An Arduino-Based Hardware Lock and Sensor Data Collection System for Cleanroom Equipment

Johansen, Leif; Nyholt, Henrik; Hemmingsen, Jens H.; Eskildsen, Thøger; Hübner, Jörg

Publication date: 2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
An Arduino-Based Hardware Lock and Sensor Data Collection System for Cleanroom Equipment

Leif S. Johansen, Henrik Nyholt, Jens Hemmingsen, Thøger Eskildsen & Jörg Hübner

UGIM 2014, Cambridge, MA, 17 June
Brief Introduction to DTU Danchip

- Danish national centre for micro- and nanofabrication, founded 1992
- A unit under the Danish Technical University (DTU)
- 40+ staff
- ISO 9001 certified since 2011
- 14 500 ft² (1350 m²) class 10, 100 & 1000 space
- 250 registered users at any given time
- Ca. 140 new users per year
- 80/20% academic/commercial use
- From basic research to small-scale production
- 140+ pieces of equipment
- Pieces, 2”, 4”, 6” & 8”
DTU Danchip’s Payment Model

- Payment per cleanroom hour. 20 hours/month cap
- Tool usage payment
 - Class A tools (UV litho, furnaces, plating, etc.): Low fee
 - Class B tools (Thin film dep. and etch): Medium fee
 - Class C tools (DUV stepper, e-beam writer): High fee
 - Class F tools (microscopes, wet benches): Included in access fee
- Cleanroom and tool rates are depending on project type:
 - Academic: No fee
 - Academic with external funding: Reduced fee
 - Commercial: Commercial fee
- Some materials not included in tool rate: Gold, wafers & photomasks
- In the future: Expensive photoresists will be billed by consumption
 (1 G ZEP520: 100 000 $)
- All tool and cleanroom hours are logged via LabManager, our lab usage management system
- LabManager data forms the basis for calculation of hourly rates
LabManager - Architecture

- LabManager: Proprietary lab usage management system
- Gradually developed over 10+ years
- Browser based
 - No s/w installation needed
 - Accessible anywhere (with login)
- Browser interfaces with Apache web server
- LabManager written in PHP
 - Not compiled
 - Easier to change code
LabManager – Functions

- Operator manuals
- Technical documents (user accessible)
- Technical documents (Danchip staff only)
- Maintenance manuals
- Safety instructions
- Contact persons
- Tool status
- Booking calendar
- Start/stop
- Logbooks (partially)
- Web shop (wafers etc.)
- Tool usage statistics
- Uptime analysis
- Bottleneck finder
- Invoicing
- CAPA handling (Danchip staff only)
- Cross contamination (upcoming)
Start/Stop

- Equipment will be put in “in use” mode on the info page
- The chosen project will be billed
- Tool usage statistics can be extracted

Use Equipment

<table>
<thead>
<tr>
<th>Customer</th>
<th>LSJ - lesjo - (Leif Johansen)</th>
<th>Get Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Process Develop</td>
<td></td>
</tr>
<tr>
<td>Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>DUV Stepper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start to use</td>
<td></td>
</tr>
</tbody>
</table>
BUT!

- People "forget" to Start/Stop
- No overview over actual tool usage
 - "Comparing log files with registrations made me lose my faith in humanity"
- Unauthorized users accessing tools they are not trained to use
- Impossible to do proper price modelling, bottle neck analysis, etc.
- Funding of DTU Danchip jeopardized
- Unable to troubleshoot breakdowns (who did what, and when?)
- Something has to be done
- **Lock 'em up!** (The tools – not the users)
Candidates for Hardware Lock system

• Web IP switches:
The Arduino Microcontroller - Another Good Candidate to Build a Hardware Lock Around

- 8 bit processor
- 35 kB RAM (in flash, SRAM & EEPROM)
- 16MHz
- 14 digital I/Os
- 6 analogue inputs
- Few μW – 2.5W
- Powered over Ethernet (POE)
- Easy to program
- Price 25 USD
- More flexible than ordinary Ethernet switches
- Extra functionality
The LabManager Lock

Arduino UNO
Arduino Ethernet shield
Terminals for relay output
"Traffic light" connection
The LabManager Lock in its Cabinet

- WxHxD: 4x2.5x6 in3 (10x7x16 cm3)
- BOM: >100 $. More expensive than a web switch
- Assembled in house by student helpers
- Easily installable in a service area
- POE: No extra power needed
- Disable/enable
 - Screen power
 - Interlock switch
 - Shutter (aligner)
 - Power (simple tools)
 - Solenoid acuated lock
 - RF generator
Traffic Light

- Placed next to tool’s user interface
 (PC screen, furnace door, loadlock etc.)
Infrastructure Investments: POE Cables

- 140 PDS cables, category 6A
- POE switches
- Price: Ca. 45 000 $
- Not only for LabManager locks
- Also for safety warning signs
- WLAN not preferred
LabManager Lock - Front View

DIN connector: “Traffic light”

USB connector: Programming

POE LAN connector: Power and comm’s
LabManager Lock - Rear View, Relay Type

Relay connection
Rear View – 5 V Control Signal

5 Volt control signal
Rear View, Mains Switch

Mains in

Mains out
Same Platform – CDA Pressure Gauge

• Portable point of use CDA pressure gauge
• CDA readouts are logged in a database via Ethernet
• Also made in a point of use vacuum gauge version
Present Project: Calculation of Resist Consumption

- DUV resist coater
- Expensive resist
- LM Lock analogue input:
 Reading of resist canister weight scale
 1. Read canister weight at tool logon
 2. Read canister weight at tool logoff
 3. Calculate resist consumption
 4. Issue bill for consumed material

- Next project: Automatic status change in LabManager via digital outputs from tool
If the Network is Down...

- Blocked equipment upsets users
- The hardware lock checks the machine’s status in LabManager every 10th sec
- If the lock receives no answer from the software on status, the lock is unlocked (happy hour in the cleanroom)
LabManager - Competences

Competence - Authorized Users

<table>
<thead>
<tr>
<th>User</th>
<th>Trained</th>
<th>Authorized</th>
<th>De-authorized</th>
<th>Resume</th>
</tr>
</thead>
<tbody>
<tr>
<td>elkh - Elena Khomtchenko</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>tarek - Thomas Aaroe Anhøj</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>makei - Matthias Keil</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

- Only authorized users can start equipment
- Automatic de-authorization after 9 months without usage
- ”Bad boys” can be immediately de-authorized
Results so far

• 48 hardware locks installed 1st half 2014
• Some tools are clearly used “more” (e.g. mask aligners, hot plates, SEMs)
• Usage of some tools fluctuates – difficult to say yet
• We caught a few culprits – including “goldfinger”
Summary

• A hardware lock has been developed – built around an Arduino UNO board
• Controlled (locked/unlocked) from LabManager software
• Can only be unlocked by authorized users
• Different lock versions for different tool types
• Flexible solution capable of also reading sensor data and tool status
• Resilient to network breakdowns
• Not cheapest solution
• Maybe not for everyone
Thanks to the Guys who Did all the Real Work

- Henrik Nyholt. Basic idea concept, hardware design and construction, microcontroller programming.

- Thøger Eskildsen. PHP-programming of LabManager software.

- Jens Hemmingsen. Hardware design and construction.
Thank you for your attention...