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Abstract

In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil
respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and
shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span
in mean annual air temperature from 0 to 16 ◦C, and in annual precipitation from 3005

to 1300 mm yr−1. The effects of climate change, including temperature increase and
prolonged drought, were tested at five shrubland sites. At one peatland site, the long-
term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition
was investigated at three peatland sites.

The shrublands were generally sinks for atmospheric CH4 whereas the peatlands10

were CH4 sources, with fluxes ranging from −519 to +6890 mg CH4-C m−2 yr−1 across
the studied ecosystems. At the peatland sites, annual CH4 emission increased with
mean annual air temperature, while a negative relationship was found between net
CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were
generally small ranging from –14 to 42 mg N2O-N m−2 yr−1. Highest N2O emission oc-15

curred at the sites that had highest concentration of nitrate (NO−
3 ) in soil water. Further-

more, experimentally increased NO−
3 deposition led to increased N2O efflux, whereas

prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emis-
sions in control plots ranged from 310 to 732 g CO2-C m−2 yr−1. Drought and long-term
drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where20

drought tended to increase soil respiration.
When comparing the fractional importance of each greenhouse gas to the total nu-

merical global warming response, the change in CO2 efflux dominated the response
in all treatments (ranging 71–96 %), except for NO−

3 addition where 89 % was due to
change in CH4 emissions. Thus, in European peatlands and shrublands the feedback25

to global warming induced by the investigated anthropogenic disturbances will be dom-
inated by variations in soil CO2 fluxes.
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1 Introduction

Shrublands are natural or semi-natural nutrient poor ecosystems, characterized by
patches of low stature vascular vegetation alternating with bryophytes or bare soil.
Commonly, the shrublands on poorly drained, deep organic soils (> 30 cm) are called
peatlands (Lai, 2009) while shrublands on mineral soils, which are typically exces-5

sively drained, are called shrublands sensu stricto (Beier et al., 2009). These ecosys-
tem types make up approximately 7 % of the European land area (EEA, 2006; Mon-
tanarella et al., 2006) and contribute valued ecosystem services, such as habitat provi-
sion, recreation, water purification and carbon (C) sequestration (Kimmel and Mander,
2010). For instance, northern peatlands were estimated to sequester 0.07 Gt C yr−1,10

which over time has accumulated, resulting in deep organic soil profiles that constitute
a major store of terrestrial C (Gorham, 1991; Clymo et al., 1998). Responses of these
ecosystems to climate change and other anthropogenic disturbances are therefore im-
portant for the overall European greenhouse gas (GHG) budget.

In Europe, peatlands are most abundant under the subarctic and temperate climates15

of the Nordic countries, where Finland and Sweden together account for 65 % of the
European area of peat soils (Montanarella et al., 2006). The geographical distribution of
shrublands in Europe includes the heather-moorlands on the British Isles, dry Calluna
heaths along the Atlantic coastlines from northern Norway to northern Portugal, and
finally maquis ecosystems under the Mediterranean climate in southern Europe (Beier20

et al., 2009).
Peatlands and shrublands share some common properties concerning vegetation

and nutrient status, but they also differ fundamentally, especially in terms of hydrology,
with related differences in soil structure, thermal properties and redox state. Such differ-
ences may lead to deviation in their respective drivers of GHG fluxes. Methane (CH4)25

fluxes between soil and atmosphere represent the balance between CH4 production
by methanogenic archaea and CH4 oxidation by methanotrophic bacteria (Le Mer and
Roger, 2001). Peatlands are generally net CH4 sources, and key drivers controlling
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CH4 efflux are water table depth, temperature and availability and quality of carbon
substrates (Christensen et al., 2003; Lai, 2009). Presence and composition of vascular
vegetation can also affect the CH4 flux dynamics, both through root exudation of labile
C substrates for CH4 production (Ström et al., 2003), and by providing gas conduits,
which may influence CH4 production, oxidation and transport processes (Joabsson5

et al., 1999). In contrast, dry Calluna heaths and Mediterranean shrublands are usually
CH4 sinks, where CH4 uptake most often correlates positively with temperature and
negatively with soil water content (Castaldi and Fierro, 2005; Carter et al., 2011). The
latter is due to the slower gas diffusion in water than in air, which causes soil water to
limit CH4 diffusion towards the zone of methanotrophic activity (Dunfield, 2007). This10

zone is mainly located in the upper 20 cm soil layer (Roslev et al., 1997; Stiehl-Braun
et al., 2011a, b), but can go deeper as aridity increases (Striegl et al., 1992).

Studies have also reported differences between peatlands and shrublands in the key
drivers of nitrous oxide (N2O) fluxes. At least two microbial processes may contribute
to N2O emissions from soils (Baggs, 2011). These are nitrification and denitrification,15

which occur under aerobic and anaerobic soil conditions, respectively, and generally
increase with nitrogen (N) availability. In a shallow peatland in Scotland, a spatial anal-
ysis revealed a negative correlation between N2O emissions and soil pH, possibly an
indirect result of limited soil N availability for the microbes at locations with higher pH
values (Dinsmore et al., 2009), where the vegetation constitutes a stronger N sink. The20

temporal N2O dynamics were primarily controlled by soil temperature with an apparent
switch from consumption to production at about 8 ◦C (Dinsmore et al., 2009). Fluxes of
N2O in shrublands have only been investigated in a few studies, and knowledge of key
drivers specific for this ecosystem type is sparse (e.g., Curtis et al., 2006; Carter et al.,
2011). In four British moorlands, Curtis et al. (2006) detected either very low or no N2O25

emission. Incubation of soil cores, however, demonstrated that N2O efflux could be in-
duced by warming and N addition. In a Danish Calluna heath, both soil moisture and
temperature had positive effects on N2O emissions (Carter et al., 2011).
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Decomposition of soil organic matter and plant root respiration together make up
soil respiratory CO2 emission, which in peatlands typically correlates positively with
both temperature and water table depth (Smith et al., 2003; Danevčič et al., 2010).
Similarly for shrublands, soil CO2 emissions were shown to be strongly controlled by
temperature in an analysis based on two years of data from four European heathlands5

(Emmett et al., 2004).
The relative contribution to global warming of the three greenhouse gases CH4,

N2O and soil respiratory CO2 may vary between peatlands and shrublands. For in-
stance, annual GHG budgets for a minerotrophic fen in Finland and a shallow peat-
land in Scotland showed that N2O fluxes were generally of minor importance, whereas10

CH4 emissions and net ecosystem CO2 exchange exerted the greatest impact on the
ecosystem’s feedback to global warming (Drewer et al., 2010). For comparison, in an
old Kunzea ericoides shrubland in New Zealand, GHG emissions were dominated by
CO2 release from the soil while pronounced CH4 uptake more than counteracted N2O
emissions on a CO2-equivivalent basis (Price et al., 2010). Similar studies for European15

shrublands are currently lacking.
In future, the exchange of GHGs between ecosystems and the atmosphere may

be affected by predicted changes in climate, including increasing temperatures and
increased duration and frequency of summer droughts; the latter expected in western
and southern Europe (IPCC, 2007a). For instance, Emmett et al. (2004) reported 0–20

19 % increases in soil CO2 effluxes in response to 0.5–2 ◦C warming across four of the
five shrublands described in this study. Furthermore, Carter et al. (2011) found a 20 %
increase in CH4 uptake rates under elevated temperature in a dry temperate heathland
(DK-Bra in this study). Emissions of N2O from this site were reduced and stimulated by
drought and elevated temperature, respectively, but only when these treatments were25

combined with elevated atmospheric CO2 concentrations (Carter et al., 2011).
In addition to the anthropogenic contribution to climate change, anthropogenic ac-

tivities continue to affect the hydrology of peatlands through extensive drainage oper-
ations to enable forestry, agriculture or peat harvesting for horticultural purposes and
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fuel. Drainage of peatland was particularly widespread in the northern temperate zone
before the 1980s (Kimmel and Mander, 2010). Such drainage has led to elevated CO2
effluxes (von Arnold et al., 2005a,b; Salm et al., 2009) and to decreased CH4 emis-
sions (Roulet and Moore, 1995; Minkkinen et al., 2002; Lai, 2009), although emissions
of CH4 can be significant from drainage ditches in nutrient-rich fens (Minkkinen and5

Laine, 2006). By contrast, N2O emissions from ombrotrophic bogs are relatively insen-
sitive to changes in the water table, as the efflux is probably limited mainly by slow
N transformation rates caused by low pH and nutrient availability (Martikainen et al.,
1993).

A further anthropogenic influence on GHG fluxes in peatlands and shrublands is the10

effect of enhanced atmospheric N deposition, which is less well understood. Most ox-
idized N (NOx) pollution is derived from fossil fuel combustion, to satisfy energy and
human transportation needs (Dignon and Hameed, 1989). Reduced N (NHx) pollution
is predominantly an agricultural bi-product, increasing in direct proportion to fertilizer
use, animal numbers and body mass (Asman et al., 1998). Thus, there is little likelihood15

that the global N pollution will decline in the immediate future (Galloway et al., 2004;
Peñuelas et al., 2012). Bragazza et al. (2006) investigated peatlands along an atmo-
spheric N deposition gradient ranging from 2 to 20 kg N ha−1 yr−1 and found increased
soil respiratory CO2 emissions under higher N deposition rates. This relationship was
explained by the removal of N constraints on microbial metabolism and by improved20

litter quality. The effects of increased N availability on CH4 exchange are dependent
on site specific properties. Some soils show inhibitory effects on CH4 oxidation (Crill
et al., 1994; Christensen et al., 1999), while others show minor or no effects (Saarnio
and Silvola, 1999). If the abundance of vascular plants increases in peatlands as a re-
sult of higher N availability, this may increase CH4 emissions by providing gas conduits25

and improving litter quality (Joabsson et al., 1999; Nykänen et al., 2002). Increasing the
amount of inorganic N in a soil will also enhance the potential for N2O emissions both
through nitrification and denitrification processes (Firestone and Davidson, 1989).
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Experimental manipulation studies at the field scale, as well as natural gradient stud-
ies (space for time substitution), are valuable tools for predicting how ecosystems will
respond to climate change. While manipulation studies are well-suited to study effects
of changes in specific experimentally controlled climate drivers, they are intrinsically
constrained in time (years to two decades). Natural gradient studies are better suited5

to study effects on longer time scales (decades to centuries), but suffer from possi-
ble biases caused by changes in factors other than the gradient component under
investigation, for example, climate. Studies based on a combination of experimental
manipulations performed across multiple sites covering larger natural gradients should
combine the strengths of both strategies and increase the reliability of the results.10

Within the framework of the NitroEurope Integrated Project, we investigated how
the soil-atmosphere exchange of the three greenhouse gases, CH4, N2O and CO2,
responded to simulated changes in drought, warming, drainage or nitrogen addition at
nine experimental peatland and shrubland sites situated across wide natural gradients
in precipitation and temperature. The aims of the study were i) to identify environmental15

variables that correlated with GHG fluxes across the nine sites or within an ecosystem
type, ii) based on treatment responses at the site level, to evaluate whether specific
variables had a direct effect on GHG fluxes and thereby could be identified as key
drivers, and iii) to quantify the relative contribution of each GHG to the total global
warming response for each experimental treatment.20

2 Materials and methods

2.1 Study sites

The nine experimental peatland and shrubland sites included in the study were all
part of the NitroEurope project. The climatic conditions at the field sites ranged from
subarctic conditions in northern Sweden to a Mediterranean climate in Spain, and from25

hydric temperate conditions in Wales to mesic temperate climates towards Estonia in
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the east (Fig. 1). The ecosystems were selected to represent open landscapes in these
regions and included four peatlands and five shrublands (Table 1). The peatlands were
all ombrotrophic bogs, while the shrublands covered heather-moorland (UK-Clo), dry
Calluna heath (DK-Mol, DK-Bra, NL-Old) and Mediterranean garrigue shrubland (ES-
Gar). Soil type and plant species composition differed between the sites, but all sites5

had dwarf shrubs in common, mainly Calluna vulgaris, Empetrum nigrum or Erica spp.
(Table 1).

2.2 Experimental manipulations

At the Estonian peatland EE-Män, the long-term effect of drainage was studied in a part
of the bog where a drainage ditch system established in the 1950s (Veber, 1974) was10

reconstructed in 1975. Substantial lowering of the water table has resulted in signifi-
cantly improved tree growth (Niinemets et al., 2001; Portsmuth et al., 2005). Thus, when
this study took place, Pinus sylvestris was 10–12 m tall in the drained part of the bog
compared to 1–3 m in the non-drained part. The effect of increased nitrogen deposition
was investigated at three peatland sites. At the two Swedish sites SE-Sto and SE-Fäj,15

fertilized plots received NH4NO3 three times per year, corresponding to a total input
of 4 g N m−2 yr−1 (Lund et al., 2009). At the Scottish peatland UK-Whi, treatment plots
were given an extra 5.6 g N m−2 yr−1 in wet deposition using an automated sprinkler
system, which provided ca. 120 artificial rain events per year coupled to rainfall (Shep-
pard et al., 2011). Nitrogen was applied either in the reduced form as NH4Cl or in the20

oxidized form as NaNO3. The effects of temperature increase and prolonged drought
were tested at the five shrubland sites using passive night-time warming and horizon-
tal rainout curtains, respectively (Table 1). The experimental setups at these sites are
described in more detail by Beier et al. (2004) and Mikkelsen et al. (2008).
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2.3 Soil greenhouse gas flux measurements

Fluxes of CH4, N2O and soil respiratory CO2 were measured monthly or twice a month
using static chamber methods described by e.g. Carter et al. (2011) and Sowerby et al.
(2008). The chamber design and the measurement procedure varied slightly across
the nine sites. Overall, well before simultaneous measurement of CH4 and N2O fluxes5

started, a permanent soil collar was installed in each plot on which a chamber was
placed during measurements. Three to four times during the enclosure period of 20–
180 min, a sample of headspace air was collected using a syringe through a sep-
tum in the chamber. At the Spanish shrubland ES-Gar, however, only two gas sam-
ples were collected during the 15 min enclosure period to avoid adverse effects on10

headspace air pressure in the small chambers (volume 0.8 l) used at this site. Gas sam-
ples were stored in plastic syringes (SE-Sto), pre-evacuated vials (UK-Clo, NL-Old) or
non-evacuated vials using a double-needle approach (EE-Män, UK-Whi, DK-Mol, DK-
Bra, ES-Gar) before analysis for CH4 and N2O concentrations by gas chromatography.
One exception was the Swedish site SE-Fäj, where headspace concentrations of CH415

and N2O were determined in the field using a photoacoustic gas analyzer (Lund et al.,
2009). Previous studies showed that gas flux rates measured using a photoacoustic
gas analyzer were statistically identical to flux rates based gas sampling and analy-
sis by gas chromatography (Ambus and Robertson, 1998; Lund et al., 2009). Soil CO2
emissions were measured within permanent collars without vegetation, i.e. where any20

aboveground plant growth was removed on a regular basis. Generally, a chamber was
placed on the collar and the build-up of CO2 during the enclosure period was moni-
tored by a portable infrared gas analyzer. At three out of nine sites (EE-Män, NL-Old
and ES-Gar), vascular plant free patches enabled soil CO2 emissions to be determined
concurrently with CH4 and N2O fluxes using the same chamber and gas chromatogra-25

phy approach. For all three gases, the flux rates were calculated using linear regression
of headspace concentration versus time, except for long enclosure periods (≥ 120 min),
where CH4 uptake was determined by fitting a first-order function.
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Annual cumulative fluxes were obtained by linear interpolation between measure-
ment days. At the Swedish peatlands SE-Fäj and SE-Sto, gas flux measurements were
not conducted during the five and eight coldest months of the year, respectively. When
calculating the annual CO2 fluxes for these two sites, we assumed that the contribution
of the winter period to annual fluxes is 9 % at SE-Fäj (Lindroth et al., 2007) and 22 %5

at SE-Sto (Larsen et al., 2007). These ratios were also used to estimate annual CH4
and N2O fluxes, assuming that CO2 fluxes represented the general level of microbial
activity.

2.4 Precipitation, temperature and soil moisture

The meteorological measurements included precipitation and air temperature. Soil10

temperature probes were installed at either 5 cm depth (EE-Män, SE-Fäj, DK-Bra, ES-
Gar) or 10 cm depth (UK-Whi, UK-Clo, DK-Mol, NL-Old) and data were logged at least
twice a day. Volumetric soil water content was measured at least twice a week by Time
Domain Reflectometry probes installed in the top 6 cm (DK-Mol), 10 cm (SE-Sto, SE-
Fäj, UK-Clo, NL-Old), 15 cm (ES-Gar) or 20 cm soil layer (DK-Bra). For UK-Whi and15

EE-Män, volumetric soil moisture in 0–10 cm depth was calculated from monthly or
seasonal measurements of gravimetric soil water content. At the peatland sites, wa-
ter table depth was measured manually in dipwells or automatically using a pressure
transducer.

2.5 Nitrogen deposition and leaching20

Bulk N deposition was measured with bulk deposition collectors with a minimum diam-
eter of 10 cm. Concentrations of NH+

4 , NO−
3 and total N in the sampled precipitation

were determined by ion chromatography or colorimetric assays. If bulk N deposition
was not assessed at the site, then total N deposition reported in the literature for this
specific area was used instead. Nitrate leaching was determined from modelled water25

percolation combined with NO−
3 concentrations measured in soil water collected below
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the rooting zone using porous suction cups (Schmidt et al., 2004; Larsen et al., 2011).
Soil water was also sampled in the upper part of the soil profile, generally just below the
O-horizon, and analyzed for NH+

4 and NO−
3 concentrations (e.g., Schmidt et al., 2004).

2.6 Plant and soil analyses

Aboveground biomass C and N at the shrubland sites were determined using plant5

tissue C and N analyses combined with biomass estimation based on pinpoint data
(Peñuelas et al., 2004; Beier et al., 2009). Briefly, pinpoint measurements were con-
ducted by lowering a sharpened pin through the vegetation, recording species and
height for each plant hit with the pin. Total plant biomass was subsequently estimated
using a site specific correlation between pinpoint data and actual biomass obtained10

by destructive samplings outside the experimental plots (Peñuelas et al., 2004). At the
Scottish peatland UK-Whi, biomass C and N were obtained by destructive harvest.
Soil samples collected in the upper soil layer (i.e., generally the O-horizon) were ex-
tracted with distilled water (DK-Bra), 1 M KCl (UK-Whi, UK-Clo, DK-Mol, NL-Old) or
2 M KCl (EE-Män, ES-Gar) to measure concentrations of extractable NH+

4 and NO−
315

by ion chromatography or colorimetric assays (e.g., Andresen et al., 2009). For upper
and lower soil layers, soil pH was determined in a suspension of soil in distilled water,
0.01 M CaCl2 or 1 M KCl. Furthermore, bulk density, total C and N contents, and micro-
bial biomass C were measured as described by Beier et al. (2009), and C stock in the
0–10 cm soil layer was estimated.20

2.7 Responsiveness

Relative responsiveness (RR, %) of CH4, N2O and CO2 fluxes to the different treat-
ments was calculated as

RR = (Treat − Cont)/Cont × 100 (1)
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where Treat is mean treatment flux across sites and Cont is mean control flux across
sites (given in mg C or N m−2 yr−1). Similar to Liu and Greaver (2009), we refrained
from calculating relative responsiveness in cases where the flux changed direction
in response to a treatment. This occurred in the N addition experiments, where N2O
fluxes changed from net uptake to emission. For each gas species and treatment, we5

also calculated the absolute responsiveness (AR) in CO2-equivalents as

AR = (Treat − Cont)/MR × GWP (2)

where molar ratio (MR) is 12/16, 28/44 and 12/44, and global warming potential
(GWP) is 25, 298 and 1 for CH4, N2O and CO2, respectively (IPCC, 2007b). To com-
pare the relative contribution of each gas species to the total global warming response10

for a specific treatment, we calculated the fractional importance (FI, %) of each gas
species as

FIi = |ARi |/(|AR1| + |AR2| + |AR3|) × 100 (3)

where |AR1| to |AR3| is the numerical value of the absolute responsiveness for each
of the three gases. Numerical values were used in order for the total global warming15

response of all three gases to sum up to 100. To clarify, when assessing the overall
response patterns across sites and treatments, we calculated RR, AR and FI for all
treatments, also including treatments that did not show significant effects on flux rates
in the cross-site statistical analysis described below.

2.8 Statistics20

To assess treatment effects on GHG fluxes across the sites, two-factor analyses of
variance (ANOVA) with Treatment, Site and their interaction as fixed effects were con-
ducted using the PROC MIXED procedure of SAS (SAS Institute, 2003). The random
effects included Site and Treatment×Site. The GHG flux datasets were unbalanced
as the number of replicates was unequal between sites, however the MIXED proce-25

dure is used in the same way whether data are balanced or unbalanced (Littell et al.,
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2002). More specifically, equal weight is given to each site regardless of the number of
replicates when determining treatment effects. Data were log-transformed as required
to obtain normality and homogeneity of variance. Main effects and interactions with
P ≤ 0.05 were considered to be significant, and were interpreted using differences of
least squares means.5

3 Results

3.1 Precipitation, temperature and soil moisture

Annual precipitation during the study period ranged from 311 mm at the subarctic peat-
land Storflaket in Sweden (SE-Sto) to 1351 mm at the Welsh shrubland Clocaenog
(UK-Clo) (Table 2). Mean annual air temperature in control plots ranged from −0.3 ◦C10

at the subarctic site SE-Sto to 15.6 ◦C at the Spanish shrubland Garraf (ES-Gar). The
passive night-time warming generally raised annual soil temperature at 5 or 10 cm
depth by 0.5 ◦C, and decreased the soil water content by 2 % vol. (Table 2). Experimen-
tal drought caused a decline in mean annual soil moisture ranging from a reduction
of 1.5 % vol. at the Danish shrubland Brandbjerg (DK-Bra) to 10.2 % vol. at the wet15

shrubland UK-Clo. Drainage of the Estonian peatland Männikjärve (EE-Män) lowered
the water table from an annual depth of 15 cm to 38 cm below soil surface. Character-
istics of the upper and lower soil layers at the sites, as well as data on aboveground
biomass, N deposition and leaching are found in the Supplement.

3.2 CH4 fluxes20

Annual CH4 fluxes in control plots ranged from uptake of 519 mg C m−2 yr−1 at the
Danish shrubland Mols (DK-Mol) to emission of 6890 mg C m−2 yr−1 from the Scottish
peatland Whim (UK-Whi) (Table 3). For the peatland sites, a clear relationship was
found between annual CH4 emission and mean annual air temperature (Fig. 2). In
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contrast, CH4 fluxes at the temperate shrublands correlated with the carbon stock in
the top 10 cm soil layer (Fig. 3). Permanent drainage of the Estonian peatland EE-
Män reduced the CH4 efflux substantially (P = 0.003), whereas no consistent effect on
the CH4 flux was observed for prolonged drought or warming at the shrubland sites
(P ≥ 0.49) (Fig. 4, Table 3). Effects of increased N input were tested at three peatland5

sites and overall no uniform effect was found on the CH4 efflux (P = 0.65) (Table 3).
At UK-Whi, though, additional deposition of oxidized N, corresponding to 5.6 g NO3-
N m−2 yr−1, resulted in an almost 300 % increase of the annual CH4 emission (P =
0.031). Concurrently, soil pH rose from 3.7 to 4.0 (see Supplement).

3.3 N2O fluxes10

Annual fluxes of N2O generally consisted of low efflux rates, although net N2O uptake
was observed in control plots at the Swedish peatland Fäjemyr (SE-Fäj) and the Scot-
tish peatland UK-Whi (Table 3). Within each of the two ecosystem types, peatland and
shrubland, the highest N2O efflux occurred at the site, which had the highest soil wa-
ter NO−

3 concentration (Fig. 5). The stimulatory effect of NO−
3 on the N2O efflux was15

supported by the N deposition experiments. More specifically, the two peatlands SE-
Fäj and UK-Whi changed from N2O sinks into N2O sources as a result of increased
NH4NO3 and NaNO3 input, respectively (P = 0.011) (Fig. 6a). Overall, differences in
volumetric soil water content across sites did not explain the variation in annual N2O
fluxes for control plots (Fig. 6b). At the site level, however, reduced soil moisture caused20

by drainage or drought consistently reduced the N2O efflux (P = 0.0005). According to
differences of least squares means, this was especially pronounced for drainage at the
Estonian peatland EE-Män and for drought at the Dutch shrubland Oldebroek (NL-Old)
(Site × Treatment; P = 0.034). The warming treatment had no effect on N2O fluxes
(P = 0.47) (Table 3).25
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3.4 Soil respiratory CO2 emission

Soil CO2 emissions ranged between 518 to 732 g C m−2 yr−1 at six of the nine sites
investigated (Fig. 7a), but was considerable lower at the remaining three sites. As
expected, the lowest rate was observed at the northernmost and coldest site SE-
Sto (231 g C m−2 yr−1), where fluxes were only made on vegetated plots and there-5

fore are ecosystem-level respiratory CO2 losses. Consequently, soil respiratory CO2
losses should be even lower than the rate reported here. Soil respiration was also
considerably lower at the temperate shrubland NL-Old (310 g C m−2 yr−1), and at the
southernmost and warmest shrubland ES-Gar (390 g C m−2 yr−1), compared to the six
sites with highest emissions. Across the five sites where warming was applied as treat-10

ment, the temperature rise of 0.5 ◦C in the soil had no effect on soil CO2 emissions
(P = 0.83) (Table 3). At the site level, the CO2 efflux seemed to be more controlled
by soil moisture. More specifically, prolonged drought and long-term (> 30 yr) drainage
overall caused a reduction of soil CO2 emissions (P = 0.003) (Fig. 7b). This was es-
pecially pronounced for drainage at EE-Män and drought at the dry shrubland DK-Mol,15

whereas drought tended to have the opposite effect at the wet shrubland UK-Clo (Site
× Treatment; P = 0.0086). Increased N input at three peatland sites had no effect on
annual CO2 emissions (P = 0.69) (Table 3).

3.5 Responsiveness of greenhouse gas fluxes

Relative to control plots, the observed treatment response was generally higher for20

CH4 and N2O fluxes than for CO2 fluxes (Table 4). However, when comparing the frac-
tional importance of each GHG to the total numerical global warming response (GWR),
the changes in CO2 emissions dominated the response in all treatments (ranging 71–
96 %), except for NO−

3 additions where 89 % of the total GWR was due to a change in
CH4 emissions. Relative to the other GHGs, the impact on GWR from changes in N2O25

fluxes was generally low; only 4 % of total GWR across the shrubland sites and absent
across the peatland sites. Across all treatments and gas species, there was a negative
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feedback to global warming for shrublands, while peatlands generally showed a posi-
tive feedback for CH4 and a negative feedback for CO2.

4 Discussion

In Europe, open landscapes represented by peatlands and shrublands cover about
7 % of the land area (EEA, 2006; Montanarella et al., 2006). In the current study, we5

investigated greenhouse gases fluxes between these ecosystems and the atmosphere
in order to identify factors that seemed to control cross-site variation in flux rates, either
directly or indirectly. Furthermore, we assessed the effect on the GHG fluxes of anthro-
pogenic disturbances, such as temperature rise and prolonged droughts caused by
climate change, drainage of peatlands and increased atmospheric nitrogen deposition.10

4.1 CH4 fluxes

On a global scale, wetlands are the largest single source of CH4 emission to the atmo-
sphere, accounting for 100 to 231 Tg CH4 yr−1 (IPCC, 2007b), whereas aerobic soils
are substantial CH4 sinks, estimated to take up about 22 Tg CH4 yr−1 (Dutaur and
Verchot, 2007). The present study illustrates these fundamental differences between15

ecosystem types depending on water table depth with peatlands as CH4 sources and
shrublands generally as CH4 sinks. The CH4 emission from peatlands correlated pos-
itively with temperature when analyzed across the four sites. This is in line with Chris-
tensen et al. (2003) who compared CH4 fluxes measured during the growing season
at five northern wetlands covering Greenland, Iceland, Scandinavia and Siberia. They20

estimated that soil temperature explained 84 % of the variability in mean seasonal CH4
emissions, and suggested that availability of organic acids in peat water accounted for
the remaining 16 % of the CH4 fluxes variability across the sites. The stimulating effect
of increased temperature on net CH4 emissions from peatlands can be explained by
basic CH4 biochemistry as processes related to CH4 production are more temperature25
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dependent than those associated with methane oxidation (Dunfield et al., 1993). How-
ever, the simple temperature relationship of CH4 emissions may also include other
interrelated factors, most importantly plant productivity affecting substrate quality and
quantity, but also plant aerenchyma development allowing CH4 produced in the soil to
be released into the atmosphere (Joabsson et al., 1999). Based on the current dataset5

we are not able to distinguee whether temperature affected the CH4 efflux directly
or indirectly, and most likely several of the mentioned mechanisms acted simultane-
ously. Despite this, we suggest that temperature could be used as a common indicator
when estimating the magnitude of CH4 emissions from peatlands across wide regional
scales. Furthermore, using space for time substitution our results indicate that CH410

emissions from peatlands will rise in future as a result of the predicted temperature
increases caused by climate change.

In a global analysis of CH4 uptake by aerobic soils, Dutaur and Verchot (2007) found
that soil texture strongly controlled CH4 uptake with coarse textured soils consum-
ing more CH4 than other texture classes. All temperate shrublands in our study had15

a sandy mineral soil layer, while the soils differed in the properties of the organic layer,
which consisted of peat at the heather-moorland (UK-Clo) and of mor humus at the
dry Calluna heaths (DK-Mol, DK-Bra, NL-Old). Net CH4 uptake at the four temperate
shrublands correlated negatively with the carbon stock in the upper 10 cm soil layer,
suggesting a switch from net CH4 uptake to net CH4 emission as soils become en-20

riched in organic matter. To our knowledge, such a relationship has only been reported
in very few studies. For instance, Singh et al. (1997) showed that CH4 uptake in dry
tropical forest soils correlated with both carbon and nitrogen content of the soils; two
variables which increased in parallel. Within soil types, the content of organic mat-
ter and soil water often correlate, either because organic matter increases the water25

holding capacity (Hudson, 1994) or because high soil moisture hinders aerobic decom-
position (Jungkunst and Fiedler, 2007). In line with this, the two sites with the highest
carbon stock of the four temperate shrublands (i.e., UK-Clo and NL-Old) also had the
highest soil moisture (Table 2). Consequently, the apparent carbon control on net CH4

3710

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3693/2012/bgd-9-3693-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3693/2012/bgd-9-3693-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3693–3738, 2012

Responses to
climatic and

environmental
changes

M. S. Carter et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

exchange could be indirect via an effect on soil moisture, which limits CH4 diffusion
towards the zone of methanotrophic activity (King, 1997; Dunfield, 2007). Singh et al.
(1997), however, suggested a more direct control mechanism, where reduced net up-
take of CH4 in carbon-rich soils was due to decreased O2 content in the soil atmo-
sphere, resulting from higher decomposition rates. In our study, though, we found no5

relationship between carbon stock and soil respiratory CO2 emission at the four tem-
perate shrubland sites. Potentially, organic matter stimulated methanogenesis by acting
as a substrate for the process, leading to lower net CH4 uptake in the carbon-rich soils
in our study. Most likely, the correlation between soil organic C and CH4 uptake was
caused by a combination of these indirect and direct mechanisms, and we suggest that10

future studies aim at investigating this relationship in more details.
Previous studies of N additions to wetlands reported both positive and negative re-

sponses in net CH4 emissions, and the mechanisms involved are still under debate
(Bodelier, 2011). In the present study, NO−

3 addition at the Scottish bog UK-Whi in-
creased the CH4 efflux by almost 300 %, whereas NH+

4 or NH4NO3 additions had no15

overall effect. At the Scottish bog, the addition of NO−
3 raised pH in peat water from

3.7 to 4.0 (see Supplement) and increased the availability of dissolved organic car-
bon (DOC), possibly because the slightly higher pH enhanced the solubility of organic
compounds in the soil (Evans et al., 2008). In contrast, NH+

4 addition had no effect
on pH or DOC. For comparison, Murakami et al. (2005) raised the pH of four tropical20

acid peat soils by ca. 2 pH units and observed a vast increase in the CH4 production
potential. The authors suggested that this was due to increased substrate supply for
methanogenic microorganisms derived from decomposed organic matter such as or-
ganic acids from peat humus. A similar mechanism could explain the enhanced CH4
efflux in response to NO−

3 addition at the Scottish bog UK-Whi.25

At the Swedish peatland sites SE-Fäj and SE-Sto, addition of NH4NO3 had no signif-
icant effects on the CH4 flux. Although insignificant, the opposing effects of N addition
on CH4 fluxes at SE-Fäj (increased efflux) and SE-Sto (decreased efflux), illustrates the
importance of peatland type and site specific properties, such as plant composition and
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productivity, pH, substrate quality and general hydrology, for the effects of increased
nutrient availability on peatland CH4 fluxes (Keller et al., 2006).

4.2 N2O fluxes

Latest advances in knowledge suggest that three separate processes contribute to N2O
emissions from soils. These are nitrification, denitrification and dissimilatory nitrate re-5

duction to ammonium (DNRA), which are thought to be important sources of N2O in
oxic, sub-oxic and anoxic microsites of the rhizosphere, respectively (Baggs, 2011). At
individual field sites, daily N2O emission rates are typically reported to increase with
soil moisture in the range from 50 to 90 % water filled pore space (WFPS) (Smith et al.,
2003). This relationship is probably caused by the associated decrease in O2 diffusion10

within the soil, leading to larger anaerobic microsites and thereby increased N2O pro-
duction via denitrification (Smith et al., 2003) and possibly also DNRA. However, when
soil moisture exceeds 90 % WFPS, N2O emissions may decline as N2 is the final prod-
uct of denitrification in most waterlogged soils (Davidson, 1991), although pH may also
influences the N2O/N2 loss ratio of denitrification (Šimek and Cooper, 2002).15

In the present study, the lack of relationship between N2O emission and volumetric
soil moisture across sites was possibly because N2O production is controlled by gas
diffusivity, which is poorly reflected by volumetric soil moisture when comparing soils
that differ in total porosity. At the site level, however, net N2O emissions declined con-
sistently in response to reduced soil moisture caused by drought treatment, supporting20

previous results from drought experiments in a spruce forest (Goldberg and Gebauer,
2009). Furthermore, N2O emissions from the Estonia peatland EE-Män declined due
to long-term drainage, which is in contrast to results from previous drainage experi-
ments in ombrotrophic bogs (Martikainen et al., 1993; Regina et al., 1996). Apparently,
increased tree growth at the drained area reduced the availability of soil nitrate (see25

Supplement), which in combination with lower soil moisture caused the decline in N2O
emissions.
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Analysed across sites, the shrubland and peatland with highest NO−
3 concentration

in soil water also had the highest annual N2O emission within each ecosystem type,
which illustrates that N2O production in these nutrient poor ecosystems was limited by
N availability. This was supported by data at the site level, where N additions (< 60 kg N
ha−1 yr−1) that included nitrate led to increased N2O efflux from two peatlands, suggest-5

ing that denitrification or DNRA were involved in N2O production in these ecosystems,
and that the processes were stimulated by increased substrate availability.

4.3 Soil respiratory CO2 emission

Annual soil respiratory CO2 emissions (Rs) ranged from 231 to 732 g C m−2 yr−1 in
control plots across the nine sites. The highest fluxes were observed at the temper-10

ate sites with annual temperatures ranging 8–10 ◦C, where ecosystem C turnover was
less likely to be inhibited by either low temperatures (i.e., SE-Sto) or low summer soil
moisture, resulting from low precipitation combined with high temperatures (i.e., ES-
Gar). For comparison, Hibbard et al. (2005) reported Rs rates of 427–1805 g C m−2 yr−1

across evergreen temperate forests, 509–867 g C m−2 yr−1 in temperate/Mediterranean15

broadleaved forests and 181–488 g C m−2 yr−1 in temperate/Mediterranean woodlands
and savannas. The low fluxes at ES-Gar and NL-Old may be biased by the method ap-
plied, where headspace CO2 concentrations were determined by gas chromatography
together with CH4 and N2O. This implies longer enclosure periods, i.e., up to 60 min
compared to 1–5 min when measured directly in the field using an infrared gas an-20

alyzer. Longer enclosure periods may lead to non-linear development of headspace
CO2 concentrations over time, and subsequently to underestimation of flux rates if
calculations are based on linear regression. However, EE-Män had the fourth highest
flux among the nine sites and here fluxes were also determined using the gas chro-
matography method. Furthermore, Beier et al. (2009) estimated annual soil respiration25

at ES-Gar to be 440 g C m−2 yr−1 based on other data with shorter enclosure periods
(4 min), which still is lower than our estimates for the six temperate sites. The low flux
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at the Dutch shrubland NL-Old could be due to the vegetation which, unlike the other
sites, is a Calluna monoculture (Table 1). Van Vuuren and van der Eerden (1992) found
that Calluna litter had a lower decomposition rate compared to litter of Deschampsia
flexuosa and Molinia caerulea, which coincided with a double concentration of recalci-
trant carbon compounds, indicated by the Klason lignin content. The low CO2 efflux at5

NL-Old could therefore result from a lower quality of the soil C pool compared to the
other sites. Thus, our results indicate a pattern across the sites where soil respiration
increased with temperature, but that the increase was offset in the warmest ecosystem
due to low soil moisture, resulting from low precipitation combined with high temper-
atures. At the site level, the was no significant effect of the warming treatment across10

sites, which may be due to the relatively mild temperature increase achieved with the
passive warming technique of 0.5 ◦C in the soil.

The prolonged drought or drainage manipulations showed stronger effects on soil
respiration rates than both warming and N additions. Reduced soil moisture due to
drought or drainage generally decreased soil respiration rates at the dry shrublands15

and the wet, long-term drained peatland EE-Män, but increased soil respiration rates
at the wet shrubland UK-Clo. As drainage most often leads to increased CO2 emis-
sions in hydromorphic soils, at least in the short-term (Jungkunst and Fiedler, 2007;
Danevčič et al., 2010; Maljanen et al., 2010), our results highlight how results may differ
depending on the time since the experimental treatments were initiated. The drainage20

treatment at EE-Män was started more than 30 yr ago. Currently, the easy degradable
fractions of the peat at EE-Män have already been decomposed and carbon cycling in
the ecosystem has reached a new balance. In contrast, the drought treatment at UK-
Clo has only been running for eight years, thus it is likely that the long-term effect may
differ from the current short-term effect. Furthermore, the different response directions25

to prolonged drought between the sites show how important the initial conditions are
for the strength and directions of the response to the treatment.
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4.4 Experimental manipulations

The quantitative effect on GHG fluxes of an experimental treatment is to a certain
extent controlled by the magnitude of the treatment effects on environmental drivers.
The question is whether our experimental manipulations have caused realistic changes
in these drivers, which enable us to predict changes in GHG fluxes in future? On an5

annual basis, the prolonged drought treatment at the shrubland sites reduced moisture
in the top soil by 10–20 %, which is a consistent decline when taking into account that
the drought treatment was only carried out for about two months per year. In contrast,
the warming treatment generally raised annual soil temperature at the sites by 0.5 ◦C.
For comparison, annual mean soil temperatures in control plots at the Welsh shrubland10

UK-Clo varied between 7.0 and 8.7 ◦C during the years 2000–2007 (data not shown).
Thus, the overall warming effect of 0.5 ◦C was less than the interannual variability at
the site level. Furthermore, surface temperatures in Europe are projected to increase
2–5 ◦C during this century, depending on which scenario is used (IPCC, 2007a). In
conclusion, the lack of experimental warming effect on any of the three GHGs in our15

study could relate to an insufficient temperature increase obtained by the passive night-
time warming treatment.

By contrast, drainage about 30 yr ago of the Estonian peatland EE-Män has more
than doubled the size of the oxic zone by lowering the water table from an annual
depth of 15 cm to 38 cm below soil surface. As a result, the emission of all three GHGs20

had dropped dramatically after 30 yr of treatment. Furthermore, annual N deposition
was raised from 0.2, 1.5 and 0.8 g N m−2 to 4.2, 5.5 and 6.4 g N m−2 at the peatlands
in northern (SE-Sto) and southern Sweden (SE-Fäj) as well as Scotland (UK-Whi),
respectively. It is unlikely that total inorganic N deposition in these regions of Europe
will reach such high levels in future (Galloway et al., 2004). However, global warming25

will lead to increased soil mineralization rates, releasing more inorganic N and other
nutrients for plant uptake (Rustad et al., 2001; Mack et al., 2004). Also, large regions of
South Asia are projected to receive more than 5 g N m−2 yr−1 by 2050. Apart from the
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CH4 response to nitrate addition at the Scottish peatland UK-Whi, responses in GHGs
fluxes to these relatively high N application rates were minor, illustrating resilience in
the peatland ecosystems towards increased N deposition in the short term. However,
in the longer term, changes in peatland plant composition and structure may occur,
affecting the exchange of greenhouse gases. For instance, a warmer and drier climate5

with increased nutrient turnover will inflict competitive disadvantages for Sphagnum
mosses, as they are adapted to cold, wet and nutrient-poor conditions (Clymo, 1984),
and possibly stimulate growth of vascular plants.

4.5 Responsiveness

We observed some clear and interesting patterns in the responses of the three GHG10

fluxes across the nine investigated ecosystems. First of all, the observed responses
to the manipulations of climate and atmospheric N deposition were stronger in relative
terms for CH4 and N2O fluxes than for soil CO2 emissions. However, when comparing
the fractional importance of each GHG to the total global warming response, then
the observed changes in soil CO2 efflux dominated the response for the drainage,15

drought and warming treatments, where at least 91 % of the global warming response
was caused by changes in soil CO2 fluxes. The N addition treatments in peatlands
that included NO−

3 differed from this overall pattern by the dominance of a change in
CH4 emissions (89 % of global warming response) compared to changes in the other
gas species. This profound effect therefore also partly explains why responses in CH420

fluxes played a slightly more dominant role across the four peatlands (56 % of the
global warming response) compared to soil CO2 emissions (44 % of global warming
response) and N2O fluxes, which did not contribute significantly. In contrast, across the
five shrublands including both drought and warming treatments, the response in soil
CO2 emissions dominated (94 % of global warming response) by far over responses in25

CH4 fluxes (2 % of global warming response) and N2O fluxes (4 % of global warming
response).
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Based on 109 different studies on effects of N addition on ecosystem GHG budgets,
Liu and Greaver (2009) reported an overall negative global warming feedback of net
ecosystem CO2 exchange, but also that this was largely offset (53–76 %) by increased
CH4 and N2O emissions. When comparing the different treatments in our study, the N
addition experiments led to a substantial positive climate forcing response. However,5

this was caused by a strong increase in CH4 emissions, whereas Liu and Greaver
(2009) found that N2O was the primary contributor to global warming across the stud-
ies in their review. Warming effects were very small and not significant in the overall
cross-site ANOVA. By contrast, the drought and drainage treatments led to a uniformly
negative climate forcing response. Again, it must be emphasized that the response for10

the drained peatland in this study is the long-term response and it is likely that a sub-
stantial amount of carbon was lost from the ecosystem in the years immediately after
drainage. But at least across the five shrubland ecosystems there was a clear pattern
of overall negative global warming feedback in response to the drought treatment.

In general, we recognize that the nine sites included in this study span differences in15

soil types, plant species, pre-treatment conditions and present climate, and that the ex-
perimental treatments differed between sites. For this reason, generalized conclusions
based on the mean responsiveness presented here should be drawn with caution. Es-
pecially, we lack information on responses in net primary production, and it is likely that
the absolute responsiveness of net ecosystem CO2 fluxes would differ from that of soil20

CO2 emissions alone. Finally, none of the nine experiments included interactive effects
with other climate drivers, which have previously been shown to be important for the
combined response to multiple changes (Larsen et al., 2011).

5 Conclusions

With respect to environmental variables that seemed to influence the magnitude of25

GHG fluxes across the nine sites, temperature was identified as a driver of CH4 emis-
sions at the peatland sites. In contrast, net CH4 uptake at the temperate shrublands
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sites correlated negatively with the soil carbon stock, either due to a indirect effect
via soil moisture or because soil carbon acted as a source for methanogenesis. Ni-
trate availability seemed to be a driver of N2O emissions at both peatland and shrub-
land sites, as the highest N2O efflux within each ecosystem type occurred at the site,
which had the highest NO−

3 concentrations in soil water. Soil respiratory CO2 emission5

showed maximum annual values at the temperate sites with mean annual temperature
of 8–10 ◦C. Outside this range, in each end of our temperature gradient, soil respiration
was either limited by low temperatures at the subarctic site SE-Sto or by low summer
soil moisture at the Mediterranean site ES-Gar.

In terms of total climate forcing response, prolonged drought and long-term (> 30 yr)10

drainage resulted in consistent negative feedback to global warming. However, sub-
stantial amounts of CO2 were presumably lost from the drained peatland immediately
after drainage. Furthermore, N addition to peatlands gave rise to considerable posi-
tive feedback to global warming, primarily due to the response of CH4 emissions to
NO−

3 addition at one site. Finally, experimental warming had no effect on any of the15

three GHGs, which could be explained by a modest temperature increase of 0.5 ◦C
imposed by the passive night-time warming treatment. When comparing the fractional
importance of each GHG to the total numerical global warming response, then the
change in CO2 efflux dominated the response in all treatments, except for NO−

3 addi-
tion where change in CH4 emissions accounted for the major part. Therefore, within20

the applied range of water, temperature and nutrient manipulations, soil CO2 emission
plays a dominant role with respect to ecosystem feedback on global warming.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/9/3693/2012/
bgd-9-3693-2012-supplement.pdf.25
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Peñuelas, J., Gordon, C., Llorens, L., Nielsen, T., Tietema, A., Beier, C., Bruna, P., Emmett, B.,
Estiarte, M., and Gorissen, A.: Nonintrusive field experiments show different plant responses5

to warming and drought among sites, seasons, and species in a north-south European gra-
dient, Ecosystems, 7, 598–612, 2004.
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Table 1. Site characteristics.

Ecosystem Coordinates Altitude Site Soil type Dominant vegetationa Experimental
and location (m) code treatment

Peatland
Männikjärve, EE 58◦52′ N 26◦14′ E 80 EE-Män Histosol S. fuscum, S. rubellum, Scheuchzeria Drainage

palustris, Ledum palustre, Vaccinium
oxycoccus, Chamaedaphne calyculata,
Betula pubescencs, Pinus sylvestris

Storflaket, SE 68◦20′ N 18◦58′ E 380 SE-Sto Histosol S. fuscum, S. balticum, E. nigrum, N addition
Andromeda polifolia, Rubus (NH4NO3)
chamaemorus, E. vaginatum

Fäjemyr, SE 56◦15′ N 13◦33′ E 140 SE-Fäj Histosol C. vulgaris, Erica tetralix, S. magella- N addition
nicum, S. rubellum, E. vaginatum (NH4NO3)

Whim, UK 55◦45′ N 03◦16′ E 280 UK-Whi Histosol C. vulgaris, E. vaginatum, N addition
S. capillifolium (NH4 or NO3)

Shrubland
Clocaenog, UK 53◦03′ N 03◦28′ W 490 UK-Clo Peaty podzol C. vulgaris, Vaccinium myrtillus, Drought,

E. nigrum warming
Mols, DK 56◦23′ N 10◦29′ E 57 DK-Mol Sandy podzol C. vulgaris, Deschampsia flexuosa Drought,

warming
Brandbjerg, DK 55◦53′ N 11◦58′ E 9 DK-Bra Sandy podzol C. vulgaris, Deschampsia flexuosa Drought,

warming
Oldebroek, NL 52◦24′ N 05◦54′ E 25 NL-Old Sandy podzol C. vulgaris Drought,

warming
Garraf, ES 41◦19′ N 01◦49′ E 210 ES-Gar Petrocalcic Erica multiflora, Globularia alypum Drought,

calcisol warming

a C. vulgaris – Calluna vulgaris, E. nigrum – Empetrum nigrum, E. vaginatum – Eriophorum vaginatum, S. –
Sphagnum
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Table 2. Annual precipitation, air temperature (air T ), soil temperature (soil T ) and soil water
content (soil W ) during the study period at the nine experimental sites depending on treatment.

Site Treatment Precipitation Air T Soil T Soil W
(mm) (◦C) (◦C) (% vol)

EE-Män Control 889 4.3 5.6 76.7
Drainage na 6.0 5.9 37.2

SE-Sto Site data 311 −0.3 na 23.4
SE-Fäj Site data 626 7.1 7.6 59.1
UK-Whi Site data 1092 8.5 7.7 71.9
UK-Clo Control 1351 7.5 8.1 45.9

Drought 1130 7.7 7.9 35.7
Warming 1127 7.9 8.1 43.6

DK-Mol Control 668 8.7 9.0 17.6
Drought 563 8.9 9.0 15.1
Warming na 9.7 9.8 15.3

DK-Bra Control 714 10.2 8.9 16.5
Drought na na 8.8 15.0
Warming na na 9.4 15.0

NL-Old Control 986 8.3 8.8 21.8
Drought 792 na na 17.1
Warming 855 9.6 9.5 16.5

ES-Gar Control 550 15.6 17.0 19.8
Drought 397 15.8 16.8 17.0
Warming 520 16.1 17.7 20.0

na, not assessed
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Table 3. Annual cumulative CH4, N2O and soil CO2 fluxes at the nine experimental sites de-
pending on treatment (means; SE in brackets). Number of replicated plots and year of mea-
surement (either one or two years) are also indicated.

Site Treatment Replicates CH4 flux N2O fluxa Year Soil CO2 emissionb Year
mg C m−2 yr−1 mg N m−2 yr−1 g C m−2 yr−1

EE-Män Control 3 2729 (180) 41.8 (5.7) 2008/2009 528 (66) 2008/2009
Drainage 943 (222) 4.1 (7.9) 226 (56)

SE-Sto Control 4 926 (201) na 2007 231 (6) 2007
NH4NO3 551 (110) na 265 (39)

SE-Fäj Control 4 4377 (482) −2.4 (1.8) 2007 522 (179) 2007
NH4NO3 5883 (846) 8.0 (3.7) 585 (51)

UK-Whi Control 4 6890 (1383) −14.3 (3.5) 2007–2009 572 (69) 2006/2007
NH4 7412 (2590) 5.5 (16.6) 535 (51)
NO3 27 020 (11 101) 16.1 (13.2) 496 (26)

UK-Clo Control 3 80 (10) 10.8 (5.7) 2007–2009 518 (32) 2006/2007
Drought 81 (12) 0.8 (2.7) 633 (12)
Warming 70 (7) 11.2 (2.1) 584 (45)

DK-Mol Control 3 −519 (63) 13.3 (5.7) 2006/2007 732 (36) 2003/2004
Drought −498 (25) 9.9 (4.6) 513 (18)
Warming −552 (36) 10.8 (2.3) 730 (48)

DK-Bra Control 6 −363 (65) 31.0 (5.6) 2006/2007 651 (59) 2006/2007
Drought −416 (58) 27.6 (7.8) 600 (34)
Warming −436 (78) 29.5 (6.5) 659 (52)

NL-Old Control 3 −8 (7) 6.9 (5) 1999 310 (48) 1999
Drought −89 (16) −30.4 (10.2) 285 (72)
Warmingc 29 (20) −2.3 (2.3) 330 (45)

ES-Gar Control 3 −352 (43) na 2007/2008 390 (30) 2007/2008
Drought −416 (33) na 298 (19)
Warming −432 (42) na 335 (21)

a Fluxes of N2O were not assessed (na) at SE-Sto and ES-Gar
b Data for SE-Sto and SE-Fäj is ecosystem respiratory CO2 emission
c At NL-Old, the warming treatment started in May 1999
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Table 4. Relative responsiveness to treatments compared to controls (%), absolute respon-
siveness (CO2-equivalents), and fractional importance of each greenhouse gas to the total
numerical global warming response (in brackets, %) for soil CH4, N2O and CO2 fluxes across
all sites.

Relative Absolute responsiveness
responsiveness (%) (CO2-eq)

Treatmenta CH4 N2Ob CO2 CH4 N2O CO2

Drainage −65 −90 −57 −74 (6) −18 (2) −1107 (92)
N addition, including NH4 14 na 5 23 (22) 7 (7) 73 (71)
N addition, including NO3 174 na 2 295 (89) 10 (3) 25 (8)
Drought −15 −87 −11 −1 (1) −6 (3) −201 (96)
Warming −14 −21 1 −1 (4) −1 (5) 27 (91)
Peatlands all treatments 124 0.4 −9 193 (56) 0 (0) −153 (44)
Shrublands all treatments −14 −54 −5 −1 (2) −4 (4) −87 (94)

a Responsiveness is reported for the treatments “warming” and “N addition, including NH4” although cross-site
statistical analyses showed no significant effects on any of the gas species
b na, not assessed due to change in flux direction
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Fig. 1. Location of the nine experimental sites across Europe. Abbreviations are P for “peatland”
and S for “shrubland”.
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Fig. 2. Annual CH4 flux related to mean annual air temperature in control plots at the nine sites
(means ± SE). A linear regression line was fitted to data from the four peatland sites. Site codes
are described in Table 1.
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Fig. 3. Annual CH4 flux as a function of carbon stock in the 0–10 cm soil layer at five shrubland
sites (means ± SE). A linear regression line was fitted to data from the four temperate shrubland
sites.
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Fig. 4. Annual CH4 flux at the nine sites related to mean annual soil water content, predomi-
nantly measured in the top 10 cm soil layer (means ± SE). Closed symbols are control plots,
whereas open symbols are drained or drought treated plots. Arrows indicate direction of treat-
ment responses. In part (b), the bottom left corner of part (a) has been enlarged. Site codes
are described in Table 1.
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Fig. 5. Size of annual N2O flux plotted against mean annual soil water content and nitrate
concentration in soil water. Data derive from control plots at seven sites that are divided into
shrublands and peatlands by the dashed line.
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Fig. 6. Annual N2O flux at seven sites related to atmospheric N deposition (a) and mean an-
nual soil water content, predominantly measured in the top 10 cm soil layer (b) (means ± SE).
In addition to data for control plots, results are presented for plots that were exposed to ei-
ther increased N input (a) or drainage and drought (b). Arrows indicate direction of treatment
responses. Site codes are described in Table 1.
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Fig. 7. Annual soil respiratory CO2 emission in control plots at the nine sites related to mean
annual air temperature (a) and mean annual soil water content, predominantly measured in the
top 10 cm soil layer (b) (means ± SE). In part (b), data for drained or drought treated plots are
also presented with arrows indicating direction of treatment responses. ∗ Data for SE-Sto and
SE-Fäj is ecosystem respiratory CO2 emission. Site codes are described in Table 1.
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