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Preface 

The present report is prepared as a part of the project “Precipitation in a future climate” sup-

ported by the Foundation for Development of Technology in the Danish Water Sector (In Dan-

ish: Vandsektorens Teknologiudviklingsfond), contract no. 7492-2012. The data analyses pre-

sented here is carried out by DTU Environment and DHI. The main results have served as input 

to two case studies on risk change accomplished by Greve-Solrød utility company, Aarhus Wa-

ter, DHI and Krüger, which all have been involved in the overall project. The project has partly 

been running alongside two PhD projects at DTU Environment, “Statistical modelling of climatic 

extremes in the hydrological cycle” by Ida Bülow Gregersen, and “Uncertainty analysis of ex-

treme precipitation under climate change conditions” by Maria Sunyer. The first is part of the 

“Centre for Regional Change in the Earth System” (http://cres-centre.net/) project, the second is 

part of RiskChange (http://riskchange.dhigroup.com) project, both supported by the Danish 

Strategic Research Council. The PhD projects have contributed to the results and conclusions 

presented in the present report.  

 

The project results are also published in two conference papers presented on the 13th Interna-

tional Conference on Urban Drainage, Sarawak, Malaysia (Gregersen et al. submitted a and 

Sunyer et al. submitted) and four journal papers (Arnbjerg-Nielsen et al. in prep., Gregersen et 

al. submitted b, Madsen et al. in prep. and  Sunyer et al. in review a). All are marked in bold in 

the reference list. 

 

The analysed data have been provided by the Water Pollution Committee of The Society of 

Danish Engineers, the Danish Meteorological Institute, Lars Bengtsson at Department of Water 

Resources Engineering, Lund University, Sweden, the Royal Meteorological Institute of Belgium 

and the European ENSEMBLES project. 

 

The authors thank the working group behind the project “Precipitation in a future climate” and 

Søren Liedtke Thorndal, AAU, Department of Civil Engineering for proofreading and construc-

tive comments. 

 

The report serves as a technical report for ‘Skrift 30’ published by the Water Pollution Commit-

tee of the Society of Danish Engineers. 

 

 

 

 

Lyngby, July 2014 

The Author Team 

 

 
  



 

 Past, present, and future variations of extreme precipitation in Denmark 

Summary 

The objective of the study was to analyse past, present and future variations of extreme precipi-

tation in Denmark and use the knowledge to review the present guidelines for urban designers.  

 

An updated regional model for estimation of design precipitation was suggested. The model 

was built on data from the rain gauge network maintained by the Water Pollution Committee of 

the Society of Danish Engineers. As a new feature, data from the national rain gauge network 

owned by the Danish Meteorological Institute was also included, greatly improving the descrip-

tion of the regional variations. Comparing the updated model to the old recommendations the 

change in design intensity varies both with the duration, return period and location in Denmark. 

For a 2-year event the change ranges from -9% to 26% and results both from the new regionali-

zation and a general increase in the design precipitation intensities. The general increase ob-

served during the last 34 years of observation was further investigated and compared to varia-

tions of extreme precipitation in long historical records from the Danish Meteorological Institute 

going back to 1874. By use of a 10-year moving average a multidecadal pattern of variation was 

found in the number of extreme events. The pattern showed an increasing phase in the eastern 

part of Denmark in the last decades. Hence, it is very likely that the general increase in the de-

sign precipitation intensities observed over the last 34 years is dominated by natural variability. 

The analysis furthermore showed that 34 years of measurement is sufficient to reflect the range 

of natural variability. The updated regional model can therefore serve as a present baseline for 

extreme design precipitation, to which the guidelines for future changes can be added. 

 

Future changes in design precipitation were evaluated from 13 climate model simulations from 

the European ENSEMBLES database and several high-end scenarios. Three different methods 

were applied to downscale the output from the climate models: A delta change approach for ex-

treme events, a stochastic weather generator followed by temporal disaggregation and the 

climate analogue method. From these a range of climate factors was estimated, which reflect 

the climate model uncertainty, the variation over Denmark, the uncertainty of the future climate 

forcing scenario and the uncertainty of the applied downscaling method. This allowed for a se-

lection of standard climate factors that represents the best estimate of the expected future 

changes. These are 1.2, 1.3 and 1.4 for a 2- , 10- and 100-year event, respectively, for a projec-

tion period of 100 years. Additionally, high climate factors that represent the upper 84%-quantile 

of the expected future changes were estimated. These are 1.45, 1.7 and 2.0 are recommended 

for a 2- , 10- and 100-year event, respectively. 

 

A stochastic weather generator followed by temporal disaggregation was used to simulated 

high-resolution precipitation series for two set of future conditions, which represent changes in 

extreme precipitation characteristics given by the standard and the high climate factors. Howev-

er, it was found that some of the sub-daily precipitation properties in the synthetic were unrealis-

tic in comparison to observed precipitation. The synthetic series can therefore not be used for 

urban drainage design.   

 

The updated regional model and the climate factors are published as guidelines for urban de-

signers in ‘Skrift 30’ by the Water Pollution Committee of the Society of Danish Engineers 
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1. Introduction 

1.1 Background 

The Water Pollution Committee of the Society of Danish Engineers (WPC) has since the 1950s 

published a series of guidelines regarding urban design practice. Guideline no. 26 from 1999 

(WPC 1999) presents a regional extreme precipitation model for Denmark based on analysis of 

data from the regional rain gauge network (SVK) also maintained by WPC. The model was up-

dated in Guideline no. 28 in 2006 (WPC 2006) leading to a general increase of the recommend-

ed design intensities. The first guidelines on how the uncertainty of the future climate can be in-

corporated in urban design practice came in Guideline no. 27 in 2005 (WPC 2005) and were fol-

lowed by specific recommendations on the magnitudes of change in Guideline no.29 in 2008 

(WPC 2008). Here changes of +20%, +30% and +40% for a 2- , 10- and 100-year event, re-

spectively, were recommended. The knowledge and focus on the link between anthropogenic 

climate change and design precipitation extremes have advanced rapidly over the last five 

years. All motivated by an improved understanding of the earth system, increased computation-

al capabilities allowing for a rapid increase in the number of simulations by global and regional 

climate models, and increasing public awareness of potential future changes driven by numer-

ous observations worldwide indicating changes in the climate system (e.g. Westra et al. 2013). 

The latter is especially relevant for Denmark where several major pluvial floods have occurred 

within the last decade. It is therefore highly relevant to update the recommendation to include 

the latest advancements in understanding of climate change and climate variability. 

 

1.2 Project objective 

The present study presents the results of a coordinated effort to review the present guidelines 

for urban designers in Denmark in the light of the additional years of measurements as well as 

the newly available climate model simulations and the latest advancements within the field. The 

main three focus points are: 

1) Evaluating and understanding the current increase in the design precipitation intensities 

and thereby establishing the present baseline for extreme design precipitation, to which 

the guidelines for future changes can be added. To accomplish this objective it is nec-

essary to revisit historical observations of precipitation. 

2) Estimating the projected changes in design precipitation based on state-of-the-art cli-

mate model simulations, including an assessment of the uncertainty by providing both 

most likely and high-end scenarios. 

3) Providing simulated high-resolution precipitation series for future conditions, which rep-

resent the likely changes in extreme precipitation characteristics. 

 

1.3 Report overview 

The project is made at DTU Environment in collaboration with DHI and builds on the knowledge 

on climate change and variation of extreme precipitation generated at the two research institu-

tions during the last five years. The present report therefore covers a large number of method-

ologies and datasets. The contribution can be divided into several independent studies, of which 

some are submitted as scientific papers to international journals directly as an outcome of the 

project. Results from other existing publications are also included if they provide significant in-

formation with respect to the project objectives. Table 1 shows the main tasks and outputs of 

the project, and in which sections of the report the datasets, methods and results are described.   
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Table 1: The different datasets, the methods in which they have been applied and the main outputs. DC denotes the delta change approach for extremes, WG denotes synthet-

ic weather generator, disagg denotes the random cascade disaggregation model, and CA the climate analogue method. The sections in which the datasets are descripted are 

listed to the left, the sections in which the methods are described are listed at the top, while sections in which the results are described are listed at the bottom. The datasets 

written in grey are high-end climate scenarios, included in the choice of climate factors but analysed and documented elsewhere. 

  
Trends 

Regional  

extreme precipitation 

Climate factors 
Future time series 

  DC WG WG+disagg CA 

  Section 3.3 Section 3.2 Section 3.5 Section 3.6.1 Section 3.6.2 Section 3.7 Section 3.6.2 

SVK gauge 

1979-2012 

Section 2.1 
Regional trend Regional model   Calibration  

Calibration +  

validation 

DMI gauge 

1874-2010 

Section 2.2 
Natural variation       

DMI gauge 

1961-2010 

Section 2.3 
Natural variation       

DMI grid 

1989-2010 

Section 2.4 
 Explanatory variable  Calibration Calibration  Calibration 

E-OBS grid 

1951-2012 

Section 2.5 
     Selection of predictor regions  

ENSEMBLES 

1950-2010 

 
       

    daily Section 2.6   CF daily 25x25km
2 

CF daily 10x10km
2
 CF hourly 10x10km

2
 CF daily + hourly point 30 min 10x10km

2 

    1 hour max Section 2.6   CF hourly 25x25km
2
     

    1 hour Section 2.6   CF hourly 25x25km
2
     

RCP 

1981-2100 

Section 2.7        

6° scenario 

1976-2100 

Section 2.7        

  Section 4.2 Section 4.1 Section 4.5 

Section 4.6 

Section 4.3 

Section 4.5 

Section 4.6 

Section 4.3 

Section 4.5 

Section 4.6 

Section 4.4 

Section 4.5 

Section 4.7 
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2. Datasets 

Datasets 1 – 3 are point measurements, while 4 – 7 are gridded data sets, i.e. spatially aggregated values. 

 

2.1 SVK high-resolution rain gauges 1979-2012 

The SVK rain gauge network has provided the data for the two earlier publications from WPC on regional 

variation of extreme precipitation.  These high-resolution tipping bucket rain gauge stations have a data reso-

lution of one minute and 0.2 mm. The network is operated by WPC and the Danish Meteorological Institute 

(DMI), see Figure 1 for distribution of the stations over Denmark and Appendix 1 for detailed station infor-

mation. The data have been quality checked, partly by the DMI and partly by the authors. Presently, 83 of 

the stations have a total observation period of more than 10 years, and these stations are included in the 

analysis. For the distribution of stations according to the years of observation, see Figure 2. When periods of 

rain gauge malfunction have been taken into account, the total dataset corresponds to 1881 station-years. 

The following variables are defined from the SVK precipitation series: Precipitation intensities with a duration 

of 1, 2, 5, 10, 30, 60, 180, 360, 720, 1440, 2880 min, accumulated daily precipitation and basin volume 1 and 

2 (for definition see Madsen 1998). 

 

 

Figure 1: The location of the 83 SVK high resolution rain gauges with measurements from 1979-2012 
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Figure 2: Number of stations grouped with respect to the length of the observation period for SVK stations (left) and the de-

velopment of the total number of station years during the observation period (right). The subsample of 31 stations is de-

scribed in Section 4.2  

 

 

2.2 DMI daily rain gauges 1874-2010 

Five series with daily measurements in the period 1874-2010 are available from DMI, see Figure 3. The 

measurements originate from manual Hellmann gauges with a precision of 0.1 mm. The registration of ac-

cumulated diurnal precipitation is made each morning.  Only two of the five gauges, Fanoe and Vestervig, 

have maintained the exact same location during the 137 years of measurement. The rain gauge at Samsoe 

was relocated in 2001, whereas the series for Bornholm and Copenhagen (Kbh) are assembled by meas-

urements from two and three geographically close stations, respectively. In the assembling procedure one of 

the available daily measurements is chosen randomly, whenever overlapping measurement periods exist. It 

has been verified that different realizations of the assembled series give similar results in the performed 

analyses.  

 

The five final series have days with missing measurements that constitute at a maximum 2.5% of the total 

series. In the analysis, days with missing measurements are treated as dry days. As a supplement to the 

long Danish records, one series with daily measurements from Lund, Sweden, covering the period 1874-

2010, is also analysed. For further details see Gregersen et al. (submitted b). 

 

2.3 DMI daily rain gauges 1961-2010 

96 series with daily measurements in the period 1961-2010 are available from DMI. The measurements orig-

inate from manual Hellmann gauges identical to those described in Section 2.2.  The length of the series dif-

fers, but all have at least 45 years of continuous observation. 56 of the 96 stations have been approved by a 

homogeneity test performed by DMI, where the observed accumulated precipitation is compared to interpo-

lated accumulated precipitation obtained from the surrounding stations (Lundholm and Cappelen, 2010). Da-

ta from the 56 stations are included in the analysis (see Figure 3). 
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Figure 3: The location of the five DMI stations with daily measurements from 1874-2010 (white dots), the single Swedish sta-

tion with daily measurements from 1874-2010 (white triangle) and the location of the 56 DMI stations with daily measurements 

from 1961-2010 (black dots). 

 

2.4 DMI climate grid 1989-2010 

The Climate Grid Denmark (CGD) dataset from DMI is a gridded data set of daily precipitation which has a 

spatial resolution of 10x10 km
2
 and covers the time period 1989-2010 (Scharling, 2012), see Figure 4a for 

coverage over Denmark. The grid values are estimated from point measurements obtained from the regional 

network of daily precipitation stations owned by DMI using an inverse distance weighting method. The daily 

precipitation provided by Scharling (2012) is not corrected for the wind-induced under-catch or the wetting 

and evaporation loss. A description of applicable correction procedures for the CGD precipitation values is 

given in Scharling and Kern-Hansen (2000). In the current project non-corrected values are applied. This 

does introduce an error, but for most applications related to urban drainage design it is assumed to be minor. 
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Figure 4: Applied model grids over Denmark. (a) CGD (b) E-Obs (c) ENSEMBLES, daily and 1 hour max are extracted at the 

same grid points, while the grids for 1 hour and 1 hour max differs as the 1 hour grid was defined prior to the project.  

 

2.5 E-OBS climate grid 1951-2012 

The E-OBS dataset was created as part of the ENSEMBLES project (see section 2.6) to provide a dataset 

for evaluation of climate model performance. It is a gridded dataset of daily precipitation, which has a spatial 

resolution of approx. 25x25 km and covers the time period 1951-2012. The grid values are estimated from 

point measurements obtained from the large European ECA&D database using a kriging interpolation meth-

od, see Sunyer et al. (2013) for more details and Figure 4b for coverage over Denmark 

 

2.6 ENSEMBLES climate model simulations 1950-2100 

The climate models used in this study are Regional Climate Models (RCMs) driven by different Global Cli-

mate Models (GCMs) from the ENSEMBLES project (van der Linden et al. 2009). The goal of the ENSEM-

BLES project was to estimate the uncertainty in climate model projections. From the project a relatively large 

ensemble of RCMs was made available; they have a spatial resolution of 25 km and available data up to the 

end of the century (simulation period 1950-2100). 

Table 2: Applied climate models simulations from the ENSEMBLES database 

RCM GCM Data resolution Institute 

HIRHAM5  ARPEGE  1 hour max, daily 

Danish Meteorological Institute  HIRHAM5  ECHAM5  1 hour, 1 hour max, daily 

HIRHAM5  BCM  1 hour max, daily 

REMO  ECHAM5  1 hour max, daily Max Planck Institute for Meteorology  

RACMO2  ECHAM5  1 hour, 1 hour max, daily Royal Netherlands Meteorological Institute  

RCA  ECHAM5 1 hour max, daily 
Swedish Meteorological and Hydrological 

Institute  
RCA  BCM  1 hour max, daily 

RCA  HadCM3Q3  1 hour max, daily 

CLM  HadCM3Q0  1 hour max, daily 
Swiss Federal Institute of Technology, Zü-

rich  

HadRM3Q0  HadCM3Q0  1 hour max, daily 

UK Met Office  HadRM3Q3  HadCM3Q3  1 hour max, daily 

HadRM3Q16  HadCM3Q16  1 hour max, daily 

RCA3  HadCM3Q13  1 hour max, daily 
Community Climate Change Consortium 

for Ireland  

 

The information used from these RCMs is daily precipitation and 1h maximum daily precipitation. The latter is 

only available from 13 out of the 15 ENSEMBLES simulations. For simplicity, the present project estimates 

the prediction uncertainty from these 13 models only. In addition, two of the ENSEMBLES RCMs have been 

made available at 1 hour resolution. The RCM/GCM combinations and their data resolution are given in Ta-

ble 2. All GCMs are forced by the A1B scenario (IPCC 2000).  The coverage of the model grid over Denmark 

is given in Figure 4c. 

 

 

CGD

 

 

E-OBS

 

 

1 h max.

1 h max. and 1 h

(a) (b) (c)
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2.7 High-end scenarios 1976--2100 

The A1B scenario forcing the ENSEMBLES is relatively optimistic in terms of projected greenhouse gas 

(GHG) emissions, when seen in relation to our current emission rate (Peters et al. 2013). Hence, the results 

from several high-end scenarios need to be included in the assessment of future change of extreme precipi-

tation. For Denmark two high-end emission scenarios are currently available, RCP8.5 and 6°, see Table 3. 

To estimate the relative effect of the high-end scenario, it is compared to a mean climate change scenario, 

which has been processed in a similar manner. For this purpose RCP4.5 has been selected. In comparison 

to the old but well-known SRES scenarios (IPCC 2000), the CO2 emission rate by 2100 in RCP4.5 and 

RCP8.5 corresponds to B1 and A2, respectively (van Vuuren et al. 2011). The general motivation for the new 

RCP (Representative Concentration Pathways) scenarios, where the forcing effects of the emitted green-

house gasses is central instead of the socio-economic development of the world, is discussed in detail in 

Moss et al. (2010). In the 6° high-end scenario, the average global temperature increase is in focus, and the 

scenario is constructed to reach 6°C in 2100 (Christensen et al. submitted).  

 

The model setup using the RCP8.5 and RCP4.5 as climatic forcing outlined in Table 3 is described in detail 

by Mayer et al. (submitted). The RCM outputs have been further downscaled by Sørup et al. (in prep.) using 

a weather generator, which partly resembles the one described Section 3.6.1, but with a spatial module and 

calibrated to point precipitation. The model setup using the 6° and RCP4.5 as climatic forcing outlined in Ta-

ble 3 is described in detail by Christensen et al. (submitted). The RCM outputs have been further 

downscaled by Arnbjerg-Nielsen et al. (submitted) using a delta change approach identical to the one de-

scribed in Section 3.5. 

 

Table 3: Information on high-end scenarios 

Name RCM GCM Temporal 

resolution 

Spatial reso-

lution 

Present 

period 

Future 

period 

Downscaling 

RCP8.5 HIRHAM 5 

(Christensen et 

al. 2007), 

EC-EARTH 

(Hazeleger et 

al. 2012) 

1hour 8 km 1981-

2010 

2071-

2100 

advanced weath-

er generator 

RCP4.5 HIRHAM 5 

(Christensen et 

al. 2007), 

EC-EARTH 

(Hazeleger et 

al. 2012) 

1hour 8 km 1981-

2010 

2071-

2100 

advanced weath-

er generator 

6
o
 HIRHAM 5 

(Christensen et 

al. 2007), 

EC-EARTH 

(Hazeleger et 

al. 2012) 

1hour max/ 

daily 

25 km 1976-

2005 

2071-

2100 

Delta change 

RCP4.5 HIRHAM 5 

(Christensen et 

al. 2007), 

EC-EARTH 

(Hazeleger et 

al. 2012) 

1hour max/ 

daily 

25 km 1976-

2005 

2071-

2100 

Delta change 
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3. Methods and definitions 

3.1 Partial Duration Series and Extreme Value Theory 

The extreme value analysis follows the theory of Partial Duration Series (PDS) where the annual number of 

extreme events (N) is assumed to follow a Poisson distribution and the magnitude of the extreme events is 

assumed to follow a Generalized Pareto distribution (GPD) (Rosbjerg et al. 1992; Willems et al. 2012). 

Therefore a T-year event (  ) is estimated by: 

 

        
   

 
[  (

 

  
)
 

]                         where         
 

   
   

 

The parameters in the equation are denoted; the location parameter (  ), the shape ( ) parameter, the mean 

of the extreme exceedances ( ), the L-moment coefficient of variation (   ) and the average annual number 

of extremes ( ) which corresponds to the rate parameter of the Poisson distribution 

 

When sampling the extreme events from a time series, the PDS approach offers two censoring methods. In 

type 1 censoring, the threshold over which an event is considered as extreme is pre-fixed. The method is al-

so known as Peak over Threshold (POT) (Coles 2001). Note that the threshold is equivalent to    of the 

GPD.  In type 2 censoring,  , and thereby the total number of extremes during the observation period, is pre-

fixed. The optimal choice of censoring methods depends on the data and the nature of the analysis. In the 

regional PDS model developed by Madsen and Rosbjerg (1997) type 1 censoring was used. This model is 

considered as state-of-the-art and is applied in the current description of extreme precipitation in Denmark 

(Madsen et al. 2002; Madsen et al. 2009). However, when regionalization is not the goal of the analysis, or 

when the variation within the data set is too large for a common threshold to be found, type 2 censoring can 

be more suitable. Larsen et al. (2009) applied type 2 censoring when analysing changes in extreme precipi-

tation over Europe, as projected by a RCM. 

 

The extreme events in the PDS are required to be independent (Coles 2001).  In the literature there are at 

least two common ways of ensuring this. Madsen et al. (2002) performed an event-based separation, where 

each extreme belongs to a specific precipitation event defined by a start and end time. For the events to be 

independent the dry weather period between two precipitation events must be longer than or equal to the du-

ration. A more simple approach, often applied in analysis of daily RCM projections, is to consider the occur-

rence of the extremes and sample events separated by a given time window. In this study, the difference be-

tween the two methods is considered negligible.  

 

Table 4 shows the combination of dataset and methods (with reference to Table 1) in which extreme value 

analysis has been applied, together with the applied censoring method and independence criteria. 

 

Depending on the censoring method, either   or    is regarded as a stochastic variable which can be esti-

mated from the dataset together with α and κ. The method of L-moment is applied for the estimation (Hosk-

ing and Wallis 1993; Willems et al. 2012). The estimation uncertainty on κ is large. This uncertainty can be 

reduced by assuming that     is homogenous over a larger region (Madsen et al. 2002). 

 

 

 

 

 



 

Past, present, and future variations of extreme precipitation in Denmark 15 

Table 4: PDS censoring and independence criteria used for the different datasets * See Sørup et. al. (in prep) for details 

Dataset Method PDS censoring Independence 

SVK 1979-2012 Trends and 

regional model 

Type 1 Independent precipitation events 

DMI 1874-2009 Trends Type 1 Independent precipitation events 

DMI 1961-2009 Trends Type 1 Independent precipitation events 

ENSEMBLES daily precipitation DC Type 2  24 hours distance 

ENSEMBLES daily precipitation WG Type 2  24 hours distance 

ENSEMBLES daily precipitation WG + Disagg Type 2  24 hours distance 

ENSEMBLES daily 1 hour max DC Type 2  24 hours distance 

ENSEMBLES hourly precipitation DC Type 2  Independent precipitation events 

High-end scenario 6
o
 and RCP4.5

 
DC Type 2 Independent precipitation events 

High-end scenario RCP8.5 and 

RCP4.5
 

WG* Type 1* Independent precipitation events* 

 

3.2 Regional extreme value modelling 

The regional extreme value model developed for estimation of Danish precipitation extremes by Madsen et 

al. (2002) is applied in this study. The model combines PDS of precipitation extremes from all 83 SVK rain 

gauges for estimation of regional IDF relationships and other precipitation characteristics. In this section a 

brief description of the regional model is given. The reader is referred to Madsen et al. (2002) for a more de-

tailed description. 

 

In the regional PDS model the  ,   and     are taken as regional variables. The regional modelling includes 

the following steps (Madsen et al. 2002): 

 

(i) Evaluation of regional homogeneity of the three parameters. 

(ii) For parameters showing regional heterogeneity, evaluation of the potential of describing the re-

gional variability from physiographic and climatic characteristics. 

(iii) Determination of a regional extreme value distribution. 

 

In the previous regional studies of Danish precipitation extremes (Madsen et al. 2002; Madsen et al. 2009) it 

was found that the   has a significant regional variability and a large part of this variability can be explained 

by the mean annual precipitation (MAP), i.e. the larger MAP the larger frequency of extremes. The correla-

tion with MAP is more pronounced for larger rainfall durations. 

 

For μ the regional variability increases for increasing duration, and for durations larger than 3 hours a spatial 

pattern could be identified with larger extremes in the Eastern part of Denmark. In the first study by Madsen 

et al. (2002) the increase in mean intensity was mainly seen in the Copenhagen area, and a regional model 

was defined with three sub-regions, respectively, (i) Copenhagen East, (ii) Copenhagen West, and (iii) the 

rest of the country. In the subsequent study by Madsen et al. (2009) the regional model was revised, and two 

sub-regions were defined, west and east of the Great Belt. 

 

For Lcv (defining   of the GPD) the analysis showed for most durations that the region can be considered 

homogeneous, and hence a regional estimate of Lcv can be applied (corresponding to a  ). Analysis of differ-

ent regional statistical distributions showed that the generalised Pareto distribution provides the best fit. 
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3.3 Trends and multidecadal oscillations 

The non-stationary characteristics of the extreme precipitation can be evaluated on an annual basis, either 

for each station/grid cell independently or for regional averages over Denmark. Following the procedure de-

scribed by Gregersen et al. (2013), where the extreme values are censored by a type 1 PDS procedure, the 

temporal annual development in λ and μ is modelled by regional averages. The trend over time (ty) is de-

scribed by Poisson regression for λ and ordinary linear regression for μ: 

 

 exp( )ya b t        

 
ya b t        

 

Where a and b are regression parameters and ε the regression error, see Gregersen et al. (2013) for details. 

 

Due to the highly variable nature of precipitation extremes it can be difficult to separate long term trends from 

random variations, when the evaluations are made on an annual basis. Ntegeka and Willems (2008) applied 

a moving window of 5-15 years as a filter to enhance the multidecadal signal for extreme precipitation varia-

tions. The filter can be expressed as a perturbation factor (pf) where a selected extreme value characteristic 

(Cextreme) is calculated for both the subseries (tsub), defined by the moving window, and the full series (tfull): 

 

   
              

               
 (1) 

 

As Cextreme we chose λ and μ. The method requires an observation period of several decades.  

 

3.4 The climate factor 

Changes in extreme precipitation characteristics are here quantified using climate factors (CF). The CF for a 

given T-year event, location, l, and precipitation duration, tc, is defined as 

 

            
            

         
 

 

where t is present time, and Δt represents the length of the projection period. Often a CF is assumed con-

stant over a larger area, which means that it will only vary as a function of return period, projection period 

and potentially the duration of the precipitation. 

 

The CF is based on the widely used delta change methodology, which can be applied to all climatic variables 

simulated by the RCMs. The output of the state-of-the-art RCMs has a different spatial scale than the precipi-

tation series of point measurement used for estimation of urban design intensities. Hence the RCM output 

must be downscaled to obtain a CF, which can be applied to estimate future design intensities. This study 

applies three downscaling methods: A delta change method for extreme events, a weather generator com-

bined with a disaggregation method, and a climate analogue method. All methods rely on the assumption 

that the bias in the RCMs properties will remain constant from present to future. 

 

In the delta change method for extreme events CF is calculated from the extreme precipitation simulated by 

the RCM. Hence, the method depends on the RCM’s ability to simulate extreme precipitation. Furthermore, it 

assumes that the changes at the local scale (being point measurement) are identical to the change at the 

large scale (given by the spatial resolution of the RCM). For more details the reader is referred to (Sunyer et 

al. in review a; Arnbjerg-Nielsen 2012). The two other downscaling methods do not rely strongly on the 

RCM’s ability to simulate extreme precipitation, but uses other, potentially more robust climatic variables 

from the projections. 
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3.5 Delta change approach for extreme events 

When the delta change approach is applied on RCM data for estimation of CF, extreme precipitation events 

are sampled for a period representing the present, often referred to as the ‘control period’ or ‘baseline period’ 

(often 1961-1990), and for a period representing the future, often referred to as the ‘scenario period‘ or ‘pro-

jection period’ (Larsen et al. 2009). As mentioned in section 3.1, a type 2 censoring is most suited for sam-

pling the RCM simulated extremes. Previous Danish studies (Gregersen et al. 2013; Madsen et al. 2002) 

used an average exceedance frequency of 3 events per year. For consistency a type 2 censoring on 30 

years of RCM simulated precipitation should extract the 90 largest, independent events in each grid cell. A 

GDP distribution is fitted to each cell individually and applied to estimate design intensities with different re-

turn periods. As mentioned in section 3.1, the estimation uncertainty of the shape parameter is large, and 

variation of parameter estimates between neighbouring RCM cells often seem unrealistic (Larsen et al. 

2009). To address this, a regional estimate of the L-coefficient of variation is used, see Section 3.2. 

 

3.6 Stochastic weather generator and temporal disaggregation 

The approach described below is both used as a downscaling method to evaluate the changes in extreme 

precipitation and to generate synthetic high-resolution precipitation series for present and future conditions, 

which can be used in urban design models. The weather generator (WG) described in Section 3.6.1 is used 

to spatially downscale the daily 25x25km
2
 RCM outputs to 10x10 km

2
, while the disaggregation method de-

scribed in Section 3.6.2 is used to temporally downscale the WG output to 30 minutes. 

 

3.6.1 RainSim 

The WG used in this study is included in the software RainSim (Burton et al. 2008). RainSim is based on the 

Neyman-Scott Rectangular Pulse (NSRP) WG (Cowpertwait et al. 1996). This type of WG is built on a clus-

tering approach, where precipitation is associated with clusters of rain cells making up storm events. This 

process fits well with the observed nature of precipitation. The clustering approach leads to the following four 

steps in the NSRP model (Kilsby et al. 2007): 

 
a. A storm origin arrives according to a Poisson process. 

b. Each storm origin generates a random number of rain cells according to a Poisson process. Each 

rain cell is separated from the storm origin by exponentially distributed time intervals. 

c. The duration and intensity of a rain cell are independent random variables described by exponential 

distributions. 

d. The total precipitation intensity is the sum of the intensities of all the active cells at that time step. 

 

The parameters of the four processes described above must be calibrated for each specific case study. This 

can be done for a large number of precipitation statistics. In this project we apply mean, variance, skewness 

and probability of a dry day. The WG is used to generate 100-year long time series representing current and 

future climate. The time series for the present are generated using the observed properties from the CGD 

dataset. To simulate future precipitation, the four selected precipitation statistics are perturbed using the es-

timated changes from the RCM simulation (see Sunyer et al. 2012 for more details).   

 

3.6.2 Temporal disaggregation 

Based on a time series of precipitation with a given temporal resolution, it is possible to obtain series of 

higher resolution by means of temporal disaggregation. The basic assumption is that the properties of pre-

cipitation are scalable at resolutions between two days and 30 minutes (Olsson 1998), i.e. their relation can 

be described by a simple statistical model. Note that the mentioned range depends on the specific climate of 

the region and should be verified from local precipitation data. One possible way of performing the temporal 

disaggregation is by the well-documented random cascade model (Molnar and Burlando, 2005). Here each 

temporal block is split evenly n times by a series of cascades until the desired temporal resolution is 
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achieved. The model is composed of an intermittency factor, which controls the rainy and non-rainy fraction, 

and a factor which controls the rainfall intensity. The parameters of the cascade generator are estimated 

from the properties of the sample moments at different temporal scales, which are derived from observed 

precipitation, and its performance should be validated before it is applied on the series generated by the WG, 

see Sunyer et al. (in review a) for more details. 

 

Four of the rain gauge stations described in Section 2.1 are used for parameter estimation. They represent 

the variation of extreme precipitation over Denmark, both in terms of their geographical locations and in 

terms of their extreme precipitation characteristics. The scaling parameters are estimated separately for each 

season (winter, DJF; spring, MAM; summer, JJA; and autumn, SON) but averaged over the four stations. As 

validation the four observed precipitation series are aggregated to a daily resolution, disaggregated by the 

cascade model and compared to the observations.  

 

The WG series for present and future are disaggregated to a resolution of 30 min. Extreme precipitation 

characteristics are estimated from the generated time series, and CFs are then derived using the delta 

change approach described in Section 3.5. In addition, representative current and future precipitation time 

series are extracted from the generated time series that reflect current extreme precipitation characteristics 

and the changes in these for a range of temporal resolutions. 

 

3.7 The climate analogue method 

The method of climate analogues uses a set of climate variables to identify locations or regions where the 

present conditions can resemble the conditions of an otherwise unknown (past or future) state of another lo-

cation. Obviously, the variables that identify the analogue location must be known to serve as predictors of 

the anticipated change. In the literature the method is also known as space-for-time (e.g. Refsgaard et al. 

2014).  

 

The present study repeats the procedures of Arnbjerg-Nielsen (2012) using an updated and vastly improved 

dataset of climate model simulations. Furthermore, a metric, which can serve as the anticipated climate 

change, is developed based on the differences between projected future climate indices in Denmark and the 

current climate indices throughout Europe. This metric is used to identify suitable locations from which ex-

treme precipitation statistics should be collected. The calculations are performed using newly developed 

software (Arnbjerg-Nielsen et al. in prep.) that uses the E-OBS dataset as a reference for the current Euro-

pean climate indices and the ENSEMBLES climate model simulations ) for the future, see Section 2.5. 

 

As predictors for the future climate the program uses: 

 

 Monthly distribution of mean temperature 

 Monthly distribution of variance of daily temperature 

 Monthly distribution of mean precipitation 

 Monthly distribution of variance of daily precipitation 

 Monthly distribution of proportion of dry days 

 Extreme value statistics (1- and a 10-year event) of daily precipitation 

 

For details on how to combine the six indices into one overall metric and how sensitive the metric is to the 

choice of weights, see Arnbjerg-Nielsen et al. (in prep.). The metric takes values close to 0 for regions which 

serve as good climate analogues. In the current study mean temperature, mean precipitation and the ex-

treme value statistics were given the highest weights. 
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4. Results 

4.1 Regional extreme value modelling 

The threshold values used to define the analysed PDS series are given in Appendix 2, together with all the 

parameters in the updated regional model descripted below. 

 

The analysis shows that   can be related to the MAP, see Section 3.2. As was also found in the previous 

studies, the relationship is more pronounced for larger precipitation durations, see Figure 5, but statistically 

significant for all the analysed precipitation variables listed in Section 2.1. 

 

 

Figure 5: Estimated relations between the mean annual number of extreme events and the mean annual precipitation for dura-

tions of, respectively, 1 hour (left) and 24 hours (right). Dotted lines represent the 95% confidence interval of the linear regres-

sion. 

 

 

Figure 6: Spatial variation of the mean accumulated daily extreme for the SVK data (left) and mean daily precipitation extreme 

of the DMI climate grid data (right). 

 

For   a regional pattern is seen for durations larger than 3 hours, with larger values in the eastern part of 

Sealand, northern part of Jutland, and southern islands. This regional pattern is also seen in the mean value 

of the daily precipitation extremes of the CGD data (    ), see Figure 6. In this respect daily precipitation ex-

tremes from the CGD have been analysed by the same PDS approach as applied for the SVK data, using 

19.2 mm/day as the threshold for extreme daily precipitation.  

30
29
28
27
26
25
24

[mm]

CGD mean daily precipitation extremes

30
29
28
27
26
25
24

[mm]

SVK daily accumulated depth



 

20 Past, present, and future variations of extreme precipitation in Denmark 

 

This motivates a regional regression analysis between   (for all the analysed precipitation variables listed in 

Section 2.1) and     . It was found that for durations larger than 3 hours a significant part of the regional var-

iability of   can be explained by     . The correlation is more pronounced for larger durations. For durations 

smaller than 3 hours, the correlation is not significant and a regional average is applied. Estimated regional 

regression models for the mean intensity for 1- and 24-hour durations are shown in Figure 7. 

 

 

Figure 7: Estimated relations between the mean intensity and the mean daily extreme of the DMI climate grid data for durations 

of, respectively, 1 hour (left) and 24 hours (right). Dotted lines represent the 95% confidence interval of the linear regression. 

 

For the L-coefficient of variation the regional analysis confirms the results of the previous studies. The L-

coefficient of variation can be assumed homogeneous for all the analysed precipitation variables listed in 

Section 2.1, except for 1 and 2 minutes intensities. Goodness-of-fit analysis of different distributions also 

confirms the results of previous studies, i.e. the GPD can generally be accepted as regional distribution for 

all precipitation variables. 

 

Application of the regional model for estimation of extreme intensities is shown in Figure 8. The figure shows 

estimated extreme intensities for 1- and 24-hour durations mapped on the CGD grid. The explanatory varia-

bles used in the regional model are MAP and the     , which are mapped on the CGD grid in Figure 8 (top 

row). For durations smaller than 3 hours the regional variability is only due to the variability in   as explained 

by MAP (Figure 8 left column), whereas for durations larger than 3 hours the regional variability in the   as 

described by       also contributes to the regional differences in the extreme intensities (Figure 8 right col-

umn). For smaller return periods the regional variability in   has a relatively larger contribution to the regional 

variability of the extreme intensity, whereas for larger return periods the regional variability in   dominates. 

 

Figure 9 shows the range of the estimated IDF curves over Denmark for 2, 10 and 100-year return periods. 

The range is calculated as the minimum and maximum extreme intensity of the different durations from the 

CGD gridded estimates as shown in Figure 8. The range is smallest for durations up to 1-hour, reflecting the 

small regional variability of   (Figure 5 left) and constant   (Figure 7 left) for these durations. For durations 

larger than 1 hour the range increases for increasing duration, caused by a more pronounced regional varia-

bility of   (Figure 5 right) and increasing regional variability of   (Figure 7 right). For durations of 24-48 hours 

the lower range of the 10 and 100-year events are similar to the upper range of, respectively, the 2 and 10-

year events. A regional IDF-curve representing the average design precipitation over Denmark is obtained 

by taking the average over all grid points, see Figure 9. This curve is applied in Section 4.4 and Section 4.7. 
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Figure 8: Application of the regional model. Explanatory variables in the regional model (top row), being mean annual precipi-

tation (left), and mean daily extreme of the DMI climate grid (right). Estimated 10-year events (middle row) and estimated 100-

year events (bottom row) for 1-hour duration (left column) and 24-hour duration (right column). 
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Figure 9: IDF curves for a 2, 10 and 100 year event in blue, red and green, respectively. The area represents the variability over 

Denmark given by the range of estimated extreme intensities mapped on the CGD grid, while the black lines in the centre of 

each area represents the average regional IDF-curve. 

 

4.2 Trends and multidecadal oscillations 

From the SVK data the non-stationary characteristics of the extreme precipitation is evaluated. By use of the 

method described in Section 3.3 the temporal development in   and   is estimated for the precipitation vari-

ables listed in Section 2.1. Plots for all analysed variables can be found in Appendix 3, while the develop-

ment in   and   are shown for durations of 10, 60 and 1440 min in Figure 10 and Figure 11, respectively. 

 

 

Figure 10: Annual development in the number of extreme precipitation events between 1979 and 2012, calculated as a regional 

average of all the SVK stations, for rainfall durations of 10 (left), 60 (middle) and 1440 (right) min. Because Poisson regression 

is applied the slope is given in percentages. p denotes the probability of the estimated slope to being equal to zero,  if below 

0.05 the increase is significant 
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Figure 11: Annual development in the mean intensity of extreme precipitation events between 1979 and 2012, calculated as a 

regional average of all the SVK stations, for rainfall durations of 10 (left), 60 (middle) and 1440 (right) min. Because linear re-

gression is applied the unit slope is μm/s/year. p denotes the probability of the estimated slope to being equal to zero,  if be-

low 0.05 the increase is significant 

 

Using a significance level of 5% a significant increase in   over the 34 years of observations is found for all 

precipitation variables given in Section 2.1. The annual increase varies between 1.3 and 2.4 %. Given the 

uncertainty on the estimated slopes the rate of increase cannot be shown to vary with the duration of the 

precipitation.   is found to increase for basin volume 1 and precipitation durations between 10 min and 2 

hours. Not surprisingly, the year to year variation is high, but for the variables mentioned above the increase 

is strong enough to be statistically significant. 

 

The short term increases are compared to the increases in the long DMI series, where only accumulated dai-

ly precipitation is available but for 137 years of measurements, see Figure 12 and Figure 13. For   there is a 

clear difference in the observed annual increase between the two datasets. The slope of the increase is only 

0.3% in the regional average of the five long series. Looking at the regional average of the 56 stations from 

1961-2010 the slope increases marginally.  

 

The difference in slope is investigated by applying the modified version of the approach by Ntegeka and Wil-

lems (2008) described in Section 3.3 to each of the five series individually. The purpose is both to look for 

multidecadal temporal variations and regional differences in smoothed series produced by Eq. (1). The result 

for   is given in Figure 14. It is seen that the year-to-year variation is high and without clear evidence of per-

sistence. In the smoothed series there seems to be a multidecadal variation that resembles the oscillatory 

behaviour found by Ntegeka and Willems (2008) and Willems (2013a). Also five out of the six stations show 

a general increase over time. The periods of high/low  -values do not show a uniform occurrence all over 

Denmark, but from Figure 14 it seems that both the series from Fanoe, Vestervig and Kbh have oscillating 

patterns with a period of 25-40 years, however with differing phases. 
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Figure 12: Annual development in   for accumulated daily precipitation extremes, comparing the regional average of SVK  

(black), DMI 1961-2010 (red), and DMI 1874-2010 series (blue). Development over time is illustrated by a five year moving aver-

age and Poisson regression 

 

 

Figure 13: Annual development in the mean intensity of extreme precipitation, comparing the regional average of SVK  (black), 

DMI 1961-2010 (red), and DMI 1874-2010 series (blue). Development over time is illustrated by a five year moving average and 

linear regression 
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Figure 14: Annual variation in the frequency of extreme events (black dots) and multidecadal variation of the smoothed series 

based on 137 years of measurements for six stations in Denmark and southern Sweden. The POT threshold is 19.2 mm/day 

and the window length is 10 years. The figure is adapted from Gregersen et al. (submitted a). 

 

It is generally known that moving windows can introduce artificial oscillations in series of independent and 

identically distributed random variables and that they introduce autocorrelation in the series. In Figure 15 the 

autocorrelation in the annual   series, the pf series generated with a window-length of 10 years and the 13 

independent points generated by a block average of 10 years are compared for the DMI station in Copenha-

gen. It is seen that years separated by a lag phase of approximately 20 and 40 have a correlation value that 

is close to be significant for the annual   series, see Figure 15 (upper panel). It was also evaluated how the 

pattern changes with a changing window length (see Appendix 4); using a window length of 3 years the 

found oscillation signal starts to appear, but it is also clear that the annual   series contain other periodic 

components than the one highlighted by the 10 year window. Gregersen et al. (submitted a) suggests that 

spectral analysis based on Fast Fourier Transformation is applied to evaluate the different periodic compo-

nents of a series; their main result is reproduced in Figure 16. To conclude, the multidecadal variation in the 

smoothed series with a period of 25-40 years is dominating in the series from Kbh and Bornholm, in the oth-

er series it is present but not significant. Any future projections of the variations in  , including potential sig-

nificant periodic components, should be based on the full spectrum as discussed by e.g. Lee and Ouarda 

(2010). 
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Figure 15: Time series (left) and autocorrelation functions (right) for   and pf series from Kbh comparing: the raw data (upper 

panel), the data smoothed by a moving average with a window of 10 years (middle panel) and the 13 independent block aver-

ages with a window length of 10 years (lower panel) 
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Figure 5: Estimated spectral density for the six linearly detrended series of   (left column) and the six linearly de-trended series of pf (right 

column). Each plot includes a raw and a smoothed periodogram, for the latter the applied smoothing length is three. The period of the maxi-

mum peak of the     series (right column) is given in years, the corresponding peak in the   series is marked by red arrows (left column). The 

horizontal line in the smoothed periodogram represents the lower 95%-confidence interval of the maximum peak. The figure is adapted from 

Gregersen et al. submitted a. 
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The sensitivity of the results with respect to the POT threshold and the season of occurrences have been 

analysed. It was found that the oscillations do depend on the season of the extremes. For the station in Co-

penhagen the majority of the extreme event occurs between May and October. If pf is computed for these 

months only the oscillation signal prevails while the general increase diminish. For the west coast stations 

the signal is less clear when focusing on different seasons, but the general increase is also prevailing in the 

winter months. The pattern changes with the threshold, in general it becomes stronger when the threshold 

increases and weaker when the threshold decreases. 

 

 

 

The spatial structure of the signal over Denmark could be random, but it may possibly be due to the fact that 

the west coast stations are dominated by changeable coastal weather. Gregersen et al. (submitted a) shows 

by comparison to the DMI dataset with 56 stations that the Eastern part of Denmark displays a more con-

sistent signal, and that oscillations of the pf series for Kbh partly can be explained by an index derived from 

sea level pressure differences between Gibraltar and Haparanda. Apparently the general increase are driven 

by events in the spring and autumn, but Gregersen et al. (submitted a) did not find a large-scale driver for the 

increase. It could be caused by the increase in annual precipitation or the increase in global mean tempera-

ture. Alternatively, the general increase may also be interpreted as a natural variation.  

 

The multidecadal variation of   is shown in Figure 17 together with the year to year variation. Gregersen et 

al. (submitted a) show a zoom where the multidecadal variation appears more clearly. There is an indication 

of a pattern for Samsoe, but compared to the overall variability this has little practical implication. Finally, 

Figure 18 shows the variation of a 2-year event computed for the 13 independent 10-year time slices. 

 

Figure 6: Annual variation of the mean magnitude of extreme events (black dots) and multidecadal variation of the smoothed series of 𝝁 

(red lines) based on 137 years of measurements for six stations in Denmark and southern Sweden. The POT threshold is 19.2 mm/day 

and the window length is 7 years. The figure adapted from Gregersen et al. submitted a. 
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Figure 18: 2-year events for the five stations estimated from the 13 independent subseries with a length of 10 years. 

 

           

Figure 19: Multidecadal variation for different precipitation durations. Top figure is made by Willems (2013b) with data from the 

Uccle rain series for the average extreme quantile; the POT threshold corresponds to an average of three exceedances pr. 

year, in the JJA season, window length is 15 years. Bottom figure is for Kbh for the frequency of extremes; the POT threshold 

corresponds to an average of three exceedances pr. year in 1961-1990; window length is 10 years. 

 

It is highly relevant to asses if the variations in   found in the long smoothed daily series also exist for sub-

daily rainfall. Using a long high-resolution series from Uccle, Belgium (Ntegeka and Willems 2008), it is found 

that the variations are consistent in smoothed series of precipitation durations between 10 min and 1 day. In 
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fact, is seems like the amplitude of the oscillations increase when the aggregation level decreases, see Fig-

ure 19 (top). Note that variation in the average quantile primarily is driven by variations in the frequency of 

the extreme events (Ntegeka and Willems 2008). Aggregations of the Kbh series, see Figure 19 (bottom), 

show similar tendencies for durations up to one week. However, for Vestervig (not shown) there is less con-

sistency between the three analysed durations. This is assumed to be due to the coastal climate of the re-

gion. In summary, it seems reasonable to assume that the oscillating behaviour observed in smoothed series 

of daily extremes in Denmark can be transferred to lower precipitation duration. Hence, it is likely that the 

majority of the observed increase in   in the SVK data can be attributed to natural variation rather than a di-

rect response to human activity over the last 30 years. This is evident from Figure 20 that compares the in-

crease in   for the SVK station in Søborg with the multidecadal variations in   for the smoothed long Kbh se-

ries. 

 

 

Figure 20: The observed increase in   for accumulated daily rainfall for station 30222 in Søborg (black), compared to the mul-

tidecadal variation in   for the long DMI series for Kbh (Blue). Crosses are annual number of extreme events, filled circles are 

the 13 independent points generated by a block average of 10 years, empty circles are the smoothed series and lines the 

modelled increase. 

 

Finally, it is evaluated to which extent the trend in the SVK data affects the regional model. As shown in Fig-

ure 2, the number of station-years included in the regional model has increased during the recording period 

1979-2012. In the first 12 years of the record (1979-1990) the number of station-years is relatively constant, 

around a level of 40 station-years per year, and then increases up to a level of about 70 station-years per 

year during the last 12 years (2001-2012). As discussed above, both   (for all design variables considered) 

and   (for some design variables) show an increase over the recording period 1979-2012. To investigate the 

sensitivity on the results of the number of station-years and increases in the   and   parameters, the regional 

model has been estimated using a sub-sample consisting of all stations with more than 30 years of data. 

This sub-sample includes 31 stations with a total of 999 station-years, evenly distributed over the recording 

period (see Figure 2). 
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The regional model estimated from the sub-sample gives smaller estimates of extreme intensities; up to 3% 

smaller for a 2-year return period, 5% for a 10-year return period, and 10% for a 100-year return period (see 

Figure 21). The differences between the two models are largest for durations up to 3 hours. 

 

 

Figure 21: Relation between regional average estimates based on data from the full sample (83 stations) and the sub-sample 

(31 stations) for different durations and return periods T (years). 

 

The uncertainties of the extreme intensities estimated from the regional model are smaller for the model 

based on the sub-sample. This is illustrated in Figure 22 for station 30451 (similar results are obtained for 

the other stations). The differences in uncertainties are largest for smaller durations and larger return peri-

ods. As shown in Figure 22, for 1-hour duration the uncertainty on the 2-year event estimate is about twofold 

for the model based on the full sample (relative standard deviation of 8.6%) compared to the model based on 

the sub-sample (4.4%), and larger differences are seen for the 100-year event estimate (23.7% and 9.1%, 

respectively). For the 24-hour duration the differences between the two models are smaller, e.g. 7.1% and 

5.1% for the 2-year event estimate, and 16.7% and 9.2% for the 100-year event estimate. 

 

 

Figure 22: Relative standard deviation of intensity estimates at station 30451 for different return periods T (years) using the 

regional model based on data from the full sample (83 stations) and the sub-sample (31 stations) for 1-hour (left) and 24-hour 

(right) durations. 

 



 

32 Past, present, and future variations of extreme precipitation in Denmark 

This analysis shows that the relatively larger contribution of station-years in recent years in the sample com-

bined with increases in   and   gives larger estimates of extreme intensities as if only the records that cover 

the full observation period were included in the regional model. Thus, the regional model in Section 4.1 puts 

relatively more emphasis on recent data. However, a model based on a sub-sample of stations with full rec-

ords will underestimate the uncertainty. The large uncertainty of the estimates from regional model in Section 

4.1 reflects not only sampling uncertainty and spatial variability but also the temporal variability in the data. 

Since it is currently not possible to attribute the recent observed increases to anthropogenic changes or nat-

ural variability, the regional model using the full sample provides the best estimate according to current 

knowledge of extreme rainfall characteristics and associated uncertainties. 

 

4.3 Stochastic weather generator and temporal disaggregation 

The NSRP WG have been validated in several studies (Cowpertwait et al. 1996; Cowpertwait 1998; Burton 

et al. 2008; Burton et al. 2010) and no further validation is attempted here. Instead this section focuses on 

the results from the disaggregation approach. Figure 23a shows the scaling relationship for precipitation at 

one of the selected stations. The scaling relation is log-log linear in the chosen range of durations, and it dif-

fers from winter to summer.  Figure 23b highlights the difference between winter and summer. It is seen that 

in the summer period the slope of the moments with an order higher than 1 is smaller than for winter, mean-

ing that there is less difference between the precipitation characteristics at short and long durations in sum-

mer compared to winter. The difference between the two seasons increases with the order of moments. As 

the higher order moments are mostly influenced by the tail of the distribution, it can be concluded that the dif-

ference occur from the short duration summer extremes illustrating the effect of convective storms on the 

precipitation characteristics. For further details, see Sunyer et al. (in review a). 

 

Figure 24 shows the validation of the model by comparing IDF-curves of the generated and observed rainfall 

series. The model has been run 10 times to illustrate the variability of the results. It is seen that the IDF-

curves from the generated series have a slightly convex shape in a log-log plot compared to the linear IDF-

curve for the observed rainfall series. The WG is calibrated on CGD and hence simulates areal rainfall, in 

which the extreme rainfall characteristics are not directly comparable to the SVK data. The cascade model is, 

however, calibrated on point rainfall, as no series of high-resolution gridded rainfall are available. This may 

introduce an error because the scaling properties of point rainfall and areal rainfall are not necessarily identi-

cal. 

 

The range of climate factors obtained from this downscaling approach is presented in Section 4.5 and 4.6, 

while the synthetic rainfall series for future and present are further discussed in Section 4.7. 
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Figure 23: The scaling relationship for station 30131 applied in the estimation of the parameters for the random cascade mod-

el. q denotes the order of non-central moments. α represents the temporal resolution in the disaggregation cascade and a 

log(α) value of 0 and -1.8 correspond to 32 and 0.5 hours, respectively. τ denotes the inverse slope of the regression lines. The 

figure is adapted from Sunyer et al. (in review a). 

 

 

Figure 24: Validation of the random cascade model at four SVK stations, comparing the IDF-curves from 10 cascade model re-

alisations with the IDF-curve from the observed series. 

 

4.4 The climate analogue method 

For the climate analogue method no explicit validation procedures is possible. The sensitivity of the result 

can however be indicated by means of applying different weights to the indices when calculating the metric 

and carrying out a split-sample test between different RCM simulations. The range of climate factors ob-

tained from this downscaling approach is presented in Section 4.5. 

 

A well-known limitation of the climate analogue method is that suitable analogue regions for the future cli-

mate might not exist. This situation could occur if climate change alters the fundamental mechanisms of the 

climate system. It is unknown at what global temperature level this will happen but Arnbjerg Nielsen et al. 

(submitted) shows that in the high-end 6° scenario it becomes difficult to identify suitable analogue regions. 

Using the A1B scenario suitable regions, however, can be found (Arnbjerg Nielsen et al. in prep.). 
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Figure 25: The metric for regions with can serve as analogues for the Danish climate in 2071-2100. The metric takes values 

close to 0 for regions which serve as good climate analogues. Dots indicate available information on design precipitation, red 

dots indicate the five selected stations.   

 

 

Figure 26: Obtained IDF curves for five French stations compared to the average regional IDF-curve  for Denmark (see Figure 

9) for a return period of 2 years 

 

In this case the output from the climate analogue method is a map indicating which areas of Europe that can 

serve as good climate analogues for the future Danish climate, see Figure 25. The regions with the smallest 

metric are the northwest of France, Belgium, Netherlands, west coast of Denmark, and southeast of Britain. 

Compared to where information on design precipitation is available and the quality of the data, five stations 

in northwest of France is selected. The IDF curves for these stations are given in Figure 26 for a return peri-

od of 2 years, together with the regional IDF-curve for the present Danish climate, see section 4.1. It is seen 

that most, but not all, of the analogues indicate an increase of the design intensities. The sensitivity test indi-

cates that the selected French gauges are robust estimates of the climate analogue. Given the large natural 

variation of precipitation extremes over time it is however a weakness that no information about the meas-

urement period is available for the French data. In general the calculated climate factors are lower in this 
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study than reported in Arnbjerg-Nielsen (2012), primarily because of the estimates of the present Danish 

precipitation extremes has increases in the present study compared to the recommendation used in Arn-

bjerg-Nielsen (2012). 

 

4.5 Climate factors 2071-2100 

The different downscaling methods and the ensemble of RCMs lead to a range of different CF estimates, 

which needs to be compared. This section focuses on the far future 2071-2100. All methods use 1961-1990 

as the present climate, leading to a projection period of approximately 100 years. However, the control peri-

od in the two high-end scenarios is different (see Table 3) leading to projection periods of less than 100 

years. Still both sets of CFs are considered as projected changes for the far future and hence comparable to 

the CFs estimated in the present report.    

 

In summary the downscaling methods and available additional datasets on high-end scenarios lead to the 

following CF estimates: 

 

- DC: CFs from the delta change approach for extremes estimated directly from RCM output.  

- WG: CFs from the delta change approach for extremes estimated from RCM output spatially 

downscaled by the WG 

- WG+Disagg: CFs from the delta change approach for extremes estimated from RCM output spatial-

ly downscaled by the WG and temporally downscaled by the random cascade model 

- CA: CFs from the climate analogue method 

- 6 Deg: CFs from the 6° scenario (Arnbjerg-Nielsen et al. submitted) 

- RCP:  CFs from the two RCP scenarios (Arnbjerg-Nielsen et al. submitted, Sørup et al. in prep.) 

 

In Figure 27 the notation of the precipitation duration given in front of the downscaling method or dataset in-

dicates the temporal resolution of the applied RCM data.   

 

Sunyer et al. (in review a) concludes that there is a robust indication of an increase of the extreme precipita-

tion, across the ensembles and across all the applied downscaling methods. For a duration of one hour the 

smallest variance both between the different RCMs and across Denmark is obtained when the RCM output 

is spatially downscaled by the WG and temporally downscaled by the random cascade model. The two 

RCMs having available precipitation output at a temporal resolution of 1 hour, both lies in the upper end of 

the ensembles. It was furthermore found that for RACMO there is a small disagreement between the CF es-

timated from 1 hour max and 1 hour (Sunyer et al. in review a).  The two models are therefore not included in 

the final determination of CFs for use in urban drainage design. Regarding the spatial variation of the CF 

over Denmark there is partly an agreement between the downscaling methods, but a high variation between 

the RCMs with respect to the spatial pattern of climate change (Sunyer et al. in review a). Hence, regionally 

distributed CFs cannot be justified and the results given below are factors spatially averaged over Denmark.  

 

A comparison of the results from all methods and datasets are given in Figure 27. The estimated uncertainty 

is expressed as 68% confidence bands. With the available information it is possible to select a set of ‘stand-

ard’ CFs, which represents the most robust estimate of the expected future change and to reflect the uncer-

tainty of the estimate by and additional set of ‘high’ CFs that reflects the upper 84%-quantile. 

 

The first conclusion from the figure is that the currently used CF lies within the uncertainty limits of the new 

CF estimates. However, the mean of any of the three downscaling methods is below the current recommen-

dations. The scenario which forced the ENSEMBLES simulations (A1B) represents less intense greenhouse 

gas emissions than the A2 scenario over a 100 year projection horizon. The found difference may reflect the 

relation between emission scenario and CF. The difference between the two RCP simulations supports this 

hypothesis. RCP8.5 can roughly be translated to the A2, while RCP4.5 has a trajectory close to B1, see sec-
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tion 2.7. As the actual emissions since 2000 have been slightly higher than anticipated in the A2 scenario 

(Peters et al., 2013), it seems reasonable to account for the scenario uncertainty by using the difference be-

tween the RCP 4.5 and RCP 8.5 to perturb the ENSEMBLES mean. A similar exercise can be done for the 

6° scenario, where the relative difference between 1h max 6 Deg (orange dot) and 1h max RCP 4.5 (yellow 

dot) is even larger. 

 

The results indicate that the CF depends on the duration, 1 hour being higher than 24 hours. The difference 

is, however, only judged to be of significance for the high-end scenarios. For simplicity the recommendation 

on mean CF values in relation to generation of design rain storms is still constant for all precipitation dura-

tions as a time-varying climate factor is difficult to implement in design recommendations using design 

storms. 

 

 

Figure 27: The estimated CF for 1 hour (left) and daily (right).  They represent the relative change between the baseline period 

and the projection period 2071-2100. The dot indicates the mean CF and the vertical lines indicate the 68% confidence interval. 

Each high-end scenario (orange symbols) is paired with a RCP4.5 scenario (yellow symbols), the relative difference between 

the two shows the effect of the high-end scenario. The punctured red line indicates the currently used climate factors, while 

the solid red lines gives a subjective estimate of the 84% quantile of the CF taking all discussed sources of uncertainty into 

account. 

 

A study by Sunyer et al. (in review b) concludes that ensemble averages for evaluation of future precipitation 

extremes should be corrected for 1) an underestimation of the uncertainty as the climate models are not in-

dependent, and 2) a bias in the mean as the error of the climate models change over the simulation period. 

The results from Sunyer et al. (in review b) are included in the figure to illustrate the effect of the two issues 

mentioned above. All calculated CFs in the current study assume independent models and constant bias, 

and hence underestimate both the upper confidence limit and the ensemble mean. This is (in a subjective 

way) taken into account when the CF values are selected.   

The recommended CFs are given in Table 5 
 

Table 5: Final CF based on three statistical downscaling methods, 18 climate model simulations and 4 emission pathways. The 

1 hour values can be used as a replacement for guideline no. 29 (WPC 2008), 1 day values are only used for selection of the 

two future time series 

 1 hour daily 

 Standard High Standard High 

0.2-year event - - 1.18 1.25 

2-year event 1.2 1.45 1.2 1.35 

10-year event 1.3 1.7 1.3 1.5 

100-year event 1.4 2 1.4 1.8 
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4.6 Climate factors for the near future 

CFs for projection periods of less than 100 years can be required in some situations. There are several 

methods for obtaining these:  

 

1) Extrapolating the pattern of natural variations on the basic of the power spectrum as briefly discussed in 

Section 4.2 

2) Directly from the climate model simulations, following the procedures of Section 3.4-3.6 but using anoth-

er scenario period than 2071-2100 

3) Downgrading the CF for 2071-2100 assuming that the CF depends linearly on the length of the projec-

tion period as recommended by WPC (2008).  

 

It is assumed that with a shorter projection horizon the relative influence of the natural variation in compari-

son to the projected mean effect of climate change will increase. However, it is difficult to statistically justify 

an extrapolation of the pattern observed from 1874 to present. It has been shown that the natural variation is 

partly driven by large scale variation in Sea Level Pressure (SLP) over the North Atlantic (Gregersen et al. 

submitted a), making the pattern more robust, but there is no guarantee that the oscillations will continue 

with the same period and amplitude. Hence method 1 is not attempted here. Future research could explore if 

SLP projections can be extracted from GCMs/RCMs and used as the basis in the projection of future rainfall 

extremes, but this is outside the scope of the present project.  Any future projections of the variations in   

should be based on the full spectrum as discussed by Lee and Ouarda (2010).  

 

In the PRUDENCE project (Christensen and Christensen 2007) to which the climate model simulation used 

by WPC (2008) belongs, the model communities agreed to run simulations for two thirty-year long time slic-

es, being 1961-1990 and 2071-2100. The difference between the two periods was meant to represent the 

relative changes in the climate due to anthropogenic greenhouse gas emissions over a projection period of 

100 years, even though the actual timespan between the two periods represents 110 years. Hence the cli-

mate factors by WPC (2008) also represent a projection period of 100 years, which conveniently corre-

sponds to the projected lifetime of many urban infrastructures. The period 1961-1990 is defined by WMO as 

the current ‘climate normal period’ and will remain so until 30 additional years of observation is available 

(1991-2020). When the ENSEMBLES project (van der Linden et al. 2009) was initiated, the increased com-

putational capabilities allowed for transient simulations covering the entire period from 1950 to 2100. This al-

lows for calculations of climate factors with shorter projection periods. However, we are challenged by the 

fact that the climate of today already is assumed to be affected by the past greenhouse gas emissions and 

that the period 1961-1990, hence, represents a different climate than the present. Still, it is assumed that the 

relative change remains the same. Another limitation of the short projection periods is that the natural varia-

tion might be of greater relative importance than the GHG forcing, as mentioned above. With all the men-

tioned limitations in mind this project still provides CFs for the near future. These are calculated for the peri-

ods 2021-2050 and 2041-2070, relative to 1961-1990 and therefore represent a projection period of 50 (near 

future) and 70 years (middle future), respectively, even though the actual start dates of the scenario periods 

is less than ten and thirty years into the future counting from 2014.    
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Figure 28: The estimated CF for 1 hour (left) and 24 hours (right) using a projection period of 50 years. The dot indicates the 

mean CF and the lines indicate the 68% confidence interval. The punctured red line indicates the currently used climate fac-

tors. 

 

Figure 29: The estimated CF for 1 hour (left) and 24 hours (right) using a projection period of 70 years. The dot indicates the 

mean CF and the lines indicate the 68% confidence interval. The punctured red line indicates the currently used climate fac-

tors. 

 

 

Figure 30: The CF as a function of the projection period, estimated from two different downscaling methods and for two pre-

cipitation durations (left: 1 hour, right: 24 hours) for a return period of 10 years. Vertical lines are the 68% confidence intervals 

based on the ensemble of climate model simulations. Stipulated horizontal lines indicate the change of the CF with the projec-

tion period 
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The CFs obtained from method 2 and 3 are given in Figure 28 and Figure 29. It is seen that the two methods 

give very similar results. The CFs obtained from method 2, are slightly higher only because the CFs from 

which they are interpolated (see Table 5) are higher than the ensemble mean as discussed in Section 4.5. 

By plotting the increase of the CF as a function of the projection period the linear relation is confirmed, see 

Figure 30. In summary, recommended CFs for projection periods of 50 and 70 years, respectively, are given 

in Figure 30 and Table 7. These are based on a linear reduction of the CFs in Table 5 according to the re-

duction in the projection period. 

 

Table 6: CF for a projection period of 50 years 

 1 hour daily 

 Mean High Mean High 

2-year event 1.10 1.23 1.10 1.18 

10-year event 1.15 1.35 1.15 1.25 

100-year event 1.20 1.50 1.20 1.40 

 

Table 7: CF for a projection period of 70 years 

 1 hour daily 

 Mean High Mean High 

2-year event 1.14 1.32 1.14 1.25 

10-year event 1.21 1.49 1.21 1.35 

100-year event 1.28 1.70 1.28 1.56 

 

4.7 Synthetic precipitation series for the future conditions 

To provide simulated high-resolution precipitation series for future conditions, the two disaggregated WG se-

ries, which best reflect the future conditions represented by the set of mean and high climate factors, are se-

lected, together with a series for the present, as represented by the regional model over Denmark, see Sec-

tion 4.1. The following selection procedure is applied:  

 

1. A regional IDF-curve from Figure 9 is applied as a representation of present design precipitation over 

Denmark. 

2. For the 2, 10 and 100 years return period, the values corresponding to 1 hour, 6 hours and 1 day 

from the regional IDF for the present period are multiplied by the CFs to obtain the values for the fu-

ture climate. Section 4.5 only provides CFs for precipitation durations of 1 hour and 1 day, an aver-

age of the two is used as CF for 6 hours. 

3. For each of the disaggregated WG series: 

o Estimate the hourly, 6 hourly and daily T-year events for the 2, 10 and 100 years 

o For the three return periods, estimate the Root-Mean-Squared-Error (RMSE) between these 

values and the values for the present/future estimated in (2).  

o Calculate the average of the RMSE estimated for each of the return periods 

4. Select the time series with the minimum RMSE 

 

 

The IDFs of the three selected series are shown in Figure 31, together with the nine points from which they 

are chosen and overall variability of the simulated series. 
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Figure 31: IDF curves for simulated precipitation series (light red). The thick blue line is the present average IDF curve for 

Denmark. The red and dark red dots are the future T-year events corresponding to the mean and high CF, respectively. The 

thick red and dark red lines are the IDF curves for the time series, which gave the optimal fit to all selection criteria 

 

The precipitation statistics for the three series are given in Table 8, while Figure 32 shows the seasonal vari-

ations. In general all indices correspond well to the known and expected future variation of precipitation. 

 

 

Table 8: Annual precipitation statistics for the three simulated precipitation series 

 Present Mean scenario High Scenario 

Mean annual precipitation [mm/year] 729 844 729 

Interannual variation (sd.dev.) [mm/year] 98 136 118 

 

 

Figure 32: Monthly precipitation statistics for the three simulated precipitation series. 

 

In Figure 31 it is noted that for a return period of 2 years the IDF curves for the simulated series tend towards 

a convex shape rather than the concave shape expected in observational data. The problem seems worse 

than concluded when the approach was validated in Section 4.3. This makes it challenging to find an IDF 

curve (representing the present climate) that lies within the bounds given by the variability over Denmark for 
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all durations, see Figure 33. Paludan et al. (2014) find that the disaggregation is very disrupt, leading to sev-

eral sub-hourly design events on the same day. The problematic behaviour could be due to a limitation of the 

random cascade model itself, but it could also be due to the fact that the climate change impact is assessed 

on a series that is smoothed by spatial and temporal averaging while the series used to estimate the dis-

aggregation is discontinuous because of the properties of the tipping bucket. The problem is discussed fur-

ther in Section 5.3. 

 

 

Figure 33: IDF curves for synthetic precipitation series representing the present compared to variability over Denmark given 

by the regional model, see Figure 9. Blue is 2 year, green 10-year and red 100-year return period. Coloured areas are repre-

senting regional model. Stipulated lines are representing the synthetic precipitation series. 
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5. Discussion 

This section discusses the interpretation and implication of the found natural variation. Also the actual impact 

of the new guidelines in comparison to the current practices is addressed, both in general and by using the 

municipalities of Århus and Greve as examples. Finally, the application of the generated synthetic rainfall se-

ries is discussed. 

 

5.1 Implications of the trend and the natural variation compared to climate change 

In Section 4.2 it was shown that   has increased significantly for all analysed precipitation variables during 

the 34 years where the SVK network has been active. However, in the same section it was concluded that a 

smoothed   series exhibits an oscillatory variation.  Gregersen et al. (submitted a) points to the fact that the 

most recent oscillation high in the smoothed Kbh series appears larger and more persistent than its prede-

cessors, see Figure 34 (top). Although this hypothesis cannot be tested with the data currently available, it 

might be interpreted as a sign of anthropogenic climate change. Still it can be concluded that the majority of 

the observed increase in the SVK data most likely is due to natural variation rather than impact of human ac-

tivity over the last 30 years. In this section we address how the natural variation has affected urban design 

values over time and how the magnitude of the variation compares to the excepted effect of anthropogenic 

climate change.  

 

The Danish design practices for urban drainage have changed significantly since the very first guidelines 

were published by the WPC in the early 1950’s. This fluctuation over time has never been seen as an indica-

tion of non-stationary precipitation mechanisms. It is interesting to see to which extent pf defined in Section 

3.3 is correlated to the variations in the recommended design intensities. The analysis focuses on Greater 

Copenhagen area, where the oscillation signal is strongest and, as mentioned earlier, partly correlated to an 

index derived from sea level pressure over the North Atlantic.  

 

The result is given in Table 9 and Figure 34 include the following WPC guidelines 

 

(1) 1950-1953 Design values for the four major Danish cities (WPC 1950 and 1953) 

(2)  1974 Update of (1) with additional years of measurements (WPC 1974). 

(3)  1999 Regional model for extreme precipitation based on data from the SVK network (WPC 1999) 

(4)  2006 Updated regional model for extreme precipitation (WPC 2006) 

(5)  2014 Updated regional model for extreme precipitation, see Section 4.1 

 

(1) and (2) both have information from a pluviometer placed in Gentofte, while the location of a tipping bucket 

rain gauge in Søborg (station no 30222, 721023E 6181403N) is applied in the three different regional models 

(3)-(5), together with the at-site observations. The at-site design intensity for Søborg is estimated empirically 

from the series of observed precipitation. pf values are estimated from the Kbh series and a value 

above/below 1 indicates phases of high/low number of extremes (in the smoothed series). All design values 

from the guidelines are for a rainfall duration of 10 minutes, whereas all pf values are for accumulated daily 

rainfall. The variation in this variable is assumed to be valid for lower durations as well, see Section 4.2. 

 

Table 9 and Figure 34 shows that the variation in the design values to some degree follow the pattern of the 

natural variation. However, the variation has not dominated the past design practice as ‘Landsregnrækken’ 

from WPC (1974), often was used for design instead of the local rain gauge estimates. ‘Landsregnrækken’ is 

significantly higher than the local estimate for Gentofte (see Figure 34) as several large events were meas-

ured in Århus during the specific observation period. 
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Table 9: Variations of 2-year event for a precipitation duration of 10 min for the Greater Copenhagen area compared to the per-

turbation factors representing the natural variation. The numbers given in parenthesis refers to the list of WPC guidelines giv-

en above. pf is estimated from the Kbh oscillation curve given in Figure 20, until 2005, and no value is given if the observation 

period extends this year . The at-site design intensity is estimated empirically from the series of observed precipitation. 

 Design 

intensity 

[μm/s] 

Observation pe-

riod 

Average pf during the 

observation period 

Design value, Gentofte (1) 11.5 1933-1947 0.88 

Design value, Gentofte (2) 12.2 1933-1962 1.03 

Regional model, MAP 643 mm, 

Region Kbh West (3) 

12.2 1979-1996 0.95 

Regional model, MAP 643 mm, 

Region East (4) 

13.0 1979-2005 1.13 

Regional model, MAP 643 mm, CGD 

mean 27.4 mm/day (5) 

13.9 1979-2012 - 

At-site observations Søborg 

Waterworks 

10.3 1979-1995 0.93 

At-site observations Søborg 

Waterworks 

15.7 1996-2012 - 

 

The relative difference between the first estimate from 1933-1947 and the most recent estimate from the cur-

rent version of the regional model is 1.2, while the relative difference between at-site estimates based on the 

first half of the observations from Søborg versus the last half is 1.5. This shows that the natural variation is 

highly important compared to the expected climate change impacts and that the period of observation has an 

impact on the estimated design intensities. As neither the general increase, nor the fluctuation of periods 

with high/low number of extreme events, are fully understood, the regional model using the full sample re-

flecting the natural variability provides the best estimate of design intensities according to current knowledge 

(see discussion of results in Section 4.2). However, the period of observation is relevant when applying his-

torical time series for the analysis. A framework for comparing series of at-site observations with the regional 

model and potentially correcting historical time series was developed by WPC (1999), which can be used to 

correct short series of observations that do not represent the full range of natural variation.   

 

Neither the general increase nor the fluctuations are directly accounted for in the CF estimates. Therefore, it 

is of key importance to understand how the natural variation and the anthropogenic climate change interre-

lates and thereby how to superimpose the changes caused by human activity onto the natural processes. 

The question is if the effect of anthropogenic climate change can just be added on top of natural variation 

that we see today (as the current framework assumes), if the interrelation will be in the form of amplification 

of the natural cycle, or if there will be even more complex interactions between the processes. Future re-

search will pursue this question. 
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Figure 34: Top: The observed increase in λ for accumulated daily rainfall for station 30222 in Søborg (black), compared to the 

multidecadal variation in   for the long DMI series for Kbh (Blue). Crosses are annual number of extreme events, filled circles 

are the 13 independent points generated by a block average of 10 years, empty circles are the smoothed series and lines the 

modelled increase. Bottom: Past, present and projected values for a 2-year event with a duration of 10 minutes given by the 

five major WPC guidelines on design intensities. Circles represent the publication year of the guideline, solid lines represent 

the years of measurements using to estimate the design intensities and punctured lines represent the projected future values. 

NRM denotes the new regional model. 
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5.2 Comparison with the regional model in guideline no. 28 

This section addresses how design intensities from the new regional model (see Section 4.1) compares to 

guideline no. 28 (WPC 2006).  

 

The differences between estimates based on the guideline no. 28 and the new regional model are shown in 

Figure 35 and Figure 36 for 1-hour and 24-hour intensities. 

 

 

Figure 35: Differences in [%] between estimates based on the regional model in guideline no. 28 and the new regional model 

for 1-hour intensity: mean intensity (top left), average annual number of extremes (top right), and 2, 10 and 100-year events 

(bottom row). 

 

 

Figure 36: As in Figure 35 but for 24-hour intensity. 

 

For the 1-hour intensity there is an increase in the mean intensity of about 6%, which is constant over Den-

mark, since both regional models have a regionally constant mean intensity. For the 24-hour intensity the 

change in mean intensity varies from -30% to 60%, with a regional pattern similar to the mean daily extreme 

of the DMI climate grid (Figure 9, top right). For both durations there is an increase in the average annual 

number of extremes, with an increasing pattern from west (from 4%) to east (up to 22%). For the 1-hour in-

tensity, the changes in the extreme intensities follow the west-east pattern of the changes in the average an-

nual number of extremes with an increase of 5-10% for the 2, 10 and 100-year return periods. For the 24-

hour intensity, the changes in the extreme intensities follow the pattern of the changes in the mean intensity. 
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There are both decreases and increases; from -9% to 26% for the 2-year event, -16% to 36% for the 10-year 

event, and -30% to 59% for the 100-year event. Main increases are seen in the northern part of Jutland, 

north-east Sealand, southern islands and Bornholm. The range of changes between guideline no. 28, and 

the new regional model for the IDF curves are shown in Figure 37 for the 2, 10 and 100-year return periods. 

These ranges are calculated for the different durations as the minimum and maximum of the CGD gridded 

changes as shown in Figure 35 and Figure 36. For durations up to 1 hour there is a general increase of up to 

10%, with only minor differences between the three return periods. For larger durations, both decreases and 

increases are seen with larger differences for increasing return period. 

 

 

Figure 37: Relative change between SVK28 and the new regional model for a 2, 10 and 100 year event. The stipulated curves il-

lustrates the variability over Denmark given by the CGD, while the red, blue and green curves show the change for Greve, Ål-

borg and Århus, respectively. 

 

5.3 Evaluation of the synthetic precipitation series 

The two high-resolution precipitation series for future conditions are supposed to be valuable in model simu-

lations, where historical precipitation series currently are used. As regionally varying climate factors cannot 

be supported (see Section 4.5), the selected series represents all of Denmark, even though the present de-

sign precipitation varies over the country. To evaluate the possible implications of not having regionally dif-

ferent series for the future conditions, a precipitation series, which represent the present, is also selected by 

similar methods but using a CF of one (see Section 4.7). This series is compared to the at-site information 

from Greve and Århus, estimated from the local rain gauges that currently provide the precipitation series for 

the two sites, see Figure 38. Note that the figure only can be used to compare the properties of the synthetic 

series to at-site variability, IDF-curves for design purposes should be estimated from the regional model, not 

at-site information.   

 

It is seen that the IDF curve for the simulated rain series falls outside the 68% confidence bands for a return 

period of 2 years; this is due to the convex behaviour of the IDF curves generated by the weather generator, 

as discussed in Section 4.3. For 10 and 100 years the design precipitation of a duration of 30 min is overes-

timated. Apart from this the IDF curve of the simulated rain series fall approximately within the confidence 

limits of both locations for these two return periods. However, the findings by Paludan et al. (2014) indicate 

that the deviation between the statistical properties of the historical SVK series and the synthetic series gen-

erates more fundamental problems for the application of the synthetic series where historical series presently 

are applied. As reviewed in Section 4.7 daily, monthly, and annual properties seem to be fine, which indi-

cates that the weather generator works as anticipated. However, the disaggregation to finer temporal resolu-

tion seems to have too high probability of shifting between dry and wet weather. This leads to unreasonable 

weather patterns.  
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The programming of the weather generator and the disaggregator has been developed and verified on sev-

eral data sets, which should exclude programming errors. The methods have been shown to work sufficiently 

well on several other locations in similar climates, so it should work. The most likely cause is that the weather 

generator on present climate is calibrated on Climate Grid Denmark while the disaggregator is calibrated on 

SVK data. Differences in the properties of daily data between these datasets are likely to generate a prob-

lem, since the SVK data set uses a high dry weather threshold, which leads to a proportion of dry days con-

siderably larger than Climate Grid Denmark. Another possible cause is that the disaggregation method itself 

is not performing well. Other formulations of the downscaling cascade allow some form of “memory” between 

each of the cascades and uses different distribution functions for each cascade.  

 

The series must perform well on the entire range of the IDF-curves of relevance, as well as larger temporal 

variations on seasonal and annual scale. The fact that the “mean” and “high” climate change impact calcu-

lated based on the ENSEMBLES database are combined with other information to yield overall higher esti-

mates of the overall climate change impact further adds to the complexity in the sense that we cannot 

choose the “standard CF” and “high CF” synthetic rain series from the simulations directly, but must choose 

one based on climate factors derived on all methods used in the project. In the current context that means 

that the “high CF” synthetic rain series is very high in the sample of rain series generated by means of this 

particular approach. 

 

There are no easy solutions to solve this problem. A completely new analysis needs to be done using a dif-

ferent dataset to represent present climate data at high temporal resolution as well as daily data. Two data 

sets are available: 

 SVK data: This has been done in relation to Skrift 29 and can be used again. The main shortcoming 

of this dataset is that the proportion of dry days is most likely too high and that the mean annual pre-

cipitation is underestimated. 

 Synop-stations: This data has now been collected for several years with 15 minute resolution and 

may be suitable. To the best of our knowledge no assessment of the Danish data has been carried 

out yet. 

 

Hence it must be concluded that the present project has not been able to construct suitable synthetic rain se-

ries in high temporal resolution that perform so well that we can recommend them for analysis and design of 

urban drainage systems. 
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Figure 38: Comparison between the simulated time series representing the present (stipulated lines), future with a standard 

CF, future with a high CF and at-site information for Greve (red) and Århus (green). A GDP is fitted to the historical series al-

lowing for an estimation of the 68% confidence intervals for the each site. TS denotes time series. 

 

 

5.4 Effect of the new guidelines for Greve and Århus 

This section evaluates the specific effect of the new guidelines, including both the new regional model (Sec-

tion 4.1) and the two set of CFs (Section 4.5), for the municipalities of Greve and Århus. The use of the syn-

thetic rainfall series are discarded as discussed in Section 5.3.  
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The geographical location of Greve and Århus is represented by the two main rain gauges of each munici-

pality: 

 

- Greve: Mosede waste water treatment plant, station no. 30451, 706565E 6163375N, MAP of 604 

mm/year 

- Århus: Viby J. waste water treatment plant, station no. 22361, 571099E 6220681N, MAP of 665 

mm/year 

 

The effect of the guidelines for Greve and Århus is given in Table 10 and Table 11, respectively. It is seen 

that the effect of the new regional model in itself is minor (below 7%), while it in combination with the new 

high scenario climate factors leads to an increase of more than 100% for the 100-year event. The relative ef-

fect of the new guidelines is similar for the two locations, as expected from Section 5.2.   

 

Table 10: Effect of new guidelines for Greve. Estimated T year events in μm/s precipitation duration 10 min. Relative change in 

comparison to SVK28 is given in parenthesis. 

 2-year event 10-year event 100-year event 

Guideline no. 28 12.74 19.51 31.69 

Guideline no. 28 + 29 15.29 (20%) 25.37 (30%) 44.36 (40%) 

New regional model 13.69 (7%) 20.95 (7%) 34.17 (7%) 

New regional model +CFmean 16.43 (29%) 27.24 (40%) 47.84 (51%) 

New regional model +CFhigh 19.85 (56%) 35.62 (83%) 68.34 (116%) 

 

Table 11: Effect of new guidelines for Århus. Estimated T year events in μm/s. precipitation duration 10 min. Relative change in 

comparison to SVK28 is given in parenthesis. 

 2-year event 10-year event 100-year event 

Guideline no. 28  13.10 19.95 32.25 

Guideline no. 28 + 29 15.72 (20%) 25.93 (30%) 45.16 (40%) 

New regional model 13.97 (7%) 21.29 (7%) 34.62 (7%) 

New regional model +CFmean 16.76 (28%) 27.68 (39%) 48.47 (50%) 

New regional model +CFhigh 20.26 (55%) 36.19 (81%) 69.24 (115%) 

 

The two case study areas are not alike. Århus is a large city with a large catchment area and a varied terrain 

with a downwards slope towards the centre of the city. Greve is a small city with a very flat terrain.  To com-

pare the change in flood risk using the new guidelines the percentage of flooded city area is estimated for 

both case study areas. An area is assumed flooded when the water level on the terrain reaches 10 cm or 

more. Not all combinations of regional models (guideline no. 28 or new regional model) and climate factors 

(no factor, mean or high) have been tested in the simulations. The results are given in Table 12 and Table 

13. For details on the model setup for the two cities see Paludan et al. (2014)   

 

Table 12: Flooded city area in Greve [%], the total city area is 1750 ha. The relative change between an application of guideline 

no. 28 + 29 versus the new regional model + high CF is given in parenthesis. 

 10-year event 100-year event 

Guideline no. 28 + 29 2.6% 6.5% 

New regional model + CFhigh 4.4% (+68%) 11.2% (+73%) 
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Table 13: Flooded city area in central Århus [%], the total city area is 2000 ha. The relative change between an application of 

guideline no. 28 + 29 versus the new regional model + high CF is given in parenthesis. 

 10-year event 100-year event 

Guideline no. 28 + 29 0.9% 5.5% 

New regional model + CFhigh 2.2% (+138%) 11.6% (+110%) 
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6. Conclusion 

In relation to the three project objectives in can be concluded that: 

 

1) Analyses of the data from the SVK rain gauge network found that the number of extreme events and 

the mean intensity of the extreme events have increased during the 34 years of observation. The 

fact that there is a significant increase cannot be interpreted as a sign of climate change, but must 

be assessed and attributed to natural climate variation and dynamics as well as climate change 

caused by anthropogenic emissions of GHG. Analysis of long historical precipitation series shows 

that both natural climate variation (seen as multidecadal variations expressed as a fluctuation be-

tween periods with a relatively high and a relatively low number of extremes in smoothed series of 

observations) and natural climate change (seen as a general increase) plays a very important role. It 

is at present not clear how big a proportion of the increase over the last century that can be attribut-

ed to human emissions, but it is very likely that the increase observed over the last 30 years is domi-

nated by natural variability. 

 

An improved model for regional variation of extreme rainfall has been made. The improvements 

arise from an extended period of measurements (1979-2012) and a new explanatory variable for the 

regional variation of the mean intensity of the extreme events. The latter being regional information 

on the mean intensity of daily extreme precipitation from Climate Grid Denmark made by DMI. The 

resulting change in recommended design intensity in comparison to guideline no. 28 varies both with 

the duration, return period and location in Denmark. For a 2-year event the change ranges from -9% 

to 26%.  

 

2) Climate factors that reflect the uncertainty on the future design intensities were estimated, taking 

both climate model uncertainty, variation over Denmark, the uncertainty of the future climate forcing 

scenario and the uncertainty of the applied downscaling method into account. On this basis standard 

climate factor of 1.2, 1.3 and 1.4 are recommended for a 2- , 10- and 100-year event, respectively, 

as the best estimate of the expected future changes. Additionally, high climate factors of 1.45, 1.7 

and 2.0 are recommended for a 2- , 10- and 100-year event, respectively, as an estimate of the up-

per 84%-quantile of the expected future changes. It should be noted that the natural variation dis-

cussed above can lead to a variation in design values that are comparable to the expected effect of 

climate change (expressed by the mean climate factor). 

  

3) Synthetic precipitation series were generated for the present and two future scenarios, represented 

by the two set of climate factor mentioned above. However, it was found that the series cannot be 

used in drainage models because sub-daily precipitation is not realistically generated. 
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List of abbreviations 

CA   Climate Analogue 

CF  Climate Factor 

CGD  Climate Grid Denmark 

DC  Delta Change 

DMI  Danish Meteorological Institute 

GCM  Global Climate Model 

GHG  Greenhouse gases 

GPD  Generalized Pareto distribution 

IDF  Intensity-Duration-Frequency 

MAP  Mean annual precipitation 

NRM  New regional model 

NSRP  Neyman-Scott Rectangular Pulse 

PDS  Partial Duration Series 

POT  Peak over Threshold 

RCM  Regional Climate Model 

RCP  Representative Concentration Pathways 

RMSE  Root-Mean-Squared-Error 

SVK  Regional rain gauge network maintained by WPC 

WG  Weather Generator 

WMO  World Meteorological Organisation 

WPC  Water Pollution Committee of the Society of Danish Engineers 
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List of symbols 

α the temporal resolution in the disaggregation cascade model 

a regression parameter  

b regression parameter 

Cextreme selected extreme value characteristic 

CF Climate Factor 

ε regression error 

κ shape parameter in the generalized Pareto distribution 

λ average annual number of extreme events [no./year] 

l location in space for estimation of CF 

Lcv L-moment coefficient of variation 

μ mean value of extreme exceedances in the Partial Duration Series [μm/s] 

μCGD mean value of the daily precipitation extremes of the CGD data [μm/s] 

N annual number of extreme events [no.] 

p statistical probability  

pf perturbation factor 

pfλ perturbation factor for the average annual number of extreme events 

pfμ perturbation factor for mean value 

q the order of non-central moments used in the scaling relationship of the 

disaggregation cascade model 

τ the inverse slope of the regression lines estimated for the scaling rela-

tionship of the disaggregation cascade model 

t +Δt present time plus the length of the projection period for estimation of CF 

tc precipitation duration 

tfull full series used for the estimation of pf 

tsub sub series used for the estimation of pf 
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ty time in years since 1979 

z0 location parameter in the generalized Pareto distribution and threshold in 

the Peak over Threshold approach 

zT T-year event 
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Appendix 1 - SVK stations 

Station Name Easting Northing Observation period  

[years] 

20097 Frederikshavn Materielgård 589564 6368352 20.02 

20099 Frederikshavn Centralrenseanlæg 591625 6365840 21.02 

20211 Sulsted 557766 6336906 30.08 

20212 Vodskov 562047 6328974 12.38 

20298 Gistrup 560707 6317424 13.07 

20304 Aalborg Østerport Pumpestation 557584 6322923 22.69 

20307 Aalborg Renseanlæg Vest 552479 6323093 14.76 

20309 Nørresundby Søvangen Pumpestation 555264 6324523 14.77 

20456 Frejlev Syd Lannerparken 549416 6317777 15.11 

20458 Frejlev Nord Verdisvej 549809 6318783 15.21 

20461 Svenstrup J. 550779 6315043 24.87 

21192 Skive Renseanlæg 502699 6268933 12.14 

21207 Skive Lufthavn 510142 6267743 13.00 

22123 Grenaå Ådalen P40 617298 6253558 15.72 

22321 Egå Renseanlæg 577191 6230496 22.57 

22361 Viby J. Renseanlæg 571099 6220681 31.94 

22421 Silkeborg Vandværk 534704 6224068 32.99 

22554 Trankær Renseanlæg 570631 6215761 23.20 

23127 Horsens Centralrenseanlæg 553589 6190188 29.83 

23261 Vejle Centralrenseanlæg 533875 6173068 28.85 

23294 Fredericia Centralrenseanlæg 545527 6156434 17.98 

23321 Kolding Forrenseanlæg 530709 6149146 32.77 

23345 Vamdrup Flyveplads 521130 6143760 12.00 

24292 Herning Centralrenseanlæg 496400 6222388 32.06 

25171 Esbjerg Renseanlæg V 463950 6149223 31.51 

26091 Haderslev Renseanlæg 532139 6122624 30.96 

26376 Tønder Centralrenseanlæg 490655 6086069 18.65 

26481 Sønderborg Damgade Pumpestation 551486 6086668 32.74 

28181 Bolbro Højdebeholder 584149 6139144 31.15 

28182 Dalum Vandværk 587103 6135399 15.76 

28183 Ejby Mølle Renseanlæg 589914 6140044 21.61 

28184 Odense NV Renseanlæg 586479 6142454 31.21 

28186 Odense Vandværk 586881 6139403 30.98 

28453 Svendborg Centralrenseanlæg 607489 6102984 17.97 

28461 Svendborg Vandværksvej 601534 6102919 10.69 

28503 Ærøskøbing Renseanlæg 590677 6082688 10.01 

29009 Gniben 642058 6209353 11.89 

29041 Holbæk Centralrenseanlæg 671258 6178244 33.32 

29122 Sønder Nyrup Renseanlæg 628775 6173741 11.22 

29142 Kalundborg Renseanlæg 632349 6170979 11.25 

29354 Slagelse Centralrenseanlæg 648247 6143701 17.51 
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29429 Omø Fyr 635959 6114654 9.98 

30031 Sydkystens Renseanlæg 721870 6211156 33.32 

30131 Frederikssund Centralrenseanlæg 692125 6191484 20.78 

30168 Hillerød Centralrenseanlæg 704236 6204686 20.89 

30191 Furesø Park 715343 6189623 32.11 

30201 Vedbæk Renseanlæg 722835 6194852 32.63 

30208 Ordrup Kirkegård 724243 6185794 20.78 

30211 Svanemøllens Kaserne 724079 6180448 10.87 

30218 Stades Krog Overløbsbassin 719641 6186406 13.85 

30221 Virum 718976 6187074 18.36 

30222 Søborg Vandværk 721023 6181403 32.69 

30242 Stavnsholt Resnseanlæg 713405 6190505 12.17 

30309 Åvendingen 717713 6178375 15.75 

30311 Emdrup 722776 6180425 15.13 

30312 Vølundsgade 723133 6178508 14.51 

30313 Kløvermarksvej 726591 6175224 32.72 

30314 Kongens Enghave 722323 6172103 32.77 

30315 Husum 717514 6179276 14.64 

30316 Måløv Renseanlæg 708184 6184284 32.84 

30317 Glostrup Genbrugsstation 715026 6174858 32.32 

30318 Hvidovre Vandværk 718493 6171690 32.58 

30319 Hvidovre Pumpestation 718914 6169041 32.36 

30321 Rødovre Vandværk 717736 6177448 33.04 

30325 Bispebjerg Hospital 722536 6180239 17.85 

30326 Lygten 722328 6178996 17.62 

30348 Wibrandtsvej 728571 6172885 17.48 

30351 Tårnby Pumpestation 4 726328 6171028 33.17 

30352 Tårnby Pumpestation 10 725673 6167768 33.14 

30353 Tårnby Renseanlæg 729886 6171908 30.53 

30381 Landbohøjskolen 722765 6176850 20.49 

30384 Brøndbyvester Vandværk 714900 6171328 21.13 

30386 Albertslund Materielgård 710055 6173719 18.96 

30388 Høje Tåstrup 704927 6173114 16.89 

30395 Ishøj Varmeværk 710957 6167192 20.00 

30411 Roskilde Renseanlæg 692386 6171355 32.14 

30451 Mosede Renseanlæg 706565 6163375 32.55 

31031 Store Heddinge Vandværk 715202 6135001 12.33 

31151 Næstved Centralrenseanlæg 673598 6121674 31.27 

31231 Vordingborg Renseanlæg 684908 6098964 12.61 

31401 Nakskov Renseanlæg 636068 6077346 32.89 

31511 Nykøbing F Renseanlæg 685279 6073444 32.43 

32097 Rønne C 864080 6121110 22.73 
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Appendix 2 - Regional model parameters 

Table 14: The threshold, zo, the average annual number of extreme events, λ (averaged over all included sta-

tions and all years of measurements) and the mean intensity, μ (averaged over all included stations and all 

years of measurements). The same threshold is applied for the three different regional models. The μ-values 

marked by italic indicate a different unit. 

 z0 λ [year
-1

] μ [μm/s][mm] 

  SVK26 SVK28 NRM SVK26 SVK28 NRM 

1 min intensity 15.80 - 3.82 4.28 - 6.02 6.26 

2 min intensity 12.80 - 3.80 4.31 - 5.82 6.04 

5 min intensity 9.00 - 3.65 4.18 - 4.76 4.93 

10 min intensity 6.00 3.22 4.03 4.63 3.34 3.47 3.61 

30 min intensity 3.20 3.11 3.79 4.29 1.6 1.73 1.84 

60 min intensity 2.10 3.13 3.70 4.12 0.937 1.05 1.13 

3 hours intensity 1.10 3.02 3.44 3.69 0.449 0.473 0.519 

6 hours intensity 0.73 2.83 3.10 3.35 0.277 0.284 0.316 

12 hours intensity 0.45 2.53 2.76 3.09 0.184 0.177 0.194 

24 hours intensity 0.26 2.65 2.98 3.25 0.114 0.103 0.110 

48 hours intensity 0.15 3.04 3.34 3.52 0.0684 0.0619 0.0644 

daily depth 19.40 2.95 3.30 3.47 8.17 8.02 8.24 

basin volume 1 17.00 2.82 3.11 3.31 11 10.12 10.72 

basin volume 2 5.40 2.85 3.33 3.75 4.46 4.69 5.08 

 

 

Table 15: The parameters in the regression between λ and MAP (in mm) for the NRM 

   ̂   ̂         ̂   ̂  

[x10
-3

] 

   ( ̂ )    ( ̂ ) 

[x10
-6

] 

   ( ̂   ̂ ) 

[x10
-4

] 

   R
2 

1 min intensity 0.245 6.112 0.763 1.682 -11.06 0.343 0.27 

2 min intensity 0.849 5.193 0.831 1.830 -12.03 0.398 0.18 

5 min intensity 1.298 4.292 0.832 1.833 -12.05 0.401 0.12 

10 min intensity 1.664 4.366 1.060 2.347 -15.41 0.535 0.09 

30 min intensity 1.969 3.250 0.903 1.986 -13.07 0.423 0.05 

60 min intensity 2.178 2.735 0.908 1.993 -13.13 0.409 0.02 

3 hours intensity 1.760 2.720 0.760 1.658 -10.94 0.309 0.03 

6 hours intensity 0.873 3.597 0.734 1.588 -10.51 0.306 0.07 

12 hours intensity 0.0391 4.415 0.708 1.532 -10.14 0.310 0.13 

24 hours intensity -1.518 7.051 0.688 1.473 -9.77 0.281 0.32 

48 hours intensity -2.741 9.491 0.611 1.293 -8.60 0.213 0.54 

daily depth -1.241 7.037 0.775 1.682 -11.12 0.335 0.28 

basin volume 1 -1.039 6.432 0.585 1.259 -8.34 0.214 0.34 

basin volume 2 2.449 1.741 0.771 1.701 -11.20 0.328 0 
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Table 16: The parameters in the regression between μ  and μCGD (in mm) for the NRM. The values marked by 

italic indicate a different unit. 

   ̂   ̂          ̂   ̂  

[x10
-2

] 

[x10
0
] 

   ( ̂ ) 

[x10
-2

] 

[x10
0
] 

   ( ̂ ) 

[x10
-4

] 

[x10
0
] 

   ( ̂   ̂ ) 

[x10
-3

] 

[x10
0
] 

   R
2 

1 min intensity 6.223 0 1.991 0 0 0.221 0 

2 min intensity 5.994 0 1.665 0 0 0.128 0 

5 min intensity 4.896 0 1.090 0 0 7.64      0 

10 min intensity 3.577 0 0.622 0 0 4.42      0 

30 min intensity 1.822 0 0.243 0 0 2.47      0 

60 min intensity 1.096 0 0.110 0 0 1.19      0 

3 hours intensity -0.389 3.332 11.45 1.639 -4.327 1.22      0.05 

6 hours intensity -0.443 2.771 4.600 0.657 -1.735 4.65      0.13 

12 hours intensity -0.338 1.942 1.371 0.195 -0.516 4.25      0.31 

24 hours intensity -0.252 1.353 0.411 0.058 -0.155 9.28      0.44 

48 hours intensity -0.0773 0.526 0.148 0.0211 -0.0558 1.41      0.13 

daily depth -17.75 0.9651 25.77 0.03685 -0.973 0.277 0.35 

basin volume 1 -17.00 1.037 53.14 0.07586 -2.003 0.530 0.15 

basin volume 2 -2.547 0.2812 14.19 0.02029 -0.536 0.198 0 
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Appendix 3 - Trend analysis for all the durations 
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Figure 7: Annual development in the number of extreme precipitation events between 1979 and 2012, evaluated on a regional 

average of all the SVK stations, for precipitation intensities between 5 min and 2 days. Because Poisson regression is applied 

the slope is given in percentages. p denotes the probability of the estimated slope to being equal to zero,  if below 0.05 the in-

crease is significant 
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Figure 8: Annual development in the mean intensity of extreme precipitation events between 1979 and 2012, evaluated on a 

regional average of all the SVK stations, for precipitation intensities between 5 min and 2 days. Because linear regression is 

applied the unit slope is μm/s/year. p denotes the probability of the estimated slope to being equal to zero,  if below 0.05 the 

increase is significant 
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Figure 41: Annual development in the number of extreme precipitation events between 1979 and 2012, evaluat-

ed on a regional average of all the SVK stations, for basin volume 1 and 2 and accumulated daily precipitation 

(for definition see Madsen 1998). Because Poisson regression is applied the slope is given in percentages. p 

denotes the probability of the estimated slope to being equal to zero,  if below 0.05 the increase is significant 

 

 

 

 

 

Figure 42: Annual development in the mean intensity of extreme precipitation events between 1979 and 2012, 

evaluated on a regional average of all the SVK stations, for basin volume 1 and 2 and accumulated daily precip-

itation(for definition see Madsen 1998). Because linear regression is applied the unit slope is intensity/year. p 

denotes the probability of the estimated slope to being equal to zero,  if below 0.05 the increase is significant 
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Appendix 4 - Oscillations and dependence on the 
window length 

Figure 

43: Variation of the oscillation signal with the length of the moving window (3, 5 and 7 years) 
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Figure 44: Variation of the oscillation signal with the length of the moving window (10, 15 and 20 years) 
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