightly different) before and after the

annealing sequence. The possible time variation (due to electronic drift) of the resolution function

is then determined from measurements on the annealed sample outside the cryostat. The same

variation is finally applied to the resolution curve valid for measurements inside the cryostat.

As we often use many parameters to describe a resolution function these parameters may appear

with rather large scatter. To obtain well-defined variations with time it is often useful in a second

analysis of the annealed metal spectra to constrain one or two of the parameters to some average

values. With this procedure we believe that we come as close as possible to a reliable resolution

function. We are reluctant to determine the resolution function directly from the spectra for the

defected metal sample, as we feel that the lack of knowledge of the exact number of lifetime

components makes the determination too uncertain.

Let us finally point to one more useful result of an ordinary RESOLUTIONFIT analysis apart

from the extraction of the resolution curve, viz. the determination of the “source correction”. If

the sample gives rise to only one lifetime component, any remaining components must be due

to positrons annihilating outside the sample and is therefore normally considered as a source

correction. In the RESOLUTIONFIT Main Output (Section 3.6) the 0.110 ns is the annealed-Cu

lifetime, while the 0.18 ns, 14.8386% component is the estimated lifetime and intensity compo-

nent for the positrons annihilating in the 0.5 mg/cm2 nickel foil surrounding the source material.

The 0.4594 ns, 2.9535% component, that is determined by the analysis, is believed to arise from

positrons annihilating in the NaCl source material and on surfaces. This component may be dif-

ferent for different sources and different samples (due to different backscattering). We consider the

latter two components as corrections to the measured spectra in any subsequent POSITRONFIT

analyses (when the same source and similar sample material have been used for all measurements).
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5 Appendix A: Fit and statistics

The first three sections of Appendix A contain general information about nonlinear least-squares

(NLLS) methods and their statistical interpretations with relevance for PALSfit3, but without

going into details with the specific models involved; these are discussed in Chapter 2 and also in

Appendices B and C.

The remaining sections are of a more technical nature. Section 5.4 presents essential principles of

NLLS solution methods. Section 5.5 documents the separable least-squares technique which is of

utmost importance for the efficiency and robustness of PALSfit, and Section 5.6 contains various

mathematical and numerical details.

5.1 Unconstrained NLLS data fitting

We shall first present an overview of the unconstrained nonlinear least-squares (NLLS) method

for data fitting.

In the classical setup it is assumed that some general model is given,

y = f(x; b1, b2, . . . , bk) = f(x; b) (42)

where x and y are the independent and dependent variable, respectively, and b = (bj) is a

parameter vector with k components which may enter linearly or nonlinearly in (42), and so

we may talk about linear and nonlinear parameters bj . Further, a set of n data points (xi, yi)

(i = 1, . . . , n) is given, xi being the independent and yi the dependent variable; we shall here

introduce the data vector y = (yi), also called the spectrum. Such a spectrum is usually the result

of an experiment. We assume n ≥ k. According to the least squares principle we should determine

b ∈ Rk such that

ϕ(b) =

n∑
i=1

wi(yi − f(xi; b))
2 (43)

is minimized. The wi are the weights of the data; until further notice they are just arbitrary

fixed positive numbers. (In many applications weights are omitted which corresponds to equal

weighting, wi = 1.)

When setting up equation (43) it was assumed that the xi were fixed points corresponding to the

independent variable x in (42). In practice, however, we do not always have this situation. For

example, if x represents time, and the equipment records certain events in fixed time intervals

(ti−1, ti) called channels, it would be natural to compare yi with an average of the model function

in (42) over (ti−1, ti). Hence it is appropriate to replace (43) by

ϕ(b) =

n∑
i=1

wi(yi − fi(b))
2 (44)

In general all we need is a “recipe” fi(b) to compute the model values to be compared with the

data values yi. The reformulation (44) is just a generalisation of the pointwise formulation (43)

who has fi(b) = f(xi, b). This has no influence on the least squares analysis to be described

presently. In the following we shall assume that the functions fi are sufficiently smooth in the

argument b.

By introducing the matrix W = diag(wi) and the n-vector f(b) = (fi(b)) we can express (44) in

vector notation as follows:

ϕ(b) = ∥W1/2(y − f(b))∥2 (45)

Here ∥ · ∥ denotes the usual Euclidean norm. The corresponding minimization problem reads

ϕmin = min
b∈Rk

{∥W1/2(y − f(b))∥2} (46)
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A solution b to (46) satisfies the gradient equation

∇ϕ(b) = 0 (47)

which is equivalent to the k scalar equations

∂ϕ(b)

∂bj
= 0, j = 1, . . . , k (48)

By (44) and (48) we obtain

n∑
i=1

wi(yi − fi(b))pij = 0, j = 1, . . . , k (49)

where

pij =
∂fi(b)

∂bj
(50)

It is practical to collect the derivatives (50) in the n× k matrix

P = (pij) (51)

The equations (49) are called the normal equations for the problem. They are in general nonlinear

and must be solved iteratively. Solution methods will be discussed in Sections 5.4 and 5.5. Only

for linear or linearized models the normal equations are linear.

It is instructive to consider the linear case in some detail. Here (42) takes the form

y =
k∑

j=1

gj(x)bj (52)

The x-dependence in gj(x) is arbitrary and may very well be nonlinear; what matters is that

the fitting parameters bj should enter linearly in the model. The derivatives pij = gj(xi) are

independent of bj , and (43) or (44) can be written

ϕ(b) =

n∑
i=1

wi

(
yi −

k∑
j=1

pijbj

)2

(53)

The normal equations take the classical form

k∑
j′=1

n∑
i=1

wipijpij′bj′ =

n∑
i=1

wiyipij , j = 1, . . . , k (54)

We have f(b) = Pb, and the equations (45–46) can be written

ϕ(b) = ∥W1/2(y −Pb)∥2 (55)

ϕmin = min
b∈Rk

{∥W1/2(y −Pb)∥2} (56)

The problem (56) is solved by (54) which can be written

PTWP b = PTWy (57)

where T stands for transpose. For unweighted data we have W = In (In is the unit matrix of

order n), and so

PTP b = PTy (58)

Assuming that the coefficient matrix PTWP in (57) is nonsingular, it must be positive definite

too. The same applies to PTP in (58). The case described in (52–58) represents a general linear

regression model. It is a fundamental building block in NLLS procedures and their statistical

analysis.

Returning to the nonlinear case we shall ignore the complications from possible non-uniqueness

when solving the normal equations (49). Here we just assume that a usable solution b can be

found.
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5.2 Constraints

It is important to be able to impose constraints on the free variation of the model parameters.

In principle a constraint could be an equality, h(b) = 0, as well as an inequality h(b) ≥ 0, where

h(b) is an arbitrary function of the parameter vector.

Although inequality contraints could sometimes be useful, we abandon them in this work be-

cause they would lead to quadratic programming problems, and thereby complicate our models

considerably. In our algorithm there is, however, a built-in sign check on some of the nonlinear

parameters (e.g. annihilation rates). Should an iteration step make such a parameter negative, a

new iterate is determined by halving the correction vector from the old one. As a rule, many such

“sign excursions” means an inadequate model parameterizing; in practice the sign excursions are

often a simple and robust way of removing redundant parameters. On the other hand, no sign

checks are made on the linear parameters.

Incorporation of general equality constraints would be possible in the framework of our least-

squares method, and are indeed used in Appendix C, Section 7.2. Otherwise, apart from trivial

single-parameter constraints, bj = c, linear constraints on the linear parameters are sufficient for

our purpose, and as we shall see, involve straightforward generalizations of the unconstrained

setup discussed previously.

In Section 5.5 we shall describe the separable least-squares technique used in PALSfit. The effect

of this method is to define subproblems in which the minimization takes place in the space of

the linear parameters only. Hence the incorporation of constraints can just as well be discussed

in terms of the linear model (52) where ϕ(b) is given by (53). In other words, in the constraints

analysis we replace k by the number p of linear parameters in the model and consider an all-linear

model where b is replaced by the “linear” parameter vector α ∈ Rp.

Thus we assume that m independent and consistent linear constraints on the p components of α

are given (m ≤ p):

hl1α1 + · · ·+ hlpαp = γl, l = 1, . . . ,m (59)

In vector form (59) reads

Hα = γ (60)

where H = (hlj) is an m × p matrix and γ = (γl) is an m-vector. Both H and the augmented

matrix (H,γ) are of rank m.

A number of technical questions about how the constraints (59) or (60) influence the NLLS

procedure will be discussed in Section 5.6.

5.3 Statistical analysis

In this section we address the question of the statistical scatter in the parameters and ϕmin that

can be expected in NLLS parameter estimation. In particular we are interested in the standard

deviations of the parameters and in their correlation coefficients.

Covariance matrix of the parameters

Suppose the spectrum (yi) contains experimental values subject to statistical fluctuations, while

the weights (wi) are fixed. Ideally we should imagine an infinite ensemble of similar spectra

y = (yi) be given. Let us first consider the unconstrained case. Through solution of the normal

equations (49) each spectrum y gives rise to a parameter estimate b = b(y). Hence also b becomes

a random (vector) variable with a certain joint distribution.

We shall use the symbol E[·] for expected value (ensemble mean) and Var[·] for variance. We
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introduce the “ensemble-mean spectrum”

η = (ηi) = E[y] (61)

and the corresponding hypothetic estimate

b0 = (bj0) = b(η) (62)

Thus b0 is the solution of (49) corresponding to the particular spectrum (ηi). Now, given an

arbitrary spectrum (yi), let the corresponding parameter vector be b = (bj). If we assume that

b − b0 = ∆b = (∆bj) is so small that our model is locally linear in b around b0, we have to a

first-order approximation

fi(b) = fi(b0) +

k∑
j=1

pij∆bj (63)

where pij are the derivatives (50) evaluated at b0. We insert (63) into the normal equations (49)

and obtain a linear equation system of order k with ∆bj as unknowns. In vector notation this

system reads

PTWP∆b = PTW∆y (64)

where ∆y = y − f(b0) has the components

∆yi = yi − fi(b0), i = 1, . . . , n (65)

We note the similarity with the linear case (57). The system (64) has the solution

∆b = K∆y (66)

where

K = (PTWP)−1PTW (67)

The covariance matrix of a vector variable v will here be denoted Σ(v). (Other names are

dispersion matrix and variance-covariance matrix, since the diagonal row contains the component

variances.) It is well-known that if two vectors v and w are related by a linear transformation

w = Av (68)

then

Σ(w) = AΣ(v)AT (69)

Our primary goal is to estimate the covariance matrix

Σ(b) = (σjj′) =

 σ11 . . . σ1k
. . . . . . . . .

σk1 . . . σkk

 (70)

for the parameter vector b obtained from the NLLS. The standard deviations of the estimated

parameters are extracted from its diagonal as σj =
√
σjj , while the off-diagonal entries contain

the covariances. In the usual way we construct the correlation matrix

R =

 1 . . . ρ1k
. . . . . . . . .

ρk1 . . . 1

 (71)

by the formula

ρjj′ = σjj′/(σjσj′) (72)

Equation (66) shows that ∆b is related to ∆y by a (locally) linear transformation, and so we

obtain from (69) the approximate result

Σ(b) = KΣ(y)KT (73)

We now assume that the measurements yi are independent. Let

Var[yi] = s2i , i = 1, . . . , n (74)
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such that si is the standard deviation of yi. Then Σ(y) = diag(s2i ). We also assume that the

variances s2i (i = 1, . . . , n) are known, or at least that estimates are available. With this knowledge

it is appropriate to use the statistical weighting introduced in (2) in Section 2.1. We can show

that this leads to a simple form of Σ(b). By using (73) and observing that (2) implies

WΣ(y) = In (75)

we obtain after reduction the formula

Σ(b) = (PTWP)−1 (76)

which holds at least approximately. It is exact in the linear regression case (57).

If we assume a normal distribution of yi, then the parameter estimates too will be (approxi-

mately) normally distributed and their joint distribution is completely determined by the covari-

ance matrix (σjj′). The natural statistical interpretation of (σjj′) or (σj), (ρjj′) is an estimate of

the covariance structure of the computed parameters in a series of repetitions of the spectrum

recording under identical physical conditions.

Distribution of ϕmin

Still under the assumption of a locally linear model and of statistical weighting as described, we

shall next study the distribution of ϕmin in (46). Here we make the additional assumptions that

we have an ideal model, i.e.

fi(b0) = ηi (77)

and that each measurement yi has a Gaussian distribution,

yi ∼ N(ηi, s
2
i ) (78)

Then by (65) and (77)

∆yi ∼ N(0, s2i ) (79)

Moreover b will be approximately joint Gaussian. Let b = (bj) be the solution of the normal

equations (49). Then we obtain the following approximate expression of ϕmin from the linear

expansion (63), which is valid for small ∆b = (bj − bj0):

ϕmin =

n∑
i=1

wi

(
yi − ηi −

k∑
j=1

pij(bj − bj0)
)2

(80)

This can also be written

ϕmin = ∥W1/2(∆y −P∆b)∥2 = (∆y −P∆b)TW(∆y −P∆b) (81)

with ∆y = (yi − ηi) and P given by (50–51). By (66–67) ϕmin becomes a quadratic form in ∆y:

ϕmin = ∆yTB∆y (82)

where B is found to

B = W −WP(PTWP)−1PTW (83)

Defining ui = ∆yi/si, we see from (79) that ui becomes a standardized normal variable,

ui ∼ N(0, 1) (84)

Since the statistical weighting (2) was assumed, we have

∆y = W−1/2u (85)

Then ϕmin can be expressed as a quadratic form in u = (ui):

ϕmin = uTCu (86)

with

C = W−1/2BW−1/2 = In −M (87)
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where

M = W
1
2P(PTWP)−1PTW

1
2 (88)

Considering first the unconstrained case, the matrix M has its full rank k. All its k nonzero

eigenvalues are unity, as is easily verified by premultiplying Mx = λx by PTW1/2. Thus C is

of rank n − k with n − k unity eigenvalues, and so there is an orthogonal substitution u = Qz

which transforms ϕmin into a sum of f = n− k squares:

ϕmin =

n−k∑
i=1

z2i (89)

where the zi are independent, and each zi ∈ N(0, 1). This means that ϕmin has a χ2-distribution

with f = n− k degrees of freedom,

ϕmin ∼ χ2(f) (90)

For this reason ϕmin is often called χ2. Thus

χ2 = ϕmin = min
b∈Rk

n∑
i=1

(yi − fi(b)

si

)2

(91)

Influence of linear constraints on the statistics

The results derived for Σ(b) and ϕmin are independent of the applied fitting technique. But we

have assumed an unconstrained variation of all components of the k-vector b. If there are m

independent linear constraints on the parameters, then the analysis still holds good for a “basic

subset” of kfree independent parameter components, where

kfree = k −m (92)

In this case we obtain Σ(b) by incorporating the linear constraints (59) or (60) and expressing

the remaining components (deterministically) in terms of the free ones. Consequently, (90) is still

valid, but now we have

f = n− kfree (93)

Details of these operations are found in Section 5.6.

Covariance matrix for any vector that is expressed in terms of b

Suppose now that the solution vector b ∈ Rk is applied to calculate a new vector b′ = b′(b) ∈ Rk′
.

Then the covariance matrix of b′ is approximately

Σ(b′) = JΣ(b)JT (94)

where

J = db′/db (95)

is the k′ × k Jacobian matrix of the transformation. This follows from the differential relation

db′j =
∂b′j
∂b1

db1 + · · ·+
∂b′j
∂bk

dbk, j = 1, . . . , k′ (96)

together with (69). In PALSfit we use rather simple parameter transformations when passing

from b to b′, or no transformation at all. Examples are lifetimes τj in ns instead of annihilation

rates λj in channels−1, and widths in FWHM instead of in standard deviations. These give rise

to trivial diagonal elements in J. On the other hand, the presentation of relative intensities Ij
instead of absolute intensities Jj induces a diagonal block in the upper-left corner of J with the

(j, j′)-entry Ij(δjj′ − Ij)/Jj , δjj′ being the Kronecker delta.

Standard deviation of a derived parameter
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The covariance matrix (70) may be used to estimate the standard deviation of a single new

parameter that is a function of the primary parameters produced by PALSfit. The standard

deviation σz of such a parameter, z, is (to a first-order approximation) given by:

σ2
z =

k∑
µ=1

k∑
ν=1

∂z

∂bµ

∂z

∂bν
σµν =

k∑
µ=1

( ∂z

∂bµ

)2

σ2
µ + 2

k−1∑
µ=1

k∑
ν=µ+1

∂z

∂bµ

∂z

∂bν
ρµνσµσν (97)

This result follows by the transformation rule (94). PALSfit3 uses it to estimate the standard

deviation of the mean lifetime

τm =

k0∑
j=1

Ijτj (98)

in POSITRONFIT, where Ij was defined in (17). Another possible application would be to let z

be a trapping rate.

Forcing a single parameter to be shifted

There is another property of the correlation matrix which might be useful. Suppose an analysis

of a given spectrum results in an estimated parameter vector b = (bj), j = 1, . . . , k. One may

ask: What happens to the remaining components if one of them, say b1, is forced to be shifted a

small amount ∆b1, and the analysis is repeated with the same spectrum? It can be shown that

the other components will be shifted according to the formula

∆bj = (σj/σ1)ρ1j ∆b1, j = 2, . . . , k (99)

The formula (99) refers to a single spectrum and is therefore deterministic. In principle its validity

is restricted to small shifts due to the nonlinearity of our models. In our experience the formula is

applicable up to at least ∆b1 ≈ 2–3× σ1 for well-defined fitting problems with small σj . For fits

with large σj it seems to be valid only up to ∆b1 ≈ 0.1–0.2×σ1, and in certain pathological cases

it fails completely; such failures may be ascribed to imperfect models or strong nonlinearities.

We shall here give a proof of (99). In the following we consider ϕ(b) with fixed spectrum (yi).

We fix ∆b1 and seek the conditional minimum when the other parameters vary. We shall use the

approximative formula (113) (proved in Section 5.4) with d = ∆b:

ϕ(b+∆b) ≈ ϕ(b) +∇ϕ(b) ·∆b+∆bTPTWP∆b (100)

We introduce the vector z with components ∆b2, . . . ,∆bk. The gradient term in (100) can be

written

∇ϕ(b) ·∆b =
∂ϕ

∂b1
∆b1 +∇zϕ(b) · z (101)

where ∇zϕ(b) must be zero. Making the partition

PTWP =

(
a11 dT

d C

)
(102)

(100) can then be written

ϕ(b+∆b) = ϕ(b) +
∂ϕ

∂b1
∆b1 + a11(∆b1)

2 + 2∆b1z
Td+ zTCz (103)

To minimize (103) we take the derivative with respect to z. After equating the result to zero we

deduce that

z = −∆b1C
−1d (104)

Next we make the similar partitioning

Σ(b) =

(
σ11 sT

s Γ

)
(105)

We assume statistical weighting which implies the identity PTWPΣ(b) = Ik, cf. (76). From this

we infer that

C−1d = − 1

σ11
s (106)
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Inserting this in (104) yields

z =
∆b1
σ11

s (107)

which proves formula (99) since s has components σ21, . . . , σk1.

The χ2 test for goodness of fit

We saw that χ2 = ϕmin under certain assumptions has a χ2-distribution with f = n − kfree =

n − (k −m) degrees of freedom, where m is the number of constraints and kfree = k −m is the

effective number of free parameters in the estimation. The mean and variance of ϕmin = χ2 are

E[χ2] = f (108)

and

Var[χ2] = 2f (109)

From the χ2 statistics one can derive a “goodness-of-fit” significance test for the validity of the

asserted ideal model, cf. (77). In such a χ2-test we compute the probability P{χ2 < χ2
obs} that

a χ2-distributed variable with f degrees of freedom will not exceed the observed value χ2
obs. A

value close to 100% indicates systematic deviation from the assumed model, and we use the

phrase “significance of imperfect model” for this probability. We also compute the quantity

V = χ2/f, (110)

with mean

E[V ] = 1 (111)

and variance

Var[V ] = 2/f (112)

V is sometimes called the “reduced chi-square” or the “variance of the fit”; with a good fit this

quantity should be close to unity.

Statistical assumptions in the NLLS analysis

We conclude this section with some comments on the underlying assumptions in the statistical

NLLS analysis which were:

1. Small fluctuations of each data value yi, i.e. Var[yi] small.

2. Our model is only weakly nonlinear in the parameter vector b.

3. An ideal model which means that (77) holds.

4. The data values yi are independent.

5. Each yi has a Gaussian distribution.

6. “Statistical weighting” (2).

7. The population variances Var[yi] are known in advance.

Assumptions 1, 2, 3 should be considered together; for example, violation of 1 and 3 may both

invalidate the linear approximation (63).

Assumption 1 is a fair approximation in PALSfit applications, where it should be understood in

the relative meaning; it holds provided the counts yi are not too small.

Assumption 3 expresses that our model “explains” the observed data perfectly, apart from the

inevitable statistical noise. This hypothesis was subject to a chi-square goodness-of-fit test as

explained.
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Assumption 4 is natural in many applications; however in practice some measurements might

show a certain correlation between neighbouring data values.

Assumption 5 is needed only for the analysis of the goodness-of-fit. Many distributions encoun-

tered in practice do not deviate much from the normal distribution and thus admits an approxi-

mately correct analysis. In particular, this is true for Poisson counting statistics, again provided

the counts are large enough.

Regarding Assumption 6, statistical weighting is a convenient means to equalize the impact

from the individual observations yi on the fit. To accomplish it we shall need (estimates of) the

variances Var[yi] (see also Assumption 7).

Regarding Assumption 7, the theoretical values of the population variances Var[yi] are sometimes

unavailable and need to be estimated. In some applications the variances are only known up to a

constant of proportionality. By using statistical weighting nevertheless, this would not affect the

outcome of the NLLS parameter estimation itself. However, the chi-square analysis would not be

possible in the usual way due to the lack of normalization.

5.4 Marquardt minimization

As mentioned in Section 5.1 the normal equations (49) are in general nonlinear and must be

solved iteratively. We now describe such an iterative method called Marquardt’s principle, which

is a combination of two classical unconstrained minimization procedures; contraints will be taken

care of as described in Sections 5.2 and 5.6.

Basically, we use Newton’s iterative method (other names are the Gauss-Newton or the Taylor

series method), which we shall presently explain. However, first we shall prove the following

expansion formula which is approximately correct provided d is small, the fit is good, and the

model locally linear:

ϕ(b+ d) ≈ ϕ(b) +∇ϕ(b) · d+ dTPTWPd (113)

with the usual meaning of W and P. We use Taylor’s quadratic limit formula

ϕ(b+ d) = ϕ(b) +∇ϕ(b) · d+ 1
2d

TSd+ o(∥d∥2) (114)

where S = {sjj′} is the Hessian matrix of ϕ(b). From the expression (44) we find

sjj′ =
∂2ϕ(b)

∂bj∂bj′
= 2

n∑
i=1

wi

(∂fi
∂bj

∂fi
∂bj′

− (yi − fi)
∂2fi
∂bj∂bj′

)
(115)

with fi = fi(b). We shall neglect the term
∑n

i=1 wi(yi − fi)∂
2fi/∂bj∂bj′ in (115). The reason for

doing so is that we expect some cancellation to take place in the summation process, because

the residuals yi − fi are supposed to fluctuate around zero when the fit is good. We have also

assumed that the second derivatives ∂2fi/∂bj∂bj′ , which express the nonlinearity of the model,

are not too large. Hence, approximately

S = 2PTWP (116)

Inserting this in (114) we establish (113). Returning to Newton’s method, let b be a guessed or

previously iterated parameter vector. Newton’s correction step d now solves the local minimiza-

tion problem

min
d∈Rk

{ϕ(b+ d)} (117)

or

∇ϕ(b+ d) = 0 (118)

for fixed b. We approximate ϕ(b+ d) by (113). For brevity we shall write

A = PTWP (119)
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Assuming that P has full rank, A will be positive definite. We shall need the formula

∇(∇ϕ(b) · d) ≈ 2Ad (120)

which is proved by applying the same approximation as in (115). Then we obtain

∇ϕ(b) + 2Ad+O(∥d∥2) = 0 (121)

Thus the Newton step d is computed from the normal equation system

Ad = g (122)

where

g = −1

2
∇ϕ(b) (123)

According to (44) the components of g are

gj =

n∑
i=1

wi(yi − fi(b))pij , j = 1, . . . , k (124)

(We see that the normal equations (49) are satisfied when g = 0.) Subsequently b+d replaces b as

the new iterate, and the iterations continue. With the pure Newton method we cannot guarantee

that the new ϕ = ϕ(b+d) is smaller than the old one. Indeed the procedure often tends to diverge

due to strong nonlinearities, in particular when the initial guess is bad. To ensure a decrease in

ϕ we modify (122) as follows,

(A+ λD)d = g (125)

where D is a diagonal matrix with the same diagonal row as the positive definite matrix A. This

is Marquardt’s equation [57]. Written out in full, we see from (119) and (124) that it takes the

form:

(PTWP+ λD)d = PTW(y − f(b)) (126)

where y = (yi) and f(b) = (fi(b)). λ is a parameter that is at our disposal. It provides interpo-

lation between Newton’s method and a gradient-like method. The former is obtained by setting

λ = 0, cf. (122). On the other hand, when λ → ∞ we obtain a solution vector proportional

to D−1g. According to (123) g is proportional to the negative gradient vector −∇ϕ, so D−1g

becomes a scaled version of −∇ϕ and shares with this the property that ϕ (assumed > ϕmin)

certainly decreases initially along the correction vector, although it need not have the steepest

descent direction. We can now roughly sketch Marquardt’s procedure. The equation to be solved

at iteration number r reads

(A(r) + λ(r)D(r))d(r) = g(r) (127)

From its solution d(r) we calculate

b(r+1) = b(r) + d(r) (128)

and a new ϕ-value, ϕ(r+1). Now it is essential that λ(r) is so chosen that

ϕ(r+1) ≤ ϕ(r) (129)

If we are not already at the minimum, it is always possible to satisfy (129) by selecting a suf-

ficiently large λ(r), and so we avoid the divergence problems encountered in Newton’s method.

However, λ(r) should not be chosen unnecessary large, because we then get a small correction

vector of gradient-like type which would give slow convergence. In the later iterations, when con-

vergence is approached, λ should be small. Then we approach Newton’s method which has a fast

(quadratic) rate of convergence near the minimum. The procedure has converged when ϕ(r) and

b(r) are stationary with increasing r. The algorithm is sometimes called the Levenberg-Marquardt

method (LM) since Levenberg [58] already in 1944 put forward essential parts of the ideas taken

up by Marquardt in 1963 [57].

Over the years LM has undergone a number of refinements, adding more robustness to it. In

earlier versions of PALSfit we used LM as in [57]. But pure LM puts no bounds on the step vector
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d(λ). Newer LM implementations use a “trust-region” enhancement and replace the unrestricted

minimization of ϕ by the quadratic programming problem

min
d(λ)

{
ϕ : ∥D1/2d(λ)∥ ≤ ∆

}
(130)

where D is the matrix entering (125). The effect of (130) is to restrict the size of d = d(λ). The

bound ∆ is adjusted each time a major iteration step begins and is decreased if the solution of

(130) does not provide a suitable correction. We have adopted this idea for use in PALSfit from

the work of Moré [59], as implemented in the software package MINPACK-1 [60] for unconstrained

least-squares minimization. A subroutine from this package, LMPAR, performs minor iterations

by finding a value of λ that solves (130) approximately. The optimal λ is saved for use as an

initial estimate in the next major step. Details of this technique are found in Moré [59].

5.5 Separable least-squares technique

An efficiency gain in solving the NLLS problem (46) can be obtained when some of the parameters

bj enter the model f(b) = (fi(b)) linearly. Indeed this is the case in PALSfit. The least-squares

problem is then called separable (or semilinear). Separable procedures have been studied by

several authors [3,61–65] and have proved successful in this work and in many other applications

as well. They provide a decomposition of the space spanned by the model parameters. Thus we

can rearrange the parameters to comply with the partitioning of

b =

(
p α

q β

)
(131)

into a “linear” p-vector α = (αj) and a “nonlinear” q-vector β = (βj), where p + q = k. The

model functions fi(b) can then be written

fi(b) =

p∑
j=1

αjfij(β) = (F(β)α)i, i = 1, . . . , n (132)

where F = F(β) is an n× p matrix with elements fij = fij(β). With these definitions f(b) can

be written

f(b) = F(β)α (133)

In separable NLLS we consider the linear subproblems of (46) where β is fixed and α varies:

min
α∈Rp

{ϕ(α) = ∥W1/2(y − F(β)α)∥2 : β fixed} (134)

Considering first the unconstrained case, the standard linear least-squares analysis tells that

α = α(β) is the solution of the pth-order normal equation system

FTWFα = FTWy (135)

cf. the linear regression case (52–58). Turning to the determination of the nonlinear part β of the

parameter vector b, we realize that an iterative method is needed. In fact, there will be an outer

loop, where each step provides a correction vector d to β, and an inner procedure which invokes

a linear minimization (134–135) each time a new trial value of β is chosen. We can formulate the

nonlinear outer minimization as follows:

min
β∈Rq

{ϕ(β) = ∥W1/2(y − F(β)α(β))∥2} (136)

We solve (136) by a modified Marquardt procedure as explained in Section 5.4, where b should

be replaced by β. Indeed, equation (126) takes the form

(PTWP+ λD)d = PTW(y − F(β)α(β)) (137)
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where P is now the n× q matrix with elements

pij =
∂fi
∂βj

(138)

and D is a diagonal matrix with the same diagonal row as PTWP.

A crucial point in the separable procedure is the evaluation of (138), which can be accomplished

by considering the vector f = f(b) in (133). Note that f depends on β directly through F and

indirectly through α = α(β); hence

∂f

∂βj
=

∂F

∂βj
α+ F

∂α

∂βj
(139)

To find ∂α/∂βj we take the derivative of both members of (135). This leads to

FTWF
∂α

∂βj
=
∂FT

∂βj
W(y − Fα)− FTW

∂F

∂βj
α, j = 1, . . . , q (140)

For an ideal model the term in (140) containing the residual vector y − Fα is negligible when

the minimum is approached, but is important when the current iterate is far from convergence.

Now we can give a summary of the complete strategy for the unconstrained separable minimiza-

tion of ϕ: Start the outer iterations from a guessed value of β, and select suitable initial values for

λ and the Moré bound ∆. For each outer iteration, solve the linear subproblem (134–135) for α

and calculate ϕ. Compute the Jacobian elements ∂f/∂βj from (140) and (139), and form P and

D. Then enter an inner procedure and find near-optimal values of λ and the correction vector to

β, d = d(λ), using Marquardt’s method with Moré’s modification. Update the bound ∆, replace

β by β + d, and resume the outer iteration loop. The procedure is finished when convergence is

obtained.

When implementing our separable algorithm, there is a practical difficulty in handling ∂f/∂βj
in (139). For each data value we must evaluate a p× q matrix of scalar derivatives which means

altogether n × p × q values. To reduce the memory demand we use a packed (“sparse-matrix”)

scheme for storing only the nonzero derivatives.

Linear constraints on linear model parameters, as they occur in PALSfit, are readily integrated

in the separable NLLS procedure, cf. Sections 5.2 and 5.6.

5.6 Various mathematics, statistics, and numerics

In this section a number of technical details are collected. They all have relevance to previously

discussed subjects.

Estimation of background and weight smoothing

Considering Assumptions 6 and 7 in Section 5.3 we face the problem that we do not know

σ2
i = Var[yi] when setting up the statistical weighting (2). Each count yi is distributed in a

Poisson distribution with a certain mean value ηi,

yi ∈ P(ηi) (141)

implying that

E[yi] = ηi (142)

Var[yi] = ηi (143)

The ideal weighting

wi =
1

ηi
(144)
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would provide approximately central (i.e. unbiased) least-squares estimates of the model param-

eters. Since the ηi are unknown we must use some kind of approximation. We may simply take

wi =
1

yi
(145)

or rather use the modified formula

wi =
1

max(yi, 1)
(146)

because it is possible to record yi = 0. However, in the following we shall assume that the

probability of this is negligible,

P{yi = 0} ≈ 0 (147)

The “raw” weights (145) will normally fluctuate, and we shall now show that this may induce

a bias on the estimate of the background. In a fitting model like (3) with a free background B

it is often the case that the major contribution to (1) comes from channels where the impact

from other fitting parameters are negligible compared to B. This implies that B is virtually

independent of the other parameters, such that obtaining a least-squares estimate B∗ of B is

essentially a one-parameter problem,

B∗ = argminB∈R

n∑
i=1

wi(yi −B)2 (148)

where n should be properly adjusted. Assuming this situation, we find the unique solution

B∗ =

∑
wiyi∑
wi

(149)

In the “theoretical” case (144) we evaluate B∗ = B∗
0 by inserting (144) in (149). Because B is

the only parameter, we have ηi = B and then

B∗
0 =

∑
yi
n

= ⟨yi⟩ (150)

where ⟨·⟩ stands for averaging over channels. B∗
0 is indeed central as

E[B∗
0 ] = E[yi] = ηi = B (151)

On the other hand, in the “real” case (145), we evaluate B∗ = B∗
1 by inserting (145) in (149),

and then it turns out that B∗
1 is not central. In fact we can show that B∗

1 underestimates the

background roughly by 1,

E[B∗
1 ] ≈ B − 1 (152)

under the additional assumptions that n as well as the counts yi and the background B are

reasonably large. We then obtain

B∗
1 =

n∑
1
yi

=
1

⟨ 1
yi
⟩

(153)

and

E[B∗
1 ] ≈

1

E[ 1yi
]

(154)

From the Poisson distribution (141) we have the probability

P{yi = k} =
Bk

k !
e−B (155)

and, taking (147) into account, this gives

E
[ 1

yi

]
≈

∞∑
k=1

1

k

Bk

k !
e−B (156)

This sum can be evaluated with the result

E
[ 1

yi

]
≈ e−B(Ei(B)− γ − logB) (157)
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where Ei is the exponential integral defined by

Ei(x) = −−
∫ ∞

−x

e−t

t
dt (Cauchy principal value when x > 0) (158)

and γ is Euler’s constant. Since B was assumed fairly large, we can use the asymptotic expansion

Ei(B) ∼ eB

B

{
1 +

∞∑
r=1

r !

Br

}
, B → +∞ (159)

We shall use the first-order approximand, and discarding γ and logB in (157) we then obtain

E
[ 1

yi

]
≈ 1

B

(
1 +

1

B

)
(160)

Finally (154) gives the approximate result (152) that the bias is −1. Monte Carlo simulations

working with the Poisson process confirms (152).

An approximate removal of the background bias can be accomplished by weight smoothing which

can be done in several ways. Earlier PALSfit versions carried out an extra iteration cycle after the

first cycle had converged. (This should be done anyway in case of source correction in POSITRON-

FIT.) Between the two iteration cycles the weight fluctuations were removed by replacing (145)

by the weights

wi =
1

yfi
(161)

where yfi is the model-predicted yi-estimate at the end of the first cycle. This procedure did in

fact remove the bias, but also has some drawbacks. When the fit is not perfect, the smoothing

not only removes the fluctuations but also distorts the overall shape of the weight function, which

results in an unreliable statistical analysis.

Later PALSfit versions use instead a heuristic non-parametric (i.e. model-independent) weight

smoothing, once and for all at the beginning of the analysis. Guided by log-plots of various

typical spectra y(t), we make a continuous piecewise linear fit of log10 y(t), in which the knot

abscissas and knot values are the fitting parameters. Our algorithm uses separable least squares

optimization where the inner minimisation determines the ordinates for given knot abscissas,

while the outer minimisation furnishes the optimal position of the knot abscissas. The latter is

controlled by an “amoeba type” procedure (Nelder and Mead, in Numerical Recipes [66]). We

obtain good results by dividing the spectrum in at most 4 parts and using the piecewise linear

algorithm on each of these. There will be fewer than 4 parts when, for example, the peak position

is outside the interval from imin
ch to imax

ch , cf. (13). The number of segments used in each part

is normally 4 but less when there are few channels in a part. Common fit values at contiguous

parts are obtained by a simple averaging. This ensures an overall continuity of the fit. When the

minimum value of the counts within some part exceeds a critical value, say 1000, we abandon the

smoothing there, since the spectrum within that part may already be considered smooth. From

the computed fit values we finally obtain the smoothed weights wi by taking antilogarithm and

reciprocal.

This way of estimating the weights has very little influence on the values of the fitted parameters.

Typically the parameters change by an amount which is an order of magnitude smaller than the

parameter standard deviations, or less. The main effect is that the program becomes more robust

against some extreme choices of input parameters to the analysis. Moreover the reliability of the

statistical analysis for imperfect fits is improved.

Implementation of linear constraints

We consider the constrained linear least-squares problem (cf. (59–60)),

ϕmin = min
α∈Rp

{ϕ(α) = ∥W1/2(y − Fα)∥2 : Hα = γ} (162)
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This problem is a constrained version of the separable NLLS subproblem in (134), where an

optimal linear parameter vector α ∈ Rp was computed for a given nonlinear parameter vector

β ∈ Rq. Thus the derivative matrix F = (∂fi/∂αj) is of size n × p. One way of handling this

constraint problem would be to use Lagrange multipliers. This method was used in early versions

of POSITRONFIT. As a result, the unconstrained normal equation system (cf. (57)),

FTWFα = FTWy (163)

was extended to a block matrix system(
FTWF HT

H 0

)(
α

µ

)
=

(
FTWy

γ

)
(164)

where the vector 2µ contains the Lagrange multipliers. Although (164) is simple enough, there

are some drawbacks in this procedure. The coefficient matrix in (164) is not positive definite as

is FTWF. This follows by considering the quadratic form Q associated with LHS(164),

Q = (Fα)TWFα+ 2µ · γ (165)

which may become negative. As a result the numerical stability of the calculations might be

degraded. We also note that the constraints increase the size of the “effective normal equation

system” from p×p to (p+m)×(p+m). Below we describe an elimination method which is now in

use in PALSfit3. It offers better stability, reduced computer time, and reduced storage demand.

Since the rank of H is m, we can construct a nonsingular matrix by picking m independent

columns from H. A suitable permutation will move these columns to the m first positions. This

can be expressed in terms of a pth-order permutation matrix Πp by

HΠp = H′ =
( m p−m

m B N
)

(166)

In the language of linear programming we call B a “basis matrix” for H, whereas the columns

in N are called “nonbasic”. Because Πp is orthogonal, ΠpΠ
T
p = Ip, (60) can be written

H′α′ = γ (167)

with

α′ = ΠT
pα (168)

The homogeneous equation H′α′ = 0 corresponding to (167) has the complete solution

α′ = Y′t, t ∈ Rp−m (169)

where

Y′ =

( p−m

m −B−1N

p−m Ip−m

)
(170)

A particular solution to (167) is

α′ = α′
0 =

(
m B−1γ

p−m 0

)
(171)

Hence the complete solution of (167) is

α′ = α′
0 +Y′t, t ∈ Rp−m (172)

Finally from (168) we get the complete solution of (60):

α = α0 +Yt, t ∈ Rp−m (173)

where

α0 = Πpα
′
0 (174)
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and

Y = ΠpY
′ (175)

It is practical to partition Πp in column sections as follows:

Πp =
( m p−m

p Π1 Π2

)
(176)

Then (174) becomes

α0 = Π1B
−1γ (177)

To express (175) we note that

N = HΠ2 (178)

and so

Y = (Ip −Π1B
−1H)Π2 (179)

Moreover

B = HΠ1 (180)

Then, by (166) and (175) we have

HY = H′ΠT
pΠpY

′ = H′Y′ = 0 (181)

and the columns of Y form a basis of the null space or kernel of H. Using (173) we can reformulate

the constrained p-dimensional problem (162) to an unconstrained (p−m)-dimensional problem:

ϕmin = min
t∈Rp−m

{∥W1/2(y − Fα0 − FYt)∥2} (182)

We see that this can be derived from (162) by removing the constraints, substituting p−m for p,

y−Fα0 for y, FY for F, and t for α. Thus we can immediately write down the normal equation

system for (182) by making the corresponding substitutions in (163):

(FY)TW(FY) t = (FY)TW(y − Fα0) (183)

Turning to our seperable setup, this equation replaces (135). Equation (139) becomes

∂f

∂βj
=

∂F

∂βj
α+ FY

∂t

∂βj
(184)

while the counterpart to (140) is obtained by deriving (183) and using (173). The result is

(FY)TW(FY)
∂t

∂βj
=
∂(FY)T

∂βj
W(y − Fα)− (FY)TW

∂F

∂βj
α (185)

Next we shall derive an expression for the covariance matrix Σ(b) of the total parameter vector

b = (α,β) when the constraints (59) or (60) are included. Realizing that Σ(b) is independent of

the actual fitting method, we can estimate it by perturbing the solution vector b at the end of

iterations. From the normal equation system (183) we deduce in analogy with (76) that

Σ(t) = {(FY)TW(FY)}−1 (186)

Let P denote the n × k matrix containing the derivatives ∂fi/∂bj with respect to all the p + q

components of b = (α,β). We may then make the partition

P =
( p q

n F Pβ

)
(187)

We note that ( p−m q

n FY Pβ

)
= PZ (188)

where Z is given by

Z =

( p−m q

p Y 0

q 0 Iq

)
(189)
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This means that (186) can be extended from t to (t,β) as follows:

Σ(t,β) = {(PZ)TW(PZ)}−1 (190)

Furthermore, since (
α

β

)
=

(
α0

0

)
+ Z

(
t

β

)
(191)

we obtain the result

Σ(b) = Z{(PZ)TW(PZ)}−1ZT (192)

Scaling in separable NLLS

The numerical solution of many of the linear-algebraic and optimization subproblems in our

algorithm is accomplished by software from the standard packages LINPACK [67] and MINPACK-

1 [60]. To accommodate application of this software we found it convenient to rescale the NLLS

problem formulation. We shall recast the original minimization problem (46) to

ϕmin = min
b∈Rk

{∥r(b)∥2} (193)

where r(b) is a (scaled) residual vector with components

ri = w
1/2
i (yi − fi(b)) (194)

This induces a number of vector and matrix transformations containing the matrix scaling factor

W1/2:

z = W1/2y (195)

e = W1/2f (196)

E = W1/2F (197)

G = W1/2P (198)

Then the counterparts of (133–137) become:

e(b) = E(β)α (199)

min
α∈Rp

{ϕ(α) = ∥z −E(β)α∥2 : β fixed} (200)

ETEα = ETz (201)

min
β∈Rq

{ϕ(β) = ∥z −E(β)α(β)∥2} (202)

(GTG+ λD)d = GT(z −E(β)α) (203)

Moreover (139–140) are replaced by

∂e

∂βj
=
∂E

∂βj
α+E

∂α

∂βj
(204)

ETE
∂α

∂βj
=
∂ET

∂βj
(z −Eα)−ET ∂E

∂βj
α (205)

while the corresponding equations (184–185) with constraints are replaced by

∂e

∂βj
=
∂E

∂βj
α+EY

∂t

∂βj
(206)

(EY)TEY
∂t

∂βj
=
∂(EY)T

∂βj
(z −Eα)− (EY)T

∂E

∂βj
α (207)

We see that the effect of these transformations is to “hide” the weights wi entirely.

QR decomposition
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A direct solution of normal equations, even by Choleski decomposition, may present numerical

difficulties inherent with the ill-conditioning of the positive-definite coefficient matrix, say ETE

in (201) which is just used here as an illustrative example. Instead we use a procedure based on

the so-called QR decomposition of the n× p matrix E, viz.

E = QR (208)

where Q is an n× p matrix with orthonormal columns and R is a p× p upper triangular matrix

(see, e.g., Chapter 9 in [67]). Using (208) the system (201) is reformulated to Rα = QTz, which

can be easily solved by back-substitution. A similar procedure can be used when solving (205)

for ∂α/∂βj , with R being saved after the solution of (201).

The numerical computation of the covariance matrix Σ(b) in (192) can also be done by QR

technique. In a general context we may ignore the scaling and constraint matrix factors and just

assume that the covariance matrix is obtained by inverting the matrix PTP where P is some

n× p matrix. As in (208) we make a QR decomposition

P = QR (209)

which leads to

(PTP)−1 = R−1(R−1)T (210)

In some ill-conditioned problems the diagonal row of R may contain very small elements, which

would render the evaluation of (210) completely erratic. There exists a variant of the QR decom-

position with column scaling and pivoting that admits a judicious discarding rule for insignificant

elements in the R-diagonal [60,67]. Following this idea, we shall replace (209) with

PΛΠ = QR (211)

where Λ is a diagonal scaling matrix, Π a permutation matrix, and the diagonal elements of R

are in non-increasing order of magnitude. The entries in Λ are chosen as the inverse Euclidean

norms of the column vectors of P and might be called “uncoupled standard deviations”. Instead

of (210) we obtain

(PTP)−1 = ΛΠR−1(ΛΠR−1)T (212)

which is verified by solving (211) for P, then calculating PT and PTP, and finally (PTP)−1. The

expression (212) is only used for the “significant” parameters which corresponds to the upper part

of R. The variance of the “insignificant” parameters are estimated by their uncoupled standard

deviations, while the covariance calculation for such parameters are abandonned.

Presentation of the correlation matrix

The correlation matrix R in (71–72) will be evaluated (optionally) in both POSITRONFIT and

RESOLUTIONFIT. The internal evaluation follows the parameter order in (130), i.e. first the

linear, then the nonlinear parameters. However, from the user’s point of view, the nonlinear

parameters are probably the more important. Hence we make a post-processing of R by applying

a permutation π to both the rows and the columns, where

π =

(
1 . . . p p+ 1 . . . p+ q

q + 1 . . . q + p 1 . . . q

)
(213)

6 Appendix B: Model details

In Sections 2.2 and 2.5 we gave a short presentation of the theoretical models used in POSITRON-

FIT and RESOLUTIONFIT. Below we shall fill the gap between the rather brief description given

there of the underlying mathematical models, and the least-squares theory in Appendix A.
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6.1 POSITRONFIT

Writing formula (3) as

f(t) =

k0∑
j=1

kg∑
p=1

ωp(aj ∗Gp)(t) + B (214)

we must evaluate the convolution integral

(aj ∗Gp)(t) =

∫ ∞

−∞
aj(v)Gp(t− v)dv (215)

where aj and Gp were defined in (4) and (7), respectively. Henceforward, we prefer to describe

the decay of a lifetime component in terms of the annihilation rate

λj = 1/τj (216)

instead of the lifetime τj itself. It can be shown that

(aj ∗Gp)(t) =
1

2
Ajϕ(t− T0 −∆p, λj , sp) (217)

Here

ϕ(u, λ, s) = exp
(
−λu+

1

2
λ2s2

)
erfc

(λs2 − u√
2s

)
(218)

where erfc stands for the complementary error function

erfc(x) = 1− erf(x) (219)

and erf in turn is defined by

erf(x) =
2√
π

∫ x

0

exp(−t2)dt (220)

Inserting (217) in (214) we get

f(t) =
1

2

k0∑
j=1

Aj

kg∑
p=1

ωpϕ(t− T0 −∆p, λj , sp) + B (221)

Next, we compute the integrated model-predicted count fi defined by equation (12) in Section 2.2.

We use that, up to a constant, ∫
ϕ(u, λ, s)du = − 1

λ
ψ(u, λ, s) (222)

where

ψ(u, λ, s) = ϕ(u, λ, s) + erfc
( u√

2 s

)
(223)

The functions ϕ and ψ are building blocks in the POSITRONFIT model. For the predicted

channel counts we obtain

fi =

k0∑
j=1

Fij +B =

k0∑
j=1

αjfij +B (224)

where

αj =
1
2Aj/λj =

1
2Ajτj (225)

is half the absolute intensity of lifetime component j,

fij =

kg∑
p=1

ωp{ψ(ti−1,p, λj , sp)− ψ(tip, λj , sp)} (226)

and where we use the shorthand notation

tip = imin
ch + i− 1− T0 −∆p (227)
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By now we have arrived at the model expression fi = fi(b) entering the least-squares formulation

of the fitting problem given in Appendix A. We also see that (224) is separable as required; the

parameter vector b splits into a “linear” parameter α and a “nonlinear“ one β given by

α = (α1, . . . , αk0 , B) (228)

and

β = (λ1, . . . , λk0
, T0) (229)

Thus the separable fitting theory of Section 5.5 applies. To perform the computations outlined

there, we must evaluate the derivatives of fij in (226) with respect to λj and T0; this job is

facilitated by the following two formulas:

∂ψ

∂u
= −λϕ(u, λ, s) (230)

and
∂ψ

∂λ
= (λs2 − u)ϕ(u, λ, s)−

√
2

π
s exp

(
− u2

2s2

)
(231)

(230) shows that ψ is a decreasing function of u. From (226–227) and (230–231) we obtain

∂fij
∂T0

=

kg∑
p=1

ωpf
T
ijp (232)

∂fij
∂λj

=

kg∑
p=1

ωpf
λ
ijp (233)

where

fTijp = −λjδϕijp (234)

fλijp = ϕi−1,jp − (λjs
2
p − tip)δϕijp + sp

√
2/π δexpip (235)

Moreover

ϕijp = ϕ(tip, λj , sp) (236)

δϕijp = ϕijp − ϕi−1,jp (237)

δexpip = exp
(
−
t2ip
2s2p

)
− exp

(
−
t2i−1,p

2s2p

)
(238)

Considering now the practical computation of ϕ by (218), we reparametrize the arguments by

the substitution

(x, y) =
(λs2 − u√

2 s
,
u√
2 s

)
(239)

This gives

ϕ = exp(x2 − y2) erfc(x) (240)

where

x+ y > 0 (241)

If x ≤ 0 it is safe to use (240) since in that case x2 − y2 < 0 due to (241). But when x ≫ 0

a numerical problem may occur. Let us express erfc(x) in terms of a confluent hypergeometric

function. Using the Whittaker notation [68] we get

erfc(x) =
1√
π
x−

1
2 exp(− 1

2x
2)W− 1

4 ,
1
4
(x2) (242)

which has the asymptotic expression

erfc(x) ≈ 1√
πx

(1 +O(x−2)) e−x2

, x→ +∞ (243)
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Now suppose that also x2 − y2 ≫ 0. Then (243) shows that ϕ itself is small; nevertheless, the

first factor of (240) is large and may cause an overflow in the computer. At the same time, the

second factor is very small and likely to underflow. A remedy is to replace (240) by

ϕ = exp(−y2) erfcx(x) (244)

when x > 0, where erfcx stands for the scaled complementary error function

erfcx(x) = exp(x2) erfc(x) (245)

It is not hard to develop robust and accurate numerical approximations for this slowly varying

function. Since

erfcx(x) =
1√
π
x−

1
2 exp( 12x

2)W− 1
4 ,

1
4
(x2) (246)

we have the integral representation [68],

erfcx(x) =
1√
π

∫ ∞

0

(x2 + t)−
1
2 e−tdt (247)

which decreases steadily for increasing x > 0. The function erfcx(x) behaves asymptotically as

1/(
√
πx) owing to (243).

We may include the special case sp = 0 (no instrumental smearing) by letting s → 0 in (218),

(223), (230), (231). Using the limit formulas

lim
s→0

exp
(
− u2

2s2

)
= 0 (248)

and

lim
s→0

erfc
( u√

2 s

)
=

{
2 u < 0

0 u > 0
(249)

where (248) holds good for almost all u, we may collect the necessary limit functions in the

following scheme:

Function u < 0 u > 0

ϕ 0 2e−λu

ψ 2 2e−λu

∂ψ/∂u 0 −2λe−λu

∂ψ/∂λ 0 −2ue−λu

(250)

We also want to be able to handle the special case of a fixed zero lifetime τ = 0, i.e. λ = 1/τ = ∞.

This requires that we compute the limiting forms of (218) and (230) as λ→ ∞. We find:

lim
λ→+∞

ϕ(u, λ, s) = 0 (251)

lim
λ→+∞

[∂ψ
∂u

(u, λ, s) = −λϕ(u, λ, s)
]
= −1

s

√
2

π
exp

(
− u2

2s2

)
(252)

which implies that (232) becomes

lim
λ→+∞

∂fij
∂T0

= −
√

2

π

kg∑
p=1

ωp

sp
δexpip (253)

In Section 2.2 we mentioned the types of constraints which could be imposed on the parameters

in POSITRONFIT. Those constraints that fix one of the “primary” fitting parameters listed in

(228) and (229) are realized by deleting the corresponding components from α or β. This may

apply to B, λj , and T0. Constraints of the type “fixed relative intensity” are not of this simple

type because the relative intensities αj/
∑
αj′ are not primary parameters. But obviously such

constraints are expressible as linear constraints on the linear parameters αj , i.e. relations of the

form ∑
hijαj = γi (254)

where hij are known coefficients, cf. (59). The same holds good for constraints of the type “a

linear combination of the relative intensities = 0”, as well as the total-area constraint (19).
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6.2 RESOLUTIONFIT

Although the basic model in RESOLUTIONFIT is the same as in POSITRONFIT, there are

certain differences regarding which parameters enter as fitting parameters since the standard

deviations (widths) sp and the shifts ∆tp are fitting parameters in RESOLUTIONFIT. Hence

(229) should be replaced by

β = (λ1, . . . , λk0
, T0, s1, . . . , skg

,∆1, . . . ,∆kg
) (255)

In Section 2.5 we mentioned the types of constraints which could be imposed on the parameters

in RESOLUTIONFIT. Some of the parameters of (255) can be fixed and in that case should

be deleted from β. This may apply to λj , sp, and ∆tp. Notice that T0 in RESOLUTIONFIT is

always a free parameter. As a consequence, we must require that at least one of the shifts ∆tp
be fixed.

In addition to (230–238) we shall need the following formulas:

∂ψ

∂s
= λ2sϕ(u, λ, s)−

√
2

π
λ exp

(
− u2

2s2

)
(256)

∂fij
∂∆p

= −λjωpδϕijp (257)

∂fij
∂sp

= ωp{−λ2jspδϕijp + λj
√
2/π δexpip } (258)

RESOLUTIONFIT also requires some extra limit formulas for λ = ∞. Applying (252) to (257)

we obtain

lim
λ→+∞

∂fij
∂∆p

= −
√

2

π

ωp

sp
δexpip (259)

The limit of (256) is found to

lim
λ→+∞

[∂ψ
∂s

(u, λ, s) = λ2sϕ(u, λ, s)−
√

2

π
λ exp

(
− u2

2s2

)]
=

u

s2

√
2

π
exp

(
− u2

2s2

)
(260)

and applying this to (258) we get

lim
λ→+∞

∂fij
∂sp

=

√
2

π

ωp

s2p

{
ti−1,p exp

(
−
t2i−1,p

2s2p

)
− tip exp

(
−
t2ip
2s2p

)}
(261)

The limit formulas (251), (252), (260) can be verified by using (239–240) and (243).

In RESOLUTIONFIT we compute shape parameters for the fitted resolution curve. To explain

our method, we consider a general composite Gaussian resolution function,

f(t) =

k∑
j=1

αjG(t, σj ,∆j) (262)

where k ∈ N, αj > 0, t ∈ R, σj > 0, ∆j ∈ R, and
∑k

j=1 αj = 1. Moreover,

G(t, σ,∆) =
1√
2πσ

exp
(
− (t−∆)2

2σ2

)
(263)

is a normalized Gaussian satisfying ∫ ∞

−∞
G(t, σ,∆)dt = 1 (264)

We assume that (262) is a unimodal function. Then the peak position tp is uniquely determined

by solving the equation f ′(t) = 0 wrt t. Seeking a numerical solution we shall use the Newton-

Raphson method,

t := t− f ′(t)

f ′′(t)
(265)
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We have

f ′(t) =

k∑
j=1

αjG
′(t, σj ,∆j), f ′′(t) =

k∑
j=1

αjG
′′(t, σj ,∆j) (266)

where

G′(t, σ,∆) = − t−∆√
2πσ3

exp
(
− (t−∆)2

2σ2

)
, G′′(t, σ,∆) =

(t−∆)2 − σ2

√
2πσ5

exp
(
− (t−∆)2

2σ2

)
(267)

An initial guess of t to start the NR procedure may be provided from a pre-tabulation of f(t)

in (262), using a suitable fineness of the t-entries. Such a table may also present a numerical

verification that (262) is indeed unimodal. We also want to calculate a table of full-width-at-

1/n-max values for a series n1, n2, . . . , nm of n-values. We take m = 7 and use the values in the

following table:

i ni
1 2

2 5

3 10

4 30

5 100

6 300

7 1000

Each of the equations

f(t) =
1

ni
f(tp), i = 1, . . . ,m (268)

will be satisfied by 2 values of t such that we have

f(tp − τ−i ) = f(tp + τ+i ) =
1

ni
f(tp), i = 1, . . . ,m (269)

where τ−i and τ+i are both positive. The corresponding full-width and midtpoint are

FWi = τ+i + τ−i , µi = tp +
1
2 (τ

+
i − τ−i ) (270)

It is problematic to use the Newton-Raphson method directly to obtain a numerical solution

of (268). The reason is the inflexion points of the resolution curve (262) which may trap the

NR-procedure. We may still use NR but we shall work with the logarithmic counterpart to (268),

ψ(t) ≡ ln f(t)− ln f(tp) + lnni = 0, i = 1, . . . ,m (271)

In analogy with (265) the NR rule here becomes

t := t− ψ(t)

ψ′(t)
where ψ′(t) =

f ′(t)

f(t)
(272)

Again, our pre-tabulation of f(t) will be useful in providing initial t-values for the NR iterations.

7 Appendix C: Log-normal details

7.1 Log-normal POSITRONFIT model formulas

We shall here discuss the PALSfit3 extension of the POSITRONFIT model to cope with the

situation where some of the lifetimes obey log-normal distributions. Such an extension requires

a modification of the model description in Section 6.1.
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When implementing the log-normal extension in POSITRONFIT we shall still work with anni-

hilation rates rather than lifetimes in the internal model formulation. A stochastic annihilation

rate λ is related to the corresponding stochastic lifetime τ by

λ =
1

τ
, lnλ = − ln τ (273)

cf. (216). If τ has a log-normal distribution defined by (21–25), it follows from (273) that

lnλ ∼ N(lnλ∗, σ
2
∗) (274)

where

λ∗ =
1

τ∗
(275)

and hence λ is log-normally distributed with the same σ∗ parameter as τ . Then the pdf for λ

becomes

f(λ) = f(λ;λ∗, σ∗) =
1

λσ∗
√
2π

exp
(
− 1

2σ2
∗
(lnλ− lnλ∗)

2
)

(276)

while the CDF is

F (λ) = Φ
( lnλ− lnλ∗

σ∗

)
(277)

Extension of the classical POSITRONFIT model (Appendix B, Section 6.1) to the log-normal

case requires evaluation of the log-normal probability-weighted integral of (223),

I =

∫ ∞

0

f(λ, λ∗, σ∗)ψ(u, λ, s)dλ (278)

We shall also need the derivatives ∂I/∂u, ∂I/∂λ∗, ∂I/∂σ∗. From (230) we obtain

∂I

∂u
= −

∫ ∞

0

f(λ;λ∗, σ∗)λϕ(u, λ, s)dλ (279)

In the following we use the abbreviation

µ(λ) = lnλ− lnλ∗ = ln(λ/λ∗) (280)

To find ∂I/∂λ∗ we must compute ∂f(λ;λ∗, σ∗)/∂λ∗. The result is:

∂

∂λ∗
f(λ;λ∗, σ∗) = f(λ;λ∗, σ∗)

µ(λ)

λ∗σ2
∗

(281)

Thus
∂I

∂λ∗
=

∫ ∞

0

f(λ;λ∗, σ∗)
µ(λ)

λ∗σ2
∗
ψ(u, λ, s)dλ (282)

Similarly for ∂I/∂σ∗:
∂

∂σ∗
f(λ;λ∗, σ∗) = −f(λ;λ∗, σ∗)

σ2
∗ − µ(λ)2

σ3
∗

(283)

∂I

∂σ∗
= −

∫ ∞

0

f(λ;λ∗, σ∗)
σ2
∗ − µ(λ)2

σ3
∗

ψ(u, λ, s)dλ (284)

7.2 Fixing one of the log-normal parameters τm or σ

In our least squares fitting procedures we want to be able to fix either the mean τm of the log-

normal distribution or its standard deviation σ, or both. The cases (τm fixed, σ free) and (τm
free, σ fixed) require special attention. Considering first τm fixed to τm0 and σ free, this implies

that the intrinsic parameters τ∗ (or λ∗ = 1/τ∗) and σ∗ cannot vary freely but are bounded by

the constraint
1

λ∗
exp( 12σ

2
∗) = τm0 (285)
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Equation (285) defines the function

λ∗(σ∗) =
1

τm0
exp( 12σ

2
∗) (286)

We may eliminate λ∗ from the pdf f(λ;λ∗, σ∗) by considering σ∗ as the only free parameter. This

gives the new pdf

f(λ;λ∗(σ∗), σ∗) = f1(λ;σ∗) (287)

If we interprete f(λ;λ∗, σ∗) in (278) and (279) according to (287), these formulas still hold good.

To obtain ∂I/∂σ∗ we compute ∂f1(λ;σ∗)/∂σ∗. We have

∂f1(λ;σ∗)

∂σ∗
=
∂f(λ;λ∗, σ∗)

∂λ∗

dλ∗
dσ∗

+
∂f(λ;λ∗, σ∗)

∂σ∗
(288)

where, by (286),
dλ∗
dσ∗

= λ∗σ∗ (289)

By (281) and (283) we find that (284) should be replaced by

∂I

∂σ∗
=

∫ ∞

0

f(λ;λ∗, σ∗)
µ(λ)σ2

∗ − σ2
∗ + µ(λ)2

σ3
∗

ψ(u, λ, s)dλ (290)

where µ(λ) was defined in (280). When the iteration on σ∗ has converged in the least squares

iteration process, we may improve the fit by a final recalculation of λ∗ by (286) before using (28)

to evaluate σ. We proceed similarly when keeping τm free and fixing σ to σ0. Here we have the

constraint
1

λ∗
exp( 12σ

2
∗)
√

exp(σ2
∗)− 1 = σ0 (291)

which defines the function

σ∗(λ∗) =

√
ln
(

1
2

(
1 +

√
1 + 4λ2∗σ

2
0

))
(292)

We obtain

f(λ;λ∗, σ∗(λ∗)) = f2(λ;λ∗) (293)

∂f2(λ;λ∗)

∂λ∗
=
∂f(λ;λ∗, σ∗)

∂λ∗
+
∂f(λ;λ∗, σ∗)

∂σ∗

dσ∗
dλ∗

(294)

and then, with the abbreviation

κ = 1− exp(−σ2
∗) (295)

we get
dσ∗
dλ∗

=
κ

1 + κ

1

λ∗σ∗
(296)

∂I

∂λ∗
= −

∫ ∞

0

f(λ;λ∗, σ∗)
κσ2

∗ − (1 + κ)σ2
∗µ(λ)− κµ(λ)2

(1 + κ)λ∗σ4
∗

ψ(u, λ, s)dλ (297)

In this case we should use (292) to make a final recalculation of σ∗ before using (26) to evaluate

τm.

7.3 Jacobian matrix for output presentation

We shall also need the Jacobian matrix

∂(τm, σ)

∂(τ∗, σ∗)
=

( ∂τm
∂τ∗

∂τm
∂σ∗

∂σ
∂τ∗

∂σ
∂σ∗

)
(298)
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which is used for covariance estimation for the output presentation. From (26) and (28) we obtain

∂τm
∂τ∗

= exp( 12σ
2
∗) (299)

∂τm
∂σ∗

= τ∗σ∗ exp(
1
2σ

2
∗) (300)

∂σ

∂τ∗
= exp( 12σ

2
∗)
√

exp(σ2
∗)− 1 (301)

∂σ

∂σ∗
=

τ∗σ∗ exp(
1
2σ

2
∗)(2 exp(σ

2
∗)− 1)√

exp(σ2
∗)− 1

(302)

From (302) we derive

lim
σ∗→0

∂σ

∂σ∗
= τ∗ (303)

In the special cases where either τm or σ is fixed, (299–302) hold good for the free parameter.

7.4 Numerical evaluation of log-normal integrals

All the integrals (278), (279), (282), (284), (290), (297) must be evaluated numerically. In a

broader context, let us consider the evaluation of integrals of the form

J =

∫ ∞

0

f(x)g(x)dx (304)

where f is a general pdf satisfying∫ ∞

0

f(x)dx = 1, f(x) > 0 in (0,∞) (305)

and g is an arbitrary function. The integral (304) may be thought of as a probability-weighted

mean of g, and so we shall be inspired by the Monte Carlo method when devising a numerical

integration scheme for it. We write

J =

∫ ∞

x=0

g(x)dF (x) (306)

where F is the CDF corresponding to f . Then we substitute

F (x) = ξ, x = F−1(ξ), ξ ∈ (0, 1) (307)

(cf. description of the PALGEN program in Appendix E, Section 9.1) and obtain

J =

∫ 1

0

g(F−1(ξ))dξ (308)

We may now apply a quadrature rule on (308) i.e. some approximation formula of the type

J ≈
N∑

ν=1

wν g(F
−1(ξν)) (309)

where N is the number of quadrature nodes, wν are positive weights, and ξν the node abscissas.

Moreover
N∑

ν=1

wν = 1 (310)

and

0 < ξ1 < . . . < ξN < 1 (311)

We could use the simple rectangular rule

wν =
1

N
, ξν =

2ν − 1

2N
(312)
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but prefer the more efficient Gauss-Legendre (GL) method [66]. Returning to the specific pdf

(276), we see from (308–309) that we shall need the inverse function F−1 of the function F in

(277). This means that we must solve the equation

F (x) = Φ
( lnx− lnλ∗

σ∗

)
= ξ (313)

for x. The result is

x = F−1(ξ) = λ∗ exp(σ∗Φ
−1(ξ)) (314)

Thus, finding the inverse of F is reduced to computing the inverse Φ−1 of the CDF Φ for N(0,1).

Standard software is available for this purpose. We can then write

J =

∫ 1

0

g(λ∗ exp(σ∗Φ
−1(ξ)))dξ (315)

The corresponding numerical approximation is

J ≈
N∑

ν=1

wν g(λ∗ exp(σ∗Φ
−1(ξν))) (316)

It is this formula that is used in the numerical approximation of all the log-normal integrals in

Sections 7.1 and 7.2. The number of quadrature nodes N is called the log-normal fineness of

our approximation. In PALSfit3 the fineness defaults to N = 32 which provides a reasonable

compromise between speed and accuracy, but other values might be entered by the user, either

automatically through PALSfit3 or by external means. Indeed, this could be done by inserting a

value of N in the output option record for POSITRONFIT, cf. Section 3.2 Block 1. The number

may be placed anywhere in position 5–80; omission or zero implies the default value.

7.5 Discarding log-normal lifetime components

During the least quares fitting procedure it may sometimes happen that σ∗ (or, equivalently, σ)

tends to zero as the iterations proceed. In such a case PALSfit3 automatically discards the broad-

ened component and replaces it by a “classic” component with a simple decaying exponential

and then resumes the iterations from there. In other words PALSfit3 may detect situations where

log-normal broadenings do not contribute to the fitting of the observations.

8 Appendix D: Exclusion of channels

Exclusion of channels is a new feature in PALSfit3 designed for positron lifetime spectra with

“bumps”: In some spectra (in particular measured with positron beams) artifacts appear (mainly

due to scattered positrons) in the form of bumps in the spectra, see Fig. 2. (Thanks to David

Keeble and Werner Egger for inspiration to this part [69].)
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Fig. 2: Example of a PALS-spectrum with “bumps”.

In order to be able to extract basic lifetime components from such spectra by a PALSfit analysis,

such artifacts should be excluded from the analysis. Therefore it is convenient to be able to

remove parts of the spectrum in the fitting process. The recent versions of PALSfit3 are able to

do so.

Fig. 3: The spectrum from Fig. 2 with the total fitting range (indicated by green lines) and two

exclusion ranges (indicated by cyan lines). Only the black parts of the spectrum are used by the

fitting procedure.

Mathematical implementation:

The mathematical implementation of exclusion ranges is simply carried out by putting the least-

squares fitting weights wi (Eq. (1) in Chapter 2) within these channel ranges to zero.

How to set up the exclusion ranges in PALSfit3:

In the tab “Spectrum”, click “Change” to show the “Spectrum setup” window.

When the actual spectrum has been selected, and the fitting ranges defined (the green lines), you

may press the Ctrl-button on the keyboard, and while keeping the button pressed, you position

the cursor at the beginning of the area, you want to exclude. Press the left mouse-button (still

pressing the Ctrl-button) and move the cursor to the end of the area, you want to exclude,

and then release the mouse-button. Finally, release the Ctrl-button. Now the exclusion range is

indicated by two cyan colored lines pointing away from the exclusion range. In the same way you
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may specify up to three exclusion ranges.

Fig. 4: The Spectrum setup window with one exclusion range

If a second range partly overlaps a previous one, the two ranges will collapse into one, covering

the total range.

In order to remove an exclusion range, click on the relevant “Drop” button.

Numerical values of the limits of exclusion ranges are shown at the bottom of the “Spectrum

setup” window. In order to change one of the limits of an exclusion range, click on the proper

field (e.g. in Fig. 4, click on the “974” field if you want to increase/decrease the upper limit of

the exclusion range) and use the + or − key on the keyboard to make the change.

If an exclusion range attempts to cross one of the fitting limits (green lines), it will be dropped.

The selection of ranges in Figs. 3 and 4 are only meant as illustrations and do not necessarily

represent cases of realistic analyses.

A brief description of PALSfit3, including the features of ”exclusion of channel ranges” can be

found in [70].

9 Appendix E: Quality check

9.1 Simulation of lifetime spectra

In 1997 Hirade2 developed a simulation program PALGEN, written in the BASIC language. PAL-

GEN uses Monte Carlo in its simplest version, the so-called direct simulation. This is close to the

2Personal communication, Tetsuya Hirade, then at Department of Materials Science, Japan Atomic Energy
Research Institute.
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real-world physical setup and admits an independent assessment of the capability of POSITRON-

FIT to recover correct lifetime values. Cheung et al. [71], also in 1997, describe a simulation tool

which is equivalent to PALGEN; they used their program to study the merits of the POSITRON-

FIT software as an analysis tool. At DTU Risø Campus we have later created a FORTRAN-based

version of PALGEN called PALSsim.

The main sampling principle in PALGEN is to split the recorded annihilation time t as follows:

t = T0 + tanni + tgauss + tshift (317)

Here T0 is the given time-zero, tanni the true annihilation time, tgauss the instrumental smear

component, and tshift a deterministic shift value associated with the latter. We begin with the

sampling of tanni.

First a random number determines the actual lifetime component from the given intensities.

Then, assuming first a fixed lifetime τ , we have the exponential probability density function

(pdf) for x = tanni,

f(x) =
1

τ
exp

(
− x

τ

)
(318)

This corresponds to the cumulative distribution function (CDF)

F (x) = 1− exp
(
− x

τ

)
(319)

To sample x = tanni we use the classical Monte Carlo formula,

x = F−1(ξ) (320)

which is the inverse form of

F (x) = ξ (321)

where ξ ∈ (0, 1) is a uniform random number. By replacing ξ with 1 − ξ we then obtain the

sampling formula

tanni = −τ ln ξ (322)

Next we perform the sampling of tgauss. Assuming a composite Gaussian distribution, we first

pick one of the Gaussian components. Let the standard deviation of this be σ. Then we use the

well-known polar method of Box and Muller [72] to generate a standardized normal variate η

with mean 0 and variance 1, and obtain

tgauss = η σ (323)

Finally, the selected Gaussian component determines tshift. We have now obtained a new sample

value of t as given by (317). Using a binning procedure this is converted to a count in a certain

channel of the simulation spectrum to be generated. The sampling of the background proceeds

independently of the remaining spectrum and is accomplished by simple uniform multinomial

sampling with bins = channels.

In Section 2.3 we discussed a log-normal extension of the POSITRONFIT model, in which the

lifetime was assumed to be a stochastic variable τ distributed with the pdf given in (25). To cover

this situation, only a minor addition to PALGEN was needed. In order to sample τ we must know

τ∗ and σ∗. Then we can use (21) to generate ln τ by the Box-Muller method. Having sampled τ

we continue as before from (318) and onwards.

9.2 Verifying POSITRONFIT by statistical analysis

We have developed an ad-hoc tool POSCHECK which is a batch of software components intended

to run consecutively under Windows, cf. the following bat file:
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rem Check POSITRONFIT by using simulated spectra

PALGEN

rem PALGEN reads generate.inp, produces spectrum.dat and generate.log

FILECOPY

rem FILECOPY reads template.pfc and generate.inp, produces generate.pfc

rem template.pfc describes how the POSITRONFIT analysis should be done

POSITRONFIT generate.pfc positron.out

rem run POSITRONFIT with input generate.pfc and output positron.out

PANALYSE

rem PANALYSE makes statistical analysis of POSITRONFIT output

rem PANALYSE reads generate.inp and positron.out, produces psummary.txt

if errorlevel 1 goto quit

:quit

We restrict our scope to verification of POSITRONFIT without source correction. POSCHECK

has 3 main components:

– Simulation program PALGEN as described in Section 9.1

– POSITRONFIT

– Statistical analyser PANALYSE

From given input data, PALGEN produces a random set of say n individual counting spectra,

collected in a single spectrum file. Each spectrum is then analysed by POSITRONFIT. The re-

sult is a (multidimensional) sample of n individual outputs containing parameter estimates and

estimated standard deviations. After this, the auxiliary program PANALYSE collects all these

sample estimates and makes a simple statistical overview (“tally”) analysis. In the POSITRON-

FIT input we use off-central parameter guesses. We give here an illustrative example of applying

POSCHECK where we use the following input data:

– Total number of channels = 512, fit range = [35,512]

– Background = 680, total area = 9 · 106 (without Bg); free lifetimes, Bg, and total area

– C = 0.0773 ns/ch, cf. (11) in Section 2.2

– Instrumental resolution function with 1 gaussian, FWHM = 0.42 ns

– 2 lifetime components with τ = 0.30 ns and τ = 2.00 ns, respectively

– No log-normal smearing of lifetime components

– Lifetime intensities: 60% and 40%, respectively

– T0 = 136

– Sample size n = 100

We show below (part of) the output produced by PANALYSE:

ANALYSIS REPORT OBTAINED FROM 100 SPECTRA

INITIAL RANDOM NUMBER: 54711441

TALLY STATISTICS FOR REDUCED CHI-SQUARE

SAMPLE MEAN (SM): 1.014088

SAMPLE DEVI: 0.063280

MEAN PREDICTED DEVI 0.065094

SEM: 0.006328

U=(SM-TARGET)/SEM: 2.226363

MEAN SIGNIFICANCE % 57.246279

TALLY STATISTICS FOR LIFETIMES

TARGET: 0.300000 2.000000

SAMPLE MEAN (SM): 0.299974 1.999719
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SAMPLE DEVI: 0.000448 0.001898

MEAN PREDICTED DEVI 0.000400 0.002000

SEM: 0.000045 0.000190

U=(SM-TARGET)/SEM: -0.579734 -1.480639

TALLY STATISTICS FOR INTENSITIES

TARGET: 60.000000 40.000000

SAMPLE MEAN (SM): 59.999830 40.000170

SAMPLE DEVI: 0.046572 0.046572

MEAN PREDICTED DEVI 0.042172 0.042172

SEM: 0.004657 0.004657

U=(SM-TARGET)/SEM: -0.036503 0.036503

TALLY STATISTICS FOR BACKGROUND

TARGET: 680.000000

SAMPLE MEAN (SM): 680.081674

SAMPLE DEVI: 1.002812

MEAN PREDICTED DEVI 1.500642

SEM: 0.100281

U=(SM-TARGET)/SEM: 0.814450

TALLY STATISTICS FOR T0

TARGET: 136.000000

SAMPLE MEAN (SM): 136.000038

SAMPLE DEVI: 0.002181

MEAN PREDICTED DEVI 0.002300

SEM: 0.000218

U=(SM-TARGET)/SEM: 0.174251

CORRELATION MATRIX AVERAGED OVER 100 PREDICTIONS

INTEN INTEN BACKG LIFET LIFET TZERO

INTEN 1.000 -1.000 -0.112 0.666 0.706 -0.249

INTEN -1.000 1.000 0.112 -0.666 -0.706 0.249

BACKG -0.112 0.112 1.000 -0.107 -0.273 0.056

LIFET 0.666 -0.666 -0.107 1.000 0.540 -0.682

LIFET 0.706 -0.706 -0.273 0.540 1.000 -0.233

TZERO -0.249 0.249 0.056 -0.682 -0.233 1.000

PEARSON CORRELATION MATRIX BY 100 PARAMETER ESTIMATES

INTEN INTEN BACKG LIFET LIFET TZERO

INTEN 1.000 -1.000 -0.052 0.742 0.686 -0.273

INTEN -1.000 1.000 0.052 -0.742 -0.686 0.273

BACKG -0.052 0.052 1.000 -0.123 -0.322 0.100

LIFET 0.742 -0.742 -0.123 1.000 0.575 -0.688

LIFET 0.686 -0.686 -0.322 0.575 1.000 -0.266

TZERO -0.273 0.273 0.100 -0.688 -0.266 1.000

To explain the meaning of the tally statistics, note that the TARGET values are input values to

PALGEN (except for the reduced χ2 where TARGET = 1). The SAMPLE MEAN (SM) and SAMPLE

DEVI are for any parameter x given by the ususal formulas for sample mean and sample standard

deviation:

SM = x =
1

n

n∑
i=1

xi (324)

SAMPLE DEVI = s =

√√√√ n∑
i=1

(xi − x)2/(n− 1) (325)

The MEAN PREDICTED DEVI is the average over the n predictions of the standard deviation made

by POSITRONFIT. SEM is the Standard Error of the Mean:

SEM = (SAMPLE DEVI)/
√
n (326)

The quantity (SM-TARGET)/SEM is called the u-value, and when n is not too small, we expect this

to be distributed approximately in a standardized normal distribution, u ∼ N(0, 1).
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Our results show good agreement between TARGET and SAMPLE MEAN. Moreover, except for the

Bg, there is a fair agreement between SAMPLE DEVI and MEAN PREDICTED DEVI. For the u-values

we see that |u| is of the order of magnitude 1, which should be expected.

We have used POSCHECK successfully in many other kinds of problems, including some with

log-normal lifetime broadenings.

If we increase the sample size n to very large values, there is a tendency to get |u|-values sub-

stantially larger than 1. This is because round-off and imperfect numerical algorithms begin to

dominate over the statistical errors.

Concerning the correlation matrix we have made another kind of comparison between predicted

values and sample values. The first of the two matrices, M1 is formed by a simple averaging

over the n matrices predicted by POSITRONFIT. In the second one, M2, the elements are

estimated from the sample itself. Indeed, each element is computed as a Pearson Product Moment

Correlation (PPMC). The general formula for this correlation coefficient between x and y is:

r =
n(
∑
xy)− (

∑
x)(

∑
y)√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(327)

In our example we see that there is a rough equivalence between M1 and M2, M1 ≈ M2, again

apart from the Bg entries. The bad news are that the convergence ofM2 =M2(n) is extemely slow,

as n→ ∞. The good news are that we have the opposite situation for M1 where the convergence

M1(n) →M1(∞) is fast. AlreadyM1(1) (single sample) is a reasonable approximation toM1(∞)

(infinite sample).

9.3 Comparison of PALSfit3 with LT10

The model function we have assumed in PALSfit3 to provide a realistic broadening (standard

deviation) of each of the decaying exponentials is a log-normal distribution. This is the same as

in the LT10 program by Giebel and Kansy [16,17]. We have therefore carried out a comparison of

PALSfit3 with LT10 by simulating – with PALGEN – a series of spectra and analysed them with

both programs and for both carried out a statistical analysis of the results like the one described

in Section 9.2

The input data to the simulation were the following:
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– Total number of channels = 2000

– Area without background = 4 · 106
– Background = 800

– Time-zero = 259

– Time per channel = 0.015 ns

–

– Resolution Function:

– Number of Gaussians = 2

– FWHM of Gaussians = 0.25, 0.35 (ns)

– Intensities of Gaussians = 80, 20 (%)

– Shifts of Gaussians = 0, 0.075 (ns)

–

– Lifetime components:

– Number of lifetimes = 3

– Lifetimes = 0.15, 0.4, 1.8 (ns)

– Log-normal broadenings = 0, 0.1, 0.4 (ns)

– Lifetime intensities = 15, 40, 45 (%)

–

– Number of simulated spectra: 20

The input data to the analysis of the simulated spectra were the following:

– Start- and stop-channel for the analyses: 240—1994 (PALSfit), 241–1995 (LT10);

the channel number deviates by 1 between the two programs.

– Time-zero, FIXED at 259 (PALSfit), 260 (LT10).

– Time per channel = 0.015 ns

–

– Resolution Function:

– Number of Gaussians = 2

– FWHM of Gaussians = 0.25, 0.35 (ns)

– Intensities of Gaussians = 80, 20 (%)

– Shifts of Gaussians = 0, 0.075 (ns)

–

– Lifetime components:

– Number of lifetimes = 3

– Lifetimes = 0.15, 0.4, 1.8, all GUESSED

– Log-normal broadenings = 0 FIXED, 0.1 FIXED, 0.4 GUESSED

The resolution function parameters were fixed in both programs. The reason for this was that the

two programs treat these parameters differently, i.e. in LT10 the resolution function parameters

may be fitted, while time-zero (T0) is a fixed input parameter. In PALSfit (POSITRONFIT) on

the other hand, the shape of the resolution function (also described by a sum of Gaussians) is

fixed, while T0 may be fitted. Because of this difference between the two programs, to make the

fitting conditions identical, both T0, the FWHMs and the shifts of the Gaussians were chosen as

fixed parameters in the analyses with both programs.

Results of statistical analyses of output from the two programs are shown below:
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Comparison for PALSfit3 LT10

Chi-square

Sample mean 0.9974 0.9973

Sample std 0.0272 0.0260

Mean predicted std 0.0338

Lifetimes (ns)

Sample mean 0.1491 0.3979 1.7970 0.1491 0.3981 1.7972

Sample std 0.0065 0.0166 0.0156 0.0064 0.0167 0.0158

Mean predicted std 0.0059 0.0138 0.0121 0.0049 0.0267 0.0325

Broadening (ns)

Sample mean 0.4021 0.4002

Sample std 0.0403 0.0514

Mean predicted std 0.0386 0.0481

Intensities (%)

Sample mean 14.7237 40.1539 45.1225 14.7331 40.1547 45.1123

Sample std 1.8242 1.0487 0.8729 1.7958 1.0024 0.9367

Mean predicted std 1.5698 1.0922 0.6467 0.0000 8.8982 11.6536

Background

Sample mean 800.2811 800.3022

Sample std 0.9523 1.2596

Mean predicted std 1.0414 0.7784

Statistics for 20 PALGEN-generated spectra, analysed with PALSfit3 (Vers. 3.113) and LT10

(Vers. 10.2.2.2.) “Sample mean” is the average of the results from the 20 spectra used in the test.

“Sample std” is the sample standard deviation which measures the scatter of the 20 results. “Mean

predicted std” is the average of the standard deviations for the fitted parameters as predicted by

the programs.

In general, there is good agreement between the “Sample mean” values obtained by the two

programs for all the fitted parameters as well as for the Chi-square. Similarly, the “Sample

standard deviation” also shows good agreement between the two programs, i.e. the scatter of the

results are similar.

However, when it comes to the ‘Standard deviations’ of the fitted parameters, as estimated by

the programs, there are quite large differences. PALSfit3 seems to predict standard deviations of

the fitted parameters fairly well (“Mean predicted std” agrees fairly well with “Sample std” for

all parameters) while LT10 produces larger deviations for many of the parameters (in particular

for the intensities, the predicted standard deviations of which show large scatter).
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