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The generation of few-cycle, high-intensity laser pulses is of great interests in
a variety of research and application fields such as time-resolved spectroscopy,
bio-chemical imaging with two-photon absorptions, medical treatment, mate-
rial characterization, coherent supercontinuum generation and tera-hertz wave
generation. Commercial pulsed lasers including the solid state system and the
pulsed fiber laser have promised the generation of energetic femto-second pulses
with the temporal duration around much more than tens of femto-seconds.
Therefore, pulse compression technologies could be used to further push such
multi-cycle pulses into few-cycle and even single-cycle.

In this thesis, we investigate the high order soliton compression in quadratic
nonlinear waveguide structures, which is a one-step pulse compression scheme
making use of the soliton regime – with the spontaneous cancelation between
the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like
nonlinearity is produced through the cascaded phase mismatched quadratic
process, e.g. the second harmonic generation process, which can be flexi-
bly tuned in both the sign and the amplitude, making possible a strong and
self-defocusing Kerr effect so that the soliton is created and the soliton self-
compression happens in the normal dispersion region. Meanwhile, the chro-
matic dispersion in the waveguide is also tunable, understood as the disper-
sion engineering with structural designs. Therefore, compared to commonly
used two-step compression scheme with e.g. hollow-core photonic crystal fibers
plus a dispersion compensation component, our scheme, called the cascaded
quadratic soliton compression (CQSC), provides a simpler setup with larger
tunability on the nonlinearity, and could avoid the problem with the self-
focusing Kerr effects when under the self-defocusing regime.

On the other hand, CQSC in quadratic waveguides seems highly comple-
mentary to that in quadratic bulk crystals. With bulk crystals dealing with
high-energy, low-repetition-rate and large-beam-size pulses, quadratic waveg-
uides could operate low-energy, high-repetition-rate pulsed lasers with the beam
finely confined by the waveguide structure. Therefore, nano-joule, mega-hertz
fiber laser pulses with ∼100 fs durations can be compressed to few-cycle.

We investigate quadratic waveguides with both small and large refractive
index (RI) changes. Robust wafer bonding is proposed as a fabrication tech-
nology to achieve a waveguide with large RI change, which could substantively
extend the guidance band of the waveguide in near- and mid-infrared ranges,
and meantime evoke flexible dispersion engineering so that a broadband normal
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dispersion region can be achieved.
Through numerical simulations as well as experiments, we find out that

CQSC in small-RI-changed waveguides is mainly targeting the communication
band in the near-infrared range, where the waveguide is naturally suitable for
producing a self-defocusing Kerr-like cascaded nonlinearity so that quasi-phase-
matching technology is not necessarily needed. In large-RI-changed waveguides,
CQSC is extended to the mid-infrared range to generate single-cycle pulses
with purely nonlinear interactions, since an all-normal dispersion profile could
be achieved within the guidance band.

We believe that CQSC in quadratic waveguides is an effective pulse com-
pression scheme with compact and simple setups, and could have potentials in
many applications.
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Resumé
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Tilvejebringelsen af højintensitets impulser med varighed af få optiske cyk-
lusser er af stor interesse for en mængde af forsknings- og anvendelsesområder,
såsom tidsopløst spektroskopi, bio-kemisk afbildning med to-foton absorption,
medicinsk behandling, karakterisering af materialer, kohærent superkontin-
uum generering og generering af terahertz-bølger. Kommercielle pulsede lasere
inklusiv faststof-lasersystemer og pulserede fiberlasere kan give energirige fem-
tosekund laserimpulser med tidslig varighed der er meget længere end 10 fem-
tosekunder. Derfor kan pulskomprimeringsteknologier bruges til at bringe varighe-
den af sådanne multi-cyklus impulser ned til en varighed af få eller sågar en
enkelt cyklisk periode af det elektromagnetiske felt.

I denne afhandling undersøger vi højere-ordens soliton pulskomprimering i
kvadratisk ulineære bølgelederstrukturer. Dette er en enkelt-trins pulsekom-
primeringsteknik som udnytter solitonregimet, dvs. den spontane ophævelse
af Kerr ulineariteterne og de dispersive effekter i mediet. En Kerr-type ulin-
earitet bliver dannet gennem et fase-mismatch i en såkaldt kaskade kvadratisk
ulineær proces, som fx anden-harmonisk generering, og den kan fleksibelt tunes
mht. både fortegn og styrke. Dette gør det muligt at danne en kraftig selv-
defokuserende Kerr ulinearitet således at solitonen kan dannes og soliton selvkom-
primering kan ske i regimer med normal dispersion. På samme tid kan den kro-
matiske dispersion i bølgelederen også tunes, hvilket skal opfattes som tilret-
telæggelse af dispersion via strukturelt design. Denne komprimeringsteknik
kalder vi for “cascaded quadratic soliton compression” (CQSC), og når den
sammenlignes med gængse to-trins komprimeringsteknikker, som fx hulkerne
fotoniske krystalfibre plus en komponent til at kompensere for dispersionen, så
vil den være enklere i opstillingen og med en større mulighed for at tune ulin-
eariteten, og kan derfor undgå problemer med selv-fokuserende Kerr effekter
ved at udnytte de selv-defokuserende effekter.

På den anden side virker CQSC i kvadratisk ulineære bølgeledere stærkt
komplementære til den samme proces i kvadratiske bulk krystaller. Hvor bulk
krystaller kan anvendes til impulser med høj energi, lav repetitionsrate og stor
strålestørrelse, så vil kvadratiske bølgeledere kunne anvendes til impulser med
lav energi, høj repetitionsrate og lille strålestørrelse omkranset af bølgelederens
struktur. Derfor kan nano-Joule, mega-hertz fiberlaserimpulser med ∼100 fs
varighed kunne komprimeres til få-cyklus varighed.

Vi undersøger kvadratiske bølgeledere med både små og store forskelle i
brydningsindekset. Robust wafer bonding bliver foreslået som en fabrikation-
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steknologi til at opnå en bølgeleder med en stor forskel i brydningsindekset,
hvilket væsentligt vil udvide bølgelederens ledningsevne i de nær- og mellem-
infrarøde områder. Samtidigt vil teknikken kunne fremkalde fleksibel tilret-
telæggelse af dispersionen så normal dispersion kan opnås over et meget bredt
bølgelængdeområde.

Igennem numeriske simulationer såvel som eksperimenter finder vi at CQSC
i bølgeledere med en lille forskel i brydningsindeks hovedsageligt henvender
sig til kommunikationsbåndet i det nær-infrarøde område, hvor bølgelederen
er naturligt anlagt til at frembringe en selv-defokuserende Kerr-type kaskade
ulinearitet så kvasi-fase-matche teknikker ikke nødvendigvis er krævet. I bøl-
geledere med store forskelle i brydningsindeks vil CQSC teknikken kunne ud-
vides til brug i det mellem-infrarøde område, og enkelt-cyklus laserimpulser
med rent ulineære vekselvirkninger kan dannes da det er muligt at designe
en dispersionsprofil der kun har normal dispersion inden for det område hvor
bølgelederen leder tabsfrit.

Vi føler at CQSC teknikken i kvadratisk ulineære bølgeledere er en effektiv
pulskomprimeringsteknik som har en kompakt og enkel opstilling, og som har
mange anvendelsesmuligheder.
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Introduction



Chapter 1. Introduction

1.1 Project Background

In the field of laser physics, the working mode of pulsed lasers implies that light
energy can be packaged in a short time period so that the pulse peak intensity
is much increased, compared to the continuous mode (i.e. the continuous-wave
(CW) laser) on the same energy level [1, 2]. The minimal limitation of the
pulse duration is one optical cycle, which is the time period τ = λ/c (where
λ is the laser wavelength and c is the speed of light in vacuum). In near-
and mid-infrared ranges, the generation of few-cycle laser pulses is of great
interests as the pulse duration will be on the level of sub-ten femto-seconds
(fs, 10−15 s) and the peak intensity could be up to 1 TW/cm2 (TW, 1012

W), which is attractive in a variety of research and application fields includ-
ing: 1) highly time-resolved spectroscopy where the femto-second laser pulse
is used to probe the molecular vibrational mode [3–7]; 2) precise bio-chemical
microscopy with tissues’ multi-photon absorptions induced by high-intensity
pulses [8–12]; 3) novel nonlinear optics where material higher order nonlin-
ear responses could be excited; 4) laser micro-machining and sculpturing [13];
and 5) medical treatment such as the laser birthmark removal [14] and the
laser-assisted in situ keratomileusis (LASIK) [15–17]. In frequency domain,
such ultrashort pulses usually correspond to a broadband spectrum spanning
hundreds of tera-hertz (THz, 1012 Hz), which is referred as the 6) supercontin-
uum generation (SCG) [18, 19]. Meanwhile, femto-second laser pulses are also
applied in 7) the THz-wave generation [20,21].

Nowadays, commercial solid-state laser systems, e.g. a titanium-sapphire
(Ti:sapphire) laser followed by an optical parametric amplifier (OPA) [22, 23],
have promised the generation of energetic femto-second laser pulses, with the
tunability on laser wavelengths in near- and mid-infrared ranges. But the pulse
duration is around sub-hundred femto-seconds, limited by the performance of
the saturable absorber when making the mode-locking [24–28], and by the
working bandwidth of the optical parametrical process [29,30].

Temporal pulse compression [31–33] is then proposed as an subsequent
scheme in order to push such multi-cycle pulses into few-cycle [34, 35], and
as a result of energy conservation, the pulse peak intensity will be further in-
creased. The image of the pulse compression is to slow down the leading edge
of the pulse while speeding up the ending edge, during the pulse propagation.
Physically, two components are required to compress an un-chirped pulse (the
pulse with flat phase spectrum): 1) the frequency chirping process with which
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1.1. Project Background

the pulse spectrum will be broadened and the pulse leading and ending edges
will be cast to different frequencies (i.e. a chirped pulse is formed); and 2)
the group velocity dispersion (GVD) component under which light at different
frequencies will have different group velocities, so the pulse shape can be ma-
nipulated (compressed). In practice, the frequency chirping is always achieved
by the cubic Kerr nonlinearity produced by the material, which induces an
intensity-related phase change (or refractive index (RI) change) and therefore
chirps the pulse, known as the self-phase modulation (SPM) effects. When the
pulse chirp is totally compensated by the GVD, the broadened spectrum actu-
ally indicates a shortened pulse duration, according to the bandwidth limit of
the Fourier transform.

There are several schemes to accomplish the pulse compression, most of
them are in the two-step process in accordance to the two components. For
example, pulse compression with hollow-core photonic crystal fibers (PCFs) is a
popular scheme [36–40] where the PCF is properly designed to first accomplish
an ideal frequency chirping on pulses, namely a pulse spectral broadening with
high coherence, broad bandwidth and purely linear chirp profile. Then in the
second step, common optical devices with suitable GVD, such as a pair of
diffraction gratings (a grating compressor), a prism pair, a chirped mirror or
a chirped fiber Bragg grating, can be used to compensate the pulse chirp and
accomplish the compression.

Besides, there is also a one-step scheme to accomplish the pulse compression,
called the high order soliton compression [41–45], in which the GVD is inher-
ently provided by the material or the fiber, and spontaneously compensates the
frequency chirping during the pulse propagation. Soliton is studied and suc-
cessfully explained soon after its discovery. It is described as a self-reinforcing
and solitary wave packet formed with the cancelation of the dispersive and
nonlinear effects in the medium. Moreover, if the nonlinearity is scaled larger
than the dispersion (saying the dispersion length is longer than the nonlinearity
length), high order solitons are formed which will experience a self-compression
stage when being propagated. Also in PCFs, bright soliton pulses can be ob-
served in the anomalous GVD region, and high-intensity pulses supported by
the hollow-core PCF [46] could form a high order soliton and excite the soliton
self-compression. In the normal GVD region, however, fibers will not support
solitons but only give rise to the frequency chirping, so the two-step scheme
is required to accomplish the compression. A smart design is the gas-filled
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Chapter 1. Introduction

Kagomé hollow-core PCF [47–52], where the Kerr nonlinearity as well as the
GVD profile of the fiber can be flexibly tuned by tuning the gas pressure or
temperature. Therefore, both the one-step compression scheme in the soliton
regime and the two-step scheme with normal GVD can be accomplished in the
same setup. In fact, PCFs are becoming more and more relied on for support-
ing the soliton regime, finding applications of the pulse compression as well
as the SCG (which is in the much higher order soliton regime), as they could
enable precise and large tunability on the GVD profile, while still providing
good confinement and guidance on the laser beam. Moreover, the synthesis
of novel materials such as chalcogenides (e.g. As2S3) [53–58], fluoride glasses
(e.g. ZBLAN) [59–62], tellurite [63–66] and heavy oxides could provide stronger
Kerr nonlinearities and wider transparency windows in near- and mid-infrared
ranges than the silica glass, making the fiber device quite compact with only
centimeter lengths [67].

However, the material intrinsic cubic Kerr nonlinearity is always spatially
self-focusing, which means the laser spatial beam will be self-compressed as
well. This might give an opportunity to simultaneously accomplish both the
spatial and the temporal pulse compression [68], but it also raises the risk of
the pulse filamentation under a certain energy [69], which is a phenomenon
that the laser beam spot becomes split with some fractions having extremely
increased intensities. Filamentation is obviously unwanted as the unexpected
high intensity may touch the damage threshold of the fiber material [70] or
excite plasma (a much complicated and disturbing nonlinear process) in air or
gases [71,72].

1.1.1 Cascaded Quadratic Nonlinearity

On the other hand, in quadratic nonlinear crystals, the Kerr-like nonlinear
effects was also demonstrated, during the cascaded phase mismatched process
[73–75].

Normally, quadratic crystals are always used in applications of frequency
conversions, such as the second harmonic generation (SHG) [76], the sum fre-
quency generation (SFG) or the different frequency generation (DFG), which
are in general called the three wave mixing processes (TWM). They are also
basic components in achieving the optical parametrical processes leading to
optical parametrical oscillators (OPOs) and OPAs. Phase matching is always
required in these processes so that light energy can be continuously converted
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1.1. Project Background

to new frequencies [77]. Therefore, the crystal is always carefully configured,
either by being precisely cut or tuning the angle (see. chapter B) to meet a
critical phase matching condition between two axes of the birefringence [78], or
through tuning the temperature or making use of quasi-phase-matching (QPM)
technologies [79] to achieve a non-critical phase matching.

However, when e.g. the SHG is phase mismatched, the energy conver-
sion between the fundamental wave (FW) and the second harmonic (SH) will
become weak and periodically repeated, called the cascaded process, which
means the SH that being converted from the FW will back convert. Although
the FW can be considered un-depleted as the SH energy is very low, the re-
peated conversions and back conversions will gradually change the phase of the
FW, giving rise to an intensity-related nonlinear phase shift, just like the cubic
Kerr nonlinearity. Such a nonlinear response is called the cascaded quadratic
nonlinearity.

Careful studies show that the cascaded quadratic nonlinearity is not purely
instantaneous but in fact a delayed response [80], which can be separated into
direct current (DC) component, first-order component and higher-order com-
ponents [81, 82]. It is the DC component that exactly giving rise to the Kerr
effects, to the frequency chirping, and namely to the SPM. The first-order com-
ponent is corresponding to the self-steepening effects, which causes shock front
on pulse shapes and asymmetry in the pulse spectrum.

More importantly, it was revealed that the cascaded quadratic nonlinearity
can be flexibly tuned in both the amplitude and the sign, by tuning the phase
mismatch parameter [73], making the Kerr effects strong or weak, self-focusing
or self-defocusing. Meanwhile, the cascading induced self-steepening effects is
also tunable in which the pulse shock front as well as the spectral asymmetry
can be totally turned over [83]. Hence, the tunability in the cascaded quadratic
nonlinearity is much larger than that in the gas in hollow-core PCFs.

On the other hand, high-order components of the cascaded response may
also come up if the phase mismatch is tuned into a so-called non-stationary
region [81, 84]. There the response spectrum will show divergent peaks which
means strong and narrow-band resonant radiations will be stimulated that
continuously transfer energy from the FW. Remaining in the stationary region,
on the contrary, the cascaded response will be broadband and convergent.

Nowadays, cascading induced Kerr-like effects as well as the self-steepening
effects has been widely applied in e.g. the self-defocusing pulse compression
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Chapter 1. Introduction

[85–89], the SCG [89–92], the frequency comb generation [93, 94], the soliton
mode-locking with normal GVD [95], the compensation of self-focusing Kerr
nonlinearity [96] and the controlling of the pulse self-steepening performances
[83].

1.1.2 Cascaded Quadratic Soliton Compression (CQSC)

Using the cascaded quadratic nonlinearity for pulse compressions can be both
in the two-step process [87] and in the one-step process of the high order soli-
ton compression. The latter is also called the cascaded quadratic soliton com-
pression (CQSC). Especially, it is attractive that the self-defocusing Kerr-like
effects could be used so that problems with the self-focusing effects can be
avoided. Meanwhile, crystals are known to have much higher damage thresh-
olds than glasses, so ultra-high-intensity pulses can be operated in the CQSC.
The self-defocusing Kerr effects also implies that the pulse compression is ac-
complished with the normal GVD, in oppose to cases in cubic Kerr materials.

In recent years, great progresses have been made in the CQSC in bulk
crystals. For example: 1) energetic, few-cycle pulse compressions have been
experimentally demonstrated in the near-infrared in crystals barium borate
(BBO) [85,86] and lithium niobate (LN) [89]; 2) cascading induced pulse spec-
tral broadening to octave-spanning SCGs has been observed in the mid-infrared
range in the crystal lithium thioindate (LIS) [97]; 3) possible crystal materials
and semiconductors that could provide a dominant self-defocusing cascaded
nonlinearity have been reviewed and the operational wavelength range was re-
vealed to be widely spread in near- and mid-infrared ranges [98]; and so on. The
crystal is always compact with small lengths as the quadratic nonlinear sus-
ceptibility is quite large, promising a stronger cascaded Kerr-like nonlinearity
than most Kerr materials.

The discovery of the cascaded quadratic nonlinearity as well as the CQSC
is also meaningful to the nonlinear optics society as it opens our mind and ex-
tends the applications of quadratic nonlinear crystals and semiconductors, from
traditional frequency conversions with restricted phase matching conditions to
the quite general and broadband operational CQSCs.

However, the problem with the self-defocusing Kerr effects is that the laser
beam will gradually get enlarged, in oppose to the self-focusing effects, and
aggravate the spatial diffraction effects. Therefore, the effective length of the
laser-crystal interaction is actually shortened. The crystal length is then sug-
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gested to be shorter than the diffraction length of the laser beam (depth of
focus of a gaussian beam). The input laser should also have a large beam spot
so as to avoid the spatio-temporal effects when few-cycle pulses are generated.

1.2 Project Description

Therefore, based on above backgrounds, we propose the project “cascaded
quadratic soliton compression in waveguide structures”. The idea is to trans-
plant the CQSC from a bulk crystal to a quadratic waveguide – an optical
waveguide structure with materials having quadratic nonlinearities. Using
waveguide is a good solution to overcome the spatial diffraction effects. It
could also suppress the spatio-temporal effects as light is now propagated in
forms of waveguide eigen-modes. Therefore, the interaction length between the
laser and the crystal material could be increased, which enables the compression
of long pulses that usually requires long crystal lengths.

We are aware that, CQSC in quadratic waveguides is highly complementary
to that in bulk crystals. While bulk crystals are used to compress high-energy
(1 µJ ∼ multiple milli-joules), low-repetition-rate, and large-beam-size laser
pulses, quadratic waveguides could handle low-energy pulses (sub-nJ to tens
nJ) with still ultra-high intensities as the beam size is highly compact in the
waveguide core. Such features as low energy and fine confinement also enable
the pulsed laser to have high repetition rate, implying the compression targeting
nano-joule, mega-hertz, femto-second pulsed fiber lasers. Moreover, dispersion
engineering is possible in quadratic waveguides, analogous to the function of
PCFs, through the proper design of the waveguide structure, with which the
GVD profile (more precisely, the waveguide dispersion profile) can be flexibly
tailored instead of being fixed by the material dispersion in the bulk crystal.
On the other hand, unlike simple light-crystal interactions in bulk crystals,
nonlinear intra-mode interactions are evoked in quadratic waveguides, as mul-
tiple eigen-modes are always supported in high harmonics at high frequencies
(short wavelengths).

In fact, quadratic waveguides have been well known and widely applied
for decades. They are always used in integrated waveguide optics and opti-
cal communications for the purpose of frequency conversions [99], such as the
DFG [100] and OPO, just like bulk crystals but with the operational wavelength
or working bandwidth extended due to the dispersion engineering. Meanwhile,
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they are also being studied for cascading [101,102], paving a way to the accom-
plishment of CQSC.

Usually, quadratic waveguides are fabricated by means of annealed proton
exchange (APE) or Ti in-diffusion [103,104], which chemically diffuses dopants
on the surface of a crystal (used as substrate) and form a channel with higher
RI so that the laser light can be guided inside. The RI change between the
core and the substrate in such waveguides are always small, which might limit
the guidance bandwidth of the waveguide, and meanwhile, restrict the the
flexibility of the dispersion engineering.

In the project, we will of course investigate the APE or Ti in-diffused
quadratic waveguides as they are so commonly used and therefore worth to
be demonstrated for the CQSC. But what’s more important is that we will
also investigate quadratic waveguides with novel fabrication technologies, e.g.
the wafer bonding [105, 106], so that large RI change in the waveguide can
be achieved. Then CQSC in quadratic waveguides will be expected to operate
pulses with extended guidance bandwidth and with flexible dispersion engineer-
ing, making possible e.g. the few-cycle pulse compression in the mid-infrared
range, as well as the SCG. In details, regime of the CQSC will be investigated;
the physics of the nonlinear intra-mode interaction will be made clear; and
self-defocusing soliton compressions in near- and mid-infrared ranges will be
demonstrated through both simulations and experiments.

1.3 Achievements and Milestones

The achievements and milestones of this project are listed as follows:

• We developed a generalized numerical model, called the nonlinear wave
equation in frequency domain (NWEF), which directly solves the dynam-
ics of the electric field of the laser pulse when being propagated in the
quadratic waveguide. All types of nonlinear interactions (SHG, DFG,
SPM, Raman effects, etc.) as well as intra-mode interactions are au-
tomatically included as the equation holds the generalized and complete
form of both linear and nonlinear (quadratic and cubic nonlinear) induced
polarizations.

• We proposed the concept of the soliton spectral coupling, which gives
an unified explanation to the formation of fundamental solitons, soliton
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induced dispersive wave (DW) generations and soliton spectral tunneling
effects (SST).

• We numerically demonstrated the CQSC in quadratic waveguides with
a small RI change, with the operational wavelength range covering the
communication band in the near-infrared range. In experiments, self-
defocusing soliton induced SCGs were demonstrated in APE LN waveg-
uides.

• We proposed the robust wafer bonding between the crystal and glass
materials, which gives us opportunities to fabricate quadratic waveguides
with large RI change. Numerical simulations proved the concept of the
CQSC in such waveguides, which could actually operate laser pulses in
the mid-infrared range.

1.4 Chapter Overview

After this chapter of a general introduction, in chapter 2, we will give the
derivation of the numerical model NWEF which is considered as the basic
simulation tool all over this thesis. Then, in chapter 3, we will review the CQSC
in quadratic bulk crystals. In chapter 4, we will go through the topic CQSC
in quadratic waveguides, including the waveguide mode analysis, dispersion
engineering and nonlinearity estimation. Investigations cover waveguides with
both small and large RI changes, and with both traditional APE structures and
novel wafer bonded ridge structures. Chapter 5 gives conclusions and outlooks.
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Chapter 2. Numerical Models for Pulse Propagation in Nonlinear Media

2.1 Introduction

In this chapter, several most frequent-used numerical models for pulse propaga-
tions in nonlinear media are presented, namely the nonlinear wave equation in
frequency domain (NWEF), coupled wave equations (CWEs) and the nonlin-
ear Schrödinger-like (NLS-like) equation. All these models, with corresponding
mathematical equations, are derived from the common parent, Maxwell’s equa-
tions, but with approximations at different levels. With the concentration on
dielectric media (non-magnetic and no free charges), these equations mainly
deal with the electric field, or field envelope of the pulsed laser light. Both
quadratic and cubic nonlinearities are concerned and included in these models
and media with waveguide structures are also taken into consideration.

2.2 Maxwell Wave Equation and Nonlinear In-
duced Polarizations

We start with Maxwell’s equations and material equations shown below [1–3]:

∇×E = −∂B
∂t

∇×H = −∂D
∂t

+ J

∇ •B = 0

∇ •D = ρ

∇ • J = −∂ρ
∂t

(2.1)

D = ε0E + P

B = µ0H + M

J = σE

(2.2)

“∇” is the Laplace operator, E and H indicate the electric field (unit: V
m ) and

magnetic field (unit: A
m ) vectors, D and B indicate the electric and magnetic

flux densities. J is the current density vector and ρ is the charge density,
both representing the source for the electromagnetic field. ε0 is the vacuum
permittivity (unit: F

m ) and µ0 is the vacuum permeability (unit: H
m ). P and

M indicate the induced electric and magnetic polarizations.

22



2.2. Maxwell Wave Equation and Nonlinear Induced Polarizations

In the absence of free charges and in a nonmagnetic medium, we have
M = 0, J = 0 and ρ = 0. Hence Maxwell’s equations are simplified to:

∇×E = −∂B
∂t

∇×H =
∂D

∂t

(2.3)

With the Fourier transform, F̃ (ω) =
∫∞
−∞ F (t)e−iωtdt which matches the dis-

crete Fourier transform (DFT) algorithm in Matlab, Eq.(2.3) can be written in
frequency domain:

∇× Ẽ = −iωB̃ = −iωµ0H̃

∇× H̃ = iωD̃ = iω(ε0Ẽ + P̃)
(2.4)

The derivation of the Maxwell wave equation requires the following rela-
tionship:

∇× (∇× Ẽ) = ∇(∇ • Ẽ)−∇2Ẽ (2.5)

in which the left side can be extended as:

∇× (∇× Ẽ) = ∇× (−iωµ0H̃) = −iωµ0 · (∇× H̃)

= −iωµ0 · iω(ε0Ẽ + P̃) = ω2µ0ε0Ẽ + ω2µ0P̃

= k2
0(ω)Ẽ + ω2µ0P̃

(2.6)

The right-side term has:

∇(∇ • Ẽ)−∇2Ẽ ≈ −∇2Ẽ (2.7)

which is supported if: 1) the high order induced electric polarizations (non-
linear induced polarizations) are considered as perturbations to the first order
induced polarization (linear induced polarization), i.e. P̃ = P̃L+P̃NL ≈ P̃L =

2πε0χ̃
(1)Ẽ; 2) the relative permittivity εr = 1 + 2πχ̃(1) is independent on the

spatial distribution, i.e. ∇ • Ẽ = ∇ • D̃/ε0εr = 0.
Hence, in frequency domain, the Maxwell’s wave equation governing the

electric field is derived:

∇2Ẽ + k2
0(ω)Ẽ + ω2µ0P̃ = 0 (2.8)

In time-domain, it is:

∇2E− 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
= 0 (2.9)
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Chapter 2. Numerical Models for Pulse Propagation in Nonlinear Media

The induced polarization P̃ can be expanded as the sum of contributions
of different orders, i.e:

P = P(1) + P(2) + P(3) + · · ·+ P(m) (2.10)

and the generalized expression of both the linear induced polarizationP(1) = PL

and the nonlinear induced polarization P(m) is:

P(m)

= ε0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtmχ
(m)(t1, t2, · · · , tm)

| E(t− t1)E(t− t2) · · ·E(t− tm)

= ε0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtmχ
(m)(t− t1, t− t2, · · · , t− tm)

| E(t1)E(t2) · · ·E(tm)

= ε0

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 · · ·
∫ ∞
−∞

dωmχ̃
(m)(ω1, ω2, · · · , ωm)

| Ẽ(ω1)Ẽ(ω2) · · · Ẽ(ωm)eit
∑
ωi

(2.11)

where:

χ̃(m)(ω1, ω2, · · ·ωm)

=
1

(2π)
m

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtm

× χ(m)(t1, t2, · · · tm)e−i
∑
ωiti

(2.12)

χ(m) is the temporal response function of the material, also called the suscep-
tibility in frequency domain, which is a (m+1)-rank tensor. The calculations
among the electric fields are dyadic product which result in an m-rank tensor.
"|" indicate the multiple tensor product between two tensors, i.e. a (m+1)-
rank tensor and a m-rank tensor (or dyadic tensor). Therefore, the induced
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2.2. Maxwell Wave Equation and Nonlinear Induced Polarizations

polarization P(m) is a vector. In frequency domain, it is:

P̃(m)(ω) =

∫ +∞

−∞
P(m)e−iωtdt

= ε0

∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωmχ̃
(m)(ω1, · · · , ωm)

| Ẽ(ω1) · · · Ẽ(ωm)

∫ +∞

−∞
e−i(ω−

∑
ωi)tdt

= 2πε0

∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωmχ̃
(m)(ω1, · · · , ωm)

| Ẽ(ω1) · · · Ẽ(ωm)δ(ω −
∑

ωi)

(2.13)

Here, the delta function δ(ω) implies that the induced polarization always cor-
responds to the frequency which equals to the sum frequency of the contributing
electric fields.

If setting Ω =
∑
ωi, i.e. dΩ = dωi and

∫ +∞
−∞ δ(ω − Ω)dΩ = 1, Eq.(2.13)

further becomes:

P̃(m)(Ω)

= 2πε0

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 · · ·
∫ ∞
−∞

dωm−1

× χ̃(m)(ω1, ω2, · · · ,Ω−
∑m−1

1
ωi)

| E(ω1)E(ω2) · · ·E(Ω−
∑m−1

1
ωi)

(2.14)

where m ≥ 2 and P̃(1)(Ω) = 2πε0χ̃
(1)(Ω) • Ẽ(Ω).

Since P(m) is a vector, it can be written as a sum of its components, each
casting to one dimension in a orthogonal system, i.e. P(m) =

∑
ĵP

(m)
j . Anal-

ogously, The nonlinear response tensor χ(m) has χ(m) =
∑
ĵR

(m)
j and R

(m)
j is

an m-rank tensor, i.e.:

R
(m)
j =

∑
α1···αm

[(
m

Π
s=1

α̂s

)
· χ(m)

j;α1···αm

]
(2.15)

where j, α1, · · · , αm are dimension marks. The electric field also hasE =
∑
ĵEj .
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Chapter 2. Numerical Models for Pulse Propagation in Nonlinear Media

Thus, the component of the induced polarization P (m)
j is written as:

P
(m)
j (t)

= ε0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtm

×R
(m)
j (t− t1, t− t2, · · · , t− tm)|E(t1)E(t2) · · ·E(tm)

= ε0

∑
α1···αm

{∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtm

×χ(m)
j;α1···αm

(t− t1, · · · , t− tm) · Eα1(t1) · · ·Eαm(tm)
}

(2.16)

In frequency domain, it is:

P̃
(m)
j (Ω)

= 2πε0

∑
α1···αm

{∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωm−1

× χ̃(m)
j;α1···αm

(ω1, · · · , ωm−1,Ω−
∑m−1

1
ωi)

×Ẽα1
(ω1) · · · Ẽαm−1

(ωm−1)Ẽαm
(Ω−

∑m−1

1
ωi)

}
(2.17)

wherem ≥ 2 and P̃ (1)
j (Ω) = 2πε0

∑
α1

{
χ̃

(1)
j;α1

(Ω)Ẽα1
(Ω)
}
. χ̃(m)

j;α1···αm
corresponds

to one component of the tensor χ̃(m), in which χ̃
(1)
j;α1

belongs to the two-
dimensional matrix χ̃(1).

Therefore, each component of the electric field Ẽj has a wave equation
which, in frequency domain, reads:

∇2Ẽj + k2
0(ω)Ẽj + ω2µ0P̃j = 0; P̃j = P̃

(1)
j + P̃

(2)
j + · · ·+ P̃

(m)
j (2.18)

In particular, in uniaxial and biaxial crystals as well as cubic/isotropic mate-
rials, matrix χ̃(1) only has diagonal elements and P̃ (1)

j (Ω) = 2πε0χ̃
(1)
j;j (Ω)Ẽj(Ω).

By combining P̃ (1)
j with k2

0Ẽj , the wave equation becomes:

∇2Ẽj + k2
j (ω)Ẽj + ω2µ0P̃j,NL = 0; P̃j,NL = P̃

(2)
j + · · ·+ P̃

(m)
j (2.19)

where k2
j (ω) = k2

0(1 + 2πχ̃
(1)
j;j ) is the spatial phase in which the refractive index

is defined as nj =
√

1 + 2πχ̃
(1)
j;j .
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2.3. Nonlinear Wave Equation in Frequency Domain (NWEF)

2.3 Nonlinear Wave Equation in Frequency Do-
main (NWEF)

2.3.1 1+1D NWEF

In a bulk medium, the electric field has three spatial components, i.e Ex, Ey and
Ez, in which Ez is always neglected with the paraxial approximation. So the
axis z is defined as the propagation axis along which the propagation dynamics
of the light is described. Ex and Ey have both the spatial and propagation
dynamics. However, in the assumption of the plane-wave propagation (assum-
ing a large beam diameter), the spatial dynamics is supposed to be uniform
so that it is neglected as well. Therefore, the Laplace operator in the Maxwell
wave equation Eq.(2.19) is degraded to be only with respect to the axis z since
the spatial terms are zeros, i.e. ∇2 → ∂2

∂z2 . Thus, Eq.(2.19) is degraded to the
1+1D Maxwell wave equation:

∂2

∂z2
Ẽj + k2

j (ω)Ẽj + ω2µ0P̃j,NL = 0 (2.20)

Moreover, by factoring out the fast dependence of the propagation coordi-
nate from the electric field for all the frequencies, i.e.: [4]

Ẽj(z, ω) = Ũj(z, ω)e−ikj(ω)z (2.21)

the wave equation governing the slowly varying spectral envelope, Ũj , is ob-
tained:

∂2

∂z2
Ũj − 2ikj(ω)

∂

∂z
Ũj + ω2µ0P̃j,NLe

ikjz = 0 (2.22)

Then, with the slowly varying spectral amplitude approximation (SVSAA)
[5], i.e.

∣∣∣ ∂∂z Ũj∣∣∣� ∣∣∣kjŨj∣∣∣ and ∂2

∂z2 Ũj �
∂
∂zkjŨj , the first term in the above

equation can be removed, making:

∂

∂z
Ũj = −i ω

2µ0

2kj(ω)
P̃j,NLe

ikjz (2.23)

Then,by back replacing the envelope with the electric field, the famous reduced
Maxwell wave equation (containing only the first-order derivative with respect
to z of the electric field) is derived [6–8]:

∂Ẽj
∂z

+ ikj(ω)Ẽj = −i ω
2µ0

2kj(ω)
P̃j,NL (2.24)
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Chapter 2. Numerical Models for Pulse Propagation in Nonlinear Media

Equation (2.24) is also called the nonlinear wave equation in frequency do-
main (NWEF), provided with a detailed interpretation of the nonlinear induced
polarization term P̃j,NL. Among all types of the nonlinear induced polariza-
tion, second-order and third order nonlinear induced polarizations are most
concerned. The second-order nonlinear induced polarization is the source of the
quadratic nonlinearity, giving rise to three-wave-mixing (TWM) processes such
as second harmonic generations (SHGs), sum frequency generations (SFGs) and
different frequency generations (DFGs). The response is always considered to
be instantaneous:

χ
(2)
j;α1α2

(t1, t2) = χ̄
(2)
j;α1α2

δ(t1)δ(t2) (2.25)

where χ̄(2)
j;α1α2

is a constant indicating the response intensity. By using Eq.(2.12),
the susceptibility in frequency domain is:

χ̃
(2)
j;α1α2

(ω1, ω2) = 1
(2π)2

χ̄
(2)
j;α1α2

(2.26)

which is actually constant for all the frequencies ω1 and ω2. Hence, the second-
order nonlinear induced polarization P (2)

j has a simple expression, i.e. [9]:

P
(2)
j (t) = ε0

∑
α1α2

{
χ̄

(2)
j;α1α2

Eα1
Eα2

}
(2.27)

P̃
(2)
j (ω) = ε0

∑
α1α2

{
χ̄

(2)
j;α1α2

Ẽα1

⊗
2π Ẽα2

}
= ε0

∑
α1α2

{
χ̄

(2)
j;α1α2

F [Eα1Eα2 ]
} (2.28)

The third-order nonlinear induced polarization backs the cubic nonlinearity,
in which the response is not fully instantaneous but a combination of a instan-
taneous response fraction (i.e. the electronic response) and a delayed response
fraction (i.e. the vibrational Raman response):

χ
(3)
j;α1α2α3

(t1, t2, t3) = χ̄
(3)
j;α1α2α3

R(t1)δ(t2 − t1)δ(t3) (2.29)

where R(t) = (1− fR)δ(t) + fRhR(t) and
∫∞
−∞ hR(t)dt = 1. fR indicates the

amount of the Raman fraction. hR(t) is the temporal Raman response function.
The remaining instantaneous response will give rise to the four-wave-mixing
(FWM) processes such as the Kerr effects including the self-phase modulation
(SPM) and the cross-phase modulation (XPM), and third harmonic generations
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2.3. Nonlinear Wave Equation in Frequency Domain (NWEF)

(THGs). In frequency domain, the susceptibility is:

χ̃
(3)
j;α1α2α3

(ω1, ω2, ω3)

= 1
(2π)3

χ̄
(3)
j;α1α2α3

[
(1− fR) + fRh̃R(ω1 + ω2)

]
(2.30)

Hence, the third-order nonlinear induced polarization P
(3)
j reads, in time

domain:

P
(3)
j (t) = ε0

∑
α1α2α3

{
χ̄

(3)
j;α1α2α3

[(1− fR)Eα1Eα2Eα3

+fR(hR ⊗ (Eα1Eα2))Eα3 ]} (2.31)

and in frequency domain:

P̃
(3)
j (ω) = ε0

∑
α1α2α3

{
χ̄

(3)
j;α1α2α3

[
(1− fR)(Ẽα1

⊗
2π Ẽα2

⊗
2π Ẽα3

)

+fR(h̃R(Ẽα1

⊗
2π Ẽα2)) ⊗2π Ẽα3

]}
= ε0

∑
α1α2α3

{
χ̄

(3)
j;α1α2α3

[(1− fR)F [Eα1Eα2Eα3 ]

+fRF
[
Eα3F

−1
[
h̃RF [Eα1Eα2 ]

]]]}
(2.32)

Finally, by replacing P̃j,NL in Eq.(2.24) with their interpretations Eq.(2.28)
and Eq.(2.32), the 1+1D NWEF is derived:

∂Ẽj
∂z

+ ikj(ω)Ẽj

=− i ω2

2c2kj(ω)

∑
α1α2

(
χ̄

(2)
j;α1α2

F [Eα1
Eα2

]
)

− i ω2

2c2kj(ω)

∑
α1α2α3

{
χ̄

(3)
j;α1α2α3

[(1− fR)F [Eα1
Eα2

Eα3
]

+fRF
[
Eα3

F−1
[
h̃RF [Eα1

Eα2
]
]]]}

(2.33)

It is noted that the NWEF directly governs the light electric field (compo-
nent) rather than the field envelope. In nature, the electric field is in time do-
main a real-valued wave. Using the Fourier transform will cast it to a frequency
domain spanning (−∞,+∞), where the field spectrum at positive frequencies
is complex conjugate to that at negative frequencies. Meanwhile, the wave
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Chapter 2. Numerical Models for Pulse Propagation in Nonlinear Media

vector kj(ω) as well as the nonlinear induced polarization P̃j,NL also shows
the property of complex conjugate in such a physical frequency domain since
both linear and nonlinear temporal responses are realistic and with casuality.
Fundamentally, the NWEF automatically includes all types of quadratic and
cubic nonlinear interactions (SHG, THG, SPM, etc.) as it holds the general
form of expression of the nonlinear induced polarizations. The anisotropy of
the nonlinearity is also taken into consideration. Mathematically, the equation
can be numerically solved by employing the split-step Fourier method together
with the Runge-Kutta algorithm.

2.3.2 NWEF in Waveguides

When media have waveguide structures, the pulsed laser light will be properly
guided by the waveguide eigen-modes. Since eigen-modes have the property
of orthogonality among each other, each mode is one separated dimension.
Therefore, the electric field is the sum of all these modes just as it is the sum
of the orthogonal spatial components in bulk media. The dimension mark j
is redefined as the mode mark. Moreover, each mode (component) is defined
as the combination of the transverse spatial distribution and the propagation
dynamics, i.e. [10]:

Ẽj(x, y, z, ω) = B̃j(x, y, ω)Ãj(z, ω)

= B̃j(x, y, ω)Ũj(z, ω)e−iβj(ω)z
(2.34)

where B̃j is the eigen-mode distribution which is normalized to have:∫∫
dxdy · B̃j = 1 (2.35)

Ãj indicates the electric field amplitude which reflects the propagation dynam-
ics and holds the electric field unit V

m , and βj indicates the mode propagation
constant.

Now, Eq.(2.19) can be expanded to:

Ũje
−iβj(ω)z

(
∂2

∂x2
+

∂2

∂y2
+ k2

j − β2
j

)
B̃j

+ B̃je
−iβj(ω)z

(
∂2

∂z2
− i2βj

∂

∂z

)
Ũj + ω2µ0P̃j,NL = 0 (2.36)

By recalling that all eigen-modes in a waveguide have:

( ∂2

∂x2 + ∂2

∂y2 + k2
j − β2

j ) = 0 (2.37)
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2.3. Nonlinear Wave Equation in Frequency Domain (NWEF)

and using the SVSAA, we get the reduced Maxwell equation regarding the
waveguide, i.e.:

∂Ẽj
∂z

+ iβj(ω)Ẽj = −i ω
2µ0

2βj(ω)
P̃j,NL (2.38)

Compared with the 1+1D wave equation Eq.(2.24), the only change of the
mathematical expression in Eq.(2.38) is the replacement of the spatial propa-
gation constant kj with mode propagation constant βj . However, it should be
noticed that, besides dispersion properties, nonlinear induced polarizations are
also changed by having the waveguide structure, which will be revealed soon.
Moreover, it is also the propagation dynamics that is most concerned rather
than the electric field component as a whole. Therefore, by making spatial
integral on both sides of the equation, the transverse spatial distribution is
degenerated and the equation is further derived to govern the field amplitude
Ãj solely:

∫∫
∞
dxdyB̃∗j

(
∂

∂z
+ iβj

)
Ẽj = −iω

2µ0

2βj

∫∫
∞
dxdyB̃∗j P̃j,NL (2.39)

∂Ãj
∂z

+ iβj(ω)Ãj = −i ω
2µ0

2βj(ω)

∫∫
∞
dxdyB̃∗j P̃j,NL (2.40)

Then, we interpret the nonlinear induced polarization in the above equation.
For the second-order nonlinear induced polarization, we employ Eq.(2.17) and
expand it with the definition of the electric field component, i.e.:

∫∫
∞
dxdyB̃∗j P̃

(2)
j

= 2πε0

∑
α1α2

∞∫
−∞

{
dω1Ãα1

(ω1)Ãα2
(Ω− ω1)

×
∫∫
∞
dxdyχ̃

(2)
j;α1α2

(x, y, ω1,Ω− ω1)

×B̃∗j (x, y,Ω)B̃α1
(x, y, ω1)B̃α2

(x, y,Ω− ω1)
}

(2.41)

where the nonlinear susceptibility is space-dependent with variables (x, y). A
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spacial integral factor can be defined, which is [10]:

Θ̃
(2)
j;α1α2

(ω1, ω2)

=

∫∫
∞
dxdyχ̃

(2)
j;α1α2

(x, y, ω1, ω2)

× B̃∗j (x, y, ω1 + ω2)B̃α1(x, y, ω1)B̃α2(x, y, ω2)

=
1

(2π)
2

∫∫
∞
dxdyχ̄

(2)
j;α1α2

(x, y)

× B̃∗j (x, y, ω1 + ω2)B̃α1
(x, y, ω1)B̃α2

(x, y, ω2)

(2.42)

with which the second-order nonlinear induced polarization is:

∫∫
∞
dxdyB̃∗j P̃

(2)
j

= 2πε0

∑
α1α2

∞∫
−∞

dω1Θ̃
(2)
j;α1α2

(ω1,Ω− ω1)Ãα1
(ω1)Ãα2

(Ω− ω1) (2.43)

Moreover, in frequency domain, it can be assumed that the mode distribu-
tion B̃j is slowly varying compared to the Ãj , namely the slowly varying mode
distribution approximation (SVMDA). Thus, the spatial integral factor is con-
sidered as constant Θ̃

(2)
j;α1α2

(ω1, ω2) ≈ 1
(2π)2

Θ̄
(2)
j;α1α2

. The second-order induced
polarization is then simplified to:∫∫

∞
dxdyB̃∗j P̃

(2)
j = ε0

∑
α1α2

{
Θ̄

(2)
j;α1α2

Ãα1

⊗
2π Ãα2

}
= ε0

∑
α1α2

{
Θ̄

(2)
j;α1α2

F [Aα1
Aα2

]
} (2.44)

Analogously, the third-order nonlinear induced polarization could be writ-
ten as:∫∫

∞
dxdyB̃∗j P̃

(3)
j

= ε0

∑
α1α2α3

{
Θ̄

(3)
j;α1α2α3

[(1− fR)F [Aα1Aα2Aα3 ]

+fRF
[
Aα3

F−1
[
h̃RF [Aα1

Aα2
]
]]]}

(2.45)
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where

Θ̃
(3)
j;α1α2α3

(ω1, ω2, ω3)

=

∫∫
∞
dxdyχ̃

(3)
j;α1α2α3

(x, y, ω1, ω2, ω3)

× B̃∗j (x, y,
∑

n
ωn)B̃α1

(x, y, ω1)B̃α2
(x, y, ω2)B̃α3

(x, y, ω3)

=

[
1− fR + fRh̃R(ω1 + ω2)

]
(2π)

3

∫∫
∞
dxdyχ̄

(3)
j;α1α2α3

× B̃∗j (x, y,
∑

n
ωn)B̃α1

(x, y, ω1)B̃α2
(x, y, ω2)B̃α3

(x, y, ω3)

≈ 1

(2π)
3 Θ̄

(3)
j;α1α2α3

[
1− fR + fRh̃R(ω1 + ω2)

]

(2.46)

Integrals Θ̃
(2)
j;α1α2

and Θ̃
(3)
j;α1α2α3

are named “nonlinear modal susceptibili-
ties” which not only include the nonlinear susceptibilities (χ̃(2)

j;α1α2
, χ̃(3)

j;α1α2α3
)

reflecting the material properties, but also account the contribution of the mode
overlap within the waveguide structure.

Finally, by replacing the nonlinear induced polarizations with their inter-
pretations, NWEF dealing with waveguide structures is derived:

∂Ãj
∂z

+ iβj(ω)Ãj

=− i ω2

2c2βj(ω)

∑
α1α2

{
Θ̄

(2)
j;α1α2

F [Aα1Aα2 ]
}

− i ω2

2c2βj(ω)

∑
α1α2α3

{
Θ̄

(3)
j;α1α2α3

[(1− fR)F [Aα1
Aα2

Aα3
]

+fRF
[
Aα3F

−1
[
h̃RF [Aα1Aα2 ]

]]]}
(2.47)

2.3.3 Analytic Electric Field and Spectrum in Positive
Frequency Domain

Although the physical frequency of the electric field (component) spans the
whole frequency domain (−∞,+∞) and the spectrum is supposed to have the
property of complex conjugate, in realistic detections, it is only the spectrum
at positive frequencies that is recorded while a blank remains at negative fre-
quencies. Fundamentally, such a real detected spectrum is actually the analytic
signal of the realistic electric field, which is verified here.
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The spectrum of the electric field can be separated into two fractions,
i.e. the positive-frequency spectrum (ω+) and the negative-frequency spec-
trum (ω−), and each spectral fraction further has the real part, ẼR, and the
imaginary part, ẼI , reads:

Ẽj =
1

2
(ẼRj (ω+) + iẼIj (ω+)) +

1

2
(ẼRj (ω−) + iẼIj (ω−)) (2.48)

where ẼRj (ω+) = ẼRj (ω−), ẼIj (ω+) = −ẼIj (ω−), ω+ = −ω−.
Then, with the inverse Fourier transform, the electric field is written as:

Ej =
1

2
(ERRj + iERIj + iEIRj + EIIj )

+
1

2
(ERRj − iERIj − iEIRj + EIIj ) = ERRj + EIIj

(2.49)

where

ERRj =

∫ ∞
0

dωẼRj (ω+)cos(ω+t)

ERIj =

∫ ∞
0

dωẼRj (ω+)sin(ω+t)

EIRj =

∫ ∞
0

dωẼIj (ω+)cos(ω+t)

EIIj = −
∫ ∞

0

dωẼIj (ω+)sin(ω+t)

(2.50)

Since sin(ω+t) = H[cos(ω+t)] and −cos(ω+t) = H[sin(ω+t)], where H[f(t)] is
the Hilbert transform:

H[f(t)] = π−1p.v.

∫ +∞

−∞
dτf(t− τ)/τ (2.51)

it is obvious to have: ERIj = H[ERRj ] and EIRj = H[EIIj ].
Therefore, the real detected spectrum, the first right-side term in Eq.(2.48),

corresponding to the first right-side term in Eq.(2.49) in time domain, is actu-
ally the analytic signal of the electric field, i.e.:

F−1[Ẽj(ω
+)] =

1

2
F−1

[
(ẼRj (ω+) + iẼIj (ω+))

]
=

1

2
(ERRj + EIIj + iH[ERRj + EIIj ])

=
1

2
(Ej + iH[Ej ])

(2.52)
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2.4 Coupled Wave Equations (CWEs)

Group of coupled wave equations (CWEs) [11] can be derived based on the
NWEF, which targets at one or multiple specific nonlinear interactions, such
as SHG, THG, SPM, etc. The critical approximation in CWEs is that different
harmonics within an electric field component don’t have significant spectral
overlap among each other. With such an approximation, the electric field
can be divided by harmonics such as the fundamental wave (FW), the second
harmonic (SH) with doubled frequency, and so on. Meanwhile, each harmonic
can be further considered consisting of an envelope, a carrier wave and a spatial
phase term. For example, the FW can be written as:

Ej,1(z, t) =
1

2

(
Uj,1(z, t)eiω1t−ikj;j(ω1)z + c.c.

)
(2.53)

and then the SH is:

Ej,2(z, t) =
1

2

(
Uj,2(z, t)eiω2t−ikj;j(ω2)z + c.c.

)
(2.54)

where ω2 = 2ω1, c.c. represents the complex conjugate term since the electric
field is real-valued.

Considering the noncritical SHG process in which the FW and SH share
the same polarization direction, e.g. both are extraordinary wave (j = e), the
electric field is therefore written as:

Ee =
1

2

(
Ue,1(t)eiω1t−ike(ω1)z + c.c.

)
+

1

2

(
Ue,2(t)ei2ω2t−ike(ω2)z + c.c.

) (2.55)

In frequency domain, it is:

Ẽe =
1

2

(
Ũe,1(ω − ω1)e−ike(ω1)z + Ũ∗e,1(−ω − ω1)eike(ω1)z

)
+

1

2

(
Ũe,2(ω − ω2)e−ike(ω2)z + Ũ∗e,2(−ω − ω2)eike(ω2)z

) (2.56)

Nonlinear induced polarizations Eq.(2.28) and Eq.(2.32) are expanded to:
(with the Raman term being excluded)

P̃ (2)
e = ε0χ̄

(2)
e;ee

(
1

2
U∗e,1Ue,2e

iω1t−iz[ke(ω2)−ke(ω1)]

+
1

4
U2
e,1e

iω2t−i2ke(ω1)z + · · ·
) (2.57)
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P̃ (3)
e =ε0χ̄

(3)
e;eee

[(
3

8
|Ue,1|2 +

3

4
|Ue,2|2

)
Ue,1e

iω1t−ike(ω1)z(
3

4
|Ue,1|2 +

3

8
|Ue,2|2

)
Ue,2e

iω2t−ike(ω2)z + · · ·
] (2.58)

In these expanded equations, terms regarding the same harmonic can be
gathered together, i.e. the FW should have the carrier wave term eiω1t and the
SH has eiω2t. Remember that there should be no overlap between the FW and
the SH, so the NWEF can be separated into two equations, governing the FW
and the SH, respectively:

∂Ũe,1(ω − ω1)

∂z
e−ike(ω1)z + i [ke(ω)− ke(ω1)] Ũe,1(ω − ω1)e−ike(ω1)z

=− i ωχ̄
(2)
e;ee

cne(ω)
· F
[

1

2
U∗e,1Ue,2e

iω1t−iz[ke(ω2)−ke(ω1)]

]
=− iωχ̄

(3)
e;eee

cne(ω)
· F
[(

3

8
|Ue,1|2 +

3

4
|Ue,2|2

)
Ue,1e

iω1t−ike(ω1)z

] (2.59)

∂Ũe,2(ω − ω2)

∂z
e−ike(ω2)z + i [ke(ω)− ke(ω2)] Ũe,2(ω − ω2)e−ike(ω2)z

=− i ωχ̄
(2)
e;ee

cne(ω)
· F
[

1

4
U2
e,1e

iω2t−i2ke(ω1)z

]
=− iωχ̄

(3)
e;eee

cne(ω)
· F
[(

3

4
|Ue,1|2 +

3

8
|Ue,2|2

)
Ue,2e

iω2t−ike(ω2)z

] (2.60)

By seting Ω = ω − ω1, the dispersion term ke(ω)− ke(ω1) is Taylor ex-
panded to:

ke(ω)− ke(ω1) =
∑∞

m=1

(−i)m(iΩ)
m · k(m)

e (ω = ω1)

m!
(2.61)

Thus, using inverse Fourier transform, the CWEs Eq.(2.59) and Eq.(2.60)
can be written in the time domain with a more simplified expression, i.e.:

∂Ue,1(z, t)

∂z
+ i

[∑∞

m=1

(−i)m · k(m)
e (ω = ω1)

m!

(
∂

∂t

)m]
Ue,1

=− i χ̄
(2)
e;ee

cne(ω1)

(
ω1 − i

∂

∂t

)
·
(

1

2
U∗e,1Ue,2e

−iz[ke(ω2)−2ke(ω1)]

)
=− i χ̄

(3)
e;eee

cne(ω1)

(
ω1 − i

∂

∂t

)
·
((

3

8
|Ue,1|2 +

3

4
|Ue,2|2

)
Ue,1

)
(2.62)
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∂Ue,2(z, t)

∂z
+ i

[∑∞

m=1

(−i)m · k(m)
e (ω = ω2)

m!

(
∂

∂t

)m]
Ue,2

=− i χ̄
(2)
e;ee

cne(ω2)

(
ω2 − i

∂

∂t

)
·
(

1

2
U2
e,1e
−iz[2ke(ω1)−ke(ω2)]

)
=− i χ̄

(3)
e;eee

cne(ω2)

(
ω2 − i

∂

∂t

)
·
((

3

4
|Ue,1|2 +

3

8
|Ue,2|2

)
Ue,2

)
(2.63)

Furthermore, in a moving frame with the speed same to the group velocity
of the FW, i.e. τ = t− k(1)

e z, full CWEs regarding the quadratic SHG as well
as the cubic Kerr and Raman effects are derived, i.e.:(

∂

∂z
+ iDe,1

)
Ue,1(τ, z)

=− i χ̄
(2)
e;ee

cne(ω1)

(
ω1 − i

∂

∂τ

)
·
[

1

2
U∗e,1Ue,2e

−i∆kz
]

− i χ̄
(3)
e;eee

cne(ω1)

(
ω1 − i

∂

∂τ

)
·
{

(1− fR)

[(
3

8
|Ue,1|2 +

3

4
|Ue,2|2

)
Ue,1

]
+fR ·

[
1

4
hR(τ)⊗

(
|Ue,1|2 + |Ue,2|2

)
Ue,1

]}
(2.64)

(
∂

∂z
− d12

∂

∂τ
+ iDe,2

)
Ue,2(τ, z)

=− i χ̄
(2)
e;ee

cne(ω2)

(
ω2 − i

∂

∂τ

)
·
[

1

4
U2
e,1e

i∆kz

]
− i χ̄

(3)
e;eee

cne(ω2)

(
ω2 − i

∂

∂τ

)
·
{

(1− fR)

[(
3

4
|Ue,1|2 +

3

8
|Ue,2|2

)
Ue,2

]
+fR ·

[
1

4
hR(τ)⊗

(
|Ue,1|2 + |Ue,2|2

)
Ue,2

]}
(2.65)

where the dispersion term De,1,2 =
∑∞
m=2

(−i)m·k(m)
e (ω=ω1,2)
m!

(
∂
∂τ

)m
, the group

velocity mismatch is defined as d12 = k
(1)
e (ω1)− k(1)

e (ω2), the phase mismatch
is defined as ∆k = ke(ω2)− 2ke(ω1).

Above CWEs can also be scaled to the dimensionless form with following
definitions:

LD,1 = sgn(k
(2)
1 )

Tin,1

k
(2)
1

Iin,1 = U2
1 (z = 0, τ = 0)

(ε0n1c

2

) (2.66)

ξ =
z

LD,1
, τ̂ =

τ

Tin,1
, ω̂1,2 = ω1,2Tin,1, η =

n1

n2
(2.67)
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d̂12 = d12
LD,1
Tin,1

, ∆k̂ = ∆k · LD,1

D̂1,2 = LD,1 ·
∑∞

m=2

(−i)m · k(m)
1,2

m! · Tmin,1

(
∂

∂τ̂

)m (2.68)

Û1 =

√
U2

1
ε0n1c

2

Iin,1
, Û2 =

√
U2

2
ε0n2c

2

Iin,1
(2.69)

κquad =

LD,1

(
Iin,1

ε0n1c/2

) 1
2 ·
(
χ̄(2)
e;ee

2

)
· ω1

c(n2n1)
1
2

κcubic =
3

8

LD,1
Iin,1

ε0n1c/2
· χ̄(3)

e;eee · ω1

cn1

(2.70)

where the subscript “e” is omitted, LD,1 is known as the dispersion length,
Tin,1 indicates the pump pulse duration, Iin,1 is the peak intensity of the pump
pulse, k(m)

1,2 = k
(m)
e (ω1,2). It is noted that all these parameters are dimension-

less, which will bring convenience in the following derivation of the nonlinear
Schrödinger-like (NLS-like) equation.

The dimensionless CWEs are:

(i
∂

∂ξ
− D̂1)Û1(τ̂ , ξ)

= + κquad

(
1− i

ω̂1

∂

∂τ̂

)
·
[
Û∗1 Û2e

−i∆k̂ξ
]

+ κcubic

(
1− i

ω̂1

∂

∂τ̂

)
·
{

(1− fR)
[(
|Û1|2 + 2η|Û2|2

)
Û1

]
+fR ·

[
2

3
hR(τ̂)⊗

(
|Û1|2 + η|Û2|2

)
Û1

]}
(2.71)

(i
∂

∂ξ
− id̂12

∂

∂τ̂
− D̂2)Û2(τ̂ , ξ)

= + κquad

(
1− i

ω̂2

∂

∂τ̂

)
·
[
Û2

1 e
i∆k̂ξ

]
+ κcubic

(
1− i

ω̂2

∂

∂τ̂

)
· 2η2

{
(1− fR)

[(
2η−1|Û1|2 + |Û2|2

)
Û2

]
+fR ·

[
2

3
hR(τ̂)⊗

(
η−1|Û1|2 + |Û2|2

)
Û2

]}
(2.72)

CWEs can also be numerically solved by the split-step Fourier method.
The advantage of using CWEs is that these envelope equations don’t have seri-
ous requirement of the sampling points on the electric field, which may hugely
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speed up the simulation. On the other hand, besides the critical approximation,
CWEs always have limited harmonics and limited types of nonlinear interac-
tions being investigated. Although more equations may be added to extend
the investigation, the system actually becomes quite complicated.

2.5 Nonlinear Schrödinger-like (NLS-like) Equa-
tion

In a largely phase mismatched SHG, namely ∆k · L� 2π where L is the length
of the medium, the conversion between the FW and the SH is very weak. So
there are no strong SH being generated. Instead, the light converted from the
FW to the SH will after a short propagation length back-convert. This process
will repeatedly occur along the crystal (cascading) and thereby induce a nonlin-
ear, intensity dependent phase shift on the FW, called the cascaded quadratic
nonlinearity. In the assumption of an undepleted FW, the SH is further defined
as, Û2 = ϕ(τ̂)ei∆k. Using such ansatz in Eq.(2.72) and eliminating the cubic
nonlinearity, we have:

Û2(τ̂ , ξ) = −κquad
∆k̂

(
1− i

ω̂2
· ∂
∂τ̂

)(
hc(τ̂)⊗ Û2

1

)
· ei∆k̂ξ (2.73)

where

F [hc(τ̂)] = h̃c(Ω̂) =
∆k̂

∆k̂casc

∆k̂casc(Ω̂) = k(
Ω̂ + ω̂2

Tin,1
)− 2(k1 + k

(1)
1 · Ω̂

2
)

(2.74)

Physically, the denominator ∆k̂casc reflects the phase mismatch between a
“solitary” FW with dispersionless phase and the SH, and ∆k̂casc = 0 implies
the phase matching, which is different to the commonly known ∆k̂ in a SHG
that both the FW and SH have dispersive phases. ∆k̂casc = 0 also leads to a
divergent h̃c(ω̂) which is unfortunately unacceptable in a simulation. To avoid
the divergence, a loss factor may be added to the SH equation and the response
is modified to have a convergent form, reads: h̃c(Ω̂) = ∆k̂

∆k̂casc+iα
, where α < 0

indicates a loss term, −αÛ2, is inserted in the left side of Eq.(2.72).
Using Eq.(2.73) in the FW equation Eq.(2.71) gives a single function gov-

erning the FW in the largely phase mismatched SHG process, namely the
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nonlinear Schrödinger-like (NLS-like) equation:

(i
∂

∂ξ
− D̂1)Û1(τ̂ , ξ)

=−
κ2
quad

∆k̂

(
1− i

ω̂1
· ∂
∂τ̂

)
·
[
Û∗1

(
1− i

ω̂2
· ∂
∂τ̂

)(
hc(τ̂)⊗ Û2

1

)]
+ κcubic

(
1− i

ω̂1
· ∂
∂τ̂

)
·

{
(1− fR)

[(
|Û1|2 + 2η

κ2
quad

∆k̂2
|Û1|4

)
Û1

]

+fR ·

[
2

3
hR(τ̂)⊗

(
|Û1|2 + η

κ2
quad

∆k̂2
|Û1|4

)
Û1

]}
(2.75)

in which the Kerr SPM effects on the right side can be abstracted out as:(
−
κ2
quad

∆k̂
+ κcubic

)
|Û1|2Û1 (2.76)

The pre-factor is understood as the dimensionless soliton number which is
resulted from the competition between the cascaded quadratic nonlinearity,
N2
casc = sgn(∆k̂)

κ2
quad

∆k̂
, and the material cubic nonlinearity, N2

cubic = κcubic.
The nonlinear refractive index representing the intensity related nonlinear phase
change on the FW is:

n2,casc = −
2

(
χ̄(2)
e;ee

2

)2

ω1

ε0c2n2n2
1∆k

n2,cubic =
3χ̄

(3)
e;eee

4ε0cn2
1

(2.77)

where the “−” sign indicates that the cascaded quadratic nonlinearity shows
self-defocusing when having a positive-valued ∆k.

Therefore:

N2
casc =

ω1

c
LD,1Iin,1 |n2,casc|

N2
cubic =

ω1

c
LD,1Iin,1n2,cubic

(2.78)

Moreover, the FW can be decomposed to the amplitude and phase terms,
i.e.: Û1 = A (ξ, τ̂)eiφ(ξ,τ̂), and their dynamics can be concluded as:

∂A

∂ξ
=

(
4N2

casc − 3N2
cubic

ω̂1
+ 2τ̂cN

2
casc

)
A 2 ∂A

∂τ̂
+ HOD (2.79)
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∂φ

∂ξ
= N2

effA
2 − 2τ̂RN

2
cubicA

∂A

∂τ̂

+

(
2N2

casc −N2
cubic

ω̂1
+ 2τ̂cN

2
casc

)
A 2 ∂φ

∂τ̂
+ HOD

(2.80)

where:
N2
eff = N2

casc −N2
cubic (2.81)

τ̂c = −i
∫
dτ̂ · τ̂ · hc(τ̂) = h̃′c(0) =

d̂12

∆k̂

τ̂R = fR

∫
dτ̂ · τ̂ · hR (τ̂) = ifR · h̃′R(0) = −fRIm[h̃′R(0)]

(2.82)

Here, the cascaded and Raman responses are all expanded to the first order
while higher order terms (HOD) are neglected. In the amplitude equation, the
second term in the right-side bracket indicates that the cascaded response, or
more precisely the first-order response, actually induces self-steepening effects
on the pulse amplitude, which will give rise to pulse shock front and with the
existence of dispersion, makes change on the pulse group velocity (GV). In the
phase equation, on the other hand, the first term on the right side indicates
the overall SPM effects resulted from the nonlinearity competition. The second
term implies that the first order of the Raman response will give rise to shock
front on the pulse phase, namely the phase shift or, in frequency domain, the
frequency shift. The third term can be neglected when the pulse is solitary,
namely the phase profile is flat over the delay axis so that the derivative is zero.

2.6 Conclusion

As a conclusion, in this chapter we derived three numerical models for es-
timating pulse propagating dynamics in nonlinear media. Starting from the
Maxwell equation, the forward Maxwell equation is first derived with minimal
approximations (SVSAA), which is further expanded to the NWEF with inter-
pretations of the nonlinear induced polarizations. NWEF directly deals with
the electric field (component) and automatically include all types of quadratic
and cubic nonlinear interactions, making it a generalized model which has been
widely used nowadays. Then, with the approximation that different harmonics
within the electric field do not have spectral overlap, which is equivalent to the
commonly known slowly varying envelope approximation (SVEA), CWEs re-
garding the noncritical SHG process is derived. The envelope dynamics of the
FW and the SH are both formulated. Cubic Kerr effects (SPM and XPM) and
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the Raman effects are also included in the equations. It should be noticed that
CWEs have limited harmonics as well as limited types of nonlinear interactions
being investigated. The third model is the NLS-like equation which is derived
in the largely phase mismatched SHG process. With such a condition, there
are no strong SH being generated, but instead, the weak and repeated light
conversion between the FW and the SH will induce a nonlinear phase shift on
the FW, called the cascaded quadratic nonlinearity which performs just like
the material Kerr nonlinearity that gives rise to the SPM effect. In the dimen-
sionless form, the soliton number marking the efficiency of the SPM effect is
concluded, which is actually the sum of the cascaded and Kerr nonlinearities.

To make simulations, all three models are programmed and numerically
solved. On Matlab platform, each model is wrapped as a solver, see appendix
for the codes.
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Chapter 3. CQSC in Quadratic Nonlinear Bulk Crystals

3.1 Introduction

In this chapter, we numerically investigate the cascaded quadratic soliton com-
pression (CQSC) in nonlinear bulk crystals, by using the NWEF models derived
in chapter 2. As is made clear in chapter 1, CQSC is accomplished under a self-
defocusing nonlinearity contributed by the cascaded quadratic nonlinearity and
with the normal dispersion. Basically, there are varieties of nonlinear crystals
that could produce strong and self-defocusing cascaded quadratic nonlinearities
with decent nonlinear susceptibilities [1], and having materials cubic Kerr non-
linearities being counterbalanced, namely |n2,casc| > n2,cubic or N2

casc > N2
cubic

in the dimensionless form. Here, three crystals are investigated, i.e. the most
used quadratic crystals barium borate (BBO) and lithium niobate (LN) fo-
cusing on the visible and near infrared range (near-IR), and a novel crystal
lithium thioindate (LIS) targeting applications in the mid-infrared range (mid-
IR). Different types of configurations of the crystal are employed aiming at
exploiting the largest quadratic susceptibility. The tunability of the cascad-
ing is also studied, which indicates the tuning on both the amplitude of the
SPM effect of an over-all self-defocusing nonlinearity and the cascading induced
self-steepening effect. As the result of CQSC, high-intensity, few-cycle or even
single-cycle, solitary laser pulses are generated in both near-IR and mid-IR, ac-
companied with supercontinuum generations and dispersive wave generations
at even longer wavelengths.

3.2 CQSC in Barium Borate (BBO) Crystal

CQSCs in BBO crystals have been widely reported, both numerically and ex-
perimentally [2–4]. The crystal is always cut for critical quadratic nonlinear
interactions, namely the so-called type-I (e;oo) or type-II (o;eo) interaction,
in which the extraordinary (“e”) wave has the refractive index (or the spatial
phase) dependent on the angle (θ) between the incident light beam and the
crystal optic axis, see section B. Such a configuration makes use of the largest
quadratic nonlinear susceptibility in BBO, i.e. d22 = χ̄

(2)
y;yy/2 with:

χ̄
(2)
e;oo/o;eo = 2 [−d22cos(θ)sin(3ϕ) + d31sin(θ)] (3.1)

where d31 = χ̄
(2)
z;xx/2. (x, y, z) is the principal axis of the crystal in which the

axis z marks the optic axis. ϕ is the rotation angle with respect to z. Be-
sides tuning the susceptibility, the variable θ also plays the role in tuning the
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3.2. CQSC in Barium Borate (BBO) Crystal

Fig. 3.1: tunability of the phase mismatch ∆k and the cascaded quadratic
nonlinearity (shown in n2,casc) as a function of FW wavelength, under different
angle values. Quadratic and cubic susceptibilities used are d22 = 2.2 (pm/V),
d31 = −0.16 (pm/V), χ̄(3)

o;ooo = 550 (pm2/V2) [5]. ϕ = −π2 . The Sellmeier
function of the birefringence of BBO is obtained from the handbook [6].

phase mismatch ∆k and therefore tunes the cascaded quadratic nonlinearity
(as n2,casc ∝ ∆k−1). The competing nonlinearity is the material intrinsic Kerr
nonlinearity on the FW which is an ordinary (“o”) wave, so the corresponding
susceptibility is the angle-independent χ̄(3)

o;ooo.

Figure 3.1 shows the tunability of ∆k as well as n2,casc, by tuning the angle
θ. With an increase of θ, ∆k is reduced and may even find phase matching.
Although the susceptibility χ̄(2)

e;oo/o;eo is also reduced through the Cosine func-
tion in Eq.(3.1), the cascaded quadratic nonlinearity is getting increased and
a wavelength band with the cascading winning over the Kerr nonlinearity, i.e.
|n2,casc| > n2,cubic, emerges. Therefore, overall self-defocusing nonlinearity is
produced within the band.

It should be noticed that when approaching to the phase matching position,
see the case with θ = 200 where ∆k = 0 is found at both 1400 nm and 1764
nm, the estimation of n2,casc, mathematically becoming infinity, is not accurate
since the cascading (which requires the condition of the largely phase mismatch)
is no longer promised. Nevertheless, when ∆k < 0, the cascading actually
contributes to the self-focusing effects. Therefore, an effective estimation on
the self-defocusing n2,casc actually requires the positive-valued ∆k far away
from the phase matching position.
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Fig. 3.2: CQSC in BBO cut for critical quadratic nonlinear interaction; θ = 180,
ϕ = −π2 , Iin,1 = 100 GW/cm2, FWHM = 100 fs, pump wavelength is 1250 nm,
fR = 0, soliton number Neff ≈ 5.0; (a) pulse temporal evolution with the
dashed line marking the compression position; (b) the electric-field (E-field)
of the pulsed laser at the compression position; (c) spectra of both ordinary (o-
) and extraordinary light (e-light) at input, compression and output positions;
(d) spectral evolution of o-light; (e) spectral evolution of e-light.

On the other hand, CQSC requires the normal dispersion so that the non-
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3.2. CQSC in Barium Borate (BBO) Crystal

linear phase shift induced by the self-defocusing SPM can be cancelled and the
solitary pulses can be created. By calculating the group velocity dispersion
(GVD) as a function of the frequency, i.e. the parameter k(2)

o;o(ω), the nor-
mal dispersion range of the ordinary wave in BBO (k(2)

o;o > 0) is found covering
short wavelengths and being stopped at a zero dispersion wavelength (ZDW) of
around 1480nm, which means the operational wavelength of CQSC is limited
below such a ZDW.

For example, in the case with θ = 180, the operational wavelength range for
the CQSC is (1070 ∼ 1480 nm) though the window of the overall-self-defocusing
nonlinearity is up to 2260 nm, and with θ = 200 the range is (990 ∼ 1400 nm)

stopped by the phase matching wavelength.
Another concern is on the cascading phase mismatch ∆kcasc [7, 8], which

might find sideband phase matching between a dimensionless solitary FW and
the SH [9]. With strong normal dispersion and having ∆k > 0 over the whole
wavelength range, the cascading phase mismatch can be estimated as:

∆kcasc(ω) ≈ ∆k(ω) +
1

2
k(2)
o;o(2ω − 2ω1)2 +HOD > 0 (3.2)

where ω1 indicates the wavelength of the pump pulsed laser. Thus, the cascaded
response will be ultra-broadband in spectrum and fast decayed in time, namely
the quasi-instantaneous response which will lead to a clean pulse profile in the
CQSC.

Figure 3.2 shows the numerical simulation of CQSC in the BBO crystal cut
for the critical interaction, i.e. θ = 180 and ϕ = −π2 . To track the dynamics of
the birefringence of the crystal, a group of NWEF consisting of two equations
governing both “o” and “e” waves is employed. fR is set to zero since BBO
has weak Raman response between the birefringence. The pump pulsed laser
is at 1250 nm. The pulse duration is 100 fs at full width and half maximum
(FWHM). With such a configuration, the soliton number Neff is estimated to
be around 8.8.

With a crystal length of 3 cm, the laser pulse is compressed to have sub-
3-cycle duration while the peak intensity is increased by around 6 times, see
Fig. 3.2(a,b). In spectrum, significant spectral broadening is observed by the
SPM effect of the overall self-defocusing nonlinearity, see Fig. 3.2(c,d). At the
compression position where the pulse spectrum is most broadened, dispersive
wave (DW) is evoked due to perturbations of high order dispersion (such as
the third-order dispersion), which will be further discussed in the following
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Chapter 3. CQSC in Quadratic Nonlinear Bulk Crystals

chapter. The frequency (wavelength) position of the DW is predicted by the
phase matching condition [10]:

k(ωr) = k(ω1) + k(1)(ωr − ω1) +
|γIin,1|

2
(3.3)

where ωr indicates the DW frequency. The first right-side term the equation
again reflects the dispersionless solitary FW. γ = ω1

c (n2,casc + n2,Kerr) indi-
cates the nonlinear factor.

Besides the SPM effects, cascading induced self-steepening is found on the
FW pulse [11], according to Eq.(2.76), which gives rise to pulse shock front,
frequency shift as well as the group velocity (GV) change (pulse delay change
in the temporal evolution Fig. 3.2(a)).

It is also noticed that “e” SH is generated through the type-I interaction,
and the energy is low due to the phase mismatch, see Fig. 3.2(e). The SH looks
exactly like a slight copy from the FW, with features of the spectral broadening
and the DW generation both duplicated. Moreover, higher order harmonics
such as the third harmonic (TH) and frequency down conversions are observed
as well. These harmonics are actually generated through mixed interactions,
e.g., the TH is generated through both the type-II interaction (with “o” FW
and “e” SH) and the direct THG with the FW, the forth harmonic is generated
through the type-I SFG (with “o” FW and “o” TH) and the type-0 (e;ee) SHG
with the SH. It is the NWEF model that automatically includes all the possible
harmonic generations and frequency mixing processes, making the simulation
more generalized with all the details included. It is also verified that CQSC
is quite solid in principle as potential harmonic generations do not impact the
pulse compression as well as the generation of few-cycle laser pulses.

3.3 CQSC in Lithium Niobate (LN) Crystal

LN is another candidate for CQSC [14]. Unlike the BBO crystal, LN makes
use of the non-critical quadratic nonlinear interaction, in which the polariza-
tion direction as well as the propagation direction of the incident laser beam
is along the principal axis. Since the largest quadratic susceptibility in LN
is d33 = χ̄

(2)
e;ee/2, the crystal is always z-cut (θ = 900) and has light propaga-

tion in “e” waves so that a type-0 (e;ee) interaction making full use of χ̄(2)
e;ee is

configured.

50



3.3. CQSC in Lithium Niobate (LN) Crystal

1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

k 
(

m
-1

)

wavelength (nm)

 k
 k

sr

 k
c

 k
c,QPM

(a)

1000 2000 3000 4000

10

20

30

40

50

60
(b)

 

 

n 2 (1
0

-2
0
 m

2 /W
)

wavelength (nm)

 |n
2,casc

|
 n

2,Kerr

Fig. 3.3: the phase mismatch and nonlinearities as a function of the wavelength
in z-cut LN; the quadratic susceptibility used is d33 = 25 pm/V at 1064 nm [12]
and Miller scaling is used to estimate value at other wavelengths, n2,Kerr is
calculated with the two-band model [13, 14]; the Sellmeier equation for LN is
obtained from the handbook [6].

The phase mismatch ∆k is then fixed. The tunability on cascading is
achieved by inducing the quasi-phase-matching (QPM) on such a ferroelec-
tric crystal through the periodic poling on the optic axis. With QPM, the
phase mismatch is effectively tuned to:

∆keff = ∆k − 2π

Λ
(3.4)

where Λ indicates the QPM poling pitch. ∆keff is called the effective phase
mismatch.

However, it should be noticed that using QPM will impose a pre-factor, e.g.
2
π for the first order QPM, on the quadratic susceptibility, and therefore reduce
the cascaded quadratic nonlinearity. In order to compensate such a decrease
and even increase the nonlinearity, the phase mismatch should be tuned much
smaller with ∆keff <

4
π2 ∆k [15].

On the other hand, LN is reported to have quite strong Raman response [12],
fR > 50%, so the competing Kerr nonlinearity is n2,Kerr = (1− fR)n2,cubic, in
which the cubic susceptibility is χ̄(3)

e;eee. n2,Kerr is always characterized through
the Z-Scan measurement with the crystal two-photon absorption (TPA) phe-
nomenon in the crystal. It can also be formulated through a two-band model
describing the TPA [13].

Figure 3.3 shows both the phase mismatch and competing nonlinearities in
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a z-cut LN. The bulk LN, without QPM, is found naturally suitable as stronger
self-defocusing cascaded quadratic nonlinearity is produced than the material
Kerr nonlinearity over a broadband wavelength range, i.e. |n2,casc| > n2,Kerr

within the range 990 ∼ 3750 nm, see Fig. 3.3(b). Scaled in the phase mismatch
parameter, the victory of the cascaded nonlinearity means that the phase mis-
match is below an upper threshold ∆kc which lies behind the equation that
n2,casc(∆k = ∆kc) + n2,Kerr = 0, see the red line in Fig. 3.3(a). Meanwhile,
the cascading phase matching condition is also checked, which draws a lower
threshold ∆ksr for the phase mismatch, implying that phase matching is sup-
posed to be found with:

∆kcasc,sr(Ω = ωc − 2ω1) = 0 (3.5)

which leads to a resonant cascaded response and ωc is the resonance frequency.
The resonance will cause oscillations in pulse temporal profile and therefore
degrade the CQSC.

Therefore, the condition for non-resonant and high-quality CQSC can be
concluded as [7]:

∆ksr < ∆k < ∆kc (3.6)

The bulk LN naturally fulfills such a condition so it is an excellent candidate.
When using QPM, ∆kc is getting much smaller, but there is still space between
two thresholds so that ∆keff can be tuned in between to accomplish the CQSC.

It is also relevant that the normal dispersion of the “e” wave in z-cut LN
stops at around 1920 nm. Therefore, the operational wavelength range for the
CQSC in LN is (990 ∼ 1920 nm) covering the whole communication band.

Figure 3.4 shows the CQSC in a 5-mm long z-cut LN. The pump wavelength
is at 1300 nm. FWHM of the pump laser pulse is 50 fs, the pulse peak intensity
is up to 200 GW/cm2, the soliton number is around 2.8. The simulation is also
done by the NWEF model.

Analogous to the case in BBO, this time, CQSC gives single-cycle pulse
generation after the propagation of 1.5 mm (Fig. 3.4(a,b)) and the spectrum
is extremely broadened over octaves (Fig. 3.4(c,d)). Since both the FW and
SH are “e” waves and share the same polarization direction, the SH actually
helps raise the blue side of such a supercontinuum. DW generation can still be
observed, which raises the red side of the spectrum.
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Fig. 3.4: CQSC in z-cut LN; Iin,1 = 200 GW/cm2, FWHM = 50 fs, pump
wavelength is 1300 nm, fR = 70, the Raman response function is from the pa-
per, soliton number Neff ≈ 2.8; (a) pulse temporal evolution with the dashed
line marking the compression position; (b) the electric-field (E-field) of the
pulsed laser at the compression position; (c) spectra of e-light at input, com-
pression and output positions; (d) spectral evolution of e-light.

The differences are: 1) the strong Raman fraction in the LN causes mod-
ulation instability on the pulse and results in pulse split phenomenon, called
the Raman fission effects. With the soliton number large than unity, the pulse
after the compression position is split into 3 branches; 2) the pulse spectrum
is mainly red-shifted instead of the blue shift in the BBO case, and the pulse
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temporal delay is also changed to the opposite direction with the GV getting
increased. Meanwhile, the DW is blue shifted with the FW being red-shifted,
following the phase matching condition; 3) the interaction length in the LN is
much shorter as both GVD and the quadratic susceptibility are much larger
than the BBO.

Fig. 3.5: CQSC in z-cut periodic poling LN; QPM pitch is 28 µm; pump pulse
are the same to Fig. 3.4; soliton number Neff ≈ 1.6; (a) pulse temporal evolu-
tion with the dashed line marking the compression position; (b) the electric-field
(E-field) of the pulsed laser at the compression position; (c) spectral evolution
of e-light.

Pulse propagation in LN with a QPM structure is also investigated, see Fig.
3.5. The QPM pitch is 28 µm with which the phase mismatch is tuned from
the original value ∆k = 501 mm−1 to ∆keff = 277 mm−1, but it still can not
compensate the decrease on the quadratic susceptibility. Therefore, with the
same pump laser pulse, the cascaded quadratic nonlinearity is reduced and the
soliton number in this case is around 1.6.

With a reduced soliton number, the pulse compression as well as the spectral
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broadening are both degraded and longer propagation distance is required to
meet the compression position. On the other hand, ∆keff is actually below
the lower threshold which is ∆ksr = 283 mm−1, which then gives rise to extra
resonance in the spectrum because of the cascading phase matching. The pulse
temporal profile is significantly degraded by the impact of resonance induced
strong oscillations. When the phase mismatch is located in such a resonant
area, resonance frequencies can be predicted by solving the phase matching
equation, see Fig. 3.6.

Fig. 3.6: calculated and numerically labeled resonance frequencies as a function
of effective phase mismatch or QPM pitch, with the pump pulsed laser at
1560 nm

3.4 CQSC in Lithium Thioindate (LIS) Crystal

The scenario of CQSC also works in mid-IR, provided that 1) the quadratic
nonlinear materials, crystals or semiconductors, have decent quadratic non-
linearity in mid-IR that could produce strong and self-defocusing cascaded
nonlinearity; 2)the normal dispersion range of the material extends into the
mid-IR. Novel crystals have been investigated and possible candidates are con-
cluded in the paper [1]. Crystal LIS is listed as one of them, in which the
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Chapter 3. CQSC in Quadratic Nonlinear Bulk Crystals

cascaded quadratic nonlinearity could counterbalance the Kerr nonlinearity
within the mid-IR (1.7 ∼ 8.8 µm), when being z-cut and configured for the in-
teraction (e; ee), see Fig. 3.7. Quadratic and cubic susceptibilities involved are
d33 = χ̄

(2)
z;zz and χ̄

(3)
z;zzz. Meanwhile, the normal dispersion in the crystal extends

to 3.5 µm, making the CQSC possible at important mid-IR wavelengths such as
at 2 µm targeting the thulium based lasers and at 3 µm for the Er:YAG based
lasers. LIS is also ferroelectric, so the QPM can be used to gift the tunability
on the cascading.
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Fig. 3.7: the phase mismatch and nonlinearities as a function of the wavelength
in LIS cut for the interaction (e; ee); quadratic and cubic susceptibilities used
are d33 = χ̄

(2)
z;zz/2 = 15.6 (pm/V), χ̄(3)

z;zzz = 4444 (pm2/V2). fR = 20%. The
Sellmeier function of the birefringence of BBO is obtained from the handbook
[6].

Figure 3.8 shows the CQSC in LIS. The pump pulsed laser is at wavelength
3000 nm. The FWHM of the pulse is 150 fs in accordance to some commercial
laser systems, the pulse peak intensity is 300 GW/cm2. The soliton number
is estimated to be 15.8. Single cycle pulse generation with clean profile is
once more accomplished by the CQSC. During the spectral broadening, espe-
cially the first stage from input position to the compression position, the FW
spectrum is quite symmetric, no blue or red shift. This is understood that the
cascading induced blue-shift regime is balanced by the material Raman induced
red shift. Correspondingly, the pulse temporal profile is symmetric as well, and
the self-steepening induced shock front is well suppressed. Far in the mid-IR
(5.8 µm) find we the DW generation, which is broadband with the generation
efficiency around 5%.
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Fig. 3.8: CQSC in LIS with the interaction (e; ee); Iin,1 = 300 GW/cm2,
FWHM = 150 fs, pump wavelength is 3000 nm, fR = 20, the Raman response
function is from [16], soliton number Neff ≈ 15.8; (a) pulse temporal evolution
with the dashed line marking the compression position; (b) the electric-field
(E-field) of the pulsed laser at the compression position; (c) spectra of e-light
at input, compression and output positions; (d) spectral evolution of e-light.

3.5 Conclusion

As a conclusion, in this chapter, we investigated CQSC in three quadratic non-
linear bulk materials, i.e. BBO, LN and LIS. CQSC can be achieved through
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different types of configurations of quadratic interactions, but all concentrat-
ing on exploiting the largest quadratic nonlinear susceptibilities so that strong
cascaded quadratic nonlinearities can be produced. In all three crystals, the
material Kerr nonlinearity is counterbalanced by the cascaded quadratic nonlin-
earity and the overall self-defocusing nonlinearity is produced, which, combined
with normal dispersion, could support the CQSC.

The cascaded quadratic nonlinearity is also tunable by tuning the phase
mismatch parameter, which can be achieved by: 1) in the configuration for
critical interactions, tuning the angle of incident beam with respect to the
optic axis to change the phase (the refractive index); 2) in ferroelectric crystals,
employing QPM technology to periodically poling the optic axis and induce
adjustment on the phase mismatch. It should be noted that using QPM will
narrow the space for tuning the phase mismatch, as QPM induces a pre-factor
on the quadratic susceptibility which reduces the upper threshold of the phase
mismatch, namely decrease the cascaded nonlinearity.

The tunability of the cascading not only reflects on changing the amplitude
of the SPM effects of the self-defocusing nonlinearity, but also indicates the
tuning on the cascading induced self-steepening effects that gives rise to pulse
shock front as well as frequency shift. Such a frequency shift regime will then
add to or suppress the material intrinsic frequency regime such as the Raman
induced spectral red shift.

As commonly known near-IR crystals, BBO and LN support CQSC mainly
in near-IR covering the communication band. LIS is investigated as a novel
mid-IR crystal, which could find CQSC for mid-IR wavelengths such as 2 µm

and 3 µm. With CQSC, the generation of high intensity and few-cycle (or even
single-cycle) laser pulses are always promised, and correspondingly, the pulse
spectrum is extremely broadened spanning more than one octaves, namely the
supercontinuum generation. With the perturbation of high order dispersion,
DW generations are observed with energy converted further to longer wave-
lengths.

The NWEF model is proved to be generalized as all possible harmonic
generations and frequency mixing processes are presented by the simulation.
On the other hand, higher order harmonics other than the FW and the SH did
not impact the solitary pulse formation and compression, implying that the
scenario of the CQSC is quite solid in principle.
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Chapter 4. CQSC in Quadratic Nonlinear Waveguides

4.1 Introduction

In this chapter, cascaded quadratic soliton compressions (CQSC) in quadratic
nonlinear waveguides are studied. Quadratic (nonlinear) waveguides are well
known as they not only inherit the nonlinear properties from the material,
but also have optical waveguide structures that could provide guidance and
confinement on the laser light beam. Basically, the waveguide is formed with
the refractive index (RI) changed along a propagation channel in the material
against the surrounding cladding (e.g. air or substrate materials), by means
of physical or chemical methods, so that light is guided and propagated inside
the channel with the principle of total-internal reflection. For the CQSC, with
good confinement provided by the waveguide on the pulsed laser beam, the
efficiency of nonlinear interactions will be promoted and effects of light spatial
diffractions be suppressed. Therefore, laser pulses with nano-joule (nJ) energy
and high repetition rate can be operated, which are complementary solutions
to CQSCs in bulk materials that operate high-energy, large-beam-size pulsed
lasers.

On the other hand, the dispersion engineering is possible through the design
on the waveguide structure (size, profile and RI), which will give tunability of
the dispersive effect of the waveguide on laser pulses. Especially, the waveg-
uide mode is enabled to have multiple zero dispersion wavelengths (ZDWs),
which could lead to novel nonlinear phenomena such as the soliton spectral
tunneling (SST) effect. With a more extreme dispersion engineering, the nor-
mal dispersion range can be largely extended towards long wavelengths beyond
the material ZDW and even an all-normal dispersion profile can be achieved,
which could extend the CQSC into the near-infrared range (near-IR) and mid-
infrared range (mid-IR), since the overall self-defocusing nonlinearity is always
broadband (chapter 3) far beyond the material ZDW.

The quadratic waveguides that will be investigated in this chapter are
mainly based on the lithium niobate (LN) crystal, not only because LN, as a
bulk crystal, has shown great potentials in the CQSC (chapter 3), but also be-
cause LN waveguides are in fact very common devices today, except for CQSC
applications. The chapter is mainly divided into two parts. First, in section
4.2, LN waveguides with small RI change are investigated, which is exactly the
case in commonly used LN waveguides. The proof of concept of CQSC in such
waveguides could extensively extend the applications of LN waveguides, and
meanwhile, with mature fabrication technologies behind the LN waveguide, the
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4.2. LN Waveguides with Small Refractive Index (RI) Change

concept will easily be converted to reality. In the other part, section 4.3, the
vision is shifted to waveguides with large RI change where the dispersion engi-
neering will largely make effects. The GVD profile of the waveguide mode will
then be flexibly tailored to 1) have multiple ZDWs with which the SST effect
will be observed and discussed, and 2) show all-normal dispersion within the
waveguide guidance band and extended CQSCs in mid-IR will be investigated.

4.2 LN Waveguides with Small Refractive Index
(RI) Change

As one of the most commonly used quadratic waveguides, LN waveguides are
usually fabricated by means of annealed proton exchange (APE) or titanium
(Ti) in-diffusion, which chemically diffuses dopant into the crystal and forms
slight refractive index (RI) change (� 10%) along a strip channel where light is
guided. Such waveguides have been widely used in integrated waveguide optics
and optical communications for frequency conversions [1], and QPM is always
employed to achieve the phase matching in nonlinear interactions. Meanwhile,
they are also being studied for the cascaded response [2, 3], e.g. studying
the contribution of the cascaded quadratic nonlinearity in a supercontinuum
generation (SCG) [4] or a Kerr frequency comb generation [5], paving a way to
the accomplishment of the CQSC. From the perspective of theoretical analyse,
however, it is difficult to quantitatively characterize the waveguide modes as
well as the dispersion properties of these waveguides, as the waveguide profile
is quite uncertain with gradient RI change.

4.2.1 CQSC in Wafer Bonded LN Ridge Waveguides

In recent years, a novel type of LN waveguide is being developed, which is
fabricated by means of the wafer bonding [6]. For example, with surface ion
implantation, a LN wafer is directly bonded on a lithium tantalate (LT) sub-
strate and the whole structure is subsequently diced to form a ridge waveguide
profile, see Fig. 4.1. Compared to APE or Ti in-diffused waveguides, LN/LT
waveguides have a clear profile with step RI change so that they can be accu-
rately analysed.

This section presents that, with the quadratic susceptibility inherited from
the material, the LN/LT ridge waveguide could also produce a strong cas-
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Chapter 4. CQSC in Quadratic Nonlinear Waveguides

Fig. 4.1: Diagram of cascaded quadratic soliton compression in a LN ridge
waveguide; fundamental mode (TM00) distributions at different wavelengths
(1, 2 and 3 µm) are also shown, with structure marked as S-1; c axis is the
optic axis of the crystal, i.e. the crystallographic z -axis.

caded quadratic nonlinearity through a noncritical phase mismatched second
harmonic generation (SHG) process, with which the material Kerr nonlinearity
could be counterbalanced and an overall self-defocusing nonlinearity is pro-
duced. Meanwhile, with the small RI change in the waveguide, the dispersion
properties are kept close to the material as well. Therefore, the CQSC is accom-
plishable in the LN/LT waveguide just as it works in the bulk LN. Moreover,
QPM is no longer necessary as the phase mismatch inherently lies between
the two thresholds of the CQSC, which supports a dominant and non-resonant
cascaded nonlinearity.

First, the eigen-modes of the waveguide are calculated, including both mode
distributions Bj and propagation constants βj , by using the software COMSOL
Multiphysics. Examples of fundamental TM00 mode distributions at different
wavelengths are shown in Fig. 4.1. In Fig. 4.2(a) we show effective RIs of
extraordinary eigenmodes (with the electric field polarized along the crystal-
lographic z -axis). As guided modes, they should have the effective RI lying
between the substrate RI and the core RI. Since the LN core and the LT sub-
strate have small RI change, the confinement of the waveguide is quite weak
and the eigen-modes are restricted to a narrow strip of the effective RIs, which
results in two consequences: 1) the mode effective RIs and mode cutoff wave-
lengths will become sensitive to the waveguide (core) size; 2) the effective RI
profiles (especially for the fundamental TM00 mode) as well as the dispersion
properties remain close to the material profile as there is little room for varia-
tion.
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4.2. LN Waveguides with Small Refractive Index (RI) Change

Fig. 4.2: Dispersion properties of the LN ridge waveguide; (a) effective RIs of
eigen-modes, in the waveguide structure S-1; (b) fundamental mode effective
RIs of different waveguide structures; inserts in (a, b) show normalized effec-
tive RIs in which the material dispersion is removed; (c) GVD profiles of the
fundamental mode in different waveguide structures; detailed waveguide sizes
are shown as insert.

A normalized propagation constant is defined to help remove the material
dispersion and to better illustrate the eigenmodes in the waveguide [7]:

b = (n2
eff − n2

sub)/(n2
core − n2

sub) (4.1)

where neff , ncore and nsub are the mode effective RI, the LN core RI and the
LT substrate RI, respectively. Figure Fig. 4.2(b) shows that with a decreasing
core size the fundamental mode is strongly impacted and its cutoff wavelength
is shortened as the waveguide confinement is further reduced. Meanwhile, the
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GVD (β(2) = d2β/dω2) profiles tend to follow the material profile except for a
deflection around the cutoff wavelength, see Fig. 4.2(c), as there the effective
RI is approaching and turning into the substrate RI and a large waveguide
dispersion is produced. For structures S-1, S-2 and S-3, the fundamental mode
will have both normal and anomalous GVD regions, transiting at a single zero
dispersion wavelength (ZDW) which is close to the material ZDW around 1900
nm. Fundamental modes in structures S-4 and S-5 have very short cutoff
wavelengths so that they just have normal GVD regions.

We estimate the nonlinearities in the waveguide. The cascaded quadratic
nonlinearity is represented as the nonlinear coefficient [8]:

γcasc =
ω

c

n2,casc

Aeff,SHG
(4.2)

which is analogous to the material Kerr nonlinearity scaled as [14]:

γKerr =
ω

c

n2,Kerr

Aeff,SPM
(4.3)

where Aeff,SHG and Aeff,SPM are effective mode areas corresponding to the cas-
caded nonlinearity and the Kerr nonlinearity, respectively. It should be noted
that Aeff,SHG actually stems from the (cascaded phase mismatched) second har-
monic generation (SHG) process and therefore has a different definition to the
commonly known Aeff,SPM from a Kerr self-phase modulation (SPM) process.
A dispersive Aeff,SHG referring to the SHG within the TM00 mode is defined
as [8]:

Aeff,SHG(ω1) =
(
∫∫

dxdy|B̃TM00
(ω2)|2)(

∫∫
dxdy|B̃TM00

(ω1)|2)2

(
∫∫

dxdyB̃∗TM00
(ω2)B̃2

TM00
(ω1))2

(4.4)

where B̃TM00
is the eigen-mode distribution of the TM00 mode, ω1 and ω2

are angular frequencies of the fundamental wave (FW) and the second har-
monic (SH). Aeff,SHG as a function of the pump wavelength is illustrated in
Fig. 4.3(a), which is quite close to the Aeff,SPM referring to the Kerr SPM
process within the TM00 mode. Other effective mode areas stemming from
interactions among high-order modes (also phase mismatched) are much larger
than the two shown due to the orthogonality among different modes, and the
corresponding nonlinear factors γ are therefore largely reduced and negligible.

Compared to the definitions of nonlinear modal susceptibilities in chapter
2 (Eq.(2.41) and Eq.(2.45)), effective mode areas calculated here are actually
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the contributions of mode overlap to the susceptibilities while the material sus-
ceptibilities are abstracted out of the integral as they are considered constant,
i.e.:

Θ̄
(2)
j;α1α2

= χ̄(2)θ
(2)
j;α1α2

Θ̄
(3)
j;α1α2α3

= χ̄(3)θ
(3)
j;α1α2α3

(4.5)

where:

θ
(2)
j;α1α2

(ω1 + ω2)

=

∫∫
core

dxdyB̃∗j (x, y, ω1 + ω2)B̃α1
(x, y, ω1)B̃α2

(x, y, ω2) (4.6)

θ
(3)
j;α1α2α3

(ω1 + ω2 + ω3)

=

∫∫
core

dxdyB̃∗j (x, y,
∑

n
ωn)B̃α1

(x, y, ω1)B̃α2
(x, y, ω2)B̃α3

(x, y, ω3) (4.7)

and,

Aeff,SHG =
(
θ

(2)
TM00;TM00,TM00

)−2

Aeff,SPM =
(
θ

(3)
TM00;TM00,TM00,TM00

)−1
(4.8)

Figure Fig. 4.3(b) shows that the negative nonlinear cascading factor γcasc

for the TM00 mode is stronger than the Kerr nonlinear factor γKerr over a
broad wavelength span (1100 - 3000 nm). Such a broadband self-defocusing
nonlinearity is actually built up due to the large susceptibility d33 of the LN
material which gives rise to a dominant n2,casc. However, recall that such a
self-defocusing nonlinearity should work with the normal dispersion to create
solitary waves, so the window of operation is actually from 1100 nm to the ZDW
at 1900 nm. Within such a a “compression window” [10] the phase-mismatch
parameter is actually below the critical value ∆kc referring the balance between
the cascaded and the Kerr nonlinearity, see Fig. 4.3(c). Meanwhile, the phase
mismatch stands above the lower threshold ∆kth in the non-resonant area,
which means the cascaded response is broadband and fast decayed to support
few-cycle pulse generations with clean profiles.
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Fig. 4.3: Nonlinearities in the LN ridge waveguide with structure S-1; (a) effec-
tive mode area corresponding to the cascaded SHG process and Kerr SPM pro-
cess in the fundamental mode TM00 ; (b) the nonlinear factor of the cascaded
quadratic nonlinearity as well as the Kerr nonlinearity, a compression window is
shown from 1100 nm to 1900 nm in which a dominant self-defocusing nonlinear-
ity is achieved; (c) equivalently, the phase mismatch is below the critical value
∆kc marking the onset of a self-focusing nonlinearity, and it is non-resonant as
it stays above the nonlocal resonant area (marked area).

It is impressive that, unlike most LN waveguides using QPM to make the
phase matching, the presented LN ridge waveguide provides the phase mis-
match which inherently lies between the two thresholds just like the case in the
bulk LN. Therefore, the CQSC is naturally supported.

Summarizing, the overall nonlinearity is γeff = γcasc + γKerr. The nonlinear
length of the waveguide is then calculated as LN = |Pin · γeff |−1, where Pin is
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the peak power of the pump laser pulse. Furthermore, with the dispersion
length LD = T 2

in/|β(2)| (Tin indicates the pulse duration), the soliton number
Neff can be finally estimated as N2

eff = LD/LN.

Fig. 4.4: Numerical simulation of the CQSC in the LN ridge waveguide with
structure S-1, pumped at 1550 nm; the pump pulse has a FWHM of 50 fs,
P = 200 kW giving a pulse energy of 10 nJ; γcasc = −17.6 km−1W−1 and
γKerr = 9.9 km−1W−1, giving Neff ≈ 3.7; (a) pulse spectrum at the input
and the output; (b) pulse spectral evolution (in dB scale); (c) pulse temporal
evolution with the self-compression position marked by the white dashed line
(scaled to the peak power of the input pulse); (d) physical real-valued electric
field amplitude of the self-compressed pulse.

Then, the CQSC in the LN ridge waveguide is numerically modeled by the
NWEF. As is discussed in chapter 2, in waveguides, the NWEF is actually
governing the propagation dynamics of the pulse electric field amplitude while
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the pulse transverse distribution is described in form of waveguide eigenmode
distributions. Figure 4.4 shows the CQSC at 1550 nm where the total self-
defocusing nonlinearity γeff is maximum. The pump laser pulse has 10-nJ
energy, 50-fs full width at half maximum (FWHM) and it is coupled into the
TM00 mode. During the propagation, the pulse spectrum evolves with SPM-
induced spectral broadening. Meanwhile, a soliton-induced dispersive wave
(DW) is generated in the opposite GVD range at around 3000 nm due to the
perturbation of higher-order dispersion, see Fig. 4.4(a,b). Combined with
the normal dispersion, the ultra-broad spectrum leads to the formation of a
single-cycle self-compressed solitary pulse. In Fig. 4.4(c), the pulse profile is
significantly compressed while its peak power is enhanced over 6 times. After
the compression, the pulse is split into several branches due to the Raman fission
effects. Fig. 4.4(d) shows the electric field amplitude of the the compressed
pulse, with clean and single-cycle profile. Actually, at other wavelengths and
in the other structures, S2 to S5, the scenario of the CQSC also works only if
the pump pulsed laser is within the compression window as illustrated above.

Fig. 4.5: Supercontinuum generation in the waveguide S-1 pumped at 1550
nm; the pump pulse has 30-nJ energy, 150-fs FWHM; the soliton order is
N = 11.1; (a) pulse supercontinuum spectrum at the input and the output
(the red dashed line marks the -10 dB range of the output spectrum, the green
dashed line marks the -20 dB range); (b) pulse spectral evolution.

70



4.2. LN Waveguides with Small Refractive Index (RI) Change

Aside from the pulse compression, such a waveguide can also be applied
for the SCG. By launching a longer pulse with more energy, namely 150-fs
FWHM and 30-nJ energy, the soliton number is increased correspondingly to
11.10 and a supercontinuum spectrum covering 1300 ∼ 3200 nm with 1.3 octave
bandwidth (at -10 dB) is accomplished, as shown in Fig. 4.5. As opposed
to SCG in photonic crystal fibers [11], here the combination of self-defocusing
nonlinearities and solitary pulse formation in the normal dispersion regime leads
to the blue edge of the spectrum being supported by the cascading induced pulse
self-steepening, while the red-edge formation occurs due to the Raman induced
pulse splitting in the nonlinear regime, and soliton-induced DW generation in
the linear long-wavelength regime in the anomalous dispersion range.

Beyond above investigations regarding the LN/LT waveguide, a general
concept is concluded as: CQSC can be fully transplanted from the bulk LN
to a LN waveguide when the waveguide has small RI change that both the
dispersion and cascaded quadratic nonlinearity are kept similar to the material:
the ZDW is quite close and the operational wavelength range of the CQSC is
similar. The difference is that the pulse energy of the pump laser is much
reduced thanks to the tight confinement or small effective mode areas provided
by the waveguide.

Therefore, with small RI changes, CQSCs in common APE or Ti in-diffused
LN waveguides can also be accomplished.

4.2.2 Experiments of CQSC in APE LN Waveguides

In this section, the experimental investigation of CQSC in QPM-free APE LN
waveguides is presented. Pulse spectral broadening induced by the SPM of
the self-defocusing nonlinearity is observed and the octave-spanning supercon-
tinuum generation at communication band is accomplished. Detailed pulse
spectral evolutions are also studied, which reveals the physics of the cascading-
induced self-defocusing regime.

The waveguide chip in following experiments is provided by the Institute of
Applied Optics, Friedrich Schiller University Jena, as a corporation. Waveg-
uides are fabricated by APE on the surface of a congruent LN (CLN) they are
all z-cut for type-0 interactions. The waveguide buried core has a depth of
4.1 µm and 4 types of width, i.e. 6 µm, 7 µm, 8 µm and 9 µm. The RI change
in such a waveguide is as small as ∆n = 0.03, at 1550 nm. Therefore, the
waveguide inherits strong and self-defocusing cascaded nonlinearity from the
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Fig. 4.6: Experiment set up with laser pulses spatially coupled in and out the
APE LN waveguide through lenses.

LN material. The small RI change also implies that the waveguide is almost
single-mode in near-infrared. The length of the waveguide is L = 5 mm.

The experiment set up is shown in Fig. 4.6. The pump pulse is generated
from a commercial Ti:sapphire regenerative amplifier and a travelling wave op-
tical parametric amplifier (TOPAs). The pulse has full width at half maximum
τFWHM = 50 fs and the wavelength is tunable from 1250 nm to 1650 nm. The
pulse repetition rate frep is 1 kHz. The pump beam is spatially coupled into the
waveguide by using an objective lens (Nikon ×20/0.5) and the output beam is
collected by using an aspheric lens (Thorlab, f = 8.0 mm, NA = 0.5). We mea-
sure that the coupling loss is around 10 dB, which partially arises from the inter-
face reflection on lenses as well as on waveguide ends, and from the beam profile
mismatch between the input beam and the waveguide eigen mode distribution
(i.e. the fundamental TM00 mode). The output pulse spectrum is measured by
a spectrometer (OceanOptics, NIRQuest512-2.5). Pump power and the output
power are detected by a power meter so that they are average power Pavg val-
ues. The pulse peak power Ppeak is estimated as Ppeak = Pavg/(τFWHM · frep)

and therefore the pulse energy is E = Ppeak · τFWHM.

Figure 4.7 shows the robust supercontinuum generations with pump sources
at different wavelengths. Tuned from 1250 nm to 1500 nm, each pump could
evoke a supercontinuum. These spectra are all detected when the output power
has Pavg,out ≈ 10 µW, corresponding to a pulse energy of 10 nJ. The spectral
broadening could easily exceed 600 nm, when taking the 20-dB measurement,
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and at 30-dB level, the bandwidth is more than one octave from 1 ∼ 2 µm.
Remember that the waveguide is as compact as 5-mm long, such a spectral
broadening is of much higher efficiency compared to a highly nonlinear optical
fiber.
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Fig. 4.7: Supercontinuum generations with pump at different wavelengths. All
supercontinuum spectra are detected with the output power Pavg,out ≈ 10 µW.
The waveguide core width is 9 µm. Each energy spectrum data is normalized
to the peak value and a 30-dB offset is inserted between two spectra in the
stack.

On the other hand, It is noticed that all the spectral broadening here shows
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asymmetry with respect to the pump wavelength and the spectrum is always
significantly extended at the red side towards long wavelengths. This is because
the LN has a large fraction fR > 50% [12] of vibrational Raman response in the
material cubic nonlinearity that gives rise to pulse spectral red shifting during
the propagation [13].
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Fig. 4.8: Pulse spectral broadening with an increase of the incident pump
power. The pump is at 1300 nm, the waveguide core width is 9 µm. All 4
spectra are normalized to the peak value of the most powerful spectrum (i.e.
the pink one with Pavg,out = 10.5 µW) and between two spectra there is a 20-dB
offset

The pulse spectral broadening is understood as the result of the SPM effects,
in which the bandwidth is formulated as [14]:

∆ω ∝ γeffPpeakL

τFWHM
(4.9)

where γeff = γcasc + γKerr is the effective nonlinear fractor in the waveguide that
comes from the competing between the cascaded self-defocusing nonlinearity
γcasc ∝ − d2eff

∆k·Aeff,SHG
and material intrinsic Kerr nonlinearity γKerr ∝ c33

Aeff,SPM
,

see Chapter 4.2.1. The expression actually contains a premise that the pulse
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profile does’t change much during the spectral broadening, namely the pulse
dispersion length LD and the nonlinear length LN = (γeffPpeak)−1 have the
relationship: LD � LN > L. deff and c33 are the quadratic and cubic nonlin-
ear susceptibilities. ∆k is the SHG phase mismatch parameter. Aeff,SHG and
Aeff,SPM are effective mode areas corresponding to quadratic SHG and cubic
SPM processes, and usually have Aeff,SHG ≈ Aeff,SPM.

Fig. 4.9: pulse spectral evolution with respect to the average pump power, in
waveguides with different core width and with different pump wavelengths.
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Therefore, with an increase of the power, the spectrum bandwidth is ex-
pected to increase as well. Figure 4.8 demonstrates such a trend, but quanti-
tatively, the bandwidth is not in proportional to the power. One main reason
is that when the power is increased, the nonlinearity length will be short-
ened and have LN < L, which means the pulse profile has been significantly
changed. Especially, when the self-defocusing nonlinearity meets the normal
GVD, the pump pulse will propagate in solitons and temporally have soliton
self-compressions. Besides, other reasons include that: 1) γeff has a spectral
intensity distribution rather than being a constant, which means such spectral
broadening efficiency really varies at different wavelengths; and 2) pulse will
experience Raman-induced spectral shifting. All these factors will impact the
pulse spectral broadening as well as the supercontinuum generation.

Detailed pulse spectral evolutions with respect to the pump power in dif-
ferent waveguides are shown in Fig. 4.9. It is noted that with a decrease of the
waveguide core width, the pulse spectral broadening is degraded, which implies
a reduction on the parameter γeff . Intuitively, the decrease on the core size will
result in smaller Aeff,SHG and Aeff,SPM and therefore should have increased the
nonlinear factor. But the truth is, the SHG phase mismatch parameter ∆k is
also increased (the phase mismatch parameter ∆β = β2 − 2β1, where the prop-
agation constant of the FW β1 is increased more than that of the SH β2 [7]),
which decreases the cascaded nonlinearity γcasc and therefore decreases the
overall nonlinearity. On the other hand, when the waveguide is pumped at a
longer wavelength, the spectral broadening is weakened because areas Aeff,SHG

and Aeff,SPM are much increased when getting close to the cutoff boundary.

Numerical simulations are also studied regarding such APE waveguides. To
simplify the model, the waveguide core is considered to have a rectangular
shape with step index change to the CLN substrate. Then, we follow the steps
as shown in chapter 4.2.1 to: 1) calculate the waveguide eigen-modes, including
the mode effective RIs and the mode distribution; 2) estimate both cascaded
and Kerr nonlinearities in the waveguide, including the calculation of effective
mode areas Aeff,SHG and Aeff,SPM; and 3) investigate the pulse propagation dy-
namics and ultra-fast nonlinear interactions by solving the generalized NWEF.

Figure 4.10 shows the simulation of the supercontinuum generation with a
1300-nm pump. The pulse energy is Pavg = 6 µW. It is relevant to mention
that the waveguide mode has normal GVD in the guidance band until 2 µm.
The simulation shows good agreement to the experiment on the output su-
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percontinuum. Moreover, pulse temporal evolution is estimated as well, which
reflects the soliton pulse propagation and the soliton self-compression effects.
With material Raman response, soliton fission effects [15] is also observed. In
our experiments right now, such temporal profiles can hardly be character-
ized by self-referenced detections e.g. an auto-correlator as the average output
power is too low. Strong referenced detection as what is described in [16] may
be a solution to the problem and we will figure it out in the future.

On the other hand, the pump pulse duration is also sensitive as the waveg-
uide is as short as 5 mm. When launching longer pulses, e.g. on 100-fs-level,
the waveguide chip should be much longer due to the increase of the dispersion
length, which actually implies that a fiber laser, with mega-Hz repetition rate
but 100-fs pulse duration, is not suitable for such a short waveguide.

Fig. 4.10: Numerical simulation of supercontinuum generation at 1300
nm, the pump pulse has τFWHM = 50 fs, Pavg = 6 µW, E = 6 nJ,
LD(λ = 1300nm) = 4.63 mm, LN = 0.97 mm, γcasc = −47.4 (km ·W)−1, γKerr

= 38.8 (km ·W)−1. fR = 55%, material dispersion of the substrate CLN is
also taken into consideration; (a) supercontinuum generation at the output;
(b) pulse spectral evolution during the propagation; inset in (a) pulse temporal
evolution during the propagation.
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4.3 Wafer Bonded LN Ridges Waveguides with
Large RI Change

As a physical method, wafer bonding is robust. Besides bonding materials of
similar properties, e.g. the LN/LT wafer bonding, recent investigations have
emerged on the bonding among different classes of materials, especially bonding
crystals with glasses, making e.g. LN/silica waveguides [17], chalcogenide/s-
apphire waveguides [18], etc., which actually opens the access to varieties of
materials in the fabrication of quadratic nonlinear waveguides.

Here we investigate a LN/glass waveguide with similar ridge profile and
step RI change to the LN/LT waveguide, but using a substrate material with
a substantially lower RI than LN. With this design, 1) the waveguide guidance
band is extensively extended towards long wavelengths entering the mid-IR,
even with a tiny core size making the sub-wavelength waveguide; 2) the dis-
persion engineering is enabled, with which an all-normal dispersion profile of
a waveguide mode can be achieved, as a result of the strong waveguide dis-
persion produced under the large RI change. Then, the full bandwidth of the
cascading dominated self-defocusing nonlinearity can be used for the CQSC,
despite the material ZDW which usually sets a limitation on the operational
wavelength range in a bulk LN or in a LN waveguide with small RI change.
Meanwhile, the pulse compression dynamics under the all-normal dispersion is
purely nonlinear, which means linear interactions such as dispersive wave (DW)
generations are not occurring, which otherwise are always accompanied with
soliton formation. The waveguide with large RI change also allows for much
tighter confinement compared to previous studies, implying that pump pulsed
lasers with sub-nJ energy can lead to few-cycle solitary pulse formation. On
the other hand, the waveguide does require imposing a moderate QPM pitch
to overcome the competing self-focusing Kerr nonlinearity, in contrast to the
LN/LT waveguide design.

In the following of this section, we investigate the mode profiles and dis-
persion landscape of such an LN waveguide design with a large RI change. We
then numerically investigate the self-defocusing soliton formation in the near-
and mid-IR beyond the material ZDW, under the waveguide-induced all-normal
dispersion and the cascading dominated self-defocusing nonlinearity. We also
investigate a design where a small anomalous dispersion region is sandwiched
between two normal dispersion regions, and show few-cycle DW formation in
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Fig. 4.11: waveguide structure and mode field distributions of eigen-modes, at
different wavelengths; waveguide has wd = 4 µm, dp = 2 µm.

the mid-IR seeded by a near-IR soliton.

The waveguide structure is shown in Fig. 4.11. There are varieties of can-
didates for the substrate material which ought to have a much lower RI than
LN and good transparency in the near- and mid-IR, e.g. the potassium titanyl
phosphate (KTP), the rubidium titanyl phosphate (RTP), the lithium iodate
(LI), etc. in the group of crystals, or the fused silica, the fused germania,
the ZBLAN, etc. in the group of glasses [19]. Here, a glass with broadband
infrared transmission, specifically the Schott IRG-2 germanate glass (trans-
parency range 0.36 ∼ 4.6µm), is chosen as the waveguide substrate, see [19] for
material details. The LN core layer is assumed to be bonded on the substrate
and then the whole structure can be diced to have a standard ridge profile. The
RI change in such a waveguide is as large as ∆n ≈ 0.3. Aiming at mid-IR pulse
operations and making use of the strong waveguide dispersion, the waveguide
size is designed to be around sub-wavelength. Eigenmodes, including both
the mode propagation constants and transverse distributions, are calculated
by using Comsol Multiphiscs. Extraordinary modes (with the polarization di-
rection along the optic c-axis, marked as TM modes) at different wavelengths
are shown in Fig. 4.11, while mode effective RIs are shown in Fig. 4.12(a).
The guidance cutoff wavelength of such a waveguide can be easily extended
to the mid-IR due the large RI change. Since the mode RIs are going down
from the core RI to the substrate RI towards longer wavelengths, the large RI
change implies a large SHG phase mismatch parameter, explaining why QPM
is needed to ensure the strong cascading. Basically, waveguide dispersion al-
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Fig. 4.12: waveguide eigen-modes and dispersion tailored by tuning the core
size; (a) mode effective RIs in the waveguide with wd = 4 µm, dp = 2 µm; (b)
variation of TM00 mode effective RI profiles under different core sizes and (c,
d) variation of GVD profiles with different core sizes.

ways has an opposite trend to the material one, and with strong waveguide
dispersion, the waveguide mode shows a typical “U”-shape GVD trend and is
enabled to have normal dispersion at long wavelengths. Similar trends can also
be found in step-indexed photonic crystals fibers (PCFs), which also have a
large RI change [20]. Moreover, by tuning the core size (width and depth), the
mode effective RI will be shifted (Fig. 4.12(b)) and the mode GVD profile is
consequently tailored. When tuning the core width but fixing the height, the
mode GVD profile is tuned mainly in the amplitude (see Fig. 4.12(c)) while
the “U”-shape is almost preserved, with the bottom fixed at around 1.58 µm

which is co-determined by the material GVD of both the core and the sub-
strate. When enlarging the core size and keeping the aspect ratio, the GVD
profile is tuned in both the amplitude and the trend (see Fig. 4.12(d)) as the
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waveguide confinement is further enhanced and the waveguide-induced normal
dispersion is shifted towards longer wavelengths. It is also noticed that, to
some extent, an all-normal dispersion profile can be achieved while the cutoff
wavelength remains over 3 µm.

On the other hand, the transmission loss is always concerned when taking
about a waveguide. Generally, the transmission loss mainly includes: 1) the
insertion loss when light is coupled into and out from the waveguide (e.g. light
reflection on interfaces, the mode field mismatch, etc.); 2) the material loss;
and 3) the waveguide loss due to the uncertainty of the structure (e.g. the
core is non-uniform along the propagation axis). Besides the material and
waveguide losses, the common feeling that a small dimension waveguide is
"lossy" is mainly due to the intolerable insertion loss. With a sub-wavelength
structure, the waveguide eigenmodes, no matter the fundamental mode or high-
order modes, turn to have strong evanescent waves and therefore the mode
transverse distribution is seriously mismatched to a normal incident laser beam
that has a Gaussian distribution. But the insertion loss only occurs at the
frontend of the waveguide and will not impact the whole pulse propagation
dynamics. In the following text, the value of the pump pulse energy or the
pulse peak power that we will mention actually refers to the effective pulse
energy that is launched into the waveguide, with the insertion loss already been
eliminated. The material loss can be ignored due to the good transparency of
the material within the guidance band. Also, the waveguide loss is ignorable
as the wafer bonding and the dicing technologies are supposed to give high
certainty of the structure.

As for the nonlinearity, the mode overlap integrals Θ̄
(2)
j;TM00TM00

(2ω) and

Θ̄
(3)
TM00;TM00α2α2

(ω) are calculated in Fig. 4.13(a,b), which correspond to the
SHG process and the Kerr SPM or cross-phase modulation (XPM) effects,
respectively. The material susceptibilities involved are χ̄(2)

e;ee and χ̄(3)
e;eee.

It is noticed that quadratic and cubic processes within the fundamental
TM00 mode always have the highest integral value, namely the highest sus-
ceptibility, compared to processes among different modes in which the mode
orthogonality leads to the decrease of the integral value. Moreover,towards
longer wavelengths, the integral value is also decreased due to the reduction of
the waveguide confinement.

Thus, cascaded quadratic nonlinearities produced by phase mismatched
SHGs, between the TM00 FW and SHs among all modes, are estimated as:
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γcasc,j = ω
c ñ2,casc,j · (θ(2)

j;TM00TM00
)2, where ñ2,casc,j ∝ −(χ̄

(2)
e;ee)2/∆kj is the cas-

caded nonlinear RI, ∆kj = kj(2ω)− 2kTM00
(ω) is the phase mismatch param-

eter and kj is the mode propagation constant. The negative sign indicates
a self-defocusing nonlinearity under the positive ∆kj. γcasc,TM00

contributes
most to the total cascaded quadratic nonlinearity, since θ(2)

TM00;TM00TM00
is the

largest among other SHGs. Analogous, SPM contributes most to the Kerr
nonlinearity, which is. γKerr,TM00

= ω
c ñ2,Kerr · θ(3)

TM00;TM00TM00TM00
.

Fig. 4.13: (a) mode overlap integrals in SHG processes; (b) mode overlap in-
tegrals in self/cross phase modulations; (c) phase mismatch limits for overall
self-defocusing nonlinearity and for clean soliton compressions; (d) nonlinear
factors of both the cascaded quadratic nonlinearity and the Kerr nonlinearity.
Waveguide has wd = 4 µm, dp = 2 µm.
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Moreover, tuning the phase mismatch by QPM, the cascaded quadratic
nonlinearity can be further enhanced. The goal is to reduce the phase mismatch
to increase ñ2,casc,TM00 , but keep the effective phase mismatch nonzero and
positive to ensure a self-defocusing cascaded nonlinearity.

The upper threshold ∆kc is defined from γcasc,TM00 + γKerr,TM00 = 0. The
lower threshold ∆ksr is also defined with both FW and SH being set in the
TM00 mode.

Figure 4.13(c) shows both ∆kc and ∆ksr. With a QPM pitch Λ = 8.5 µm,
the phase mismatch is tuned to lie between the two limits. Correspond-
ingly, γcasc,TM00

and γKerr,TM00
are shown in Fig. 4.13(d). An overall self-

defocusing nonlinearity over a wide wavelength span 1.3 ∼ 3.2 µm is produced,
with |γcasc,TM00 | > γKerr,TM00 . The phase-mismatch parameters of cascaded
quadratic nonlinearities of higher-order modes, γcasc,j, are also tuned by QPM
and may even find phase matching at short wavelengths, which will be discussed
later in the paper. In the near- and mid-IR, these higher-order mode nonlin-
ear factors are actually effectively self-focusing because the chosen QPM pitch
makes the corresponding phase-mismatch parameters negative, but their contri-
butions (strength) turns out to be quite weak compared to either |γcasc,TM00 |
or γKerr,TM00 . Therefore, within the compression window illustrated in Fig.
4.13(d) and recalling the all-normal dispersion profile provided in the waveg-
uide, soliton formation in near- and mid-IR is accessible.

γeff = γcasc,TM00
+ γKerr,TM00

again indicates the overall nonlinearity result-
ing from the competing. The nonlinear length is LN,eff = (Pin,TM00

γeff)−1,
where Pin,TM00

is the peak power of the pump laser pulse in the TM00 mode.
The dispersion length is LD = T 2

in,TM00
/|k(2)

TM00
|, where Tin,TM00 is the pulse

duration. Once more, the soliton number is estimated as: Neff =
√
LD/LN,eff .

The CQSC is then simulated by the NWEF model. In the LN waveguide
with multiple modes, a group of NWEFs is used, each of them corresponds to
a single mode and governs the electric field amplitude Ãj, while the transverse
components B̃j are degenerated through integrals. First, we show the self-
defocusing soliton compression at 2 µm, see Fig. 4.14. The waveguide has
wd = 4 µm, dp = 2 µm and provides all-normal dispersion within the guiding
band. The QPM with pitch size Λ = 8.5 µm is applied so as to ensure a strong
cascaded nonlinearity. The pump pulse, in the TM00 mode, has a full width
at half maximum (FWHM) of 100 fs, similar to the thulium-fiber-based laser
system used in [21]. The pulse peak power is 6 kW and therefore the pulse
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energy is around 0.6 nJ, leading to an effective soliton order Neff ≈ 3.

Fig. 4.14: numerical simulation of self-defocusing soliton com-
pression at 2 µm in the LN waveguide; wd = 4 µm, dp = 2 µm,
Λ = 8.5 µm, γcasc,TM00

= −0.169 m−1W−1, γKerr,TM00
= 0.097 m−1W−1,

k
(2)
TM00

= 0.151 fs2/µm; pump pulse has FWHM = 100 fs, energy 0.6 nJ,
soliton order is Neff ≈ 3; modes taken into account are TM00, TM20, TM40,
TM60 and TM01; (a) spectra of the input pulse (TM00 mode), the compressed
pulse (TM00 mode) and the output pulse (all modes); (b) pulse spectral
evolution (TM00 mode) with the first compression stage marked by the dash
line; (c) TM00 mode electric field amplitude at the first compression stage; (d)
pulse temporal evolution (TM00 mode); (e) pulse spectrogram evolution; (f)
high-order mode SH radiations corresponding to phase matching positions.

Launched into the waveguide, the pulse spectrum is SPM broadened gov-
erned by the overall self-defocusing nonlinearity while a weak SH around 1 µm

is accompanied due to the phase mismatched SHG process, see Fig. 4.14(a,b).
The third harmonic and even higher order harmonics are also observed through
both quadratic and cubic wave mixing processes. These harmonics look exactly
like copies of the fundamental wave (FW) (in the frequency domain) but they
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are much weaker due to much larger phase mismatch parameters. Therefore
they will not impact the compression of the FW. Combined with the normal dis-
persion, the self-defocusing phase shift can be well compensated and the pulse,
in time domain, is strongly compressed through the soliton self-compression
effect to almost single-cycle, as is shown in Fig. 4.14(c,d).

As has been discussed in previous sections, LN has a strong Raman fraction
(fR ≈ 50%, cf. also discussion [12]) which not only causes pulse spectral red
shift, known as soliton self-frequency shift (SSFS) effects, but also gives rise
to modulation instabilities impacting both the amplitude and the phase of the
pulse spectrum [13,15]. The latter will further cause the pulse splitting, known
as the Raman fission effects, if the soliton order is larger than unity. In Fig.
4.14(d), the Raman fission is observed after the first compression stage (marked
with the white-dashed line). The soliton pulse is also red-shifted which is not
obvious from the spectral figure but clues are found from the slight change in the
temporal delay Fig. 4.14(d), as the red-shifted spectrum will have an increased
group velocity (GV) when combined with the normal dispersion. Such a slight
spectral red shift is actually from the competition between the Raman SSFS
and cascading-induced self-steepening effects which cause spectral blue-shift
due to the negative GV mismatch between the FW and the SH [22].

For a deeper understanding of such a soliton compression process, the pulse
spectrogram evolution, with slices at different propagation distances, is shown
in Fig. 4.14(e). The evolution starts with the domination of the nonlinear-
ity which stretches the pulse spectrum while maintaining the temporal shape,
resulting in a tilt on the spectrogram pattern, namely inducing the nonlinear
phase shift. The slope of the tilt (dωdτ = C) reflects the pulse linear chirp (factor
C) induced by the SPM. The normal dispersion also stretches the pulse but only
on the temporal shape and then the tilt of the pattern is further adjusted with
the nonlinear phase shift compensated. The tilt adjustment is dτ

dω = −k(2)
TM00

· z
(z is the propagation distance). The soliton compression is actually accom-
plished when the tilt of the pattern is turned from the initial horizonal state to
the vertical state, while the compressed pulse will enter a relaxation stage upon
further propagation as the tilt is overturned from the maximum compression
vertical position. Typically a breather-kind of dynamics will then be observed
with the soliton compressing and relaxing periodically and slowly entering into
a steady state. The Raman fission is also clearly observed with mainly three
fractions formed in the spectrogram pattern.
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Moreover, while most energy remains in the TM00 mode, sharp-peak ra-
diations are observed in high-order modes (Fig. 4.14(a)), which exactly cor-
respond to the phase matching SHGs with SHs among high-order modes, see
Fig. 4.14(f). The phase-matching condition scaled in RI is:

nSH,j(λSH) = nFW,TM00
(2λSH) + ∆nQPM(λSH) (4.10)

where ∆nQPM = λSH

Λ and λSH is the SH wavelength. However, due to their
small modal nonlinear susceptibilities these radiations are weak in a similar
way as the higher harmonics within the TM00 mode described above, and they
will therefore not impact the soliton compression process either.

Fig. 4.15: self-defocusing soliton compression at 1.41 µm in the LN waveguide;
waveguide has the same structure as Fig. 4.14; pump pulse has FWHM = 50 fs,
energy 0.2 nJ, soliton order is Neff ≈ 1.5; (a) TM00 mode spectra of the input
pulse, the compressed pulse and the output pulse; (b) pulse spectral evolution
(TM00 mode) with the first compression stage marked by the dash line; (c)
TM00 mode electric field amplitude at the first compression stage; (d) pulse
temporal evolution; insert: pulse spectrogram at the first compression stage.

The scenario of self-defocusing soliton compression also works at other wave-
lengths, e.g. at 1.41 µm shown in Fig. 4.15, at 1.58 µm shown in Fig. 4.16 and
at 3 µm shown in Fig. 4.17, in which the soliton pulse can always be compressed
to few-cycle and even single cycle. The waveguide for the 3 µm compression has
a bigger size, wd = 5 µm, dp = 2.5 µm and the cutoff wavelength is extended
to over 4 µm.

From these simulations we conclude that when having a small soliton order
1 < Neff < 2, the compressed soliton has a quite clean temporal shape as well
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Fig. 4.16: self-defocusing soliton compression at 1.58 µm in the same LN waveg-
uide; pump pulse has FWHM = 50 fs, energy 0.5 nJ, soliton order is Neff ≈ 4;
(a) TM00 mode spectra of the input pulse, the compressed pulse and the out-
put pulse; (b) pulse spectral evolution (TM00 mode) with the first compression
stage marked by the dash line; (c) TM00 mode electric field amplitude at the
first compression stage; (d) pulse temporal evolution; insert: pulse spectrogram
at the first compression stage.

Fig. 4.17: numerical simulation of self-defocusing soliton compres-
sion at 3 µm in the LN waveguide; wd = 5 µm, dp = 2.5 µm,
Λ = 10 µm, γcasc,TM00 = −0.063 m−1W−1, γKerr,TM00 = 0.030 m−1W−1,
k

(2)
TM00

= 0.531 fs2/µm; pump pulse has FWHM = 100 fs, energy 1.2 nJ, soliton
order is Neff ≈ 1.5; (a) TM00 mode spectra of the input pulse, the compressed
pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with
the first compression stage marked by the dash line; (c) TM00 mode electric
field amplitude at the first compression stage; (d) pulse temporal evolution
(TM00 mode); insert: pulse spectrogram at the first compression stage.
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as a clean pulse spectrogram pattern, due to the suppression of Raman fission
effects. When the soliton order Neff > 2, the compressed pulse will have a
complex figure in both the pulse shape and the spectrogram pattern. The few-
cycle soliton compression also leads to supercontinuum generation, which can
easily span over an octave in the spectrum in the near- and mid-IR (at the -20
dB level).

If there are material and waveguide losses (additional to the insertion loss),
e.g. α = 0.69/cm for -3 dB/cm loss, soliton compressions as well as SCGs will
be impacted. Since the soliton order is gradually decreased during the propa-
gation, the anticipated pulse spectral broadening will shrink, which implies a
degraded soliton compression.

We also investigate the spectral coherence of these soliton pulses. The
pump pulse is assumed to contain a one-photon-per-mode (OPPM) noise figure
( hω∆ω e

iφrand , where h is the Planck constant, ω is the frequency, ∆ω is the
frequency resolution of the simulation window and φrand is a random phase
between 0 ∼ 2π) [11].

Fig. 4.18: coherence spectra for the output pulse spectrum in both the (a)
2-µm and (b) 3-µm compressions.

The first order spectral coherence g̃(1)
12 is then calculated from several sim-

ulation shots, i.e.:

g̃
(1)
12 (ω) =

∣∣∣〈Ã∗s(ω)Ãl(ω)
〉∣∣∣√〈∣∣∣Ãs(ω)

∣∣∣2〉〈∣∣∣Ãl(ω)
∣∣∣2〉 , s 6= l (4.11)
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where s and l marks the simulation shot. The angle brackets indicate averaging
over noise realizations.

The coherence of the output pulse spectrum in both the 2-µm and 3-µm

compressions are shown in Fig. 4.18. The pulse spectrum in the near- and
mid-IR is demonstrated to be highly coherent and the g̃(1)

12 value is almost unity
since the noise figure at lower frequency is weaker, while for shorter wavelengths
where harmonics are generated, the coherence of the pulse spectrum is slightly
reduced.

Such a high coherence is physically attributed to the low soliton order of
the femtosecond pump that the noise-sensitive soliton fission regime and the
pulse modulation instability (MI) are suppressed, compared to typical SCGs
in PCFs which usually use picosecond pumps around the ZDW, with the soli-
ton order over 100, so that strong soliton fission and MI is induced and the
spectral coherence will be decreased [11]. Similar spectral high coherence is
also observed in an all-nonlinear but non-solitary SCG process in [20] which is
operated in the PCF designed to have all-normal dispersion and is dominated
by the SPM from the traditional self-focusing Kerr nonlinearity.

Fig. 4.19: broadband DW generation at 2.2 µm in the LN
waveguide when pumping at 1.35 µm; wd = 5 µm, dp = 2.5 µm,
Λ = 9.8 µm, γcasc,TM00 = −0.217 m−1W−1, γKerr,TM00 = 0.152 m−1W−1,
k

(2)
TM00

= 0.049 fs2/µm; pump pulse has FWHM = 25 fs, energy 0.1 nJ, soliton
order is Neff ≈ 1; (a) pulse spectrogram evolution with slices at different
propagation distance; (b) spectral evolution (TM00 mode); dash-dot lines
mark the two ZDWs; (c) temporal evolution (TM00 mode); insert: DW pulse
spectrum and temporal shape.
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It is well-known that a soliton will radiate DWs when the dispersive phase
(spectral propagation constant profile) is perturbed with high-order dispersion
(third-order dispersion, fourth-order dispersion, etc.). In the present case that
the soliton exists in the normal dispersion regime, the necessary condition for
the DW generation is “the presence of an anomalous dispersion region”. More
precisely, according to the DW phase matching condition, DWs are predicted
to be generated exactly in the anomalous dispersion region(s) if the major
perturbation comes from the third-order dispersion. However, if presence of
fourth-order dispersion, DWs can be generated either in anomalous or normal
dispersion regions. The latter is actually revealed to be the SST effect in which
the DW can actually form another soliton state, and an opposite dispersion
region is considered as a necessary barrier [3].

Therefore, with an all-normal dispersion profile in the LN waveguide, DWs
are suppressed for sure, see Fig. 4.15 and Fig. 4.16. The waveguide for the
3 µm compression actually has two ZDWs (1.51 µm and 2.30 µm), indicating
an anomalous dispersion region sandwiched by two normal dispersion regions.
However, DWs are still suppressed since the pumping wavelength is far away
from the ZDWs and the DW phase-matching condition is not satisfied. Thus,
without such linear radiations, the solitary pulse formation and compression
dynamics is purely nonlinear.

On the other hand, when pumping close to one of the two ZDWs, DW
generations are expected. Moreover, with the soliton spectral shifting and
compression/relaxation breathing, the DW radiations can also form a few-cycle
pulse [23].

We show a 2.2-µm pulse generation by means of such a breathing DW gen-
eration, see Fig. 4.19. The waveguide again has wd = 5 µm and dp = 2.5 µm.
The QPM pitch is chosen to Λ = 9.8 µm to give an effective defocusing nonlin-
earity. The pump wavelength is chosen to 1.35 µm, which has phase matching
to a DW at around 2.2 µm. The pump pulse has a FWHM of 25 fs so that an
ultra-broadband spectrum is provided with large sideband energy at the DW
position. The pulse energy is 0.1 nJ and the soliton order is Neff ≈ 1. The pulse
spectrogram evolution is also investigated to help understanding the whole pro-
cess, see Fig. 4.19(a) When launched into the waveguide, the soliton at 1.35
µm starts to transfer energy to the DW, and the soliton itself is spectrally blue
shifted mainly due to a recoil effect [24, 25] (The cascading-induced blue shift
and the Raman SSFS are almost balanced with each other). The soliton blue
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shift is reflected by the temporal delay shown in Fig. 4.19(c). Meanwhile, the
soliton is further compressed and more energy is transferred out to the DW,
with a red-shifted DW position due to the phase-matching condition to the
blue shifted soliton, see Fig. 4.19(b).

However, with energy continuously transferred out, the soliton is weakened
with the soliton number going below the unity. Then, the soliton will self-adapt
to maintain a soliton state by narrowing its pulse spectrum and broadening
the temporal shape. A breath is therefore established, with the compression-
induced spectral broadening and self-adaptive spectral narrowing, leaving a
clean “DW pulse” pattern at 2.2 µm in the spectrogram. By applying a long-
pass filter the DW-part of the spectrum is then filtered out so it can be analyzed
in detail. It spans 2.0 ∼ 2.6 µm (at -10 dB level) and the pulse duration is
estimated to be around 3.5-optical cycles (FWHM = 27 fs), see the insert in
Fig. 4.19. The conversion efficiency is 6% leading to a pulse energy of 6 pJ.

It is noted that such a DW pulse is actually located in the anomalous GVD
region and therefore it could not form a soliton. However, since the GVD in
this regime is very weak, the temporal pulse shape will be almost unaffected
even over a long propagation distance while spectral phase is accumulated by
the self-defocusing nonlinearity.

The SST effect is also investigated in the same waveguide, with a more pre-
cise designing on the phase matching. The pump wavelength is set to be at 1.31
µm and the DW is therefore to be generated at 2.6 µm where the dispersion
is also normal; thus, the DW can form a soliton state. We here keep the name
“dispersive wave”, as the phase-matching condition is found by intersecting the
near-IR “parent” soliton dispersion curve, which is inherently dispersionless,
with a dispersion curve that reflects the mode dispersion. Whether the formed
DW is then energetic enough to form a soliton state that does not disperse,
and thereby will not be a dispersive wave per se any more, is another mat-
ter. Moreover, both the parent soliton and the DW also have the same GV,
as the GV-matching condition is satisfied, under which the energy transferred
from the parent soliton to the DW will also be transferred back, reflecting
a so-called soliton coupling effect [26]. Figure 4.20(a) shows how the soliton
coupling evolves. Both the parent soliton and the DW spectra are periodi-
cally changed during the evolution, with the energy coupling in between (Fig.
4.20(b)). When having two solitons in the spectrogram, the temporal shape
shows a interferometric signal (Fig. 4.20(c)).
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Fig. 4.20: soliton spectral tunneling effect with the pump at 1.31
µm and the DW pulse generated at 2.6 µm which is also soli-
tonary; wd = 5 µm, dp = 2.5 µm, Λ = 9.8 µm, γcasc,TM00

= −0.204 m−1W−1,
γKerr,TM00

= 0.159 m−1W−1, k(2)
TM00

= 0.063 fs2/µm; pump pulse has FWHM
= 25 fs, energy 0.175 nJ, soliton order is Neff ≈ 1; (a) pulse spectrogram evolu-
tion with slices at different propagation distance; (b) spectral evolution (TM00

mode); dash-dot lines mark the two ZDWs; (c) temporal evolution (TM00

mode);

Compared to the SST effect, the 2.2-µm DW pulse generated in Fig. 4.19
cannot couple back to the near-IR soliton exactly because it is not GV-matched
to the parent soliton, and it will therefore travel away from the parent soliton
(this is quite unique to self-defocusing DW generations, see also the discussion
in [27]). Through the SST, the parent soliton energy may be fully coupled
to the DW pulse, provided that a spectral red-shift occurs, such as Raman
SSFS [3]. However, with the cascading process, Raman SSFS is in most cases
counterbalanced by cascading induced self-steepening effects, and the spectrum
shows blue-shift dominated by the recoil effect, which unfortunately reduces the
coupling efficiency. On the other hand, both cases are demonstrated to have
also a high spectral coherence.

4.4 Conclusion

As a conclusion, in this chapter, we discussed the CQSC in quadratic nonlinear
waveguides, which in general is a complementary solution to the CQSC in bulk
crystals, as waveguide could provide good confinement on the laser beam and
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therefore promote the efficiency of nonlinear interactions. Thus, laser pulses
with small beam size, nJ-level energy and high repetition rate could be operated
to the few-cycle regime.

we first investigated commonly used LN waveguides, in particular a LN/LT
ridge waveguide which has step RI change that enables a clear waveguide profile
and accurate theoretical analysis. These waveguides in common have a small
RI change, limited either by the chemical fabrication technologies or by close
properties between the core and substrate materials. The small RI change
implies that the dispersion profile of the waveguide mode is kept similar to
the material dispersion, having the same ZDW and being inherently phase
mismatched in the noncritical SHG as well. Therefore, without QPM, strong
cascading is produced, with which the material Kerr nonlinearity is counter-
balanced and overall self-defocusing nonlinearity is accessed over a broadband
wavelength range (1100 ∼ 3000 nm). Then, the operational wavelength range
of the CQSC is from 1100 nm to the ZDW at 1900 nm, covering the whole
communication band, just like the bulk LN.

The CQSC in the LN/LT waveguide with 10-nJ laser pump pulses was
numerically simulated at 1550 nm, with single-cycle solitary pulses being gen-
erated. When pumping with longer pulses, i.e. having a higher pulse energy
(e.g. 30 nJ), octave spanning SCG dominated by the cascaded quadratic non-
linearity is accomplished. In APE waveguides, cascading based SCGs were
experimentally observed as well. The proof of concept of CQSC in such small-
RI-changed waveguides could extensively extend the application of quadratic
waveguides, from phase matching based frequency conversions to QPM-free
and phase mismatched ultrafast cascading applications.

we also proposed a LN ridge waveguide design with a large refractive index
(RI) change, a design intended to extend the CQSC further into the mid-IR.
The large RI change is suggested to come from bonding an LN wafer on top
of a glass substrate with broadband IR transmission and substantially lower
RI than LN. Compared to bulk LN or traditional low-RI LN waveguides, in
which the dispersion trend limits the compression to be below the ZDW, the
proposed design significantly extends the soliton regime of LN waveguides into
the mid-IR. This occurs due to the strong waveguide dispersion that can sig-
nificantly alter and even counterbalance the material dispersion. Thus, the
normal dispersion regime can be extended well beyond the material ZDW. It
is even possible to create an all-normal dispersion profile (within the waveg-
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uide cutoff frequencies) by properly tuning the waveguide core size. Such an
all-nonlinear and solitonic waveguide or fiber design has to our knowledge not
been investigated before. The large RI change also has the benefit of sup-
porting broadband guidance well into the mid-IR, and at the same time keep
the waveguide core size small (in contrast to a broadband low-RI design [28]).
The large confinement from the small core leads to a very low-energy (sub-nJ-
level) soliton threshold, implying that the pump source can operate at much
lower average powers or higher repetition rates than traditional LN waveguide
designs. Moreover, effective self-defocusing nonlinearity is also found over a
broadband range in near and mid-IR, through the cascaded phase mismatched
SHG. But as the phase mismatch parameter is tailored large by the dispersion
engineering, a moderate QPM pitch on the order of 10 µm has to be used.

CQSCs at 2 µm, 3 µm and other wavelengths were then numerically inves-
tigated, in which single-cycle pulses can be generated through the soliton self-
compression effect, accompanied with octave-spanning supercontinuum gener-
ation in sub-cm length waveguides. Using a 100 fs pump pulse and keeping a
low soliton order, the pulse spectrum was demonstrated to be highly coherent.
We attribute this to the purely nonlinear soliton dynamics and the suppression
of the soliton fission and the modulation instability. For designs where the dis-
persion profile have multiple ZDWs, e.g. an anomalous-dispersion region could
be found sandwiched between two normal-dispersion regimes. In this scenario
DW generations as well as the SST effect were investigated. The DWs could
manifest as few-cycle pulses under a breathing regime induced by the spectral
soliton shift and compression/relaxation processes of the parent soliton. As
for the SST effect, the group-velocity matching enables the energy coupling
between the DW and the parent soliton, and in this case the wavelength of the
DW phase-matching point pulse is actually located in the long-wavelength nor-
mal dispersion range beyond the anomalous dispersion regime, and therefore
may form a solitary wave packet.

Executing such a large-RI-changed waveguide design should not pose too
many obstacles, and it therefore has a number of exciting advantages over tradi-
tional designs, both from a nonlinear science viewpoint and from an application
viewpoint. Such waveguides could lead to more effective ways of generating few-
cycle pulses and highly coherent SCG with low-energy femtosecond pulses in
near and mid-IR.
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5.1 Conclusions

In this thesis, we investigated the Ph.D. project cascaded quadratic soliton
compression (CQSC) in waveguide structures.

CQSC is proposed as a one-step pulse compression scheme which can be
used as a subsequent component after commercial femto-second pulsed laser
systems, e.g. the solid state laser system and the fiber laser system. It makes
use of the property of the self-compression of high order solitons, with the
spontaneous cancelation between the nonlinear and dispersive effects in the
medium. In quadratic waveguides, the nonlinearity is produced through the
cascaded phase mismatched second harmonic generation process, which equiv-
alently induces an intensity-related nonlinear phase shift just like the cubic
Kerr nonlinearity. More importantly, such Kerr-like cascaded nonlinearity can
be flexibly tuned in both the amplitude and the sign, making possible of the
CQSC under the self-defocusing effects and in the normal dispersion region, in
oppose to most compression schemes in Kerr materials.

The waveguide structure imposed on the quadratic crystals provides con-
finement on the laser beam so that the spatial diffraction effects and the spatio-
temporal effects in the few-cycle regime can be suppressed, making it capable
to operate low energy, high repetition rate pulsed lasers with moderate long du-
rations. Therefore, femtosecond fiber lasers with nano-joule energy, mega-hertz
repetition rate and ∼ 100 fs pulse duration can be compressed to few-cycle or
even single cycle. The structural design on the waveguide also enables the dis-
persion engineering with which the overall normal dispersion can be achieved
and tuned at targeted laser wavelength for the self-defocusing CQSC.

Quadratic nonlinear waveguides with both small and large refractive in-
dex (RI) changes were investigated, including the analysis on waveguide eigen-
modes, the dispersion engineering and the estimation of the waveguide nonlin-
earity. Numerical model nonlinear wave equation in frequency domain (NWEF)
was derived to solve the electric field dynamics of the propagated laser pulses,
which helps to prove the concept of CQSC in both quadratic bulk crystals and
waveguides. In quadratic waveguides with a small RI change (∆n� 0.1), e.g.
the anneal proton exchanged (APE) lithium niobate (LN) waveguides or wafer
bonded lithium niobate lithium tantalite (LN/LT) ridge waveguide, CQSC as
well as self-defocusing soliton induced supercontinuum generations was demon-
strated. The waveguide was turned out to be naturally suitable in producing
the strong and self-defocusing Kerr-like effects without the help of quasi-phase-
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matching (QPM) technology. The operational wavelength range covers the
communication band in the near-infrared range. In waveguides with a large
RI change (∆n > 0.1), the guidance band of the waveguide is substantively
extended into the mid-infrared range while flexible dispersion engineering is
evoked. All normal dispersion profiles could then be achieved, with which the
CQSC could actually operate a mid-infrared pulse at e.g. 3 µm. Few-cycle,
mid-infrared laser pulses can also be generated through the dispersive wave
generation fed by a near-infrared solitary pulse.

The generation of high intensity and few-cycle laser pulses in near and
mid-infrared ranges is of great interests to a variety of applications, e.g. the
time-resolved spectroscopy.

5.2 Outlooks

During the project, we noticed that today wafer bonding is being used in the
fabrication of optical waveguides including the quadratic waveguide, which is
a physical method compared to commonly used chemical fabrication methods
(such as APE). Wafer bonding is robust as materials from different classes
can be bonded together, making e.g. LN/silica waveguides [1], chalcogenide/s-
apphire waveguides [2], etc. To quadratic waveguides, wafer bonding could
promise that 1) a variety of materials that has excellent optical properties such
as wide transparency and high nonlinearity can be accessed; 2) the RI change
can be made large with a substrate having much lower RI, like the LN/silica
waveguide, therefore the dispersion engineering can make effect; and 3) the
damage threshold is much higher than chemically fabricated waveguides.

In the thesis, we have numerically investigated the wafer bonded LN/LT
waveguide [3,4] which has a ridge waveguide structure with step-index-change
profile. We also proposed a LN/glass waveguide, analogous to the LN/silica
waveguide, that is supposed to accomplish the mid-infrared CQSC. But actu-
ally, LN is not a typical mid-infrared crystal. Its transparency window is only
to ∼4 µm. Meanwhile, the strong Raman fraction in LN is always a problem
to the CQSC.

Therefore, the future research is suggested to focus on the wafer bonded
quadratic waveguides with novel mid-infrared crystals other than LN, e.g. the
lithium thioindate (LIS) that has been discussed in chapter 3 as a mid-infrared
candidate to the CQSC. LIS is in the same class to LN, but has a much wider
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transparency window in the mid-infrared range and a much lower fraction of
the Raman effects. On the other hand, QPM can also be applied on LIS to
help boosting the cascaded nonlinearity.

We are also looking forward to more applications based on the mid-infrared
quadratic waveguides other than the CQSC.

Bibliography

[1] P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous
lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–
25581 (2013).

[2] A. Herzog, B. Hadad, V. Lyubin, M. Klebanov, A. Reiner, A. Shamir, and
A. A. Ishaaya, “Chalcogenide waveguides on a sapphire substrate for mid-IR
applications,” Opt. Lett. 39, 2522–2525 (2014).

[3] Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-db
wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveg-
uide,” IEEE Photon. Technol. Lett. 17, 1049–1051 (2005).

[4] O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari,
M. Asobe, and H. Suzuki, “Efficient 3-µm difference frequency generation
using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl.
Phys. Lett. 88, 061101 (2006).

102



Appendix A

MATLAB Solvers: NWEF,
CWEs and NLS-like Equation



Appendix A. MATLAB Solvers: NWEF, CWEs and NLS-like Equation

A.1 NWEF for Type-0/Isotropic interactions

function [EV, ET, EW, W] = ...

NWEF_Type0(T, Z, w0, w_span, E, alpha, beta, gamma, fr, RW, vg, qpm_k)

% Hairun Guo, 29−10−2013
% nonlinear wave equation in frequency domain, single equation for Type−0
% or isotropic interactions, including both quadratic and cubic nonlinear

% induced polarizations.

% =========================================================================

% input: (physical)

% T: {nx1} temporal delay grid

% Z: {1xm} propagation grid

% w0: {1x1} central angular frequency

% w_span: {1x2} concerned frequency range

% E: {nx1} intial E−field [V/m]

%

% alpha: {nx1} attenuation factor

% beta: {nx1} full dispersive phase profile

% gamma: {nx2} nonlinear factor

% gamma(:,1) = chi_2.*W.^2./(2*c^2*beta) [1/V]

% gamma(:,2) = chi_3.*W.^2./(2*c^2*beta) [m/V^2]

% chi_2: quadratic material susceptibility or modal susceptibility

% chi_3: cubic material susceptibility or modal susceptibility

%

% fr: {1x1} Raman fraction

% RW: {nx1} Raman response spectra

% vg: {1x1} pulse group velocity at frequency w0

% qpm_k: {1x1} detuned phase mismatch if having QPM structure

% qpm_k = 2*pi/pitch

%

% output:

% EV: {nxm} temporal E−field complex envelope

% ET: {nxm} temporal E−field (real−valued)
% EW: {nxm} spectral profile

% W: {nx1} frequency grid

% =========================================================================

n = length(T); dT = T(2)−T(1); % grid parameters

V = 2*pi*(−n/2:n/2−1)'/(n*dT); % frequency grid

L = 1i*beta + alpha; % linear operator

w1 = find(V >= w_span(1),1,'first');

w2 = find(V <= w_span(2),1, 'last');

W = V(w1:w2);

isw = (abs(V)>=w_span(1) & abs(V)<=w_span(2));

isw = fftshift(isw);

L = fftshift(L);

gamma = fftshift(gamma,1); % shift to fft domain

RW = fftshift(RW); % frequency domain Raman

E = fftshift(E,1);
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% === set error control options

options = odeset('RelTol', 1e−5, 'AbsTol', 1e−12, ...

'NormControl', 'on', ...

'OutputFcn', @(z,y,flag) report(z,y,flag,Z(end)));

[Z, ET] = ode45(@(z, Ew) rhs(z, Ew, dT, L, gamma, fr, RW, qpm_k), ...

Z, fft(E).*dT, options);% run integrator

% === process output of integrator

EW = zeros(w2−w1+1, length(Z));

for i = 1:length(Z)

Ew = ET(i,:).*isw.'.*exp(−L.'*Z(i)+1i*vg^−1*Z(i).*fftshift(V,1).');
% change variables

ET(i,:) = fftshift(real(ifft(Ew)./dT));

Ew = fftshift(Ew);

EW(:,i) = Ew(w1:w2);

end

ET = ET.';

EV = envelope(ET,V,w0);

% === define function to return the RHS of Eq. (3.13)

function R = rhs(z, Ew, dT, L, gamma, fr, RW, qpm_k)

Et = real(ifft(Ew.*exp(−L*z))./dT); % time domain field

Es = Et.^2; % time domain square

QN = −1i.*gamma(:,1).*fft(Es).*dT.*square(qpm_k*z+pi/2);
% 2nd order nonlinearity

if fr <eps % no Raman case

RS = 0;

else

RS = fr*fft(Et.*real(ifft(RW.*fft(Es).*dT)./dT)).*dT;

end % Raman scattering

CN = −1i.*gamma(:,2).*((1−fr)*fft(Et.*Es).*dT + RS);

R = (QN+CN).*exp(L*z); % full RHS

% === define function to print ODE integrator status

function status = report(z, ~, flag, zl)

status = 0;

if isempty(flag)

fprintf('%05.1f %% complete\n', z/zl*100);

end

function [EV] = envelope(ET, W, w0)

% ET: real valued field in time domain, [−T T]

% W : frequecny axis vector, [−Ws/2 Ws/2]

% w0: center frequency,

% EV: complex field envelope

format long

[n, m] = size(ET);

EW = fftshift(fft(fftshift(ET,1)),1);
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[~,W_grid] = meshgrid(zeros(1,m),(W>0));

EW = (W_grid).*EW;

n0 = find(W<=w0,1,'last');

EW = [EW(n0:n,:); EW(1:n0−1,:)];
EV = 2*(fftshift(ifft(EW),1));

A.2 CWEs for SHG process

function [AT1, AT2, AW1, AW2, W] =...

CWEs_SHG(T, Z, w0, w_span, A, alpha, beta, gamma, fr, RW, eta, B, dk)

% Hairun Guo, 29−10−2013
% coupled wave equations for SHG process.

% [Ref] M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse

% compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24,

% 2752−2762 (2007).

% =========================================================================

% input: (physical) | (dimensionless)

% T: {nx1} temporal delay grid | T/T01, T0: FH pulse duration

% Z: {1xm} propagation grid | Z/LD1, LD1: FH dispersion length

% w0: {1x1} FH angular frequency | w0*T01

% w_span: {1x2} concerned frequency range | w_span.*T0

% A: {nx2} intial pulse [W^0.5/m] | A/sqrt(I1),

% | I1: FH initial peak power

% alpha: {nx2} attenuation factor | alpha*LD1

% beta: {nx2} full dispersion | beta/GVD1

% gamma: {nx2} nonlinear factor |

% gamma(:,1) [W^−0.5] | LD1*gamma(:,1)*I1^0.5 = ...

% dk^0.5*N_casc

% gamma(:,2) [m/W] | LD1*gamma(:,2)*I1 = N_Kerr^2

% fr: {1x1} Raman fraction | fr

% RW: {nx1} Raman response function | RW./T0

% eta: {1x1} n1/n2 |

% B: {1x1} 2 or 2/3, type−0 or type−I |

% output: |

% AT: {nxm} temporal profile | AT./sqrt(I1)

% AW: {nxm} spectral profile | AW./sqrt(I1)./T01

% W: {nx1} frequency grid | W*T01

% =========================================================================

n = length(T); dT = T(2)−T(1); % grid parameters

V = 2*pi*(−n/2:n/2−1)'/(n*dT); % frequency grid

W = [V+w0 V+2*w0]; % the absolute frequency grid

isw = [(W(:,1)>=w_span(1,1) & W(:,1)<=w_span(2,1)) ...

(W(:,2)>=w_span(1,2) & W(:,1)<=w_span(2,2))];

% spectral boundary
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L = 1i.*beta + alpha/2; % linear operator

S = [1+V./w0 1+0.5.*V./w0]; % self steepening term

isw = fftshift(isw,1);

L = fftshift(L,1);

S = fftshift(S,1);

gamma = fftshift(gamma,1); % shift to fft space

RW = fftshift(RW);

% === set error control options

options = odeset('RelTol', 1e−5, 'AbsTol', 1e−12, ...

'NormControl', 'on', ...

'OutputFcn', @(z,y,flag) report(z,y,flag,Z(end)));

[Z, Y] = ode45(@(z, AW) rhs(z, AW, dT, L, S, gamma, fr, RW, eta, B, dk), ...

Z, fft(A).*dT, options);% run integrator

% === process output of integrator

[mY nY] = size(Y.');

AT1 = zeros(mY/2,nY);

AT2 = AT1;

AW1 = AT1;

AW2 = AT1;

for i = 1:length(Z)

AW = Y(i,:).*isw(1:end).*exp(−L(1:end)*Z(i));
AT1(:,i) = ifft(AW( 1:n ))./dT; % time domain output

AT2(:,i) = ifft(AW(n+1:end))./dT;

AW1(:,i) = fftshift(AW( 1:n )); % change variables

AW2(:,i) = fftshift(AW(n+1:end));

end

% === define function to return the RHS of Eq. (3.13)

function R_v = rhs(z, AW_v, dT, L, S, gamma, fr, RW, eta, B, dk)

n = length(AW_v)/2;

AW = reshape(AW_v,n,2);

AT = ifft(AW.*exp(−L*z))./dT; % time domain field

AT1 = AT(:,1); AT2 = AT(:,2);

FH2 = fft(conj(AT1).*AT2).*dT.*exp(−1i*dk*z);
SH2 = fft(AT1.^2) .*dT.*exp( 1i*dk*z);

FH3 = fft(AT1.*(abs(AT1).^2+B*eta *abs(AT2).^2)).*dT;

SH3 = fft(AT2.*(abs(AT2).^2+B*eta^−1*abs(AT1).^2)).*dT;

if (abs(fr) < eps) % no Raman case

FH_RS = 0;

SH_RS = 0;

else

FH_RS = fft(AT1.*ifft(RW.*fft(abs(AT1).^2+eta *abs(AT2).^2).*dT)./dT).*dT;

SH_RS = fft(AT2.*ifft(RW.*fft(abs(AT2).^2+eta^−1*abs(AT1).^2).*dT)./dT).*dT;
end

R1 = ...

−1i*gamma(:,1).*S(:,1).*FH2 ...

−1i*gamma(:,2).*S(:,1).*((1−fr).*FH3+2/3*fr.*FH_RS);
R2 = ...
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−1i *gamma(:,1).*S(:,2).*SH2 ...

−1i*2*gamma(:,2).*S(:,2).*((1−fr).*SH3+2/3*fr.*SH_RS)*eta^2;
R = [R1 R2].*exp(L*z);

R_v = reshape(R, 2*n, 1);

% === define function to print ODE integrator status

function status = report(z, ~, flag, zl)

status = 0;

if isempty(flag)

clc;

fprintf('%05.1f %% complete\n', z/zl*100);

end

A.3 Full NLS-like Equation Degenerated from
SHG CWEs

function [AT, AW, W] = ...

NLSE_like(T, Z, w0, w_span, A, alpha, beta, gamma, fr, RW, eta, B)

% Hairun Guo, 29−10−2013
% nonlinear schordinger like equation includes attenuation, XPM and Raman

% scattering.

% =========================================================================

% input: (physical) | (dimensionless)

% T: {nx1} temporal delay grid | T/T0, T0: pulse duration

% Z: {1xm} propagation grid | Z/LD, LD: dispersion length

% w0: {1x1} central angular frequency | w0*T0

% w_span: {1x2} concerned frequency range | w_span.*T0

% A: {nx1} intial pulse [W^0.5/m] | A/sqrt(I),

% | I: initial peak intensity

% alpha: {nx1} attenuation factor | alpha*LD

% beta: {nx1} full dispersion | beta/GVD

% gamma: {nx2} nonlinear factor [m/W] | LD*gamma*I = N^2,

% | N: soliton order

% fr: {1x2} cascading & Raman fraction | fr

% RW: {nx2} response spectra | RW/T0

% eta: {1x1} XPM prefactor n1/n2/Dk | eta/LD

% B: {1x1} type−0: 2 |

% type−I: 3/2 |

% output: |

% AT: {nxm} temporal profile | AT./sqrt(I)

% AW: {nxm} spectral profile | AW./sqrt(I)./T0

% W: {nx1} frequency grid | W*T0

% =========================================================================

if length(beta(1,:)) ~= 1

error('haig: check dimensions of beta !');

end

if length(gamma(1,:)) ~= 2
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error('haig: check dimensions of gamma !');

end

if length(fr) ~=2

error('haig: check dimensions of fr !');

end

if length(RW(1,:)) ~= 2

error('haig: check dimensions of RT !');

end

if nargin <11

B = 2; % type−0
end

if nargin <10

eta = 0;

end

n = length(T); dT = T(2)−T(1); % grid parameters

V = 2*pi*(−n/2:n/2−1)'/(n*dT); % frequency grid

W = V + w0; % the absolute frequency grid

isw = (W>=w_span(1) & W<=w_span(2));

L = 1i*beta + alpha/2; % linear operator

S1 = (V + w0)./ w0 ;

S2 = (V + 2*w0)./(2*w0); % self steepening term

isw = fftshift(isw);

L = fftshift(L);

S1 = fftshift(S1);

S2 = fftshift(S2); % shift to fft space

gamma = fftshift(gamma,1); % shift to fft space

RW = fftshift(RW,1); % frequency domain Raman

% === set error control options

options = odeset('RelTol', 1e−5, 'AbsTol', 1e−12, ...

'NormControl', 'on', ...

'OutputFcn', @(z,y,flag) report(z,y,flag,Z(end)));

[Z, Y] = ode45(@(z, AW) rhs(z, AW, dT, L, S1, S2, gamma, fr, RW, eta, B), ...

Z, fft(A).*dT, options);% run integrator

% === process output of integrator

AT = zeros(size(Y.'));

AW = AT;

for i = 1:length(Z)

AW(:,i) = Y(i,:).*isw.'.*exp(−L.'*Z(i));
% change variables

AT(:,i) = ifft(AW(:,i))./dT; % time domain output

AW(:,i) = fftshift(AW(:,i)); % scale

end

% === define function to return the RHS of Eq. (3.13)

function R = rhs(z, AW, dT, L, S1, S2, gamma, fr, RW, eta, B)
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AT = ifft(AW.*exp(−L*z))./dT; % time domain field

IT = abs(AT).^2; % time domain intensity

ST = AT.^2; % time domain square

CA = ifft(S2.*(fr(1)*fft(ST).*dT.*RW(:,1)))./dT;

% time domain cascading term

R1 = −1i.*gamma(:,1).*S1.*fft(conj(AT).*CA).*dT;
% right hand term 1

if eta <eps % no XPM

XPM = 0;

else

XPM = eta.*abs(gamma(:,1)).*fft(AT.*CA.^2).*dT;

end % frequency domain XPM term

if fr(2) <eps % no Raman case

RS = 0;

else

RS = fr(2)*ifft((fft(IT).*dT + ...

eta.*abs(gamma(:,1)).*fft(CA.^2).*dT).*RW(:,2))./dT;

end % Raman scattering

CU = (1−fr(2))*fft(AT.*IT).*dT+B*XPM + fft(AT.*RS).*dT;

R2 = −1i.*gamma(:,2).*S1.*CU;

R = (R1+R2).*exp(L*z); % full RHS

% === define function to print ODE integrator status

function status = report(z, ~, flag, zl)

status = 0;

if isempty(flag)

fprintf('%05.1f %% complete\n', z/zl*100);

end

A.4 NWEF Simulation of CQSC in LIS Crystal

A.4.1 Material Dispersion Properties

function [k, dk] = LIS_Wave_Vec_Z(omega, mdim)

% ref: Sandrine Fossier, et al., J. Opt. Soc. Am. B 21, 1981−2007 (2004)

format long

c = 0.299792458; % um/fs

tmp = 4*pi^2*c^2;

ndim = length(omega);

a1 = 7.256327;

a2 = 0.15072;

a3 = 0.06823652;
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a4 = 2626.10840;

a5 = 983.0503;

Wave_Vec_z = 'W/C*sqrt(A1 + A2*W^2/(Tmp−A3*W^2) + A4*W^2/(Tmp−A5*W^2))';

kFHz = subs(Wave_Vec_z, ...

{'A1', 'A2', 'A3', 'A4', 'A5', 'Tmp', 'C', 'W'},...

{a1, a2, a3, a4, a5, tmp, c, omega});

kSHz = subs(Wave_Vec_z, ...

{'A1', 'A2', 'A3', 'A4', 'A5', 'Tmp', 'C', 'W'},...

{a1, a2, a3, a4, a5, tmp, c, 2*omega});

k = struct('fhz', kFHz, 'shz', kSHz);

if (mdim > 0) && (~mod(mdim,1))

FHz = zeros(mdim,ndim);

SHz = zeros(mdim,ndim);

for i = 1:mdim

DkDw_z = diff(Wave_Vec_z,'W');

Wave_Vec_z = DkDw_z;

FHz(i,:) = subs(Wave_Vec_z, ...

{'A1', 'A2', 'A3', 'A4', 'A5', 'Tmp', 'C', 'W'},...

{a1, a2, a3, a4, a5, tmp, c, omega});

SHz(i,:) = subs(Wave_Vec_z, ...

{'A1', 'A2', 'A3', 'A4', 'A5', 'Tmp', 'C', 'W'},...

{a1, a2, a3, a4, a5, tmp, c, 2*omega});

end

dk = struct('fhz', FHz, 'shz', SHz);

end

A.4.2 Raman Spectrum

function [hRw] = HRW(w)

format long

ta1 = 20;

tb1 = 1200;

fR1 = 1;

hRw = fR1*(ta1^2+tb1^2)./(tb1^2−ta1^2.*(w.*tb1−1i).^2);

A.4.3 Main Function
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clear

clc

close all

format long

c = 0.299792458; % [um/fs]

c0 = 299792458; % Vacuum speed of light in m/s

mu0 = 4e−7*pi; % [N/A^2]

eps0 = 1/(c0^2*mu0); % [F/m]

% −−− reference −−−
lambda = 2; zl = 10000; FWHM = 100; % fs

I_in = 600e−14; % 1GW/cm^2 = 1e−14 V^2*F/(fs*um^2)

qpm_k = 0;

% −−−−−−−−−−−−−−−−−
f = c/lambda;

omega = 2*pi*f;

[k, dk] = LIS_Wave_Vec_Z(omega,2);

n_z = k.fhz*c/omega;

k_z = k.fhz;

dk_z = dk.fhz(1);

ddk_z = dk.fhz(2);

delta_k = k.shz − 2*k.fhz;

Ec = sqrt(I_in)/sqrt(eps0*1e−6*n_z*c/2); % [V/um]

t0 = FWHM/(2*log(1+2^0.5)); % Guassan: exp(−t^2/T0^2)

% −−− time −−−
t_span = 5800; % fs

nt = 2^(ceil(log2(10*t_span*f))); % −−− 10 points for each cycle −−−
% nt = 2^16;

dt = t_span/nt;

t = −t_span/2:dt:t_span/2−dt;

% −−− frequency −−−
w_span = 2*pi/dt; % fs^−1
dw = w_span/nt;

w = −w_span/2:dw:w_span/2−dw;

% −−− physical range −−−
lambda_range = [0.45 8];

% −−−−−−−−−−−−−−−−−−−−−−
omega_range = sort(2*pi*c./lambda_range);

w1 = find(w >= omega_range(1), 1,'first');

w2 = find(w <= omega_range(2), 1, 'last');

w3 = find(w >= −omega_range(2), 1,'first');

w4 = find(w <= −omega_range(1), 1, 'last');

w_left = w(w3:w4); w_left_sh = 2*w_left;

w_right = w(w1:w2); w_right_sh = 2*w_right;

% −−− wave vector −−−
k = LIS_Wave_Vec_Z(w,0);

k_left = k.fhz(w3:w4); k_left_sh = k.shz(w3:w4);
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k_right = k.fhz(w1:w2); k_right_sh = k.shz(w1:w2);

delta_k_left = k_left_sh − 2*k_left + qpm_k;

delta_k_right = k_right_sh − 2*k_right − qpm_k;

n_left = k_left*c./w_left; n_left_sh = k_left_sh*c./w_left_sh;

n_right = k_right*c./w_right; n_right_sh = k_right_sh*c./w_right_sh;

k = zeros(1,nt);

k(w3:w4) = k_left;

k(w1:w2) = k_right;

% −−− quadratic nonlinearity −−−
d33_left = 15.6e−12*(2/pi)^(qpm_k~=0);
d33_right = 15.6e−12*(2/pi)^(qpm_k~=0);
n2_casc_left = ...

−2*d33_left .^2.*w_left ./(c.*n_left .^2.*n_left_sh *eps0*c0.*delta_k_left);

n2_casc_right = ...

−2*d33_right.^2.*w_right./(c.*n_right.^2.*n_right_sh*eps0*c0.*delta_k_right);

% −−−cubic nonlinearity −−−
% −−−Raman scattering −−−
fr = 0.2;

hrw = HRW(w);

c33_left = 44.44e−22;
c33_right = 44.44e−22;
n2_cubic_left = 3/4*c33_left ./(c0*eps0.*n_left.^2);

n2_cubic_right = 3/4*c33_right./(c0*eps0.*n_right.^2);

gamma = zeros(2,nt);

% −−− 2*deff*w^2/(2*c^2*k) −−−
gamma(1,w1:w2) = 2*d33_right.*w_right.^2./(2*c^2.*k_right)*1e6;

gamma(1,w3:w4) = 2*d33_left .*w_left .^2./(2*c^2.*k_left )*1e6;

% −−− c33*w^2/(2*c^2*k) −−−
gamma(2,w1:w2) = c33_right.*w_right.^2./(2*c^2.*k_right)*1e12;

gamma(2,w3:w4) = c33_left .*w_left .^2./(2*c^2.*k_left )*1e12;

E = Ec*sech(t/t0).*cos(omega*t);

height = Ec*sum(sech(t/t0))*dt/2;

if qpm_k~=0

dz = 2*pi/qpm_k/2;

else

dz = pi/delta_k/2;

end

nz = ceil(zl/dz);

z = 0:dz:dz*nz;

LD = t0^2./abs(ddk_z);

N_right = sqrt(LD*I_in*1e27*w_right./c.*(abs(n2_casc_right) − ...

(1−fr)*n2_cubic_right));
N = interp1(w_right, N_right, omega);

fprintf('Soliton order : %.2f\n', N);

fprintf('Soliton length: %.2f mm\n', pi/2*LD/1000);

fprintf('Crystal length: %.2f mm\n', zl/1000);

fprintf('Total steps : %d\n', nz+1);
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tic;

[EV, ET, EW, ~] = NWEF_Type0(t.', z, omega, omega_range, E.', 0, k.', ...

gamma.', fr, hrw.', dk_z^−1, qpm_k);

toc;

wl = linspace(lambda_range(1),lambda_range(2),w2−w1+1);
w_redef = 2*pi*c./wl;

[Z,W] = meshgrid(z,w_right);

[~,WI] = meshgrid(z,w_redef);

EWL = interp2(Z,W,EW,Z,WI,'cubic');

%load MyColormaps

fig1 = figure('Position',[50 100 1000 400]);

axes1 = axes('Parent', fig1,...

'Position',[0.07 0.15 0.87 0.80],...

'FontWeight','bold',...

'FontSize',14,...

'FontName','Times New Roman',...

'CLim',[−60 0],...

'Tick','out');

xlim(axes1,[lambda_range(1) lambda_range(2)]*1000);

ylim(axes1,[0 max(z)/1000]);

box(axes1,'off');

hold(axes1,'all');

img1 = image(wl*1000, z.'/1000, 10*log10(abs(EWL.'./height).^2),...

'Parent',axes1,...

'CDataMapping','scaled');

set(fig1,'Colormap',jet);

colorbar('Peer', axes1,...

[0.95 0.15 0.01 0.80],...

'FontSize', 14,...

'FontName', 'Times New Roman',...

'XColor', [0 0 0],...

'YColor', [0 0 0]);

xlabel('Wavelength (nm)');ylabel('Length (mm)');

fig2 = figure('Position',[50 500 1000 400]);

axes2 = axes('Parent', fig2,...

'Position',[0.07 0.15 0.87 0.80],...

'FontWeight','bold',...

'FontSize',14,...

'FontName','Times New Roman',...

'CLim',[−60 0],...

'Tick','out');

xlim(axes2,[omega_range(1) omega_range(2)]);

ylim(axes2,[0 max(z)/1000]);

box(axes2,'off');

hold(axes2,'all');

img2 = image(w_right, z.'/1000, 10*log10(abs(EW.'./height).^2),...

'Parent',axes2,...

'CDataMapping','scaled');

set(fig2,'Colormap',jet);
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colorbar('Peer', axes2,...

[0.95 0.15 0.01 0.80],...

'FontSize', 14,...

'FontName', 'Times New Roman',...

'XColor', [0 0 0],...

'YColor', [0 0 0]);

xlabel('frequency (rad/fs)');ylabel('Length (mm)');

fig3 = figure('Position',[1100 100 400 400]);

axes3 = axes('Parent', fig3,...

'Position',[0.15 0.15 0.75 0.80],...

'FontWeight','bold',...

'FontSize',14,...

'FontName','Times New Roman',...

'CLim',[0 max(max(abs(EV).^2))./Ec^2],...

'Tick','out');

xlim(axes3,[−500 500]);

ylim(axes3,[0 max(z)/1000]);

box(axes3,'off');

hold(axes3,'all');

img3 = image(t, z.'/1000, abs(EV.').^2./Ec^2,...

'Parent',axes3,...

'CDataMapping','scaled');

set(fig3,'Colormap',pulse);

colorbar('Peer', axes3,...

[0.91 0.15 0.02 0.80],...

'FontSize', 14,...

'FontName', 'Times New Roman',...

'XColor', [0 0 0],...

'YColor', [0 0 0]);

xlabel('Frequency (rad/fs)');ylabel('Length (mm)');
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Appendix B. Crystal Susceptibilities with Light Deviated from Principal Axes

Here we briefly introduce the calculation of crystal linear/nonlinear suscep-
tibilities when light is propagated with deviation from principal axes [1]. Frame
(x, y, z) is assigned to mark the principal axes, i.e. the optic axis/axes of the
crystal, while frame (x′, y′, z′) marks the light propagation, in which axis z′

indicates the light propagation direction and axes x′ and y′ are polarization
directions. The transition between (x, y, z) and (x′, y′, z′) could be normalized
as a two-angle rotation (ϕ, θ) where angle ϕ marks the frame rotation with
respect to axis z and θ is the angle between z and z′, see Fig. B.1.

Fig. B.1: normalized two-angle rotation from crystal principal axes (x, y, z) to
light propagation frame (x′, y′, z′).

Therefore, the transition between the two frames is:

 x′

y′

z′

 = R

 x

y

z

 ,
 x

y

z

 = R−1

 x′

y′

z′

 (B.1)
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where the transition matrix is:

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

 cosϕ cos θ sinϕ cos θ − sin θ

− sinϕ cosϕ 0

cosϕ sin θ sinϕ sin θ cos θ


R−1 =

 r−1
11 r−1

12 r−1
13

r−1
21 r−1

22 r−1
23

r−1
31 r−1

32 r−1
33

 =

 cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ


(B.2)

Since RT = R−1 (i.e. rnm = r−1
mn), matrix R is orthogonal.

In the principal frame, crystal linear/nonlinear susceptibilities are prede-
termined as material fundaments. For example, fundamental permittivities
reflecting the refractive indices of an uniaxial crystal is defined as:

ε̃r = 1 + χ̃(1) =

 ε̃x;x 0 0

0 ε̃y;y 0

0 0 ε̃z;z

 (B.3)

where χ̃(1) includes linear susceptibilities.
Without nonlinearities, the electric flux density is written as D̃ = ε0ε̃rẼ.

In the propagation frame, we have:

D̃′ = RD̃ = ε0Rε̃rR
−1Ẽ′ = ε0(Rε̃rR

T )Ẽ′ (B.4)

Therefore the transited permittivity matrix is ε̃′r = Rε̃rRT .
For tetragonal, trigonal and hexagonal crystals which have ε̃x;x = ε̃y;y, the

transited permittivity matrix is expanded as:

ε̃′r =

 ε̃x;xcos2θ + ε̃z;zsin
2θ 0 (ε̃x;x − ε̃z;z) cos θ sin θ

0 ε̃x;x 0

(ε̃x;x − ε̃z;z) cos θ sin θ 0 ε̃x;xsin2θ + ε̃z;zcos2θ

 (B.5)

Since z′ is the propagation direction, D̃′z = 0, we have:

Ẽ′z = − (ε̃x;x − ε̃z;z) cos θ sin θ

ε̃x;xsin2θ + ε̃z;zcos2θ
Ẽ′x (B.6)

Hence:

D̃′x = ε̃0
ε̃x;xε̃z;z

ε̃x;xsin2θ + ε̃z;zcos2θ
Ẽ′x

D̃′y = ε̃0ε̃x;xẼ
′
y

(B.7)
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The light fraction that is polarized along the axis x′ is then defined as
extraordinary light where the corresponding refractive index is dependent on
the angle θ:

ne
∆
=
√
ε̃′x;x =

√
ε̃x;xε̃z;z

ε̃x;xsin2θ + ε̃z;zcos2θ
(B.8)

while the y′ polarized light fraction is ordinary light where the refractive index
is angle independent, i.e. no =

√
ε̃′y;y =

√
ε̃x;x.

Now we look into the quadratic nonlinearity. The quadratic nonlinear in-
duced polarization in the propagation frame is:

P̃′(2) = RP̃(2) = Rε0χ̃
(2)F [EE] = ε0(Rχ̃(2)D−1)F [E′E′] (B.9)

where χ̃(2) is the matrix of quadratic nonlinear susceptibilities, which is usually
given as the “d-tensor”, i.e.: (where the Kleinman law are applied)

χ̃(2) =

 χ̃
(2)
x;xx χ̃

(2)
x;yy χ̃

(2)
x;zz χ̃

(2)
x;yz χ̃

(2)
x;xz χ̃

(2)
x;xy

χ̃
(2)
y;xx χ̃

(2)
y;yy χ̃

(2)
y;zz χ̃

(2)
y;yz χ̃

(2)
y;xz χ̃

(2)
y;xy

χ̃
(2)
z;xx χ̃

(2)
z;yy χ̃

(2)
z;zz χ̃

(2)
z;yz χ̃

(2)
z;xz χ̃

(2)
z;xy



= 2

 d11 d12 d13 2d14 2d15 2d16

d21 d22 d23 2d24 2d25 2d26

d31 d32 d33 2d34 2d35 2d36


(B.10)

where:

EE = [ ExEx EyEy EzEz EyEz ExEz ExEy ]T

E′E′ = [ E′xE
′
x E′yE

′
y E′zE

′
z E′yE

′
z E′xE

′
z E′xE

′
y ]T

(B.11)

For each element dmn, the first subscript, m = 1, 2, 3, indicates the target elec-
tric field component, Ex, Ey, Ez, while the second subscript, n = 1, · · · , 6,
indicates the combination type of two contributed electric field components in
the quadratic nonlinear process. The pre-factor 2 in front of the d matrix is the
consequence of historical conversions. Note that compared to the definition in
the textbook, some elements in d matrix have extra pre-factors of 2, which is
actually shifted from the vector EE which used to be defined as:

EE = [ ExEx EyEy EzEz 2EyEz 2ExEz 2ExEy ]T
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Since we have E = R−1E′, matrix D−1 can be easily obtained as:

D−1[E′E′] =



∑
k,l=1,2,3

r−1
1k r
−1
1l E

′
kE
′
l∑

k,l=1,2,3

r−1
2k r
−1
2l E

′
kE
′
l∑

k,l=1,2,3

r−1
3k r
−1
3l E

′
kE
′
l∑

k,l=1,2,3

r−1
2k r
−1
3l E

′
kE
′
l∑

k,l=1,2,3

r−1
1k r
−1
3l E

′
kE
′
l∑

k,l=1,2,3

r−1
1k r
−1
2l E

′
kE
′
l

(B.12)

Therefore, the quadratic nonlinear susceptibility matrix in the propagation
frame is:

χ̃′(2) = Rχ̃(2)D−1 (B.13)

which can be calculated by Mathematica. For example, trigonal crystals within
group 3m have following d matrix: 0 0 0 0 2d15 −2d22

−d22 d22 0 2d15 0 0

d31 d31 d33 0 0 0

 , d31 = d15 (B.14)

Therefore, we have:

d′e;oo
∆
=

1

2
χ̃′(2)
y;xx = −d31 sin θ + d22 cos θ sin 3ϕ (B.15)

and,

d′e;ee
∆
=

1

2
χ̃′(2)
x;xx = −3d31cos2θ sin θ − d33sin3θ − d22cos3θ sin 3ϕ (B.16)

Analogously, the cubic nonlinear induced polarization in the propagation
frame is:

P̃′(3) = ε0(Rχ̃(3)C−1)F [E′E′E′] (B.17)

where the material cubic nonlinear susceptibility matrix is χ̃(3) = C[3×10]: (with
the Kleinman law been applied) c11 c12 c13 3c14 3c15 3c16 3c17 3c18 3c19 6c110

c21 c22 c23 3c24 3c25 3c26 3c27 3c28 3c29 6c210

c31 c32 c33 3c34 3c35 3c36 3c37 3c38 3c39 6c310

 (B.18)
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For each element, cmn, the first subscript,m = 1, 2, 3, represents the target elec-
tric field component, i.e. Ex, Ey, Ez, and the second subscript, n = 1, · · · , 10,
marks the type of combination of three contributed electric field components,
i.e. xxx, yyy, zzz, xxy, xxz, yyx, yyz, zzx, zzy, xyz, respectively. For exam-
ple:

c18 = χ̃(3)
x;zzx = χ̃(3)

x;xzz = χ̃(3)
x;zxz = χ̃(3)

z;zxx = c35 (B.19)

Pre-factors in such the C matrix are shifted from the vector EEE, which is:

EEE =
[
ExExEx EyEyEy EzEzEz ExExEy ExExEz

EyEyEx EyEyEz EzEzEx EzEzEy ExEyEz

]T
(B.20)

Correspondingly, we have:

E′E′E′ =
[
E′xE

′
xE
′
x E′yE

′
yE
′
y E′zE

′
zE
′
z E′xE

′
xE
′
y E′xE

′
xE
′
z

E′yE
′
yE
′
x E′yE

′
yE
′
z E′zE

′
zE
′
x E′zE

′
zE
′
y E′xE

′
yE
′
z

]T
(B.21)

The transition matrix C−1 is obtained as:

C−1[E′E′E′] =



∑
k,l,s=1,2,3

r−1
1k r
−1
1l r
−1
1s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
2k r
−1
2l r
−1
2s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
3k r
−1
3l r
−1
3s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
1k r
−1
1l r
−1
2s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
1k r
−1
1l r
−1
3s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
2k r
−1
2l r
−1
1s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
2k r
−1
2l r
−1
3s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
3k r
−1
3l r
−1
1s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
3k r
−1
3l r
−1
2s E

′
kE
′
lE
′
s∑

k,l,s=1,2,3

r−1
1k r
−1
2l r
−1
3s E

′
kE
′
lE
′
s

(B.22)

Hence, the effective cubic nonlinear susceptibility matrix in the propagation
frame is:

χ̃′(3) = Rχ̃(3)C−1 (B.23)
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Trigonal crystals within group 3m have C matrix: c11 0 0 0 3c15 c11 −3c15 3c18 0 0

0 c11 0 c11 0 0 0 0 3c18 −6c15

c15 0 c33 0 3c18 −3c15 3c18 0 0 0

 (B.24)

Therefore, we have:

χ̃(3)
e;eee

∆
= χ̃′(3)

x;xxx

= c11cos4θ − 4c15cos3θ sin θ cos 3ϕ+ 6c18cos2θsin2θ + c33sin4θ (B.25)

χ̃(3)
o;ooo

∆
= χ̃′(3)

y;yyy ≡ c11 (B.26)

and,

χ̃(3)
o;eeo = χ̃(3)

e;ooe
∆
= χ̃′(3)

x;yyx = χ̃′(3)
y;xxy

= c11cos2θ + 3c15 sin 2θ cos 3ϕ+ 3c18sin2θ (B.27)
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Appendix C. Understanding Soliton Spectral Tunneling as A Coupling Effect

C.1 Introduction

Dispersive waves (DWs), also known as soliton induced optical Cherenkov ra-
diations (OCRs) [1], are generated when temporal solitons are perturbed by
higher-order dispersion [2]. This phenomenon was experimentally verified soon
after its proposal [3–5]. Physically, DW is a resonant wave having phase match-
ing (PM) to the launched soliton. The spectral position of such a wave can
be well predicted through a PM topology (showing resonant wavelengths as
a function of the soliton wavelength) [6]. DWs play an important role in the
attractive octave-spanning supercontinuum generation (SCG) in fiber struc-
tures as they dominate the blue-shifted edge of the spectrum while the Raman
induced soliton self-frequency shift (SSFS) leads to the red-shifted edge [7].
Usually, soliton induced DWs are generated in normal group velocity disper-
sion (GVD) regions which are opposite to the solitons [8,9], and they also have
different group velocity (GV) than the solitons.

However, by properly tailoring the dispersion profile, such DWs can also
be turned into soliton waves. One exact case is the so-called soliton spectral
tunneling (SST) effect which was proposed and investigated [10–14] as a soliton
spectral switching phenomenon. Fundamentally, SST is driven by the Raman
induced SSFS to continuously shed off energy to the DW, and it also requires
a potential barrier in the GVD profile [10], [11], [14] so that both the launched
soliton and the generated DW have the same sign of GVD and the DW finally
forms another soliton wave. A typical GVD barrier is a normal GVD region
sandwiched by two anomalous ones, which is realizable in photonic crystal fibers
(PCFs), with the waveguide dispersion reducing the material dispersion and
forming multiple zero-dispersion wavelengths (ZDWs). Poletti et al. designed
an index-guiding holey fiber to form the GVD barrier which can be tuned over
a wide wavelength span and has potentials for SST [15]. Manili et al. reported
their DW generation experiments in a dual concentric core microstructured
fiber which has three ZDWs [16]. But unfortunately the SST effect was not
observed as the GVD barrier was so strong that the transferred wave could not
pass through to form a soliton wave. Moreover, recent investigations on the
SST effect [17,18] showed that along with the above mentioned PM condition,
GV matching between the launched and switched solitons is another significant
premise for decent soliton switching with high efficiency and broad bandwidth.

In this appendix chapter, we propose an idea that such a GV-matching
DW generation as well as the SST effect can be generally understood as a
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spectral soliton coupling from an initial state to its eigenstate. Analogous to
a spatial waveguide in which eigenmodes are supported under a certain phase
profile (determined by the spatial refractive index profile), for fundamental
temporal solitons, an eigenstate is also supported under a dispersive phase
profile determined by the wave number profile and the soliton phase changes
induced by both the dispersion and the nonlinearity are counterbalanced. DW
generation and SST are usually invoked by launching a local soliton state but
not the eigenstate, therefore spectral soliton coupling between this initial state
and the eigenstate can occur, in which the local soliton will shed off energy
to other wavelength positions. A GV-matching condition is essential to tell
whether the transferred wave is solitary or dispersive as it defines the dispersive
wave number profile. If the transferred wave is GV-matched to the launched
soliton, the wave number profile performs like a spectral coupler structure and
the transferred wave can form a soliton state, while when GV-mismatched, the
profile is a leaking structure and the transferred wave performs as leakage from
the launched soliton, namely forming linear dispersive waves.

C.2 Soliton Eigenstate and Coupling Effect

We begin with the demonstration of the soliton eigenstate. The nonlinear wave
equation in frequency domain (NWEF) [19,20] is chosen as the numerical model
as it focuses on the spectrum of the electric field. With only the dispersion
and the cubic phase modulation (self-phase modulation (SPM) and cross-phase
modulation (XPM)) terms included, NWEF is written as:

∂

∂z
Ẽ + iβẼ + iγF [|E|2E] = 0 (C.1)

where Ẽ is the electric field written in frequency domain, β refers to the wave
number profile, γ(ω) = ω

c n2/Aeff(ω) is the frequency-dependent nonlinear coef-
ficient in which the pulse self-steepening is automatically included. F indicates
the Fourier transform. The dispersive phase profile is determined with the ini-
tial wave number β0 and the global GV vg,0 eliminated from the physical wave
number, i.e. βeig(ω) = β(ω)− β0 − ω · v−1

g,0. Shown in Fig. C.2(a), a coupler-
like wave number profile is demonstrated to support a soliton eigenstate which
consists of two spectral peaks corresponding to coupler channels.

If only a one-peak hyperbolic secant shape (sech-shape) soliton, correspond-
ing to one channel of the wave number coupler, is launched, soliton spectral
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Fig. C.1: (a) soliton eigenstate of a coupler-like wave number profile. Note
that the wave number profile has an explicit expression with respect to the
soliton eigenstate according to Eq.(C.1);(b) soliton coupling from the initial
state towards the eigenstate. The launched soliton is sech-shape, the soliton
order is set to unity, T0 = 10 fs (FWHM = 17.63 fs). Spectral evolutions are
linear scaled. Y-axes in spectrum evolutions are scaled as soliton length defined
as π

2LD, LD is dispersion length. n2 and Aeff are assumed to be dispersionless
here.

coupling is supposed to be observed as shown in Fig. C.2(b): the soliton sheds
off energy into the adjacent channel and forms another wave. Meanwhile, the
launched soliton itself will experience a spectral recoil effect [1, 21] away from
the coupling. The energy coupled out will also be coupled back since the trans-
ferred wave is GV-matched to the launched soliton. Therefore the launched
soliton will be pulled back to its original position and invokes the coupling
over again. The transferred wave here is formed due to the DW PM condi-
tion, but it is not a DW but actually a soliton wave which travels together
with the launched soliton (GV-matching), it is fed by the launched soliton but
unfortunately the energy is low due to the recoil effect.

Including material Raman effects (not included in Eq.(1)) which always
accompany the self-action of high-power femtosecond pulses in a variety of
media [22,23], SST effect is observed as shown in Fig. C.2(a). Since the Raman
response induces SSFS which is always red-shifted and could balance the recoil
effect, the launched soliton can be kept at its position and the soliton coupling
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Fig. C.2: (a) SST effect with extra 20% material Raman effects. The Raman
spectral response is chosen from Ref. [8]; (b) soliton leaking in a leaking wave
number profile, commonly known as the DW generation.

Fig. C.3: (a) and (b) are XFROG patterns of Fig. C.2(a) and Fig. C.2(b) at
half propagation distance, with the corresponding spectra and profiles of the
electric field; Gate function in the XFROG pattern has a hyperbolic secant
shape with T0 = 10 fs. XFROG patterns are logarithmic scaled.

continuously occurs until it is fully coupled into the adjacent channel to form
a new soliton. Afterwards, the new soliton will also experience the Raman
induced SSFS, which means the back coupling are greatly suppressed since the
soliton will be red-shifted away from the coupling. The XFROG pattern of
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the SST also shows that the generated soliton is always GV-matched to the
launched one, see Fig. C.2(a).

However, in a leaking structure of the dispersive wave number profile where
the transferred wave is GV-mismatched to the launched soliton, SST will not
occur, see Fig. C.2(b). In the XFROG pattern, waves are gradually radiated
as the leakage from the launched soliton, leaving a long tail in the pattern, see
Fig. C.2(b).

In fact, the GV-matching condition helps turning the commonly-known
DW PM condition into a soliton PM condition. The PM condition of the DW
generated at ωd can be written as:

β(ωd) = βsol,ωs
(ωd) (C.2)

where βsol,ωs
(ω) = β(ωs) + (ω − ωs)v

−1
g,s + qs determines the non-dispersive

soliton phase with spectrum centered at ωs, qs is the soliton wave number
and, for fundamental solitons, its contribution is minimal and can be ignored.
Therefore, the above equation can be expanded as:

β(ωd) + (ω − ωd) · v−1
g,s = β(ωs) + (ω − ωs)v−1

g,s (C.3)

With a GV-matching condition, vg,d = vg,s, the above equation finally be-
comes βsol,ωs

(ω) = βsol,ωd
(ω), implying the phase matching within the whole

frequency domain between two solitons located at ωs and ωd. Actually, a
symmetric coupler-like wave number profile is exactly corresponding to such a
soliton PM condition, with both the DW PM and the GV-matching conditions
fulfilled between the launched and transferred solitons.

C.3 Examples in Photonic Crystal Fibers

In practice, PCFs with designed pitch size ∆ and hole size d can achieve flexible
dispersion profiles with multiple controlled ZDWs. For example, in Fig. C.4, a
solid-core index-guiding PCF with a triangular air-hole pattern in the cladding
can form a concave-like dispersion profile with 3 ZDWs. Such a dispersion
profile is actually produced by the mode coupling between the core and the
air-hole cladding around a resonant wavelength.

The wave number profile of such a PCF structure is plotted in Fig. C.5, by
eliminating a global β0 and vg,0, showing a coupler-like profile, with two peaks
located at 1.52 µm and 1.85 µm. Under such a profile, a sech-shape soliton
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Fig. C.4: Solid-core index guiding PCF’s dispersion and effective nonlinear
coefficient γ versus wavelength, estimated by means of Comsol software. The
inserts are the mode field distribution corresponding to different wavelengths.
Core diameter can be estimated as 2∆− d = 3.89 µm.

centered at 1.4 µm is launched, which is actually slightly detuned from the
short-wavelength coupler peak. Hence, during the propagation, the launched
soliton will start with the Raman induced SSFS, red-shifting towards the first
coupler peak where the coupling is invoked. Then, strong soliton coupling
occurs with most of the energy transferred into the second coupler channel,
shown by the full NWEFmodel [19] in Fig. C.5(a). The XFROG pattern in Fig.
C.5(c) again proves the GV-matching between the launched and transferred
solitons. The proportion of the soliton energy transfer is around 60%, lower
than the ideal SST because the nonlinear coefficient γ has a reduction in long
wavelengths due to an increase in the effective mode area.

With a different pitch size, the wave number profile shows a leaking struc-
ture. Therefore, soliton leaking occurs instead of coupling, see Fig. C.5(b).
Although from the spectral evolution the transferred waves still have strong
peaks, they are actually not soliton waves but just leakage-like DWs, proved
by the XFROG pattern in Fig. C.5(d).
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Fig. C.5: Full NWEF simulations on the spectral evolutions of a 25 fs (FWHM)
single sech-shape soliton centered at 1.4 µm under the coupler-like and leaking
phase profiles: (a) coupler-like structure with ∆ = 2.255 µm and (b) leaking
structure with ∆ = 2.235 µm. The input, output spectra of both cases and
broadest spectrum during the SST (position marked by white dashed line) are
shown. The input soliton pulse has a peak power 380 W, soliton length π

2LD

is 0.22 m, the material Kerr nonlinearity is n2 = 2.6× 10−20 m2/W, Raman
fraction is 24.5%. (c) and (d) XFROG pattern of (a) and (b) at a propagation
length of 20 m. The gate function in XFROG pattern also has a FWHM = 25
fs. Spectral evolutions and XFROG patterns are all logarithmic scaled.

The soliton coupling effect as well as the soliton state of the transferred
wave is also demonstrated through the temporal profile of the pulses, see Fig.
C.6. Shown in Fig. C.6(a, b), the soliton pulse in the first channel (1.52 µm)
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Fig. C.6: NWEF simulations on the temporal profile of the 25 fs (FWHM) single
sech-shape soliton centered at 1.4 µm under the coupler-like phase profiles: (a,
b) the electric field and the envelope profile of the pulses at (a) the beginning
of the energy transfer, defined as the pulse most-compressed position (marked
by white dashed line in Fig. C.5(a)), and at (b) the end of the 20-meter-
propagation, respectively. (c) spectral comparison between the NWEF model
and GNLSE model. (d) filtered out soliton wave at the transferred wavelength,
the transferred soliton has a soliton length around 2.56 m, FWHM around 100
fs.

and the transferred wave at the second channel (1.85 µm) are beating during
the propagation and give rise to beating modulation on the electric field of
the pulses. The beating length is 27 fs, corresponding to the frequency differ-
ence between the two waves. Such beating process can only occur when the
two waves always have the same group velocity, i.e. GV-matching, from the
beginning of the energy transfer to the end of the propagation.

Moreover, by filtering the spectrum to isolate the transferred wave, we can
investigate the alleged soliton properties of the tunneled wave: its temporal
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pulse profiles at different stages of propagation are shown in Fig. C.6(d).
Although there is a clear drop in the peak intensity and a slight temporal
broadening during propagation, this is attributed to a relaxation effect of the
soliton as it will self-adapt to the GVD profile by adjusting the pulse duration
and peak intensity gradually during the propagation. Its characteristic soliton
length is calculated to be 2.56 m, i.e. much shorter than the distances con-
sidered here, which supports the notion that this is a soliton. Indeed, a DW
would at the same propagation distances be dramatically reduced in intensity
and broadened in time due to its dispersive nature. We also checked the results
by using the more commonly-used GNLSE [7] and we got very similar results,
see Fig. C.6(c).

C.4 Conclusion

In conclusion, here we pointed out that a fundamental soliton eigenstate is al-
ways supported under a dispersive phase profile, in which the phase shifts on
pulse induced by both the dispersion and the nonlinearity are counterbalanced.
A coupler-like phase is demonstrated to support a two-peak-shape soliton eigen-
state. When launching only a single sech-shape soliton corresponding to one
channel of such a phase coupler, soliton coupling is expected to occur. Phys-
ically, coupler-like wave number profile implies a soliton PM condition which
is beyond the commonly-known DW PM condition by including another essen-
tial premise, GV-matching condition, which means the generated DW is turned
into another soliton wave. When having a leaking structure of the wave number
profile, i.e. GV mismatched, the launched soliton will have a leakage-like radi-
ation instead of transferring to another soliton, which is exactly the commonly
observed DW generation. Such soliton coupling and soliton leaking effects in
realistic PCF structures are also presented as vivid examples.
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