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Accurate and Efficient Analysis of Printed
Reflectarrays With Arbitrary Elements Using

Higher-Order Hierarchical Legendre Basis Functions
Min Zhou, Student Member, IEEE, Erik Jørgensen, Member, IEEE, Oleksiy S. Kim, Stig B. Sørensen,

Peter Meincke, Member, IEEE, and Olav Breinbjerg, Member, IEEE

Abstract—It is demonstrated that nonsingular higher-order
hierarchical Legendre basis functions are capable of accounting
for the singularities of the electric currents at the edges of the
reflectarray elements, thus yielding good convergence properties
and very accurate results. In addition, the number of Floquet
harmonics needed in the spectral domain method of moments
is reduced by using higher-order hierarchical Legendre basis
functions as compared to singular basis functions. At the same
time, higher-order hierarchical Legendre basis functions can be
applied to any arbitrarily shaped array elements, thus providing
the flexibility required in the analysis of printed reflectarrays. A
comparison to DTU-ESA Facility measurements of a reference
offset reflectarray shows that higher-order hierarchical Legendre
basis functions produce results of the same accuracy as those
obtained using singular basis functions.

Index Terms—Accurate antenna analysis, basis functions,
Floquet harmonics, method of moments (MoM), reflectarray.

I. INTRODUCTION

P RINTED reflectarrays are becoming viable alternatives to
reflector antennas, and they are the subject of increasing

research interest [1]. In the analysis and design of reflectar-
rays, the commonly adopted technique for the calculation of
the electric currents on the printed array elements is based on
the Local Periodicity approach, where each array element is an-
alyzed assuming that it is located in an infinite array of iden-
tical elements [2]. The periodic problem is usually formulated
in terms of an integral equation and solved by the spectral do-
main method of moments (SDMoM) [3]. The Green’s function
in the integral equation consists of a double summation of Flo-
quet harmonics.
To ensure an accurate yet efficient analysis, suitable basis

functions must be selected to minimize the number of basis
functions and Floquet harmonics . For canonically
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shaped array elements, e.g., rectangular patches, entire domain
basis functions with the correct edge conditions, reproducing the
singular behavior of the electric currents at the edges, are known
for providing fast convergence in the SDMoM with respect to
[4], [5]. However, due to their singular behavior, the Fourier

spectrum is wide, which increases . For arbitrarily shaped el-
ements, the common choices are first-order basis functions, e.g.,
Rao–Wilton–Glisson (RWG) [6] or rooftop [7] basis functions.
However, is high for these cases.
The objective of this letter is to present the use of nonsingular

higher-order hierarchical Legendre basis functions as described
in [8] in the analysis of printed reflectarrays. The higher-order
hierarchical Legendre basis functions can be applied to any ar-
bitrarily shaped elements and, at the same time, maintain a good
compromise between and .
The Fourier transforms of all the basis functions used in this

letter are closed-form expressions.

II. HIGHER-ORDER HIERARCHICAL LEGENDRE
BASIS FUNCTIONS

The higher-order hierarchical Legendre basis functions
(LegBF) [8] are subdomain nonsingular basis functions. For
array elements where the shape can be described using a single
mesh element, e.g., rectangular patches, the LegBF can be
defined on the entire patch, thus becoming entire domain basis
functions.
The LegBF do not possess the singularity behaviors on the

edges of the array elements. However, they have—contrary to
first-order basis functions, e.g., rooftop basis functions—good
convergence properties. This is illustrated in Fig. 1, where
the relative error of the magnitude of the reflection coefficient
of a square patch in a periodic environment is displayed.
The reflection coefficient for a normally incident plane wave
is calculated at 9.6 GHz and displayed as a function of the
total on the patch. Five different basis functions are em-
ployed: rooftops, subdomain LegBF (S-LegBF), entire-domain
LegBF (E-LegBF), the entire-domain singular basis functions
weighted by sinusoidal functions (E-SinBF) from [9], and the
entire-domain singular basis functions weighted by Chebyshev
polynomials of first and second kind (E-CheBF) from [4].
For the S-LegBF, the square patch is divided into 2 2 mesh
elements. The substrate dielectric constant and thickness are

and mm, respectively, and the loss
tangent is . The dimension of the unit cell is

mm , and the square patch is at resonance
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Fig. 1. Relative error of the magnitude of the reflection coefficient of a square
patch in a periodic environment as a function of the number of basis func-
tions .

with a side length of 7.65 mm. As a reference, 512 E-CheBF
are used.
It is seen that a relative error below 0.1% is achieved by using

32 E-SinBF and only 18 E-CheBF. For the same accuracy,
180 E-LegBF and 480 S-LegBF are required. For the rooftops,
a relative error below 0.1% cannot be obtained due to the high
-factor of the patch. The same convergence issues exist for

conventional nonsingular entire-domain basis function, e.g.,
trigonometric basis functions [9]. As expected, required for
the LegBF is higher compared to the singular basis functions.
However, it demonstrates their superior convergence capabili-
ties compared to the first-order basis functions.
Usually, the double summation of the Floquet harmonics is

truncated according to [3]

(1)

where are the indices for the Floquet harmonics. The main
contribution in this summation originates from the combina-
tions of the lower-order Floquet harmonics, thus an appropriate
choice for is , yielding a total number of Flo-
quet harmonics of . This choice of cor-
responds to summing the Floquet harmonics within a rhombus
instead of a square when . To ensure convergent re-
sults in Fig. 1, the number of Floquet harmonics used in the
SDMoM calculations has been overestimated. For E-SinBF and
E-CheBF, approximately 24 000 Floquet harmonics are used,
whereas approximately 3300 are used for the rooftops and the
LegBF.
Although the convergence rate of the LegBF with respect to
is lower compared to the singular basis functions, the con-

vergence rate with respect to is better. Let us define the spa-
tial support of the basis function as and the spectral variable as
, then for a fixed , the Fourier spectrum of the LegBF decays
as , whereas it decays as for the singular basis
functions. As a result, the Fourier spectrum is narrower for the
LegBF, thus decreasing .
Using the same test case as for Fig. 1, the relative error of

the magnitude of the reflection coefficient as function of is
displayed in Fig. 2. A relative error below 0.1% is desired, thus
18 E-CheBF, 32 E-SinBF, 180 E-LegBF, and 480 S-LegBF are
used. It is seen that the required accuracy is obtained using

Fig. 2. Relative error of the magnitude of the reflection coefficient of a
square patch in a periodic environment as a function of the number of Floquet
harmonics .

Fig. 3. (a)–(f) Different element shapes used for reflectarray applications.

approximately 1300 and 2000 Floquet harmonics for E-LegBF
and S-LegBF, respectively, whereas over 5000 Floquet har-
monics are needed for E-SinBF and E-CheBF.
There exist several acceleration techniques for the efficient

computation of (1), e.g., the application of Kummer’s transfor-
mation [10]–[12], and the two-dimensional fast Fourier trans-
form (2-D FFT) technique [3]. In Kummer’s transformation,
an asymptotic part is subtracted from the Floquet summation,
resulting in a fast converging summation, and the summation
of the asymptotic part is treated separately in an efficient way.
However, the treatment of the asymptotic part depends on the
choice of basis function and the element shape, thus making the
technique unsuitable for arbitrarily shaped elements. The 2-D
FFT technique is another efficient way of computing the double
summation of (1), but it is restricted to basis functions that are
defined in a uniform rectangular mesh, thus not applicable for
arbitrarily shaped elements. This is a limitation for the analysis
of arbitrary reflectarrays, as different element shapes are used
for different applications.
The choice of element shape is heavily dictated by require-

ments such as bandwidth and polarization, and much research
has been carried out to investigate the performance of different
element shapes [13]–[18]; see Fig. 3. Suitable entire-domain
basis functions can be defined only for some of the element
shapes, e.g., the concentric circular loops [Fig. 3(d)]. Rooftops
and RWG basis functions can be used on arbitrary-shaped el-
ements, but at the cost of high . The LegBF are defined on
higher-order curvilinear mesh elements [8], hence any curved
boundary can be modeled very accurately. Thus, the LegBF can
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Fig. 4. Phase of the reflection coefficient of concentric square loops in a peri-
odic environment as function of the outer loop length . The inner loop length
is ; the widths of the loops are mm.

be applied to any of those element shapes and with a good effi-
ciency. As an example, the phase of the reflection coefficient of
the concentric square loop [Fig. 3(a)] in a periodic environment
is shown in Fig. 4. The reflection coefficient for a normally in-
cident plane wave is calculated at 9.6 GHz using rooftops and
S-LegBF, and the phase is displayed as function of the outer
loop length . The inner loop length is , and the
widths of the loops are mm. The setup is the same
as in Figs. 1 and 2, but the substrate thickness is increased to

mm. This is to ensure convergence of the rooftops by
reducing the -factor of the printed element. The phase curve is
obtained using a total of 80 rooftops, whereas only 28 S-LegBF
are required for the same accuracy. For both cases, .
A similar reduction in has been observed for other element
shapes.
We have observed in the analysis of various reflectarrays that

convergence using LegBF is achieved when the largest Floquet
harmonic, , satisfies the criterium , where is
the average spatial support of the basis functions. Consequently
the Floquet harmonic summation can be truncated at approxi-
mately .
The LegBF’s ability to model arbitrary-shaped elements to-

gether with their good convergence properties make the LegBF
well suited for general codes and is an appropriate choice for
the analysis of arbitrary reflectarrays.

III. VALIDATION BY MEASUREMENTS

A. Reference Antenna

To demonstrate the capabilities of the LegBF, a 900-element
reflectarray with a pencil beam toward and in
the coordinate system shown in Fig. 5 has been designed. It con-
sists of square patches, and its geometrical parameters are sum-
marized in Table I. The feed is a linearly polarized corrugated
horn with a taper of 17.5 dB at 30 at 9.6 GHz, yielding an
illumination along the edges varying from approximately 12
to 5 dB. The reflectarray and its support structures have been
manufactured at the Technical University of Denmark (DTU),
Kgs. Lyngby, Denmark, and measured at the DTU-ESA Spher-
ical Near-Field Antenna Test Facility [19]; see Fig. 5. For the
peak directivity, the measurements have a uncertainty of
0.07 dB. In addition to the reflectarray measurements, the cor-
rugated horn has also been measured, and the measured data are

Fig. 5. Reflectarray designed with a pencil beam directed toward
and in the shown coordinate system and measured at the DTU-ESA
Spherical Near-Field Antenna Test Facility.

TABLE I
REFERENCE REFLECTARRAY DATA

used in the SDMoM calculations for accurate representation of
the incident field.

B. Simulations Versus Measurements

For the calculation of the radiation pattern, the continuous
spectrum technique from [20, Technique III] is employed. This
technique is based on the field equivalence principle and allows
the finite extent of the reflectarray to be included. To account
for the presence of the support structures, the scattering from
the struts is included in the analysis using the MoM add-on in
GRASP [21].
The radiation pattern obtained using the E-CheBF and

E-LegBF is compared to the measurement results and shown in
Fig. 6. The patterns calculated using the two types of basis func-
tions are almost identical. The agreement between the simulated
and measured patterns is very good, even for the cross-polar
radiation. The discrepancies observed around are due
to the blockage by the feed and/or the measurement tower.
The analysis of the reference antenna has also been carried

out using rooftops, E-sinBF, and S-LegBF, and the performance
is summarized in Table II. Due to the thin substrate, and thus
highly resonant patches, convergence was not obtained using
rooftops, hence the results for the rooftops are omitted in
Table II.
This comparison shows that the LegBF is capable of pro-

ducing results of the same accuracy as those obtained using en-
tire-domain singular basis functions, and for this specific case,
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Fig. 6. Simulated and measured co- and cross-polar radiation patterns at
.

TABLE II
PERFORMANCE OF SINGULAR AND HIGHER-ORDER HIERARCHICAL LEGENDRE

BASIS FUNCTIONS

with less computation time, provided no acceleration techniques
are used in the SDMoM. For thicker substrates, where a total of
only two to eight entire-domain singular basis functions are suf-
ficient for the accurate characterization of the array elements,
approximately 24–40 E-LegBF are required, and the computa-
tion times for the two cases are practically identical.

IV. CONCLUSION

The use of higher-order hierarchical Legendre basis func-
tions for the analysis of printed reflectarrays has been presented.
The higher-order hierarchical Legendre basis functions can be
applied to arbitrarily shaped array elements and have better
convergence rate compared to first-order basis functions, e.g.,
rooftop basis functions. For elements that can be described
using a single mesh element, the higher-order hierarchical Le-
gendre basis functions can be defined on the entire patch, thus
becoming entire-domain basis functions. For these cases, where
singular basis functions are known for accurately accounting
for the singularities of the electric current on the patch edges,
it is demonstrated that the higher-order hierarchical Legendre
basis functions are capable of producing results of the same
accuracy as those obtained using singular basis functions. In
addition, higher-order hierarchical Legendre basis functions re-
quire less Floquet harmonics than singular basis functions, thus
a good compromise between the number of Floquet harmonics
and unknowns can be obtained using higher-order hierarchical
Legendre basis functions.
An offset reflectarray has been designed, manufactured, and

measured to serve as a reference. The agreement with measure-
ments is extremely good, thus demonstrating the capabilities of
the higher-order hierarchical Legendre basis functions.
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