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ABSTRACT 

This thesis presents work on two projects: the all cysteinyl coordinated D14C variant of the 

hyperthermostable Pyrococcus furiosus (Pf) ferredoxin (Fd) as well as wild-type (WT) and two 

variants of the bifunctional dCTP deaminase-dUTPase (DCD-DUT) from Mycobacterium 

tuberculosis (Mt). Furthermore, a program named MyCrystals has been developed to keep track 

of crystallization trials and results. The program combines pictures with crystallization conditions 

and is able to sort the pictures based on selected conditions. MyCrystals was used extensively 

throughout this work and allows for an overview of the crystallization results through the use of 

databases. 

Changing the cluster coordinating aspartate to cysteine in Pf Fd proved to impair the ease with 

which the [Fe4S4] cluster converted to the [Fe3S4] cluster. A disulfide bonded dimer was observed 

at pH 8.0, whereas only the monomer was present at pH 5.8. The crystal structure of D14C 

[Fe3S4] is the first structure with a [Fe3S4] cluster, in which a cysteine from a full cysteine binding 

motif is unprotected and facing away from the cluster. The structure is in close resemblance with 

the WT [Fe3S4] structure. Crystal packing in both D14C and WT [Fe3S4] Fd shows extended β-

sheet dimers. These dimers were not observed in solution and were likely a result of the high 

protein concentration in the crystals.  

WT, A115V and A115G Mt DCD-DUT were successfully purified, and the crystal structure of the 

A115V variant with dTTP bound was solved. The variants were created to investigate the 

importance of steric hindrance on a water molecule suggested to play a key role in 

dephosphorylation. However, this water molecule was present in the structure of A115V:dTTP 

and the variant did not dephosphorylate dTTP. The dTTP pyrimidine moiety in the WT and A115V 

structures is rotated compared with the pyrimidine moiety of dUMPNPP in the structure of 

Mehtanocaldococcus jannaschii (Mj) DCD-DUT. This causes changes in the hydrogen bonding 

pattern of conserved residues in the active site and may give rise to less stabilization of the 

negative charge formed on the oxygen bridging the α-β-phosphorous of the nucleotide in the 

course of the dephosphorylation reaction. The flexible region consisting of residues 110-118 in 

the structure of A115V:dTTP is in close resemblance with the active conformation seen in Mj 

DCD-DUT:dUMPNPP. A115V Mt DCD-DUT was unable to bind dTTP in the inactive conformation 

due to steric hindrance caused by the introduced valine side chain. In contrast to the 

A115V:dTTP structure, an increased number of hydrogen bonds in the WT:dTTP structure favors 

dTTP binding in the inactive conformation. The reduced number of hydrogen bonds in 

A115V:dTTP may explain its reduced thermal stability compared with WT:dTTP.  

dTTP inhibition of WT Mt DCD-DUT at pH 6.8 was confirmed, whereas the WT enzyme proved 

insensitive to dTTP at pH 8.0. The protonation state of the conserved His112 in the flexible loop 

is likely to play an important role herein. His112 is completely deprotonated at pH 8.0, where it 

is stabilized in the active conformation. The active conformation for the WT enzyme is likely to 



ABSTRACT 

iv 

be the same as seen in Mj DCD-DUT:dUMPNPP, and this conformation does not allow dTTP 

binding because of steric hindrance. Hyperbolic dCTP and dUTP saturation curves support that 

the WT enzyme was present solely in the active conformation at pH 8.0. 

The A115V variant was inhibited by dTTP at both pH 6.8 and 8.0, albeit with a stronger inhibition 

at pH 8.0. The flexible 110-118 loop in the A115V:dTTP structure is more loose compared with 

Mj DCD-DUT:dUMPNPP. This wider loop could allow dTTP binding even with protonated His112. 

dTTP binds more easily at pH 8.0 because completely deprotonated His112 takes up less space 

near the nucleotide binding site. 

The A115G variant showed an opposite pH effect of dTTP inhibition compared with the WT 

enzyme. A115G was very sensitive to dTTP at pH 8.0, while no substantial inhibition was 

observed at pH 6.8. Changing alanine to glycine, which has additional allowed backbone 

conformations, is likely to introduce additional flexibility to the already flexible 110-118 loop. 

Hence, dTTP binding at pH 8.0 could simply be explained by the less restrained structure. In 

contrast, the lack of inhibition at pH 6.8 for the A115G variant could be caused by the 

protonated histidine inducing stability by binding to Gly115 O and thereby structurally arranging 

the very flexible loop. At pH 8.0, the A115G variant shows sigmoidal dCTP saturation and 

hyperbolic dUTP saturation. This distinction between dCTP and dUTP as substrates could be 

related to Ala115 being involved in dCTP deamination in the WT enzyme. The flexible Gly115 

backbone of the A115G variant may require adjustment for the deamination to take place, 

whereas the conformation of this residue is indifferent for dephosphorylation. 
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DANSK RESUMÉ 

Denne afhandling omfatter arbejde på to projekter: D14C varianten af Pyrococcus furiosus (Pf) 

ferredoxin med fuldt cystein bindingsmønster samt vildtype (WT) og to varianter af den 

bifunktionelle dCTP deaminase-dUTPase (DCD-DUT) fra Mycobacterium tuberculosis (Mt). 

Endvidere blev programmet MyCrystals udviklet for at holde rede på krystallisationsforsøg og 

resultater. Programmet kombinerer billeder med krystallisationsbetingelser og er i stand til at 

sortere billederne ved valg af givne betingelser. MyCrystals blev brugt i vid udstrækning i dette 

arbejde og programmet giver et overblik over krystallisationsresultaterne ved hjælp af 

databaser. 

Udskiftning af en klyngekoordinerende aspartat til cystein i Pf ferredoxin gjorde det sværere at 

omdanne klyngen fra [Fe4S4] til [Fe3S4]. En dimer bundet sammen af en disulfidbro blev 

observeret ved pH 8.0, mens kun monomeren fandtes ved pH 5.8. Krystalstrukturen af D14C 

[Fe3S4] er den første struktur med en [Fe3S4] klynge, hvori en fri cystein fra et fuldt cystein 

bindingsmønster peger væk fra klyngen. Strukturen er meget lig WT [Fe3S4] strukturen. 

Krystalpakningen af både D14C og WT [Fe3S4] Fd er som β-sheet dimerer. Disse dimerer blev ikke 

observeret i opløsning og var sandsynligvis et resultat af den høje proteinkoncentration i 

krystallerne. 

WT, A115V og A115G Mt DCD-DUT blev oprenset og krystalstrukturen af A115V med dTTP 

bundet blev løst. Varianterne blev lavet for at undersøge betydningen af et vandmolekyle, der 

måske havde en vigtig rolle i defosforyleringsreaktionen. Dette vandmolekyle var dog til stede i 

A115V:dTTP strukturen og varianten var ikke i stand til at defosforylere dTTP. Pyrimidindelen af 

dTTP i WT og A115V strukturerne er roteret i forhold til pyrimidindelen af dUMPNPP i 

Methanocaldococcus jannaschii (Mj) DCD-DUT. Denne drejning forårsager ændringer i hydrogen-

bindingsmønsteret for konserverede rester i det aktive center og kan muligvis medføre mindre 

stabilisering af den negative ladning, som dannes på oxygenet, der forbinder α-β-fosfaterne i 

nukleotidet, i løbet af defosforyleringsreaktionen. Den fleksible region, der udgøres af 

aminosyreresterne 110-118, i strukturen af A115V Mt DCD-DUT med dTTP bundet er meget lig 

den aktive konformation af Mj DCD-DUT:UMPNPP. A115V varianten var ikke i stand til at binde 

dTTP i den inaktive konformation på grund af sterisk hindring fra valinsidekæden. Et højere antal 

hydrogenbindinger i WT:dTTP strukturen favoriserer dTTP binding i den inaktive konformation i 

modsætning til A115V:dTTP strukturen. Det reducerede antal hydrogenbindinger i A115V:dTTP 

kan forklare dennes lavere termostabilitet sammenlignet med WT:dTTP.  

dTTP inhibering af WT Mt DCD-DUT ved pH 6.8 blev påvist, hvorimod WT enzymet var upåvirket 

af dTTP ved pH 8.0. Protoneringen af den konserverede His112 i det fleksible loop har 

sandsynligvis en vigtig rolle heri. His112 er fuldstændigt deprotoneret ved pH 8.0, hvor den er 

stabiliseret i den aktive konformation. Den aktive konformation for WT enzymet er sandsynligvis 

magen til konformationen af Mj DCD-DUT:dUMPNPP, og denne konformation tillader ikke dTTP 
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binding på grund af sterisk hindring. Hyperbolske dCTP og dUTP mætningskurver underbygger at 

WT enzymet udelukkende findes i den aktive konformation ved pH 8.0.  

A115V varianten var inhiberet af dTTP både ved pH 6.8 og ved 8.0, om end stærkest inhiberet 

ved pH 8.0. Det fleksible 110-118 loop er løsere i A115V:dTTP strukturen end i Mj 

DCD-DUT:dUMPNPP. Dette bredere loop kan tillade dTTP binding selvom His112 er protoneret. 

dTTP har lettere ved at binde ved pH 8.0, idet en fuldstændig deprotoneret His112 optager 

mindre plads nær nukleotidbindingssitet.  

A115G varianten viste en modsat pH effekt af dTTP inhibering i forhold til WT enzymet. A115G 

var meget sensitiv overfor dTTP ved pH 8.0 og overvejende upåvirket ved pH 6.8. Udskiftning af 

alanin til glycin, der har flere tilladte hovedkædekonformationer, vil sandsynligvis tilføje yder-

ligere fleksibilitet til det i forvejen fleksible 110-118 loop. En simpel forklaring på dTTP binding 

ved pH 8.0 er, at der er mere plads i strukturen. Den modsatte mangel på dTTP inhibering ved pH 

6.8 for A115G er muligvis forårsaget af den protonerede histidin, der kan give mere stabilitet i 

strukturen ved at binde til Gly115 O og derved skabe en strukturel begrænsning i det meget 

fleksible loop. Ved pH 8.0 udviser A115G varianten sigmoid dCTP mætning og hyperbolsk dUTP 

mætning. Denne skelnen mellem dCTP og dUTP som substrater kan skyldes, at Ala115 i WT 

enzymet er involveret i dCTP deaminering. Det er muligvis nødvendigt strukturelt at tilpasse 

positionen af det fleksible Gly115 backbone i A115G varianten for at deaminering kan finde sted, 

hvorimod konformationen af denne rest ikke er vigtig for defosforylering. 
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LIST OF ABBREVIATIONS  

A115G A115G variant of Mycobacterium tuberculosis dCTP deaminase-dUTPase 

A115V A115V variant of Mycobacterium tuberculosis dCTP deaminase-dUTPase 

A media  2 % (NH4)2SO4, 7.5 % Na2HPO4·2H2O, 3 % KH2PO4, 3 % NaCl 

ASU Asymmetric unit 

BisTris Bis-(2-hydroxyethyl)imino-tris(hydroxymethyl)methane  

CV Column volume 

DCD dCTP deaminase 

DCD-DUT dCTP deaminase-dUTPase 
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Dd Dictyostelium discoideum 

DE52 Diethylaminoethyl 

Dg Desulfovibrio gigas 

dUMP deoxyuridine monophosphate 

dUMPCPP 2’-deoxy-uridine-5’-[(α,β)-methyleno]triphosphate 

dUMPNPP 2’-deoxy-uridine-5’-[(α,β)-imido]triphosphate 

dTTP deoxythymidine triphosphate 

DUT dUTPase 

dUTP deoxyuridine triphosphate 

EDTA 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid 

Ec  Escherichia coli 

EPR Electron paramagnetic resonance 

ESRF European Synchrotron Radiation Facility (Grenoble, France) 

Fd Ferredoxin 

FeS  Iron-Sulfur 

HEPES N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid 

HPLC High-pressure liquid chromatography 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

LB media 1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl 

MAX-lab National electron accelerator laboratory for synchrotron radiation research, 

nuclear physics and accelerator physics (Lund University, Sweden) 

MIB Buffer system containing malonic acid, imadizole and boric acid 

Milli-q 18.2 MΩ cm water, Milli-Q Synthesis system by Millipore 

MPD 2-Methyl-2,4-pentanediol 

Mj Methanocaldococcus jannaschii 

MPEG Polyethylene glycol monomethyl ether 

Mt Mycobacterium tuberculosis 

NCS Non-crystallographic symmetry 

NDK Nucleoside diphosphate kinase 
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NMR Nuclear magnetic resonance 

NMWL  Normal molecular weight limit 

OD Optical density; wavelength given as subscript 

Pdb Protein Data Bank: www.pdb.org 

PEG Polyethylene glycol 

Pf Pyrococcus furiosus 

QTOF Quadrupole Time of Flight 

RMS Root mean square 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Ss Sulfolobus solfataricus 

TB/carb  Terrific Broth with 0.5 % (w/w) glycerol and 50 µg/mL carbenicillin 

TLS Translation Libration Screw-motion 

Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol 

UV-vis Ultraviolet-visible 

WT Wild-type  

 

 

 



 

ix 

CONTENTS 

1 Introduction and Outline ................................................................................................ 1 

2 MyCrystals – A Simple Visual Data Management Program for Laboratory Scale 

Crystallization Experiments .................................................................................................... 3 

2.1 Introduction ..................................................................................................................... 3 

2.2 Program Description and Use .......................................................................................... 4 

2.2.1 Data Structure .......................................................................................................... 4 

2.2.2 Edit Data ................................................................................................................... 4 

2.2.3 Filter Data ................................................................................................................. 5 

2.3 Platforms and Availability ................................................................................................ 6 

2.4 Conclusion ........................................................................................................................ 6 

3 Iron-Sulfur Proteins in Brief .......................................................................................... 7 

3.1 Introduction to Iron-Sulfur Proteins................................................................................. 7 

3.2 [Fe4S4] ↔ [Fe3S4] Cluster Interconversions ..................................................................... 8 

3.3 Pyrococcus furiosus Ferredoxin and the D14C variant ..................................................... 8 

4 Oxidation and Purification of the D14C variant of Pyrococcus furiosus Ferredoxin .......... 11 

4.1 Introduction ................................................................................................................... 11 

4.1.1 Initial Oxidation Procedure and Results ................................................................. 11 

4.2 Experimental .................................................................................................................. 12 

4.2.1 Expression of D14C Pf Fd ........................................................................................ 12 

4.2.2 Purification of D14C Pf Fd ...................................................................................... 13 

4.2.3 Oxidation and Purification ..................................................................................... 13 

4.2.4 Molecular Weight Determination and EPR ............................................................ 14 

4.2.5 Resource Anion Exchange ...................................................................................... 15 

4.2.6 Gel Filtration ........................................................................................................... 15 

4.3 Results ............................................................................................................................ 15 

4.3.1 Expression and Purification of D14C Pf Fd ............................................................. 15 

4.3.2 Oxidation and Purification ..................................................................................... 16 

4.3.3 Molecular Weight Determination and EPR ............................................................ 19 

4.3.4 Resource Anion Exchange ...................................................................................... 21 

4.3.5 Gel Filtration ........................................................................................................... 22 

4.4 Discussion ....................................................................................................................... 24 

4.5 Conclusion ...................................................................................................................... 26 

5 Crystal Structures of D14C Pyrococcus furiosus Ferredoxin............................................. 27 

5.1 Introduction ................................................................................................................... 27 

5.2 Experimental .................................................................................................................. 27 



CONTENTS 

x 

5.2.1 Crystallization and X-Ray Data Collection .............................................................. 27 

5.2.2 Structure Determination and Refinement ............................................................. 28 

5.3 Results ............................................................................................................................ 29 

5.3.1 Crystallization and X-Ray Data Collection .............................................................. 29 

5.3.2 Structure of D14C [Fe4S4] Pf Fd .............................................................................. 29 

5.3.3 Structure-reduction potential relationship ............................................................ 32 

5.3.4 Structure of D14C [Fe3S4] Pf Fd .............................................................................. 34 

5.4 Conclusion ...................................................................................................................... 35 

6 Selected Enzymes Involved in Deoxyribonucleotide Synthesis ........................................ 37 

6.1 Introduction to deoxyribonucleotide synthesis ............................................................. 37 

6.2 dCTP deaminase ............................................................................................................. 39 

6.3 dUTPase .......................................................................................................................... 40 

6.4 dCTP deaminase-dUTPase .............................................................................................. 41 

6.5 Structural Comparison of the Enzymes .......................................................................... 42 

7 Mycobacterium tuberculosis dCTP deaminase-dUTPase: Mutational Background and 

Equations for Kinetic Studies ................................................................................................ 45 

7.1 Structural reasoning behind the mutational study ........................................................ 45 

7.2 Steady state kinetics ....................................................................................................... 45 

8 Purification of WT and Two Variants of Mycobacterium tuberculosis dCTP deaminase-

dUTPase ............................................................................................................................... 49 

8.1 Introduction .................................................................................................................... 49 

8.2 Experimental .................................................................................................................. 49 

8.2.1 Expression of the A115G variant ............................................................................ 49 

8.2.2 Purifications of WT and the variants ...................................................................... 50 

8.2.3 SDS-PAGE ................................................................................................................ 51 

8.2.4 Solubility Experiments ............................................................................................ 51 

8.3 Results and Discussion ................................................................................................... 52 

8.3.1 Expression of the A115G variant ............................................................................ 52 

8.3.2 Purification of WT ................................................................................................... 52 

8.3.3 Purification of the A115V variant ........................................................................... 53 

8.3.4 Purification of the A115G variant ........................................................................... 54 

8.3.5 Solubility Experiments ............................................................................................ 56 

8.3.6 Comments on Stability ........................................................................................... 56 

8.4 Conclusion ...................................................................................................................... 57 

9 Characterization of WT and Two Variants of Mycobacterium tuberculosis dCTP 

deaminase-dUTPase ............................................................................................................. 59 

9.1 Introduction .................................................................................................................... 59 

9.2 Experimental .................................................................................................................. 59 

9.2.1 Turnover Numbers ................................................................................................. 59 

9.2.2 Nucleotide Saturation ............................................................................................ 60 

9.2.3 dTTP inhibition........................................................................................................ 60 



CONTENTS 

xi 

9.2.4 dTTP Binding ........................................................................................................... 61 

9.2.5 Liquid Scintillation Counting ................................................................................... 61 

9.2.6 Differential Scanning Calorimetry .......................................................................... 61 

9.2.7 Crystallization ......................................................................................................... 62 

9.2.8 Data Collection and Processing .............................................................................. 62 

9.2.9 Structure Determination and Refinement ............................................................. 63 

9.3 Results ............................................................................................................................ 63 

9.3.1 Turnover numbers .................................................................................................. 64 

9.3.2 Substrate saturation ............................................................................................... 64 

9.3.3 dTTP Inhibition ....................................................................................................... 66 

9.3.4 dTTP Binding ........................................................................................................... 69 

9.3.5 Differential Scanning Calorimetry .......................................................................... 70 

9.3.6 Crystallization and Diffraction Tests....................................................................... 71 

9.3.7 Crystal structure of A115V:dTTP ............................................................................ 73 

9.4 Discussion ....................................................................................................................... 78 

9.4.1 Properties of WT and A115V enzymes ................................................................... 79 

9.4.2 Properties of the A115G variant ............................................................................ 83 

9.5 Conclusion ...................................................................................................................... 84 

10 Concluding Remarks ..................................................................................................... 87 

11 Outlook ........................................................................................................................ 89 

Bibliography ........................................................................................................................ 91 

Appendices ......................................................................................................................... 101 

A MyCrystals and Databases ............................................................................................... 103 

B Ferredoxin Experimental Procedures ............................................................................... 105 

C Ferredoxin Results ............................................................................................................ 109 

D dCTP deaminase-dUTPase Experimental Procedures ...................................................... 117 

E dCTP deaminase-dUTPase Results ................................................................................... 123 

F Crystallization of Extended Sulfolobus solfataricus Nucleoside Diphosphate Kinase ...... 131 

G Publications ...................................................................................................................... 139 

Appendix Bibliography ............................................................................................................. 157 

 

 

 





 

1 

Chapter One 

1 INTRODUCTION AND OUTLINE 

Proteins participate in virtually every process within cells and are an essential part of life, as they 

are required for structure, function and regulatory purposes. Enzymes are proteins that catalyze 

biochemical reactions. They are also of vital importance, as they catalyze the majority of the 

reactions involved in metabolism and are also involved in transcription, DNA-replication 

and -repair. The three-dimensional structure of proteins and enzymes is absolutely essential for 

the function, and structure determination is thus a valuable method for discovering shared 

features among members of molecular families. Detailed three-dimensional protein structures 

can be determined using NMR spectroscopy and X-ray crystallography, the latter of which was 

used throughout this work.  

Successful protein crystallization is required in order to solve the crystal structure by X-ray 

diffraction. This can be an immense task involving numerous crystallization conditions, and 

meticulous bookkeeping of the results is important in order to optimize the conditions. Chapter 

2 presents a database program named MyCrystals that was developed for managing and storage 

of such information. The unique feature of MyCrystals is the option to sort crystallization 

conditions coupled with a picture. MyCrystals is available online and is also enclosed in Appendix 

A along with databases containing crystallization conditions and pictures of protein 

crystallization results throughout this work. 

Metalloproteins are crucial for many essential processes and exist extensively throughout 

nature. Ferredoxin (Fd) from Pyrococcus furiosus (Pf) is hyperthermostable and contains a single 

[Fe4S4] cluster with incomplete cysteinyl coordination [1,2]. Studies of the D14C variant 

ferredoxin, in which the cluster coordinating aspartate has been changed to cysteine, may 

contribute to the understanding of cysteine ligation and its effects on protein function and 

stability. The D14C variant of Pf Fd is introduced in Chapter 3 along with a brief introduction to 

iron-sulfur proteins. Conversion of [Fe4S4] to [Fe3S4] is a preceding step in the formation of 

heterometallic clusters, in which an externally imposed metal ion is part of the cluster [MFe3S4]. 

Formation of novel metalloproteins presents an opportunity to engineer new or improve existing 

functional properties with relevance for a wide range of applications within the pharmaceutical- 

and biotechnological industries [3]. Structural studies of metalloproteins are important because 

the structure-function relationship is vital for protein design. Expression and purification of D14C 

[Fe4S4] Pf Fd as well as cluster conversion to [Fe3S4] and subsequent purification are described in 

Chapter 4. Crystallization and crystal structures of D14C Pf Fd are described in Chapter 5. 
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Building blocks for DNA and RNA are in continuous demand, and (deoxy)ribonucleotide synthesis 

is thus vital for cell growth. During evolution, the base pairing in DNA changed from including the 

uracil base (found in RNA) to include the thymine base. Studying the synthesis of 

deoxythymidine triphosphate (dTTP) may provide clues as to how this evolution transpired. The 

bifunctional enzyme dCTP deaminase-dUTPase (DCD-DUT) is involved in the biosynthesis of dTTP 

and is described in Chapter 6. Kinetic and inhibition studies can be used to characterize enzymes 

in order to gain an understanding of the function. In this work, the bifunctional DCD-DUT from 

Mycobacterium tuberculosis (Mt) has been studied. The infectious bacterial disease tuberculosis 

caused by Mt killed an estimated 1.7 million people in 2009 [4], and enzymes involved in 

deoxyribonucleotide synthesis provide potential drug targets. Structures and inhibition 

mechanisms of these enzymes are important in the design of specific inhibitors that leave the 

human host unaffected. Wild-type (WT) and two variants of the bifunctional Mt DCD-DUT have 

been studied in this work. An introduction to the variants and the applied equations for kinetic 

analyses is given in Chapter 7. Purification of the enzymes is described in Chapter 8, followed by 

structural and kinetic studies of the enzymes in Chapter 9.  

Numerous figures of protein structures are shown throughout this thesis, both in chapters 

outlining the literature and in experimental chapters describing the obtained results. All these 

figures have been made using PyMol [5], occasionally in combination with other programs, 

which will be stated explicitly in the figure legends.  
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Chapter Two 

2 MYCRYSTALS – A SIMPLE VISUAL DATA 

MANAGEMENT PROGRAM FOR LABORATORY 

SCALE CRYSTALLIZATION EXPERIMENTS 

2.1 Introduction 

Macromolecular structure determination by X-ray diffraction requires successful crystallization. 

This can be a difficult task where numerous crystallization experiments lead to a large amount of 

data. Crystallization projects can be worked on by several people over longer periods of time and 

keeping track of, as well as sharing, results can be made much easier by the use of a database. A 

program named MyCrystals has been developed with the main purpose of managing and storing 

pictures and crystallization conditions, as well as sorting them to give an overview of the results. 

A program description is available in this chapter and a descriptive note of the program has been 

published [6]. 

There are many other available programs and applications to store crystallization data. 

Crystallization robots usually include commercial software that is able to handle large amount of 

data. Some of the available free programs are XtalBase [7], XAct [8], Xtrack [9], CLIMS [10] and 

LISA [11]. Images combined with scores present a simple way to assess crystallization results and 

also simplifies the optimization procedure because of the transparency of the results. XtalBase 

[7] is a comprehensive system that amongst many other features can manage and display 

pictures of the results, and CLIMS [10] is able to store visual observations of the drops. 

Laboratory Information Management Systems like PiMS [12] are designed to manage various 

kinds of data such as target, construct and experiment data through a web interface.  

MyCrystals is simple to use, easy to navigate, and requires minimal time investment by the 

researcher to utilize the software. The unique feature of MyCrystals is its ability to display and 

sort crystallization pictures. The pictures are stored locally or on external media, and the 

program creates a database with file paths to identify the pictures. MyCrystals is also able to sort 

pictures by the entered data to view the effect of e.g. changing the pH or precipitant. This makes 

it easier to establish the best conditions and to assess how they can be optimized. MyCrystals 

can also be used as a notebook program to keep track of attempted crystallization conditions 

without necessarily using the picture viewing part. Furthermore, MyCrystals may be useful in 

other experimental optimization procedures, such as purification, where a lot of slightly different 
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procedures are usually tested. These may be stored in the database and linked to an image file 

containing the resulting chromatogram. 

 

2.2 Program Description and Use 

MyCrystals is primarily designed for viewing and sorting pictures in a simple and intuitive user 

interface. The File menu is used for creating new databases and loading or saving existing 

databases. Creating a new database in the file menu will auto-generate a standard set of 

conditions. The user interface of MyCrystals is divided into three simple main tabs: Edit Data, 

Filter Data and Data Table. Data entry and edit are carried out in the Edit Data tab as described 

in section 2.2.2. Picture display and selection based on conditions are carried out in Filter Data as 

described in section 2.2.3. Data Table lists all entered data in a table to give an overview of the 

contents of the database. 

 

2.2.1 Data Structure 

The data consist of two parts. The first part is an XML-database that contains all entered 

conditions including the appropriate image path for each set of conditions (data entries). The 

second part is the images, which are placed in a directory on the hard drive. MyCrystals 

recognizes graphics file formats JPEG, GIF, PNG and TIFF. 

The full path to each image consists of two paths, a Project Directory and a relative Image Path. 

The Image Path is unique for each data entry while the Project Directory is shared. This 

arrangement facilitates the moving of all images to another location, as only the Project 

Directory needs to be changed. 

 

2.2.2 Edit Data 

In the Edit Data tab, the database can be edited by adding new data entries or editing already 

existing data entries. The tab consists of three parts: Project Directory, Column Properties and 

Data Entry. 

The Project Directory is the path to a directory where all the images used in the database are 

placed. The rest of the path is stored as a property (Image Path) for each data entry. The Column 

Properties makes it possible to change the data columns of the database. It is possible to delete 

or add columns, change the names and types, and switch the positions of two columns. An 

intuitive user interface renders this possible, see Figure 2.1.  

The Data Entry area is used to add, change or remove data entries in the database. The Selected 

Data Entry operates on an existing data entry. To add a new data entry into the database, use 

the Add Data Entry button, which creates a new data entry with a consecutive index number. 
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The data entry fields are empty when the first data are typed in, and after Add Data Entry has 

been used, the entry fields will contain the information of the latest data entry. Drop down 

menus of previously entered data are available when entering or correcting database entries. 

The Selected Data Entry can advantageously be used when entering data, as an entire set of 

previously entered conditions can be loaded by giving the index number. Minor changes can be 

applied to the set of conditions and Add Data Entry will generate a new data entry in the 

database. 

 

Figure 2.1: A screenshot showing how the Edit Data tab of MyCrystals can appear. Checking the 

Lock Properties option will simplify the Column Properties by only showing the name. 

 

2.2.3 Filter Data 

The Filter Data tab is used for viewing and sorting pictures entered into a database. The sorting 

options are available in a drop down menu and consist of all entered data. First, a condition is 

selected and then a filter option is applied. Text strings can be sorted as absolutes, while 

numerical strings also can be sorted using >, <, ≤, ≥, ≠. It is possible to apply 15 filters 

simultaneously. A list of entries that match the criteria will be generated and displayed in the 

tab, see Figure 2.2. 

 The information shown for each data entry in the list can be customized using the field Filter 

text. Writing '[1]' will list the data entered in the first field in the Data Entry area of the Edit Data 

tab, '[2]' will list the data in the second field and so forth. Selecting one of the listed entries will 

display the matching picture to the right of the tab as shown in Figure 2.2. 
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Figure 2.2: A screenshot showing how the Filter Data tab of MyCrystals can appear. Data with 
the following conditions have been sorted: Enzyme: A115V, pH = 7.5, Additives Drop: 5 mM 
dTTP, 20 mM MgCl2 and Precipitant concentration ≤ 8 (w/w%). In the displayed image: 5 % 
PEG8000. The scale-bar is part of the depicted image. 

 

2.3 Platforms and Availability 

The program is written in C# as a Windows form in Microsoft Visual Studio. The program consists 

of a single executable file, and no installation is needed. MyCrystals runs under Windows and 

has no special hardware requirements. MyCrystals is available free of charge for download from 

http://xray.kemi.dtu.dk/mycrystals/ and is enclosed on DVD in Appendix A. Furthermore, the 

DVD includes three databases and matching pictures of crystallization results carried out as 

described in Chapters 5 and 9, and in Appendix F. 

 

2.4 Conclusion 

The unique main feature of the program MyCrystals, presented here, is the displaying and 

sorting of crystallization pictures based on the entered crystallization conditions. This enables 

the user to view the effect of changing conditions, which helps to identify parameters for 

optimization. 
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Chapter Three 

3 IRON-SULFUR PROTEINS IN BRIEF 

3.1 Introduction to Iron-Sulfur Proteins 

Iron-sulfur (FeS) proteins are present in all kinds of organisms and cellular compartments. They 

are predominantly involved in electron transfer, but also in substrate binding, catalysis, 

regulatory and sensing functions [13-15]. FeS proteins are proposed to be ancient structures that 

may have played a role during the emergence of life on this planet [16,17]. The formation of FeS 

clusters in a living cell is catalyzed by various complex biosynthetic machineries and a range of 

diseases are associated with defects in FeS proteins in humans [15]. 

The predominant product in autoassembly involving iron, sulfide and thiolates is the [Fe4S4] 

cluster [18]. The stability of FeS clusters in proteins depends on the protein surroundings. The 

preferred organic ligands of FeS are cysteines, but also histidine, glutamine or arginine can be 

used as ligands. FeS proteins are in general present in a single protein domain and have a 

reasonably rigid ligand framework. Exposed FeS clusters are uncommon and very unstable. 

Examples of large and specialized FeS clusters are the [Fe8S7] (P cluster) and [MoFe7S9] (FeMoco) 

clusters of nitrogenase, the Fe2-[Fe4S4] active site of [FeFe] hydrogenases and the Ni2-[Fe4S4] (A 

cluster) and NiFe4S5 (C cluster) clusters of CO dehydrogenase/acetylcoenzyme A synthase 

[13,19]. Figure 3.1 shows simple and more complex FeS cluster structures. 

 

Figure 3.1: Four examples of iron-sulfur clusters: [Fe2S2] (pdb 1RFK). [Fe3S4] (pdb 1SJ1). [Fe4S4] 
(pdb 2Z8Q). [MoFe7S9] (pdb 1M1N).  

The redox potentials of FeS proteins have a very large span of about 1 V. The [Fe4S4] ferredoxin 

cluster changes oxidation state from +2 to +1 during reduction, while the [Fe3S4] cluster changes 

from +1 to 0 during reduction [14]. High-potential iron-sulfur proteins (HiPIPs) are small globular 

proteins (6-10 kDa) that act as electron donors. They contain a [Fe4S4]
2+/3+ cluster bound to four 

conserved cysteine residues and are distinguished by high reduction potentials [13,20]. 
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The electrochemical properties of ferredoxins are sensitive to changes in the cluster environ-

ment. More positive reduction potentials are expected for less buried clusters because the 

reduced cluster including ligands is more charged than the oxidized cluster, [Fe4S4(Cys-)4]
3-/2-. 

Increased solvent accessibility of the cluster thus increases the reduction potential [21-23]. More 

and stronger hydrogen bonds to cluster coordinating cysteine Sγ increase the reduction 

potential, most likely by stabilizing the reduced, more charged cluster by attenuating the charge 

density [22,24]. Other effects discussed to influence the reduction potential include ligand 

conformation, hydration effects and volume of the cavity hosting the cluster [22,25,26]. 

 

3.2  [Fe4S4] ↔ [Fe3S4] Cluster Interconversions 

Aconitase is a widely used example of incomplete cysteinyl coordination in which the cluster 

conversion plays a crucial role for the enzyme activity. The inactive enzyme contains a [Fe3S4]
+ 

cluster coordinated to the protein by three cysteines. The enzyme is active when a fourth iron 

coordinated by hydroxyl is incorporated to complete the cubane [Fe4S4]
2+ cluster [27-29]. 

The [Fe4S4] cluster is a common cluster in bacterial ferredoxins and is bound to the polypeptide 

chain with a typical binding motif: -Cys-X2-Cys-X2-Cys-Xn-Cys-.  Common single cluster ferredoxins 

have two additional cysteines forming an intramolecular disulfide bond, which replace a second 

cluster in more ancient ferredoxins [30]. Incomplete cysteine coordination of a [Fe4S4] cluster is 

seen in Pf ferredoxin and in one of two [Fe4S4] clusters in Desulfovibrio africanus (Da) ferredoxin 

III, which both readily convert to [Fe3S4] clusters [2,31]. Site-directed change of a cluster 

coordination aspartate to cysteine has been reported to impair the ease with which [Fe4S4] 

converts to [Fe3S4] [31]. 

Formation of a [Fe3S4] cluster is a preceding step to the formation of heterometallic clusters in 

which a fourth exogenous metal (M) is incorporated into the cluster [MFe3S4]. Protein templates 

used for this type of cluster redesign include ferredoxins from Pf, Da and Desulfovibrio gigas 

[32,33]. [MFe3S4] Pf Fd has been studied with M = Cr2+, Mn2+, Zn2+, Ni2+, Co2+, Cd2+, Cu+ and Tl+ 

[34-38]. Design or modification of metal binding sites in proteins opens for the possibility to 

engineer new or improve existing functional properties. This can contribute to the under-

standing of structure-function relationships and result in new enzymes for a wide range of 

applications [3].  

 

3.3 Pyrococcus furiosus Ferredoxin and the D14C variant 

Ferredoxin from the strict anaerobic hyperthermophilic archaeon Pyrococcus furiosus functions 

as an electron carrier [1]. The 7.5 kDa ferredoxin consists of 66 amino acids and includes a single 

[Fe4S4] cluster coordinated to the protein by three cysteine residues (residues 11, 17, 56) and 

one aspartate (residue 14) [2,39]. The iron coordinated to Asp14 is lost during a reversible 

cluster conversion to [Fe3S4]. Reassembly of the [Fe4S4] cluster occurs during incubation with Fe2+ 

under reducing conditions [2]. Two additional cysteine residues (21, 48) form a redox active 
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disulfide bond [40]. The disulfide bond exists in a double conformation with a left-handed spiral 

conformation destabilized compared to the right-handed spiral conformation [39,41,42].  

The crystal structure of [Fe3S4] Pf Fd was solved by Nielsen et al. [41,43] (pdb 1SJ1). In the crystal 

structure, the ferredoxin forms an extended β-sheet dimer. The dimer has been proposed to be 

present at low ionic strength, while monomers are present at high ionic strength [44,45]; a 

behavior, which has been reported for Pyrococcus woesei ferredoxin [46]. 

Structural, electronic and functional characteristics of incomplete cysteinyl coordination have 

been studied extensively in Pf Fd by replacing Asp14 with cysteine [47-52]. D14C [Fe4S4] Pf Fd 

show the same extreme thermostability as WT Pf Fd with no observed denaturation after 12 h at 

95 °C [1,50]. Differences between D14C and WT Pf Fd are seen as an increase in the absorbance 

ratio, A390/A280 = 0.73 for D14C compared with 0.56 for WT (UV-vis spectra are shown in Figure 

3.2) and an increase in the extinction coefficient, ε390 = 20.2 mM-1cm-1 for D14C compared with 

17.0 mM-1cm-1 for WT [48,49]. Also, D14C [Fe4S4] Pf Fd has a more negative redox potential (-427 

mV) compared with WT [Fe4S4] Pf Fd (-368 mV) [50]. The efficiency of electron acceptance is also 

affected by the mutation, as the D14C variant has a decreased Vmax compared with WT Pf Fd 

[50]. A detailed description of expression, purification and properties of WT, WT-recombinant 

and several mutants of Pf Fd is given by Kim et al. [53]. 

 

 

Figure 3.2: UV-vis spectra of Pf ferredoxins: WT and D14C [4Fe-4S] and WT [3Fe-4S]. Adapted 
with permission from [50]. Copyright 2011 American Chemical Society. 
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Chapter Four 

4 OXIDATION AND PURIFICATION OF THE D14C 

VARIANT OF PYROCOCCUS FURIOSUS FERREDOXIN 

4.1 Introduction 

Oxidation of [Fe4S4] ferredoxins to [Fe3S4] ferredoxins is a preceding step to the formation of 

heterometallic clusters [MFe3S4]. D14C Pf Fd contains a [Fe4S4] cluster and the difference in 

oxidation to [Fe3S4] compared with the WT Fd may provide information on the effects of 

complete cysteinyl coordination. Aerobic purification of WT Pf Fd produces two peaks with 2 

mS/cm elution difference during anion exchange on a Source 30Q column; first the Fd with a 

[Fe4S4] cluster followed by the Fd with a [Fe3S4] cluster [54]. Differences are seen in the 

characteristics of the UV-vis spectra of WT [Fe4S4] and [Fe3S4] Pf Fd shown in Figure 3.2. The 

absorbance maximum moves from 390 nm to 408 nm and a shoulder around 340 nm becomes 

more pronounced when the cluster in WT Pf Fd is converted from [Fe4S4] to [Fe3S4] [50]. 

Prior to this project1, oxidation of purified D14C [Fe4S4] Pf Fd was attempted, but proved 

unsuccessful (section 4.1.1) and several experiments were made to oxidize the Fd (section 4.2.3). 

Cultivation and purification of D14C Pf Fd are also described in this chapter.  

All solutions were prepared with 18.2 MΩ cm water from a Milli-Q Synthesis system by Millipore 

(milli-q water). Protein purifications were carried out on an ÄKTATM Purifier 100 HPLC system. 

Ultrafiltration was carried out at 4 °C in a stirred Amicon cell with a PLBC NMWL 3 kDa 

membrane. 

 

4.1.1 Initial Oxidation Procedure and Results 

The initial oxidation procedure presented in this section was carried out prior to this project, 

following the procedure described in reference [47] with minor modifications.  

In experiment A, 15x molar excess of K3[Fe(CN)6]3 was used. The solution with ferricyanide and 

10 mg D14C Pf Fd in 20 mM Tris/HCl pH 8.0 was incubated at room temperature for 15 minutes 

with gentle stirring. The protein solution was exchanged into 20 mM Tris/HCl pH 8.0 by 

ultrafiltration and then loaded onto a 16 mm/10 cm Source 30Q column equilibrated with 20 

                                                           
1 Monika Nøhr Johannessen (Løvgreen) Master's Thesis, Department of Chemistry, Technical University of 
Denmark, October 2007 
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mM Tris/HCl pH 8.0. The column was washed with 2 column volumes (CV) 20 mM Tris/HCl pH 

8.0 and elution was carried out using a linear salt gradient of 0.15 M to 0.4 M NaCl in 20 mM 

Tris/HCl pH 8.0 over 17 CV. The chromatogram is shown in Figure 4.1 along with the UV-vis 

spectra of protein in the main peak a and D14C [Fe4S4] Pf Fd for comparison. Protein from the 

main peak a was collected and crystallized. The structure proved to contain a [Fe4S4] cluster. 

 

 

Figure 4.1: Left: chromatogram from purification of oxidized D14C Pf Fd. Collected fractions of 
peak a are marked with a black line. Right: UV-vis spectrum of peak a from the chromatogram 
and D14C [Fe4S4] Pf Fd. 

 

4.2 Experimental 

4.2.1 Expression of D14C Pf Fd  

The expression strain was an E. coli strain over expressing the D14C variant of Pf Fd. Cultivation 

of the cells was carried out in Terrific Broth with carbenicillin as selection marker. Sterilization 

was applied to all instruments that came in contact with the cells to avoid contamination. The 

cultivation procedure is based on a previously developed method in the Metalloprotein 

Chemistry and Engineering Research Group for expressing native Pf Fd [54]. 

The bacteria cells expressing D14C Pf Fd from a glycerol stock were streaked on an agar plate 

containing Luria Broth, 100 µg/mL ampicillin. A single colony was selected and added to 50 mL 

Terrific Broth with 0.5 % (w/w) glycerol and 50 µg/mL carbenicillin (TB/carb) in a 300 mL triple 

baffled shake flask. Two 50 mL cultures were prepared per 6 x 650 mL large-scale cultures. The 

two cultures were incubated at 37 °C with shaking until the optical density at 600 nm (OD600) was 

0.6-1.0. The cultures were incubated at 4 °C overnight. Each culture was then transferred to a 50 

mL sterile plastic tube and centrifuged at 4 °C. The clear supernatants were decanted off and 

discarded, and each of the two pellets was resuspended in 23 mL TB/carb. 6.5 mL culture was 

transferred into 650 mL TB/carb in a 2 L triple baffled shake flask to give a total of six 650 mL 

large-scale cultures. The cultures were incubated at 30 °C with shaking until OD600 was 2.4. IPTG 

was added to a final concentration of 0.1 mM and incubation continued at 30 °C for 16 hours. 
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Each of the 650 mL cells were transferred to a Beckmann centrifuge tube and centrifuged at 4 °C. 

The clear supernatants were decanted off and discarded. The cells in each centrifuge tube were 

resuspended in 25 mL ice-cold 20 mM Tris/HCl pH 8.0 and poured into 50 mL sterile plastic 

centrifuge tubes. The six 50 mL tubes were centrifuged at 4 °C. The clear supernatants were then 

decanted off and discarded. Cell pellets were stored at -80 °C. 

 

4.2.2 Purification of D14C Pf Fd 

Six tubes, each containing cells from 650 mL culture (section 4.2.1), were slowly defrosted on 

ice. Each tube was added approximately 30 mL 20 mM Tris/HCl pH 8.0 buffer and the cells 

resuspended. 80 µL 1 M sodium dithionite was then added to each tube. The cells were lysed by 

sonication three times for 40 seconds. The suspension was kept on ice during and in between 

sonications. After sonication, the suspensions were incubated for 10 minutes in a 70 °C water 

bath, and then centrifuged at 4 °C and the clear supernatants decanted off. The pooled 

supernatants were diluted four times with 20 mM Tris/HCl pH 8.0, 2 mM sodium dithionite. 

The protein solution was loaded onto a 50 mm/7 cm Q Sepharose Fast Flow column equilibrated 

with 20 mM Tris/HCl pH 8.0. The column was washed with 2 CV 20 mM Tris/HCl pH 8.0 and 2 CV 

0.15 M NaCl in 20 mM Tris/HCl pH 8.0. The protein was eluted isocratically using 0.4 M NaCl in 

20 mM Tris/HCl pH 8.0. The volume was reduced by ultrafiltration. Less than 30 mg protein 

reduced to a maximum volume of 9 mL was then loaded onto a HiLoad 26 mm/60 cm Superdex 

75 column equilibrated with 0.15 M NaCl in 20 mM Tris/HCl pH 8.0 and eluted using the same 

buffer. Fractions containing the protein were pooled and exchanged into a 20 mM Tris/HCl pH 

8.0 buffer by ultrafiltration. A maximum of 15 mg protein was loaded onto a 16 mm/10 cm 

Source 30Q column equilibrated with 20 mM Tris/HCl pH 8.0. The column was washed with 2 CV 

20 mM Tris/HCl pH 8.0 and elution was carried out using a linear salt gradient of 0.15 M to 0.4 M 

NaCl in 20 mM Tris/HCl pH 8.0 over 17 CV. The protein was exchanged into 20 mM Tris/HCl pH 

8.0 by ultrafiltration. UV-vis spectrophotometry was used to determine the protein 

concentration and yield. 

 

4.2.3 Oxidation and Purification 

Different parameters were varied during the oxidation process. The experimental details are 

given in Appendix B and summarized in Table 4.1. In brief, purified D14C [Fe4S4] Pf Fd was mixed 

with ferricyanide and left with mild stirring for a variable amount of time and then exchanged 

into 20 mM Tris/HCl pH 8.0 and purified by anion exchange on a 16 mm/10 cm Source 30Q 

column equilibrated with the same buffer unless otherwise specified. In addition to these 

experiments (A to N), three other types of experiments (O, P and Q) were attempted. CoCl2 was 

added in experiment O in order to investigate whether the [Fe3S4] cluster was unstable and 

would allow for a heterometal to replace the fourth iron of the cluster. In experiment P, it 

attempted to break the cluster by adding a large excess of dithionite as suggested by Moura et 
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al. [55]. In experiment Q, ferricyanide was substituted by [Fe(phen)3]
3+ that has a potential of 

+1127 mV compared with +360 mV of ferricyanide and -426 mV D14C [Fe4S4] Pf Fd [50,56,57]. 

 

Table 4.1: Overview of the experimental procedures for oxidation of D14C Pf Fd. K3[Fe(CN)6]3 
was present in 15x molar excess, except in experiments P and Q. Subsequent purification was 
performed by anion exchange at pH 8.0 unless otherwise stated.  

ID Buffer pH Time Notes 
A 20 mM Tris/HCl 8.0 15 min - 
B 20 mM Tris/HCl+0.3 M NaCl 8.0 15 min - 
C 100 mM Tris/HCl 7.8 15 min - 
D 100 mM Tris/HCl 7.8 45 min - 
E 100 mM Tris/HCl 7.8 3 hrs - 
F 100 mM BisTrisPropane/HCl 6.5 15 min Anaerobic purification 
G 20 mM Tris/HCl 8.0 45 min 1.5x molar excess EDTA 
H 50 mM Na Acetate/Acetic Acid 4.5 45 min 1.5x molar excess EDTA 
I 20 mM BisTris/HCl 5.8 3 hrs 

+overnight at 4 °C 
1.5x molar excess EDTA 

J 20 mM BisTris/HCl 5.8 overnight 1.5x molar excess EDTA 
K 20 mM BisTris/HCl 5.8 3 hrs 1.5x molar excess EDTA 

Ion exchange at pH 5.8 
L 20 mM BisTris/HCl 5.8 3 hrs 1.5x molar excess EDTA 

Ion exchange at pH 5.8 
M 20 mM BisTris/HCl 5.8 overnight 1.5x molar excess EDTA 

Ion exchange at pH 5.8 
N 100 mM Tris/HCl 7.8 15 min Ion exchange pH 7.8 
O 20 mM Tris/HCl 8.0 45 min CoCl2 present 
P 0.8 M Tris/HCl 

0.1 M Tris/HCl+0.8 M NaCl 
7.6 
7.6 

2.5 hrs 
2.5 hrs 

Excess dithionite 
Excess dithionite 

Q 20 mM Tris/HCl 8.0 20 min Excess [Fe(phen)3]
3+ 

 

 

4.2.4 Molecular Weight Determination and EPR 

Three protein samples from experiment G were sent to molecular weight determination by mass 

spectrometry at Alphalyse A/S. The mass spectra were obtained using a Micromass QTOF mass 

spectrometer in positive ion mode and deconvoluted with MassLynx software, MaxEnt1 [58]. A 

detailed description of the selected samples from the purification is given with the results in 

section 4.3.3. The samples were in 5 mM Tris/HCl pH 8.0 with a concentration of 0.1 mg/mL. 

Two additional samples of were also sent: 0.6 mg/mL in 5 mM Tris/HCl pH 8.0 and 0.4 mg/mL in 

milli-q water. 

Protein from experiment J (EPR peak a sample) and a mix of protein from experiments K and L 

(EPR peaks c sample) were concentrated to 500 µM in 20 mM Tris/HCl pH 8.0 by ultrafiltration. 

Oxidized EPR samples were prepared by transferring 350 µL of each sample directly to an EPR 
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sample tube. Reduced EPR samples were prepared in a glove-box by adding dithionite to a final 

concentration of 10 mM and then transferring 350 µL to EPR sample tubes, which were 

subsequently sealed with Suba-Seal silicon rubber septas. All samples were frozen in liquid 

nitrogen. EPR spectra were obtained by Hanne Nørgaard2 under the following conditions: 

temperature 10 K, field modulation amplitude: 10 G, receiver gain 50, microwave frequency: 

9.63GHz, microwave power: 14 mW and corrected by withdrawing the spectrum of an empty 

EPR tube. 

 

4.2.5 Resource Anion Exchange 

Some of the collected fractions of oxidized D14C Pf Fd after anion exchange (section 4.2.3, 

experiments A, J and L) were run on a 16 mm/3 cm ResourceQ anion exchange column to 

improve the resolution. Also, purified D14C [Fe4S4] Pf Fd was run twice. The oxidized samples 

were loaded onto a 16 mm/3 cm ResourceQ column equilibrated with 20 mM Tris/HCl pH 8.0. 

The column was washed with 2 CV 20 mM Tris/HCl pH 8.0 and elution was carried out using a 

linear salt gradient of 0.15 M to 0.4 M NaCl in 20 mM Tris/HCl pH 8.0 over 17 CV. 

 

4.2.6 Gel Filtration 

Selected fractions of oxidized D14C Pf Fd after anion exchange (section 4.2.3, experiments J, K 

and L) were run on a 10 mm/30 cm Superdex75 column to estimate if protein from different 

fractions differed in size. Purified D14C [Fe4S4] Pf Fd was run twice. The oxidized samples were 

loaded using a 250 µL superloop onto a 10 mm/30 cm Superdex75 column equilibrated with 0.15 

M NaCl in 20 mM Tris/HCl pH 8.0 and eluted using the same buffer. 

 

4.3 Results 

4.3.1 Expression and Purification of D14C Pf Fd 

The cells (section 4.2.1) had a light brown color. The yield was 5-10 mL cells per 650 mL culture.  

The experimental purification procedure for D14C Pf Fd is given in section 4.2.2 and summarized 

in Figure 4.2. During the HPLC operated steps, protein elution was monitored with a UV-detector 

at three wavelengths: 280 nm, 390 nm and 408 nm. 

Resuspension of the cells in buffer followed by cell lysis and centrifugation produced a brown 

supernatant. The initial anion exchange purification was not performed using HPLC and the 

brown colored protein was collected based on a visual estimation of its elution. Gel filtration of 

the protein solution on a HiLoad 26 mm/60 cm Superdex 75 column was carried out in several 

                                                           
2 Metalloprotein Chemistry and Engineering, Department of Chemistry, Technical University of Denmark. 
Current address: Dept. of Chemistry, The Pennsylvania University, University Park, PA 
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Figure 4.2: Steps involved in purification of D14C [Fe
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Figure 4.3: Chromatograms from purification of D14C Pf Fd on HiLoad 26 mm/60 cm Superdex 
75 column and on 16 mm/10 cm Source 30Q column. The collected fractions are marked with a 
black line. To the right is shown a UV-vis spectrum of purified D14C [Fe4S4] Pf Fd, the vertical line 
marks 390 nm. 

Addition of salt during the oxidation (experiment B) does not affect the chromatogram 

(Appendix C, Figure C.1) compared to Figure 4.1. Increasing the incubation time leads to an 

increase in the amount of protein in peak c and produces more irregular peaks. Chromatograms 

and UV-vis spectra from experiments C (15 min), D (45 min) and E (3 hours) are shown in 

Appendix C, Figure C.5. The UV-vis spectra show that after oxidation, the absorption maximum 

at 390 nm had moved towards 408 nm, while the curve was slightly flattened. 

Oxidation at pH 6.5 followed by anaerobic purification at pH 8.0 (experiment F, chromatogram 

shown in Appendix C, Figure C.6) increases the amounts of protein in peaks b and c. Oxidation at 

pH 7.8 as described by Duderstadt et al. [47] followed by ion exchange at pH 7.8 (experiment N) 

produces peak a and a broad, irregular peak c (Appendix C, Figure C.7). 

An increased amount of protein in peaks b and c is observed after EDTA addition (experiment G). 

Lowering the pH during the oxidation (experiment H) reduces peak b. The chromatograms and 

UV-vis spectra from experiments G and H are shown in Appendix C, Figure C.8. The UV-vis 
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spectra show the absorption maximum had a tendency to move towards 408 nm, but the curve 

was slightly flattened.  

Overnight incubation (experiments I and J) produces peak a and an irregular peak c. Experiment 

M is identical to experiment J, but the purification was performed at pH 5.8. A single peak at 

23.7 mS/cm is observed at pH 5.8. Chromatograms and UV-vis spectra are shown in Figure 4.4. 

The UV-vis spectra from experiments J and M show a more pronounced peak at 408 nm. In 

comparison, D14C [Fe4S4] Fd elutes at 25.6 mS/cm at pH 5.8. 

 

 

Figure 4.4: Oxidation of D14C Pf Fd; chromatograms and UV-vis spectra from experiment I, J and 
M. UV-vis spectra corresponding to the chromatograms are shown to the right. 
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The single peak at pH 5.8 from experiment M is also seen in experiments K at 25.1 mS/cm and 

25.6 mS/cm in a re-run (Figure 4.5), as well as in experiment L at 24.8 mS/cm (Appendix C, Figure 

C.9). Exchanging the protein from this peak into 20 mM Tris/HCl pH 8.0 and running the 

purification at pH 8.0 produces even amounts of protein in peak a and c, see Figure 4.5. In 

contrast, performing the purification at pH 8.0 under anaerobic conditions produces more 

protein in peak a compared with peak c. Experiment L shows that a re-run of the protein from 

pH 5.8 anaerobically at pH 8.0 increases the amount of protein in peak a compared with peak c 

(Appendix C, Figure C.9 bottom chromatogram). Experiment L also shows that mixing protein 

purified at pH 5.8 with [Fe4S4] protein increases the amount of protein in peak a compared with 

peak c (Appendix C, Figure C.9 second to bottom chromatogram). The UV-vis spectra show a 

tendency of the absorption maximum to move towards 408 nm after oxidation, except in the 

case where D14C [Fe4S4] Fd was added (Figure C.9, UV-vis second to bottom red spectrum). 

 

4.3.3 Molecular Weight Determination and EPR 

Samples of protein in peaks a, b and c from experiment G (chromatogram shown in Appendix C 

Figure C.8) were sent to molecular weight determination by mass spectrometry at Alphalyse A/S. 

Two additional samples of protein from peak c were also sent. The molecular weights of the 

protein in peaks a and b were 7503 Da and 7425 Da, respectively. No mass was determined for 

an intact metalloprotein in peak c because the samples were very heterogenous. The molecular 

weight determination by Alphalyse A/S of protein in peak b does not correspond to a calculated 

mass of D14C Pf Fd with an intact cluster. The calculated mass of D14C [Fe4S4]
2+ Pf Fd with an 

intramolecular disulfide bond is 7503 Da, which corresponds very well with the molecular weight 

determination by Alphalyse A/S of protein in peak a from experiment G (spectra shown in 

Appendix C, Figure C.10). 

A total of four samples were prepared for EPR analysis: EPR peak a sample contained protein 

from peak a (experiment J, Figure 4.4), while EPR peaks c sample contained protein from four c 

peaks: a mix from experiments K (re-run at pH 8.0 Figure 4.5 bottom chromatogram) and L (pH 

8.0 re-runs, three bottom chromatograms in Figure C.9, Appendix C). Both oxidized and reduced 

samples of protein in peak a and peaks c were measured. The spin of [Fe4S4]
+,2+ is 0 and ½ for the 

oxidized and reduced cluster, respectively, and the spin of [Fe3S4]
0,+ is ½ and 2 for the oxidized 

and reduced cluster, respectively. Thus, only the reduced [Fe4S4]
+ and the oxidized [Fe3S4]

+ 

clusters produce an EPR signal. EPR spectra are shown in Figure 4.6. The signal for both peaks c 

samples and the oxidized peak a sample are at g = 2.01, which is characteristic for [Fe3S4]
+ 

clusters [2]. The observed signal in the reduced peaks c sample could be caused by a residual 

amount of oxidized protein in the sample or by the sample being re-oxidized. The reduced peak 

a sample show no signal, which supports the presence of a [Fe3S4]
0 cluster. 
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Figure 4.5: Oxidation of D14C Pf Fd; chromatograms and UV-vis spectra from experiments K. 
Top: chromatogram from first purification at pH 5.8. Mid: aliquot of collected fractions from the 
top chromatogram re-run at pH 5.8. Bottom: aliquot of collected fractions from top 
chromatogram re-run at pH 8.0. 
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Figure 4.6: EPR spectra of EPR peak a sample and EPR peaks c sample; oxidized or reduced. 
Figure made by Hanne Nørgaard3, reprinted with permission. 

 

4.3.4 Resource Anion Exchange 

Purified D14C [Fe4S4] Pf Fd elute at 26.7 mS/cm from the 16 mm/3 cm ResourceQ column 

(chromatograms not shown). In comparison, protein from peak a from experiment A (Figure 4.1) 

elute at 27.7 mS/cm (Figure 4.7 top left); a difference of 1 mS/cm. A general trend is observed in 

the Resource chromatograms in Figure 4.7: one peak around the elution of D14C [Fe4S4] Fd and a 

peak eluting at a later point. Conductivities suggest these peaks are equivalent to peak a and c 

observed in Source 30Q runs. 

During experiment J, the oxidation process was left for incubation overnight followed by 

purification at pH 8.0 (Figure 4.4), peak a was collected and the protein re-run on the Resource 

column, top right chromatogram in Figure 4.7. It is seen, that the protein has rearranged and 

now elute significantly later. The oxidation process of experiment L had an incubation time of 3 

hours and was purified at pH 5.8. An aliquot was purified at pH 8.0 and protein from peak a 

(Appendix C, Figure C.9 second to the top) was loaded onto the ResourceQ column and re-run, 

bottom left chromatogram in Figure 4.7, which shows two peaks equivalent to peak a and c in 

even amounts. Another aliquot from the 5.8 purification was mixed with purified D14C [Fe4S4] 

Fdx and purified at pH 8.0 (Appendix C, Figure C.9 second to the bottom) and protein from peak 

a was re-run on the Resource column, bottom right chromatogram in Figure 4.7, which shows a 

major peak a and also peak c. 

                                                           
3 Metalloprotein Chemistry and Engineering, Department of Chemistry, Technical University of Denmark. 
Current address: Dept. of Chemistry, The Pennsylvania University, University Park, PA 



4 OXIDATION AND PURIFICATION OF D14C PF FD  

22 

 

Figure 4.7: Chromatograms from re-runs on 16 mm/3 cm ResourceQ column. Top left: peak a 
from experiment A (Figure 4.1). Top right: peak a from experiment J (Figure 4.4). Bottom left: 
peak a from experiment L purified first at pH 5.8 and then at pH 8.0 (Appendix C, Figure C.9 
second to the top). Bottom right: peak a from experiment L purified first at pH 5.8 and then 
mixed with D14C [Fe4S4] Fd and re-run at pH 8.0 (Appendix C, Figure C.9 second to the bottom). 

 

4.3.5 Gel Filtration 

Protein from peaks a and c were run on a 10 mm/30 cm Superdex 75 gel filtration column in 

order to estimate if the proteins differ in size. Purified D14C [Fe4S4] Pf Fd was run for comparison 

(top left chromatogram in Figure 4.8), it elutes at 12.4 mL. Protein from peak a (experiment J) 

elutes at the same volume (bottom left chromatogram in Figure 4.8). Protein from four c peaks 

was mixed: experiments K (re-run at pH 8.0, Figure 4.5 bottom chromatogram) and L (pH 8.0 re-

runs, three bottom chromatograms in Appendix C, Figure C.9), the chromatogram from gel 

filtration is the top right part of Figure 4.8. Protein in these peaks c elute at 11.0 mL, which is 

earlier than protein from peak a and D14C [Fe4S4] Fd, indicating a larger protein size. The bottom 

right part of Figure 4.8 is protein from a peak that eluted later than peak c in experiment J 

(Figure 4.4) and it contains proteins with different sizes. 

The ratios of the absorbance at 390 nm and 408 nm are given for each peak in Figure 4.8. A ratio 

slightly greater than one is observed for D14C [Fe4S4] Fd, which is consistent with the UV-vis 



4 OXIDATION AND PURIFICATION OF D14C PF FD 

23 

spectrum (Figure 4.1). Ratios slightly below one is observed for protein in peak a and c, which is 

consistent with the tendency of the absorption maximum to move towards 408 nm upon 

oxidation. 

 

 

Figure 4.8: Chromatograms from gel filtration on a 10 mm/30 cm Superdex 75 column. Elution 
volumes in mL and the ratio A390/A408 are given for each peak. Top left: elution of D14C [Fe4S4] 
Fd. Top right: a mix of peaks c from experiments K and L (Figure 4.5 bottom chromatogram and 
Appendix C, Figure C.9 three bottom chromatograms). Bottom left: peak a from experiment J 
(Figure 4.4). Bottom right: late elution peak at 35.2 mS/cm from experiment J (Figure 4.4). 
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4.4 Discussion 

The objective of the experiments was to obtain D14C [Fe3S4] Pf Fd. The first attempt (section 

4.1.1) proved to contain D14C [Fe4S4] Fd as determined by X-ray diffraction. Purification of WT Pf 

Fd on a Source 30Q column produces two Fd peaks with an elution difference of 2 mS/cm; 

[Fe4S4] Fd elutes first followed by [Fe3S4] Fd [54]. D14C [Fe4S4] Pf Fd eluted at 25-26 mS/cm and 

the collected fractions of peak a, experiment A (Figure 4.1), eluted at 25.6 mS/cm. During the 

oxidation experiments, section 4.2.3, it was attempted to produce D14C [Fe3S4] Pf Fd with a UV-

vis spectrum with distinct [Fe3S4] cluster containing characteristics. 

EPR supports that protein in peak a from experiment J contained a [Fe3S4] cluster. This is in 

agreement with the UV-vis spectrum (Figure 4.4), which shows a significant peak at 408 nm. A 

more flattened UV-vis spectrum around wavelengths 390-408 nm is observed in experiment G 

(Appendix C, Figure C.8). Mass spectrometric analysis by Alphalyse supports the presence of 

D14C [Fe4S4] Pf Fd in experiment G peak a. The differences between preparations in experiment 

G and J is pH and incubation time; experiment G was carried out at pH 8.0 with 45 minutes 

incubation, while experiment J was carried out at pH 5.8 with overnight incubation. Low pH is 

thus preferable during oxidation. 

Purification at pH 5.8 produced a single peak in experiment M (Figure 4.4), experiments K (Figure 

4.5) and experiment L (Appendix C, Figure C.9). Elution of protein in these peaks were at the 

same conductivity as elution of purified D14C [Fe4S4] Pf Fd. UV-vis spectra at pH 5.8 strongly 

resembled a protein with a [Fe3S4] cluster with an absorption maximum at 408 nm and a 

shoulder around 340 nm. Collecting the protein at pH 5.8 and running it on a Source 30Q at pH 

8.0 produced two peaks in even amounts (peaks a and c, Figure 4.5). Protein from peak a 

rearranged to produce protein in peak c, since collecting protein from peak a and running it on a 

ResourceQ column produced both peaks (Figure 4.7 bottom left). Experiments L (Appendix C, 

Figure C.9) showed that anaerobic purification at pH 8.0 of an aliquot of protein oxidized and 

purified at pH 5.8 increased the amount of protein in peak a compared with peak c. Mixing D14C 

[Fe4S4] Fd with an aliquot oxidized and purified at pH 5.8 and purifying it at pH 8.0 also increased 

the amount of protein in peak a. In summary, [Fe4S4] and oxidized Fd (assumed [Fe3S4]) elute at 

the same conductivity at pH 5.8 in a single peak, and at pH 8.0 in peak a with an additional peak 

c. Anaerobic conditions favor protein elution in peak a, and the conversion of protein from peak 

a to peak c (Figure 4.7) appears to be an oxidative process. 

Oxidizing D14C [Fe4S4] Fd to D14C [Fe3S4] Pf Fd produces a free cysteine. In WT [Fe3S4] Pf Fd, the 

free residue is Asp14 [41], which corresponds to Cys14 in D14C Fd. The pKa of Cys14 was 

estimated using PROPKA [59,60] with structure coordinates of WT [Fe3S4] Pf Fd [41], where 

Asp14 was mutated to Cys using WinCoot [61,62]. pKa was estimated to 8.8, which is an increase 

compared with the normal Cys pKa of 8.3. At pH 5.8, the free cysteine is fully protonated and a 

single peak is observed during anion exchange. Protonation of the free cysteine can explain why 

the [Fe4S4] Fd and [Fe3S4] Fd elute at the same conductivity. The charges including ligands are 

identical: [Fe4S4(Cys-S-)4]
2- and [Fe3S4(Cys-S-)3(Cys-SH)]2-. At pH 8.0, D14C [Fe3S4] Fd is only partly 

protonated and protein in peak a can thus be Fd with protonated Cys (elution at the same 
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conductivity as [Fe4S4] Fd), while protein in peak c can be related to the deprotonated Cys 

portion of [Fe3S4] Fd. This explains why re-running protein in peak a on a ResourceQ column 

produces two peaks: a and c (Figure 4.7). Gel filtration experiments support that protein in peak 

c is larger than protein in peak a (Figure 4.8). Protein in peak c can thus contain dimers, where a 

disulfide bond has formed between two deprotonated monomers. Such a dimer will be very 

flexible, as the two monomers have many possible orientations. This is consistent with peak c 

often appearing very irregular. The pH dependent equilibrium is illustrated in Figure 4.9. 

 

 

Figure 4.9: Bjerrum diagram illustrating the pH dependent equilibrium (pKa=8.8) of D14C [Fe3S4] 
Pf Fd between protonated and deprotonated monomers and formation of a disulfide bonded 
dimer. Two ferredoxin monomers were graphically connected to illustrate the dimer. The curve 
is an illustration, it does not reflect stability of the Fd in the given pH range. 

 

Mass spectrometric analysis by Maja Martic [63] verified the presence of D14C [Fe3S4]
+ Pf Fd as 

the protein in the single peak from purification at pH 5.8 from an experiment prepared in the 

same way as experiment M (Figure 4.4). Re-running the protein purified at pH 5.8 at pH 8.0 

produced two peaks (Figure 4.5) and mass spectrometric analysis on protein from a repetition of 

this experiment verified that the first peak contains D14C [Fe3S4]
+ Pf Fd, while the second peak 

contains a disulfide bonded dimer: D14C [Fe3S4 (Cys-S)-(S'-Cys') Fe'3S'4]
2+ Pf Fd. The apparent 

mass of the monomer was 7447.6 Da compared to a calculated mass of 7447.9 Da of D14C 

[Fe3S4]
+ Pf Fd with one intramolecular disulfide bond. The apparent mass of the disulfide bonded 

dimer was 14893.1 Da compared to a calculated mass of 14893.7 Da. For experimental details, 

see the article by Løvgreen et al. (2011) [64] (Appendix G). 
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4.5 Conclusion 

Cells expressing D14C [Fe4S4] Pf Fd were successfully cultivated and the Fd was purified. The 

yield of pure D14C [Fe4S4] Pf Fd was 14 mg/L cell culture. 

Purified D14C [Fe4S4] Pf Fd was oxidized with several variations in the experimental conditions. It 

proved difficult to separate D14C [Fe4S4] Fd from the oxidized D14C [Fe3S4] Fd as they have the 

same charge at low pH: [Fe4S4(Cys-S-)4]
2- and [Fe3S4(Cys-S-)3(Cys-SH)]2-. The pKa value of the 

protonated cysteine, Cys14, is 8.8 and purifying the oxidized Fd at pH 5.8 is advantageous 

because the free cysteine is fully protonated. At pH 8.0, the free cysteine is partly deprotonated 

and able to form a disulfide bonded dimer.  

In summary, in order to obtain D14C [Fe3S4] Pf Fd, it is advisable to oxidize purified D14C [Fe4S4] 

Pf Fd at pH 5.8 and leave it overnight with ferricyanide at room temperature with gentle stirring. 

Purifying and storing the protein at pH 5.8 is preferred in order to avoid formation of a disulfide 

bonded dimer. D14C [Fe3S4] Pf Fd was formed by incubation of purified D14C [Fe4S4] Pf Fd 

overnight with 15x molar excess ferricyanide in 20 mM BisTris/HCl pH 5.8 and purification by 

anion exchange on a Source 30Q column at pH 5.8. 

 



 

27 

Chapter Five 

5 CRYSTAL STRUCTURES OF D14C PYROCOCCUS 

FURIOSUS FERREDOXIN 

5.1 Introduction 

Crystallization of D14C [Fe3S4] Pf Fd was very difficult due to solution inhomogeneity and results 

are described in section 5.3.1. The structure of D14C [Fe4S4] Pf Fd was solved prior to this 

project4. A structural description and discussions regarding the Fd electrochemical properties are 

included in results and discussion (section 5.3) and can be found in the article by Løvgreen et al. 

(2011) [64] (Appendix G). 

There are currently two reported crystal structures of [Fe3S4] ferredoxins with complete cysteine 

binding motifs (-Cys-X2-Cys-X2-Cys-Xn-Cys-): Desulfovibrio gigas (pdb 1FXD [65]) and Bacillus 

thermoproteolyticus (pdb 1WFT [66]). However, these structures both have additional chemical 

groups bound to protect the free cysteine, and the structure of D14C [Fe3S4] Pf Fd reported here 

is the first crystal structure of a ferredoxin in which a cysteine from a complete cysteine binding 

motif is unprotected and facing away from the cluster. 

 

5.2 Experimental 

5.2.1 Crystallization and X-Ray Data Collection 

The starting point of the crystallization trials of oxidized D14C Pf Fd was similar to the 

crystallization conditions of WT [Fe3S4] Pf Fd [43]. Several factors were varied during 

crystallization: protein concentration, buffer and pH, precipitant type and concentration, 

additives and protein:reservoir volume ratio. The crystal used for data collection was produced 

with protein collected from peak a in experiment J (Figure 4.4, page 18). The UV-vis spectrum is 

characteristic for a [Fe3S4] cluster containing Fd and EPR measurements strongly support the 

presence of a [Fe3S4] cluster (section 4.3.3). A total of 12 trays with up to 24 different reservoirs 

per tray and up to 3 drops per reservoir were set up. A complete set of all tested conditions is 

not provided here. Instead, a variety of crystallization conditions are available for picture entries 

in the enclosed database (Appendix A, Ferredoxin.xml, see Chapter 2 for a program description). 

                                                           
4 Monika Nøhr Johannessen (Løvgreen) Master's Thesis, Department of Chemistry, Technical University of 
Denmark, October 2007 
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Crystals to be tested for diffraction were mounted in a loop and cryo-cooled directly in liquid 

nitrogen. Around 50 crystals were tested at MAX-lab in Lund, Sweden, at a number of visits, and 

data were collected to 2.8 Å at ESRF in Grenoble, France. Data collection statistics are shown in 

Table 5.1. Data collection and processing were performed by Pernille Harris with MOSFLM [67] 

and space group determination and averaging with Pointless and SCALA [68]. Indexing was only 

successful once and could not be reproduced. 

Table 5.1: Data collection statisticsa for D14C [Fe3S4] Pf Fd. 

Beamline ESRF, ID14-3 
Detector ADSC Quantum Q315r 
Wavelength (Å) 0.9765 
Temperature (K) 100 
Crystal space group P212121 

Unit cell parameters  
a (Å) 47.4 
b (Å) 49.8 
c (Å) 51.2 

Resolution (Å) 35.7-2.8 (2.95-2.8) 
No. of reflections 17,078 (2504) 
No. of unique reflections 3,254 (456) 
Redundancy 5.2 (5.5) 
Mosaicity (°) Fixed 0.8 
Completeness (%) 99.9 (99.9) 
I/σ(I) 3.6 (1.9) 
Rmerge 0.252 (0.755) 
a Values for the outermost resolution shell are given in parenthesis. 
Rmerge = Σi Ii – 〈Ii〉/ Σi Ii 

 

 

5.2.2 Structure Determination and Refinement 

The CCP4 [69] suite was used for structure determination and refinement. MOLREP [70] was 

used to solve the structure with molecular replacement. The search model was the peptide 

chain of molecule A D14C [Fe4S4] Pf Fd (pdb ID: 2Z8Q). Two molecules were found in the 

asymmetric unit. Molecular replacement was also carried out with the search model of molecule 

B D14C [Fe4S4] Pf Fd. The R factor and score after molecular replacement with molecule B were 

0.622 and 0.455, respectively, compared to 0.592 and 0.534 for molecule A, respectively. An 

increase in Rfree was observed during refinement when using molecule B compared with 

molecule A for molecular replacement. Molecule A of D14C [Fe4S4] Pf Fd is thus a considerably 

better model for molecular replacement than molecule B. Refinement was performed with 

REFMAC5 [71]. Inspection of the 2Fobs - Fcalc and the Fobs - Fcalc sigma-A weighted difference maps 

was done using winCoot [61,62]. Electron density appeared clearly from the [Fe3S4] cluster in 

each of the two molecules. Four Co atoms were added. Refinement statistics are given in Table 

5.2. The structure is available in the protein data bank with pdb entry code 1PNI. 
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Table 5.2: Refinement statistics. 

R 0.279 
Rfree 0.318 
No. of atoms in model  

Protein 988 
FeS clusters 14 
Cobalt atoms 4 

Mean temperature (B) factors (Å2)  
Protein chain A 39 
Protein chain B 39 
FeS cluster chain A 34 
FeS cluster chain B 28 
Ramachandran plot [72]  

No. of residues in favored region 116 
No. of residues in allowed region 12 
No. of residues in outlier region 0 

 

 

5.3 Results 

5.3.1 Crystallization and X-Ray Data Collection 

Crystals were difficult to grow and drops were generally inhomogeneous with a mixture of 

several combinations of phase separation, precipitation, protein films and crystalline clusters 

with very high mosaicity. Figure 5.1 shows some typical crystal clusters and phase separations of 

D14C [Fe3S4] Pf Fd. At pH below 7, where a homogeneous solution of monomers is expected, 

grey precipitation generally occurred indicating that the ferredoxin had lost its iron-sulfur 

cluster. An elaborate summary of crystallization results can be found in the enclosed database 

(Appendix A, Ferredoxin.xml, see Chapter 2 for a program description) that includes 461 picture 

entries with matching crystallization conditions. 

Diffraction patterns revealed several crystals with poor diffraction to around 7 Å as well as 

several salt crystals when ammonium dihydrogen phosphate was used as an additive. Data were 

collected to 2.8 Å on ESRF in Grenoble on one of the crystals shown in Figure 5.2. Crystallization 

conditions were 35 % PEG1500 in 100 mM Tris/HCl pH 8.5. The drop contained 2 µL protein with 

a concentration of 6.4 mg/mL, 2 µL reservoir solution and 0.3 µL 100 mM [Co(NH3)6]Cl3.  

 

5.3.2 Structure of D14C [Fe4S4] Pf Fd 

This section briefly outlines significant differences between two molecules, type A and B, in the 

asymmetric unit of D14C [Fe4S4] Pf Fd (pdb 2Z8Q). A more detailed description of the structure is 

part of the article by Løvgreen et al. (2011) [64] (Appendix G).  
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Figure 5.1: Crystal clusters of D14C [Fe3S4] Pf Fd. Grid spacing is 0.125 mm on the top three 
pictures and 0.089 mm on the bottom two pictures. 

 

 

Figure 5.2: Crystal clusters of D14C [Fe3S4] Pf Fd. The small brown spheres are phase separations 
and the light brown background is a film that crackles when touched. Grid spacing is 0.125 mm. 

 

Differences between molecules A and B of D14C [Fe4S4] Pf Fd can be related to the crystal 

packing and the conformation of the intramolecular disulfide bond. Molecule A packs as an 

extended β-sheet dimer with an adjacent A molecule, see Figure 5.3A, while molecule B packs as 

monomers in a less rigid position, see Figure 5.3B. Also, molecule B shows significantly larger B 

factors (18Å2) compared with molecule A (7.5 Å2), which may be related to the much more 

flexible position of the molecules in the crystal packing.  

D14C [Fe4S4] Pf Fd has an intramolecular disulfide bond connecting Cys21 and Cys48. This 

disulfide bond is found in a double conformation in molecule A and in a single conformation in 

molecule B. WT [Fe3S4] Pf Fd also displays a double conformation of the disulfide bond [41], 

albeit with a shift in occupancy compared with molecule A of D14C [Fe4S4] Pf Fd. The single 

conformation of the disulfide bond in molecule B is possible due to an approximately 1 Å shift of 
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α-helix 2 accompanied by a displacement of the backbone at Asp42, Glu43 and Glu44, see Figure 

5.3C.  

In general, molecule A shows greater resemblance to WT [Fe3S4] Pf Fd than to molecule B from 

the same asymmetric unit when comparing molecule packing, hydrogen bonds and 

intramolecular disulfide bond conformation. Superposing the A and B molecules of D14C [Fe4S4] 

Pf Fd gives an RMS deviation of 0.8 Å, while superposing molecule A and B onto WT [Fe3S4] Pf Fd 

gives RMS deviations of 0.3 Å and 0.8 Å, respectively. RMS deviations were calculated using the 

program superpose [73].  

 

 

Figure 5.3: D14C [Fe4S4] Pf Fd molecule A shown in cyan, molecule B shown in red. A: crystal 

packing of two molecules A as an extended β-sheet dimer. B: crystal packing of molecules A and 

B. C: overlay of molecule A and B of D14C [Fe4S4] Pf Fd, disulfide bonds and clusters are shown in 

ball and stick. 
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5.3.3 Structure-reduction potential relationship 

A sequence alignment of Pf Fd with related ferredoxins is given in Figure 5.4. Related ferredoxins 

were selected based on similarity and availability of crystal structures with an intact [Fe4S4] 

cluster. The cluster environment show a high degree of structural integrity, see Figure 5.5, even 

though there are different residues between the cysteines in the binding motif -Cys-X2-Cys-X2-

Cys-X2-Cys-Xn-Cys-. 

Sγ of the second cysteine in the coordination motif (Cys14 in Pf Fd) is the least buried atom of 

the [Fe4S4] cluster including ligands [22] and solvent accessibilities of these atoms are given in 

Table 5.3 for [Fe4S4] ferredoxins from D14C Pf, Thermotoga maritima, Desulfovibrio africanus I 

and Bacillus thermoproteolyticus along with reduction potentials of the ferredoxins. In 

agreement with the literature [21-23], a correlation is seen where less buried [Fe4S4] clusters 

have higher reduction potentials. Table 5.3 also lists the N-H···S bonds of Sγ of cluster 

coordinating cysteines, which has been discussed in the literature to have an influence on the 

reduction potential of [Fe4S4] clusters [22,24]. The ferredoxins have equal numbers of bonds 

with comparable distances. A shift is seen in the reduction potential of D14C versus WT Pf Fd as 

the D14C Fd has a more negative reduction potential in its [Fe4S4] form and a more positive 

reduction potential in its [Fe3S4] form when it is compared with WT Pf Fd, see Table 5.3. 

Changing a cluster coordinating aspartate to cysteine in ferredoxin III from D. africanus also 

results in a more negative reduction potential in the [Fe4S4] form and a more positive reduction 

potential in the [Fe3S4] form [31]. For the [Fe4S4] cluster containing ferredoxins this can be 

explained by aspartate being a better electron withdrawing group than cysteine [50]. For the 

[Fe3S4] cluster containing ferredoxins it can be explained by the pKa difference between 

aspartate and cysteine; aspartate is completely deprotonated while cysteine is partly protonated 

and the increased charge density of the WT ferredoxin with a free aspartate results in a lower 

reduction potential in the [Fe3S4] form compared with the D14C ferredoxin with a free (partly 

protonated) cysteine near the cluster.  

 

D14C P.furiosus  MAWKVSVDQDTCIGCAICASLCPDVFEMNDEGKAQP----KVEVIEDE-ELYNCAKEAME 

T.maritima       --MKVRVDADACIGCGVCENLCPDVFQLGDDG--------KAKVLQPE-TDLPCAKDAAD 

D.africanus I    MARKFYVDQDECIACESCVEIAPGAFAMDPEIE-------KAYVKDVEGASQEEVEEAMD 

B.thermoprot.    -PKYTIVDKETCIACGACGAAAPDIYDYDEDGIAYVTLDDNQGIVEVPDILIDDMMDAFE 

 

D14C P.furiosus  ACPVSAITIEEA---------- 

T. maritima      SCPTGAISVEE----------- 

D. africanus I   TCPVQCIHWEDE---------- 

B.thermoprot.    GCPTDSIKVADEPFDGDPNKFE 

 

Figure 5.4: Sequence alignment of ferredoxins from D14C Pf, T. maritima, D. africanus I and B. 

thermoproteolyticus. All cysteines are highlighted in yellow, cluster coordinating cysteines are 

shown in black and cysteines forming an intramolecular disulfide bond are shown in green. 

Conserved residues are shown in red. Sequence alignment was made using ClustalW [74] with 

sequence information from UniProt [75,76]. 



5 CRYSTAL STRUCTURES OF D14C PF FD 

33 

 

Figure 5.5: Structural overlay of ferredoxins with a [Fe4S4] cluster. D14C Pf molecule A (pink, pdb 

2Z8Q), D. africanus I (yellow, pdb 1FXR), T. maritima (blue, pdb 1VJW) and B. 

thermoproteolyticus (green, pdb 1IQZ). The cluster and cysteines from the -Cys-X2-Cys-X2-Cys- 

segment are shown. 

 

Table 5.3 Solvent accessibility of Sγ of the second cluster coordinating cysteine, number of N-

H···S bonds to Sγ of cluster coordinating cysteines and their average distances (Å) and reduction 

potentials of ferredoxins.  

 PDB 
code 

Reduction 
potential 

Solvent 
accessibility of 
second Cys Sγ 

No. of N-H···S 
(average 

distance Å) 

[Fe4S4] ferredoxin:     
P. furiosus * -368 mV [50]   
D14C P. furiosus  2Z8Q [64] -427 mV [50] A/B: 0/0 A/B: 10/10 

(3.40/3.44) 
T. maritima 1VJW [77] -388 mV [78] 0.6 10 (3.47) 
D. africanus I 1FXR [79] -385 mV [80] 0.1 10 (3.58) 
B. thermoproteolyticus 1IQZ [81] -280 mV** [82] 3.9 10 (3.49) 
 
[Fe3S4] ferredoxin: 

    

P. furiosus 1SJ1 [41] -203 [50]   
D14C P. furiosus 3PNI [64] -155 mV [63]   
* No structure is available for Pf [Fe4S4] Fd 

** Reduction potential is for the very closely related Bacillus stearothermophilus ferredoxin 
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5.3.4 Structure of D14C [Fe3S4] Pf Fd 

The resolution of the solved structure of D14C [Fe3S4] Pf Fd is inadequate to make detailed 

comparisons. However, the overall structure of D14C [Fe3S4] Pf Fd is very similar to both WT 

[Fe3S4] Pf Fd and molecule A of D14C [Fe4S4] Pf Fd, with RMS deviations of 0.4 Å and 0.5 Å, 

respectively. Less similarity is seen with molecule B of D14C [Fe4S4] Pf Fd, which shows an RMS 

deviation of 0.8 Å. RMS deviations were calculated using the program superpose [73]. 

Electron density clearly shows the presence of a [Fe3S4] cluster, in agreement with UV-vis (Figure 

4.4, page 18) and EPR (section 4.3.3). Figure 5.6 shows two views of the cluster environment of 

D14C [Fe3S4] Pf Fd with a 2Fobs – Fcalc σ = 1.3 electron density map. 

Crystal packing is seen as extended β-sheet dimers in the structures of D14C [Fe3S4] Pf Fd, WT 

[Fe3S4] Pf Fd and in molecule A of D14C [Fe4S4] Pf Fd. The overall crystal packing is very similar for 

D14C [Fe3S4] Pf Fd and WT [Fe3S4] Pf Fd, see Figure 5.7, even though the space groups differ. 

Dimerization of WT Pf Fd has been proposed to occur depending on ionic strength [44,45]. 

Although extended β-sheet dimers are observed in the crystal structures, these dimers have not 

been observed in solution (Chapter 4) and could be an artifact of the high protein concentration 

in the crystal. 

Crystals of D14C [Fe3S4] Pf Fd were grown at pH 8.5 (section 5.3.1) and although both monomers 

and disulfide bonded dimers should be present at this pH (Chapter 4), no disulfide bonded 

dimers are seen in the crystal structure. Crystallization of monomers is likely to be favored 

because of the large flexibility expected around the intermolecular disulfide bond in the dimer. 

 

 

Figure 5.6: Two views of D14C [Fe3S4] Pf Fd with 2Fobs – Fcalc σ = 1.3 electron density map.  
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Figure 5.7: A: Two views of WT [Fe3S4] Pf Fd crystal packing including hexaaminecobalt(III) 
complexes. B: two views of D14C [Fe3S4] Pf Fd crystal packing including cobalt atoms. 

 

5.4 Conclusion 

Crystallization of D14C [Fe3S4] Pf Fd was very difficult and numerous crystallization conditions 

were tested. Small crystals or crystalline clusters only formed at pH 8.5 where the protein 

solution is very inhomogeneous (Chapter 4). Data were collected to 2.8 Å resolution and the 

crystal structure of D14C [Fe3S4] Pf Fd was solved. Close resemblance is seen between monomers 

of WT [Fe3S4], D14C [Fe3S4] and D14C [Fe4S4] molecule A, whereas D14C [Fe4S4] molecule B show 

some differences that can be related to the differences seen in the intramolecular disulfide bond 

conformation and crystal packing. Crystal packing as extended β-sheet dimers is seen for WT 

[Fe3S4], D14C [Fe3S4] and for adjacent A molecules of D14C [Fe4S4] Pf Fd. In contrast, D14C [Fe4S4] 

molecule B packs as monomers next to the extended β-sheet dimers formed between adjacent A 

molecules. The conformations of the highly conserved cysteines in the [Fe4S4] binding motif (-

Cys-X2-Cys-X2-Cys-Xn-Cys-) are in close resemblance. 

The crystal structure of D14C [Fe3S4] Pf Fd is the first structure in which a [Fe3S4] containing 

ferredoxin with a complete cysteine binding motif has an unprotected cysteine facing away from 

the cluster. 
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Chapter Six 

6 SELECTED ENZYMES INVOLVED IN 

DEOXYRIBONUCLEOTIDE SYNTHESIS 

6.1 Introduction to deoxyribonucleotide synthesis 

Nucleotides are essential for cell growth because they are necessary for replication and 

transcription of the genome. The building blocks for RNA are ribonucleotides, while the building 

blocks for DNA are deoxyribonucleotides. The building blocks consist of a purine or pyrimidine 

base linked to a sugar (RNA: β-D-ribose, DNA: β-D-deoxyribose) and a phosphate group. 

Nucleotides are able to interconvert between mono-, di- and triphosphates. In RNA, the base 

can be adenine, guanine, uracil or cytosine, whereas in DNA, thymine replaces uracil. This 

replacement in DNA prevents mutagenesis as a result of spontaneous deamination of cytosine to 

uracil, which pairs with adenine instead of guanine. A DNA repair system recognizes uracil to be 

foreign in DNA [83]. 

Deoxyribonucleotides are all, except dTTP, synthesized from their corresponding ribonucleotide, 

a reaction catalyzed by ribonucleotide reductase. Instead, dTTP is synthesized from dUMP, see 

Figure 6.1 for a schematic overview. dUMP is first methylated to form dTMP, which is then 

phosphorylated forming dTDP and phosphorylated again forming dTTP. dUMP is thus an 

important precursor in the formation of dTTP to be used for DNA synthesis. Different pathways 

exist for synthesis of dUMP: it can originate from a uracil base or it can be formed by 

deamination of a cytosine base as illustrated in Figure 6.1.  The majority of dUMP is formed 

through deamination of the cytosine base either by deamination of dCTP followed by 

dephosphorylation or by deamination of dCMP [84].  

Recently, a bifunctional enzyme was discovered that catalyzes both the deamination and 

dephosphorylation of dCTP thereby forming dUMP directly; Figure 6.2 shows the reaction. The 

bifunctional enzyme dCTP deaminase-dUTPase (DCD-DUT) has been found in the bacterium 

Mycobacterium tuberculosis (Mt) [85] and in the archaea Methanocaldococcus jannaschii (Mj) 

[86,87]. dTTP inhibition is observed for enzymes with dCTP deaminase activity as illustrated in 

Figure 6.1 and Figure 6.2. This chapter presents structures, inhibition, catalytic mechanisms and 

details on important residues for activity of the bifunctional enzymes as well as the 

monofunctional enzymes dCTP deaminase (DCD) and dUTPase (DUT). For keeping track of the 

numbering of key residues across organisms discussed in the remaining sections of this chapter, 

refer to Table 6.1 for an overview. 



6 SELECTED ENZYMES INVOLVED IN DEOXYRIBONUCLEOTIDE SYNTHESIS 

38 

 

Figure 6.1: Schematic view of pathways for deoxyribonucleotide synthesis. Annotations: 
enzymes in italic, DNA building blocks in blue, dTTP inhibition as red arrows, dTTP activation as 
green arrow. 

 

 

Figure 6.2: Schematic view of reactions catalyzed by dCTP deaminase, dUTPase and the 
bifunctional enzyme dCTP deaminase-dUTPase. dTTP is shown and dotted arrows illustrate the 
inhibition by dTTP on dCTP deaminase and dCTP deaminase-dUTPase. Differences between 
nucleotides are highlighted in red. 
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Table 6.1: Numbering of key residues in dCTP deaminase-dUTPase (DCD-DUT) from M. 

tuberculosis (Mt), M. jannaschii (Mj), monofunctional dCTP deaminase (DCD) from E. coli (Ec) 
and monofunctional dUTPase (DUT) from Mt and Ec. Residues involved in the DCD and DUT 
reactions are colored green and red, respectively, and the absolutely conserved serine is shown 
in blue. 

Mt 

DCD-DUT 
Mj 

DCD-DUT 
Ec 

DCD 
Mt 

DUT 
Ec 

DUT 
His112 His128 His121 Val76 Gly83 
Gly116 Gly132 His125 Gly80 Gly87 
Ser102 Ser118 Ser111 Ser65 Ser72 
Arg106 Arg122 Arg115 Thr69 His76 
Ala115 Ala131 Ala124 Pro79 Val86 
Glu129 Glu145 Glu138 Ala93 Ser100 
Asp119 Asp135 Asp128 Asp83 Asp90 
Gln148 Gln163 Ala157 Gln113 Gln119 

 

6.2 dCTP deaminase  

dCTP deaminase catalyzes the deamination of dCTP thereby forming dUTP, see Figure 6.2. The 

structure of dCTP deaminase is a trimer with three active sites, each of which is composed of 

residues from two subunits of the trimer [88]. 

Kinetic studies show that the true substrate is dCTP⋅Mg2+ [89]. This is in agreement with the 

structure of dCTP deaminase from E. coli with bound reaction product, dUTP (pdb 1XS1), as well 

as with the structures of the E138A enzyme with bound substrate, dCTP (pdb 1XS4), or product, 

dUTP (pdb 1XS6). The structures all have a magnesium ion octahedrally coordinated to the α-, β- 

and γ-phosphate of the nucleotide and three water molecules. The magnesium ion does not play 

a catalytic role, but it is important for structurally arranging the nucleotide phosphates and for 

shielding their negative charge, thereby allowing the C-terminal to close over the active site 

nucleotide-Mg2+ complex [88]. 

Two suggestions regarding the catalytic mechanism of dCTP deaminase have been made, both of 

which involve a nucleophilic attack on the pyrimidine ring of dUTP by an activated water 

molecule [88]. The starting point of the reaction is based on the crystal structure of Ec DCD with 

dUTP bound (pdb 1XS1). Two hydrogen bonds (from Val136 and Gln182 to the pyrimidine ring of 

dUTP) anchor and orient the nucleotide pyrimidine ring upon binding to the active site. One 

water molecule in the active site is held in place by hydrogen bonds to Glu138, Ala124 and 

Ser111 and is activated by Glu138, see Figure 6.3A. Also, both mechanisms involve the release of 

ammonia and the completely conserved residues Glu138, Ala124 and Ser111, which are crucial 

for activity based on mutational studies [88,90].  

dCTP deaminase can exist in two conformations: an active stabilized by substrate binding and an 

inactive stabilized by dTTP binding to the active site [91]. In the structure of E138A Ec DCD in 

complex with dTTP (pdb 2J4Q), amino acid residues 120-125 rearrange in the dTTP complex 
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compared with the dCTP and dUTP complexes. Furthermore, the entrance to the active site in 

the dTTP complex site is partly collapsed, as the region of α-helix 2 and β-strand 5 moves 

towards the active site in the absence of an ordered C-terminal fold. The nucleophilic water 

molecule, positioned between Glu138 and Ala124 in the dCTP and dUTP structure [88], appears 

to be expelled in the dTTP structure by the side chain of His121. Additionally, the side chains of 

Val122 and Thr123 in the dTTP structure move to new positions. The side chains of Val122 from 

one subunit and Thr123 from a neighboring molecule are likely to clash in the center of the 

trimer unless the subunits all are in the same conformation. Changing His121 to alanine results 

in a loss of activity, and the structure of H121A:dCTP almost superimposes with the E138A:dTTP 

complex in the region of residues 120-125. Both structures also have disordered C-terminals. 

These structural agreements support that the enzyme is inhibited through a change to an 

inactive conformation [91].  

 

6.3 dUTPase 

dUTPase catalyzes the hydrolysis of dUTP to dUMP. Depletion of toxic concentrations of dUTP in 

the cell is crucial to keep uracil out of DNA [92]. dUTPases have been well studied, since drugs 

designed for specific inhibition of dUTPase can be used for treatment of e.g. cancers, retroviral 

infections and tuberculosis [93,94]. Consequently, several structures of dUTPases from different 

organisms are available. Human dUTPase [95], bacterial (Ec [96] and Mt [93]) dUTPases and viral 

dUTPases (feline immunodeficiency [97] and equine infectious anaemia virus [98]) are trimeric 

enzymes with three active sites at the subunit interfaces. All subunits contribute to each binding 

site as the C-terminal extends to cover the opposite binding site. The C-terminal loop is essential 

for catalysis, as removal or point mutation of important residues in the motif results in a loss of 

activity [99,100]. dUTPase requires Mg2+ for the reaction to take place [99]. Mg2+ is octahedrally 

coordinated to the α-, β- and γ-phosphate of the nucleotide and three water molecules, which 

are held in place in the active site by hydrogen bonds to conserved active site residues Asp24, 

Asp28 and Arg140 in Mt dUTPase [93]. It has been proposed that Mg2+ plays a key role in 

ordering the C-terminal loop, both by direct coordination to the γ-phosphate and through a 

bifurcated hydrogen bond between the γ-phosphate and Arg140 [93]. 

In Mt dUTPase, a water molecule is positioned for a direct in-line nucleophilic attack and held in 

place by hydrogen bonds to the conserved residues Asp83 and Gln113. Asp83 can act as a 

general base for the water molecule by abstracting a proton, which results in a nucleophilic 

hydroxide ion. A hydrogen bond from Gln113 to the remaining hydrogen helps direct the 

electron lone pair of the water oxygen toward the α-phosphorous, see Figure 6.3B. The 

pyrophosphate leaving group is stabilized by hydrogen bonds to Gly66 and Arg64 as well as by a 

bifurcated hydrogen bond to Arg140. Negative charge on the α-β bridging oxygen can be 

stabilized by a hydrogen bond to a strictly conserved hydroxyl side group of Ser65 [93,101]. Point 

mutations of the conserved aspartate, acting as a general base (Asp84) in human endogenous 

retrovirus, and of the conserved serine in E. coli (Ser72), cause complete loss or great reduction 

of activity and thus emphasize the importance of these residues [94,102]. 
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Figure 6.3: Schematic reaction starting points of: A: dCTP deaminase reaction based on the 
structure of Ec DCD [88], shown in red are the catalytic water oxygen and the amine group, 
which is replaced to expel ammonia. B: dUTPase reaction based on the structure of Mt dUTPase 
[93], shown in red are the nucleophilic hydroxide ion and the oxygen bridging the α-β-
phosphorous, on which negative charge is formed during the course of the reaction.  

 

6.4 dCTP deaminase-dUTPase 

The bifunctional dCTP deaminase-dUTPase catalyzes deamination of dCTP and hydrolysis of 

dUTP to form dUMP and is inhibited by dTTP. The bifunctional enzyme is found in M. jannaschii 

[86,87,103] and in M. tuberculosis [85]. The two reactions are tightly coupled in the bifunctional 

enzymes and no dUTP is released during the course of the reaction. The enzymes are 

homotrimeric with three active sites consisting of residues from two subunits and require Mg2+ 

for activity. Residues important for dCTP deamination (section 6.2) are Ser102, Arg106, Ala115 

and Glu129 in Mt DCD-DUT, which are conserved amongst enzymes with dCTP deamination 

activity. Residues important for dUTPase activity (section 6.3) in Mt DCD-DUT are Ser102, 

Asp119 and Gln148, which are conserved amongst enzymes with dUTPase activity. Glu129 

corresponds to Glu145 in Mj DCD-DUT and changing this residue to Gln causes a complete lack 

of deaminase activity, while retaining 25 % dUTPase activity. Asp119 corresponds to Asp135 in 

Mj DCD-DUT and changing this residue to Asn causes a complete loss of activity [87]. DCD-DUT 

from Mt shows a higher affinity for dUTP compared with DCD-DUT from Mj [85], albeit the 

activity is still between 10- and 100-fold less than monofunctional dUTPases [99,104]. The 

reaction rate (kcat) of the DUT reaction of Mt DCD-DUT is twice that of the bifunctional reaction, 

i.e. with dCTP as substrate, indicating deamination is rate limiting in the DCD-DUT reaction [85].  

The crystal structure of Mt DCD-DUT:dTTP (pdb 2QXX) shows the pyrimidine moiety of dTTP 

forming hydrogen bonds with Arg106, Gln174, Thr127 and two water molecules. A magnesium 

ion is coordinated to the α-, β- and γ-phosphate of the nucleotide and three water molecules in 

an octahedral coordination sphere. The triphosphoryl is hydrogen bonded to Lys101, Ser102, 

Ser103, and Gln148 as well as to Tyr162 and Lys170 from the C-terminal lid covering the binding 

site. This lid is disordered in the apo structure of Mt DCD-DUT (pdb 2QLP). Another difference 
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between the apo and dTTP structures is a rearrangement of residues 109

of these residues determines whether the enzyme is in its active or inactive conformation. 

Binding the inhibitor dTTP causes the enzyme to adopt the i

conformation of the key residues for catalytic activity is unchanged in the two conformations 

and the inability to cleave dTTP has been attributed to the lack of a key water molecule near 

Ala115 in the structure of Mt DCD

The crystal structure of DCD-DUT from 

variant, pdb 2HXD) shows the same conformation of the flexible region near the nucleotide 

binding side as Ec DCD with dUT

interacts with the nucleotide phosphate moiety, which is held in place by coordination to Mg

whereas the C-terminal is disordered in the structure of apo 

conformational change is observed when substrate binds to the enzyme, which is in agreement 

with a mechanism where the enzyme exists in an active and inactive form and substrate binds to 

the active form of the enzyme [105]

 

6.5 Structural Comparison of the Enzymes

There is a high sequence and structural similarity between DCD, DCD

structures are trimeric with active sites placed on the interfaces between molecules. 

DUT shows a greater similarity w

Figure 6.4 shows a structural overlay of monomers from the three enzymes illustrating the

structural similarities and differences. A main structural diff

DUT is the C-terminal lid. In the DUT enzyme, the lid reaches across the monomer to form active 

sites composed of residues from all three subunits, whereas the active site in the bifunctional 

enzyme consists of residues from two neighboring subunits.

 

EOXYRIBONUCLEOTIDE SYNTHESIS 

between the apo and dTTP structures is a rearrangement of residues 109-118. The arrangement 

of these residues determines whether the enzyme is in its active or inactive conformation. 

Binding the inhibitor dTTP causes the enzyme to adopt the inactive conformation. The 

conformation of the key residues for catalytic activity is unchanged in the two conformations 

and the inability to cleave dTTP has been attributed to the lack of a key water molecule near 

DCD-DUT:dTTP [85].  

DUT from Mj with the substrate analogue dUMPNPP bound (E145A 

variant, pdb 2HXD) shows the same conformation of the flexible region near the nucleotide 

DCD with dUTP bound (pdb 1XS1). In addition, the ordered C

interacts with the nucleotide phosphate moiety, which is held in place by coordination to Mg

terminal is disordered in the structure of apo Mj DCD-DUT (pdb 2HXB, 1OGH).

al change is observed when substrate binds to the enzyme, which is in agreement 

with a mechanism where the enzyme exists in an active and inactive form and substrate binds to 

[105]. 

Structural Comparison of the Enzymes 

There is a high sequence and structural similarity between DCD, DCD-DUT and DUT enzymes. All 

structures are trimeric with active sites placed on the interfaces between molecules. 

DUT shows a greater similarity with Ec DCD than with Mt DUT, both in sequence and structure. 

shows a structural overlay of monomers from the three enzymes illustrating the

structural similarities and differences. A main structural difference between Mt DCD

terminal lid. In the DUT enzyme, the lid reaches across the monomer to form active 

sites composed of residues from all three subunits, whereas the active site in the bifunctional 

m two neighboring subunits. 

 

 

 

 

Figure 6.4: Ribbon view of structural overlay of 
DUT:dUMPNPP (blue, pdb 1SIX), Mt

(red, pdb 2QXX) and Ec DCD:dUTP (green, pdb 1XS1) 
with nucleotides shown in respectively colored sticks. 
The view is perpendicular to the 3-fold rotation axis. 
Arrows point to the close resemblance of the DCD 
(green) and DCD-DUT (red) structures, while the DUT 
(blue) structure shows some more variation.

118. The arrangement 

of these residues determines whether the enzyme is in its active or inactive conformation. 

nactive conformation. The 

conformation of the key residues for catalytic activity is unchanged in the two conformations 

and the inability to cleave dTTP has been attributed to the lack of a key water molecule near 

with the substrate analogue dUMPNPP bound (E145A 
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interacts with the nucleotide phosphate moiety, which is held in place by coordination to Mg2+, 

DUT (pdb 2HXB, 1OGH). A 

al change is observed when substrate binds to the enzyme, which is in agreement 

with a mechanism where the enzyme exists in an active and inactive form and substrate binds to 

DUT and DUT enzymes. All 

structures are trimeric with active sites placed on the interfaces between molecules. Mt DCD-

DUT, both in sequence and structure. 

shows a structural overlay of monomers from the three enzymes illustrating the 

DCD-DUT and Mt 

terminal lid. In the DUT enzyme, the lid reaches across the monomer to form active 

sites composed of residues from all three subunits, whereas the active site in the bifunctional 

structural overlay of Mt 

Mt DCD-DUT:dTTP 
DCD:dUTP (green, pdb 1XS1) 
in respectively colored sticks. 
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Arrows point to the close resemblance of the DCD 

DUT (red) structures, while the DUT 
(blue) structure shows some more variation. 
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Alignment based on structure and sequence is given in Figure 6.5 for the two bifunctional 
enzymes from Mj and Mt and the monofunctional Ec DCD and DUT from various sources.  The 
two bifunctional enzymes include conserved residues important for both dCTP deaminase and 
dUTPase activity as described in section 6.4 and the monofunctional Ec DCD shows a key 
mutation at Ala157, which is a Gln in the structures with DUT function. Gly116 in Mt DCD-DUT 
has been suggested to be important in bifunctional enzymes [85] and is seen to be conserved 
also in enzymes with DUT activity.  
 

2QXX     1 MLLSDRDLRAEISSGRLGIDP.....FDD.T..LVQ..PSSIDVRLDCLFRVFNNTRYTHID  

2HXD     1 MILSDKDIIDYVTSKRIIIKP.....FNK.D..FVG..PCSYDVTLGDEFIIYD...DEVYD  

1XS1     1 MRLCDRDIEAWLDEGRLSINP.....RPPVE..RIN..GATVDVRLGNKFRTFRGHTAAFID  

1SIX     1 MSTT............LAIVRLDPGLPLP.S..RAHDGDAGVDLYSAE..............  

3P48     1   KV............LKIQLRSASATVP.T..KGSATAAGYDIYASQ..............  

3EHW     1   MQ............LRFARLSEHATAP.T..RGSARAAGYDLYSAY..............  

2XCE     1 T.MQ............IKIKYLDETQTRI.SKIE...QGDWIDLRAAE..............  

2OKE     1    P............VRFVKETNRAKSP.T..RQSPGAAGYDLYSAY..............  

1F7N     1                 MIIEG.....DGI.L..DKRSEDAGYDLLAAK..............  

 
2QXX    53 PA.....KQ..QDELTS.LVQPVDGEPFVLHPG.......................EFVLGS  

2HXD    50 LS.....KE..L..NYK.RIKIK..NSILVCPLNYNLTEEKINYFKEKYNVDYVVEGGVLGT  

1XS1    54 LSGPKDEVSAALDRVMSDEIVLDEGEAFYLHPG.......................ELALAV  

1SIX    34 ..........................DVELAPG.......................RRALVR  

3P48    32 ..........................DITIPAM.......................GQGMVS  

3EHW    32 ..........................DYTIPPM.......................EKAVVK  

2XCE    32 ..........................DVTIKKD.......................EFKLVP  

2OKE    31 ..........................DYTIPPG.......................ERQLIK  

1F7N    25 ..........................EIHLLPG.......................EVKVIP  

 

                             U                 U  
                             C   C         C                C  

2QXX    84 TLELFTLPDNLAGRLEGKSSLGR.LGLLTHSTAGFIDPGFS...GHITLELSNVA.NLPITL  

2HXD   100 TNEYIELPNDISAQYQGRSSLGR.VFLTSHQTAGWIDAGFK...GKITLEIVAFD.K.PVIL  

1XS1    93 TLESVTLPADLVGWLDGRSSLAR.LGLMVHVTAHRIDPGWS...GCIVLEFYNSG.KLPLAL  

1SIX    47 TGVAVAVPFGMVGLVHPRSGLATRVGLSIVNSPGTIDAGYR...GEIKVALINLDPAAPIVV  

3P48    45 TDISFTVPVGTYGRIAPRSGLAVKNGIQTGA..GVVDRDYT...GEVKVVLFNHS.QRDFAI  

3EHW    45 TDIQIALPSGCYGRVAPRSGLAAKHFIDVGA..GVIDEDYR...GNVGVVLFNFG.KEKFEV  

2XCE    45 LGVAMELPEGYEAHVVPRSSTYKNFGVIQTNSMGVIDESYKGDNDFWFFPAYAL...RDTEI  

2OKE    44 TDISMSMPKFCYGRIAPRSGLSL.KGIDIGG..GVIDEDYR...GNIGVILINNG.KCTFNV  

1F7N    38 TGVKLMLPKGYWGLIIGKSSIGS.KGLDVLG..GVIDEGYR...GEIGVIMINVS.RKSITL  

 
                  U  

2QXX   141 WPGMKIGQLCMLRLTSPSEHPYGSSRAGSKYQGQRGPTPSRSYQNFIRS  

2HXD   156 YKNQRIGQLIFSKLLSPADVGYSERK.TSKYAYQKSVMPSLIHLD      

1XS1   150 RPGMLIGALSFEPLSGPAVRPYNRRE.DAKYRNQQGAVASRIDKD      

1SIX   106 HRGDRIAQLLVQRVEL.VELVEVSSFDEAGLASTSRGDGG           

3P48   101 KKGDRVAQLILEKIVDDAQIVVVDSLE                        

3EHW   101 KKGDRIAQLICERIFY.PEIEEVQAL.....DDTERGSGGFGSTGKN    

2XCE   104 KKGDRICQFRIMKKMPAVELVEVEHL                         

2OKE    99 NTGDRIAQLIYQRIYY.PELEEVQSL                         

1F7N    93 MERQKIAQLIILPCKH.EVLEQGKVV                         

 

Figure 6.5: Alignment based on sequence and structure using STRAP [106,107] on DCD-DUT from 
Mt (pdb 2QXX) and Mj (pdb 2HXD excl. mutation), Ec DCD (pdb 1XS1) and DUT from Mt (pdb 
1SIX), Saccharomyces cerevisiae (pdb 3P48), human (pdb 3EHW), Bacillus subtilis (pdb 2XCE), 
Vaccina virus (pdb 2OKE) and feline immonodeficiency virus (pdb 1F7N). C marks residues 
important for deamination and U marks residues important for dephosphorylation. 
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Chapter Seven 

7 MYCOBACTERIUM TUBERCULOSIS DCTP DEAMINASE-

DUTPASE: MUTATIONAL BACKGROUND AND 

EQUATIONS FOR KINETIC STUDIES 

7.1 Structural reasoning behind the mutational study 

The bifunctional Mt DCD-DUT enzymes are inhibited by dTTP, which is structurally very similar to 

the substrates and binds to the active site of the enzyme. The additional 5-methyl group of dTTP 

induces a structural reorganization near the active site of the enzyme. The inhibition is not fully 

relieved by an increase in substrate concentration suggesting a noncompetitive mechanism [85]. 

The residues involved directly in catalysis do not, however, rearrange in the active and inactive 

forms of the enzyme. Helt et al. ascribed the lack of dTTP hydrolysis to a water molecule, which 

was expelled from the WT structure with dTTP bound (pdb 2QXX) because of the Ala115 side 

chain [85]. This forms the basis of the mutational study presented here. The reasoning behind 

the A115V variant is that an increase in size of the side chain will prevent dTTP from binding 

because of a steric clash of V115 with the 5-methyl group of dTTP thereby leaving the enzyme 

unaffected by the presence of dTTP. The reasoning behind the A115G variant is an attempt to 

dephosphorylate dTTP. With dTTP bound, Gly115 would allow enough space for the water 

molecule suggested to be crucial for activity. 

 

7.2 Steady state kinetics 

Equations important for data treatment of steady state kinetic experiments are listed in this 

section. The Michaelis-Menten equation (7.1) is a central expression for steady state enzyme 

kinetics and is applied when the reaction rate, v, has a hyperbolic dependence of the substrate 

concentration, [S]. 

 � �  ���� � 	
��� 
 	
�  (7.1) 

 

Km is the substrate concentration that results in half maximal reaction rate, Vmax (at [S] = KM, v = 

Vmax/2). The rate constant, kcat, reflects summation of multiple chemical steps and provides the 
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maximal rate of an enzymatic reaction at given enzyme concentration, [E], and infinite 

availability of substrate S, equation (7.2). 

 ���� � ���� � 	�� (7.2) 
 

Oligomeric enzymes, in which substrate binding at one active site influences the substrate 

binding affinity of the other active sites in the oligomer deviate from the hyperbolic dependence 

of the reaction rate on the substrate concentration. This cooperativity can be either positive or 

negative, reflecting an increase or a decrease, respectively, in the affinity of substrate binding to 

other active sites subsequent to substrate binding to one active site. Cooperativity influences the 

measured value of the reaction rate as described by the Hill equation (7.3). The Hill coefficient, 

h, describes cooperativity, while K´ is related to the dissociation constant of the enzyme-

substrate complex and factors describing the influence of substrate binding at one site on the 

affinity of the other sites. The Hill equation is also described by equation (7.4), but with kcat and 

S0.5 (the substrate concentration at half maximal reaction rate).  

 � �  ���� � 	
�
�

�� 
 	
��  (7.3) 

 

 � �  ���� � 	
�
�


�.�� 
 	
��  (7.4) 

 

Equation (7.5) was used to describe ligand binding to an enzyme. N is the degree of ligand 

binding with dissociation constant Kd to an enzyme with a maximal number of binding sites Nmax 

at a given concentration of the ligand, [L]. 

 � � ���� � 	��
�� 
 	��  (7.5) 

 

Inhibition studies with constant substrate concentration and varying inhibitor concentration are 

described using equation (7.6) or (7.7) for a hyperbolic or sigmoidal dependence, respectively, of 

the reaction rate on the inhibitor concentration. 

 � � ��
1 
 �	�����

 
(7.6) 

 

 � � ��
1 
 �	�����

  
(7.7) 

 

where v0 is the reaction rate in the absence of the inhibitor, I, and Ki is the inhibitor 

concentration resulting in half reaction rate (at [I] = Ki, v = v0/2). 

Radioactive nucleotide labeling and liquid scintillation counting were used experimentally. 

Equation (7.8) was used to calculate reaction rates (s-1) from the experimentally obtained 
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counts-per-minute (CPM) for dCTP and was used equivalently for experiments with dUTP as 

substrate. 

 �!"#$% � 
	&'()�� � ')*+,
!')*+, 
 ')*-,% �

.
/!"% � 01 23�1 (7.8) 

 

[dCTP]0 is the initial concentration of dCTP in mM, MP is monophosphate nucleotide, TP is 

triphosphate nucleotide, F is the factor corresponding to the total enzyme dilution, t is the 

reaction time in seconds and cenzyme is the enzyme concentration in mM.  

Equation (7.9) was used to calculate the degree of dTTP binding (NdTTP) to the enzyme. 

 ��--, � 	&(()�� �
!')*� 4 ')*5611%

')*�7��8
� .
01 23�1 (7.9) 

 

[dTTP]0 is the initial concentration of dTTP in mM, CPM0 is the initial counts-per-minute, while 

CPMfree is counts-per-minute for unbound ligand. 
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Chapter Eight 

8 PURIFICATION OF WT AND TWO VARIANTS OF 

MYCOBACTERIUM TUBERCULOSIS DCTP DEAMINASE-

DUTPASE 

8.1 Introduction 

A prerequisite to protein characterization is acquiring purified protein and this chapter describes 

purification procedures of WT, A115G and A115V Mt DCD-DUT. All solutions were prepared with 

milli-q water. Protein solutions were kept on ice at all times and centrifugations were at 4 °C in a 

Sorvall R5C centrifuge with a SS-34 rotor unless otherwise stated. During the purifications, 

problems with protein precipitation were encountered several times, and a more suitable buffer 

was found through solubility experiments (results are given in section 8.3.5). 

 

8.2 Experimental 

8.2.1 Expression of the A115G variant 

All instruments that came in contact with the cells were sterilized to avoid contamination. A 

glass pipette was used to transfer BL21 (DE3) E. coli cells over-expressing A115G Mt DCD-DUT 

into 5 mL LB media (containing 1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl) with 100 µg/mL 

ampicillin, and the cells were incubated overnight at 37 °C. 2 mL of the overnight culture was 

added to approximately 250 mL media consisting of 225 mL LB media with 2.2 mM MgCl2·6H2O, 

0.11 mM CaCl2·2H2O, 3.3 µM FeCl3·6H2O) and 25 mL A media (containing 2 % (NH4)2SO4, 7.5 % 

Na2HPO4·2H2O, 3 % KH2PO4, 3 % NaCl) and 2.5 mL 20 % glucose (or 0.25 mL 20 % glucose in a 

different expression) and 25 mg ampicillin (100 µg/mL final concentration) in a 1 L conically 

shaped flask. The culture was incubated with shaking at 37 °C and 250 µL 500 mM IPTG was 

added around OD436=6. The culture was left overnight with shaking at 37 °C. The cells were 

transferred to a large centrifuge tube on ice and centrifuged for 15 minutes at 9,000 rpm using a 

Sorvall R5C centrifuge with a GSA rotor. The supernatant was discarded, and the cells were 

resuspended in 30 mL 0.9 % NaCl and transferred to two small centrifuge tubes. The cells were 

centrifuged for 15 minutes at 9,000 rpm. The supernatant was discarded and the cells were 

frozen at -20 °C. 
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8.2.2 Purifications of WT and the variants

A number of purifications were carried out on dCTP deaminase

and A115V variants. A combination of techniques was used with some variations due

precipitation and degradation issues. A standard purification is described below and detailed 

descriptions of purifications along with specifications of SDS

D. An overview of the purifications is shown in 

 

 

Figure 8.1: Diagram of the steps involved in purification of WT, A115G and A115V 

 

8.2.2.1 Standard Purification

Cell pellet from 250 mL culture was defrosted on ice. 20 mL 50 mM KH

added and the cells resuspended. The cells were lysed by sonication twelve times for 30 seconds 

while kept on ice. The suspension was allowed to cool down for 30

sonications. The suspension was centrifuged for 20 minutes at 10,000 rpm. The supernatant was 

decanted off and kept on ice. While stirred on ice, 10 (w/w)% streptomycin was slowly added to 

a final concentration of 1 %. The solution was 

then centrifuged for 20 minutes at 14,000 rpm. The supernatant was decanted off and kept on 

ice. The solution was gently stirred on ice and solid (NH

saturation. The solution was stirred for 5 minutes and then centrifuged for 20 minutes at 14,000 
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rpm. The supernatant was discarded and the pellet was dissolved in 10 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8. The solution was dialyzed against 500 mL 50 mM KH2PO4/K2HPO4 pH 6.8.  

The protein solution was loaded onto a 14 mm/30 cm DE52 anion exchange column equilibrated 

with 50 mM KH2PO4/K2HPO4 pH 6.8 and eluted using a linear salt gradient of 50 mM 

KH2PO4/K2HPO4 pH 6.8 to 0.4 M NaCl in 50 mM KH2PO4/K2HPO4 pH 6.8 over 4 CV. The 

absorbance at 280 nm and SDS-PAGE was used to determine the protein content and purity of 

the collected fractions. Selected fractions were pooled and solid (NH4)2SO4 was added to 40 % 

saturation while stirring the solution on ice. The solution was stirred for 5 minutes and then 

centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the pellet was 

dissolved in 10 mL 20 mM HEPES pH 8.0 (the choice of buffer was based on solubility 

experiments on the A115V variant, results are given in section 8.3.5) and dialyzed against the 

same buffer. 

 

8.2.3 SDS-PAGE 

Samples for SDS-PAGE were mixed with equal volumes of sample buffer (80 mM Tris/HCl pH 6.8, 

2 % Sodium Dodecyl Sulfate, 10 % Glycerol, 5 % Dithiothreitol, 0.02 % Bromophenol blue). Solid 

samples were dissolved in 95 µL sample buffer. Biorad Broad Range Marker was used on all gels 

and prepared by mixing 10 µL marker with 10 µL sample buffer. All samples were heated 5 

minutes at 95 °C prior to loading onto the gel. Gel casting is described in Appendix D.6.  

The mounted gel was placed in running buffer (25 mM Tris, 1.4 % Glycine, 0.1 % Sodium Dodecyl 

Sulfate) and the samples were loaded. An electric current of 25 mA was applied for 

approximately 1 hour until the samples had traveled an appropriate distance on the gel. The gel 

was stained with Coomassie Brilliant Blue R and then bleached with a bleaching solution (10 % 

Acetic Acid, 24 % Ethanol) for at least 2 hours prior to drying the gel under vacuum. 

 

8.2.4 Solubility Experiments  

Purified A115V Mt DCD-DUT (in 20 mM HEPES/NaOH pH 6.8 that initially was used as buffer) was 

defrosted on ice and centrifuged for 10 minutes at 20,000 rpm (Ole Dich centrifuge). The 

supernatant was decanted off and the solubility of the pellet was tested. 

The pellet was dissolved in 300 µL 0.5 M KCl in 20 mM HEPES/NaOH pH 6.8. The absorbance at 

280 nm was used to determine the protein content of the dissolved pellet and of the 

supernatant in 20 mM HEPES/NaOH pH 6.8. 

80 µL 1 M KCl in 20 mM HEPES/NaOH pH 6.8 was gradually added to 200 µL protein in 20 mM 

HEPES/NaOH pH 6.8 to a final concentration of 0.3 M KCl in 20 mM HEPES/NaOH pH 6.8. To test 

if the dilution alone could dissolve the protein, 80 µL 20 mM HEPES/NaOH pH 6.8 was added to 
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200 µL protein in 20 mM HEPES/NaOH pH 6.8. Additionally 120 µL 20 mM HEPES/NaOH pH 6.8 

was added to this tube. 

The solubility of additional protein pellets were tested in 20 mM Tris/HCl pH 7.4, 200 mM 

HEPES/NaOH pH 8.0 and 20 mM HEPES/NaOH pH 8.0. 

 

8.3 Results and Discussion 

8.3.1 Expression of the A115G variant 

E. coli (BL21) cells over-expressing A115G Mt DCD-DUT were grown twice with two different 

glucose concentrations, see Figure 8.2. IPTG was added at the final point on the curve and the 

cells were left overnight. OD436 was 11.9 at cell harvest when the cells were grown in media 

containing 0.02 % glucose, while OD436 was 17.8 at cell harvest when the cells were grown in 0.2 

% glucose. 

 

 

Figure 8.2: Growth of E. coli over-expressing A115G Mt DCD-DUT at two different glucose 
concentrations. 

 

8.3.2 Purification of WT 

The steps involved in the purification of WT Mt DCD-DUT are shown in Figure 8.1. No ammonium 

sulfate precipitation was carried out prior to the two anion exchange steps. SDS-PAGE and the 

absorbance at 280 nm of the fractions from both anion exchange steps are shown in Figure 8.3. 

Fractions 6-8 were collected during the first run, and fractions 10-12 were collected during the 

second run. The final ammonium sulfate precipitation was carried out to 45 % saturation and the 

precipitate dissolved in 2.5 mL 20 mM HEPES pH 8.0 and dialyzed against the same buffer. 
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Protein with a concentration of 2.5 mg/mL was apportioned into aliquots and stored at -20 °C. 

SDS-PAGE of purified WT Mt DCD-DUT is shown in Figure 8.6A. 

 

 

 

Figure 8.3: Purification of WT Mt DCD-DUT: SDS-PAGE with collected fractions marked and the 
absorbance at 280 nm (the connecting line serves as guide to the eye). A: fractions from the first 
anion exchange. B: fractions from the second anion exchange.  

 

8.3.3 Purification of the A115V variant 

The purification of A115V Mt DCD-DUT was followed using SDS-PAGE samples, and the results 

are shown in Figure 8.4A. The figure shows the presence of the protein in the supernatant after 

centrifuging the sample subsequent to sonication (V2). A slight loss of protein is seen in the 

pellet (V3). The protein is present in the supernatant after centrifuging the sample subsequent 

to streptomycin precipitation (V4) and in the dissolved pellets of the ammonium sulfate 

precipitations (V7 and V9). Solution V9 was quite pure, but because of a slight yellow 

discoloration of the solution, an anion exchange step was incorporated. The sample (V9) was 

loaded onto the DE52 anion exchange column, and SDS-PAGE and the absorbance at 280 nm of 

the fractions are shown in Figure 8.4B. Fractions 9-13 were collected and pooled. The solution 

was precipitated with ammonium sulfate and the pellet was readily dissolved in 5 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8. The solution was dialyzed twice, during which it precipitated. The 

solution was centrifuged and the supernatant apportioned into aliquots. The aliquots had a 

tendency to precipitate during transfer on ice. Therefore, solubility experiments were made to 
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find a more suitable buffer (see section 8.3.5). These experiments showed that the solubility of 

the protein was enhanced at pH 8.0 compared with pH 6.8. Consequently, the A115V variant 

aliquots were pooled and precipitated with ammonium sulfate, and the precipitate was readily 

dissolved in 3 mL 20 mM HEPES/NaOH pH 8.0. The solution was dialyzed against the same buffer 

and the solution was apportioned into aliquots and stored at -20 °C. The final protein 

concentration was 4 mg/mL. SDS-PAGE of the purified protein is shown in Figure 8.6B. 

 

 

 

Figure 8.4: Purification of A115V Mt DCD-DUT. A: SDS-PAGE samples: V1: cell resuspension, V2: 
sonication supernatant, V3: sonication pellet, V4: streptomycin precipitation supernatant, V5: 
streptomycin pellet, V6: first ammonium sulfate precipitation supernatant, V7: first ammonium 
sulfate precipitation dissolved pellet, V8: second ammonium sulfate precipitation supernatant, 
V9: second ammonium sulfate precipitation dissolved pellet (see Appendix D.2 for additional 
details on the samples). B: SDS-PAGE of fractions from the anion exchange with collected 
fractions marked and the absorbance at 280 nm shown above (the connecting line serves as 
guide to the eye). 

 

8.3.4 Purification of the A115G variant 

Several problems with precipitation and degradation were encountered during work with A115G 

Mt DCD-DUT. This section describes the successful purification of A115G, while Appendix E.1 
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describes two additional purifications of the A115G variant, in which the protein degraded and 

was discarded. 

The A115G variant protein was expressed (section 8.2.1) and purified with a modified procedure, 

see Figure 8.1. Pellet from the first ammonium sulfate precipitation proved difficult to dissolve 

(purification 2, Appendix E.1) and the volume of 50 mM KH2PO4/K2HPO4 was therefore doubled 

to 20 mL, in which the protein completely dissolved (G2). SDS-PAGE results of the supernatant 

after centrifuging the sample subsequent to sonication (G1) and of solution G2 are shown in 

Figure 8.5. Figure 8.5 also shows SDS-PAGE and the absorbance at 280 nm of fractions from the 

anion exchange. Fractions 5-9 were collected and pooled. The solution was precipitated with 

ammonium sulfate and the pellet was readily dissolved in 2 mL HEPES/NaOH pH 8.0. The 

solution was dialyzed against the same buffer, and the solution was apportioned into aliquots 

and stored at -20 °C. The final protein concentration was 3 mg/mL SDS-PAGE of the purified 

protein is shown in Figure 8.6B. 

 

Figure 8.5: Purification of A115G Mt DCD-DUT. SDS-PAGE of: G1: sonication supernatant, G2: 
dissolved pellet from the first ammonium sulfate precipitation. Fractions 5-14 from anion 
exchange are shown. The collected fractions are marked, and the absorbance at 280 nm is 
shown to the right (the connecting line serves as guide to the eye). See Appendix D.3 for more 
details on the samples. 

 

 

Figure 8.6: SDS-PAGE of the purified proteins. A: WT Mt DCD-DUT, B: A115V and A115G diluted 
four times. 
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8.3.5 Solubility Experiments 

Solubility experiments were carried out to find more suitable conditions where the proteins 

were soluble. Increasing ion strength and changing pH were tested. However, the proteins were 

going to be used for crystallization and addition of salt should preferably be avoided. 

Solubility experiments were performed on A115V Mt DCD-DUT that had precipitated during 

dialysis against 20 mM HEPES/NaOH pH 6.8 (Figure 8.1, A115V second to last dialysis). 

Supernatant and pellet were separated by centrifugation, and the total protein content was 

determined to be 3.8 mg/mL in the precipitated protein solution. 

The protein was soluble in 0.3 M KCl in 20 mM HEPES/NaOH pH 6.8 at a protein concentration of 

2.7 mg/mL. With a protein concentration of 2.7 mg/mL, the protein was not soluble in 20 mM 

HEPES/NaOH pH 6.8. Further dilution to a protein concentration of 1.9 mg/mL in 20 mM 

HEPES/NaOH pH 6.8 did not dissolve the protein. At the same protein concentrations, the 

protein was not soluble in 20 mM Tris/HCl pH 7.4. 

The protein pellet proved easily soluble in both 200 mM HEPES/NaOH pH 8.0 and 20 mM 

HEPES/NaOH pH 8.0 up to concentrations of approximately 6 mg/mL. The preferred buffer was 

thus 20 mM HEPES/NaOH pH 8.0 and protein solutions were stored in this buffer at -20 °C. 

Defrosting the A115V variant enzyme and leaving it on ice for more than 20-30 minutes 

sometimes caused precipitation. This precipitation could be dissolved by diluting the protein to 2 

mg/mL with 20 mM HEPES pH 8.0. 

 

8.3.6 Comments on Stability 

The successful purification of the intact A115G variant is distinguished from the two unsuccessful 

purifications of the A115G variant given in Appendix E.1 by being carried out in 3 days instead of 

9 days, and precipitation issues were solved by changing pH during the final dialysis step. During 

purification 3 described in Appendix D.5, degradation was not observed until the protein was 

frozen at -20 °C prior to the final ammonium sulfate precipitation. Protein degradation was 

evident from the final SDS-PAGE shown in Figure E.3B. 

Successful purification of the A115V variant was carried out in 9 days and no degradation was 

observed. Purified A115V protein used in the solubility experiments (section 8.2.4) was left 

refrigerated for an additional 9 days and the SDS-PAGE results are shown in Figure 8.7. SDS-

PAGE lanes A, B, C, D refer to the protein in 0.3 M KCl in 20 mM HEPES pH 6.8, 20 mM HEPES pH 

8.0, 20 mM HEPES pH 6.8 with precipitation and 20 mM HEPES pH 6.8 centrifuged supernatant 

without precipitation, respectively. It is seen that especially C shows degradation. The C solution 

was left with precipitation for the additional 9 days.  

To avoid degradation, it is advantageous to minimize the time a solution is left with 

precipitation, and to carry out the purification quickly and without freezing the protein until the 

purification is complete – in particular when working with A115G Mt DCD-DUT. 
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Figure 8.7: Purified A115V Mt DCD-DUT after 9 days storage at 4 °C (section 8.3.6). A: protein in 
0.3 M KCl in 20 mM HEPES pH 6.8, B: protein in 20 mM HEPES pH 8.0, C: protein in 20 mM HEPES 
pH 6.8 with precipitation, D: protein in 20 mM HEPES pH 6.8 without precipitation. 

 

8.4 Conclusion 

WT Mt DCD-DUT and two variants (A115V and A115G) were successfully purified with yields of 

35 mg/L, 45 mg/L and 77 mg/L cell culture, respectively. Problems with precipitation of A115G 

and A115V Mt DCD-DUT during purification were encountered and changing pH from 6.8 to 8.0 

increased the solubility of the proteins. Purified WT, A115G and A115V Mt DCD-DUT were stored 

at -20 °C in 20 mM HEPES/NaOH pH 8.0 with concentrations of 2.5 mg/mL, 3 mg/mL and 4 

mg/mL, respectively. SDS-PAGE results of the final product of purified WT, A115V and A115G Mt 

DCD-DUT are shown in Figure 8.6.  
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Chapter Nine 

9 CHARACTERIZATION OF WT AND TWO 

VARIANTS OF MYCOBACTERIUM TUBERCULOSIS 

DCTP DEAMINASE-DUTPASE 

9.1 Introduction 

As described in section 7.1, the two variants (A115V and A115G) of Mt DCD-DUT were produced 

to investigate the importance of steric hindrance by the side chain of Ala115 on a water 

molecule suggested to be crucial for activity [85]. The solubility of A115V Mt DCD-DUT was 

enhanced at pH 8.0 (section 8.3.5). In the kinetic studies, pH was therefore initially changed to 

8.0 instead of pH 6.8, which was used in previous WT enzyme studies [85]. Kinetic studies were 

expanded to include pH 6.8. 

This chapter includes characterization of WT, A115V and A115G Mt DCD-DUT and covers kinetic 

studies of all three enzymes as well as dTTP binding and inhibition experiments. Crystallization 

experiments and the crystal structure of A115V Mt DCD-DUT to 2.8 Å are also included in this 

chapter.  

 

9.2 Experimental 

9.2.1 Turnover Numbers 

Experiments used to calculate the turnover numbers of WT, A115V and A115G Mt DCD-DUT 

were all carried out at 37 °C. 80 µL assay mix containing 2 mM MgCl2 and 20 mM HEPES/NaOH 

pH 6.8 or 8.0 and a minor amount of 3H labeled nucleotide (dCTP or dUTP) with a temperature of 

37 °C was added 10 µL nucleotide and allowed to warm to 37 °C again. Initial assay 

concentrations of dCTP or dUTP were 1 mM. 10 µL appropriately diluted enzyme was added and 

samples were taken from the mixture at specific times and loaded directly onto a TLC PEI 

Cellulose F chromatogram. 1 µL 5 mM dUMP was added to each sample on the chromatogram as 

a marker. Chromatograms were treated and samples measured as described in section 9.2.5. 

WT assays were carried out in duplicate with 91 µM enzyme with in-assay dilution factors of 100 

and 200. A115V assays were carried out in duplicate with 191 µM enzyme with in-assay dilution 

factors of 30 and 60. A115G assays were carried out in duplicate with 144 µM enzyme with in-
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assay dilution factors of 10 and 20. Samples were taken after 2, 5, 10 and 20 minutes in all assays 

with the exception of A115G and A115V dCTP pH 8.0 assays, which were carried out in duplicate 

with enzyme dilution factors of 20 and 40 and sampling after 2, 5 and 10 minutes. 

 

9.2.2 Nucleotide Saturation 

All nucleotide saturation experiments were carried out at 37 °C. Numerous nucleotide saturation 

assays with variations in nucleotide concentrations were carried out for WT, A115V and A115G 

Mt DCD-DUT with dCTP and dUTP at pH 8.0, as well as with dUTP at pH 6.8. The assay contents 

varied depending on pH and nucleotide type and concentration; specifications and 

corresponding in-assay nucleotide concentrations and enzyme dilutions are given in Appendix D, 

Table D.1. 10 µL nucleotide was added to 80 µL assay mix including a minor amount of 3H labeled 

nucleotide (dCTP or dUTP) with a temperature of 37 °C and allowed to warm to 37 °C again. 10 

µL appropriately diluted enzyme with a temperature of 37 °C was added to each assay and after 

a reaction time of 6 minutes, 10 µL samples were loaded directly onto a TLC PEI Cellulose F 

chromatogram. 1 µL 5 mM dUMP was added to each sample on the chromatogram as a marker. 

Chromatograms were treated and samples measured as described in section 9.2.5. 

 

9.2.3 dTTP inhibition 

All dTTP inhibition experiments were carried out at 37 °C. dTTP inhibition experiments were 

carried out with WT, A115V and A115G Mt DCD-DUT at pH 6.8 and pH 8.0 with fixed 

concentrations of dCTP or dUTP. Assays were made with variations in both initial substrate 

concentration and type, and also with variation in dTTP concentration. Details on assay mix 

contents are given in Appendix D, Table D.2 along with dTTP concentration range, total enzyme 

dilution in-assay and the applied nucleotide concentrations. 10 µL dTTP was added to 80 µL 

assay mix including a minor amount of 3H labeled nucleotide (dCTP or dUTP) with a temperature 

of 37 °C and allowed to warm to 37 °C again. 10 µL appropriately diluted enzyme with a 

temperature of 37 °C was added to the assay and after a reaction time of 6 minutes, 10 µL 

samples were loaded directly onto a TLC PEI Cellulose F chromatogram. 1 µL 5 mM dUMP was 

added to each sample on the chromatogram as a marker. Chromatograms were treated and 

samples measured as described in section 9.2.5. 

 

9.2.3.1 dTTP inhibition at three pH values 

The activity of WT Mt DCD-DUT with dCTP or dUTP as substrate was tested at pH 6.8, 7.4 and 8.0 

in 20 mM HEPES in the presence (500 µM) or absence of dTTP. 20 µL assay component (pH and 

dTTP steering) were added to 70 µL assay mix (2 mM MgCl2, 300 µM dCTP or 300 µM dUTP and a 

minor amount of 3H dCTP or 3H dUTP) and allowed to reach 37 °C. Assays were carried out in 

duplicates. 10 µL appropriately diluted enzyme (100x or 200x total in-assay dilutions) with a 
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temperature of 37 °C was added to the mixture and after a reaction time of 6 minutes, a 10 µL 

sample was loaded directly onto a TLC PEI Cellulose F chromatogram. 1 µL 5 mM dUMP was 

added to each sample on the chromatogram as a marker. Chromatograms were treated and 

samples measured as described in section 9.2.5. 

 

9.2.4 dTTP Binding 

Ligand binding experiments were performed at ambient temperature. The experiments 

contained 2 mM MgCl2, 20 mM HEPES/NaOH, dTTP at different concentrations including a small 

amount of 3H dTTP (concentration in nM scale) and enzyme. Mixing WT Mt DCD-DUT enzyme in 

20 mM HEPES/NaOH pH 8.0 with buffer at pH 6.8 caused a pH shift, and WT experiments were 

thus carried out at pH 7.1 with a total enzyme concentration of 33 µM. A115V and A115G Mt 

DCD-DUT experiments were carried out at pH 8.0 with total enzyme concentrations of 54 µM 

and 40-80 µM, respectively. The components were mixed in an eppendorf tube with a Microcon 

ultracel YM-30 membrane. A 5 µL sample was taken from each tube and added to a TLC PEI 

Cellulose F chromatogram. The tubes were centrifuged at 10,000 rpm (Ole Dich centrifuge) for 5 

minutes and a 5 µL sample of the flow-through was added to the chromatogram. 

Chromatograms were treated and samples measured as described in section 9.2.5. 

 

9.2.5 Liquid Scintillation Counting 

Chromatograms were placed in a jar containing a shallow layer of 0.9 M CH3COOH and 0.3 M 

LiCl, and the solvent was allowed to travel to the top of the chromatograms. The chromatograms 

were dried and placed under 254 nm UV light, and the samples were framed with a soft pencil. 

The framed pencil markings were cut out, placed in small plastic containers, added 2 mL 2 M 

ammonia and left to dissolve for one hour. 5 mL Optiphase HiSafe2 Liquid Scintillation Cocktail 

was added, the solutions were gently mixed and left to stand for an additional hour. The samples 

were measured using a 2200CA TRI-CARB Liquid scintillation analyzer by United Technologies 

Packard. 

 

9.2.6 Differential Scanning Calorimetry 

Differential scanning calorimetry experiments were performed using a Microcal VP-DSC with 

scan rates of 0.5 °C/min. Experiments were carried out with WT Mt DCD-DUT at pH 8.0 and pH 

6.8 with apo enzyme, as well as at pH 6.8 in the presence of 500 µM dTTP. Experiments with 

A115V Mt DCD-DUT were carried out at pH 8.0 in the presence (500 µM) and absence of dTTP. 

Experiments with apo A115G Mt DCD-DUT were carried out at pH 8.0 and pH 6.8 as well as at pH 

8.0 in the presence of 500 µM dTTP. Background measurements were carried out using the same 

buffer that was used in the reference cell during the subsequent measurements. Experimental 

details are given in Appendix D.3, Table D.3. 
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9.2.7 Crystallization  

The initial crystallization conditions were based on crystallization of WT Mt DCD-DUT [85]. The 

crystallization conditions for apo WT Mt DCD-DUT were 20 % PEG 8000, 50 mM MgCl2 and 100 

mM HEPES pH 7.5, while the crystallization conditions for the enzyme in complex with dTTP 

were 45 % PEG 400, 200 mM MgCl2 and 100 mM HEPES pH 7.5. The hanging-drop vapor-

diffusion method was applied in 24 well plates during all crystallization experiments.  

Substrate analogues used during crystallization were dUMPNPP or dUMPCPP, which are 

analogues to dUTP, but with the oxygen bridging the α-β phosphorous replaced by nitrogen or 

carbon, respectively. Crystallization trials were carried out with A115V Mt DCD-DUT in the apo 

form or in complex with dTTP, dUMPCPP or dUMPNPP. Crystallization trials of WT Mt DCD-DUT 

were carried out with apo enzyme or enzyme in complex with dUMPNPP or dUMPCPP. 

Crystallization trials of A115G Mt DCD-DUT were carried out with apo enzyme or enzyme in 

complex with dUMPCPP. A complete set of all tested conditions is not provided here. Instead, a 

variety of crystallization conditions are available for picture entries in the enclosed database 

(Appendix A, DCDDUT.xml, see Chapter 2 for a program description). 

 

9.2.8 Data Collection and Processing 

Data were collected to 2.8 Å resolution on A115V Mt DCD-DUT in complex with dTTP. Diffraction 

data were collected at ID14-4 on ESRF. Integration and scaling of the data were performed with 

XDS/XSCALE [108,109]. Data collection statistics are presented in Table 9.1.  

Table 9.1: X-ray data-collection and refinement statistics.  
Values in parentheses are for the outermost resolution shell. 

Beamline ESRF, ID14-4 
Detector ADSC Quantum Q315r 
Wavelength (Å) 0.9765 
Temperature (K) 100 
Space group  P21 
Sample-to-detector distance (mm) 377 
No.  of images 360 
Oscillation angle (°) 0.5 
Unit-cell parameters (Å, °) a=56.07 (7), b=179.4 (2), 

c=96.22 (5), α=γ=90.0, β=96.4 
Resolution range (Å) 99.724-2.900 (3.00-2.90) 
No. of observed reflections 161,875 (15,832) 
No. of unique reflections 43,288 (4,216) 
Mosaicity (°) 0.3-0.7 
Multiplicity 3.74 (3.76) 

Completeness (%) 98.7 (99.1) 
Rmerge 0.177 (0.976) 
I/9(I) 7.01 (1.44) 



9 CHARACTERIZATION OF WT AND TWO VARIANTS OF MT DCD-DUT 

63 

9.2.9 Structure Determination and Refinement 

Molecular replacement using MOLREP [70] was applied to solve the structure. Different search 

models were tested: monomer, dimer or trimer of WT Mt DCD-DUT (pdb 2QXX). The structure 

was solved with the peptide chains of two trimers of WT Mt DCD-DUT with dTTP bound as 

search model. 12 molecules were found in the asymmetric unit. Refinement was performed with 

REFMAC5 [71]: first a rigid body refinement with rigid domains in all chains (residues 1-189), 

then a restrained refinement with tight NCS restraints on residues 1-189 in all chains. Structural 

refinements with REFMAC5 and winCoot [61,62] were performed. 12 dTTP molecules and 12 

Mg2+ were added to the structure. Two additional Mg2+ were added on interfaces between the 

molecules. Residue 189 was removed in five chains (B, D, E, J, K). NCS restraints were removed 

on resides 110-118 and kept tight on the remainder of the peptide chain and on dTTP during 

refinement. TLS refinement was used and the peptide chains were used as TLS groups [110]. 

Refinement using phenix.refine [111] with restraints on Ramachandran angles or with simulated 

annealing had no effect on R/Rfree. Refinement statistics are given in Table 9.2. The 

Ramachandran plot [72] shows 8 residues in the outlier region (0.4 %). All these residues are 

placed in the flexible region at the nucleotide binding site and are probably outliers because of 

the strain in the structure from binding dTTP.  

Table 9.2: Refinement statistics. 

R factor 0.2530 
Rfree 0.2899 
No. of subunits in asymmetric unit 12 
No. of atoms in model 17912 
No. of water molecules 12 
Average B factors (Å2) 
     Main chain 
     Side chain 
     dTTP 

 
31.23 
29.85 
25.01 

Ramachandran plot [72] 
     Favored (%) 
     Allowed (%) 
     Outliers (%) 

 
96.8 
2.8 
0.4 

 

 

9.3 Results 

Modeling curves to data points was performed in GraphPad Prism [112], using the equations 

given in Chapter 7. Throughout this section, data points for rates (s-1) were calculated using 

equation (7.8) and data points for the degree of dTTP binding were calculated using equation 

(7.9). 
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9.3.1 Turnover numbers 

Turnover numbers for WT, A115V and A115G were determined for 1 mM dCTP and 1 mM dUTP 

at pH 8.0 and pH 6.8. Experiments were carried out as described in section 9.2.1. No detectable 

activity was measured for A115V and A115G at pH 6.8 with dCTP. Turnover numbers are given in 

Table 9.3 and the plots showing the turnover number vs. time are shown in Appendix E.1, Figure 

E.4. Both variant enzymes had reduced activities compared with the WT enzyme. 

Table 9.3: Turnover numbers (s-1) for WT, A115V and A115G Mt DCD-DUT with 1 mM dCTP or 
dUTP at pH 6.8 or 8.0. Plots of turnover number vs. time are shown in Appendix E.1, Figure E.4. 

 dCTP pH 8.0 dUTP pH 8.0 dCTP pH 6.8 dUTP pH 6.8 
WT 0.239 ± 0.007 0.29 ± 0.01 0.044 ± 0.002 0.195 ± 0.007 
A115V 0.068 ± 0.007 0.016 ± 0.001 - 0.0215 ± 0.0009 
A115G 0.014 ± 0.001 0.0120 ± 0.0006 - 0.0015 ± 0.0002 

 

9.3.2 Substrate saturation  

Substrate saturation experiments were carried out with dCTP and dUTP at pH 8.0 as well as with 

dUTP at pH 6.8, as described in section 9.2.2. Neither of the variant enzymes had any detectable 

activity with dCTP at pH 6.8. The determined kinetic constants are given in Table 9.4 and data 

points with the modeled curves are shown in Figure 9.1 for the WT enzyme, Figure 9.2 for the 

A115V variant and Figure 9.3 for the A115G variant. 

Table 9.4: Kinetic constants calculated for substrate saturation with dCTP at pH 8.0 and dUTP at 
pH 8.0 as well as pH 6.8 for WT, A115V and A115G Mt DCD-DUT. 

 Michaelis-Menten equation (7.1) Hill equation (7.4) 
 kcat Km kcat S0.5 h 
WT      

dCTP pH 8.0 0.35 ± 0.01 s-1 40 ± 6 µM    
dUTP pH 8.0 0.29 ± 0.01 s-1 57 ± 10 µM    

dUTP pH 6.8   
0.188 

± 0.007 s-1 
118 

± 12 µM 
1.7 

± 0.2 
 
A115V 

     

dCTP pH 8.0 0.22 ± 0.02 s-1 1.3 ± 0.2 mM    
dUTP pH 8.0 0.015 ± 0.001 s-1 0.6 ± 0.2 µM    
dUTP pH 6.8 0.0204 ± 0.0008 s-1 15 ± 3 µM    
 
A115G 

     

dCTP pH 8.0   
0.020 

± 0.001 s-1 
171  

± 16 µM 
2.5 

± 0.5 
dUTP pH 8.0 0.0157 ± 0.0007 s-1 24 ± 5 µM    
dUTP pH 6.8 0.010 ± 0.003 s-1 1.4 ± 0.7 mM    
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Cooperativity was observed for the WT enzyme at pH 6.8 (Figure 9.1B) with kinetic constants 

similar to what has been observed previously [85]. In contrast, no significant cooperativity was 

observed at pH 8.0 with dCTP or dUTP as substrates (Figure 9.1C). 

In comparison with the WT enzyme, A115V showed some major differences in dCTP and dUTP 

saturation kinetics. Contrary to WT, A115V displayed hyperbolic saturation kinetics at pH 6.8 

with dUTP, as shown in Figure 9.2B. Hyperbolic saturation was also observed at pH 8.0 with both 

dCTP and dUTP (Figure 9.2C+D), albeit with large differences in the kinetic constants compared 

with the WT enzyme. kcat was about 1.5 and 20 fold lower for dCTP and dUTP, respectively, for 

A115V compared with the WT enzyme. KM was about 25 fold higher and 100 fold lower for dCTP 

and dUTP, respectively, for A115V compared with the WT enzyme. 

The A115G enzyme also showed major differences compared with the WT enzyme. Hyperbolic 

dUTP saturation was observed at both pH 6.8 and 8.0 (Figure 9.3), whereas cooperativity was 

observed with dCTP at pH 8.0 (Figure 9.3C). kcat and Km were about 20 and 2.5 fold lower, 

respectively, for dUTP at pH 8.0 for the A115G enzyme compared with the WT enzyme. 

 

Figure 9.1: Substrate saturation curves fitted to data points of WT Mt DCD-DUT. A: curves and 
data points. B: zoomed plot of curve and data points at pH 6.8. C: zoomed plot of curves and 
data points at pH 8.0. Calculated kinetic constants and references to the applied equations can 
be found in Table 9.4. Each point was determined at least twice at different enzyme 
concentrations. 
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Figure 9.2: Substrate saturation curves fitted to data points of A115V Mt DCD-DUT. A: curves 
and data points. B: zoomed plot of curve and data points at pH 6.8. C+D: zoomed plot of curves 
and data points at pH 8.0. Calculated kinetic constants and references to the applied equations 
can be found in Table 9.4. Each point was determined at least twice at different enzyme 
concentrations. 

The full range of measured rates at different nucleotide concentrations is available in Appendix 

E.3, Figure E.5. It should be noted that some of the data points at high nucleotide concentrations 

(typically above 2 mM) were omitted during modeling of the curves to the data points, as seen in 

Figure 9.1, Figure 9.3 and in particular for the A115V variant shown in Figure 9.2. The observed 

behavior of a slow increase (seen for A115V dUTP pH 6.8 and pH 8.0) or a decrease (seen for 

A115V dCTP pH 8.0) could not be modeled satisfactorily using the equations given in section 7.2 

and data were therefore cut off to yield reasonable fits. 

 

9.3.3 dTTP Inhibition 

Inhibition by dTTP of WT, A115V and A115G Mt DCD-DUT was examined at pH 6.8 and pH 8.0. 

Experiments were carried out as described in section 9.2.3 and the calculated kinetic constants, 

as well as references to the applied equations, are presented in Table 9.5. Modeling of curves to 

the data points are shown in Figure 9.4.  
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Figure 9.3: Substrate saturation curves fitted to data points of A115G Mt DCD-DUT. A: curves 
and data points. B: zoomed plot of curves and data points at pH 6.8. C: zoomed plot of curves 
and data points at pH 8.0. Calculated kinetic constants and references to the applied equations 
can be found in Table 9.4. Each point was determined at least twice at different enzyme 
concentrations. 

Table 9.5: Kinetic constants calculated for dTTP inhibition of WT Mt DCD-DUT at pH 6.8, A115V 
Mt DCD-DUT at pH 6.8 and pH 8.0, and A115G Mt DCD-DUT at pH 8.0. 

 Inhibition (hyperbolic) 
equation (7.6) 

Inhibition (sigmoidal, cooperative) 
equation (7.7) 

 Ki Ki h 
WT    

300 µM dCTP pH 6.8  125 ± 9 µM 1.6 ± 0.1 
300 µM dUTP pH 6.8  183 ± 14 µM 1.4 ± 0.1 
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2.4 mM dCTP pH 8.0 323 ± 44 µM   
300 µM dCTP pH 8.0 72 ± 9 µM   
300 µM dUTP pH 6.8 1.4 ± 0.3 mM   
 
A115G 

   

300 µM dCTP pH 8.0  4.9 ± 0.9 µM 2.2 ± 0.8 
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Unexpectedly, the WT enzyme was insensitive to the presence of dTTP at pH 8.0 even at dCTP 

concentrations around KM (Figure 9.4A). The inhibition by dTTP at pH 6.8 [85] was verified with 

dCTP and dUTP as substrates (Figure 9.4D). The apparent pH effect of dTTP inhibition was 

further examined by measuring activity with dCTP or dUTP at pH 6.8, 7.4 and 8.0 in the presence 

or absence of dTTP for the WT enzyme. A clear tendency of attenuation of dTTP inhibition at pH 

above 6.8 is observed, results are shown in Figure 9.5. 

 

 

Figure 9.4: Inhibition by dTTP at constant substrate concentration at pH 8.0 of A: WT, B: A115V 
(zoomed insert: 300 µM dCTP pH 8.0) and C: A115G. dTTP inhibition at pH 6.8 of D: WT, E: A115V 
and F: A115G. Each point was determined twice at different enzyme concentrations. Calculated 
kinetic constants and references to the applied equations can be found in Table 9.5.  
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The A115V and A115G enzymes were constructed to evaluate the importance of steric hindrance 

by the side chain of Ala115 on a water molecule suggested to be crucial for activity [85] as 

described in section 7.1. Neither of the variants displayed the expected properties (discussed in 

section 9.4). In contrast to WT, the A115V enzyme was inhibited by dTTP at both pH 8.0 and 6.8 

as shown in Figure 9.4B+E. A115V showed increased sensitivity to dTTP at pH 8.0 compared with 

pH 6.8 (Ki was about 20 times lower at pH 8.0 compared with pH 6.8). The A115G enzyme 

showed dTTP inhibition with pH effects contrary to the WT enzyme. A115G showed a high 

sensitivity to dTTP at pH 8.0 with a complete loss of activity at 0.1 mM dTTP (Figure 9.4C). Ki was 

25 fold lower for A115G at pH 8.0 compared with WT at pH 6.8. In contrast, no significant 

inhibition was observed at pH 6.8 (Figure 9.4F). 

  

Figure 9.5: Reaction rates for WT Mt DCD-DUT at pH 6.8, 7.4 and 8.0 with A: 300 µM dCTP and B: 
300 µM dUTP as substrates. Black and orange data points are for assays in the presence (500 
µM) and absence of dTTP, respectively. Straight lines were drawn between the data points as 
guides to the eye. 

 

9.3.4 dTTP Binding 

dTTP equilibrium binding experiments were carried out with WT, A115V and A115G Mt DCD-DUT 

as described in section 9.2.4. The WT dTTP binding experiments were designed to be carried out 

at pH 6.8. However, the shift in pH from mixing a substantial amount of protein at pH 8.0 with 

the buffer at pH 6.8 caused the final pH to be 7.1. At pH 7.1, WT does not bind dTTP, as shown in 

Figure 9.6A. pH of the WT binding experiments was changed compared with the variant dTTP 

binding experiments (carried out at pH 8.0) because the WT enzyme had proven insensitive to 

the presence of dTTP at pH 8.0 (Figure 9.4A). dTTP binding to the enzyme was therefore not 

expected at pH 8.0. 

A115V binds dTTP at pH 8.0 as shown in Figure 9.6B. dTTP binding was modeled using equation 

(7.5) resulting in a dissociation constant Kd = 7 ± 2 µM. dTTP binding to A115V at pH 8.0 is 

stronger than dTTP binding to the monofunctional dCTP deaminase from E. coli at pH 6.8. Kd was 

around 7 for A115V:dTTP compared with Kd around 35 for Ec DCD:dTTP [91]. A115G shows a 

very unusual dependence of the degree of dTTP binding on the concentration of dTTP. Initially, 

the degree of binding increases with the concentration of dTTP, but the enzyme never reaches 
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full occupation (N=1) and it appears that the dTTP binding site occupation decreases at dTTP 

concentrations above approximately 100 mM. 

 

 

Figure 9.6: Degree of dTTP binding (N) to A: WT at pH 7.1, B: A115V at pH 8.0, curve was 
modeled using equation (7.5) and C: A115G Mt DCD-DUT at pH 8.0.  

 

9.3.5 Differential Scanning Calorimetry 

Weak signals for irreversible transitions were observed for DSC experiments, and transition 

temperatures should therefore be considered as approximates. Transition temperatures are 

listed in Table 9.6 and DSC measurements are given in Appendix E.4. 

A115V Mt DCD-DUT is destabilized compared with the WT enzyme. The transition temperature 

for the A115V variant enzyme is 20 °C lower than for the WT enzyme (67 °C vs. 87 °C) in the 

presence of dTTP at pH 8.0. 
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Table 9.6: Transition temperatures for DSC experiments with WT, A115V or A115G Mt DCD-DUT. 

 pH cenzyme Apo 500 µM 
dTTP 

WT 8.0 20 µM 77 °C  
 6.8 20 µM 84 °C 87 °C 
     
A115V 8.0 24 µM inconclusive 67 °C 
     
A115G 8.0 12 µM 81 °C 83 °C 
 8.0 24 µM 83 °C 85 °C 
 6.8 24 µM inconclusive  

 

 

9.3.6 Crystallization and Diffraction Tests 

9.3.6.1 WT enzyme 

Crystallization of WT Mt DCD-DUT was carried out mainly in the presence of substrate analogues 

in an attempt to get a structure of WT Mt DCD-DUT in its active conformation. Selected 

crystallization results are given in Figure 9.7 and a range of crystallization pictures and conditions 

are available in the enclosed database (Appendix A, DCDDUT.xml, see Chapter 2 for a program 

description). dUMPNPP spontaneously hydrolyzes at the same rate whether or not WT Mt DUT is 

present [102]. A crystal of WT Mt DCD-DUT that had grown in the presence of dUMPNPP over a 

period of 4 months proved to contain enzyme in complex with monophosphate or diphosphate 

[113]. The crystals in Figure 9.7C+D had grown after 7-8 months at 15 °C and were therefore 

probably formed without an intact nucleotide. 

 

 

Figure 9.7: Crystallization of 2 mg/mL WT Mt DCD-DUT with specified reservoir conditions. For 
dUMPNPP: the enzyme used for crystallization setup was in solution with 2 mM dUMPNPP and 
14 mM MgCl2. 

 

 



9 CHARACTERIZATION OF WT AND TWO VARIANTS OF MT DCD-DUT  

72 

9.3.6.2 A115V variant enzyme 

Crystallization of A115V Mt DCD-DUT was carried out with enzyme in its apo form or in complex 

with dTTP, dUMPNPP or dUMPCPP. Selected crystallization results are given in Figure 9.8 and 

additional pictures and conditions can be found in the enclosed database (Appendix A, 

DCDDUT.xml). Data were collected to 2.8 Å resolution (section 9.2.8) on a crystal from Figure 

9.8C: A115V in complex with dTTP. 

 

 

Figure 9.8: Crystallization of 2-4 mg/mL A115V Mt DCD-DUT with specified reservoir conditions. 
For dTTP: the enzyme used for crystallization setup was in solution with 5 mM dTTP and 20 mM 
MgCl2. For dUMPCPP: the enzyme was in solution with 2 mM dUMPCPP and 10 mM MgCl2. 

 

9.3.6.3 A115G variant enzyme 

Crystallization of A115G Mt DCD-DUT was carried out mainly with enzyme in its apo form 

because the enzyme showed unusual dTTP binding (section 9.3.4). Selected crystallization results 

are given in Figure 9.9 and additional pictures and conditions can be found in the enclosed 

database (Appendix A, DCDDUT.xml). Diffraction properties were tested on the largest of the 

apo crystals (Figure 9.9D), but no diffraction was observed at ESRF. The morphology of these 

crystals was similar to apo WT enzyme [113]. 

 

 

Figure 9.9: Crystallization of 2 mg/mL A115G Mt DCD-DUT with specified reservoir conditions.  

 



9.3.7 Crystal structure of A115V:dTTP

The structure of A115V with 12 molecules in the asymmetric unit was refined using tight NCS 

restraints except for residues 110

binding pocket. dTTP is bound in all 12 active sites with clear electron density, 

Hydrogen bonds from the peptide chain to dTTP in A115V 

generally the same as observed in the WT structure 

protein hydrogen bonds are observed in the 110

with the WT structure. 

Figure 9.10: A115V Mt DCD-
the HJL trimer with 2Fobs – Fcalc

 

Figure 9.11: Schematic view of hydrogen bonds to dTTP in the structure of A115V 
* denote residues from a neighboring monomer.
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The structure of A115V with 12 molecules in the asymmetric unit was refined using tight NCS 

118 that constitute a flexible region near the nucleotide 

binding pocket. dTTP is bound in all 12 active sites with clear electron density, see Figure 9.10. 

DUT (Figure 9.11) are 

. However, a total of 7 fewer protein-

118 region of the A115V structure compared 

 

DUT with dTTP bound. dTTP from chain J and selected residues from 

 

Schematic view of hydrogen bonds to dTTP in the structure of A115V Mt DCD-DUT. 



9 CHARACTERIZATION OF WT AND TWO 

74 

The structure of the flexible loop of residues 110

WT and the bifunctional enzyme from 

WT:dTTP (Figure 9.12A). The flexible loop in the A115V:dTTP structure is

active conformation, whereas the WT:dTTP structure is in the inactive conformation. However, 

some differences are observed between A115V:dTTP and 

In order to accommodate the 5-

which furthermore results in a 1 Å wider loop measured from His112 CA to Val115 CA. 

 

Figure 9.12: Superposed structures of
(red, pdb 2QXX), B: Mj DCD-DUT:dUMPNPP (blue, pdb 2HXD

 

Figure 9.13: Differences between t
DUT:dUMPNPP (blue, pdb 2HXD
along with 1.45 Å movement of N
backbone of Gly116 in A115V:dTTP has moved 2 Å.

                                                           
5 His128 was flipped because it faced the wrong way based on hydrogen bonds
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WT and the bifunctional enzyme from Mj with a substrate analogue bound (Figure 

A). The flexible loop in the A115V:dTTP structure is thus very similar to the 

active conformation, whereas the WT:dTTP structure is in the inactive conformation. However, 

some differences are observed between A115V:dTTP and Mj DCD-DUT:dUMPNPP (

-methyl group of dTTP, Gly116 in A115V:dTTP has moved 2.4 Å, 

which furthermore results in a 1 Å wider loop measured from His112 CA to Val115 CA. 

structures of A115V Mt DCD-DUT (green) and A: WT Mt

DUT:dUMPNPP (blue, pdb 2HXD5).  

Differences between the structures of A115V:dTTP (green) and 
DUT:dUMPNPP (blue, pdb 2HXD5). A: the 1 Å wider loop from His CA to Ala/Val CA is observed 
along with 1.45 Å movement of Nπ. B: to accommodate the 5-methyl group o
backbone of Gly116 in A115V:dTTP has moved 2 Å. 

                   
ced the wrong way based on hydrogen bonds 

118 in A115V:dTTP more closely resembles apo 

Figure 9.12B) than 

very similar to the 

active conformation, whereas the WT:dTTP structure is in the inactive conformation. However, 

DUT:dUMPNPP (Figure 9.13). 

methyl group of dTTP, Gly116 in A115V:dTTP has moved 2.4 Å, 

which furthermore results in a 1 Å wider loop measured from His112 CA to Val115 CA.  

 

Mt DCD-DUT:dTTP 

 

he structures of A115V:dTTP (green) and Mj DCD-
). A: the 1 Å wider loop from His CA to Ala/Val CA is observed 

methyl group of dTTP, the 



The A115V enzyme is unable to exist in the inactive conformation with dTTP bound because of 

the larger size of the valine side chain compared with alanine. In the inactive conformation, the 

valine side chain would clash with the 5

movement of V115 is observed in order for A115V to bind dTTP, see 

structural overlay of WT:dTTP and A115V:dTT

Thr114, and a rearrangement of Thr111 and His112 in a neighboring molecule is necessary to 

avoid clashing of the residues (

the A115V structure is placed in the active conformation and hydrogen bonds of this residue are 

shown in Figure 9.15 for the structures of A115V:dTTP and WT:dTTP and for the corresponding 

His128 in Mj DCD-DUT:dUMPNPP. 

 

Figure 9.14: Overlay of A115V:dTTP (green) and WT:dTTP (red, pdb 2QXX). A shift in the 
backbone causes the valine to take up less space in the nucleotide binding pocket and allows 
room for dTTP binding. A rearrangement of the backbone at Thr111 and His112 prevents the 
side chain of Thr114 from clashing with Thr111 of a neighboring monomer.

The water molecule suggested to be important for dephosphorylation 

in the structure of A115V:dTTP even with the larger side chain of valine compared with alanine, 

see Figure 9.16.  
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The A115V enzyme is unable to exist in the inactive conformation with dTTP bound because of 
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Figure 9.15: Schematic and structural views of the hydrogen bonding network of a conserved 
histidine in A: His112 in A115V 
2HXD5) and C: His112 in WT Mt DCD

 

Figure 9.16: A115V:dTTP bound (chain H) shown with 2F

Electron density clearly shows the pr

dephosphorylation [85]. 

A rotation of the nucleotide pyrimidine moiety is observed between the substrate analogue in 

Mj DCD-DUT (pdb 2HXD) and dTTP in A115V and

seen between the pyrimidine planes of superposed nucleotide structures of dTTP in A115V and 

WO VARIANTS OF MT DCD-DUT  

Schematic and structural views of the hydrogen bonding network of a conserved 
histidine in A: His112 in A115V Mt DCD-DUT:dTTP, B: His128 in Mj DCD-DUT:dUMPNPP (pdb 

DCD-DUT:dTTP (pdb 2QXX). 

 

A115V:dTTP bound (chain H) shown with 2Fobs – Fcalc σ = 1.0 electron density map. 

Electron density clearly shows the presence of the water molecule suggested to be important for 

A rotation of the nucleotide pyrimidine moiety is observed between the substrate analogue in 

DUT (pdb 2HXD) and dTTP in A115V and WT (this work and pdb 2QXX). A 23

seen between the pyrimidine planes of superposed nucleotide structures of dTTP in A115V and 
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σ = 1.0 electron density map. 
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A rotation of the nucleotide pyrimidine moiety is observed between the substrate analogue in 

WT (this work and pdb 2QXX). A 23° angle is 

seen between the pyrimidine planes of superposed nucleotide structures of dTTP in A115V and 



dUMPNPP in Mj DCD-DUT, see 

would apparently clash with Val115 and Ser102 if the pyrimidine moiety attained the same 

conformation as dUMPNPP in 

are shown in Figure 9.18. This

bond present between O4 of the nucleotide pyrimidine moiety and Gly116 in the structure of 

DCD-DUT:dUMPNPP, is not observed in the structures of A115V and WT with dTTP bound. 

Instead, the structures with dTTP bound have an additional hydrogen bond from O2 of the dTTP 

pyrimidine moiety to Nη1 of the conserved Arg106, see 

 

Figure 9.17: Stereo view of nucleotide structures from A115V 
DCD-DUT:dUMPNPP (blue, pdb 2HXD) showing a 23
the two structures. 

 

Figure 9.18: Structure of the A115V:dTTP complex shown in green with the surface of the 
nucleotide binding pocket shown in grey. dTTP shown in red was forced to obtain the same 
conformation as seen for dUMPNPP in 
PDB2PQR [114] and the APBS plugin 
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Structure of the A115V:dTTP complex shown in green with the surface of the 
nucleotide binding pocket shown in grey. dTTP shown in red was forced to obtain the same 
conformation as seen for dUMPNPP in Mj DCD-DUT (pdb 2HXD). The figure was made using 

and the APBS plugin [115] to PyMol [5]. 
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Figure 9.19: Schematic view of the hydrogen bonding network of A: Arg106 in A115V:dTTP, B: 
Arg122 in Mj DCD-DUT:dUMPNPP (pdb 2HXD) and C: Arg106 in WT:dTTP (pdb 2QXX). 

A different conformation of the Arg97 side chain is seen in A115V:dTTP (Figure 9.20A)  compared 

with WT:dTTP (Figure 9.20B). In two of the four trimers in the A115V structure, a Mg2+ ion has 

been modeled at the center of the trimer. The distance from Mg2+ to Glu99 Oε is 3-3.2 Å and 

water molecules are likely to occupy some of the space in the center of the trimer. However, the 

resolution is insufficient for modeling of these. Also, it is likely that Mg2+ is present in the other 

trimers, but that the resolution is insufficient for modeling these. The positive charge of Mg2+ 

stabilizes the side chains of Glu99. The conformation of the nearby His112 also does not affect 

the different conformation of Arg97, since apo WT shows the same conformation of His112 as 

A115V, but with Arg97 facing the center of the trimer similarly to WT:dTTP, see Figure 9.20C.  

 

 

Figure 9.20. Center of trimers from A: A115V:dTTP (orange, trimer HJL, Mg2+ grey), B: WT:dTTP 
(red, pdb 2QXX), C: apo WT (green, pdb 2QLP) with Glu99 and Arg97 shown in ball and stick. 

 

9.4 Discussion 

As described in section 7.1, A115V and A115G variants of Mt DCD-DUT were created to 

investigate the importance of steric hindrance by the side chain of Ala115 on a water molecule 

suggested to be crucial for activity [85]. Both variants proved to have some unexpected 

properties. 

 



9 CHARACTERIZATION OF WT AND TWO VARIANTS OF MT DCD-DUT 

79 

9.4.1 Properties of WT and A115V enzymes 

The flexible region consisting of residues 110-118 in the A115V variant with dTTP bound does 

not have the same conformation as the WT enzyme with dTTP bound. Instead, the conformation 

of the A115V variant is very similar to the active conformation found in Mj DCD-DUT:dUMPNPP. 

The water molecule suggested to be important for dephosphorylation [85] is present in chain H 

in the structure of A115V:dTTP, see Figure 9.16. The A115V variant does not dephosphorylate 

dTTP even though the water molecule is present in the structure and it can therefore not be the 

missing piece in explaining why dTTP is not dephosphorylated.  

Steric hindrance forces a rotation of the nucleotide pyrimidine moiety between dUMPNPP in Mj 

DCD-DUT (pdb 2HXD) and dTTP in A115V and WT (pdb 2QXX), see Figure 9.17. This rotation 

causes changes in the hydrogen bond pattern of a conserved arginine as shown in Figure 9.19. 

Changes in the hydrogen bonds of this conserved arginine (Mt DCD-DUT Arg106, Mj DCD-DUT 

Arg122) also affect a conserved serine (Mt DCD-DUT Ser102, Mj DCD-DUT Ser118) because of 

their shared hydrogen bonds in all structures (Figure 9.19). The serine is crucial for activity and 

has been suggested to play an important role in dephosphorylation by balancing negative charge 

on the oxygen bridging the α,β-phosphorous [93,102]. Arginine is a hydrogen bond donor to 

serine and thus aid in balancing negative charge formed on the serine. The ability of arginine to 

function as a hydrogen bond donor to serine is impaired when dTTP is bound because Arg106 

Nη1 is involved in an additional hydrogen bond to O2 of the dTTP pyrimidine moiety. Also, the 

additional hydrogen bond between arginine and dTTP restrains the flexibility of the arginine. The 

more restrained arginine may be less capable of stabilizing negative charge formed on the 

flexible serine side chain. 

A115V:dTTP is unable to attain in the same conformation as WT:dTTP because of the introduced 

valine side chain. The larger size of the valine side chain forces a rearrangement of the flexible 

110-118 residue range (Figure 9.14) to adopt a conformation very similar to the active 

conformation observed in Mj DCD-DUT:dUMPNPP (Figure 9.12B) at the expense of 7 hydrogen 

bonds in the flexible region. The overall structures are generally very similar, and the loss of 7 

hydrogen bonds in the flexible region may explain the much reduced thermal stability of 

A115V:dTTP compared with WT:dTTP (transition temperatures of 67 vs. 87 °C, section 9.3.5). The 

inability of A115V Mt DCD-DUT to exist in the inactive conformation is supported by the 

hyperbolic saturation curve with dUTP at pH 6.8 (Figure 9.2B), which indicates that no structural 

rearrangement is necessary and the enzyme is active.  

WT binds dTTP in an inactive conformation (pdb 2QXX), see Figure 9.12A. WT:dTTP is unable to 

exist in the active conformation observed in Mj DCD-DUT:dUMPNPP unless the backbone of 

Ala115 and Gly116 moves to accommodate the 5-methyl group of dTTP, see Figure 9.21. This 

movement is accompanied by a rearrangement of His112. This conformational change along 

with hydrogen bond patterns of His112 is shown in Figure 9.15. There is no structural hindrance 

for the WT enzyme to be able to bind dTTP in a similar conformation as seen for A115V:dTTP. 

However, the WT:dTTP structure in the inactive conformation has 7 additional hydrogen bonds 
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in the flexible region compared with A115V:dTTP in the active conformation. Therefore, WT 

favors binding dTTP in the inactive conformation. 

 

Figure 9.21: Electrostatic surface 
shown (pdb 2QXX). The backbone structure of 
blue. The arrow points to the clash between Ala131 and Gly132 in 
and Gly116 in Mt) and dTTP in Mt 

APBS plugin [115] to PyMol [5]. 
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may be partly protonated at pH 6.8, while it is primarily deprotonated at pH 8.0. Therefore, the 

difference in dTTP inhibition is probably related to the protonation state of His112. WT 

DUT is likely to adopt the same active co

to the conformation seen in A115V:dTTP. Protonation of His112 stabilize

conformation because of the strain caused by the additional proton in the 110

addition, the hydrogen bond between His112 N

protonated histidine can no longer 

                                                           
6 Calculating the pKa value of His112 in WT:dTTP (pdb 2QXX) using PROPKA 
approximately 3. The decrease is attributed to desolvation, however, un
electron density map at the center of the trimer strongly suggest the presence of disordered solvent near 
the histidine. Therefore, the desolvation correction by PROPKA is likely to b
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Unexpectedly, the WT enzyme was uninhibited by dTTP at pH 8.0 (Figure 9.4). The WT enzyme 

was even uninhibited by dTTP at dCTP concentrations around KM (50 µM, Figure 

enzyme showed no binding of dTTP at pH 7.1 (Figure 9.6A). The pH dependence of

and inhibition may be explained by looking into the protonation state of a conserved histidine 

near the nucleotide binding site and its effects on available structures with active and inactive 

Figure 9.15). Histidine has a pKa value of approximately

likely to be affected by the protein environment6. With the observed differences, the histidine 

may be partly protonated at pH 6.8, while it is primarily deprotonated at pH 8.0. Therefore, the 

difference in dTTP inhibition is probably related to the protonation state of His112. WT 

DUT is likely to adopt the same active conformation as seen in Mj DCD-DUT, which is very similar 

to the conformation seen in A115V:dTTP. Protonation of His112 stabilize

conformation because of the strain caused by the additional proton in the 110

bond between His112 Nπ and Ala115 N is broken because 

protonated histidine can no longer act as a hydrogen bond acceptor (Figure 9

                   
value of His112 in WT:dTTP (pdb 2QXX) using PROPKA [59,60,118]

attributed to desolvation, however, un-modeled blobs in the F
electron density map at the center of the trimer strongly suggest the presence of disordered solvent near 
the histidine. Therefore, the desolvation correction by PROPKA is likely to be exaggerated.

in the flexible region compared with A115V:dTTP in the active conformation. Therefore, WT 

DCD-DUT with dTTP 
DUT:dUMPNPP (pdb 2HXD) is shown in 

(corresponding to Ala115 
DUT. The figure was made using PDB2PQR [114] and the 

). The WT enzyme 

Figure 9.4A) and the 

A). The pH dependence of dTTP binding 

and inhibition may be explained by looking into the protonation state of a conserved histidine 

able structures with active and inactive 

of approximately 6, albeit it is 

rences, the histidine 

may be partly protonated at pH 6.8, while it is primarily deprotonated at pH 8.0. Therefore, the 

difference in dTTP inhibition is probably related to the protonation state of His112. WT Mt DCD-

DUT, which is very similar 

to the conformation seen in A115V:dTTP. Protonation of His112 stabilizes the inactive 

conformation because of the strain caused by the additional proton in the 110-118 loop. In 

is broken because the 

9.15B shows the 

[59,60,118] gives values of 
modeled blobs in the Fobs – Fcalc 

electron density map at the center of the trimer strongly suggest the presence of disordered solvent near 
e exaggerated. 
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histidine hydrogen bond pattern and loop conformation for the active conformation of Mj DCD-

DUT). A complete deprotonation of His112 in WT Mt DCD-DUT causes the enzyme to be present 

solely in the active conformation where it is unable to bind dTTP because of the placement of 

Ala115 and Gly116 (Figure 9.21) [85]. This may explain why no dTTP inhibition was observed at 

pH 8.0. The hyperbolic dCTP and dUTP saturation curves at pH 8.0 support that no structural 

rearrangement is needed for the enzyme to be active. Conversely, this structural rearrangement 

is needed at pH 6.8, where His112 is partly protonated and the WT enzyme exhibits cooperative 

substrate saturation [85].  

Unlike the WT enzyme, A115V Mt DCD-DUT was able to bind dTTP at pH above 6.8. Also, dTTP 

inhibition was observed both at pH 6.8 and 8.0 for A115V. Although the structure of A115V:dTTP 

is very similar to Mj DCD-DUT:dUMPNPP, the strained loop in A115V:dTTP is more loose because 

the V115 side chain and the 5-methyl group of dTTP causes movement of the backbone (Figure 

9.13). The additional space at His112 (approximately 1.5 Å movement of His112 Nπ) in 

A115V:dTTP may allow protonated His112 in the active conformation. A115V dTTP inhibition 

was stronger at pH 8.0 compared with pH 6.8 (Figure 9.4B), which can be explained by 

deprotonated His112 leaving more space for dTTP binding than protonated His112.  

The determined KM for the A115V variant was very low for dUTP at pH 8.0 (0.6 ± 0.2 µM). KM 

values in the 0.1-0.5 µM range have been reported for E. coli dUTPase [101,116], but it is unlikely 

that the A115V variant contains a residual amount of the dUTPase subsequent to purification. Ec 

dUTPase is brought to 60 % saturation with ammonium sulfate during purification [117], 

whereas the bifunctional enzyme is only brought to 40-45 % saturation. Also, the pH effect on KM 

and inhibition by dTTP seen for A115V is not seen for E. coli dUTPase [116].  

The WT enzyme shows a slightly higher kcat (1.2 fold) and a slightly lower KM (1.5 fold) for dCTP 

compared with dUTP at pH 8.0, see Table 9.4. This is contrary to the rates determined by Helt et 

al. [85] at pH 6.8, where a lower reaction rate for dCTP was observed compared with dUTP. The 

protonation state of His112 thus seems to have an influence on whether dCTP deamination or 

dUTP dephophorylation appears to be the rate determining reaction.  

Figure 9.22 presents a schematic overview of the discussed conformations of A115V and WT Mt 

DCD-DUT as well as the protonation state of His112 and how it influences the nucleotide 

binding. 
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Figure 9.22: Schematic overview of the protonation/deprotonation of His112 and relation to the 

active/inactive conformations of the protein. A: WT Mt DCD-DUT does not bind dTTP in the 

active conformation and assumes the inactive conformation when His112 is protonated. B: 

A115V Mt DCD-DUT only exists in a slightly wider conformation, very similar to the active 

conformation, where it binds dTTP regardless of the protonation state of His112. 
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9.4.2 Properties of the A115G variant 

The A115G variant was investigated as a potential enzyme for cleavage of dTTP as discussed in 

section 7.1. However, the enzyme was unable to cleave dTTP and had about 20 fold reduction in 

kcat for dCTP at pH 8.0 as well as for dUTP at pH 8.0 and 6.8. 

Change of Ala115 to a glycine is very likely to introduce additional flexibility to the already 

flexible 110-118 region as judged from available structures of bifunctional enzymes (Figure 9.12 

and Figure 9.15). There is no structural hindrance for the A115G variant to be able to exist in 

both the active and inactive conformations. The similar morphology of the apo crystals of WT 

and A115G suggests that the A115G enzyme adopts the same conformation as the WT enzyme. 

The introduced flexibility is situated very close to the interfaces between the molecules in the 

trimer. The observed A115G dTTP binding curve (Figure 9.6C), where dTTP occupation decreases 

at higher dTTP concentrations, could possibly be explained by the trimer falling apart when dTTP 

attempts to bind to the second or third site of the trimer, thereby releasing dTTP to the solution. 

The increased flexibility may thus result in a destabilization of the trimer when dTTP binds, 

causing a breakdown of the A115G quaternary structure. 

While the dUTP saturation curves for WT are hyperbolic at pH 8.0 and sigmoidal at pH 6.8, dUTP 

saturation curves for A115G are hyperbolic at both pH 8.0 and pH 6.8. Furthermore, the A115G 

variant shows cooperativity for dCTP saturation at pH 8.0, while the WT enzyme shows 

hyperbolic dCTP saturation. The A115G variant thus appears to distinguish between dCTP and 

dUTP as substrates at pH 8.0 (Figure 9.3C). dUTP readily binds and is dephosphorylated, whereas 

a rearrangement is necessary for dCTP deamination to take place. Ala115 is not conserved 

among dUTPases (Chapter 6) and, hence, it may be speculated that changing Ala115 to a glycine 

may have little effect on the conformation of residues important for dUTPase activity. However, 

the glycine may still affect the ability of the enzyme to bind and convert dUTP due to the 

introduced flexibility near the active site. In the WT enzyme, the backbone oxygen of Ala115 

binds to the catalytic water molecule in the deamination reaction and plays an important role for 

dCTP deaminase activity (described in section 6.2). Glycine lacks Cβ and thus has additional 

allowed backbone conformations compared with other residues [72]. This may be related to the 

observed cooperativity for A115G with dCTP at pH 8.0, where an adjustment of the Gly115 

backbone in the flexible loop may be needed for the reaction to take place.  

An opposite pH effect of dTTP inhibition is observed for the A115G variant compared with the 

WT enzyme (Figure 9.4). A115G shows strong dTTP inhibition at pH 8.0 and no significant 

inhibition at pH 6.8. However, the maximal dTTP concentration was 0.1 mM and additional 

experiments are needed to determine whether the enzyme is completely uninhibited at pH 6.8. 

The pH dependence of the A115G dTTP inhibition was contrary to that of the WT enzyme. The 

A115G enzyme was strongly inhibited by dTTP at pH 8.0, whereas the WT enzyme was 

insensitive to dTTP at pH 8.0. The additional space obtained by replacing alanine with glycine 

could be a simple explanation for dTTP binding at pH 8.0. The effect associated with the unusual 

dTTP binding curve at pH 8.0 discussed above is also likely to contribute to the loss of activity 

observed at pH 8.0. Protonation of His112 at pH 6.8 might have a stabilizing effect on the flexible 
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loop through favorable interactions with backbone oxygens thereby reducing the detrimental 

effect of dTTP. For an illustration of the loop, see Figure 9.15A. 

 

9.5 Conclusion 

Substrate saturation and dTTP inhibition studies have been carried out for WT, A115V and 

A115G Mt DCD-DUT, and the structure of A115V in complex with dTTP has been solved.  

The two variant enzymes were constructed to investigate the importance of steric hindrance on 

a water molecule suggested to play a key role in dephosphorylation. However, this water mole-

cule was present in the structure of A115V:dTTP. The A115V variant did not dephosphorylate 

dTTP and the water molecule can therefore not explain the lack of activity with dTTP bound. The 

pyrimidine moiety of dTTP in the structures of WT and A115V is positioned at a different angle 

than the pyrimidine moiety of dUMPNPP in Mj DCD-DUT. This rotation allows a conserved 

arginine to form a hydrogen bond with O2 of the dTTP pymidine moiety. The conserved arginine 

also forms hydrogen bonds with a conserved serine that plays an important role in 

dephosphorylation, possibly by stabilizing negative charge formed on the oxygen bridging the α-

β-phosphorous of the substrate. The additional hydrogen bond between arginine and dTTP 

impairs the ability of the arginine to be a hydrogen bond donor to the serine and thereby also 

impairs the stabilization of negative charge formed on the oxygen bridging the α-β-phosphorous 

in the course of the reaction. The hydrogen bond between the arginine and dTTP is also likely to 

restrain the position of the arginine and affect the ability of the arginine to bond to the flexible 

serine side chain.  

WT enzyme proved insensitive to the presence of dTTP at pH 8.0, while dTTP inhibition at pH 6.8 

was confirmed. This can be explained by the protonation state of His112 situated close to the 

nucleotide binding site. The flexible loop consisting of residues 110-118 can exist in the active or 

the inactive conformation. The active conformation of the WT enzyme is likely to be the same as 

is observed in Mj DCD-DUT:dUMPNPP, in which the WT enzyme is unable to bind dTTP due to 

steric hindrance by Ala115 and Gly116. The WT enzyme is stabilized in the active conformation 

at pH 8.0 because of the completely deprotonated His112. This can explain the insensitivity to 

dTTP at pH 8.0. The hyperbolic substrate saturation of the WT enzyme at pH 8.0 for both dCTP 

and dUTP supports that the enzyme is present solely in the active conformation. In contrast, 

protonation of His112 at pH 6.8 strains the loop in the active conformation and allows the 

enzyme to bind dTTP in the inactive conformation. 

The conformation of the flexible 110-118 region of the A115V:dTTP structure is very similar to 

the active conformation observed in Mj DCD-DUT:dUMPNPP, whereas the WT:dTTP structure is 

clearly in a different inactive conformation. The A115V variant enzyme is unable to exist in the 

inactive conformation due to steric hindrance caused by the introduced valine side chain. The 

flexible loop in the inactive conformation of WT:dTTP has 7 additional hydrogen bonds 

compared with the A115V:dTTP structure, and the WT enzyme thus favors binding dTTP in the 

inactive conformation. The difference in hydrogen bonds can explain the reduced thermal 
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stability of the A115V enzyme compared with the WT enzyme in the presence of dTTP (transition 

temperatures of 67 °C vs. 87 °C, respectively). 

The A115V variant is inhibited by dTTP at both pH 6.8 and 8.0, albeit with a stronger inhibition at 

pH 8.0. The flexible loop in the A115V:dTTP structure is more loose compared with the loop in 

the active structure of Mj DCD-DUT:dUMPNPP. This additional space may account for dTTP 

binding even with protonated His112. The stronger inhibition at pH 8.0 can be explained by 

deprotonated His112 leaving additional space for dTTP binding compared with protonated 

His112.  

The A115G variant was very sensitive to dTTP at pH 8.0, while no substantial inhibition was 

observed at pH 6.8. The pH dependence of the A115G dTTP inhibition was contrary to that of the 

WT enzyme. This can be explained by the additional space for dTTP binding, which is a result of 

replacing alanine with glycine. However, the unusual dTTP binding curve at pH 8.0 suggests that 

dTTP has a detrimental effect on the protein because of the introduced flexibility near the 

nucleotide binding site. This effect appears to be much reduced at pH 6.8, where the A115G 

shows significantly lower sensitivity to dTTP. This could be caused by protonated His112 having a 

stabilizing effect through a hydrogen bond to Gly115 O, thereby introducing a structural restraint 

on the very flexible 110-118 region.  

The A115G variant showed cooperativity with dCTP as substrate and not with dUTP as substrate 

at pH 8.0. This behavior is not seen for the WT enzyme, which shows hyperbolic saturation with 

both substrates at pH 8.0. The difference in substrate saturation for dCTP and dUTP for the 

A115G variant at pH 8.0 may be caused by the additional flexibility introduced by the glycine in 

the already flexible loop. The additional allowed backbone conformations of glycine may have an 

effect on the observed cooperativity with dCTP at pH 8.0. The backbone of Gly115 may have to 

rearrange for the deamination to take place. This rearrangement may be indifferent for the 

dUTPase reaction, as this residue is involved in deamination and not in dephosphorylation. 

 





 

87 

Chapter Ten 

10 CONCLUDING REMARKS 

This thesis presents work on two different projects: the all cysteinyl coordinated D14C variant of 

the hyperthermostable Pyrococcus furiosus ferredoxin as well as WT and two variants of the 

bifunctional dCTP deaminase-dUTPase from Mycobacterium tuberculosis. The ferredoxin work 

includes expression and purification of D14C [Fe4S4] Pf Fd, as well as cluster conversion and 

subsequent purification, crystallization and crystal structure of D14C [Fe3S4] Pf Fd. The work on 

the bifunctional enzyme and variants includes purifications, substrate saturation at pH 8.0 and 

pH 6.8, dTTP inhibition studies, dTTP binding, DSC and crystallization setups with apo enzyme or 

enzyme in complex with dTTP, dUMPNPP or dUMPCPP. The crystal structure of A115V Mt DCD-

DUT with dTTP bound has been solved. To keep track of crystallization trials and results, a 

program named MyCrystals has been developed and used extensively throughout this work. 

MyCrystals combines pictures with crystallization conditions and is able to sort the pictures 

based on selected conditions to give an overview of the crystallization results. 

Changing the cluster coordinating aspartate to cysteine in Pf Fd proved to impair the ease with 

which D14C [Fe4S4] Fd converted to D14C [Fe3S4] Fd. Purification of the [Fe3S4] containing D14C 

Fd was furthermore challenged by the formation of a disulfide bonded dimer when the free 

cysteine was not protonated. Formation of the disulfide bonded dimer was observed at pH 8.0, 

whereas only the monomer was present at pH 5.8. The crystal structure of D14C [Fe3S4] was 

solved to 2.8 Å despite difficulties in crystallization due to inhomogeneity of the protein solution. 

The crystal structure is the first structure with a [Fe3S4] cluster, in which a cysteine from a full 

cysteine binding motif is unprotected and facing away from the cluster. The structure is in close 

resemblance with the WT [Fe3S4] structure. The crystal packing in both D14C and WT [Fe3S4] Fd 

showed extended β-sheet dimers. These dimers were not observed in solution and were 

probably formed as a result of the high protein concentration in the crystals.  

WT, A115V and A115G Mt DCD-DUT have been successfully purified. The A115G variant was 

prone to degradation and in order to obtain intact protein, the purification procedure was 

carried out quickly and with minimal protein precipitation. Precipitation issues were solved by 

changing pH of the buffer from 6.8 to 8.0. Distinct differences in the enzyme kinetics were 

observed at these two pH values, and structural analyses were used as a basis for explaining this 

behavior. The variants were created to investigate the importance of steric hindrance on a water 

molecule suggested to play a key role in dephosphorylation. However, this water molecule was 

present in the structure of A115V:dTTP and the variant did not dephosphorylate dTTP. A rotation 

of the dTTP pyrimidine moiety is observed in the structures of A115V and WT compared with the 

pyrimidine moiety of dUMPNPP in Mj DCD-DUT. This causes changes in the hydrogen bonding 

pattern of conserved residues in the active site and may give rise to less stabilization of the 
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negative charge formed on the oxygen bridging the α-β-phosphorous in the course of the 

dephosphorylation reaction. The structure of A115V Mt DCD-DUT with dTTP bound is in close 

resemblance with DCD-DUT from M. jannaschii with dUMPNPP bound and thus contributes with 

important information on the conformation of conserved residues. The flexible region made up 

of residues 110-118 near the nucleotide binding site rearranges between an active and an 

inactive conformation. dTTP binds to the WT enzyme in the inactive conformation (pdb 2QXX), 

while the active conformation is seen in the structure of Mj DCD-DUT with a substrate analogue 

bound (pdb 2HXD). The flexible region in the solved structure of A115V:dTTP is very similar to 

the active conformation. Unlike the WT enzyme, the A115V variant is unable to bind dTTP in the 

inactive conformation due to steric hindrance caused by the introduced valine side chain. The 

differences seen between A115V:dTTP and Mj DCD-DUT:dUMPNPP are caused by the additional 

methyl group on dTTP and the larger size of the valine side chain. The WT enzyme could exist in 

the same conformation as A115V:dTTP with dTTP bound, but the WT enzyme has 7 additional 

hydrogen bonds in the 110-118 region in the inactive conformation and thus favors binding dTTP 

in the inactive conformation. This difference in hydrogen bonds may also explain the much 

reduced thermal stability of the A115V enzyme compared with the WT enzyme in the presence 

of dTTP (transition temperatures of 67 vs. 87 °C, respectively). 

WT enzyme was inhibited by dTTP at pH 6.8 and unexpectedly proved insensitive to dTTP at pH 

8.0. The protonation state of the conserved His112 in the flexible loop is likely to play an 

important role in the differences in dTTP binding and inhibition observed with varying pH. At pH 

8.0, His112 is completely deprotonated and stabilized in the active conformation, which does 

not allow dTTP binding because of the Ala115 and Gly116 backbones. Protonated His112 strains 

the 110-118 active conformation and allows the WT enzyme to bind dTTP in the inactive 

conformation at pH 6.8. 

The A115V variant was inhibited by dTTP at both pH 6.8 and 8.0 and thus allowed dTTP binding 

even with partly protonated His112. The structure of A115V:dTTP reveals a more loose loop of 

the 110-118 region compared with Mj DCD-DUT:dUMPNPP because of steric hindrance caused 

by the introduced valine side chain and the methyl group of dTTP. This may allow sufficient room 

for protonated histidine even with dTTP bound in a conformation very similar to the active 

conformation.  

The A115G variant was very sensitive to dTTP at pH 8.0, while no substantial inhibition was 

observed at pH 6.8. dTTP binding at pH 8.0 may be explained by the additional flexibility and 

space caused by the introduced glycine. In contrast to both WT and A115V, the protonated 

histidine in A115G may induce stability by binding to the backbone oxygen of Gly115, thereby 

causing a structural restraint on the very flexible loop and reducing dTTP inhibition. The A115G 

variant appeared to distinguish between dCTP and dUTP as substrates at pH 8.0, where 

substrate saturation curves were sigmoidal and hyperbolic, respectively. This may be related to 

Ala115 (for WT) being involved in dCTP deamination. Glycine has additional allowed backbone 

conformations, and A115G may thus require adjustment of the protein chain at Gly115 in order 

for the deamination to take place. In contrast, no dependence on the Gly115 conformation was 

seen for dephosphorylation, emphasizing that this residue is not involved in dephosphorylation.
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Chapter Eleven 

11 OUTLOOK 

The successful formation of D14C [Fe3S4] Pf Fd is a preceding step to the formation of 

heterometallic clusters. Subsequent to the developed oxidation procedure presented in this 

thesis, the D14C Fd has been synthesized with two heterometallic clusters. [ZnFe3S4] and 

[AgFe3S4] were produced, purified and characterized by Maja Martic [63]. Additional studies of 

other types of heterometallic clusters as well as studies of the possible catalytic abilities of these 

ferredoxins are among the perspectives. 

Evolution is constantly on-going and studying evolution is of interest to provide substantial, 

fundamental knowledge on how organisms function and evolve. In unraveling the evolution of 

base pairing in DNA, the study of an intermediate step in dTTP synthesis in this work is but a 

small contribution. However, all contributions are important when adding up information across 

molecular families.  

It is difficult to ascertain what kind of mutational study could entail dephosphorylation of dTTP 

by the bifunctional Mt DCD-DUT. Removing side chains introduces additional flexibility and has a 

detrimental effect on the protein nucleotide binding, as was seen for the A115G variant. 

However, the steric hindrance of particularly Ala115 and Gly116 backbones cause dTTP to bind 

with the pyrimidine moiety in a different angle, thereby causing the hydrogen bond pattern and 

the flexibility of conserved residues to change and possibly disrupt activity.  

pH proved to play an important role for activity and inhibition, and further studies of the pH 

effect on the properties of other members of the enzyme family can contribute to the 

understanding of the factors influencing substrate and/or inhibitor binding. 
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Appendix A 

A MYCRYSTALS AND DATABASES 

Enclosed is a DVD with the program MyCrystals, which is described in Chapter 2. The DVD also 

contains three databases with crystallization results and corresponding folders including 

crystallization pictures. The DVD is placed on the last page of the thesis for practical reasons. 

Available databases: 

Ferredoxin.xml Database with 461 entries of crystallization results for D14C [Fe3S4] 

Pyrococcus furiosus ferredoxin (section 5.3.1). 

DCDDUT.xml Database with 379 entries of crystallization results for WT, A115V 

and A115G Mycobacterium tuberculosis dCTP deaminase-dUTPase. 

There is an option to sort database results based on enzyme variant 

(section 9.3.6).  

NDKext.xml Database with 383 entries of crystallization results for an extended 

version of nucleoside diphosphate kinase from Sulfolobus 

solfataricus (Appendix F.3.1). 
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Appendix B 

B FERREDOXIN EXPERIMENTAL PROCEDURES 

Subsequent to the oxidation procedure described in detail below, the protein solution was 

exchanged into 20 mM Tris/HCl pH 8.0 by ultrafiltration and then purified by anion exchange at 

pH 8.0 unless otherwise specified. Each solution was loaded onto a 16 mm/10 cm Source 30Q 

column equilibrated with 20 mM Tris/HCl pH 8.0. The column was washed with 2 CV 20 mM 

Tris/HCl pH 8.0 and elution was carried out using a linear salt gradient of 0.15 M to 0.4 M NaCl in 

20 mM Tris/HCl pH 8.0 over 17 CV. 

Ultrafiltration was carried out at 4 °C in a stirred Amicon cell with a PLBC NMWL 3 kDa 

membrane. During the anaerobic experiments, all buffer solutions were flushed with argon to 

remove oxygen (1 hour per 100 mL using the manifold and 1 hour per L using the degassing 

equipment connected to the HPLC). All flasks and tubes were sealed off with Suba-Seal silicon 

rubber septa (Sigma-Aldrich) and filled with argon through teflon tubings fitted with stainless 

steel needles. Syringes used for transfer of protein and solutions were also repeatedly purged 

with argon prior to use. 

B. 15 min, 0.3 M NaCl in 20 mM Tris/HCl pH 8.0  

15x molar excess of K3[Fe(CN)6]Cl3 was used. 5 mL ferricyanide in 20 mM Tris/HCl pH 8.0 was 

added to 10 mg protein in 5 mL 0.3 M NaCl in 20 mM Tris/HCl pH 8.0. The solution was 

incubated at room temperature for 15 minutes with gentle stirring. 

C. 15 min, 100 mM Tris/HCl pH 7.8  

15x molar excess of K3[Fe(CN)6]Cl3 was used. 5 mL ferricyanide solution in 100 mM Tris/HCl pH 

7.8 was added to 10 mg protein in 5 mL 100 mM Tris/HCl pH 7.8. The solution was incubated at 

room temperature for 15 minutes with gentle stirring. 

D/E. 45 min and 3 hrs, 100 mM Tris/HCl pH 7.8  

15x molar excess of K3[Fe(CN)6]Cl3 was used. The ferricyanide solution in 100 mM Tris/HCl pH 7.8 

was added to 17 mg protein solution (also in 100 mM Tris/HCl pH 7.8) and the volume adjusted 

with buffer to 17 mL. 8.5 mL were extracted after an incubation time of 45 minutes and the 

remaining was incubated for a total of 3 hours with gentle stirring. 

F. 15 min, 100 mM BisTrisPropane/HCl pH 6.5, anaerobic purification 

15x molar excess of ferricyanide was used. 5 mL ferricyanide in 100 mM BisTrisPropane/HCl pH 

6.5 was added to 10.2 mg protein in 5 mL 100 mM BisTrisPropane/HCl pH 6.5. The solution was 
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incubated at room temperature for 15 minutes with gentle stirring. Ferricyanide in 5 mL buffer. 

The solution was exchanged into 20 mM Tris/HCl pH 8.0 buffer by ultrafiltration. Anion exchange 

purification was carried out anaerobically using the same purification procedure as described 

above. 

G. 45 min, EDTA, 20 mM Tris/HCl pH 8.0  

15x molar excess of ferricyanide was used. The ferricyanide solution in 20 mM Tris/HCl pH 8.0 

was added to 8 mg protein solution (also in 20 mM Tris/HCl pH 8.0) and 1.5x molar excess EDTA 

was added. The volume adjusted with buffer to 8 mL. The solution was incubated at room 

temperature for 45 minutes with gentle stirring. 

H. 50 min, EDTA, 50 mM Sodium Acetate/Acetic Acid pH 4.5  

15x molar excess of ferricyanide was used. 5 mg protein in 50 mM Sodium Acetate/Acetic Acid 

pH 4.5 was added the ferricyanide solution and 1.5x molar excess of EDTA. The volume was 

adjusted to approximately 5 mL with 50 mM Sodium Acetate/Acetic Acid pH 4.5. Incubated at 

room temperature for 50 minutes with stirring. 

I. 3 hrs and overnight at 4 °C, EDTA, 20 mM BisTris/HCl pH 5.8  

15x molar excess of ferricyanide was used. 4.5 mg protein (in 20 mM BisTris/HCl pH 5.8) was 

added the ferricyanide solution and 1.5x molar excess of EDTA. The volume was adjusted to 4.5 

mL with 20 mM BisTris/HCl pH 5.8. The solution was incubated for 3 hours with stirring and left 

overnight at 4 °C with mild stirring. 

J. Overnight, EDTA, 20 mM BisTris/HCl pH 5.8  

15x molar excess of ferricyanide was used. The ferricyanide solution and 1.5x molar excess of 

EDTA were added to 11.7 mg protein in 20 mM BisTris/HCl pH 5.8. The volume was adjusted to 

13 mL with 20 mM BisTris/HCl pH 5.8. The solution was incubated for overnight with stirring. 

The experiment was repeated; 15x molar excess ferricyanide solution and 1.5x molar excess 

EDTA were added to 16.9 mg protein in 20 mM BisTris/HCl pH 5.8. The volume was adjusted to 

16.9 mL with 20 mM BisTris/HCl pH 5.8 and the solution was incubated for overnight with 

stirring. Purified in two identical anion exchange runs at pH 8.0. 

K. 3 hrs, EDTA, 20 mM BisTris/HCl pH 5.8, anion exchange pH 5.8  

15x molar excess of ferricyanide was used. 4.3 mg protein (in 20 mM BisTris/HCl pH 5.8) was 

added the ferricyanide solution and 1.5x molar excess of EDTA. The volume was adjusted to 4.5 

mL with 20 mM BisTris/HCl pH 5.8. The solution was incubated for 3 hours with stirring. The 

solution was exchanged into 20 mM BisTris/HCl pH 5.8 by ultrafiltration and subsequently 

loaded onto a 16 mm/10 cm Source 30Q column equilibrated with 20 mM BisTris/HCl pH 5.8. 

The column was washed with 2 CV 20 mM Tris/HCl pH 5.8 and elution was carried out using a 

linear salt gradient of 0 M to 0.3 M NaCl in 20 mM Tris/HCl pH 5.8 over 20.4 CV. 
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Additional anion exchange runs were performed on fractions from the initial purification and on 

D14C [Fe4S4] Pf Fd. Column and procedure were identical with the above mentioned 

purifications at either pH 5.8 or 8.0 in 20 mM Tris/HCl. Prior to additional runs, the fractions 

were washed into the respective anion exchange buffer by ultrafiltration. 

L. 3 hrs, EDTA, BisTris/HCl pH 5.8, anion exchange pH 5.8  

15x molar excess of ferricyanide was used. 8.2 mg protein (in 20 mM BisTris/HCl pH 5.8) was 

added the ferricyanide solution and 1.5x molar excess of EDTA. The volume was adjusted to 8.2 

mL with 20 mM BisTris/HCl pH 5.8. The solution was incubated for 3 hours. The solution was 

exchanged into 20 mM BisTris/HCl pH 5.8 by ultrafiltration and subsequently loaded onto a 16 

mm/10 cm Source 30Q column equilibrated with 20 mM BisTris/HCl pH 5.8. The column was 

washed with 2 CV 20 mM Tris/HCl pH 5.8 and elution was carried out using a linear salt gradient 

of 0.05 M to 0.28 M NaCl in 20 mM Tris/HCl pH 5.8 over 15.6 CV. 

Additional anion exchange runs were performed on fractions from the initial purification and on 

a mix of fractions from the initial purification and purified D14C [Fe4S4] Pf Fd. The fractions were 

washed into 20 mM Tris/HCl pH 8.0 by ultrafiltration. Column and procedure were identical with 

the above mentioned purification at pH 8.0 in 20 mM Tris/HCl. 

Also, an anaerobic purification was performed at pH 8.0 on fractions from the initial purification. 

The protein fractions were washed into 20 mM Tris/HCl pH 8.0 by ultrafiltration and 

deoxygenized under argon atmosphere prior to the anion exchange run. 

M. Overnight, EDTA, BisTris/HCl pH 5.8, anion exchange pH 5.8  

15x molar excess of ferricyanide was used. The ferricyanide solution and 1.5x molar excess of 

EDTA were added to 14.5 mg protein in 20 mM BisTris/HCl pH 5.8. The volume was adjusted to 

14.5 mL with 20 mM BisTris/HCl pH 5.8. The solution was incubated overnight with stirring at 

room temperature. The solution was exchanged into 20 mM BisTris/HCl pH 5.8 by ultrafiltration 

and subsequently loaded onto a 16 mm/10 cm Source 30Q column equilibrated with 20 mM 

BisTris/HCl pH 5.8. The column was washed with 2 CV 20 mM Tris/HCl pH 5.8 and elution was 

carried out using a linear salt gradient of 0.05 M to 0.28 M NaCl in 20 mM Tris/HCl pH 5.8 over 

15.6 CV. 

N. 15 min, 100 mM Tris/HCl pH 7.8, anion exchange pH 7.8  

15x molar excess of ferricyanide was used. The ferricyanide solution was added to 14.5 mg 

protein in 100 mM Tris/HCl pH 7.8. The volume was adjusted to 14.5 mL with 100 mM Tris/HCl 

pH 7.8. The solution was incubated at room temperature for 15 minutes with gentle stirring and 

then exchanged into 20 mM Tris/HCl pH 7.8 by ultrafiltration. The protein solution was loaded 

onto a 16 mm/10 cm Source 30Q column equilibrated with 20 mM Tris/HCl pH 7.8. The column 

was washed with 2 CV 20 mM Tris/HCl pH 7.8 and elution was carried out using a linear salt 

gradient of 0.15 M to 0.4 M NaCl in 20 mM Tris/HCl pH 7.8 over 17 CV. 
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O. Attempt to insert Co  

15x molar excess of ferricyaide was used. The ferricyanide solution in 20 mM Tris/HCl pH 8.0 was 

added to 10 mg protein solution (also in 20 mM Tris/HCl pH 8.0) and 10x molar excess CoCl2 was 

added. The volume adjusted with buffer to 10 mL. The solution was incubated at room 

temperature for 45 minutes with gentle stirring. 

P. Attempts with dithionite, conversion suggested by Moura et al. [A1]  

7.5 mg protein (in 1125 µL 20 mM Tris/HCl pH 8.0) was added 750 µL 0.8 M Tris/HCl pH 7.6 and 

then added 100x molar excess of dithionite. The volume was adjusted to 7.5 mL with 0.8 M 

Tris/HCl pH 7.6. 

7.5 mg protein (in 1125 µL 20 mM Tris/HCl pH 8.0) was added 750 µL 0.8 M NaCl in 0.1 M 

Tris/HCl pH 7.6 and then added 100x molar excess of dithionite. The volume was adjusted to 7.5 

mL with 0.1 M Tris/HCl + 0.8 M NaCl pH 7.6. 

Both solutions were incubated 2.5 hours and EDTA in 1.5x molar excess was added prior to 

ultrafiltration. 

Q. Attempt with [Fe(phen)3]
3+  

15x molar excess of [Fe(phen)3]
3+ was used. 3 mL [Fe(phen)3]

3+ solution in water was added to 5 

mg protein (in 2 mL 20 mM Tris/HCl pH 8.0). The solution was incubated for 20 minutes. 

[Fe(phen)3]
2+  was prepared by mixing Fe(NH4)2(SO4)2) with 1,10-phenanthroline monohydrate in 

aqueous solution. The product was oxidized to [Fe(phen)3]
3+ by addition of 

(NH4)2Ce(NO3)6.NaClO4 was added and the solution was cooled on ice, filtered and dried to form 

solid Fe(phen)3(ClO4)3 [A2,3].  
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Appendix C 

C FERREDOXIN RESULTS 

General denotations for all figures in this Appendix: chromatogram show elution followed at 

280, 390 and 408 nm (blue, red and pink, respectively) and collected fractions are marked with a 

black line, whereas vertical lines on UV-vis spectra mark 390 nm and/or 408 nm. 

 

Figure C.1: Oxidation of D14C Pf Fd; chromatogram and UV-vis spectra from experiment B.  

 

 

Figure C.2: Oxidation of D14C Pf Fd; chromatogram and UV-vis spectrum from experiment O.  
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Figure C.3: Treatment of D14C Pf Fd; chromatograms and UV-vis spectrum from experiments P. 

Top: treated in 0.8 M Tris/HCl pH 7.6. Bottom: treated in 0.8 M NaCl in 0.1 M Tris/HCl pH 7.6. 

 

 

 

Figure C.4: Oxidation of D14C Pf Fd; chromatogram from experiment Q. 
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Figure C.5: Oxidation of D14C Pf Fd; chromatograms from experiments C, D and E. Incubation 

times are given and the corresponding UV-vis spectra are given to the right of the chromato-

grams.  
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Figure C.6: Oxidation of D14C Pf Fd; chromatogram from experiment F. 

 

  

Figure C.7: Oxidation of D14C Pf Fd; chromatogram and UV-vis spectrum from experiment N. 
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Figure C.8: Oxidation of D14C Pf Fd; chromatogram from experiment G and H.   
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Figure legend on the next page

 

Figure legend on the next page 
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Figure C.9: Oxidation of D14C Pf Fd; chromatograms and UV-vis spectra from experiments L. 

Top: chromatogram, purification at pH 5.8. Second to the top: aliquot of collected fractions from 

the top chromatogram re-run at pH 8.0. Second to the bottom: aliquot of collected fraction from 

top chromatogram mixed with D14C [Fe4S4] Pf Fd and re-run at pH 8.0. Bottom: aliquot of 

collected fractions from top chromatogram re-run at pH 8.0 anaerobically.   

 

 

Figure C.10: Mass spectrometric analysis by Alphalyse A/S. Deconvoluted spectrum and original 

spectra of protein in peak a from experiment G. 
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Appendix D 

D DCTP DEAMINASE-DUTPASE EXPERIMENTAL 

PROCEDURES 

Centrifugations were at 4 °C in a Sorvall R5C centrifuge with a SS-34 rotor. 

 

D.1 Purification of WT enzyme 

Cell pellet from 250 mL culture was defrosted on ice. 20 mL 50 mM KH2PO4/K2HPO4 pH 6.8 was 

added and the cells resuspended. The cells were lysed by sonication 8 times for 1 minute while 

kept on ice. The suspension was kept on ice for 30 seconds in between sonications. The 

suspension was centrifuged for 20 minutes at 10,000 rpm. The supernatant was decanted off 

and kept on ice. While stirred on ice, 10 (w/w)% streptomycin was slowly added to the solution 

to a final concentration of 1 %. The solution was left for 30 minutes with gentle stirring on ice. 

The solution was centrifuged for 20 minutes at 10,000 rpm. The supernatant was decanted off 

and dialyzed against 500 mL 50 mM KH2PO4/K2HPO4 pH 6.8 at 4 °C overnight. 

The protein solution was loaded onto a 14 mm/30 cm DE52 anion exchange column equilibrated 

with 50 mM KH2PO4/K2HPO4 pH 6.8. The column was washed with 1 CV 50 mM KH2PO4/K2HPO4 

pH 6.8 and eluted using a linear salt gradient of 50 mM KH2PO4/K2HPO4 pH 6.8 to 0.4 M NaCl in 

50 mM KH2PO4/K2HPO4 pH 6.8 over 5 CV. The absorbance at 280 nm and SDS-PAGE were used to 

determine the protein content and purity of the collected fractions. The selected fractions were 

pooled, diluted two times and loaded onto the re-equilibrated column. The anion exchange step 

was then repeated. The selected fractions were pooled and solid (NH4)2SO4 was added to 45 % 

saturation while stirring the solution on ice. The solution was stirred for 5 minutes and then 

centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the pellet was 

dissolved in 2.5 mL 20 mM HEPES/NaOH pH 8.0. The solution was dialyzed twice against 500 mL 

20 mM HEPES/NaOH pH 8.0. The protein content was measured using the absorbance at 280 nm 

and the protein stored at -20 °C in 150 µL aliquots. 

 

D.2 Purification of the A115V variant 

The A115V variant of Mt DCD-DUT was purified using the same techniques as used for the WT 

enzyme described in section D.1. The most significant change was an additional ammonium 

sulfate precipitation prior to the anion exchange. 
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Cell pellet from 250 mL culture was defrosted on ice. 20 mL 50 mM KH2PO4/K2HPO4 pH 6.8 was 

added and the cells resuspended. A 15 µL sample (V1) of the resuspension was drawn for SDS-

PAGE. The cells were lysed by sonication 12 times for 30 seconds while kept on ice. The 

suspension was kept on ice for 30 seconds in between sonications. The suspension was 

centrifuged for 20 minutes at 10,000 rpm. The supernatant was decanted off and kept on ice. A 

15 µL sample of the supernatant (V2) and a sample of the pellet (V3) was drawn for SDS-PAGE. 

While stirred on ice, 10 (w/w)% streptomycin was slowly added to the solution to a final 

concentration of 1 %. The solution was left for 30 minutes with gentle stirring on ice. The 

solution was centrifuged for 20 minutes at 14,000 rpm. The supernatant was decanted off and 

kept on ice. A 15 µL sample of the supernatant (V4) and a sample of the pellet (V5) were drawn 

for SDS-PAGE. The solution was gently stirred on ice and solid (NH4)2SO4 was slowly added to 40 

% saturation. The solution was stirred for 5 minutes on ice and then centrifuged for 20 minutes 

at 14,000 rpm. The supernatant was discarded and the pellet was dissolved in 10 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8. 15 µL samples of the supernatant (V6) and of the dissolved pellet (V7) 

were drawn for SDS-PAGE. Solid (NH4)2SO4 was slowly added to 40 % saturation and the solution 

was gently stirred on ice for 5 minutes.  The solution was stirred for 5 minutes and then 

centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the pellet was 

dissolved in 10 mL 50 mM KH2PO4/K2HPO4 pH 6.8. 15 µL samples of the supernatant (V8) and of 

the dissolved pellet (V9) were drawn for SDS-PAGE. The protein solution was loaded onto a 14 

mm/30 cm DE52 anion exchange column equilibrated with 50 mM KH2PO4/K2HPO4 pH 6.8. The 

column was washed with 2 CV 50 mM KH2PO4/K2HPO4 pH 6.8 and eluted using a linear salt 

gradient of 50 mM KH2PO4/K2HPO4 pH 6.8 to 0.4 M NaCl in 50 mM KH2PO4/K2HPO4 pH 6.8 over 4 

CV. The absorbance at 280 nm and SDS-PAGE were used to determine the protein content and 

purity of the collected fractions. The selected fractions were pooled and solid (NH4)2SO4 was 

added to 40 % saturation while stirring the solution on ice. The solution was stirred for 5 minutes 

and then centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the 

pellet was dissolved in 5 mL 50 mM KH2PO4/K2HPO4 pH 6.8. The solution was dialyzed twice 

against 500 mL 50 mM KH2PO4/K2HPO4 pH 6.8 and centrifuged for 20 minutes at 14,000 rpm. The 

supernatant was decanted off and stored at -20 °C in 200 µL aliquots. 

At this point, the solubility experiments described in section 8.2.4 were carried out. Based on the 

results (section 8.3.5), the A115V protein aliquots were defrosted on ice and pooled. Solid 

(NH4)2SO4 was slowly added to 40 % saturation. The solution was stirred for 5 minutes on ice and 

then centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the pellet 

dissolved in 20 mM HEPES/NaOH pH 8.0. The protein solution was dialyzed against 500 mL 20 

mM HEPES/NaOH pH 8.0 and frozen in aliquots of 150 µL at -20 °C. 

 

D.3 Purification of the A115G variant 

Purification of A115G Mt DCD-DUT was carried out similarly to the purification described in 

section D.4, albeit leaving out dialysis prior to ion exchange in order to save time. 

Two tubes of cell pellet from a total of 250 mL culture were defrosted on ice. 10 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8 was added to each tube and the cells resuspended. The cells were lysed 
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by sonication twelve times for 30 seconds while kept on ice. The suspension was allowed to cool 

down for 30 seconds in between sonications. The suspension was centrifuged for 20 minutes at 

10,000 rpm. The supernatant was decanted off and kept on ice. A 50 µL sample of the 

supernatant (G1) was drawn for SDS-PAGE. While stirred on ice, 10 (w/w)% streptomycin was 

slowly added to the solution to a final concentration of 1 %. The solution was left for 30 minutes 

with gentle stirring on ice. The solution was centrifuged for 20 minutes at 14,000 rpm. The 

supernatant was decanted off and kept on ice.The solution was gently stirred on ice and solid 

(NH4)2SO4 was slowly added to 40 % saturation. The solution was stirred for 5 minutes on ice and 

then centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the pellet 

was dissolved in 20 mL 50 mM KH2PO4/K2HPO4 pH 6.8. A sample of the dissolved pellet (G2) was 

drawn for SDS-PAGE. The protein solution was loaded onto a 14 mm/30 cm DE52 anion 

exchange column equilibrated with 50 mM KH2PO4/K2HPO4 pH 6.8 and eluted using a linear salt 

gradient of 50 mM KH2PO4/K2HPO4 pH 6.8 to 0.4 M NaCl in 50 mM KH2PO4/K2HPO4 pH 6.8 over 4 

CV. The absorbance at 280 nm and SDS-PAGE were used to determine the protein content and 

purity of the collected fractions. The selected fractions were pooled and solid (NH4)2SO4 was 

added to 40 % saturation while stirring the solution on ice. The solution was stirred for 5 minutes 

and then centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and the 

pellet was dissolved in 2 mL 20 mM HEPES/NaOH pH 8.0. The solution was dialyzed against 500 

mL 20 mM HEPES/NaOH pH 8.0 and a sample for SDS-PAGE was drawn. The protein solution was 

stored in 150 µL aliquots at -20 °C. 

 

D.4 Purification 2 of the A115G variant 

Cell pellet from 250 mL culture was defrosted on ice. 20 mL 50 mM KH2PO4/K2HPO4 pH 6.8 was 

added and the cells resuspended. The cells were lysed by sonication twelve times for 30 seconds 

while kept on ice. The suspension was allowed to cool down for 30 seconds in between 

sonications. The suspension was centrifuged for 20 minutes at 10,000 rpm. The supernatant was 

decanted off and kept on ice. While stirred on ice, 10 (w/w)% streptomycin was slowly added to 

the solution to a final concentration of 1 %. The solution was left for 30 minutes with gentle 

stirring on ice. The solution was centrifuged for 20 minutes at 14,000 rpm. The supernatant was 

decanted off and kept on ice. The solution was gently stirred on ice and solid (NH4)2SO4 was 

slowly added to 40 % saturation. The solution was stirred for 5 minutes and then centrifuged for 

20 minutes at 14,000 rpm. The supernatant was discarded and the pellet was dissolved in 10 mL 

50 mM KH2PO4/K2HPO4 pH 6.8. The solution was dialyzed against 500 mL 50 mM KH2PO4/K2HPO4 

pH 6.8. The solution was centrifuged 20 minutes at 14,000 rpm. The supernatant (S) was 

decanted off and the pellet (B) resuspended in 10 mL 50 mM KH2PO4/K2HPO4 pH 6.8. SDS-PAGE 

samples were drawn from both solutions. 

A glass pipette was used to collect the clear protein solution when the pellet of solution B had 

settled. A sample for SDS-PAGE was drawn (B2). The clear solution was added 10 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8. Solid (NH4)2SO4 was slowly added to 40 % saturation and the solution 

was left for 5 minutes with gentle stirring on ice. The solution was centrifuged for 20 minutes at 
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14,000 rpm. The supernatant was discarded and the pellet was dissolved in 5 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8 (B3). 

The supernatant protein solution (S) was loaded onto a 14 mm/30 cm DE52 anion exchange 

column equilibrated with 50 mM KH2PO4/K2HPO4 pH 6.8 and eluted using a linear salt gradient of 

50 mM KH2PO4/K2HPO4 pH 6.8 to 0.4 M NaCl in 50 mM KH2PO4/K2HPO4 pH 6.8 over 4 CV. The 

absorbance at 280 nm and SDS-PAGE were used to determine the protein content and purity of 

the collected fractions. The selected fractions were pooled and solid (NH4)2SO4 was added to 40 

% saturation while gently stirring the solution on ice. The solution was gently stirred for 5 

minutes and then centrifuged for 20 minutes at 14,000 rpm. The supernatant was discarded and 

the pellet was dissolved in 10 mL 50 mM KH2PO4/K2HPO4 pH 6.8 (S2). 

The two protein solutions (B3 and S2) were both dialyzed twice against 500 mL 50 mM 

KH2PO4/K2HPO4 pH 6.8. The solutions were both centrifuged for 20 min at 14,000 rpm. The 

supernatants were decanted off and added 10 % azid to a final concentration of 0.02 % (B4 and 

S3). 

 

D.5 Purification 3 of the A115G variant 

Purification 3 of A115G Mt DCD-DUT was carried out identically with the WT purification 

described in Appendix D.1, except the protein was frozen at -20 °C for approximately 3 weeks 

prior to the final ammonium sulfate precipitation. 

 

D.6 SDS-PAGE gel casting 

SDS-PAGE gels were cast with 12.5 % Acrylamide. A rack designed for gel casting was used and 

the running gel was cast first and allowed to polymerize for a few minutes before the stacking 

gel was cast on top of it. 

SDS-PAGE running gel  
Water 3000 µL 
1.5 M Tris/HCl pH 8.8    2400 µL 
Acrylamid/Bis-acrylamid (30/0.8 w/w %) 4000 µL 
10 % Sodium dodecyl sulfate 2400 µL 
20 % Ammonium persulfate 5 µL 
N,N,N',N'-tetramethylethylene diamine (TEMED) 96 µL 
  
SDS-PAGE stacking gel  
Water 3440 µL 
1 M Tris/HCl pH 6.8 625 µL 
Acrylamid/Bisacrylamid (30/0.8 w/w %) 830 µL 
10 % Sodium dodecyl sulfate 50 µL 
20 % Ammonium persulfate 50 µL 
N,N,N',N'-tetramethylethylene diamine (TEMED) 4 µL 
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D.1 Nucleotide Saturation 

Experimental details for nucleotide saturation assays with WT, A115V and A115G Mt DCD-DUT 

carried out as described in section 9.2.2 are given in Table D.1. 

 

Table D.1: Assay mix contents and corresponding in-assay nucleotide concentrations and 
enzyme dilution factors (in-assay) during nucleotide saturation experiments with WT, A115V and 
A115G Mt DCD-DUT. All given concentrations are in-assay initial concentrations. Labeled 
nucleotide was added in minor amounts; 3H dCTP to dCTP nucleotide mixtures and 3H dUTP to 
dUTP nucleotide mixtures. 

Assay mix Assay components 

[MgCl2] HEPES/NaOH [dCTP] [dUTP]  
Total enzyme 
dilution 

WT     cinitial = 91 µM 
≤ 2 mM 20 mM pH 8.0 9.4-3600 µM - 100-400x 
≤ 2 mM 20 mM pH 8.0 - 9.4-2400 µM 100-400x 
≤ 2 mM 20 mM pH 6.8 - 19-2400 µM 100-200x 
     
A115V    cinitial = 191 µM 
2-5.5 mM 20 mM pH 8.0 0.019-4.8 mM - 30-60x 
2-3 mM 20 mM pH 8.0 - 0.16-2400 µM 30-2000x 
2-3 mM 20 mM pH 6.8 - 5-2400 µM 30-600x 
     
A115G    cinitial = 144 µM 
≤ 2 mM 20 mM pH 8.0 19-3600 µM - 10-40x 
≤ 2 mM 20 mM pH 8.0  9.4-2400 µM 10-80x 
≤ 2 mM 20 mM pH 6.8 - 9.4-2400 µM 10-20x 

 

 

D.2 dTTP Inhibition 

Experimental details for dTTP inhibition assays carried out with WT, A115V and A115G Mt DCD-

DUT as described in section 9.2.3 are given in Table D.2. 

 

D.3 Differential Scanning Calorimetry 

Experimental details for DSC experiments with WT, A115V and A115G Mt DCD-DUT carried out 

as described in section 9.2.6 are given in Table D.3. 
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Table D.2: Assay mix contents and corresponding in-assay dTTP concentration range and enzyme 
dilution factors (in-assay) during dTTP inhibition experiments with WT, A115V and A115G Mt 
DCD-DUT. All given concentrations are in-assay initial concentrations. Labeled nucleotide was 
added in minor amounts; 3H dCTP to dCTP nucleotide mixtures and 3H dUTP to dUTP nucleotide 
mixtures. 

Assay mix   Assay components 

[MgCl2] HEPES/NaOH [dCTP] [dUTP] [dTTP]  
 Total enzyme 
dilution 

WT     cinitial = 91 µM 
2 mM 20 mM pH 8.0 300 µM - 0-1 mM 100x, 200x 
2 mM 20 mM pH 6.8 300 µM - 0-1 mM 100x, 200x 
2 mM 20 mM pH 6.8 - 300 µM 0-1 mM 100x, 200x 
      
A115V     cinitial = 191 µM 
2 mM 20 mM pH 8.0 300 µM - 0-0.1 mM 30x, 60x 
4 mM 20 mM pH 8.0 2.4 mM - 0-1 mM 30x, 60x 
2 mM 20 mM pH 6.8 - 300 µM 0-1 mM 30x, 60x 
      
A115G     cinitial = 144 µM 
2 mM 20 mM pH 8.0 300 µM - 0-0.1 mM 10x, 20x 
2 mM 20 mM pH 8.0 800 µM - 0-0.1 mM 10x, 20x 
2 mM 20 mM pH 6.8 - 300 µM 0-0.1 mM 10x, 20x 

 

 

Table D.3: Enzyme- and dTTP concentrations as well as pH for DSC experiments. 

 
20 mM 
HEPES/NaOH 

[dTTP]  [MgCl2] Enzyme conc. 

WT pH 8.0 - - 20 µM 
 pH 6.8 0.5 mM 1 mM  20 µM 
 pH 6.8 - - 20 µM 
     
A115V pH 8.0 - - 24 µM 
 pH 8.0 0.5 mM 1 mM  24 µM 
     
A115G pH 8.0 - - 12 µM 
 pH 8.0 - - 24 µM 
 pH 8.0 0.5 mM 1 mM  12 µM 
 pH 8.0 0.5 mM 1 mM  24 µM 
 pH 6.8 - - 24 µM 

 



 

E DCTP DEAMINASE

E.1 Purification of the A115G variant

An overview of the steps involved in the two purifications of A115G 

protein degradation is shown in 

 

Figure E.1: Diagram of the steps involved in purifications of A115G 

protein degradation. S and B refe

 

Purification 2 of the A115G variant

During this purification of A115G 

encountered. After the first ammonium sulfate precipitation and subsequent centrifugation, the 

pellet did not completely dissolve in 10 mL 50 mM KH

was dialyzed and then centrifuged and split into the supernatant (S) and the pellet was 

resuspended in 10 mL buffer, forming a blurred solution with white precipitat

results of the two samples are shown in 

and sample B contained very pure protein. 
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Appendix E

DEAMINASE-DUTPASE RESULTS

Purification of the A115G variant 

An overview of the steps involved in the two purifications of A115G Mt DCD

is shown in Figure E.1. 

 
Diagram of the steps involved in purifications of A115G Mt DCD-

protein degradation. S and B refer to two fractions after dialysis. 

Purification 2 of the A115G variant 

During this purification of A115G Mt DCD-DUT, several problems with precipitation were 

encountered. After the first ammonium sulfate precipitation and subsequent centrifugation, the 

llet did not completely dissolve in 10 mL 50 mM KH2PO4/K2HPO4 pH 6.8. The blurred solution 

was dialyzed and then centrifuged and split into the supernatant (S) and the pellet was 

resuspended in 10 mL buffer, forming a blurred solution with white precipitat

results of the two samples are shown in Figure E.2A. Both solutions proved to contain protein 

and sample B contained very pure protein.  
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ESULTS 

DCD-DUT that resulted in 

 
-DUT that resulted in 

DUT, several problems with precipitation were 

encountered. After the first ammonium sulfate precipitation and subsequent centrifugation, the 

pH 6.8. The blurred solution 

was dialyzed and then centrifuged and split into the supernatant (S) and the pellet was 

resuspended in 10 mL buffer, forming a blurred solution with white precipitation (B). SDS-PAGE 

A. Both solutions proved to contain protein 
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The supernatant of sample B (B2) contained pure protein and was collected (SDS-PAGE lane B2, 

Figure E.2B) and the remaining precipitate was discarded. Supernatant S was purified by anion 

exchange and Figure E.2B shows SDS-PAGE and the absorbance at 280 nm (fractions 10-12 were 

collected and pooled). Proteins in both solutions (S and B2) were precipitated with ammonium 

sulfate. The pellet from B2 readily dissolved in 5 mL 50 mM KH2PO4/K2HPO4 pH 6.8 (B3), while 

the pellet from S did not completely dissolve in 10 mL 50 mM KH2PO4/K2HPO4 pH 6.8 (S2). 

Samples S2 and B3 were dialyzed twice. Both solutions precipitated and were centrifuged. The 

supernatants were collected and azid was added to a final concentration of 0.02 % (B4 and S3). 

SDS-PAGE results of the samples are shown in Figure E.2C. It is seen that B4 contained little 

protein and protein in S3 had degraded. Both solutions (B4 and S3) were discarded. 

 

 

 

Figure E.2: Purification 2  of A115G Mt DCD-DUT. SDS-PAGE of A: S and B (two solutions after 

first dialysis step).  B: solution B2 and fractions from anion exchange. The collected fractions are 

marked and the absorbance at 280 nm is shown above (the connecting line serves as guide to 

the eye). C: purified samples of the A115G variant protein. See Appendix D.4 for further details 

on samples. 
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Purification 3 of the A115G variant 

Purification 3 of A115G Mt DCD-DUT was carried out identically with the WT purification (for 

details, see Appendix D.5). SDS-PAGE results of fractions from the second anion exchange are 

shown in Figure E.3A. The collected fractions are marked and were pooled for further 

purification. SDS-PAGE of the final product from purification is shown in Figure E.3B. 

Degradation is observed and the protein was discarded. 

 

 

Figure E.3: Purification 3 of A115G Mt DCD-DUT. SDS-PAGE of A: fractions from anion exchange. 

The collected fractions are marked and the absorbance at 280 nm is shown to the right (the 

connecting line serves as guide to the eye). B: purified protein (concentrated protein (1x), 

diluted two times (2x), diluted three times (3x)). See Appendix D.5 for purification details. 
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E.2 Turnover numbers 

Experiments used to calculate turnover numbers (with 1 mM dCTP or dUTP at pH 6.8 or pH 8.0) 

were carried out as described in section 9.2.1 and results for WT, A115V and A115G Mt DCD-

DUT are given in Figure E.4. 

 

 

Figure E.4: Measured reaction rates with 1 mM dCTP or dUTP at pH 6.8 or pH 8.0 plotted against 

the time for A: WT, B: A115V and C: A115G Mt DCD-DUT. Each point was determined twice at 

different enzyme concentrations. 
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E.3 Nucleotide saturation 

Results for dUTP saturation kinetic studies carried out as described in section 9.2.2 are given in 

Figure E.5. 

 

Figure E.5: Data points for nucleotide saturation experiments. A: WT, B: A115V, C: A115G Mt 

DCD-DUT. Each point has been determined for at least twice at different enzyme concentrations. 
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E.4 Differential Scanning Calorimetry 

Results for DSC carried out as described in section 3.2.8 are given in Figure E.6, Figure E.7 and 

Figure E.8 for WT, A115V and A115G Mt DCD-DUT, respectively. Weak signals were observed for 

DSC measurements. 

 

 

Figure E.6: DSC of WT Mt DCD-DUT at pH 6.8 and pH 8.0 in the presence or absence of dTTP. 

Two experiments were made with the apo enzyme. Irreversible transition temperatures are 

given. 

 

 

 

 

Figure E.7: DSC of A115V Mt DCD-DUT at pH 8.0. Irreversible transition temperature for the 

enzyme in the presence of dTTP is given. The experiment failed for the apo enzyme. 

 



Figure E.8: DSC of A115G Mt 

presence or absence of dTTP. Irreversible transition temperatures are given

 

 

E.5 Crystal Structure of A115V 

Pictures related to the crystal structure of A115V 

here. 

 

Figure E.9: Stereo view of Figure 

2QXX). A shift in the backbone causes t

pocket and allows room for dTTP binding. A rearrangement of the backbone at Thr111 and 

His112 prevents the side chain of Thr114 from clashing with Thr111 of a neighboring monomer.

 

Mt DCD-DUT at pH 8.0 at two different enzyme concentrations in the 

presence or absence of dTTP. Irreversible transition temperatures are given.

Crystal Structure of A115V Mt DCD-DUT:dTTP 

Pictures related to the crystal structure of A115V Mt DCD-DUT in complex with dTTP are given 

Figure 9.14: Overlay of A115V:dTTP (green) and WT:dTTP (red, pdb 

2QXX). A shift in the backbone causes the valine to take up less space in the nucleotide binding 

pocket and allows room for dTTP binding. A rearrangement of the backbone at Thr111 and 

His112 prevents the side chain of Thr114 from clashing with Thr111 of a neighboring monomer.
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DUT at pH 8.0 at two different enzyme concentrations in the 

. 

DUT in complex with dTTP are given 

 

Overlay of A115V:dTTP (green) and WT:dTTP (red, pdb 

he valine to take up less space in the nucleotide binding 

pocket and allows room for dTTP binding. A rearrangement of the backbone at Thr111 and 

His112 prevents the side chain of Thr114 from clashing with Thr111 of a neighboring monomer. 
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Appendix F 

F CRYSTALLIZATION OF EXTENDED SULFOLOBUS 

SOLFATARICUS NUCLEOSIDE DIPHOSPHATE 

KINASE 

F.1 Introduction 

Nucleoside diphosphate kinase (NDK) catalyzes dephosphorylation of nucleoside triphosphates 

and subsequent phosphorylation of nucleoside diphosphates (see Figure 6.1, page 38). The γ-

phosphate of a nucleoside triphosphate (often ATP) is transferred to an active site histidine and 

a nucleoside diphosphate is released (often ADP). A different nucleoside diphosphate binds to 

the phosphorylated enzyme and the reverse reaction produces nucleoside triphosphate and free 

enzyme. 

Many crystal structures of NDK from different organisms, ranging from bacteria to human, are 

available. The subunit fold of NDK is the same and sequence identity of more than 40 % is 

observed between NDK from different species [A4]. Most quaternary structures of NDK are 

hexameric, but some bacterial NDK are tetrameric, and a halophilic NDK has been identified as a 

dimer [A4,5]. The same dimer is used in the assembly of hexameric and tetrameric structures. 

The subunit fold of NDK is a βαβ βαβ fold, also known as the ferredoxin fold because it was first 

seen in the ferredoxin from Pseudomonas aerogenes. The fold comprises a center of a four-

stranded antiparallel β-sheet and two connecting α-helices. The two β-strands in the center are 

very hydrophobic and the least variable part of the sequence [A4]. Assembly into hexamers is 

likely to play an important role in the stability of NDK because of the increased stability of 

hexamers compared with isolated subunits [A6].  

In general, an extended C-terminal is observed for NDK from mesophilic organisms compared 

with NDK from thermophilic organisms, see Figure F.1. The C-terminal could thus have a 

destabilizing effect on the enzyme. Contrary to this is the finding that increasing the length of 

the C-terminal of NDK from the hexameric thermoacidophilic archaea Sulfolobus solfataricus (Ss) 

has a stabilizing effect by increasing its transition temperature by 2-3 °C7. The C-terminal 

extension consists of 12 residues from NDK from the hexameric mesophilic eukaryote 

Dictyostelium discoideum, see Figure F.1. The crystal structure of WT SS NDK was recently 

                                                           
7 Unpublished results. Martin Willemoës, Department of Biology, University of Copenhagen. 
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solved8, see Figure F.2. The crystal structure of the extended NDK (NDKext) from Ss could explain 

the increased thermostability. This appendix describes NDKext crystallization and attempts to 

solve the crystal structure. 

 
                                    10        20        30        40        50        60            

                           ....|....|....|....|....|....|....|....|....|....|....|....| 

Chloroflexus aurantiacus   -------MERALLILKPDAVQRGLIGAIISRFEQRGLKFQGLKLMQVDEALARRHYAEHE  

Thermus aquaticus          -------MERTFVMVKPDGFRRGLVGEILARFERKGFRIVGLKALRISQELAEKHYAEHR  

Thermus thermophilus       -------MERTFVMIKPDGVRRGLVGEILARFERKGFRIAALKLMQISQELAERHYAEHR  

Oceanithermus profundus    -------MERTFAMIKPDGVRRGLTGKIIQRLEDKGFKIVALKKMRISFDLAEEHYGEHK  

Meiothermus ruber          -------MERTYIMVKPDGVRRGLTGEIINRIERKGFKIVAMKKMVIPRETAETHYGEHR  

Meiothermus silvanus       -------MERTYIMVKPDGVRRGLTGEIISRIERKGFKIVAMKKMLISQQTAETHYGEHK  

Sulfolobus solfataricus    -----MVAQRTFVMIKPDGVKRGLIGEIISRFEKRGLKIVSLKMVKMSRDTAEKLYEEHK  

Dictyostelium discoideum   MSTNKVNKERTFLAVKPDGVARGLVGEIIARYEKKGFVLVGLKQLVPTKDLAESHYAEHK  

Saccharomyces cerevisiae   MSS---QTERTFIAVKPDGVQRGLVSQILSRFEKKGYKLVAIKLVKADDKLLEQHYAEHV  

Drosophila melanogaster    MAA---NKERTFIMVKPDGVQRGLVGKIIERFEQKGFKLVALKFTWASKELLEKHYADLS  

Homo sapiens               -MA---NLERTFIAIKPDGVQRGLVGEIIKRFEQKGFRLVAMKFLRASEEHLKQHYIDLK  

Escherichia coli           -----MAIERTFSIIKPNAVAKNVIGNIFARFEAAGFKIVGTKMLHLTVEQARGFYAEHD  

Myxococcus xanthus         -----MAIERTLSIIKPDGLEKGVIGKIISRFEEKGLKPVAIRLQHLSQAQAEGFYAVHK  

Arabidopsis thaliana       -------MEQTFIMIKPDGVQRGLIGEVICRFEKKGFTLKGLKLISVERSFAEKHYEDLS  

 

                                    70        80        90       100       110       120         

                           ....|....|....|....|....|....|....|....|....|....|....|....| 

Chloroflexus aurantiacus   GKSFFNGLVSYITSAPVVVAVVAGKPGTVELVRAMVGATNPAKAAPGTIRGDFGVDIGR-  

Thermus aquaticus          EKPFFPSLVGFITSGPVVAMVLEGPN-AVAEVRKMMGATHPKDALPGTIRGDYATTIDE-  

Thermus thermophilus       EKPFFPGLVRFITSGPVVAMVLEGPG-VVAEVRKMMGATHPKDALPGTIRGDFATTIDE-  

Oceanithermus profundus    EKPFFKPLVEFITSGPVVAMVLEGPG-VIAELRKMMGATNPADALPGTIRGDFATTIDE-  

Meiothermus ruber          GKPFFEGLVNFITSGPVVAMVVEGPG-VIAEMRRLMGATRPWEAAPGTIRADFATTVDE-  

Meiothermus silvanus       GKPFFEGLVRFITSGPVVAMVVEGPQ-AVSEMRRLMGATRPWEAAPGTIRADYATTVDE-  

Sulfolobus solfataricus    GKSFFEELVNYVTSGPVVCMVIEGDD-VVQVIRRMIGNTDPKEAPPGTIRGDYALSKSE-  

Dictyostelium discoideum   ERPFFGGLVSFITSGPVVAMVFEGKG-VVASARLMIGVTNPLASAPGSIRGDFGVDVGR-  

Saccharomyces cerevisiae   GKPFFPKMVSFMKSGPILATVWEGKD-VVRQGRTILGATNPLGSAPGTIRGDFGIDLGR-  

Drosophila melanogaster    ARPFFPGLVNYMNSGPVVPMVWEGLN-VVKTGRQMLGATNPADSLPGTIRGDFCIQVGR-  

Homo sapiens               DRPFFPGLVKYMNSGPVVAMVWEGLN-VVKTGRVMLGETNPADSKPGTIRGDFCIQVGR-  

Escherichia coli           GKPFFDGLVEFMTSGPIVVSVLEGEN-AVQRHRDLLGATNPANALAGTLRADYADSLTE-  

Myxococcus xanthus         ARPFFKDLVQFMISGPVVLMVLEGEN-AVLANRDIMGATNPAQAAEGTIRKDFATSIDK-  

Arabidopsis thaliana       SKSFFSGLVDYIVSGPVVAMIWEGKN-VVLTGRKIIGATNPAASEPGTIRGDFAIDIGR-  

 

                                   130       140       150       160          

                           ....|....|....|....|....|....|....|....|....|.. 

Chloroflexus aurantiacus   --NLIHASDSPESGERETAIFFQPHELIGEWNRALDNWIYE------  

Thermus aquaticus          --NVIHGSATLEDAQREIALFFRPEELL-------------------  

Thermus thermophilus       --NVIHGSATLEDAQREIALFFRPEELL-------------------  

Oceanithermus profundus    --NVIHGSANEADAEREIALFFRPEEFVS------------------  

Meiothermus ruber          --NVIHGSDSPESAQREIGIFFKPEEIIG------------------  

Meiothermus silvanus       --NVIHGSDSPESAAREIGIFFKPEEIIG------------------  

Sulfolobus solfataricus    --NVIHASDSIEKAQREMSLFFDKSDL--------------------  

Dictyostelium discoideum   --NIIHGSDSVESANREIALWFKPEELLT-EVKPNPNLYE-------  

Saccharomyces cerevisiae   --NVCHGSDSVDSAEREINLWFKKEELVDWESNQAKWIYE-------  

Drosophila melanogaster    --NIIHGSDAVESAEKEIALWFNEKELVTWTPAAKDWIYE-------  

Homo sapiens               --NIIHGSDSVKSAEKEISLWFKPEELVDYKSCAHDWVYE-------  

Escherichia coli           --NGTHGSDSVESAAREIAYFFGEGEVC--PRTR-------------  

Myxococcus xanthus         --NTVHGSDSLENAKIEIAYFFRETEIHSYPYQK-------------  

Arabidopsis thaliana       --NVIHGSDSVESARKEIALWF-PDGPVNWQSSVHPWVYET------  

 

Figure F.1: Sequence alignment of NDK from thermophilic organisms (red names) and mesophilic 

organisms (black names), made using ClustalW [A7] and BioEdit [A8] with sequence information 

from UniProt [A9,10]. Highlighted in yellow are the 12 residues of the C-terminal of NDK Dd that 

were attached to NDK Ss to form the extended NDK (NDKext). 

 

                                                           
8 Unpublished structure solved by Maria Blanner, special course at DTU Chemistry 
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Figure F.2: Two views of the unpublished structure of Ss NDK. Three dimers make up the 

hexameric structure. Each dimer is shown in red, blue or green. 

 

F.2 Experimental 

F.2.1 Crystallization 

Crystallization conditions for NDKext were based on initial crystallization screens and 

optimization by Tina Vognsen9. Protein with a concentration of 2.9 mg/mL was kindly supplied 

by Martin Willemoës. Hanging-drop vapor-diffusion in 24 well plates was applied during all 

crystallization experiments. Crystallization conditions were mainly 35-43 % MPD and 0-0.1 M 

CaCl2. A selection of buffers and additives (Hampton Research Additive Screens 1, 2 and 3) were 

used. Crystallization with (NH4)2SO4 with 2-5 % different PEG or MPEG was also tested with 

various buffers. A complete set of all tested conditions is not given, but a variety of 

crystallization conditions are available for picture entries in the enclosed database (Appendix A, 

NDKext.xml, see Chapter 2 for a program description). 

Crystallization conditions on crystals used for data collection were 38-39 % MPD, 0.05-0.07 M 

CaCl2 in 0.1 M sodium acetate pH 4.6. 

 

F.2.2 Data Collection 

Prior to diffraction tests and data collection, crystals were mounted in a loop and cryo-cooled 

directly in liquid nitrogen. Data were collected to 3 Å on a large rod-shaped crystal 

(approximately 60x200 µm): 152 frames with an oscillation angle of 0.5° at MAX-lab (dataset 1). 

At frame 152, diffraction was poor and annealing of the crystal was attempted. Two data sets 

were collected at ESRF on similar large rod-shaped crystals. One dataset was collected to 2.5 Å 

(dataset 2, 240 frames) and the other dataset to 2.7 Å (dataset 3, 250 frames) with oscillation 

angles of 0.5°. 

 

                                                           
9 Tina Vognsen, Master Thesis, Department of Chemistry, Technical University of Denmark, September 
2008 
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F.3 Results and Discussion 

F.3.1 Crystallization  

Several crystals were produced, some of which are shown in Figure F.3. An elaborate summary 

of crystallization results can be found in the enclosed database (Appendix A, NDKext.xml) that 

includes 383 picture entries with matching crystallization conditions. When crystals grew large, 

they had a tendency to form irregular ends. 

 

 

Figure F.3: A: 42 % MPD, 0.04 M CaCl2, 100 mM BisTris pH 5.5 (protein:reservoir ratio 1:1), B: 38 

% MPD, 0.04 M CaCl2, 100 mM BisTris pH 5.5 (protein:reservoir ratio 1:1), C: 38 % MPD, 0.07 M 

CaCl2, 100 mM sodium acetate pH 4.6, (protein:reservoir ratio 3:2 + 0.6 µL 40 % 2,5 hexanediol), 

D: 40 % MPD, 0.04 M CaCl2, 100 mM Tris pH 8.5 (protein:reservoir ratio 3:2), E: 41 % MPD, 0.06 

M CaCl2, 100 mM sodium acetate pH 4.6 (protein:reservoir ratio 3:2), F: 39 % MPD, 0.05 M CaCl2, 

100 mM sodium acetate pH 4.6 (protein:reservoir ratio 3:2). 

 

F.3.2 Data Collection and Processing 

Diffraction of the crystals shown in Figure F.3A-D was very poor or non-existing. Crystals with 

morphology as shown in Figure F.3E-F were used for data collection at MAX-lab and ESRF. A 

tendency is observed where the largest crystals have the best diffraction properties despite their 

cracked appearance. 

Data were collected to 3 Å at MAX-lab (dataset1). The poor diffraction at frame 152 did not 

improve with annealing and data collection was stopped. Two data sets were collected at ESRF, 

one to 2.7 Å and one to 2.5 Å. Merging of the data proved to be a challenging task and several 

attempts were made by Pernille Harris to merge the data in order to solve and refine the 
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structure (difficulties in solving and refining the structure are described in section F.4). Data from 

MAX-lab and from one of the crystals at ESRF merged in hexagonal space group (P6322), whereas 

the other crystal at ESRF only merged in monoclinic (P2) space group.  

Data processing proved very problematic and the difficulties met are best explained by a 

pseudomerohedral twinning of the crystals. In merohedral twinning, a 2-fold axis along a unit 

cell axis relates two parts within the crystal. If the two parts are equally represented within the 

crystal, a higher degree of symmetry will appear as reflections from each ‘subcrystal’ seem 

symmetry related. This is in agreement with a higher degree of symmetry (hexagonal) observed 

for two crystals (dataset 1+2), whereas the third crystal (dataset 3) has lower symmetry 

(monoclinic). The diffraction of the crystals was furthermore observed as a combination of well-

defined and streaky diffraction spots, see Figure F.4.  

Even though the monoclinic crystal could be a single crystal, no reasonable structure solution 

was found likely because of the low quality of the data. Data collection statistics and processing 

used for structure solution attempts are given in Table F.1. 

 

Table F.1: Data collection statistics.a
 

 Dataset1 Dataset2 Dataset3 

Beamline MAX-LAB, 911-2 ESRF, ID14-2 ESRF, ID14-2 

Detector  mar165 ADSC Q4 CCD ADSC Q4 CCD 

Wavelength (Å)  1.04 0.933 0.933 

Temperature (K)  100 100 100 

Crystal space group  P6322 P6322 P21 

Unit cell parameters    

a (Å)  71.59 71.662 71.49 

b (Å) 71.59 71.662 198.43 

c (Å)  198.12 199.072 71.47 

β (°)   120.087 

Resolution (Å)  29.6-3.0 (3.07-2.99) 45.3-2.6 (2.81-2.60) 45-2.9 (3.08-2.9) 

No. of reflections 54,592 (3,608) 138,944 (27,095) 94,755 (15,853) 

No. of unique reflections  6,590 (440) 9,977 (1,990) 32,400 (5,519) 

Redundancy 8.3 (8.2) 13.9 (13.6) 2.9 (2.9) 

Mosaicity (°) 0.5-0.8 0.2-0.3 0.4-0.7 

Completeness (%) 99.3 (95.2) 99.8 (99.4) 84.6 (87.5) 

I /σ(I)  8.05 (1.46) 14.45 (2.04) 6.32 (0.95) 

Rmerge 29.3 (181.0) 14.6 (120.6) 14.8 (128.9) 
a Values for the outermost resolution shell are given in parenthesis. 

Rmerge = Σi Ii – 〈Ii〉/ Σi Ii 
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F.4 Attempts to Solve the Structure and Discussion 

The structure of NDKext was attempted solved with dataset 1 (see Table F.1 for statistics) using 

molecular replacement with WT NDK Ss as a search model and two molecules in the asymmetric 

unit. Rfree was 0.396 after a rigid body refinement and a restrained refinement and improved 

slightly to 0.353 when refined to 3.1 Å instead of 3 Å. Any other change; decreasing the 

resolution, refinement of positions in winCoot, addition of any residues to the extended C-

terminal or the use of NCS, resulted in a notable increase in Rfree (Rfree in the range of 0.4-0.45). 

The side chain of Glu97 was removed because it clashed with a symmetry generated molecule, 

however, this also increased Rfree. 

With improved data from ESRF (dataset 2, see Table F.1 for statistics), the structure was 

attempted solved with molecular replacement using MOLREP [A11]. A total of 14 NDK crystal 

structures from different organisms were tested as search models for molecular replacement. 

Solutions were only possible with 2 molecules in the asymmetric unit. The best result with 

hexagonal space groups was achieved with space group P6322 and molecular replacement using 

WT NDK Ss as a search model. Phenix.refine [A12] or REFMAC5 [A13] was used for refinement. 

However, Rfree did not drop below 0.4 at any time during refinement. A range of phenix.refine 

options were tested: Ramachandran restrained refinement, restrained refinement with NCS, 

reference model steering refinement, ordering solvent and simulated annealing. A segment of 

NDKext (residues 108-114) from refinement is shown in Figure F.4, and even though electron 

density appeared sufficient to model the approximate positions of the residues, Rfree had a very 

high value of 0.522. 

 

 

Figure F.4: Left: segment of diffraction image from data collection (Table F.1 dataset 2). Right: 

residues 108-114 shown with 2Fobs – Fcalc = 1.4 (grey) and Fobs – Fcalc = 3.0 (green) during an 

attempt to solve the structure of NDKext with dataset 2 (Rfree was 0.522). 
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F.5 Conclusion 

The crystallization conditions of NDKext have been optimized and several crystals have been 

made. Larger crystals with cracked edges had better diffraction properties than smaller crystals 

with sharp edges. Data were collected on three crystals: one at MAX-lab and two at ESRF. 

However, data processing and refinement did not produce any reasonable structure solution 

likely because of pseudomerohedral twinning of the crystals. New crystallization trials should be 

made in search of a single crystal with improved diffraction properties. 
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Abstract The structure of the all-cysteinyl-coordinated

D14C variant of [4Fe–4S] ferredoxin from the hyper-

thermophilic archaeon Pyrococcus furiosus has been deter-

mined to 1.7 Å resolution from a crystal belonging to space

group C2221 with two types of molecules, A and B, in the

asymmetric unit. A and B molecules have different crystal

packing and intramolecular disulfide bond conformation.

The crystal packing reveals a b-sheet interaction between A

molecules in adjacent asymmetric units, whereas B mole-

cules are packed as monomers in a less rigid position next to

the A–A extended b-sheet dimers. The A molecules contain

an intramolecular disulfide bond in a double conformation

with 60% occupancy left-handed and 40% occupancy right-

handed spiral conformation, whereas B molecules have an

intramolecular disulfide bond in a right-handed spiral con-

formation. The cluster in D14C [4Fe–4S] P. furiosus ferre-

doxin was chemically oxidized at pH 5.8 to [3Fe–4S]. For

purification at pH 8.0, two forms of the protein are obtained.

Mass spectrometric analysis shows that the two forms are the

D14C [3Fe–4S] P. furiosus ferredoxin monomer and a

disulfide-bonded dimer of D14C [3Fe–4S] P. furiosus fer-

redoxin. When oxidization and purification are carried out at

pH 5.8, only the monomer is obtained. The crystal structure

of D14C [3Fe–4S] P. furiosus ferredoxin monomer was

determined to 2.8 Å resolution from a crystal belonging to

space group P212121 with two molecules in the asymmetric

unit. The molecules resemble molecule A of D14C [4Fe–4S]

P. furiosus ferredoxin and electron density clearly shows the

presence of a [3Fe–4S] cluster.

Keywords Ferredoxin � Crystal structure � Pyrococcus

furiosus � Disulfide bond � Dimer

Abbreviations

BisTris [Bis(2-hydroxyethyl)amino]

tris(hydroxymethyl)methane

CV Column volume

PDB Protein Data Bank

RMS Root mean square

Tris Tris(hydroxymethyl)aminomethane

WT Wild type

Introduction

Iron–sulfur proteins are present in all kinds of organisms

and cellular compartments and assume a range of func-

tions, predominantly electron transfer, but also catalysis

and regulatory and sensing functions. Iron–sulfur proteins

can contain several active site iron–sulfur clusters in a

variety of frameworks: from simple clusters with one to

four irons up to large clusters—some of which are
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heterometallic with nickel or molybdenum as part of or

bound to the cluster [1].

Ferredoxins contain iron–sulfur clusters coordinated

most often by cysteine residues to the protein chain. A

common cluster in bacterial ferredoxins is the cuboidal

[4Fe–4S] cluster bound to the polypeptide chain by cys-

teine ligands with a typical binding motif: –Cys–X2–Cys–

X2–Cys–Xn–Cys–. These [4Fe–4S] clusters can reversibly

interconvert to [3Fe–4S] clusters. Common small ferre-

doxins with only a single cluster often have two additional

cysteines forming an intramolecular disulfide bond, which

replace a second cluster in more ancient ferredoxins [2, 3].

In the binding motif of Pyrococcus furiosus ferredoxin, the

second cysteine is replaced by aspartate and [4Fe–4S] to

[3Fe–4S] cluster conversion is readily observed [4].

Incomplete cysteine coordination is also seen in one of two

[4Fe–4S] clusters in Desulfovibrio africanus ferredoxin III

that readily converts to [3Fe–4S] [5]. Site-directed change

of cluster-coordinating aspartate to cysteine has been

reported to impair the ease with which [4Fe–4S] converts

to [3Fe–4S] [5].

The other reported crystal structures of [3Fe–4S] ferre-

doxins with complete cysteine binding motifs are Desulfo-

vibrio gigas (Protein Data Bank, PDB, entry 1FXD [6]) and

Bacillus thermoproteolyticus (PDB entry 1WTF [7]).

These both have additional chemical groups bound that

protect the free cysteine; hence, the structure of the D14C

[3Fe–4S] P. furiosus ferredoxin is the first crystal structure

in which a cysteine in the binding motif is unmodified and

facing away from the cluster.

The small electron-transfer ferredoxin from the hyper-

thermophilic archaeon P. furiosus [8] consists of 66 amino

acids (7.5 kDa) and contains a single [4Fe–4S]2?,? cluster

and five cysteine residues, two of these forming an intra-

molecular, redox-active disulfide bond [4, 9]. This ferre-

doxin is very thermostable, with no denaturation after 12 h

at 95 �C [8]. The protein fold of thermophilic ferredoxins

often shows polypeptide chain extensions [1] and this is

also seen in P. furiosus ferredoxin, which compared with

other ferredoxins has structural extensions in the b-sheet of

the two termini and in a-helix 2 [10]. P. furiosus ferredoxin

is further stabilized by an extensive hydrogen-bonding

network as well as a hydrophobic interaction between Trp2

and Tyr46. The crystal structure of P. furiosus ferredoxin

shows crystal packing as a dimer formed by extended

b-sheet interactions [10]. It has been proposed that

dimerization of wild type (WT) P. furiosus ferredoxin

occurs depending on ionic strength [11, 12]. Although we

have observed crystal packing as extended b-sheet dimers,

these dimers were not observed in solution and could be an

artifact of the high protein concentration in the crystal.

A single exchange of the cluster coordinating Asp14 to

cysteine (D14C) in P. furiosus ferredoxin results in a

complete cysteine binding motif and causes some changes

compared with WT P. furiosus ferredoxin; however, the

thermostability is maintained [13]. An additional Fe–S

charge transfer band in D14C compared with WT

P. furiosus ferredoxin causes an increase in the absorbance

ratio and the extinction coefficient: A390/A280 = 0.73 and

e390 = 20.2 mM-1 cm-1 for D14C compared with A390/

A280 = 0.56 and e390 = 17 mM-1 cm-1 for the WT [14,

15]. The reduction potential of the D14C variant is 59 mV

more negative than that of the WT ferredoxin: -427 versus

-368 mV [16]. The electrochemical properties of ferre-

doxins have been reported to be sensitive to changes in the

cluster environment: reduced surface/solvent accessibility,

reduced hydrogen-bonding network, or reduced volume of

the cluster cavity lower the reduction potential and the

conformation of the ligands also has an influence [17–22].

We have expressed and purified D14C [4Fe–4S]2?

P. furiosus ferredoxins in a form suitable for crystallization

and structure determination. D14C [3Fe–4S] P. furiosus

ferredoxin was produced by oxidation. Purification by

anion exchange at pH 5.8 results in a single peak, whereas

for purification at pH 8.0 two peaks are observed. Mass

spectrometric analysis reveals a monomer at pH 5.8,

whereas both a monomer and a disulfide-bonded dimer are

formed at pH 8.0. In this article we report the three-

dimensional crystal structure of D14C [4Fe–4S] P. furiosus

ferredoxin to 1.7 Å resolution. D14C [3Fe–4S] P. furiosus

ferredoxin proved difficult to crystallize because of protein

solution inhomogeneity, and the three-dimensional struc-

ture is reported to 2.8 Å resolution.

Materials and methods

Expression strain and cultivation

The P. furiosus ferredoxin gene was amplified by PCR and

cloned into the pET3a vector. The D14C mutation was

created by site-directed mutagenesis using a QuikChange

kit (Stratagene). The plasmid encoding the D14C P. furio-

sus ferredoxin was transformed into E. coli BL21(DE3)

cells (Novagen) for expression. The expression strain was

grown in 650 mL cultures.

Purification of D14C [4Fe–4S] P. furiosus ferredoxin

Approximately 30 mL 20 mM tris(hydroxymethyl)amino-

methane (Tris)/HCl pH 8.0 buffer was added to six tubes

each containing cells from 650 mL culture and the cells

were resuspended. Eighty microliters of 1 M sodium

dithionite was added to each tube. Subsequently, the cells

were lysed by sonication three times for 40 s. After soni-

cation, the suspension was incubated for 10 min in a 70 �C

764 J Biol Inorg Chem (2011) 16:763–775

123



water bath, then centrifuged at 4 �C for 20 min at 18,500g,

and the clear supernatant decanted off. The supernatant was

diluted four times with 20 mM Tris/HCl pH 8.0, 2 mM

sodium dithionite. The protein solution was loaded onto a

50 mm/7 cm Q Sepharose Fast Flow column equilibrated

with 20 mM Tris/HCl pH 8.0. The column was washed

with 2 column volumes (CV) 20 mM Tris/HCl pH 8.0 and

2 CV 20 mM Tris/HCl pH 8.0, 0.15 M NaCl. The protein

was eluted isocratically with 20 mM Tris/HCl pH 8.0,

0.4 M NaCl. The volume was reduced to approximately

5 mL by ultrafiltration using a stirred Amicon cell with a

PLBC NMWL 3 kDa membrane. A maximum of 5 mL

protein solution was then loaded onto a HiLoad 16 mm/

60 cm Superdex 75 column equilibrated with 20 mM Tris/

HCl pH 8.0, 0.15 M NaCl and eluted using the same buffer

with a flow rate of 1 mL/min. Fractions containing D14C

P. furiosus [4Fe–4S] ferredoxin were pooled and exchan-

ged into 20 mM Tris/HCl pH 8.0 by ultrafiltration. A

maximum of 15 mg was loaded onto a 16 mm/10 cm

Source 30Q column equilibrated with 20 mM Tris/HCl pH

8.0. The column was washed with 2 CV 20 mM Tris/HCl

pH 8.0 and elution was carried out using a linear salt

gradient of 0.15–0.4 M NaCl in 20 mM Tris/HCl pH 8.0

over 17 CV. The protein was exchanged into 20 mM Tris/

HCl pH 8.0 by ultrafiltration.

Oxidation to and purification of D14C [3Fe–4S]

P. furiosus ferredoxin

Experiments were carried out with buffer A corresponding

to 20 mM Tris/HCl pH 8.0 or 20 mM [bis(2-hydroxyethyl)

amino]tris(hydroxymethyl)methane (BisTris)/HCl pH 5.8.

Fifteen times molar excess ferricyanide and 1.5 times

molar excess EDTA were added to purified D14C

P. furiosus [4Fe–4S] ferredoxin in 20 mM BisTris/HCl pH

5.8 and the mixture was left overnight with stirring at room

temperature. The excess of ferricyanide and EDTA was

removed by ultrafiltration using buffer A. The protein

solution was filtered before being loaded onto a 16 mm/

10 cm Source 30Q column equilibrated with buffer A. The

column was washed with 2 CV buffer A and elution was

carried out using a linear salt gradient of 0.15–0.4 M NaCl

in buffer A over 17 CV. The protein was exchanged into

buffer A by ultrafiltration.

Mass spectrometry

Prior to mass spectrometric analysis all protein samples

were desalted, and the buffer was exchanged into 100 mM

ammonium acetate/acetic acid pH 5.8 using Micro Bio-

Spin P-6 columns (Bio-Rad). Samples were diluted to a

protein concentration of approximately 20 lM. Mass

spectra were obtained with a nano-electrospray ionization

time-of-flight instrument (LCT Premier, Waters). The data

were acquired in negative ion mode. The instrument was

calibrated using 2 mg/mL NaI in 50% 2-propanol solution.

Au/Pd-coated capillaries (Proxeon) were used. The source

temperature was maintained at 50 �C during the experi-

ments. The capillary voltage applied was typically between

800 and 900 V, while the cone voltage applied was 50 V.

The MaxEnt1 algorithm provided with MassLynxTM ver-

sion 4.1 (Waters) was used to produce mass spectra from

the observed m/z data.

Crystallization and data collection

For crystallization, the conditions for the WT P. furiosus

ferredoxin [23] were optimized. Platelike crystals of D14C

[4Fe–4S] P. furiosus ferredoxin were obtained at 4 �C by

hanging-drop vapor diffusion with a reservoir containing

35% PEG600 and a 0.1 M malonic acid/imidazole/boric

acid buffer system pH 7.5 [24]. The drop contained 2 lL

reservoir solution, 2 lL 6.7 mg/mL D14C [4Fe–4S]

P. furiosus ferredoxin in 20 mM Tris/HCl pH 8.0, and

0.3 lL 0.1 M hexaamminecobalt(III) chloride. The crystals

had grown after 3 days and were cryocooled directly in

liquid nitrogen on the eighth day for subsequent data col-

lection. Diffraction data were collected: 180 frames with an

oscillation angle of 1�. Integration and scaling of the data

were performed with XDS/XSCALE [25, 26].

Crystallization of D14C P. furiosus [3Fe–4S] ferredoxin

was much more difficult. Numerous crystallization condi-

tions were tested and at pH below 7 precipitation generally

occurred. This precipitation was most often gray, indicat-

ing that the protein had lost its iron–sulfur cluster. Drops

were generally inhomogeneous, with a mixture of several

combinations of phase separation, precipitation, protein

films, and crystalline clusters with very high mosaicity.

Conditions from crystallization screens were tested; how-

ever; crystals were only obtained with conditions similar to

those for crystallization of the WT [23]. The best crystals

were obtained at room temperature with hanging-drop

vapour diffusion with a reservoir containing 35% PEG1500

and 0.1 M Tris/HCl pH 8.5. The drop contained 2 lL

reservoir solution, 2 lL 6.4 mg/mL D14C [3Fe–4S]

P. furiosus ferredoxin in 20 mM Tris/HCl pH 8.0, and

0.3 lL 0.1 M hexaamminecobalt(III) chloride. Diffraction

data were collected: 360 frames with an oscillation angle of

0.5�. Processing and space group determination were dif-

ficult because of anisotropic mosaicity. Processing was

performed with MOSFLM [27] and space group determi-

nation and averaging were achieved with Pointless and

SCALA [28]. The space group determined was in agree-

ment with the findings of previous diffraction experiments.

Data collection statistics for both structures are given in

Table 1.
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Structure determination and refinement of D14C

P. furiosus [4Fe–4S] ferredoxin

The CCP4 [30] suite was used for structure determination

and refinement. MOLREP [31] was used to solve the

structure with molecular replacement. The search model

was the peptide chain of WT [3Fe–4S] P. furiosus ferre-

doxin (PDB entry 1SJ1) [10]. Two molecules, type A and

B, were found in the asymmetric unit. Refinement was

performed with REFMAC5 [32]: first a rigid-body refine-

ment and then restrained refinements with isotropic B fac-

tors and geometric restraints as defined by Engh and Huber

[33] and a limited B value range of 2–200. Inspection of the

2Fobs - Fcalc and the Fobs - Fcalc sigma-A weighted dif-

ference maps was done using winCoot [34, 35]. Electron

density appeared clearly from two [4Fe–4S] clusters and

four [Co(NH3)6]3?. Two [Co(NH3)6]3? were added to each

of the two molecules in the asymmetric unit. One cobalt

atom in molecule A was disordered and split into two

cobalt atoms with 50% occupancy. One [Co(NH3)6]3? in

molecule B was placed on a twofold rotation axis and thus

assigned 50% occupancy. In molecule A, the following

residues were split in alternate conformations (occupancies

were refined manually by inspection of 2Fobs - Fcalc and

Fobs - Fcalc sigma-A weighted difference maps and are

given in parentheses): Thr10 (50/50), Cys17 (95/5), Ser19

(50/50), Cys21 (40/60), Leu45 (50/50), Cys48 (40/60),

Glu54 (50/50), Glu65 (50/50). Molecule B displayed

alternate conformation only at Ser19 (50/50). A total of

155 water molecules were included in the structure in a

combined use of REFMAC5 [32] and manually using

winCoot [34, 35]; all water molecules were inspected

manually. The structure of D14C P. furiosus [4Fe–4S]

ferredoxin is available in the PDB with entry 2Z8Q (see

Table 2 for refinement statistics).

Structure determination and refinement of D14C

P. furiosus [3Fe–4S] ferredoxin

The CCP4 [30] suite was used for structure determination

and refinement. MOLREP [31] was used to solve the struc-

ture with molecular replacement. The search model was the

peptide chain of type A D14C [4Fe–4S] P. furiosus ferre-

doxin. Two molecules were found in the asymmetric unit.

Molecular replacement was also carried out with the search

model of type B D14C [4Fe–4S] P. furiosus ferredoxin. The

R factor and score after molecular replacement were 0.622

and 0.455, compared with 0.592 and 0.534 for type A. An

increase in Rfree was observed during refinement when using

a type B molecule compared with a type A molecule as the

starting model. Molecule A of D14C [4Fe–4S] P. furiosus

ferredoxin is thus a considerably better model for molecular

replacement than molecule B. Refinement was performed

with REFMAC5 [32]: first a rigid-body refinement and then

restrained refinements with isotropic B factors, tight non-

crystallographic symmetry restrains on residues 1–25 and

28–66, and geometric restraints as defined by Engh and

Huber [33] and a limited B value range of 2–200. Inspection

of the 2Fobs - Fcalc and the Fobs - Fcalc sigma-A weighted

difference maps was done using winCoot [34, 35]. Electron

density appeared clearly from two [3Fe–4S] clusters and

four cobalt atoms; electron density was not visible for cobalt

Table 1 Data collection

statistics

Values for the outermost

resolution shell are given in

parentheses.

Rmerge = Ri Ii � Iih ij j=RiIi

D14C Pyrococcus furiosus
[4Fe–4S] ferredoxin

D14C P. furiosus
[3Fe–4S] ferredoxin

Beamline [29] ESRF, ID14-3 ESRF, ID14-4

Detector ADSC Quantum 4 ADSC Quantum Q315r

Wavelength (Å) 0.931 0.9765

Temperature (K) 100 100

Crystal space group C2221 P212121

Unit cell parameters

a (Å) 51.4 47.4

b (Å) 116.8 49.8

c (Å) 47.7 51.23

Resolution (Å) 26–1.7 (1.8–1.7) 35.7–2.8 (2.95–2.8)

No. of reflections 113,257 (17,828) 17,078 (2,504)

No. of unique reflections 16,226 (2,509) 3,254 (456)

Redundancy 6.98 (7.11) 5.2 (5.5)

Mosaicity (�) 0.2–0.4 Fixed 0.8

Completeness (%) 99.9 (100.0) 99.9 (99.9)

I/r(I) 11.41 (4.93) 3.6 (1.9)

Rmerge 0.112 (0.258) 0.252 (0.755)

766 J Biol Inorg Chem (2011) 16:763–775

123



ligands. Two cobalt atoms were added to each molecule in

the asymmetric unit. Molecule A displayed alternate con-

formation (occupancies were refined manually by inspection

of 2Fobs - Fcalc and Fobs - Fcalc sigma-A weighted dif-

ference maps and are given in parentheses) at Met27 (50/50)

and molecule B displayed alternate conformation at Cys14

(50/50). The structure of D14C P. furiosus [3Fe–4S] ferre-

doxin is available in the PDB with entry 3PNI (see Table 2

for refinement statistics).

Programs used for the analysis in ‘‘Results

and discussion’’

Structural figures were prepared using PyMOL [37]. Solvent

accessibilities were calculated using AREAIMOL [38, 39].

Root mean square (RMS) deviations were calculated using

the program superpose [40]. The omit map was calculated

using Sfcheck [41]. pKa was estimated using PROPKA [42,

43] Sequence alignment was done using ClustalW [44].

Results and discussion

Purification and cluster conversion

Aerobic purification of D14C P. furiosus ferredoxin pro-

duces the ferredoxin with an intact [4Fe–4S] cluster that is

eluted at 25–26 mS/cm during anion exchange at pH 8.0.

Aerobic purification of WT P. furiosus ferredoxin pro-

duces both [4Fe–4S] and [3Fe–4S] ferredoxins, which are

eluted in the form of two peaks during anion exchange at

pH 8.0.

Oxidation of [4Fe–4S] to [3Fe–4S] D14C P. furiosus

ferredoxin produces a free cysteine, which corresponds to

Asp14 in WT [3Fe–4S] P. furiosus ferredoxin [10]. Oxi-

dation was initially carried out at pH 7.8 as reported in

[45], but multiple peaks were observed during subsequent

anion exchange at pH 8.0 and the pH was therefore chan-

ged. At pH 5.8, a single peak is observed during anion

exchange (see Fig. 1). At pH 8.0, the free Cys14 in D14C

[3Fe–4S] P. furiosus ferredoxin is partly deprotonated and

elution in two peaks is observed (see Fig. 1). This can be

explained by elution of a monomer and a disulfide-bonded

dimer ferredoxin. The dimer is formed when two depro-

tonated monomers form an intermolecular disulfide bond

(see Scheme 1). The pKa of Cys14 was estimated with

PDB entry 1SJ1 (WT [3Fe–4S] P. furiosus ferredoxin

[10]), where Asp14 was mutated to cysteine. The pKa was

estimated to be 8.8, which is an increase compared with the

pKa of 8.3 of normal cysteine as is expected for a cysteine

residue in a negatively charged environment. The calcu-

lated pKa value is consistent with the presence of both

protonated (present as monomers) and deprotonated

(present as dimers) D14C [3Fe–4S] P. furiosus ferredoxin

at pH 8.0 (see Scheme 1).

Mass spectrometry

Mass spectrometric analysis identified the protein purified

at pH 5.8 (see Fig. 1, chromatogram labeled pH 5.8) to be

D14C [3Fe–4S]? P. furiosus ferredoxin. Its m/z spectrum is

shown in Fig. 2 (spectrum A1). Seven protein charge states

are observed—from charge state 9- to charge state 3-.

The m/z range from 800 to 1,300 was used to calculate the

mass spectrum. The apparent mass of the protein, derived

assuming that all negative charge is from proton deficit

[46], is 7,447.6 Da (see Fig. 2, spectrum A2). The calcu-

lated mass is calculated from the sum of average molecular

masses of all amino acids present in the protein sequence

plus the average molecular mass of the iron–sulfur cluster

components [46, 47]. The calculated mass has to be low-

ered by the mass of two protons for each disulfide bond,

and by the mass of protons equal in number to the oxida-

tion state of the metal cluster present [46]. The calculated

mass for the protein with one disulfide bond (C21–C48)

and 1? oxidation state of the metal cluster is 7,447.8 Da,

which perfectly matches the observed apparent mass

(Fig. 2, spectrum A2).

Subsequently, the two observed peaks in protein repuri-

fication at pH 8.0 (see Fig. 1) were analyzed by mass spec-

trometry. Protein from the first peak was identified to be

D14C [3Fe–4S]? P. furiosus ferredoxin, whereas protein

from the second peak was identified to be a disulfide-bonded

Table 2 Refinement statistics for D14C P. furiosus ferredoxin

[4Fe–4S] [3Fe–4S]

R 0.164 0.279

Rfree 0.194 0.318

No. of atoms in model

Protein 988 988

FeS clusters 16 14

Cobalt complexes 24.5a 4

Water oxygens 155 0

Mean temperature (B) factors (Å2)

Protein chain A/B 7.5/18 39/39

FeS cluster chain A/B 3.9/9.8 34/28

Cobalt complexes chain A/B 13/16 34/34

Water 23 –

Ramachandran plot [36]

No. of residues in favored region 127 116

No. of residues in allowed region 1 12

No. of residues in outlier region 0 0

a One cobalt complex is placed on a twofold rotation axis and

assigned 50% occupancy
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dimer: D14C [3Fe–4S(Cys–S)–(S0–Cys0)3Fe0–4S0]2?

P. furiosus ferredoxin. From its m/z spectrum (Fig. 2, spec-

trum B1), seven protein charge states are observed—from

charge state 12- to charge state 6-. The m/z range from

1,200 to 1,900 was used to calculate the mass spectrum. The

apparent mass of the disulfide-bonded dimer is 14,893.1 Da

(see Fig. 2, spectrum B2). The calculated mass for the pro-

tein with two C21–C48 intramolecular disulfide bonds, a

C14–C140 intermolecular disulfide bond, and two metal

clusters with oxidation state of 1? is 14,893.7 Da, which

matches the observed apparent mass (Fig. 2, spectrum B2).

Description of the structures

The overall structure of D14C P. furiosus [4Fe–4S] ferre-

doxin is illustrated in Fig. 3. The D14C variant [4Fe–4S]

ferredoxin incorporates the same secondary structure ele-

ments as seen in the [3Fe–4S] P. furiosus ferredoxin

structure [10]. The extended b-sheet dimer formation of

P. furiosus ferredoxin seen in the 1.5 Å-resolution structure

of P. furiosus [3Fe–4S] ferredoxin [10] is also seen in

D14C P. furiosus [4Fe–4S] ferredoxin between adjacent A

molecules (see Fig. 4). The A molecules form an extended

b-sheet by four main-chain intermolecular hydrogen bonds:

Ile63 N–Glu65 O and Glu65 N–Ile63 O in both molecules.

The B molecules do not form this extended b-sheet dimer

and no main-chain intermolecular hydrogen bonds are

observed between B molecules. The hexaammineco-

balt(III) complexes are situated between negatively

charged residues on the ferredoxin surfaces (Table S1) and

thus play an important electrostatic role in the crystal

packing. The overall charge of P. furiosus ferredoxin at

neutral pH is -12 and the cobalt complex is also necessary

during crystallization of WT P. furiosus ferredoxin [23]

and is present in the structure of WT [3Fe–4S] P. furiosus

ferredoxin [13] (see Fig. 5).

The structure of D14C [3Fe–4S] P. furiosus ferredoxin

is similar to that of the A molecules of D14C [4Fe–4S]

P. furiosus ferredoxin (see Fig. 3) and to that of the WT

[3Fe–4S] P. furiosus ferredoxin. The resolution is not

sufficient to make elaborate comparisons; however, elec-

tron density clearly shows the presence of a [3Fe–4S]

cluster in the structure (see Fig. 6). D14C [3Fe–4S]

P. furiosus ferredoxin with an omit map also clearly shows

the presence of a [3Fe–4S] cluster, and when we tried to

model the same structure with a [4Fe–4S] cluster, it was

clear from the Fo - Fc map that the fourth iron does not

belong in the model (Fig. S1). Crystal packing in D14C

[3Fe–4S] ferredoxin is as extended b-sheet dimers of

adjacent molecules, which is the same as in WT [3Fe–4S]

P. furiosus ferredoxin [10] even though the space groups

are different (see Fig. 5). The crystal packing of D14C

[3Fe–4S] emphasizes a strong resemblance to that of WT

[3Fe–4S] P. furiosus ferredoxin and to that of molecule A

of D14C [4Fe–4S] P. furiosus ferredoxin, which is a better

search model for molecular replacement than molecule B,

which does not form this type of extended b-sheet dimer.

Crystals were grown at pH 8.5 and no disulfide-bonded

dimers are observed in the structure. Monomers and

Fig. 1 Purification of D14C [3Fe–4S] Pyrococcus furiosus ferre-

doxin at pH 5.8 (20 mM BisTris/HCl pH 5.8) and a re-run at pH 8.0

(20 mM Tris/HCl pH 8.0)—on a Source 30Q anion exchange column.

Elution was followed at 280, 390, and 408 nm (blue, red, and pink,

respectively). Conductivity (mS/cm) is shown in brown and salt

concentration (% B; buffer with 1 M NaCl) is shown in green. Dimer
refers to a disulfide-bonded dimer of D14C [3Fe–4S] P. furiosus
ferredoxin

Scheme 1 pH-dependent equilibrium of D14C [3Fe–4S] Pyrococcus
furiosus ferredoxin between protonated and deprotonated monomers

and formation of a disulfide-bonded dimer from deprotonated

monomers. Fd ferredoxin
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disulfide-bonded dimers should be present at pH 8.5 (see

Scheme 1); however, the intrinsic crystal properties appear

to favor monomers, likely because of the large flexibility

around the intermolecular disulfide bond. The inhomoge-

neous solution of monomers and disulfide-bonded dimers

used for crystallization can explain the difficulty to grow

crystals and the very high mosaicity of the crystals.

Superposing the A and B molecules of D14C [4Fe–4S]

ferredoxin gives an RMS deviation of 0.8 Å, whereas

superposing WT [3Fe–4S] ferredoxin onto molecule A and

molecule B, respectively, gives an RMS deviation of 0.3

and 0.8 Å, respectively. D14C [4Fe–4S] molecule A thus

shows a greater resemblance to WT [3Fe–4S] ferredoxin

than to D14C [4Fe–4S] molecule B. However, the differ-

ences are subtle compared with those obtained from

superposing the structures onto ferredoxins from Thermo-

toga maritima (PBD entry 1VJW) or D. gigas (PDB entry

1FXD), which gives RMS deviations of 6–8 Å.

Superposing the structure of D14C [3Fe–4S] P. furiosus

ferredoxin onto molecule A and molecule B of D14C

[4Fe–4S] P. furiosus ferredoxin gives an RMS deviation of

0.5 and 0.8 Å, respectively. Superposing D14C [3Fe–4S]

P. furiosus ferredoxin onto WT [3Fe–4S] P. furiosus

Fig. 2 Mass spectrometric analysis spectra. A1 m/z spectrum and A2 mass spectrum of protein purified at pH 5.8 (Fig. 1, peak at 25.1 mS/cm);

B1 m/z spectrum and B2 mass spectrum of protein purified at pH 8.0 (Fig. 1, peak at 33.5 mS/cm)

Fig. 3 Overall structure of D14C P. furiosus [4Fe–4S] ferredoxin

molecule A represented as ribbons. The two a-helices (1 and 2) and

two b-sheets (A and B) as well as turns A, B, C, and E are marked.

The iron–sulfur cluster is shown as sticks
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ferredoxin (PDB entry 1SJ1) gives an RMS deviation of

0.4 Å. Fewer differences are thus observed between D14C

[3Fe–4S] P. furiosus ferredoxin and WT [3Fe–4S] ferre-

doxin than with D14C [4Fe–4S] ferredoxin.

Two crystal structures of [3Fe–4S] ferredoxins with

complete cysteine binding motifs –Cys–X2–Cys–X2–Cys–

Xn–Cys– are available: D. gigas [3Fe–4S] ferredoxin (PDB

entry 1FXD) and B. thermoproteolyticus [3Fe–4S] ferredoxin

variant V–II (PDB entry 1WTF). Both of these structures have

an additional chemical group bound to the non-cluster-

coordinating cysteine and thus no free cysteine is seen [6, 7].

The structure of D14C P. furiosus ferredoxin is the first

available structure where a cysteine from a complete cysteine

binding motif is free and facing away from the cluster.

Fig. 4 D14C [4Fe–4S]

P. furiosus ferredoxin A

molecules are shown in blue and

green, whereas B molecules are

shown in red and yellow.

Hexaamminecobalt(III)

complexes are shown in blue
and orange. The extended

b-sheet dimer of A–A

molecules from two different

asymmetric units is shown to

the left and A–A extended

b-sheet dimers forming a layer

with B molecules on each side is

shown to the right

Fig. 5 Crystal packing: side

and top views of a wild-type

[3Fe–4S] P. furiosus ferredoxin

with hexaaminecobalt(III)

complexes shown in blue and

orange (PDB entry 1SJ1 [10])

and b D14C [3Fe–4S]

P. furiosus ferredoxin with

cobalt atoms shown in orange
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The structure of D14C [4Fe–4S] P. furiosus ferredoxin

A pronounced difference between the A and B molecules in

the asymmetric unit of D14C [4Fe–4S] P. furiosus ferre-

doxin is at the backbone of Asp42, Glu43, and Glu44, where

molecule B is displaced 1–2.6 Å from molecule A out-

wards, leading to a-helix 2 being displaced approximately

1 Å (see Fig. 7). Superposing molecule A and B and leav-

ing out residues with pronounced differences (38–45 and

63–66) gives an RMS deviation of 0.5 Å as compared with

0.8 Å for full-length comparison. Some differences are

observed, but generally the molecules are very similar.

Another difference between the two molecules of D14C

[4Fe–4S] P. furiosus ferredoxin is that molecule B shows a

higher mean temperature B factor of 18 Å2 compared with

molecule A, which has a mean B factor of 7.5 Å2 (see

Table 2). The difference in mean B factors may be an

intrinsic property of the molecules or it may be explained

by the less restrained position of molecule B compared

with molecule A. This is illustrated in Fig. 4, which shows

the crystal packing of the molecules in layers: A–A

extended b-sheet dimers form a layer, whereas the B

molecules are placed in a less rigid position on each side of

the extended b-sheet dimer layer.

Also, an analysis of hydrogen bonds in the two mole-

cules in the asymmetric unit of D14C [4Fe–4S] P. furiosus

ferredoxin shows that molecule A of D14C [4Fe–4S]

P. furiosus ferredoxin is more similar to WT P. furiosus

[3Fe–4S] ferredoxin [10] than to molecule B. Table 3 lists

the hydrogen bonds that are different between the ferre-

doxin molecules. The hydrogen bond between Val4 N and

Glu38 O is only seen in molecule B and has been suggested

to be present in the native P. furiosus ferredoxin from

NMR analysis [48]. This bond, along with the interactions

between Trp2 and Ile40, links b-sheet A in molecule B to a

third and shorter strand (see Fig. 8). Hydrogen bond Val4

N–Glu38 O is not seen in molecule A and the backbones of

molecules A and B at Glu38 are displaced by 1.5 Å (see

Fig. 7). A number of hydrogen-bond differences between

molecules A and B in a-helix 2 are listed in Table 3, and

these are consistent with an approximately 1 Å displace-

ment of the a-helix.

The intramolecular disulfide bond between Cys21 and

Cys48 is in a double conformation in D14C [4Fe–4S]

molecule A (40% occupancy of the right-handed and 60%

occupancy of the left-handed spiral conformation), whereas

in molecule B, it is in a single right-handed spiral con-

formation. This disulfide bond is also found in a double

conformation in the WT [3Fe–4S] ferredoxin. Here, how-

ever, the right-handed conformation has 60% occupancy,

whereas the left-handed conformation has 40% occupancy

[10]. Table 4 lists intramolecular distances related to the

disulfide bond. Differences are observed for two of the

shorter steric interactions (emphasized in bold in Table 4):

in the left-handed conformation the Cys48 Sc–Leu20 O

Fig. 6 D14C [3Fe–4S] P. furiosus ferredoxin with 2Fobs - Fcalc

r = 1.3 electron density map clearly showing the presence of a [3Fe–

4S] cluster and Cys14 facing away from the cluster

Fig. 7 Superposed structure of D14C P. furiosus [4Fe–4S] ferredoxin

molecule A (green) and molecule B (orange). The intramolecular

disulfide bonds and the cluster are also shown
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distance is 3.2 Å in D14C molecule A compared with

2.8 Å in WT ferredoxin and in the right-handed confor-

mation the Cys21 Sc–Val24 Cc2 distance is 3.1 Å in

molecule A compared with 3.3 Å in WT ferredoxin. It

appears that the conformation is favored when the shorter

distance is more relaxed.

It is also seen in Table 4 that the intramolecular dis-

tances related to the disulfide bond generally are more

relaxed in molecule B, which is possible since a-helix 2 is

shifted approximately 1 Å. The more favorable single

right-handed disulfide bond thus involves a loss of hydro-

gen bonds in a-helix 2 as mentioned earlier. This is

accompanied by a displacement of the backbone of Asp42,

Glu43, and Glu44 1–2.6 Å outwards compared with mol-

ecule A. b-sheet A, which links the A molecules to form an

extended b-sheet dimer, also shows a minor displacement

(see Fig. 7). Whether the disordered intramolecular disul-

fide bond and the more tightly packed a-helix 2 and b-sheet

A is a consequence of the extended b-sheet dimerization is

difficult to judge.

Structure–reduction potential relationship

Sequence alignment of ferredoxins from D14C P. furiosus,

T. maritima, D. africanus I, and B. thermoproteolyticus is

shown in Fig. 9. These ferredoxins all contain a [4Fe–4S]

cluster coordinated to the protein by four cysteine residues

and were selected because of similarity and the availability

of crystal structures with an intact [4Fe–4S] cluster.

The structures of conserved cluster-coordinating

cysteine residues are shown in Fig. 10 for [4Fe–4S] fer-

redoxins from D14C P. furiosus molecule A (this work),

D. africanus I [49], T. maritima [50], and B. thermopro-

teolyticus [51]. Figure 10 shows only minor changes in the

conformation of cluster-coordinating cysteines and even

though residues in between the cysteine residues differ, the

backbones show little displacement.

Sc of the second cysteine in the coordination motif

(Cys14 in P. furiosus ferredoxin) is the least buried atom of

the [4Fe–4S] cluster including ligands [18], and solvent

accessibilities of these atoms are given in Table 5 for

[4Fe–4S] ferredoxins from D14C P. furiosus, T. maritima,

D. africanus I, and B. thermoproteolyticus along with

reduction potentials of the ferredoxins. In agreement with

the literature [17–19], a correlation is seen where less

buried [4Fe–4S] clusters have higher reduction potentials.

Table 5 also lists the N–H���S bonds of Sc of cluster-

coordinating cysteines, which has been discussed in the

literature to have an influence on the reduction potential of

[4Fe–4S] clusters [18, 20]. The ferredoxins have equal

numbers of bonds with comparable distances. A shift is

seen in the reduction potential of D14C versus WT

P. furiosus ferredoxin as the D14C ferredoxin has a more

negative reduction potential in its [4Fe–4S] form and a

more positive reduction potential in its [3Fe–4S] form

when it is compared with WT P. furiosus ferredoxin (see

Table 5). Also, in ferredoxin III from D. africanus,

changing a cluster-coordinating aspartate to cysteine

results in a more negative reduction potential in the

Fig. 8 Hydrogen bonds in b-sheet B of D14C P. furiosus [4Fe–4S]

ferredoxin molecule B and the three bonds linking the sheet to the

backbone at residues 38 and 40

Table 3 Possible main-chain hydrogen bonds in D14C [4Fe–4S]

P. furiosus ferredoxin and comparison with those for wild-type (WT)

P. furiosus [3Fe–4S] ferredoxin

Position Residues N���O (Å), this

study

N���O (Å), WT [10]

N O Chain A Chain B Averaged chains

b-sheet A

Val4 Glu38 – 2.8 –

Helix 2

Ala52 Cys48a 3.0 – 3.1

b 2.9 2.9

Leu45 a Asp42 3.2 – 3.2

b 3.2

Asn47 Glu44 – 3.2 –

Lys50 Cys48 a – – –

b 3.2 3.1

Glu51 Cys48 a – – –

b 3.0 2.8

Turn E

Ala60 Val58 (3.5) 3.2 (3.5)

a and b refer to alternate conformations of the residue
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[4Fe–4S] form and a more positive reduction potential in

the [3Fe–4S] form [5]. For the [4Fe–4S] cluster-containing

ferredoxins, this can be explained by aspartate being a

better electron-withdrawing group than cysteine. For the

[3Fe–4S] cluster-containing ferredoxins, it can be

explained by the pKa difference between aspartate and

cysteine: aspartate is completely deprotonated, whereas

cysteine is partly protonated and the increased charge

density of the WT ferredoxin with a free aspartate results in

a lower reduction potential in the [3Fe–4S] form compared

with the D14C ferredoxin with a free (partly protonated)

cysteine near the cluster.

Conclusion

When oxidized to contain a [3Fe–4S] cluster, the D14C

variant of P. furiosus ferredoxin has a free cysteine residue:

Cys14. The [3Fe–4S]-containing ferredoxin shows a

pH-dependent equilibrium between protonated and depro-

tonated monomers and formation of a disulfide-bonded

dimer at pH 8.0. At pH 5.8, only the protonated Cys14–SH

monomer is present as determined by mass spectrometric

analysis. Mass spectrometric analysis also confirmed the

presence of both the monomer and a dimer consisting of

two [3Fe–4S]-containing ferredoxins with an additional

intermolecular disulfide bond at pH 8.0. This inhomoge-

neity is likely to be the reason behind the difficulty in

crystallizing D14C [3Fe–4S] P. furiosus ferredoxin; how-

ever, the structure clearly shows the presence of a [3Fe–4S]

cluster.

Molecules A and B in the D14C variant of [4Fe–4S]

P. furiosus ferredoxin show some distinct differences that

can be related to differences seen in the crystal packing

and conformation of the intramolecular disulfide bond.

Fig. 9 Sequence alignment of ferredoxins from D14C P. furiosus, Thermotoga maritima, Desulfovibrio africanus I, and Bacillus
thermoproteolyticus. Cluster-coordinating cysteines are marked in yellow and conserved residues are marked in blue

Fig. 10 Superposed structures of the –Cys–X2–Cys–X2–Cys– seg-

ment in [4Fe–4S] ferredoxins from D14C P. furiosus molecule

A (green, this work), D. africanus I (blue, PDB entry 1FXR [49]),

T. maritima (red, PDB entry 1VJW [50]), and B. thermoproteolyticus
(yellow, PDB entry 1IQZ [51])

Table 4 Intramolecular distances related to the double conformation of the disulfide bond in D14C [4Fe–4S] ferredoxin molecule A and WT P.
furiosus [3Fe–4S] ferredoxin molecule A and distances in D14C [4Fe–4S] ferredoxin molecule B

60% left

D14C A

40% right

D14C A

40% left

WT A

60% right

WT A

100% right

D14C B

Cys48 O–Cys21 Sc 3.0 3.8 3.1 3.6 3.6

Cys21 Sc–Val24 Cc2 5.2 3.1 5.6 3.3 3.6

Cys48 Sc–Leu20 O 3.2 4.3 2.8 4.1 4.4

Shorter distances relevant for shift in occupancies are shown in bold
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A b-sheet interaction is present between A molecules in

adjacent asymmetric units and these A–A extended b-sheet

dimers form a layer in the crystal packing. The B mole-

cules do not show the same interaction and are packed in a

less rigid position. Molecule B has the intramolecular

disulfide bond in a single right-handed conformation,

whereas molecule A has it in a double conformation. More

relaxed intramolecular distances related to the disulfide

bond in molecule B compared with molecule A are pos-

sible owing to a shift through a-helix 2. The shift of a-helix

2 also causes a shift of b-sheet A to a lesser extent and this

shift could be related to molecule B not forming an

extended b-sheet dimer. Generally, D14C [4Fe–4S] mole-

cule A and WT [3Fe–4S] ferredoxin show a larger

resemblance than the A and B molecules in the D14C

[4Fe–4S] variant. The conformations of the highly con-

served cluster-coordinating cysteine residues in the –Cys–

X2–Cys–X2–Cys– binding motif of ferredoxins from D14C

P. furiosus, T. maritima, D. africanus I, and B. thermo-

proteolyticus are in close resemblance.
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MyCrystals is designed as a user-friendly program to display crystal images and

list crystallization conditions. The crystallization conditions entry fields can be

customized to suit the experiments.MyCrystals is also able to sort the images by

the entered crystallization conditions, which presents a unique opportunity to

easily assess the effect of, for example, changing pH or concentration and thus

establish the best conditions to be used for optimization.

1. Introduction

Macromolecular structure determination by X-ray diffraction

requires a successful crystallization. This can be a difficult task where

numerous crystallization experiments lead to a large amount of data.

Crystallization projects can be worked on by several people over long

periods of time, and keeping track of, as well as sharing, results can be

made much easier by the use of a database.

There are many available systems and programs that can be used to

store crystallization data. In connection with crystallization robots

there is usually commercial software available to handle the large

amount of data. Some of the free programs are XtalBase (Meining,

2006), XAct (Brodersen et al., 1999), Xtrack (Harris & Jones, 2002),

CLIMS (Fulton et al., 2004) and LISA (Haebel et al., 2001). XtalBase

(Meining, 2006) is a comprehensive system that amongst many other

features can manage and display images of the results, and CLIMS

(Fulton et al., 2004) is able to store visual observations of the drops.

Images combined with scores afford a simple way to assess crystal-

lization results and simplify the optimization procedure because of

the transparency of the results. Laboratory information management

systems like the Protein Information Management System (PiMS;

https://www.compbio.dundee.ac.uk/pims2_0/) are designed to manage

various types of data, such as target, construct and experimental data,

through a web interface. We have developed a program named

MyCrystals with the main purpose of managing and storing images

and crystallization conditions and sorting them to give an overview of

the results.

MyCrystals is simple to use, easy to navigate and requires minimal

time investment by the researcher to utilize the software. The unique

feature of MyCrystals is its ability to display and sort crystallization

images. The images are stored locally or on external media, and the

program creates a database with file paths to identify the images.

MyCrystals is also able to sort the images by the entered data to view

the effect of, for example, changing the pH or precipitant. This makes

it easier to establish the best conditions and to assess how they can be

optimized. MyCrystals can also be used as a notebook program to

keep track of attempted crystallization conditions without necessarily

using the image-viewing part. Furthermore,MyCrystalsmay be useful

in other experimental optimization procedures, such as purification,

where a lot of slightly different procedures are usually tested. These

may be stored in the database and linked to an image file containing

the resulting chromatogram.

2. Program description and use

MyCrystals is primarily designed for viewing and sorting images in a

simple and intuitive user interface.

The File menu is used for creating new databases and loading or

saving existing databases. Creating a new database in the File menu

will auto-generate a standard set of conditions.

The user interface of MyCrystals is divided into three simple main

tabs: Filter Data, Edit Data and Data Table.

2.1. Data structure

The data consist of two parts. The first part is an XML database

that contains all entered conditions including the appropriate image

path for each set of conditions (data entries). The second part is the

images themselves, which are placed in a directory on the hard drive.

MyCrystals recognizes graphics file formats JPEG, GIF, PNG and TIFF.

The full path to each image consists of two parts, a project directory

and a relative image path. The image path is unique for each data

entry, while the project directory is shared. This arrangement facil-

itates the moving of all images to another location, as only the project

directory needs to be changed.

2.2. Filter Data

The Filter Data tab is used for viewing and sorting images

entered into the database. The sorting options are available in a drop-

down menu and consist of all entered data. First, a condition is

selected, and then a filter option is applied. Text strings can be sorted

as absolutes, while numerical strings also can be sorted using >, <, �,

� and 6¼. It is possible to apply 15 filters simultaneously. A list of

entries that match the criteria is generated and displayed in the tab

(see Fig. 1).

The information shown for each data entry in the list can be

customized using the field Filter text. Writing [1] will list the data

entered in the first field in the Data Entry area of the Edit Data tab,

[2] will list the data in the second field, and so forth.

Selecting one of the listed entries will display the matching image

to the right of the tab, as shown in Fig. 1.
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2.3. Edit Data

The database can be edited in the Edit Data tab. The tab consists

of three parts: Project Directory, Column Properties and Data

Entry.

The project directory is the path to a directory where all the images

used in the database are placed. The rest of the path is stored as a

property (image path) for each data entry.

Column Properties makes it possible to change the data columns

of the database. It is possible to delete or add columns, change the

names and types, and switch the positions of two columns. An

intuitive user interface renders this possible (see Fig. 2).

The Data Entry area is used to add, change and remove data

entries in the database. The Selected Data Entry area operates on

an existing data entry. To add a new data entry into the database, use

the Add Data Entry button, which creates a new data entry with a

consecutive index number. The data entry

fields are empty when the first data are

typed in, and after Add Data Entry has been

used, the entry fields will contain the infor-

mation of the latest data entry. Drop-down

menus of previously entered data are avail-

able when entering or correcting database

entries. The Selected Data Entry area can

advantageously be used when entering data,

as an entire set of previously entered

conditions can be loaded by giving the index

number. Minor changes can be applied to

the set of conditions and Add Data Entry

will generate a new entry in the database.

2.4. Data Table

The Data Table tab lists all entered data

to give an overview of the contents of the

database.

3. Platforms and availability

The program is written in C# as a Windows

Form in Microsoft Visual Studio. The

program consists of a single executable file,

and no installation is needed. MyCrystals

runs under Windows and has no special

hardware requirements.

MyCrystals is available free of charge for

download from http://xray.kemi.dtu.dk/

mycrystals/.

4. Conclusions

The unique main feature of the program

MyCrystals, presented here, is the displaying

and sorting of crystallization images based

on the entered crystallization conditions.

This enables the user to view the effect of

changing conditions, which helps to identify

parameters for optimization.
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