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From surface to volume plasmons in hyperbolic metamaterials: General existence conditions
for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers
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We theoretically investigate general existence conditions for broadband bulk large-wave-vector (high-k)
propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic
multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized
resonance pole of a reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the
band of large-wave-vector propagating solutions. We apply our formalism to determine the high-k band existence
in two important cases: the well-known metal-dielectric and recently introduced graphene-dielectric stacks. We
confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties
and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers
tend to support high-k waves and explore the range of parameteres for which this is possible, confirming the
prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety
of structures, such as continuous or structured microwave, terahertz, and optical metamaterials.
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I. INTRODUCTION

Hyperbolic metamaterials (HMMs) are composite media
that consist of subwavelength structures assembled so that
an extreme anisotropy results on the macroscopic scale, with
metallic behavior arising for one polarization of light and
dielectric behavior for the other. In other words, in the
idealization where a homogenization model is valid and an
effective permittivity tensor can be introduced, this tensor
ε = diag(εx,εy,εz) has eigenvalues of different signs, e.g.,
εx = εy < 0 and εz > 0 in the case of uniaxial anisotropy.
We assume the choice of the coordinate system in which the
tensor ε is diagonalized. In the absence of magnetism, such
anisotropy results in the dispersion relation

k2
0 ≡ ω2

c2
= k2

x + k2
y

εz

+ k2
z

εx,y

, (1)

which is hyperbolic rather than elliptical [Fig. 1(a)], hence
the name of HMMs. A hyperboloidal isofrequency surface
is much more extended in the wave-vector space than an
ellipsoidal one—indeed, theoretically infinite in the idealiza-
tion that Eq. (1) holds for all kx,y,z—so an HMM supports
propagating solutions with very large wave vectors (with k/k0

greatly exceeding refractive index values typical for naturally
occurring dielectrics). These waves, called high-k waves for
short [1,2], would be evanescent in any natural isotropic
or weakly birefringent medium but become propagating in
HMMs. The existence of high-k waves brings about a rich
variety of new physics, both related to the waves themselves
(as highly confined information carriers for subwavelength
imaging [3]) and associated with a tremendous increase in
the photonic density of states in HMMs, resulting in strong
modification of all light-matter interaction phenomena that
depend on it, such as spontaneous emission [4].

*sezh@fotonik.dtu.dk

What truly sparked the explosive scientific interest during
the past few years was the discovery that HMM functionality
can be exhibited in a nonresonant, broadband manner by struc-
tures with very simple geometry, such as nanorod arrays [5,6]
and metal-dielectric multilayers [1,4,7]. Hyperbolic dispersion
was demonstrated experimentally [8], as was an anomalous
increase of the decay rate of nearby emitting centers (a broad-
band Purcell effect) [1,6], along with the direct measurement of
radiation enhancement [9]. Many applications of HMMs have
been suggested, such as far-field subwavelength imaging or
“hyperlensing” [3] and highly absorptive surfaces that benefit
(rather than suffer) from increased roughness [7,10], including
nanoparticle-induced [11] and internal layer [12] roughness.
More fundamental and more intriguing uses for HMMs
have also been envisaged, exploiting mathematical similarities
between sign changes in the dispersion relation (1) and metric
signature transitions in cosmological equations [13,14]. Many
more areas of research are being explored, as can be seen in
the recent reviews [15–18] and references therein.

Even though the effective permittivity representation of
HMMs has proved very successful in predicting and explaining
their exotic physics, it is the high-k waves that govern the
functioning of any HMM on a microscopic level. Hence the
high-k waves eventually determine the extents and limits of
applicability of a particular HMM with respect to any of the
effects described above. Thus, it is crucial to understand the
physical nature of these waves. In metal-dielectric structures,
the conventional wisdom is that the nature is plasmonic,
so various groups have chosen different terms for them:
multilayer plasmons [19], Bloch plasmon polaritons [20],
or volume plasmon polaritons (VPPs) [16,21], which is the
term we adopt here. In HMMs with a multilayer geometry,
VPPs should arise from coupling of surface plasmon polaritons
(SPPs) at layer interfaces [22–24]. In our recent work [2], we
showed explicitly that VPPs originate from coupling of short-
range SPPs (SRSPPs) in individual metal layers by keeping
only the SRSPP response in these layers via a pole expansion.
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FIG. 1. (Color online) Theoretical background on hyperbolic
metamaterials (HMMs). (a) Isofrequency surfaces in the dispersion
relation [Eq. (1)] for conventional uniaxial medium (0 < εz < εx,y)
and HMM (εx,y < 0 and εz > 0). (b) An infinite periodic multilayer
HMM with geometric notations and wave-vector decomposition used
in the paper. (c) The central idea of the paper: the replacement
of real metal layers with fictitious layers featuring just a polelike
elementary excitation with reflection and transmission coefficients
given by Eq. (5). (d) Comparison of the exact multilayer dispersion
relation with the one derived from the pole expansion and the
effective-medium approximation for the structure with dm = 2.3 nm,
dd = 11.4 nm, and εm = −17.2, εd = 2.59 (relevant for lossless
Au/Al2O3 structures for λ = 715 nm [1]; see [2] for more detail).
The yellow shaded area shows the band of propagating high-k VPPs.
(e) Plots of Re kB and Im kB/Re kB in the VPP band for lossy metal
(εm = −17.2 + 0.8i).

It is noteworthy that an SRSPP exists for just one value of
the wave vector, whereas the resulting VPPs exist in the entire
range of them, spanning the isofrequency surface in Fig. 1(a).

Two interesting observations were made alongside this
proof. First, it appeared that there is a stark contrast between
the two characteristic excitations in the metal layer: the
short-range SPP capable of giving rise to HMM behavior, and

the long-range SPP (LRSPP) that do not have such a capability.
Second, as also mentioned in other accounts [25], VPPs were
shown to exist outside of the HMM regime, albeit in a some-
what narrower band in the wave-vector space. The general
principle, namely, “the coupling of lower-dimension elemen-
tary unit cell excitations forms a higher-dimensional excitation
in a periodic arrangement of such cells,” is undoubtedly behind
the formation of VPPs in multilayer HMMs. Nevertheless, it
still remains to be determined what conditions these elemen-
tary excitations must satisfy to form a high-k band spanning a
broad range of k, such as happens in VPPs. A general under-
standing would be very useful in determining the applicability
range for new types of HMMs, such as, for example, graphene-
based multilayers introduced in recent works [26–30].

In this paper, we theoretically investigate general existence
conditions for broadband bulk high-k propagating waves (such
as VPPs in HMMs) in arbitrary periodic multilayer structures.
We treat the elementary excitation in the unit cell of such
a structure as a generalized resonance defined by a polelike
response in its Fresnel reflection and transmission coefficients.
Then, using Bloch’s theorem, we derive analytical expressions
for the band of high-k propagating solutions that can originate
from this elementary excitation by hybridization in the periodic
structure. Using these analytical expressions, we show that
SRSPPs in thin metal layers can—and commonly do—give
rise to HMM-like properties in subwavelength metal-dielectric
multilayers; on the other hand, LRSPPs form only a very
narrow plasmonic band near the light line of the dielectric and
do not produce a high-k band. Furthermore, we apply the for-
malism to graphene-dielectric metamaterials in the terahertz
range. We show that TM-polarized plasmons in individual
graphene sheets also hybridize to form VPPs with HMM-like
properties in the frequency range where the imaginary part
of the graphene conductivity significantly exceeds its real
part. On the other hand, transverse or TE-polarized graphene
plasmons [31,32] behave like LRSPPs in metal-dielectric
multilayers, not giving rise to HMM-like behavior.

The present results are primarily valuable from the the-
oretical point of view, providing a general understanding of
how high-k band of bulk propagating waves originate from
fixed-k surface excitations in individual layers of a multilayer
system. Thus in much of this paper we neglect any losses,
so we can focus on the nature of the excitations in the
limit where they would persist indefinitely. Nonetheless, our
results have practical applications, allowing for very efficient
estimation of VPP dispersion and HMM properties in existing
HMMs (metal-dielectric and graphene-dielectric multilayers),
which is useful in the design of HMM-based devices such
as hyperlenses with improved performance. Moreover, the
present results provide a means to determine whether any
localized excitation (electromagnetic or otherwise) is likely to
give rise to HMM-like or bulk-plasmon-like behavior when as-
sembled into a periodic system. Examples may include optical
waveguide arrays, multilayers supporting Bloch surface waves
or spoof surface plasmons, periodic layers of two-dimensional
electron gases (e.g., multiple-quantum-well semiconductor
heterostructures), or even acoustic multilayers.

This paper is organized as follows. In Sec. II, we
briefly introduce the pole expansion representation [2] for the
dispersion relation of multilayer HMMs. We then analyze it on
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an abstract level and derive the existence conditions for broad
high-k band formation from arbitrary resonant elementary
excitation in the metamaterial’s unit cell. In Sec. III we
apply the derived conditions to several specific cases of pole
expansion, including multilayers made of metal and graphene;
specifically, we show that short-range SPPs do give rise to
HMM behavior while long-range SPPs do not. In Sec. IV, we
analyze the effects of losses on the present analysis, and discuss
the applicability of graphene for high-k HMMs. Finally, in
Sec. V we summarize the results.

II. FORMATION OF A LARGE-WAVE-VECTOR BAND
FROM ARBITRARY POLE EXCITATIONS

We begin by recalling the dispersion relation of propagating
waves in an infinite periodic metal-dielectric structure where
losses are neglected. So metal layers with permittivity εm < 0
and thickness dm alternate with dielectric layers with permit-
tivity εd > 0 and thickness dd [Fig. 1(b)]. Using the standard
transfer matrix approach [33], we recall the transfer matrix for
one period of the structure,

M1 = 1

Tm

[
T 2

m − R2
m Rm

−Rm 1

] [
eiwddd 0

0 e−iwddd

]
, (2)

where Rm and Tm are the reflection and transmission coeffi-
cients of a metal layer given by the Airy formulas [34]. In
a periodic multilayer, Bloch’s theorem yields a well-known
dispersion relation for TM-polarized waves [22,24,35],

Tr M1

2
= cos[kB(dm + dd )]

= cos(wmdm) cos(wddd ) − 1

2

(
εmwd

εdwm

+ εdwm

εmwd

)
× sin(wmdm) sin(wddd ). (3)

Here wm,d is the normal component of the wave vector in the
respective layer:

wm =
√

εmω2/c2 − κ2, wd =
√

εdω2/c2 − κ2, (4)

where κ is the tangential component of the wave vector. We
choose the square root of complex wj so that Im wj � 0;
if Im wj = 0 we take Re wj � 0. Equation (3) describes a
propagating Bloch wave that reduces to hyperbolic dispersion
of Eq. (1) in the limit wjdj � 1 [19].

To relate these Bloch waves to VPPs, one can replace the
metal layers with hypothetical systems whose reflection and
transmission coefficients contain only one resonant guided-
wave excitation, i.e., are of the form of a simple pole [2],

Tm = τ

κ − κp

, Rm = −τ

κ − κp

− τ

κp

, (5)

where the location of the pole κp and the pole strength τ depend
on the exact nature of the excitation and can be determined by
fitting Eq. (5) to the exact expressions for Rm and Tm. As shown
in our previous work [2], calculating κp and τ for the SRSPP in
a thin metal layer and substituting Eq. (5) into Eq. (2) results in

a modified form of the dispersion relation, which reproduces
the exact dispersion relation of the multilayer very closely;
an illustrative example involving structures similar to those
in earlier studies [2] is shown in Fig. 1(d). Hence, it could
be concluded that high-k waves originate from hybridization
of SRSPPs in the metal layers, and are indeed VPPs. If there
are losses or nonlocalities in the system (e.g., Ohmic losses in
metals), the distinction between propagating and evanescent
waves becomes more difficult [36,37], as waves both inside
and outside the high-k band will have both real and imaginary
parts of kB [11,30]. Nevertheless, the presence of a band with
quasipropagating waves is still apparent in the dependence of
Im kB/Re kB [Fig. 1(e)].

Now we proceed to investigate the mechanism of high-k
wave formation in an arbitrary periodic multilayer structure
rather than in a metal-dielectric multilayer [Fig. 1(c)]. We
revert back to Eq. (5) in its general form, substitute it into
Eq. (2), and write the modified dispersion relation as

cos[kB(dm + dd )]

= κ − κp

2τ
e2πdd/λ

√
κ2−εd −

[
τ

κp

+
(

τ

κp

)2
κ − κp

2τ

]

× e−2πdd/λ
√

κ2−εd

≡ F (κ), (6)

where τ , κ , and κp are dimensionless (normalized by k0 =
ω/c = 2π/λ). The existence condition for propagating solu-
tions will then be

F (κ) ∈ [−1; 1]. (7)

For convenience in analysis, we further introduce several
dimensionless quantities:

ξ ≡ τ

κp

, η ≡ 2πdd

λ
, χ ≡

√
εd

κp

, and β ≡ κ

κp

. (8)

We see that η is the measure of how “subwavelength” the
spacer dielectric layers appear to be with respect to the vacuum
wavelength of the incident light (so normally η � 1); χ

indicates the position of the dielectric cutoff (the point of the
light line for a given frequency) normalized to the position of
the pole (again, χ � 1); ξ characterizes the pole strength (and
nothing will be assumed about it so far); and β is the tangential
component of the wave vector normalized to the position of
the pole. Using these quantities, we can rewrite Eq. (6) in a
more symmetric way,

1
2 (β − 1)A(β) − 1

2 (β + 1)A−1(β) ≡ F (β) ∈ [−1; 1], (9)

where

A = ξ−1 exp(ηκp

√
β2 − χ2). (10)

Although Eqs. (9) and (10) are sufficient for a fast numerical
prediction of where the high-k band would be for all possible
combinations of β and ξ (see Fig. 2), it is instructive to study
the limiting cases of Eq. (9). For a combination of parameters
such that A � 1 (achieved for significantly large κp and/or
very small ξ ), one can neglect the term with A−1 and see that
F (β) = ±1 can be solved analytically to yield

β = 1 + (ηκp)−1W (±2ξηκpe−ηκp ), (11)
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FIG. 2. (Color online) Behavior of Eq. (9) in different regimes.
Light colors (cyan to white to yellow) correspond to the area where
−1 < F < 1 and propagating high-k waves exist; dark colors (dark
red and blue) indicate regions where |F | > 1 and high-k wave
propagation is forbidden. (a) Illustration of the limiting behavior
of F (β,x = ln |ξ |) for large β and x; the dashed lines show the
asymptotes given by Eqs. (12) and (13). (b)–(d) An enlarged view of
F (β,x) around the asymptote intersection point (β = 1,x = ηκp) for
ηκp equal to (b) 4, (c) 1, and (d) 0.1. The insets show the plots in (b)
and (d) in the same scale as (a) for comparison.

where W (z) is the Lambert W function [38] defined as the
solution of W (z)eW (z) = z. If its argument is small, we can use
the first-order approximation W (z) ≈ z to yield that high-k
waves exist if

β ∈ [1 − 2ξe−ηκp ; 1 + 2ξe−ηκp ]. (12)

So, in the limit of small pole strength ξ , propagating waves
are observed around the pole excitation that gives rise to them,
i.e., there is a high-k band around β = 1 (i.e., κ = κp). This
band is usually narrow, and it gets progressively narrower as
ξ decreases, so the line β = 1 represents the limiting behavior
of Eq. (9) as ξ → 0. Physically, this means that an excitation
represented by a pole which is infinitely weak gives rise to
only a single wave with κ = κp. On the other hand, Eq. (12)
shows that the band widens if ηκp gets smaller, e.g., as the
structure becomes more subwavelength (smaller η).

It is still not clear, however, how the band of propagating
waves can fill a very broad range of κ . Doing so requires
violating the assumptions leading to Eq. (12) and considering
the other limit of Eq. (9). Namely, we notice that for the case
A = A−1 = 1, we have F (β) = −1 regardless of any other
parameters. Changing to the logarithmic scale with respect to
ξ by defining x ≡ ln |ξ |, we see that the dependence

x = ηκpβ where ex = |ξ | (13)

is exactly at the edge of the high-k band. Indeed, if the
argument of the exponent in Eq. (10) is small enough so
that A±1 ≈ 1 ± (ηκpβ − x), then it follows that F (β) = 0
for x = ηκpβ − 1/β and F (β) = 1 for x = ηκpβ − 2/β [see
Fig. 2(a)]. Hence Eq. (13) describes the second limiting case
for the existence of the high-k band. Unlike in the previous
case, the band now occurs for much larger κ than the pole
location κp, which is indicative of very strong coupling
between polelike resonances in the neighboring fictitious
layers due to a very large ξ . Interestingly, this high-k band
also gets progressively narrower as ξ increases, converging to
the line in Eq. (13) as ξ → ∞. The reason is that very strong
resonators and the associated very strong coupling between
them make the states with different Bloch wave numbers
degenerate to a single collective state.

This limiting case analysis makes it especially easy to
predict the region of existence for the high-k band in the
(β,x) space, as seen in Fig. 2; this plot can be regarded as
a general graphical solution of Eq. (9) for all possible values
of the resonant pole location and strength. We see that as the
excitation becomes stronger (ξ increases), the band follows
the line β = 1 and grows wider. This behavior continues
until x = 0, after which the band slants to follow the line
β = x/(ηκp). The region where the two asymptotes overlap
near the intersection point (β = 1, x = ηκp) is where Eq. (9)
ceases to be analytically solvable and the band has a more
complicated shape [Figs. 2(b)–2(d)].

We can thus identify two distinct characteristic cases when
the high-k band is sufficiently broad. First, it can be seen that
for both the limiting cases, the band widens as ξ approaches
unity (Fig. 2). Hence the region 0.1 � ξ � 10 corresponds
to the case when bulk propagating solutions are supported
for the widest range of κ . Second, for the special case
ηκp � 1, when the line corresponding to Eq. (13) is nearly
horizontal, there is a narrow range of x ∈ [−2/β; 0] when
propagating waves exist for β from below unity all the way
to

√
2/(ηκp), approaching very large values for x → −0 for

deeply subwavelength structures. This provides convergence
of the presented analysis to the effective-medium limit for
η → 0. It is also established that nonzero ζ (i.e., variation of
the permittivity of the spacer layers εd ) influences the general
solution only weakly, suppressing the existence of propagating
waves below the light line (β � χ or κ � √

εd ) and slightly
modifying the limiting behavior near it.

It is important to stress that Fig. 2 describes the behavior
of multilayered HMM-like metamaterials regardless of the
specific physical mechanism of the single-layer excitation
captured by Eq. (5). To apply these results to a case relevant
in practice, where the pole expansion would correspond to a
specific physical excitation such as a surface plasmon, the first
step is to calculate the actual expressions for κp and ξ for
that kind of excitation. Then the intersection between the lines
F (β,x) = ±1 and x = ln |ξ | would produce the two points β±,
with the values κ± = κpβ± denoting the edges of the high-k
band. Modifying the graphical solution in Fig. 2 in such a
way that the ordinate axis shows some physical parameter that
affects x in a given physical system (such as frequency in
multilayers made of dispersive materials [30]), rather than x

itself, would provide an overview of the high-k band properties
in that particular system.
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III. EXAMPLES

A. Metal-dielectric multilayers

The most straightforward way to test the proposed existence
criteria is to apply the conditions to the well-studied HMM
produced from metal-dielectric multilayers, using SPPs in the
metal layers as the elementary excitations in Eq. (5). It is
known that a metal layer supports two types of such plasmons
depending on whether the individual plasmons at the layer
interfaces are coupled symmetrically or antisymmetrically
with respect to the dominant field component Ez. Both these
modes can be obtained from the equation (rmd is the Fresnel
reflection coefficient at the metal-dielectric interface)

1 − r2
md exp(2iwmdm) = 0, (14)

The primary difference between them is the behavior of
their propagation constant κp as the metallic layer thickness dm

approaches zero. The symmetrically coupled SPP has its wave
vector approach the light cone (κp → √

εd ), and if the metal
is lossy, the losses decrease as the wave becomes increasingly
less confined to the layer. The asymmetrically coupled SPP has
its wave-vector approach infinity (κp → ∞), and the wave
becomes increasingly more confined to the metal layer, so
the losses increase. For the latter reason, these two SPPs are
traditionally referred to as long-range and short-range SPPs,
respectively.

It has already been proved [2] that SRSPPs can and do give
rise to the high-k VPP band in metal-dielectric HMMs, and
we begin by reproducing this result with the proposed criteria.
In the appropriate limit of a sufficiently thin metal layer, the
expressions for the pole expansion parameters for Eq. (5) can
be obtained from Eq. (14) as, in dimensionless units,

κp = ln |r|
2πdm/λ

, τ = r−1 − r

2(2πdm/λ)
,

(15)

r = lim
κ→∞ rmd = εm − εd

εm + εd

.

We note at once that ξ does not depend on dm, making the
analysis particularly easy:

ξ = r−1 − r

2 ln |r| = 2f

(f 2 − 1) ln
∣∣ 1+f

1−f

∣∣ , (16)

where f = −εd/εm. We can see that ξ � 1 unless f → 1
[Fig. 3(a)]. So it can be concluded that broadband VPPs are
commonly formed by hybridization of SRSPPs, as confirmed
by the example in Fig. 3(b) with x taken from Fig. 3(a).
The only exception is when εm + εd ≈ 0 leading to |ξ | � 1,
so the VPP band becomes increasingly more narrow and
moves towards larger κ [see the inset in Fig. 2(b)]. Note that
this corresponds to an epsilon-near-zero (ENZ) regime rather
than an HMM regime, and the narrowing and shifting of the
VPP band near the ENZ points is consistent with our earlier
observation [2]. The VPP band shift remains small since the
slope parameter ηκp = (dd/dm) ln |r| becomes very large in
the ENZ case.

On the other hand, the LRSPP is obtained from Eq. (14)
by considering the other limit (κp → √

εd ). The resulting

FIG. 3. (Color online) Formation of the VPP band in metal-
dielectric HMMs from SRSPPs and LRSPPs. (a) Dependence of
x on the permittivities of metal and dielectric in a thin metal layer
(dm = 5 nm) for SRSPPs and LRSPPs; the dotted line corresponds
to f = 1. (b) Example dependencies of F (β,x) for SRSPPs and
LRSPPs in a structure with dm = dd = 5 nm and material parameters
as in Fig. 1(c). The insets show the enlarged view on the scale of
κp/(ω/c). (c),(d) Comparison between SRSPP and LRSPP cases for
(c) the dispersion relation of the VPP band and (d) the dependence
of κp and x on dm. The values for x for plots in (b) are taken from
the plots in (a) at the corresponding values of parameters (shown as
a dot).

expressions are

κp =
√

εd + (εd − εm)
ε2
d

ε2
m

(
1 − δ

1 + δ

)2

,

(17)

τ = εd − εm

2κp

ε2
d

ε2
m

(δ − 1)2

δ(δ + 1)
, δ = e−dm

√
(εd−εm),

which gives

ξ = (εd − εm)ε2
d/ε

2
m

εd + (εd − εm) ε2
d

ε2
m

(
1−δ
1+δ

)2

(δ − 1)2

δ(δ + 1)
, (18)

and it can be seen that ξ → 0 as dm → 0 and the structure
becomes increasingly more subwavelength. This means that
LRSPPs hybridize to form but a very narrow band around κp
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according to Eq. (12) [Fig. 2(a)], and thus do not contribute
to the VPP band. This is seen in Fig. 3(a), and further
demonstrated by comparing the location of the area given by
−1 < F (β,x) < 1 in the (β,x) coordinates for the character-
istic metal-dielectric multilayers [Fig. 3(b)] and the dispersion
of VPPs in the bands [Fig. 3(c)] for LRSPP vs SRSPP cases.
We reiterate here that x = ln |ξ | is given by Eqs. (16) and (18)
rather than chosen arbitrarily. This result can also be explained
by noting that an LRSPP in a metallic layer bears more
and more resemblance to a plane wave in the surrounding
medium as the layer becomes thinner, which is accompanied
by progressively poorer coupling between the wave and the
metal; it is this poor coupling that manifests itself in ξ → 0.
The same poor coupling will thus be characteristic for VPPs
resulting from LRSPPs, which will therefore be very similar
in properties to plane waves propagating in the dielectric of
the HMM, and thus occupy but a very narrow range of κ .

On the other hand, for ξ to be on the order of unity in
the LRSPP case, the quantity 2πdm/λ needs to be between
0.25 and 1 [see Fig. 3(d)], i.e., the multilayer should not
be very subwavelength. In this regime, it can be expected
that both LRSPPs and SRSPPs may contribute to the VPP
band, in line with the recent observation that real multilayer
structures can outperform ideal HMMs for some values of
layer thicknesses [34,39].

B. Graphene-dielectric multilayers

Besides metallic layers, plasmonic excitations are present
in other thin-film structures such as graphene (see the recent
tutorial review [40] and references therein), and it has been
proposed that separating graphene layers by dielectric spacers
and combining them into multilayers [41,42] can give rise
to a new type of HMM, predominantly in the THz range
[26–29]; the recent study by Othman et al. [30] specifically
shows the existence of propagating high-k waves in a broad
parameter window. Here we apply our approach to analyze the
prerequisites needed for the VPP band formation.

Graphene can be regarded as an infinitely thin sheet with
surface conductivity σ . In the THz to far infrared (far-IR)
range for graphene Fermi energy EF > kBT (kB being the
Boltzmann constant), it can be calculated according to the
Kubo approach with the formula [43]

σ = i
e2kBT

π�2

[
EF

kBT
+ 2 ln(1 + e−EF /kBT )

]
1

ω + iγ

+ i
e2

4π�
ln

2|EF | − �(ω + iγ )

2|EF | + �(ω + iγ )
, (19)

where T is the temperature and γ is the damping rate, which
depends on the quality of the graphene. The first and the
second terms in Eq. (19) correspond to intraband and interband
contributions, respectively. This expression is generally found
to be accurate, even though corrections can be introduced in
special cases (see, e.g., [44] and references therein).

The resulting conductivity (real and imaginary parts) is
shown in Figs. 4(a) and 4(b). We see that the imaginary
part Im σ > 0, which corresponds to “metal-like” behavior of
graphene, everywhere except in a narrow region of frequencies
and electrochemical potentials [white area close to the dashed

FIG. 4. (Color online) Graphene conductivity σ in units of the
elementary conductivity σ0 = e2/4� = 0.061 mS in logarithmic
scale. (a) Real and (b) imaginary part, depending on frequency ω

and electrochemical potential (Fermi level) EF . The dashed line
corresponds to the Pauli blocking limit �ω = 2EF . The white region
around the dashed line in (b) corresponds to the region of negative
Im σ . Also shown is the figure of merit (FOM) Im σ/Re σ dependence
on frequency and (c) EF for the damping γ = 1013 s−1; (d) on the
damping γ for the fixed Fermi level EF = 0.2 eV. We consider the
regions with FOM greater than zero suitable for HMMs.

line in Fig. 4(b)]. As with the metal-dielectric multilayers, we
will neglect losses for now, considering the frequency range
where the real part of σ is small, and will assume that σ is
purely imaginary.

Surrounding a sheet of graphene with conductivity σ by
dielectric with permittivity ε, the transmission coefficient for
the TM polarization is given by [45]

T = 2ε/
√

ε − κ2

2ε/
√

ε − κ2 + (Z0σ )
, (20)

where Z0 = 1/(ε0c) ≈ 377 � is the impedance of free space.
Introducing S ≡ 2ε/(Z0Im σ ), Eq. (20) yields the expressions
for the pole expansion coefficients

κp =
√

ε + S2, τ = − S2

√
ε + S2

, ξ = − S2

ε + S2
. (21)

It is remarkable that realistic graphene conductivities in the
range Im σ < 100e2/(4�) yield large values of S between 1
and 100. Since |ξ | tends to unity for large S, it turns out to
be between 0.1 and 1, which is favorable for the VPP band
to be broad and pronounced, in a large parameter window,
as shown in Fig. 5(a). Changing the Fermi level allows the
tuning of conductivity to the desired value [see Fig. 4(b)]
while maintaining the deeply subwavelength thickness of such
layers for THz frequencies; Fig. 5(b) additionally confirms
the presence of a VPP band in such graphene-dielectric
multilayers. These results agree with the study of Othman
et al., predicting the existence of Bloch propagating waves
in graphene-dielectric multilayers in the hyperbolic dispersion
regime [30] and confirm the emergence of VPPs in graphene
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FIG. 5. (Color online) Formation of the VPP band in graphene
HMMs. (a) The dependence of x on graphene conductivity and
dielectric layer permittivity. (b) Same as Fig. 3(b) for graphene
multilayers with σ = 20iσ0 [where σ0 = e2/(4�)], d = 5 nm, and
ε = 1.96. (c),(d) Same as (a),(b) but for TE-polarized graphene
plasmons. The values for x for plots in (b),(d) are taken from the
plots in (a),(c) at the corresponding values of parameters (shown as
a dot).

from TM plasmons present in graphene monolayers. Note that
in the present approach the parameter window for the high-k
band can be identified without regard for the curvature of
its dispersion relation, i.e., regardless of whether or not the
multilayer has hyperbolic dispersion.

The key difference between VPPs in metal-dielectric and
graphene multilayers is that in the former ξ � 1 while in
the latter ξ � 1. As a result, metal-dielectric layers benefit
from a decrease of ηκp (e.g., by decreasing dd and making
the structure more subwavelength), whereas for graphene
multilayers this is less relevant because the slanted branch
of F (β,x) ∈ [−1; 1] is outside of the working values of x < 0.

It was also pointed out recently that in addition to
conventional SPPs for TM-polarized waves, graphene supports
transverse TE-polarized SPPs [31,32] in a narrow range of
parameters where Im σ < 0 and Re σ is small. It is interesting
to analyze whether these SPPs can give rise to HMM-like
behavior. The TE counterparts to Eqs. (20) and (21) are

T ′ = 2
√

ε − κ2

2
√

ε − κ2 + (Z0σ )
, (22)

and (introducing Q ≡ Z0|Im σ |/2)

κ ′
p =

√
ε + Q2, τ ′ = Q2√

ε + Q2
, ξ ′ = Q2

ε + Q2
. (23)

Here we note that TE-polarized plasmons exist only very close
to the singularity point in the graphene conductivity, with
realistic |Im σ | < 2e2/(4�). Hence Q is a small quantity on
the order of 0.05, making κ ′

p very close to
√

ε and ξ ′ � 1.
This makes TE-polarized plasmons in graphene much like
LRSPPs, which hybridize only into an extremely narrow VPP
band, as can indeed be seen in Figs. 5(c) and 5(d).

IV. INFLUENCE OF LOSSES

So far, we have completely neglected the effects of losses in
our analysis. While this idealization was necessary to be able
to rigorously define the band of propagating high-k band and
to determine its shape in the parameter space analytically, this
idealization is certainly not always compatible with practical
considerations. Indeed, losses in metals are not always negli-
gible, especially at visible frequencies (the operating range for
many multilayer HMMs), and losses in graphene are certainly
non-negligible and highly dependent on the graphene quality
[as seen in Fig. 4(a), the real part of the conductivity can be
quite significant].

Therefore, to complete the present analysis, it is worth-
while to explore the influence of losses on the propagating
characteristics of high-k waves in the generalized multilayers
considered here. While we realize that addressing the question
of high-k wave propagation in lossy multilayers is beyond the
scope of the present paper and warrants a separate analysis,
we try to establish the applicability limits of the proposed
lossless analysis to systems with minor losses, and confirm its
applicability to the considered cases of metal-dielectric and
graphene-dielectric multilayers.

A reasonable way to incorporate losses into a resonant
excitation captured by the pole expansion in Eq. (5) is via
a damping term in the denominator, or, in other words,
by moving the pole point κp away from the real axis in
the complex plane. As a result, the coefficients in Eq. (6)
become complex, and the distinction between propagating
and evanescent Bloch waves can no longer be rigorously
made. We can, however, introduce the “performance metric”
for the Bloch waves, defined as the ratio between its prop-
agation and attenuation constant [30] as ρ = Re kB/Im kB =
Re arccos F/Im arccos F , with higher values meaning that the
wave is able to propagate more effective wavelengths before
it is fully damped.

The resulting plots of this propagation-to-attenuation ratio
for the same conditions as in Fig. 2(c) with varying amount
of damping in the pole expansion are shown in Fig. 6(a).
We see that when the losses are minor (with Im κp/Re κp <

0.005), the area with ρ �= 0 almost fully coincides with the
shape of the high-k band for the lossless case as in Fig. 2(c)
with the exception that the edges of the band are smeared,
in line with earlier predictions [34,36]. Increasing the amount
of losses makes the smearing more pronounced and affects
ρ in some parts of the high-k band more strongly than in
others. This reduces the useful width of the high-k band in
practice, compared to the lossless case, especially for lower
values of ξ . Nevertheless, we see that the shape of the area
where high-k waves display some propagating character still
coincides with the predictions of the lossless model, with ρ

remaining sufficiently high.
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FIG. 6. (Color online) (a) Propagation-to-attenuation ratio for
the high-k propagating waves, defined as ρ = Re kB/Im kB =
Re arccos F/Im arccos F as in Ref. [30], for the same conditions
as in Fig. 2(c) for complex κp with Im κp/Re κp equal to 0.005,
0.01, and 0.02. Dashed lines denote the contour of the high-k band
in the lossless case. (b),(c) Similarly defined ρ for (b) SRSPP
excitations in metal-dielectric multilayer with realistic metal losses
and (c) TM plasmon excitations in graphene-dielectric multilayers
with σ/σ0 = 0.75 + 20i (FOM of 26.7) and other parameters similar
to the insets in Fig. 3(b) and Fig. 5(b), respectively, and calculated
along the horizontal dashed line in those insets.

With this result in mind, the predictions of the lossless
model about where one should look for propagating high-k
waves can be regarded as accurate, at least for Im κp/Re κp

up to about 0.02, while for higher losses the results can be
regarded as a guideline, and the precise characteristics of bulk
propagating waves should be established by additional calcula-
tions. Since losses work to reduce, and never to enlarge, the ef-
fective width of the high-k band, the conclusion that the values
of ξ should be near unity remains important in the lossy case.

We have also calculated the propagation-to-attenuation
ratio ρ for the VPP waves predicted for the considered exam-
ples of metal-dielectric and graphene-dielectric multilayers
[Figs. 3(b) and 5(b), respectively]. In that case, we have
used complex values of εm and σ , respectively, to directly
solve Eq. (6) for the specific examples. The results, shown
in Figs. 6(b) and 6(c), confirm that even though ρ varies
throughout the VPP band quite significantly, it remains of
the order of several tens.

To further discuss the parameter range where the present
analysis is applicable to graphene-dielectric multilayers, we
introduce the figure-of-merit (FOM) Im σ/Re σ , which is an
adaptation of the quantity commonly used to characterize the
amount of losses in metamaterials to a single graphene sheet.
We will assume that losses in graphene are small if the FOM
is greater than 10. Figure 4(c) presents the figure of merit
for the damping value γ = 1013 s−1 seen in literature [46].
As we see, a FOM greater than 10 corresponds to the Fermi
level EF > 0.15 eV and frequencies above 20 THz, whereas
in the lower THz and microwave range graphene is essentially
just a dissipative layer (resistor). We should keep in mind that

at photon energies larger than 0.2 eV, which correspond to
the frequencies above 50 THz, the interaction with the lattice
phonons [47] in the graphene and dielectric spacer layers in
multilayered graphene introduce additional large losses not
taken into account in Eq. (19). Therefore the region from 20
to 50 THz is probably the best for the realization of graphene-
based HMMs, and larger EF are favorable for better HMM
performance.

Another parameter, namely, damping (or collision fre-
quency) γ , depends very much on the quality of graphene
(its growth process and handling when transferring to the
substrate). The values reported in the literature vary widely
from 1012 to 1014 s−1 (the reader is referred to the recent
review of graphene for THz applications [46]). In Fig. 4(d) the
influence of damping on the figure of merit is demonstrated.
Whereas for the above-mentioned γ = 1013 s−1 graphene
could be used for an HMM only starting from 20 THz, reducing
the damping by ten times (γ = 1012 s−1) makes graphene
HMMs feasible starting from as low as 1.6 THz. On the
other hand, doubling the damping to γ = 2 × 1013 s−1 makes
graphene useless for building HMMs in the entire THz-IR
range. However, there are definite grounds for optimism in
the constant progress in graphene fabrication technology. For
example, chemical vapor deposition growth of centimeter-
large monocrystalline graphene with quality rivaling that of
exfoliated graphene [48], and large mobility of carriers in
graphene surrounded by two-dimensional boron nitride [49]
have been reported recently.

It should be noticed, though, that the discussion on the
optimization of losses in HMMs is relevant to only some,
but not all, applications of HMMs. Fot those applications
that require reasonable transmission coefficients, such as
hyperlensing [3], losses should be as small as possible. For
some other applications, such as HMM-based absorbers [7,11],
large losses are quite tolerable and even desirable.

V. CONCLUSIONS AND OUTLOOK

In summary, we have investigated the general theoretical
conditions for an arbitrary elementary excitation existing in
the unit cell of a multilayer periodic system to hybridize into
broadband bulk high-k propagating waves (such as VPPs in
HMMs). By isolating the unit cell elementary excitation in the
form of a generalized resonance defined by a polelike response
in its Fresnel reflection and transmission coefficients [Eq. (5)],
and by using Bloch’s theorem to couple the unit cells via
dielectric spacer layers, we have derived analytic relations
connecting the width of the resulting band of propagating
waves in the k space with the properties of the elementary
excitations, such as the pole location and strength, as well as
parameters of the dielectric spacer layers.

Using these analytical expressions, we have confirmed that
one kind of surface plasmon existing in thin metal layers,
namely, the SRSPPs, can and normally do give rise to a broad
band of volume plasmon polaritons, resulting in HMM-like
properties of subwavelength metal-dielectric multilayers [2].
Conversely, the other kind of SPP in such layers, namely, the
LRSPPs, form only a very narrow plasmonic band near the
light line of the dielectric and do not produce a broad high-k
band.
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We have also applied the formalism to multilayered
graphene-dielectric metamaterials in the THz range and shown
that TM-polarized plasmons in individual graphene sheets
do hybridize to form VPPs with HMM-like properties, and
the VPP band is broadband enough for realistic values of
graphene conductivity [for the considered geometry Im σ <

100e2/(4�)]. On the other hand, transverse (TE-polarized)
graphene plasmons form only a very narrow VPP band, not
giving rise to HMM properties and behaving like LRSPPs in
this respect. We have also shown that graphene can be a good
building material for high-k band THz and IR metamaterials,
if it has sufficiently high quality (the damping γ smaller than
2 × 1013 s−1).

Along with providing a general theoretical understanding
of the formation of a high-k band of bulk propagating
waves from fixed-k surface excitations in individual layers
of a multilayer system, our results have promising practical
applications. They are twofold. First, the analytic expressions
allow for very easy and computationally efficient estimations
of VPP dispersion in existing metal-dielectric and graphene
multilayer HMMs, which can be used to design HMMs with
optimized performance. Second, on a more abstract level,
the formalism provides insight into the general question of
whether the broadband large-wave-vector higher-dimensional
response should be expected from any given type of
lower-dimensional elementary excitations in arbitrary

periodic systems, not necessarily bilayer unit cells, but also
many-layer and gradient systems. Examples may include new
types of photonic structures such as waveguide arrays and
multilayers based on Bloch surface waves or spoof surface
plasmons. Moreover, by virtue of mathematical similarities
between electromagnetic waves and other wave phenomena
in physics (such as acoustic waves in elastic multilayers
and steady-state solutions of the Schrödinger equation in
multiple-quantum-well heterostructures), it can be speculated
that the present results may be applied to these alternative
systems, extending the metamaterial approach beyond elec-
tromagnetism.
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