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• Find the lightest structure that is able to carry a given set of loads. 
                        minimize weight 
                        s.t.  compliance ≤ given value 
•  Find the stiffest structure that is able to carry a given set of loads with   
    limited amount of material. 
                         minimize compliance 
                         s.t.  weight ≤ given value 

Structural optimization 
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• Find the lightest structure that is able to carry a given set of loads. 
                        minimize weight 
                        s.t.  compliance ≤ given value 
•  Find the stiffest structure that is able to carry a given set of loads with   
    limited amount of material. 
                         minimize compliance 
                         s.t.  weight ≤ given value 

In Free Material Optimization (FMO) 

 

The design variable is the full material tensor which can vary almost freely 

at  each point of the design domain. 

 
FMO yields optimal distribution of material as well as optimal local material 
properties. 

Structural optimization 
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Optimal density distribution  

 

Design Domain, bc and force 

A 2D example 

The obtained design 

• can be considered as an ultimately best structure, 

• is difficult and expensive to manufacture,  

• can be used to generate benchmarks and to propose novel ideas 

for new design situations.   
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Mechanical assumptions 

•  static loads 

•  linear elasticity 
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FMO formulations 
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Basic FMO formulations for solid structures 

 

Minimum compliance problem                  Minimum weight problem 
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Other different formulations can also be derived. 

FMO formulations 



DTU Wind Energy, Technical University of Denmark 8 08.03.2013 

 
Depending on the problem formulation additional constraints can 
be included such as constraints 
 
• on local stresses  
 
 
 
 
• on local strains 
 
 
 
 

• on displacement 
 
 
 

• etc  
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Additional constraints  
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The resulting optimization problem is a nonlinear semidefinite program, a 
non-standard problem with many matrix inequalities. 
 
 
 

Optimization method 

 
 
 
Existing robust and efficient primal-dual interior point methods for nonlinear 
programming has in this project been extended to solve FMO problems. 
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Design domain, bc and loads           Optimal material density distribution 
 
4-loads 

 

 

Numerical Results 
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Design Damain, bc and forces

 

 
Density distribution of optimal design

 

 

Optimal strain norms

 

 
Optimal stress norms

 

 

 
With out stress constraints 
 
 
 

Numerical Results …. 
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With  stress constraints,  
• max stress is decreased by 50% 
• 11 more iterations              
 
 

Density distribution of optimal design

 

 

Optimal strain norms

 

 
Optimal stress norms

 

 

• Higher stresses  are distributed to the neighbor  regions, 
• So is also material distribution 

Numerical Results …. 
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Design domain, bc and loads          optimal material density distribution 
 
4-layers 

• Symmetric laminate 

• High material distribution on top and bottom layers 

Numerical Results 

Density distribution, Layer=1 Density distribution, Layer=2

Density distribution, Layer=3 Density distribution, Layer=4
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Design domain, bc and loads          optimal material density distribution 
 
4-layers 
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Numerical Results …. 

Density distribution, Layer=1 Density distribution, Layer=2
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Corner supported shell 

Corner supported plate 

Numerical Results …. 
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Corner supported half cylinder, length to width ratio 1:1  

Corner supported half cylinder, length to width ratio 4:1 

Numerical Results …. 
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Edge supported saddle surface shell  

 

 

Numerical Results …. 
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• Provide physical interpretation of the optimal solution  

• Propose models and methods for FMO for beams with advanced cross 

sectional analysis (with José Blasques and Mathias Stolpe at DTU Wind Energy) 

• Include large deformations (geometric nonlinearity) 

• Write articles, and PhD thesis. 

Future work 
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