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Abstract

Bacteria can avoid extinction during antimicrobial exposure by becoming resistant. They 

achieve this either via adaptive mutations or horizontally acquired resistance genes. If 

resistance emerges in clinical relevant species, it can lead to treatment failure and ultimately 

result in increasing morbidity and mortality as well as an increase in the cost of treatment. 

Understanding how bacteria respond to antibiotic exposure gives the foundations for a 

rational approach to counteract antimicrobial resistance. 

In the work presented in this thesis, I explore the two fundamental sources of antimicrobial 

resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from 

antibiotic gene reservoirs. 

By studying the geno- and phenotypic changes of E. coli in response to single and drug-

pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I 

find, in contrast to a general assumption of independent responses, that there is a high 

degree of interactions between the evolutionary responses to the individual drugs, which 

is manifested in collateral changes in drug susceptibility. Specifically, I show that collateral 



- 5 -

sensitivity can be exploited to rationally design drug combinations that limit the evolution 

of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight 

that an in-depth knowledge about the genetic responses to the individual antimicrobial 

compounds enables the prediction of responses to drug combinations.

In the second study I focus on horizontal gene transfer as a way of achieving resistance. 

More specifically, I focus on gene acquisition from environmental reservoirs. The study 

investigates the resistance gene reservoirs in several wastewater treatment plants (WWTPs) 

sampled over a two years period. I find, that although the resistance gene reservoir is highly 

shared across different WWTPs, there is only a small overlap with resistance genes from 

other environments. This finding suggests, that there is a dissemination barrier preventing 

the spread of functional resistance genes across environmental niches.

Dansk resume

Bakterier som bliver udsat for antibiotika kan overleve ved at blive resistente. Det kan de 

enten opnå via chromosomale mutationer eller horisontal erhvervelse af resistensgener. 

Resistens i sygdomsfremkaldende bakterier er et omfattende problem som kan resulterer i 

en uvirksom behandling med en øget morbiditet og mortalitet som konsekvens. For effektivt 

at kunne imødegå en stigende udfordring fra resistente bakterier, er det nødvendigt at opnå 

en detaljeret forståelse af de mekanismer der fører til resistens. I mit PhD-forløb har jeg 

studeret to centrale aspekter ved resistensudvikling: (1) adaptivt resistens og (2) horisontalt 

erhvervet resistens.

Ved at udsætte E. coli for enkel- og flerstof antibiotika og efterfølgende studere de geno- og 

fænotypiske responser, har jeg afdækket de evolutionære veje der fører til resistens i denne 

organisme. I modsætning til en generel forestilling om uafhængige responser, fandt jeg, at 

der er et stort overlap i de evolutionære responser som bl.a. manifesterer sig ved kollaterale 

ændringer i antibiotika overfølsomheden. Specifikt har jeg vist, at resistensudviklinger er 

stærkt nedsat overfor antibiotikakombinationer hvor responserne til komponentstofferne 

medfører kollateral sensitivitet. Mine resultater viser, at en detaljeret forståelse af 

resistensudvikling kan benyttes til rationelt at sammensætte antibiotikakombinationer, som 

er særligt velegnet til at forebygge resistensudvikling.

I mit andet studium har jeg fokuseret på resistensudvikling via horisontal erhvervelse 

af resistensgener. Mere specifikt, har jeg fokuseret på generhvervelse fra ikke-
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humane miljøer. Studiet har undersøgt resistensgen-reservoirs i en række forskellige 

spildevandsrensningsanlæg samplet over en toårig periode. Jeg fandt, at selvom 

der var et omfattende og stabilt resistensgen-reservoir, var resistensgenerne fra 

spildevandsrensningsanlæg ikke delte med andre miljøer. Dette antyder, at der er en 

barrierer som forhindre omfattende genudveksling mellem bakterier fra forskellige miljøer.
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Introduction

Entering the antibiotic era

In 1909 the German physician Paul Ehrlich discovered the first antibacterial compound1. 

This marked the beginning of a new era where bacterial infections could be treated for 

the first time and cured with great success. Ehrlich had only a year earlier received the 

Nobel Prize for his work on immunology and differential cyto-staining, and using knowledge 

gained from this research he hypothesized that if he could develop dyes that selectively 

stained different cell types, he should also be able to develop compounds that selectively 

killed bacterial cells. This theory later got popularized as the “magic bullet” theory. Using a 

synthesis and screening approach he started looking for an anti-syphilis drug. He reasoned, 

that using a toxic arsenic compound as starting molecule he would be able to chemically 

“tune” the compound to become selectively toxic against Treponema pallidum, the cause of 

syphilis. Using a T. pallidum rabbit model the staff in his lab screened for active derivatives 

that successfully cured the rabbit. In 1909 this led to the discovery of the active compound 

606, marketed only a year later under the name Salvarsan2.

Inspired by this successful discovery, chemical companies and scientists began screening 

compounds for antibacterial activity, and in 1932 the German consortium of dye manufactures 

IG Farben discovered the first sulfa drug later to be marked in 1935 under the name 

Prontosil2,3. 

Prior to these first successful developments of antibacterial compounds, the field of infectious 

medicine had undergone period of major discoveries. In 1861 Louis Pasteur proved that 

microorganisms do not arise spontaneously, a theory held by many of his colleagues2. Using 

swan neck bottles he showed that preventing airborne microorganisms from settling directly 

into sterilized broth kept the broth sterile. As a direct consequence of Pasteur’s work, the 

British surgeon Joseph Lister started to experiment with the use of antiseptic coated linens to 

shield surgical sites during surgery. Lister’s work quickly proved effective at reducing surgical 

wound infections and marked the beginning of antiseptic surgery. Then, in 1884, following 

Roberts Koch’s discovery of the tubercle bacilli as the cause of Tuberculosis, he together 

with another German physician, Friedrich Loeffler, formulated their famous postulates for 

establishing a causal relationship between the presence of bacteria and a disease. Taken 

together, these discoveries that bacteria are the cause of disease and that they can spread 

via air (or other vehicles) paved the way for modern day clinical bacteriology2.
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Natural compounds

In 1928, while the chemical industry was busy 

screening synthetic libraries, the Scottish biologists 

Alexander Flemming made his famous discovery 

of a penicillium mold producing an antibacterial 

compound. Flemming named the compound 

penicillin4. This discovery inaugurated the period 

natural compound discovery, later proving to be 

the most successful source of antibacterial agents 

(Figure 1)5. Despite realizing the medical potential 

of the compound, Flemming was unable to purify 

the active substance. It was not until the early 

1940s when Ernest Chain, a biochemist working 

in the lab of Howard Florey at Oxford, managed 

to produce penicillin in sufficient quantities to test 

it, that the enormous potential of penicillin was 

realized2,4. Today, penicillin and its derivatives still 

make up the backbone of the antibacterial armory. 

Following the discovery of penicillin, other 

scientists began to search for producer 

organisms of antibacterial agents. The first major 

breakthrough in this process happened in 1943, in 

the lab of Selman Waksman, where the graduate 

student Albert Schatz discovered streptomycin. 

Like many successful antibiotics later to be 

discovered this drug was produced by bacteria 

belonging to the genera Streptomyces, hence its 

name5. Streptomycin was the first drug with activity 

against Mycobacterium tuberculosis, the cause of 

tuberculosis (TB), making it an extremely important 

antibiotic. Furthermore, streptomycin was also 

the first pharmaceutical drug to be evaluate in a 

randomized controlled double-blinded trial. In this 

Year

Timeline of antibiotics

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

Salvarsan

Prontosil

Penicillin a)
Streptomycin

Tetracycline, Bacitracin
Chloramphenicol, Colistin

Erythromycin, Isoniazid, Pyrazinamide
Nitrofurantoine

Vancomycin
Methicillin, Metronidazole
Ampicillin
Ethambutol
Gentamicin
Nalidixic acid
Clindamycin, Fusidic acid
Rifampin
Cephalexin, Fosfomycin

Amoxacillin
Trimethroprim b)

Amikacin
Cefuroxime

Ceftriaxone

Aztreonam
Ciprofloxacin
Meropenem, Azithromycin

Daptomycin

Linezolid

Natural and semi-synthetic compounds
Synthetic compounds

Figure 1. Timeline of antibiotics
a) Time of production
b) Commonly used in combination with 
sulfamethoxazole
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historical trial, the British Medical Research Council pioneered clinical trials and showed 

that streptomycin was more effective against tuberculosis than the standard treatment of 

bed rest6.

In the following 40 years many new antibacterial agents were discovered. Most of these 

were identified via massive screening projects in which thousands of microorganisms were 

screened for the production of antibacterial molecules, and while chemical modification of 

natural compounds has led to numerous successful semi-synthetic derivatives, remarkably 

few completely synthetic compounds have been developed (Figure 1). 

The decline of the antibiotic era

In response to the increased use of antibacterial compounds throughout the 20th century, 

bacteria have evolved ways to overcome the effect of antibiotics and thereby become 

resistant. Consequently, previously effective drugs no longer cure infections, resulting in 

increasing morbidity and mortality7,8. The prevalence of antibiotic resistance varies greatly 

from species to species and across geographical location. However, for certain species 

previously effective drugs have almost completely lost their clinical applicability. For instance, 

Staphylococcus aureus, which was initial sensitive to penicillin and ampicillin, is now almost 

completely resistant to these drugs. In many parts of the world the high prevalence of 

methicillin resistant S. aureus (MRSA) also makes beta-lactamase resistant derivatives such 

as dicloxacillin or nafcillin obsolete9,10. Likewise with common the uropathogen, Escherichia 

coli, that was previously sensitive to ampicillin and sulfa drugs, close to half of the isolates 

are now resistant9. Fortunately there are still alternative antibiotics that remain effective 

against these bacteria.  However, resistance against these “last resort” drugs is regularly 

being reported11,12.

Further complicating the situation is the gap in the time between the initiation of empirical 

treatment and the lab result from resistance tests. Consequently, as resistance becomes 

more prevalent, more patients will receive an ineffective empirical treatment and therefore 

experience a worsening of their illness. An example is ciprofloxacin resistance in E. coli, 

which is now greater than 10 % in many countries.  This board spectrum orally available 

drug is a popular alternative to beta-lactam drugs, especially with penicillin allergic patients, 

but its usefulness is being undermined by an increasing prevalence of resistance. This 

case exemplifies how the extensive use (and misuse) of an antibiotic can quickly reduce its 

applicability. 
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Although most infections can still be treated successfully with antibiotics, there is a need 

for the development of new and safe antibiotics. Such development takes many years 

and should therefore be initiated while resistance is still manageable. Over the years, the 

scientific communities have increasingly been trying to make politicians and other decision 

makers aware of the lack of the development of new antibiotics13,14. At the same time, 

physicians at hospitals around the world are beginning to encounter pan-resistant bacteria 

such as multiple resistant enterobacteriaceae and extensively drug resistant tuberculosis 

(XDR-TB). Resultantly, drugs that were abandoned long ago due to high toxicity are now 

being reintroduced as “last resort” drugs15-17.

However, resistance it not always emerging as fast as in the cases highlighted above. For 

more than 60 years, Streptococcus pneumonia, the most common cause of pneumonia, has 

been successfully treated with penicillin, and still penicillin resistance in S. pneumonia is a 

relatively rare phenomena9,12. These differences in resistance development emphasizes, 

that understanding the factors that drive the evolution of resistance in different organisms, 

is key to developing strategies to counteract emergence of resistance.

Antibiotic classes and their targets

The term antibiotic broadly refers to chemical entities that selectively inhibit microorganisms. 

Yet in everyday jargon, it is commonly used to denote antibacterial agents. However, even 

when considering this narrowing of the definition, the term antibiotic still covers a wide range 

of different chemical compounds. These compounds can be organized in many different 

ways depending on the relevance of the different properties that characterize them. The 

properties most commonly used to characterize antibiotics include their structure, molecular 

mechanism of action, pharmacodynamics, pharmacokinetics, target spectrum, potency, 

bioavailability, toxicity and price. In this section, the main focus will be on giving an overview 

of the chemical classes and the cellular target of selected antibiotics.  However, it is important 

to emphasize that knowledge about the other properties is essential to understand the utility 

of a given antibiotic in a clinical setting.

The chemical structure and class of antibiotics are closely connected parameters, and most 

new structures are the result of modifications of known and well-tested drugs scaffolds. At 

the fundamental level, the different classes of antibiotics can be separated into synthetic, 

natural and semi-synthetic classes, where the latter is the result of modifying naturally 

occurring structures. Hence semi-synthetic antibiotics often represent derivatives of existing 
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drugs normally with improved properties such as increased spectrum, potency, half-life or 

bioavailability. Table 1 lists some of the most important antibiotic classes used in human 

medicine along with representative drugs for each class.

Aside from the different classes of anti-TB drugs, the most important drug class is the beta-

lactam class. This class can be divided into the penicillin, cephalosporin, carbapenem and 

mono-bactam groups with each group encompassing many different compounds (Table 

1)18. Common for all antibiotics belonging to the beta-lactam class is their beta-lactam 

core consisting of a four-membered cyclic amide (lactam). All beta-lactam drugs exert 

their antibacterial effect by inhibiting cell wall synthesis. Specifically, they bind to penicillin 

binding proteins (PBPs) and inhibit the trans-peptidase activity that normally cross-link 

penta-peptides in the bacterial cell wall peptidoglycan. Beta-lactam drugs are in most cases 

bactericidal, but require the bacterial cells to be actively dividing to exert their antibacterial 

effect. Due to the lack of peptidoglycan in human cells, they generally display low toxicity 

making them a one of the most preferred drug classes18.

Another important drug class is the quinolones. This class of synthetic antibiotics consists 

of four generations of drugs including ciprofloxacin (2. gen.), levofloxacin (3. gen) and 

Antibiotic class Example Target
Beta-lactam Penicillins (ampicillin), Cephalosporins 

(cefotaxime), Carbapenems (meropenem)
Cell wall synthesis

Quinolone Nalidixic acid, Ciprofloxacin Gyrase / topoisomerase IV
Aminoglycoside Streptomycin, Gentamicin, Amikacin 30S ribosomal subunit / cell membrane
Macrolide Erythromycin, Azithromycin Peptide exit tunnel in 50S ribosomal subunit
Tetracycline Tetracyclin, Tigecycline tRNA binding in 30S ribosomal subunit
Oxazolidinones Linezolid Peptidyl transferase center in 50S ribosomal 

subunit
Phenicol Chloramphenicol Peptidyl transferase center in 50S ribosomal 

subunit
Licosamide Clindamycin, Lincomycin Peptite exit tunnel in 50S ribosomal subunit
Sulfonamides Sulfamethoxazole Tetrahydrofolate synthesis
Benzylpyrimidine Trimethoprim Tetrahydrofolate synthesis
Rifamycin Rifampicin RNA polymerase
Nitroimidazoles Metronidazole General DNA damage
Nitrofurans Nitrofurantoin General DNA damage
Lipopeptide Daptomycin Cell membrane
Glycopeptide Vancomycin Cell wall synthesis

Table 1. Overview of selected antibiotics
The table presents selected antibiotic classes and their target
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moxifloxacin (4. gen.). The quinolones have a high orally bioavailability, good tissue 

penetration and a broad spectrum of activity. The latter is especially true in the third and 

fourth generations which are also active against Streptococci spp.. Quinolones exert their 

antibacterial effect by inhibiting the gyrase enzyme, which is essential for replication of the 

genome. Like the beta-lactam drugs, they are bactericidal but require active cell division to 

kill18. 

The aminoglycoside represent another bactericidal class of antibiotics, however, their 

clinical applicability is limited due to adverse side effects. All though their binding site in the 

30S ribosomal subunit is well studied, this class of drugs has a complicated mechanism 

of bactericidal action involving induction of protein mistranslation and reduced membrane 

integrity19.

The bacteriostatic drugs include a broad range of drug classes that reversibly inhibit mRNA 

translation by interfering with essential sites on the ribosome. Of particular importance are 

the tetracyclines that interfere with the tRNA docking in the 30S subunit, the phenicols, 

lincosamides and oxazolidinones that inhibit the peptidyl transferase reaction in the 50S 

subunit, and the macrolides that block the protein exit tunnel also in the 50S subunit 20. 

Especially the latter class has clinical relevance, as it is useful in the treatment of Mycoplasma 

pneumonia and to treat intracellular pathogens such as Chlamydophila18. 

The last important antibiotic classes are the two classes of tetrahydrofolate (THF) inhibitors: 

the sulfonamides and trimethoprim. Both are widely used, especially in countries outside 

Denmark, where mecillinam is not available to treat uncomplicated urinary tract infections. 

The THF-inhibitors also have great historical importance, as it was some of the first safe 

and effective antibiotics to be developed. They are often used in a combination, as their 

step-wise inhibition of the THF pathway is very synergistic18. 

Antibiotic resistance

Traditionally microbiologists divide antibiotics resistance into two categories: intrinsic 

resistance and acquired resistance21,22. The former refers to the situation where a bacterial 

species is unaffected by an antibiotic due to its fundamental physiological properties 

e.g. beta-lactam resistance in Mycoplasma spp. due to this genus’ lack of cell wall, or 

vancomycin resistance in enterobacteriaceae due to the outer membrane of Gram-negative 
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species. In contrast, acquired resistance refers to the situation where a bacterium that used 

to be susceptible to an antibiotic at a given concentration is no longer inhibited at that 

concentration. For all practical purposes, only the relative form of antibiotic resistance, i.e. 

acquired resistance, has important clinical implications. This is because the emergence of 

resistance renders previously effective treatments useless, resulting in increased morbidity 

and mortality, especially in the transition phase where resistance is too low to motivate a 

change in the empirical treatment.

Acquired resistance can be further divided into horizontally acquired resistance and 

mutational acquired resistance. Horizontally acquired resistance refers to the situation 

where resistance emerges as a result of horizontal gene transfer (HGT), commonly in the 

form of plasmid conjugation, phage transduction or non-specific DNA uptake. In contrast, 

mutational acquired resistance occurs when the bacterial genome mutates to overcome the 

effect of an antibiotic and normally only involves the change of one or a few nucleotides.

Both horizontally and mutational acquired resistance play a major role in clinical relevant 

resistance, however, an in depth understanding of mutational resistance has until recently 

been unfeasible due to limited sequencing capabilities. With the advent of high-throughput 

sequencing platforms this situation is now changing. It is now possible to sequence bacterial 

Figure 2. Mechanisms of antibiotic resistance
Schematic presentation of the common mechanisms behind antibiotic 
resistance.

Antibiotics

Reduced 
drug uptake

Altered
drug targetDrug inactivation

Increased
efflux

Pathway 
circumvention
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genomes at a large scale and identify single nucleotide polymorphisms (SNPs) across 

sensitive and resistant isolates23-25. All though this technique is not yet applied routinely, 

future projects studying the evolution of resistance by whole genome sequencing will without 

doubt give important insight into the dynamics of resistance evolution.

Antibiotic resistance mechanisms

From a mechanistic point-of-view, resistance can be divided into five categories: drug-

target alterations, reduced drug uptake, increased drug efflux, circumvention of drug target 

essentiality and drug inactivation (Figure 2)22.

Drug target alterations can either occur at the gene-level, i.e. as mutational acquired 

resistance, or post-transcriptionally/post-translationally via different modification enzymes 

such as methyltransferases. Target modifications usually impose structural changes in RNA 

(commonly rRNA or tRNA) or proteins, an exception being the changes in the terminal 

amino acid in the peptidoglycan structure leading to vancomycin resistance.

Reduced drug uptake is primarily observed in Gram-negative species and is commonly 

caused by reduced permeability of the outer membrane. This is usually the result of 

reduced expression of the outer membrane porins (OMPs), caused either by mutations 

in the OMP genes or in regulatory genes that control the OMP expression26. Reduced 

uptake has been reported to augment the effect of ESBL resistance enzymes, thereby 

leading to carbapenem resistance27,28. This highlights how multiple resistance mechanisms 

can act jointly to increase the spectrum of resistance. Furthermore, the combination of 

multiple resistance mechanisms makes it very difficult to uncover the individual resistance 

contributors, especially in routine diagnostics.

Like target alterations, increased efflux can be the result of both mutational and horizontal 

acquired resistance. In the case of mutational resistance, the mutations are usually located 

in regulatory genes resulting in up-regulation of housekeeping efflux pumps. Alternatively, 

mutations within the efflux pumps can change its substrate spectrum making it more 

promiscuous and thereby enabling the pump to expel antibiotics29. Bacteria can also 

horizontally acquire novel resistance efflux pumps, such as the well studied TetA tetracycline 

efflux pump30,31.

Circumvention of the drug target essentiality leaves the cell unaffected by the inhibitory 
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effect of the antibiotic. This resistance mechanism is by nature always horizontally acquired 

and probably the best example is the acquisition of penicillin biding protein 2a (PBP2a) in 

S. aureus that results in the MRSA phenotype. This PBP has a very low affinity for beta-

lactam antibiotics and while the beta-lactam antibiotics still inhibit housekeeping PBPs, 

this inhibition does not have an effect as the PBP2a complements their function21. Other 

examples of target circumvention include circumvention of THF inhibition via acquisition of 

enzymes insensitive to THF inhibitors. In this case, the acquired enzyme is often a mutated 

version of a housekeeping enzyme that is spreading via HGT32.

Drug inactivation is a common resistance mechanism, involving either degradation or 

modification of the antibiotic. It is most commonly the result of HGT. However, it can also occur 

via up-regulation of housekeeping enzymes, as for instance in the case of up-regulation of 

ampC leading to beta-lactam resistance. Currently one of the biggest resistance problems 

challenging the successful treatment of infections is the spread of extended spectrum beta-

lactamases (ESBL)33.  These enzymes inactivate most beta-lactam drugs by hydrolyzing 

the beta-lactam core34. Another resistance challenge is the aminoglycoside modifying 

enzymes. These enzymes modify the aminoglycoside structure by add phospho, acetyl or 

nucleotidyl groups to the aminoglycoside drugs, thereby reducing the drug affinity for the 

30S ribosomal target35. These examples highlight the breadth of resistance mechanisms 

that function via inactivation of an antibiotic. 

In any cases of resistance, whether it is mutationally or horizontally acquired, the clinical 

relevance of the phenotype depends highly on the degree of dissemination. If a specific 

resistance mechanisms is only observed in a few cases, it might be interesting from a 

molecular point-of-view, however, its clinical importance is negligible. Therefore, it is 

important to realize that surveillance of antibiotic resistance is key to prioritizing research 

and improving efforts of overcoming the challenges of antibiotic resistance. Currently such 

surveillance is based on phenotypic screening, but as technologies advance, this will 

hopefully be augmented with whole genome sequencing, enabling scientists to study the 

genetics of resistance dissemination.
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Thesis investigations

When a bacterial population is exposed to an antibiotic, the resistant members will keep 

dividing and ultimately take over the population. However, this view on the emergence of 

antibiotic resistance assumes that the population contains resistant members. Resultantly, 

the question of how these resistant members emerge is highly relevant. 

In the case of mutational resistance, it is fair to assume that the probability of a population 

containing a resistant member is proportional to the number of mutations required for 

resistance and the size of the population. If it is further assumed that resistance against a 

specific class of antibiotics requires a specific set of mutations, then more mutations are 

required to achieve multi-drug resistance. This reasoning has lead to the simultaneous use 

of multiple antibiotics, to reduce the risk of resistance emerging.

When the emergence of antibiotic resistance occurs via HGT, it is fair to assume that the 

probability of acquiring a resistance gene is proportional to concentration of resistance 

genes and the microbial density of the environment. 

In my thesis work I have investigated both of these sources of antibiotic resistance in an 

attempt to get a more detailed picture of the underlying mechanisms affecting the emergence 

of antibiotic resistant bacteria. The results are presented in two separate sections. In 

section one I investigate the relationship between the use of drug-combinations and the 

emergence of resistance, and in section two I investigate the overlap in resistance gene 

reservoir between different environments.
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Introduction to section 1

Drug combinations

Drug combinations are routinely used in the treatment of infectious diseases, as for instance 

in the treatment of HIV or TB1-3. In both cases, the argument for using multiple drugs is to 

reduce the emergence of resistance. In a similar fashion, multidrug treatment is also used to 

reduce the emergence of resistance during treatment of certain types of cancer4. Common 

for these otherwise very different diseases is the fact that they require long term or, as in 

the case of HIV, life long treatment with an antibiotic or chemotherapeutic agent. The long 

treatment duration greatly increases the risk of resistance development, as it allows for longer 

periods of sub minimal inhibitor concentration (MIC) selection, which effectively selects for 

resistant mutants. Therefore, assuming that there is no overlap in the resistance mutations, 

the simultaneous use of multiple drugs will reduce the development of resistance5.

While this approach to reducing resistance has proven very successful in reducing resistance 

during long-term treatment regimes, it is generally not used for shorter regimes.

The two other main arguments for using combinations of antibiotics are increased 

spectrum of target organisms and increased potency6. In the case of the combination of an 

aminoglycoside and a beta-lactam, which is routinely used to treat bloodstream infections, 

both increased spectrum and in vitro synergy are used as arguments for the use of this 

combination. However, clinical trials have failed to show superiority of this combination 

treatment over mono-therapy with a beta-lactam antibiotic7,8. These findings highlight the 

importance of randomized controlled trials to bridge laboratory findings and clinical practice. 

Another widely used combination is the combination of a penicillin drug plus a beta-

lactamase-inhibitor. This combination re-sensitizes bacteria that produce beta-lactamase-

inhibitor sensitive beta-lactamases, which include the common CTX-M ESBL enzymes9. Also 

commonly used, is the combination of trimethoprim plus sulfamethoxazole.  This combination 

exhibits great in vitro synergy, however, clinical trials have again not convincingly shown an 

increased efficacy of the combination over mono therapy with trimethoprim10.

Studies of drug combinations 

With the increase in multidrug and broad-spectrum resistant bacteria there has been a 

renewed interest in the possibilities of overcoming resistance by using combinations of 

antibiotics, often as higher-order combinations11-13. This has resulted in much laboratory-
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based research being published, with very little clinical follow-up research to sustain in vitro 

findings14-16. However, the interest in drug combinations has also initiated more research 

into the fundamental phenotypic and genotypic responses to antibiotics 17-19. Particularly the 

study of epistatic drug interactions has been the focus of many studies20-23.

Epistatic interactions basically describe the phenomena where one component in a system 

is modulated by another component in the system. In the case of antibiotics, synergy 

and antagonism between drugs are examples of epistasis13,24. Synergy describes the 

situation where the effect of a drug-combination is greater than the combined effect of the 

individual drugs. In other words, the presence of one drug potentiates the effect of the other 

drug. In a similar fashion, antagonism describes the situation where the effect of a drug-

combination is less than the combined effect of the individual drugs. Depending on the prior 

assumptions about drug interactions, the non-epistatic interaction can either be additive 

or non-interacting. Assuming additivity, the non-epistatic interaction is the situation where 

the effect of a drug combination is equal to the combined effect of the individual drugs. In 

contrast, if no interaction is assumed, the non-epistatic state is the situation where the effect 

of a drug combination is equal to the effect of the most potent single agent13.

Measuring drug interactions

Different models are used to assess the degree of drug epistasis, which makes comparison 

across studies difficult. However, what is common to all models is that they assess epistasis 

by comparing the inhibitory capacity of a drug-combination to the inhibitory capacity of the 

individual drugs24. Normally, the inhibitory capacity is expressed as the amount of drug 

required to inhibit the growth of a target organism relative to a no-drug control, although 

sometimes it may also be quantified by the relative reduction in growth rate. A commonly 

used measure of drug activity is the amount of drug required to inhibit bacterial growth by 

90 % relative to a no-drug control after a fixed incubation time. This measure is normally 

referred to as the IC90. Experimentally, the IC90 can be derived from dose-response curves 

obtained by inoculating the target organism into a drug gradient. 

Two models are commonly used to assess the interactions between antibiotics: the Bliss 

independence model and the Loewe additivity model24-27. They differ fundamentally in their 

prior assumptions about drug interactions and it is therefore important to consider the nature 

of the interactions before choosing a model. 

The Bliss independence model assumes that drugs act independently of each other. 
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Therefore, in a combination of two truly independent acting drugs, a and b, the effect of 

drug b will be exerted on the fraction that drug a is not affecting, more generally this can be 

described as: 

(1):		  E(a, b) = E(a) + (1 -  E(a))  * E(b), where E is the inhibitory effect of a drug 

relative to a no-drug control

In other words for the non-epistatic case, the effect of the combination of drug a and b is 

equal to the effect of drug a plus the effect of drug b on the fraction unaffected by drug a.

Often (1) is rewritten as:

(2):		  E(a, b) = E(a) + E(b) – E(a)*E(b)

Deviations from this equation indicate drug epistasis, which can be characterized as either 

synergistic E(a, b) > E(a) + E(b) – E(a)*E(b) or antagonistic E(a, b) < E(a) + E(b) – E(a)*E(b). 

Another model, generally considered to be more applicable to the study of antibiotic 

interactions, is the Loewe additivity model24,25. In contrast to the Bliss independence 

model, this model assumes that drugs acts in an additive fashion such that the effect of a 

combination of drugs, a and b, can be described as the sum of the fractional effect of the 

individual drugs:

(3):	 E(a, b) = ICx(a)ab / ICx(a)a + ICx(b)ab / ICx(b)b, where ICx is the drug concentration 

required for x % inhibition relative to a no-drug control. 

That is to say, if the drugs a and b have no epistatic effect on each other, then the effect 

of a combination of drug a and b will be the sum of the fractional inhibition of each drug 

in the combination relative to the single drug. The effect of the drug-combination and the 

single drugs is reported at a given effect level (ICx) e.g. IC90. Commonly, the result of using 

the Loewe additivity model is termed the fractional concentration inhibitory index (FICI). 

Consequently, for additive drugs FICI = 1, while for synergistic drugs FICI < 1 and for 

antagonistic drugs FICI > 1.
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An important difference between the two models is that the Loewe additivity model assesses 

epistasis at a given effect level e.g. IC90, whereas the Bliss independence model assesses 

epistasis at given drug concentrations. Consequently, the Loewe model requires a dose-

response curve while the Bliss model only requires single concentration points.

It is important to emphasize, that if the drugs do not fulfill the independence assumption, 

estimations of epistasis using the Bliss independence model will not be valid as it 

overestimates the degree of synergy between drugs. This point is best illustrated by 

considering the scam experiment in which drug a and b are identical.  In this situation a 

combination of drug a and b will be highly synergistic according to the Bliss independence 

model, which is clearly wrong. Conversely, according to the Loewe additivity model, such 

scam combination would be correctly identified additive.

Resultantly, assuming independent actions is erroneous when assessing combination of 

drugs that belong to the same drug class, e.g. different beta-lactam drugs. Likewise, it 

seems difficult to uphold an argument of independent action for drugs that have the same 

target, e.g. drugs that target the ribosome. Therefore, Loewe additively is generally accepted 

as a better model for assessing antibiotic drug interactions.

A new view on synergistic combinations

Traditionally, research into interactions between antibiotic drugs has focused on identifying 

synergistic combinations16,24. The reason for this being, that increased potency, conferred 

by the synergy, would improve treatment outcome and, in the case of resistance, might 

serve as a way to overcome resistance. 

Recently, the search for synergy has been questioned by a number of studies showing that 

synergistic combinations accelerate evolution of resistance while antagonistic combinations 

reduces evolution of resistance 20,21. The rationale behind this observation hinges on the 

idea that as resistance develops against one drug in a drug combination, the epistatic drug 

interactions are lost. Consequently, for a synergistic combination there will be a strong 

evolutionary pressure selecting for resistance, as this would ameliorate the drug synergy. 

Conversely, for antagonistic combinations, selection for resistance is reduced, as it would 

lead to a loss of drug interactions, resulting in increased drug potency. These findings leads 

to the paradoxical situation in which increased potency, due to synergy between antibiotics, 

comes at the price of increased resistance development. Hence, these studies highlight that 

antagonistic combinations should be preferred over synergistic due to their ability to reduce 
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resistance.

A key weakness of the studies is that they are based on sub-MIC measurements. From 

a clinical perspective, resistance is refers to an increase in the MIC relative to the wild-

type MIC. Hence, the translation of sub-MIC experiments to a clinical scenario may be 

difficult. Resultantly, more in-depth studies of the impact of epistatic drug interactions on 

the evolution of resistance increase above the wild-type MIC resistance is warranted. In 

addition, potential collateral impacts of the resistance development are not accounted for 

in these studies.

Collateral impact of resistance

Collateral impact of resistance is manifested as either collateral resistance or collateral 

sensitivity, the former being the situation where resistance to one drug also confers 

resistance to other drugs, while the latter describes the situation where resistance to one 

drug increases sensitivity to other drugs. Szybalski and Bryson pioneered the study of these 

phenomena in the early 1950s, of which particularly collateral resistance has been described 

in many studies of adaptive resistance28-30. More recently, there has been an increased 

interest in collateral sensitivity as a mean to overcome or reduce resistance development. 

Large scale adaptive evolution studies have shown that the phenomena is common and 

that collateral sensitivity can be exploited to re-sensitize resistant populations by applying 

a drug cycling regime17,19. Moreover, collateral sensitivity has been demonstrated in both 

bacteria, virus and cancer cell lines, suggesting that general principles can be developed 

for the exploitation of the phenomena to overcome resistance31-34.

Thesis work

In my work I have studied the adaptive responses of E. coli to five antimicrobial drugs and 

all possible pairwise combinations of these. In contrast to previous studies of responses 

to drug combinations, which are primarily based on sub-MIC adaptations, all adaptation 

experiments in the present work are conducted in antibiotic gradients with the specific aim 

to measure how combinations affected increase the MIC relative to single drug exposure 

(Figure 3). Both the genotypic and phenotypic responses were studies using full genome 

sequencing and comprehensive MIC testing. This resulted in a detailed analysis of the 

evolutionary responses during drug exposure. 
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I find that during adaptive resistance evolution against drug-combinations, the collateral 

impact has a major influence on the rate of resistance development. Specifically I find that 

the responses to the single-drug adapted lineages can be used to predict the responses to 

the drug-pairs. 

Furthermore I find no correlation between the epistatic drug interactions and the evolution 

of resistance as measured by increasing MIC (Figure 4). These results highlight that 

during adaptive evolution of resistance to drug-combinations, the collateral MIC changes 

have a major impact on the resistance development, while the effect of the epistatic drug 

interactions on the evolution of resistance is limited. My findings show that the ability of 

drug combinations to prevent evolution of resistance is different for sub- and increasing MIC 

adaptations. In the case of evolution of clinical relevant resistance, which by definition is 

above the wild-type MIC, my results suggests that resistance preventing drug combinations 

can be designed by studying the collateral impact of single drug evolved strains.
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Figure 3. Overview of the experimental setup.
The in vitro evolution experiment was conducted in 24 well 
plates with drug gradients across the columns. The last column 
contained positive and negative controls. Every 20 h cells were 
diluted 1:40 from the highest drug concentration where the OD600 
was greater than 0.25 into a freshly prepared drug gradient. The 
rows contained the parallel-evolved lineages.
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In a parallel experiment, my colleague Mari Evgrafov headed an investigation of MIC 

adaptation in Staphylococcus aureus. She exposed S. aureus to three different drug 

combinations; ciprofloxacin + ampicillin, amikacin + fusidic acid and erythromycin + fusidic 

acid, as well as their component drugs. These drug-combinations represent additive, 

antagonistic and synergistic interactions, respectively22. 

The study confirmed that epistatic drug interactions do not predict evolution of increased 

MICs to drug combinations. Furthermore, it corroborated that collateral changes in MIC in 

response to single drug adaptation predicted evolution of resistance during drug combination 

adaptation. Importantly, this study used a different organism and different drug combinations 

yet found the same overall principles dictating the evolution of increased MIC during drug-

combination adaptation. 
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For a population to avoid extinction during 
environmental change it must be able to adapt 
or evolve phenotypes that allow survival under 
the new condition. The success of this process 
is closely connected with the magnitude and the 
complexity of the environmental perturbation as 
survival rates decline with increasing selection 
pressure and selection complexity1,2. This 
paradigm provides the basis for the use of drug 
combinations to reduce resistance development 
during treatment of for instance tuberculosis, HIV 
and cancer3-5. Traditionally, the ability of multi-
component environmental perturbations to reduce 
fixation of mutations has been viewed as the 
result of having to acquire multiple independent 
mutations2. Yet, we propose that evolutionary 
interactions between environmental perturbations 
play a key role in determining the rate of phenotypic 
evolution. Here we show, that the ability of a multi-
component perturbation to prevent fixation of 
mutations can be predicted from the evolutionary 
responses to the constituent perturbations. By 
studying the phenotypic and genotypic evolution 
of E. coli during single- and dual-component 
perturbations we found, that combinations of 
perturbations for which the responses to the 
individual perturbations conferred collateral 
sensitivity, significantly reduced the evolution 
of otherwise beneficial genotypes. Notably we 
found, that the dual-component perturbation with 
the highest degree of collateral sensitivity almost 
completely prevented fixation of the canonical 
mutations found in the single-component evolved 
lineages. These findings highlight, that the ability 
of a multi-component perturbation to prevent 
fixation of mutations is not only the result of a 
lowered probability of simultaneously evolving 
along multiple individual trajectories, but instead a 
complex process where evolutionary interactions 
play a major role in determining the rate of 

adaptation. The results provide a framework 
that could contribute to rational design of drug 
combination treatments that reduce evolution of 
drug resistance.

	 In order to investigate how multi-component 
perturbations affect evolutionary trajectories relative 
to single-component perturbations we used an E. coli 
based model system. We characterized the genotypic 
and phenotypic responses of E. coli to 5 different 
antibiotics (amikacin (Amk), ciprofloxacin (Cip), 
piperacillin (Pip), tetracycline (Tet) and chloramphenicol 
(Chl)) and all possible pairwise combinations, in total 
15 different perturbations. Antibiotics were chosen 
as the environment perturbation since it facilitated a 
quantitative assessment of the degree of phenotypic 
evolution by measuring the relative increase in the 90 
% inhibition concentration (IC90)(Supplementary Data 
1). Additionally, the genotypic responses underlying the 
resistance phenotype could be readily identified due 
to the significant knowledge on antibiotic resistance 
mutations in E. coli. Triplicate evolution experiments 
were performed for each condition by daily passaging 
the 45 separate lineages into increasing antibiotic 
concentrations selecting for increasing resistance. 
To investigate how dual environmental perturbations 
affect the phenotypic evolution relative to single 
perturbations, we measured the IC90 of all the evolved 
lineages and calculated the increase in IC90 relative 
to the ancestral wild type IC90 (Fig. 1a-e). In contrast 
to the general expectation, many dual-perturbations 
did not significantly reduce the relative phenotypic 
evolution compared to single-perturbations (Fig. 1c-
e). However, for combinations containing amikacin 
or ciprofloxacin, the presence of any of the other four 
drugs significantly reduced the relative phenotypic 
evolution (Fig. 1a and b). This effect could either 
be caused by one of the components acting as a 
ceiling factor in the dual-perturbation scenario or by a 
genuine repression of the phenotypic evolution of both 



- 31 -

components. 

To distinguish between these two phenomena we 
determined how the evolution of resistance to one 
individual component is affected by the presence of 
the other component in a dual-component selection. 
For each lineage evolved to a dual-perturbation 
containing either amikacin or ciprofloxacin, we 
quantified the relative evolvability of the individual 
components. This describes the increase in IC90 for 
each component in a dual-perturbation relative to the 
increase in IC90 in response to the mono-perturbation 
(see Supplementary Methods). If a component 
has a relative evolvability of 1, the presence of the 
other component does not influence the phenotypic 
evolutionary response. Conversely, if the relative 
evolvability is less that 1 it implies that the presence 
of the other component reduces the phenotypic 
evolutionary response, while a value greater than 
1 implies that the other component accelerates the 
phenotypic evolutionary response. In the ciprofloxacin 
containing combinations, the presence of the other 
component only affects the phenotypic evolutionary 
response to ciprofloxacin, whereas the response 
to the other component is unaffected (except when 
it is amikacin) (Fig. 1f). Hence, any reduction in the 
phenotypic evolutionary response against ciprofloxacin 
containing combinations is merely the result of a 
ceiling effect exerted by the other component (Fig. 1f).  
In contrast, for combinations containing amikacin the 
phenotypic evolutionary response to both components 
is reduced, providing an example of genuine repression 
of phenotypic evolution (Fig. 1g). 
To further examine the capacity of amikacin-containing 
combinations to reduce the phenotypic response, we 
calculated the evolvability index for each combination-
perturbed lineage and compared the amikacin-
containing combinations to the other combinations 
(Fig. 1h). The evolvability index is calculated as 
the average of the relative evolvability for each 
component in a combination (see Supplementary 
Methods). It describes the overall ability of a given 
combination to affect the phenotypic evolution. The 
comparison revealed, that amikacin-containing 
combinations reduce the overall phenotypic evolution 
to a significantly higher degree compared to the other 
combinations (Fig. 1h). Moreover, the high evolvability 
index of the combinations that did not contain amikacin 
revealed that the common assumption of independent 
responses to each component in a multi-component 
perturbation is overly simplified. Instead, these results 
suggest that there is a high degree of interactions 
between the evolutionary trajectories, and that this 
plays a large role in the phenotypic evolution to multi-
component perturbations.

To uncover the underlying genotypic changes of the 
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Figure 1. Amikacin containing combinations reduce the 
phenotypic evolution.
Increase in IC90 (mean ± s.e.m, n = 3 biological replicates) of 
the evolved lineages relative to IC90 of the ancestral E. coli 
MG1655.  Panel a-e depict data for lineages evolved to single 
or dual perturbations by Amk, Cip, Pip, Tet and Chl, respectively. 
Only combinations containing either Amk (a) or Cip (b) significantly 
reduce the relative increase in IC90 compared to a perturbation 
by the single component (*P < 0.05, ANOVA followed by Tukey’s 
test). Panel f and g; evolvability of the individual components in 
Cip containing combinations (f) and Amk containing combinations 
(g) measured as increase in IC90 (mean ± s.e.m, n = 3 biological 
replicates) of the individual components relative to the IC90 
increase in single-perturbed lineages, only Amk containing 
combinations reduces the evolvability of both components. Panel 
h; evolvability index of combinations with and without amikacin 
(mean ± s.e.m, n = 12 (with amikacin) n = 18 (without amikacin), 
biological replicates) calculated as the mean evolvability of the 
individual components in each combination. Amk containing 
combinations reduce the phenotypic evolutionary response 
significantly more than the other combinations (*P < 0.05, Student’s 
t-test).
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evolved lineages, we genome sequenced all the 
evolved lineages along with the ancestral E. coli 
MG1655 wild type strain. We identified SNPs and 
INDELs (Supplementary Table 1) (Figure 2). Aside 
from the canonical primary target mutations in the 
ciprofloxacin and piperacillin perturbed lineages6,7, 
we found that the lineages perturbed by ciprofloxacin, 
piperacillin, tetracycline and chloramphenicol had 
overlapping evolutionary trajectories, while those 
perturbed by amikacin evolved along a distinct 
trajectory (Fig. 2b). The ciprofloxacin, piperacillin, 
tetracycline and chloramphenicol perturbed lineages 
carried mutations in the regulatory genes acrR, marR, 
soxR and rob which all induce the well characterized 
multiple antibiotic resistant phenotype (mar 

phenotype)8,9(Fig. 2d). These regulatory genes control 
a common regulon known to confer resistance to all 
the tested antibiotics, except amikacin10, via increased 
efflux pump expression and down-regulation of porin 
expression (Fig. 2d)11. In contrast, the amikacin-
perturbed lineages all carried mutations in the fusA, 
cpxA and sbmA genes, known to be involved in 
aminoglycoside resistance12-15. Interestingly, none 
of the amikacin-perturbed lineages had mutations 
known to induce the mar-phenotype, highlighting 
that the amikacin-perturbed lineages follow a unique 
evolutionary trajectory (Fig 2b). 
The differences between the genotypic responses 
to single perturbations by amikacin and by the 
other compounds correspond to the differences 
seen in the evolvability index of the dual perturbed 
lineages. This suggests that the amount of overlap 
in the responses to the single perturbed lineages 
predicts the responses to the combinations of these 
perturbations. This was generally confirmed by the 
genotypes of the dual perturbed lineages (Fig. 2a and 
c). As expected, we found that lineages perturbed by 
combinations of ciprofloxacin, piperacillin, tetracycline 
and chloramphenicol all evolved towards the mar-
phenotype with an average of 1.5 mar related mutations 
per lineage (Fig 2c). In contrast, even though all the 
amikacin containing combinations also contained a 
compound that selected for the mar-phenotype, these 
lineages did not accumulate the mar mutations to 
the same extend having an average of only 0.6 mar 
related mutations per lineage (Fig. 2a). Furthermore, 
the accumulation of the canonical amikacin mutations 
was also reduced with none of the lineages containing 
the sbmA mutations and many of the lineages only 
having either the fusA or the cpxA mutations (Fig 2a). In 
particular the amikacin+chloramphenicol combination 
was impaired in its accumulation of the canonical 
mutations found in the component-perturbed lineages 
(Fig. 2a). Hence, it appears that there is a high degree 
of incompatibility between the evolutionary responses 
to amikacin and chloramphenicol.

We hypothesized, that such evolutionary incompatibility 
could be the result of a collateral impact on the 
phenotype resulting from the genotypic evolutionary 
response to the individual components. Collateral 
sensitivity and resistance in response to antibiotic 
treatment was originally studied in the early 1950s by 
Szybalski and Bryson, however, recent studies have 
brought renewed attention to the phenomena and its 
potential relation to evolution of resistance12,16,17. To 
quantify the collateral impacts of evolution to single 
component perturbations we measured the changes 
in antibiotic sensitivity (IC90) of the single perturbed 
lineages against the four antibiotics they had not been 
exposed to (Fig. 3a). This revealed a high degree of 
collateral effects resulting from evolution to each of the 
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single-component perturbations (Fig. 3a). In agreement 
with the overlapping evolutionary trajectories found 
in the genome sequences, we observed a high 
degree of collateral resistance between the lineages 
perturbed by ciprofloxacin, piperacillin tetracycline 
and chloramphenicol. In contrast, we found that the 
amikacin-perturbed lineages all displayed a consistent 
pattern of collateral sensitivity to the other drugs with 
chloramphenicol as the most sensitized drug (Fig. 3a). 
These findings confirm recent studies demonstrating 
significant collateral sensitivity in aminoglycoside 
exposed lineages12,17. 
Based on these results we hypothesized that the 
reduced evolutionary response to the amikacin-
containing combinations is due to an evolutionary 
“tension” between the evolutionary responses to the 
individual components. To explore this idea, we used 
the measurements of collateral IC90 changes to 
calculate the average collateral impact for every pair 
of single-perturbed lineages and compared that to the 
evolvability index of the dual-perturbed lineages (Fig. 
3b)(see Supplementary Methods). In this comparison 
the combinations divide into two populations, one with 
the amikacin containing combinations and one with 
the remaining combinations. It shows that the extent 
of the collateral impact within the single-component 
perturbed lineages predicts the capacity of a given 
combination to reduce the evolutionary response. 

To investigate how the collateral impact between 
evolutionary trajectories affect fixation of mutations we 
performed a competition experiment using engineered 
single mutants with either a cpxA, fusA, sbmA, gyrA 
or marR mutation18 (see Supplementary Methods and 

Extended Data Table 1). These mutations represent 
examples of evolutionary trajectories with collateral 
sensitivity (cpxA, fusA, sbmA), no collateral impact 
(gyrA) and collateral resistance (marR). Each mutant 
was mixed 1:1 with an ancestral wild type strain and 
grown overnight in sub-inhibitory concentrations of 
relevant antibiotics. Subsequently, the ratio between 
WT and mutant alleles was measured using qPCR and 
the changes were reported relative to growth without 
antibiotics (Fig. 3c and Extended Data Fig. 1). As 
predicted from the phenotypic and genotypic data, the 
results show that each of the three mutations originally 
found in the amikacin perturbed lineages (cpxA, fusA 
and sbmA) were enriched in the populations exposed 
to amikacin (Fig 3c-e). However, the experiment also 
revealed that the cpxA, fusA and sbmA mutations 
were counter selected in chloramphenicol and 
that the counter selection even occurred when the 
engineered strains were grown in chloramphenicol 
plus amikacin, highlighting that evolutionary tension 
can prevent fixation of otherwise beneficial mutations 
(Fig. 3c-e). In contrast, the gyrA mutation was strongly 
enriched by ciprofloxacin alone and ciprofloxacin plus 
amikacin, yet growth in amikacin alone did not affect 
the frequency of the mutant relative to growth without 
antibiotics (Fig. 3f). Accordingly, the gyrA mutation can 
be categorized as compatible with amikacin selection. 
Finally, the marR mutation was positively selected 
both in tetracycline alone and chloramphenicol alone 
as well as the combination of the two drugs (Fig. 3g). 
The marR mutation represents an example of  how 
overlapping evolutionary trajectories, where a mutation 
is beneficial under multiple conditions, can reduce the 
ability of a multi-component perturbation to reduce an 
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Figure 3. Collateral IC90 changes affect phenotypic evolution.
Panel a; quantification of the collateral impact in response to single-component perturbations. IC90 of each of the single-perturbed lineages 
was determined for the compounds they had not been exposed to and the collateral changes in IC90 are reported relative to the ancestral 
wt E. coli (mean ± s.e.m, n = 3 biological replicates). Panel b; evolvability index of the dual-perturbed lineages as a function of the mean of 
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- 34 -

evolutionary response (Fig 1c-e). 

These results show that the collateral impact of the 
individual evolutionary trajectories greatly affects 
the ability of a dual-perturbation to prevent fixation 
of the mutations commonly found in response to the 
component perturbations. If a population is exposed to 
a combination of perturbations where the responses 
to the individual components are compatible or even 
overlapping (e.g. tetracycline+chloramphenicol), 
fixation of the component mutations will not be 
effectively reduced (Fig 4a). In contrast, if the 
combined perturbation consists of individually 
incompatible evolutionary trajectories (e.g. 
amikacin+chloramphenicol) the evolutionary response 
to the combination will be greatly reduced relative to 
the response to the components (Fig. 4b). 

Our findings highlight, that interactions between 
evolutionary trajectories as a result of distinct 
perturbations are common. Furthermore, these 
evolutionary interactions play a key role in determining 
the rate of phenotypic evolution to multi-component 

perturbations. Indeed, evolutionary interactions 
between environmental perturbations can both 
prevent the fixation of canonical genotypes or lead to 
rapid adaptation through compatible or overlapping 
evolutionary trajectories. Notably, we find no correlation 
between epistatic interactions, e.g. synergism or 
antagonism, of the components and the phenotypic 
evolution 19 (Extended Data Fig. 2). Instead, collateral 
resistance and sensitivity, a hallmark of evolutionary 
interactions, plays a key role in determining the rate 
of phenotypic evolution in response to combined 
perturbations. Collateral resistance and sensitivity has 
been described in bacteria, viruses and cancer cell 
lines17,20-22. Accordingly, we expect that development of 
resistance-reducing drug combinations, on the basis 
of evolutionary interactions, should be applicable to a 
broad range of therapeutic areas, including bacterial 
infections, cancer and HIV management. 

Method Summary
E. coli MG1655 was exposed to increasing 
concentrations of five antibiotics: ciprofloxacin 
hydrochloride (AppliChem), tetracycline hydrochloride 
(Sigma), amikacin sulfate (Sigma), chloramphenicol 
(Sigma) and piperacillin sulfate (Sigma) as well as 
all pairwise combinations thereof. The evolution 
experiments were performed in triplicates for each drug 
condition using LB medium as the growth medium. 
Selection was carried out by daily passaging of the 
lineages into two-fold dilution series of the antibiotics in 
24 well plates using 1 ml total volume (Extended Data 
Fig. 3). All lineages were evolved for the same period of 
time and the experiment ended when all strains exposed 
to single-components had reached their respective 
clinical break point (see Supplementary Methods). For 
each single-component perturbed lineage, the IC90 
of a representative clone was determined against 
all single components as well as dual-components 
containing the perturbation component. For the dual-
perturbed lineages the IC90 against the combination 
and its components determined. In addition the IC90 
of the ancestral strain was determined against all 
conditions (raw data in Supplementary Table 2). The 
genome of a representative clone from each lineage 
was sequenced using the SOLiD platform. For the 
competition experiment mutant strains were created 
using Multiplexed Automated Genome Engineering 
(MAGE)18 each mutant was mixed with a ΔlacZ wt 
strain and allele frequencies were determined with 
qPCR and confirmed by plating on Xgal+IPTG (see 
Supplementary Methods, Extended Data Fig. 1 and 
Extended Data Table 1 and 2). 
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ABSTRACT
As drug resistant pathogens continue to emerge, 
combination therapy will increasingly be relied on 
to treat infections and to help combat the further 
development of multidrug resistance.  At present a 
dichotomy exists between clinical practice, which 
favors therapeutically synergistic combinations, and 
the established scientific model, which maintains that 
this interaction provides a greater selective advantage 
toward resistance development than other interaction 
types.  We explore the role that drug interactions play 
in the evolution of clinically relevant resistance through 
a series of adaptive evolution experiments using 
Staphylococcus aureus.  Interestingly, no relationship 
between drug interaction type and resistance evolution 
was found as resistance increased significantly beyond 
wild type levels.  All drug combinations, irrespective of 
interaction type, effectively limited resistance evolution 
compared to mono-treatment.  Comparative genomic 
analyses reveal overlap in the mutations causing 
resistance between the drug combination evolved 
lineages and the individual drug evolved strains 
highlighting the importance of the component drugs in 
determining the rate of resistance evolution.   Results 
of this work suggest that the emphasis placed on drug 
interactions as the driving force behind resistance 
evolution should be reconsidered. 

SIGNIFICANCE STATEMENT
Combination therapy has been instrumental in treating 
illness where resistance potential is high.  Presently 
a paradox exists between clinical practice, which 
favors therapeutically synergistic combinations, and 

the established scientific mode, which maintains that 
this interaction favors resistance evolution.  The role of 
drug interactions in the evolution of clinically relevant 
resistance was investigated through a series of 
adaptive evolution experiments using Staphylococcus 
aureus.  All drug combinations slowed resistance 
evolution with the synergistic combination limiting it 
best.  Combination and single drug evolved lineages 
shared mutations in primary targets highlighting the 
importance of constituent drugs in predicting rates of 
resistance evolution.  Results of this work challenge 
the emphasis placed on drug interactions as the 
driving force behind resistance evolution.  

INTRODUCTION
The discovery and deployment of antibiotics has 
been credited with revolutionizing medicine (1, 2). 
Unfortunately, microbes very quickly demonstrated a 
deft ability to adapt and evolve to these new wonder 
drugs rendering them less effective.  Indeed, evolution 
of resistance in human pathogens has closely 
followed the deployment of every new antibiotic (3).  
Furthermore, the evolution of antibiotic resistance 
has been exacerbated by the misuse of antibiotics, 
particularly in the livestock industry (4), which has 
contributed to the spread and emergence of resistant 
strains (5-7).  The ramifications of this situation are 
dire.  Left unresolved antibiotic resistance will increase 
the cost of health care as a result of prolonged illness 
and the need for more expensive treatment, threaten 
medical advancements such as chemotherapy and 
organ transplants, scale back progress already made 
against certain infectious diseases, and ultimately 
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result in increased morbidity and mortality (8).  
One means of reducing resistance development during 
treatment is to use drug “cocktails” instead of individual 
drugs to treat infections. A multidrug approach relies 
upon the notion that spontaneous resistance is rare 
and multiplicative and so the likelihood of an organism 
suddenly gaining resistance to a cocktail in a single 
step will be much less than the prospect of resistance 
to any one of the individual drugs that make up the 
mixture acting alone (9).  This reasoning assumes that 
resistance acquisition occurs independently for each 
component of the cocktail.  
Drug combinations are categorized according to their 
interactions, which can be described using the Loewe 
additivity model (7).  The ideal case, referred to as 
synergistic, occurs when the treatment outcome of 
the mixture is significantly better than what would be 
expected from summing the effect of the component 
drugs acting alone.  A mixture where the drugs 
interfere with each other and the overall therapeutic 
effect is worse than expected from summing the 
effect of the components acting alone is referred to 
as antagonistic.  Finally, a combination where the 
treatment outcome of the mixture is the same as that 
of the individual components summed together is 
referred to as additive (10).  
Combination therapy has been instrumental in 
improving the lifespan of individuals infected with 
HIV (11-13) and in treating tuberculosis (14, 15). 
The success of combination therapy coupled with 
the increasing frequency of resistant organisms 
has spawned interest in understanding how drug 
interactions can affect resistance development (16-
22).  Recent studies have suggested that the epistatic 
interactions of the drug combination are correlated 
with the development of resistance (18, 19, 22).  
Moreover, of the three aforementioned drug interaction 
types, combinations of a synergistic nature have been 
hypothesized to favor the emergence of resistance (18, 
19, 21, 22).  The rationale behind this phenomenon 
is that the mutations conferring resistance to a single 
drug will have a more pronounced effect on the fitness 
of the organism in the presence of a synergistic 
combination because of the cooperative interaction of 
the components in the mixture (18, 19).
The current body of in vitro experimental evidence 
for this hypothesis conflicts with the practice of 
combination therapy in clinical settings, where 
therapeutically synergistic combinations are favored 
over additive or antagonistic combinations as a means 
for treating resistant pathogens and to clear infections 
(7).  Thus a paradox exists between the need for 
effective treatment and the desire to limit resistance 
evolution.  Resolution of this contradiction is important 
as it has the potential to affect the treatment of a wide 
variety of infectious diseases, including tuberculosis 
(14, 15), HIV (11-13, 23, 24), as well as cancer (25).

The current paradigm is built upon experimental work 
at or near the wild type (WT) minimum inhibitory 
concentration (MIC) level (16-18, 22).  The caveat 
of this approach is that clinically relevant resistance 
usually occurs at concentrations substantially greater 
than the WT MIC levels (26) used to develop the 
existing model and hypothesis.  It is the evolution of 
resistance in the range substantially above the WT 
MIC, which has not yet been properly explored, that 
we aimed to investigate.  We hypothesize that beyond 
WT MIC levels, resistance evolution is largely driven by 
the response to the individual component drugs rather 
than the epistatic interactions between the drugs in a 
combination. 
To explore our hypothesis, we performed a series of 
resistance evolution experiments using a medically 
relevant Gram-positive species, Staphylococcus 
aureus strain Newman (27), and five clinically relevant 
antibiotics - ampicillin (beta lactam), ciprofloxacin 
(fluoroquinolone), amikacin (aminoglycoside), fusidic 
acid, erythromycin (macrolide) –  which target a broad 
range of processes, including cell wall construction, 
the structure and function of DNA, and protein 
synthesis, respectively.  The selected antibiotics had 
previously been used to develop the current resistance 
paradigm (18) and were employed here to determine 
if the paradigm extended substantially beyond WT 
MIC levels.  Erythromycin(28), fusidic acid (29, 
30), and ciprofloxacin (28) are important agents for 
treating methicillin sensitive Staphylococcus aureus 
infections.  We considered evolution to each individual 
drug as well as three combinations, ciprofloxacin-
ampicillin (cpr-amp), amikacin-fusidic acid (fus-amik), 
and erythromycin-fusidic acid (fus-ery), which had 
previously been characterized as having additive, 
antagonistic and synergistic interactions, respectively 
(18).  It is important to note that the fusidic acid-
amikacin combination is not considered to be an 
antagonistic drug combination for the treatment of 
methicillin resistant Staphylococcus aureus (31).  For 
simplicity we will refer to these combinations by their 
interaction type when commenting on them.  
Resistance evolution experiments were conducted 
according to standardized methods (32) following 
determination of the WT MIC (Table S1).  Briefly, 
we challenged our WT organism with increasing 
concentrations of the aforementioned individual 
drugs or drug combinations. All evolution experiments 
were performed in liquid culture and each condition 
was investigated with three parallel experiments, 
designated as A, B, and C, in order to ensure 
experimental robustness.  Growth inhibition was 
assessed after 18 hours of incubation using optical 
density measurements.  The most resistant culture 
for each condition and experiment was selected for 
cultivation in fresh liquid media at the appropriate 
drug(s) concentration(s) overnight and then used 
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to inoculate the next experiment.  A total of five 
exposure improvement experiments were conducted 
for individual drug and drug combination.  This 
corresponded to an average cumulative number of cell 
divisions of 8.6x1012 (33).

RESULTS 
Resistance evolution experiments
Results of the evolution experiments show that all 
lineages exhibited a substantial increase in resistance, 
defined as the fold increase in the 90% inhibition 
value (IC90) relative to the WT, following five rounds 
of selection (Fig. 1A,B,C).  The exception to this 
trend was erythromycin-evolved lineage A, which 
experienced almost no additional resistance gain 
following the first exposure (Fig 1A). The average 
resistance improvements of the combination evolved 
(CE) lineages were different from their corresponding 
single drug evolved (SDE) lineages (Kruskal-
Wallis nonparametric ANOVA, all p<0.0001) (Fig 
1D,E,F).  The SDE strains achieved average fold MIC 
improvements that ranged from approximately one 
hundred (ampicillin) to greater than four thousand 
(fusidic acid) (Fig 1D,E,F).  This corresponded to drug 
concentrations ranging between 20-500 ug/mL (Fig 
S1).  These concentrations were six to several hundred 
times greater than the reported clinical breakpoints 
for these drugs for S. aureus (Table S2) (26).  The 

average fold resistance increase of the erythromycin 
evolved lineages was 2346, however variance in the 
evolution among the replicate strains translated to an 
equally large standard error of the mean (2115).  The 
CE lineages had less average fold resistance increase 
compared to their corresponding SDE strains.  Of the 
three CE lineages only the fus-amik strains had an 
average fold MIC improvement of greater than 100. 

Resistance evolution limited by all three combinations
Previous work has suggested that synergistic drug 
combinations favor resistance evolution more than 
antagonistic combinations (18, 19, 22).   To examine 
the influence of epistatic interactions on resistance 
evolution in our experiments we determined the 
evolvability index (EI) of each combination.  The 
EI is a measure of the evolution of the CE lineages 
relative to the SDE lineages at a given effect level 
and is determined by taking the average of the sum 
of the evolvability fractions for each drug in a mixture 
(for more detail see Methods).  An EI value of one 
signifies that the combination lineage evolved to same 
extent as its component lineages.  A value greater than 
one indicates that the CE strains evolved to be more 
resistant than their corresponding SDE lineages, while 
a value less than one means that CE lineages evolved 
less than their SDE strains.  
The evolvability fraction reflects how resistance 
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Figure 1. Individual and averaged resistance evolution for each of the conditions investigated.  
Individual drugs are shown in blue and red, while drug combinations are displayed in green.  First figure row (A, B, C) shows fold MIC 
improvement for individual lineages.  Fold MIC improvement is defined as the IC90 of the resistant strain divided by the WT IC90. Second 
figure row (D, E, F) shows average fold MIC improvement for each condition investigated.  Values represented here are an average of all 
replicate IC90 values for each condition (n=3, +SEM).
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evolution toward an individual drug is impacted as a 
result of being used in a combination compared to 
being used alone.  To make this assessment IC90 
values for individual component drugs were obtained 
for the CE strains (Fig. 2A) and subsequently divided 
by the corresponding SDE values (Fig. 2B).  Overall, 
the evolvabilities of all CE lineages were limited with 
all fractions being less than one (Fig. 2B).  Resistance 
development towards amikacin by the antagonistic 
combination was exceptionally high with the CE strains 
having IC90 values of close to 70% of the SDE strains 
(Fig. 2B).  This outcome is surprising because despite 
being in a combination, particularly an antagonistic 
one, resistance appears to have developed quickly.  
Pairwise comparisons of each drug’s CE and SDE 
IC90 values determined that the concentrations were 
statistically different (Mann-Whitney,p <0.05).  
Summation of the appropriate evolvability fractions 
yielded the EI values for each of the CE strains. EI 
values for all three combinations were less than one 
meaning that the CE lineages were less evolved 

than their corresponding SDE strains (Table S3).  
Interestingly, the evolvability was highest for the 
antagonistic drug combination (fus-amik EI = 0.44) and 
lowest for the synergistic drug combination (fus-ery 
EI = 0.04). This result is in direct contrast to previous 
reports based on sub MIC adaptations (18, 19, 22). 

Drug combination interactions change with resistance 
adaptation
In the current scientific model, drug interactions are 
considered to be static properties of the agents involved 
with no consideration given to the biological response 
provoked by the combination. To ascertain the stability 
of epistatic interactions post resistance adaptation, we 
calculated a fractional inhibitory concentration (FIC) 
index for each interaction type using our WT and drug 
combination adapted lineages. The FICI is based on the 
Loewe additivity zero interaction theory and describes, 
for a given effect level, drug interactions as the sum of 
the fractional inhibition of each drug in a combination 
relative to the drug acting alone (34).  A FICI of one 
denotes an additive interaction while values greater 
than one indicate an antagonistic interaction and those 
less than one point to a synergistic interaction.  
The interactions of each drug combination were tested 
with the WT strain prior to beginning the evolution 
experiments.  The interaction types were as expected: 
fus-ery was synergistic (FICI=0.86+0.13), cpr-amp 
was additive (FICI=1.05+0.13) and fus-amik was 
antagonistic (FICI=1.45+0.1) (Fig. 3 A, B, C).  After five 
rounds of resistance improvement, the FICI values of 
the CE strains were re-evaluated by decoupling the final 
combination resistance concentrations into individual 
components and obtaining IC90 values for individual 
component drugs. (Fig. 3 A, B, C).  The additive 
combination underwent the greatest shift in FICI value 
with all replicate lineages becoming antagonistic 
(average FICI = 2.71+0.32).  Strains adapted to the 
synergistic and antagonistic combinations each had 
one replicate lineage, whose interaction type changed 
completely (Fig. 3 A, B). Results of our analyses 
show that drug interactions will change in response 
to resistance adaptation and that this change may be 
dramatic.  This effect has previously been observed 
(22) 

Mutations are shared between combination evolved 
and single drug evolved lineages
To explore the molecular basis of drug resistance 
evolution in our experiment, we sequenced the 
genomes of our most evolved strains and our wild type.  
Comparative genomic analyses revealed that the CE 
and SDE lineages had mutations in several of the 
same primary targets (Fig 4, complete listing available 
in Data S1).  For example, strains evolved to fus-ery 
and erythromycin had mutations in genes coding for 
several key ribosomal proteins including L4 and L22.  
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indices (EI) for each drug pair examined.   
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Mutations in these proteins have been correlated with 
macrolide resistance in several bacterial species (35, 
36), including S. aureus (37).  Mutations in the fus 
gene, known to confer fusidic acid resistance (38), 
were observed in both the fus-ery and fusidic acid 
evolved lineages.  Likewise, strains evolved to cpr-
amp and ciprofloxacin had mutations in the parC gene, 
which has been well documented in conjunction with 
ciprofloxacin resistance (39).  Beta-lactam resistance 

observed in the cpr-amp and ampicillin evolved 
lineages was the result of mutations in the pbpA gene. 
Some instances of expected mutations missing 
were also noted.  For example, gyrA mutations were 
observed in the ciprofloxacin strains, but not in the cpr-
amp lineages.  Mutations in the parC gene grant only 
low-levels of resistance (40), while mutations in the 
gyrA gene have been identified as being responsible 
for higher levels of quinolone resistance (41).  When 
present together, an organism has high level quinolone 
resistance (40, 42).  The presence or absence of gyrA 
mutations in the ciprofloxacin and cpr-amp lineages is 
reflected in their ciprofloxacin tolerance (Fig. 2A).  
In addition to mutations in primary targets, a wide 
variety of auxiliary mutations were also observed in 
both the CE and SDE strains.  These supplementary 
mutations were assessed and grouped according to 
function (Data S1).  Several of the auxiliary mutations 
were part of a larger stress response network, which 
likely conferred resistance.  For example, all three 
cpr-amp evolved strains had mutations in the relA 
gene.  Under environmental stress, RelA initiates the 
stringent response, which controls the production 
of the alarmone ppGpp, which in turn serves as a 
regulator of a variety of metabolic pathways and 
processes and has been shown to play an essential 
role in decreased sensitivity to penicillin (43-46) and 
quinolones (47)  relA mutations were also observed 
in the fus-amik evolved strains.  Shared auxiliary 
mutations between SDE and CE lineages were limited.  
However, the numerical distribution of these mutations 
was approximately equal among all strains.  The 
apparent absence of new primary resistance mutations 
in response to combination treatment suggests that 
CE strains became resistant by acquiring mutations in 
the same genes as the SDE lineages, chiefly those in 
primary targets, as well as auxiliary mutations in stress 
response genes. 

Collateral resistance between component drugs 
is correlated to resistance evolution towards drug 
combinations.
	 The evolvability indices revealed that all three 
of the CE strains evolved less than their corresponding 
SDE lineages and that the extent of evolution among 
these strains differed.  One explanation for the 
difference in resistance levels among the CE strains 
may have been the extent of collateral resistance 
between the component drugs.  Component drugs 
selecting for resistance mediated by compatible 
trajectories can result in collateral resistance, which 
means that the development of resistance to one drug 
results in resistance to other drugs as well (48). We 
explored the role of this phenomenon in the resistance 
development of our CE strains by testing our SDE 
strains to the other drug in their respective drug pair 
(Fig. 5).  
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for each interaction type investigated.  
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+SD).  Lineages adapted to the additive combination (C) had the 
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strains.
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Results of these experiments were used to calculate 
a resistance ratio (RR) for each of the SDE lineages.  
The RR is determined by dividing the IC90 towards 
drug A of an SDE strain evolved to drug B by the 
IC90 towards drug A of the WT.  We employed the 
conservative resistance ratio cut off value of greater 
than or equal to two to define collateral resistance (49).  
The majority of RR values were between 0.5 and 2 
indicating that resistance to one drug does not affect 
resistance to other drugs (Fig. 5).  Only the amikacin 

evolved strains demonstrated any significant shift from 
this range.  These lineages showed a high degree of 
collateral resistance to fusidic acid (Fig. 5), which can 
likely be attributed to mutations in the fusA gene (Fig. 
4), the most characterized mechanism of fusidic acid 
resistance, and the only primary target mutations found 
in the amikacin evolved lineages.  Indeed, mutations in 
fusA have previously been shown to confer resistance 
to aminoglycosides in Staphylococcus aureus (30).  
Interestingly, the fusidic acid evolved strains did not 
exhibit a corresponding collateral cross-resistance 
towards amikacin, highlighting that the collateral 
resistance in this case is uni-directional.  Additionally 
collateral resistance to ampicillin was observed for the 
ciprofloxacin evolved strains. It is interesting to note 
that there is a quantitative correlation between the 
degree of cross-resistance between the component 
drugs (Fig 5) and the rate by which resistance evolved 
towards to the drug combination (Fig 2). This suggests 
that evolutionary interactions resulting from collateral 
impacts of resistance evolution could be important in 
predicting how fast resistance evolves towards drug 
combinations. 

DISCUSSION
Combination therapy is used as a means for treating 
resistant pathogens and for combating the development 
of multidrug resistance.  The current paradigm, which 
stems from a limited number of experiments, asserts 
that the interaction between drugs in a combination 
is the primary factor affecting the rate by which 
resistance develops. In particular, combinations acting 
in a therapeutically synergistic fashion are believed 
to favor resistance evolution.  This model conflicts 
with clinical practice where such combinations are 
preferred for their ability to stop bacterial growth. 
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Figure 4.  Mutations most likely 
responsible for causing resistance in 
the evolved strains.  
Lineages are shown as colored circles 
and genes containing mutations are 
shown as text.  Circle size corresponds 
with the number of mutated genes.  
Overlap among the lineages represents 
shared genes with mutations.  It is 
observed that the combination-evolved 
lineages share most of the primary 
resistance mutations with the single 
drug evolved.  Bar graphs show the 
number of mutated strains (y axis) with 
a mutation in a particular gene (x axis). 
RPL stands for ribosomal proteins.  
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Figure 5.  Assessing collateral resistance as a result of resistance 
evolution to one drug.  
Single drug evolved (SDE) lineages were MIC tested to their 
corresponding partner drug (n=4, +SD).  These values were then 
were compared to the WT MICs (Resistance Ratio).  Values less 
than 0.5 indicate collateral sensitivity, while those greater than 
2 suggest collateral resistance.  Values between 0.5 and 2 are 
considered to be insensitive. SDE strains are listed in the legend, 
while drugs they were tested against are on the x-axis. We observe 
a strong collateral resistance towards fusidic acid of the amikacin-
evolved strain, and a weaker collateral resistance of the ampicillin 
evolved strain towards ciprofloxacin. 
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The objective of this work was to assess the role of 
individual components in driving resistance evolution 
of a drug combination at antibiotic concentrations 
relevant to clinical resistance.  Our results suggest 
that drug combinations, whatever their theoretical 
interaction, effectively curb resistance evolution.  
Moreover, these interactions were found to be 
modulated during resistance adaptation to the drug 
combinations.  A finding that has previously been 
observed (22).  Therefore, the current canons, which 
depend upon a static model of drug interactions, did 
not predict our results.  Rather, the types of mutations 
arising from adaptation towards the component 
drugs appear to be an influential factor in resistance 
evolution.  Absence of a key primary target mutation 
directly translated to a reduction in resistance.     
Additional aspects, such as pleiotropic effects, variation 
in mutational rate, variation in drug concentration, and 
pharmacodynamics, etc., have also been hypothesized 
(18, 19) to influence the rate of adaptation; however, 
the impact of these factors was not explored in earlier 
work.    In investigating our hypothesis, the role of 
pleiotropic effects in resistance evolution became 
clearer.  Mutations that performed double duty (i.e. 
conferring resistance to two drugs) resulted in the 
greatest increase in resistance evolution.  Likewise, 
the degree of collateral resistance, arising from 
these pleiotropic effects, in our SDE lineages could 
be correlated with the rate of resistance evolution in 
our CE strains.  Results of our work suggest that this 
factor is more important than drug pair interactions 
for evolution of clinically relevant resistance.  The 
role of the remaining factors in influencing the rate of 
adaptation still need to be explored and serve as a 
caveat to any resistance evolution paradigm. 
In conclusion, the results of our work present a 
challenge to the current paradigm regarding the 
driving force behind multidrug resistance evolution.  
When evaluating resistance evolution over a wider 
spectrum of concentrations, which better reflects what 
is observed in clinical resistance, the current theories 
regarding drug interactions influencing resistance 
evolution could not be substantiated.  Instead our 
data bolster the idea that resistance development in 
combination therapy has more to do with mutation 
acquisition and the individual drugs of the combination.  
While the breadth of our study is limited, we expect 
that the findings uncovered here are not unique to 
our tested organism, antibiotics and drug pairings, 
and would hold true if extended to a broader range of 
organisms and drugs.

Materials and Methods
Bacteria and Reagents
A drug sensitive Staphylococcus aureus strain Newman 
was adapted to five antibiotics: amikacin sulfate 

(Sigma), ampicillin sodium salt (Sigma), ciprofloxacin 
hydrochloride (AppliChem), erythromycin (Sigma), and 
fusidic acid sodium salt (Sigma) and the following drug 
pair combinations: fusidic acid-amikacin, fusidic acid-
erythromycin, and ampicillin-ciprofloxacin.  Drug stock 
solutions were prepared weekly.  All evolution and MIC 
experiments were performed using a modified Luria 
broth (LB) media.  Briefly, the salt content was reduced 
to 4g/l instead of 5g/l.
Evolution of antibiotic resistance
A wild type IC90 was established for each antibiotic.  
Drug pair combinations were a 1:1 IC90 mixture 
of the component drugs.  Wild type IC90s were 
also established for each drug pair.  All evolution 
experiments began one dilution step below their 
respective IC90 concentration.  Evolution experiments 
involved challenging a wild-type organism with 
increasing concentrations, in steps of the square root 
of two, of individual drugs or drug combinations. All 
evolution experiments were performed in triplicate in 
a modified Luria-Bertani (LB) broth in microtiter plates. 
Each experiment included both negative and positive 
control wells.  The positive control was the inoculating 
strain in LB media only.  Following a 18-hour growth 
period at 37 oC, the microtiter plates were measured 
for optical density (OD) at wavelength 600nm. The 
value of the experimental positive control was used to 
normalize the evolution data.  A cut off of 60% inhibition 
was used to determine the starting concentration of 
the next experiment. This concentration was referred 
to as the experimental MIC.  The 60% inhibition 
value was chosen based on pre-experimental work 
that found that this value consistently ensured a 
resistant population was used in subsequent exposure 
experiments.  The replicate with the best growth at 
the experimental MIC concentration was used as 
seed material for the next experiment.  The selected 
seed was added to fresh LB media containing the 
appropriate drug(s) concentration and allowed to grow 
over night.  The overnight culture was then used to 
inoculate the next challenge experiment.  A portion of 
this culture was saved.  The challenge process was 
repeated a total of five times for each individual drug 
and drug combination.

IC90 determination
Strains from all evolution steps were tested to 
determine their IC90 fold improvement.  Lineages 
from the final evolution experiment received additional 
testing -single drug evolved strains were MIC tested 
against the corresponding combination and other 
component drug, while combination drug evolved 
lineages were tested against their component drugs.  
All IC90 experiments were performed in 96 well micro 
titer plates in quadruplicate using two fold dilution 
steps.  Positive, tested straining LB media only, 
and negative controls were included in each test.  
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Innoculated plates were placed on an orbital shaker 
and incubated at 37oC for at least 16 hours.   After the 
allotted growth period, OD600 was read on a BioTek 
Epoc plate reader.

Calculation of CCD
Using the equation set forth by Lee et al (33), n is 
the number of generations for each growth step.  In 
our case there are two growth steps - the resistance 
experiment and the test tube pre growth period prior to 
each resistance experiment.  n values were calculated 
for each evolved lineage and the two growth steps.  
We performed growth kinetic experiments that allowed 
us to calculate a generation time (G in min-1) for each 
strain.  These values were then used to determine the 
number of generations for each strain in an eight-hour 
period (assumed log growth phase) or n.
In the Lee equation CCD is:

where N0 is the initial number of cells in each well or 
test tube during evolution.  We used representative 
values of N0, reflecting each growth condition, for 
each strain to calculate the CCD for the test tube and 
resistance experiment periods.  The subsequent CCD 
values were multiplied by five to reflect the number of 
evolution periods for each growth condition.  A mean 
CCD value and associated standard error mean was 
calculated for each drug or drug combination and each 
growth condition.  These values are listed in a table 
in the supplementary data section.  The CCD range 
given in the text comes from adding the two growth 
conditions together.  

Data Analysis
The OD600 data were analyzed using Excel and Prism 
(GraphPad Software).  Briefly, negative control values 
were subtracted from all growth wells yielding dose 
response values.  These data were then normalized 
by the positive control data and then used to determine 
the fraction of inhibition, calculated as: 1- normalized 
dose response of strain X.  Inhibition data was plotted 
in Prism and IC90 read from graph.

Calculation of Evolvability Index
The evolvability index assesses how resistance 
evolution toward a combination compares to individual 
drug resistance evolution.  The index is determined by 
summing a combination evolved strain’s resistance to 
each of its component drugs relative to the resistance 
development of the corresponding single drug 
evolved lineages and then taking an average.  Each 
term individual fraction can be used to assess how 

resistance evolution to an individual component is 
impacted as a result of being used in a combination.  
The evolvability index is calculated as:

where the n is the number of components in a mixture 
and is used to determine an average value.  IC90[A]
AB refers to the IC90 of the AB evolved lineage tested 
against drug A.

Sequencing
Genomic DNA from our most evolved strains and 
wild type was isolated using either an UltraClean® 
Microbial DNA Isolation Kit (Mobio Laboratories, 
Inc.) or a modified chloroform/phenol extraction 
method.  Briefly, lysostaphin in conjunction with 
proteinase K were used to disrupt the cell wall.  The 
extracted DNA was sheared into 200bp fragments 
using a Covaris E210 and barcoded libraries were 
constructed for illumina or IonTorrent sequencing.  
Illumina sequencing was performed by Partners 
HealthCare Center for Personalized Genetic Medicine 
(Cambridge, Massachusetts).  IonTorrent sequencing 
was performed by DTU Multi-Assay Core (Kongens 
Lyngby, Denmark).  All reads were aligned to 
Staphylococcus aureus subsp. aureus str. Newman 
(NC_009641.1) using Bowtie2 version 2.0.0-b6 
with the default options (50).  An average of 99.6% 
(minimum 97.5%) of the genome was covered with 
three times read coverage or greater, as determined 
using bedtools (51). Variant calling for SNPs and 
INDELs was done using SAMTools version 0.1.17 
with the –B,-L 1000 options (52).  SNPS were filtered 
leaving only those with a phred score of at least 30 and 
at least 80% of the reads aligned at the site having the 
variant.   INDELs were verified by aligning constructed 
contigs around INDEL sites to the reference genome 
(53, 54).  The BioCyc database collection (55) was 
used to identify and annotate mutation sites.  
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Supplementary Methods

Evolutionary interactions between environmental selection pressures 
drive phenotypic evolution

Adaptive evolution experiment
E. coli MG1655 was evolved to the five antibiotics: ciprofloxacin hydrochloride (AppliChem), 
tetracycline hydrochloride (Sigma), amikacin sulfate (Sigma), chloramphenicol (Sigma) and 
piperacillin sulfate (Sigma) as well as all pairwise combinations thereof. The evolution experiments 
were performed in triplicates for each drug condition using LB medium as the growth medium. 
Selection was carried out in two-fold dilution steps of antibiotics in 24 well plates using 1 ml total 
volume. Each plate contained two medium control wells, none of these were showed growth during 
the experiment. After 20 hours of incubation at 37oC with shaking, OD600 was read and 25 µl from 
the lowest antibiotic concentration with OD600 greater than 0.25 was diluted into a new antibiotic 
gradient. In total 14 passages were performed. The drug-pairs were evolved to a 1:1 IC90 mixture of 
the component drugs, the resulting molar ratios were: Cip:Pip 0.012; Cip:Amk 0.015; Cip:Chl 0.004; 
Cip:Tet 0.021; Pip:Amk 0.559; Pip:Chl 0.230; Pip:Tet 0.641; Amk:Chl 0.191; Amk:Tet 0.585; Tet:Chl 
0.144. The evolution experiment was ended when the single-drug evolved strains had reached the 
clinical break-point for the antibiotic. Clinical breakpoints were defined according to The European 
Committee on Antimicrobial Susceptibility Testing (EUCAST): Ciprofloxacin 1 µg/ml, Piperacillin 16 
µg/ml, Amikacin 16 µg/ml, Chloramphenicol 8 µg/ml and Tetracycline 16 µg/ml. On the last day all 
strains were streaked on LB agar plates to be used for IC90 determination.

IC90 determination
IC90 determination was performed in 96 well micro-titer plates prepared using a Hamilton Star 
pipetting robot. Each drug gradient consisted of 11 points in a two fold dilution series prepared in 
MHBII (Sigma) medium with a total of 150 µl in each well. For the single drug evolved strains, the 
IC90 was determined for all single drugs as well as all combinations containing the evolved-to drug, 
and the experiments were carried out in triplicates and quadruplicates, respectively. For the drug-pair 
evolved strains, the IC90 was determined for the two drugs in the combination as well as the drug 
combination, and experiments were done in five replicates. For every IC90 test, the wt strain was 
included to determine the IC90 reference point. The IC90 plates were inoculated with approximately 
105 cells per well using a 96 pin replicator. The plates were incubated at 37oC with shaking for 18 – 20 
hours and OD600 was read on a BioTek H1 plate reader.

Data analysis
The OD600 data files were analyzed using R25. In brief, control wells were analyzed (one contamination 
out of 616 blanks and growth in all positive control). To obtain inhibition curves the OD600 values 
for the dose-response series were converted into values of percent inhibition calculated as     1 – 
(OD600[x] - OD600[negative control])/ (OD600[positive control] - OD600[negative control]) and plotted 
against the molar concentration of the antibiotic and a dose-response curve was fitted using the drc() 
package with the default four variable logistic model: 
f(x,(b,c,d,e)) = c + (d-c)/(1+exp{b(log(x)-log(e))} 26. IC90 was calculated via the inverse function of the 
fit. Graphs were made in R with the packages plottrix and ggplot227, 28.

FICI was calculated as IC90[AB] × ω / IC90 [A] + IC90 [AB] × (1-ω) / IC90 [B]
Where ω signifies the molar fraction of drug A in the drug combination AB.  

Calculation of evolvability
The evolvability is used to assess how the development of resistance against a drug is affected by the 
presence of another drug. By summing the effect from each component drug in a drug-pair, it gives 
an overall value to describe the degree of drug resistance development in drug-pair evolved lineages 
relative to the resistance development in single-drug evolved lineages. Specifically, evolvability is 
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calculated the average of the sum of the change in resistance development to the component drugs 
in a drug-pair divided by the change in resistance development in the single drug evolved strains: 

Evolvability = {(IC90[A]AB / IC90[A]wt) / (IC90[A]A / IC90[A]wt)  + (IC90[B]AB / IC90[B]wt) / (IC90[B]B / IC90[B]wt)} 
/ 2 = 
{IC90[A]AB / IC90[A]A + IC90[B]AB / IC90[B]B} / 2

Where IC90[A]AB signifies the IC90 of the AB evolved strain tested against drug A.

Collateral IC90 change is the average collateral IC90 change between two single-drug evolved strains 
calculated as (IC90[A]B + IC90[B]A) / 2  
Where IC90[A]B signifies the IC90 of the B evolved strain tested against drug A.

SOLiD sequencing
A single colony from each evolution experiment was grown up in LB and DNA was extracted using 
the DNeasy kit (Qiagen, Germany). The DNA was sheared 
$into 200 bp fragments using Covaris E210 and barcoded libraries were made for SOLiD sequencing. 
SOLiD reads were aligned to E.coli MG1655 reference genome (NC_000913) using Bowtie229. Each 
sample had at least 98 % of the genome covered with 3 times coverage or greater, and the mean 
percentage with at least 3 times coverage was 99.71 %30. The alignments were further tuned by 
GATK 31 by re-aligning identified possible INDEL sites to discriminate between SNP and INDEL sites 
32. Variant calling for SNPs and INDELs was done using SAMtools 33, with INDELs verified by aligning 
constructed contigs around INDEL sites to the reference genome34,35.  Further analysis was done by 
custom written scripts using Biopython 36. 

Competitive growth selection. 
The five single mutants cpxA, fusA, sbmA gyrA, and marR were engineered using the MAGE 
technique18 (Extended Data Table 1). A wt lacZ mutant was engineered in a similar fashion. Each of 
the five single-mutants were mixed 1:1 with the wt lacZ mutant at OD600 = 0.1. 1µl of this mixture 
was inoculated into sub-inhibitory concentrations of antibiotics in the following order: cpxA, fusA and 
sbmA was inoculated into Amk, Chl Amk+Chl and LB; gyrA was inoculated into Cip, Amk, Cip+Amk 
and LB; marR was inoculated into Tet, Chl, Tet+Chl and LB. All were grown overnight at 30oC. To 
confirm that the antibiotic concentration was indeed sub-inhibitory, the wt lacZ was inoculated into 
all antibiotic solutions and the growth rate was measured (Data not shown). The competitive growth 
selection experiments were performed in triplicates.

qPCR assay.
For each of the five mutant alleles in the competitive growth selection experiment a wt primer pair 
and a mutant primer pair was designed. The optimal annealing temperature was identified in a 
temperature gradient, and for each growth condition a separate qPCR reaction was performed with 
the wt primer pair (Extended Data Table 2) and the mutant primer pair using 1 µl of a 100-fold dilution 
of the overnight competitive selection culture as template in a SYBR green qPCR (SSO BioRad). The 
ΔCT for the wt and mutant primer pair was calculated and normalized to the ΔCT for the no antibiotic 
growth resulting in a ΔΔCT value. 

Plating validation of the competitive growth selection.
After overnight competitive growth selection cultures were diluted and plated on LB with IPTG and 
Xgal.
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Extended data figure 1. Competition between WT ΔlacZ and mutant.
WT and mutant was mixed 1:1 and grown overnight in sub-inhibitory concentrations of AB and plated on LB+IPTG+Xgal. 
The presence of chloramphenicol selects against the three mutations that confers amikacin resistance (sbmA, cpxA and 
fusA). In contrast the gyrA mutation is always selected when ciprofloxacin is present and it is not counter selected by 
amikacin.
marR confers resistance to both tetracycline and chloramphenicol and is hence selected by both drugs.
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Extended Data Figure 2. Epistatic interactions between the perturbations do not correlate with phenotypic evolution.
Panel a; for each dual-perturbation the epistatic interaction was quantified by calculating the fractional inhibitory 
concentration index (FICI) (Loewe additivity) 24(mean ± s.e.m, n = 3 biological replicates). An index of 1 indicates no 
interaction between the perturbations whereas an index less than one indicates a synergistic interaction while an index 
greater than one indicated an antagonistic interaction. We found no correlation between the nature of the epistatic 
interaction and phenotypic evolution (measured as the evolvability index (mean ± s.e.m, n = 3 biological replicates)) (Panel 
a; r = 0.36, p > 0.05, Pearson correlation). To investigate if different measures of the phenotypic evolutionary response 
correlated better with the drug interactions we also quantified the phenotypic evolution as the relative increase in IC90 
divided by the relative increase of the slowest component (panel b) and the fastest component (panel c).  However, we 
found no strong when comparing these different measures of phenotypic evolution to the FICI. (Panel b; r = 0.11, p > 0.05, 
Pearson correlation) and (Panel c; r = -0.15, p > 0.05, Pearson correlation).
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Extended Data Figure 3. Overview of the experimental setup.
The in vitro evolution experiment was conducted in 24 well plates 
with drug gradients across the columns. The last column contained 
positive and negative controls. Every 20 h cells were diluted 1:40 
from the highest drug concentration where the OD600 was greater 
than 0.25 into a freshly prepared drug gradient. The rows contained 
the parallel-evolved lineages.
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Loci MAGE-Oligo

cpxA_G4102763A- TTAATGTGGTGGCGGCGTCTGTTCCGGGCGATTGATAAGTGGGTACCGCCAGGACAGCGTTTGTTATTGGTGACCACCGAAGGCCGCGTG

fusA_G3469714A+ GAGTTTCTACTTCAACCTTCATGATCGGCTCAAGCAGAACTGGTTTCACTTTCTTAAAGCCTTCTTTAAAGGCGATAGAAGCAGCCAGTT

sbmA_C396368A- ATATGACGCAGTTGTTGCCAGTTCGCCATGTAATATTCGTTCATCTCTGTACGCCAGCGGAACACGTAGTGACTGACAAAGAAGTTGTTC

gyrA_T2337183C+ ACCGAAGTTACCCTGACCGTCTACCAGCATATAACGCAGCGAGAATGGCTGCGCCATGCGGACGATCGTGCCATAGACCGCCGAGTCACC

marR_C1617480T+ GTAAAACTTACCACCGGCGGCGCGGCAATATGTGAACAATGCCATTAATTAGTTGGCCAGGACCTGCACCAAGAATTAACAAAAAACCTG

Extended Data Table 1. MAGE oligos. 
The MAGE Oligos were designed according to (Wang and Church, 2011)23 . The oligo name indicates the SNP change at 
the position number according to E. coli MG1655 (Accession no. NC_000913). The + and – denote whether the oligo is on 
the plus or the minus strand. 

Loci WT forward primer Mutant forward primer Reverse primer

cpxA ACGCTGTCCTGGCGGTG ACGCTGTCCTGGCGGTA CACGCCAGATGACCGAGC

fusA GCTCAAGCAGAACTGGTTTCG GCTCAAGCAGAACTGGTTTCA TAATCCCTGGCGAATACATCC

sbmA GTTCCGCTGGCGTACAGC GTTCCGCTGGCGTACAGA GCGGAGAGCGTTACCAGC

gyrA CCATGCGGACGATCGTGT CCATGCGGACGATCGTGC GCGATGTCGGTCATTGTTGG

marR GCAATATGTGAACAATGCCATC GCAATATGTGAACAATGCCATT TGGCGATTCCAGGTTGTCC

Extended Data Table 2. qPCR primers. 
qPCR primers used to quantify the ration of mutant to wt allele. The forward qPCR primers are identical except for the 3’ 
nucleotide being altered according to the introduced SNP. The reverse primer is common for both forward primers. 
Extended Data Figure 1. Competition between mutant and a ΔlacZ wt MG1655.
Panel a-e, mutant and wt ΔlacZ were mixed 1:1 and grown overnight in sub-inhibitory concentrations of single- and dual-
perturbations and plated on LB+IPTG+Xgal, here the mutant will appear blue while the wt will be white. The presence of 
chloramphenicol selects against the three mutations that confers amikacin resistance (sbmA, cpxA and fusA) even during 
growth in a combination of Amk+Chl (panel a-c). In contrast, the gyrA mutation is always selected when ciprofloxacin is 
present and it is not counter selected by amikacin (panel d).
marR confers resistance to both tetracycline and chloramphenicol and is hence selected by both drugs (panel e).
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Supplementary	
  Table	
  1.	
  Individual	
  SNPs	
  and	
  INDELs.	
  

A)	
  SNPs	
  that	
  were	
  identified	
  in	
  the	
  WT	
  non-­‐evolved	
  strain	
  of	
  MG1655	
  when	
  compared	
  to	
  the	
  deposited	
  Genbank	
  sequence	
  

of	
  MG1655	
  (NC_000913).	
  	
  Annotations	
  were	
  obtained	
  from	
  the	
  deposited	
  Genbank	
  record.	
  

	
  B)	
  INDELs	
  that	
  were	
  identified	
  in	
  the	
  WT	
  non-­‐evolved	
  strain	
  of	
  MG1655	
  when	
  compared	
  to	
  the	
  deposited	
  Genbank	
  

sequence	
  of	
  MG1655	
  (NC_000913).	
  	
  Annotations	
  were	
  also	
  obtained	
  from	
  the	
  deposited	
  Genbank	
  record.	
  

C)	
  SNPs	
  that	
  were	
  identified	
  in	
  the	
  evolved	
  strains	
  based	
  on	
  comparison	
  to	
  the	
  deposited	
  Genbank	
  sequence	
  of	
  MG1655	
  

(NC_000913)	
  with	
  SNPs	
  found	
  in	
  the	
  non-­‐evolved	
  strains.	
  

	
  D)	
  INDELs	
  that	
  were	
  identified	
  in	
  the	
  evolved	
  strains	
  based	
  on	
  comparison	
  to	
  the	
  deposited	
  Genbank	
  sequence	
  of	
  MG1655	
  
with	
  INDELs	
  found	
  in	
  the	
  non-­‐evolved	
  strains.	
  
	
  
	
  

A.	
  SNPs	
  Identified	
  in	
  the	
  starting	
  E.	
  coli	
  MG1655	
  Strain	
  
	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
  

	
  
Position	
   Mutation	
   Genbank	
  ID	
   Gene	
   Product	
   Conservative	
  

	
  
547694	
   A-­‐>G	
  

	
  
ylbE	
  

	
  
Yes	
  

	
  
802885	
   C-­‐>A	
   NP_415292.2	
   ybhJ	
   predicted	
  hydratase	
   No	
  

	
  
1903785	
   G-­‐>A	
   NP_416335.4	
   yebN	
   conserved	
  inner	
  membrane	
  protein	
   No	
  

	
  
3957957	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
   	
   	
   	
   	
   	
   	
  B.	
  	
  INDELs	
  Identified	
  in	
  the	
  starting	
  E.	
  coli	
  MG1655	
  Strain	
  
	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
  

	
  

From	
  
Position	
  

Type	
   INDEL	
   Genbank	
  
ID	
  

	
  Gene	
   	
  Product	
  

	
  
547832	
   insertion	
   G-­‐>GG	
   	
  	
   	
  	
   	
  	
  

	
   	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
   	
  C.	
  	
  SNPs	
  Identified	
  in	
  the	
  evolved	
  MG1655	
  Strain	
  

	
   	
   	
  
	
   	
   	
   	
   	
   	
   	
  Strain/AB_selection	
   Position	
   Mutation	
   Genbank	
  ID	
   Gene	
   Product	
   Conservative	
  

Amk_A	
   396442	
   G-­‐>A	
   NP_414911.1	
   sbmA	
   microcin	
  B17	
  transporter	
   No	
  

Amk_A	
   1363139	
   G-­‐>C	
   NP_415817.1	
   puuB	
  
gamma-­‐Glu-­‐putrescine	
  oxidase;	
  
FAD/NAD(P)-­‐binding	
   No	
  

Amk_A	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Amk_A	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Amk_A	
   3469498	
   T-­‐>C	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

Amk_A	
   3469708	
   G-­‐>T	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

Amk_A	
   3875481	
   A-­‐>C	
   NP_418153.4	
   yidB	
   conserved	
  protein;	
  DUF937	
  family	
   No	
  

Amk_A	
   4102908	
   C-­‐>A	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

Amk_B	
   396368	
   C-­‐>A	
   NP_414911.1	
   sbmA	
   microcin	
  B17	
  transporter	
   No	
  

Amk_B	
   2021141	
   G-­‐>A	
   NP_416460.1	
   fliR	
   flagellar	
  export	
  pore	
  protein	
   Yes	
  

Amk_B	
   3469714	
   G-­‐>A	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

Amk_B	
   4102763	
   G-­‐>A	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

Amk_C	
   396611	
   G-­‐>A	
   NP_414911.1	
   sbmA	
   microcin	
  B17	
  transporter	
   No	
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Amk_C	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
Amk_C	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Amk_C	
   1990891	
   A-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Amk_C	
   2690454	
   C-­‐>T	
   YP_026170.1	
   purL	
  
phosphoribosylformyl-­‐glycineamide	
  
synthetase	
   No	
  

Amk_C	
   3469709	
   G-­‐>T	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

Amk_C	
   4025094	
   T-­‐>A	
   NP_418286.1	
   fre	
   NAD(P)H-­‐flavin	
  reductase	
   No	
  

Amk_C	
   4102449	
   A-­‐>T	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

AmkChl_A	
   4184421	
   C-­‐>G	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

AmkChl_B	
   1617423	
   C-­‐>T	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

AmkChl_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
AmkTet_A	
   810513	
   G-­‐>T	
   NP_415297.1	
   bioF	
   8-­‐amino-­‐7-­‐oxononanoate	
  synthase	
   No	
  

AmkTet_A	
   4101770	
   C-­‐>T	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

AmkTet_B	
   3469759	
   A-­‐>C	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

AmkTet_C	
   1285929	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

AmkTet_C	
   3451124	
   C-­‐>G	
   NP_417780.1	
   rpsJ	
   30S	
  ribosomal	
  subunit	
  protein	
  S10	
   No	
  

AmkTet_C	
   3470824	
   A-­‐>T	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

AmkTet_C	
   4092723	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

AmkTet_C	
   4092726	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
AmkTet_C	
   4092728	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

AmkTet_C	
   4102680	
   T-­‐>A	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

AmlChl_C	
   1150959	
   T-­‐>C	
   NP_415612.1	
   acpP	
   acyl	
  carrier	
  protein	
  (ACP)	
   No	
  
AmlChl_C	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

AmlChl_C	
   1998241	
   G-­‐>T	
   NP_416430.1	
   fliY	
   cystine	
  transporter	
  subunit	
   No	
  

AmlChl_C	
   4102440	
   C-­‐>T	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

Chl_A	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Chl_A	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Chl_A	
   2089530	
   C-­‐>T	
   NP_416524.1	
   hisD	
  
bifunctional	
  histidinal	
  dehydrogenase/	
  
histidinol	
  dehydrogenase	
   No	
  

Chl_A	
   4632601	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

Chl_B	
   1500383	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Chl_B	
   1617399	
   A-­‐>T	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

Chl_C	
   848200	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Chl_C	
   882884	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  
Chl_C	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Chl_C	
   3370896	
   G-­‐>A	
   NP_417692.1	
   nanA	
   N-­‐acetylneuraminate	
  lyase	
   Yes	
  

Chl_C	
   4632867	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

ChlTet_A	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

ChlTet_B	
   1617492	
   C-­‐>T	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
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ChlTet_B	
   1977291	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
ChlTet_B	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

ChlTet_B	
   3212876	
   G-­‐>A	
   NP_417539.1	
   rpoD	
  
RNA	
  polymerase;	
  sigma	
  70	
  (sigma	
  D)	
  
factor	
   No	
  

ChlTet_B	
   4184369	
   G-­‐>T	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

ChlTet_C	
   1617492	
   C-­‐>T	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

ChlTet_C	
   3350464	
   A-­‐>C	
   YP_026207.1	
   arcB	
  

aerobic	
  respiration	
  control	
  sensor	
  
histidine	
  protein	
  kinase;	
  cognate	
  to	
  two-­‐
component	
  response	
  regulators	
  ArcA	
  and	
  
RssB	
   No	
  

Cip_A	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Cip_A	
   2337184	
   C-­‐>A	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Cip_A	
   2337220	
   C-­‐>T	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Cip_A	
   4187448	
   C-­‐>G	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  
Cip_A	
   4187449	
   A-­‐>T	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   Yes	
  

Cip_A	
   4187450	
   G-­‐>C	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  
Cip_B	
   1195443	
   C-­‐>T	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  

Cip_B	
   1195455	
   C-­‐>T	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  
Cip_B	
   1195468	
   T-­‐>C	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  

Cip_B	
   1195470	
   A-­‐>G	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  

Cip_B	
   1210633	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  
Cip_B	
   1210635	
   A-­‐>G	
   	
  	
   	
  	
   	
  	
   	
  	
  

Cip_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
Cip_B	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Cip_B	
   2337183	
   T-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Cip_B	
   3876753	
   A-­‐>C	
   YP_026241.1	
   gyrB	
   DNA	
  gyrase;	
  subunit	
  B	
   No	
  

Cip_B	
   4632867	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

Cip_C	
   485058	
   C-­‐>A	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

Cip_C	
   2337183	
   T-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Cip_C	
   2337202	
   C-­‐>A	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Cip_C	
   3256446	
   A-­‐>C	
   YP_026204.1	
   tdcG	
   L-­‐serine	
  dehydratase	
  3	
   No	
  

CipAmk_A	
   442247	
   T-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  
CipAmk_A	
   1990685	
   C-­‐>T	
   NP_416422.1	
   pgsA	
   phosphatidylglycerophosphate	
  synthetase	
   No	
  

CipAmk_A	
   4092726	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
CipAmk_A	
   4092728	
   C-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipAmk_A	
   4102470	
   G-­‐>A	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

CipAmk_B	
   485144	
   G-­‐>T	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  
CipAmk_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipAmk_B	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipAmk_B	
   3469714	
   G-­‐>T	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

CipAmk_C	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipAmk_C	
   2069371	
   T-­‐>A	
   	
  	
   isrC	
   	
  	
   No	
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CipAmk_C	
   2337183	
   T-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

CipAmk_C	
   2398061	
   C-­‐>T	
   NP_416786.4	
   nuoG	
  
NADH:ubiquinone	
  oxidoreductase;	
  chain	
  
G	
   No	
  

CipAmk_C	
   3469714	
   G-­‐>T	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

CipAmk_C	
   4031406	
   T-­‐>A	
   YP_026273.1	
   trkH	
   potassium	
  transporter	
   No	
  

CipAmk_C	
   4275937	
   T-­‐>A	
   NP_418487.1	
   soxR	
  
DNA-­‐binding	
  transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  redox-­‐sensing	
   No	
  

CipChl_A	
   1195443	
   C-­‐>T	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  

CipChl_A	
   1195455	
   C-­‐>T	
   NP_415654.1	
   icd	
   e14	
  prophage	
   Yes	
  
CipChl_A	
   1210633	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipChl_A	
   1210635	
   A-­‐>G	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipChl_A	
   1617394	
   T-­‐>A	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

CipChl_A	
   1718801	
   C-­‐>T	
   NP_416159.2	
   slyA	
   DNA-­‐binding	
  transcriptional	
  activator	
   No	
  

CipChl_A	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipChl_A	
   2040948	
   A-­‐>G	
   	
  	
   	
  	
   	
  	
   	
  	
  
CipChl_B	
   4187354	
   A-­‐>C	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

CipChl_B	
   4275549	
   C-­‐>T	
   NP_418487.1	
   soxR	
  
DNA-­‐binding	
  transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  redox-­‐sensing	
   No	
  

CipChl_C	
   111493	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipChl_C	
   882884	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipPip_A	
   156256	
   T-­‐>G	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipPip_A	
   2337183	
   T-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

CipPip_A	
   4183254	
   G-­‐>T	
   NP_418414.1	
   rpoB	
   RNA	
  polymerase;	
  beta	
  subunit	
   No	
  

CipPip_A	
   4632867	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

CipPip_B	
   1622859	
   A-­‐>C	
   NP_416055.1	
   ydeJ	
   conserved	
  protein	
   Yes	
  

CipPip_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
CipPip_B	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipPip_B	
   3534356	
   G-­‐>A	
   NP_417864.1	
   ompR	
  
DNA-­‐binding	
  response	
  regulator	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  EnvZ	
   No	
  

CipPip_B	
   4187442	
   T-­‐>G	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

CipPip_B	
   4275914	
   A-­‐>G	
   NP_418487.1	
   soxR	
  
DNA-­‐binding	
  transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  redox-­‐sensing	
   Yes	
  

CipPip_C	
   92851	
   G-­‐>T	
   NP_414626.1	
   ftsI	
  

transpeptidase	
  involved	
  in	
  septal	
  
peptidoglycan	
  synthesis	
  (penicillin-­‐
binding	
  protein	
  3)	
   No	
  

CipPip_C	
   92852	
   C-­‐>T	
   NP_414626.1	
   ftsI	
  

transpeptidase	
  involved	
  in	
  septal	
  
peptidoglycan	
  synthesis	
  (penicillin-­‐
binding	
  protein	
  3)	
   Yes	
  

CipPip_C	
   2337202	
   C-­‐>A	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

CipPip_C	
   3534290	
   G-­‐>T	
   NP_417864.1	
   ompR	
  
DNA-­‐binding	
  response	
  regulator	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  EnvZ	
   No	
  

CipTet_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
CipTet_B	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipTet_B	
   3048873	
   T-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  

CipTet_B	
   3533133	
   C-­‐>T	
   NP_417863.1	
   envZ	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  OmpR	
   No	
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CipTet_C	
   1363138	
   C-­‐>G	
   NP_415817.1	
   puuB	
  
gamma-­‐Glu-­‐putrescine	
  oxidase;	
  
FAD/NAD(P)-­‐binding	
   No	
  

CipTet_C	
   1363139	
   G-­‐>A	
   NP_415817.1	
   puuB	
  
gamma-­‐Glu-­‐putrescine	
  oxidase;	
  
FAD/NAD(P)-­‐binding	
   No	
  

CipTet_C	
   1617483	
   T-­‐>G	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

CipTet_C	
   2337201	
   C-­‐>T	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  topoisomerase);	
  
subunit	
  A	
   No	
  

Pip_A	
   92851	
   G-­‐>T	
   NP_414626.1	
   ftsI	
  

transpeptidase	
  involved	
  in	
  septal	
  
peptidoglycan	
  synthesis	
  (penicillin-­‐
binding	
  protein	
  3)	
   No	
  

Pip_A	
   485070	
   T-­‐>G	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

Pip_A	
   1363140	
   C-­‐>G	
   NP_415817.1	
   puuB	
  
gamma-­‐Glu-­‐putrescine	
  oxidase;	
  
FAD/NAD(P)-­‐binding	
   No	
  

Pip_A	
   1617132	
   A-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  

Pip_A	
   1617133	
   G-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  
Pip_A	
   1617134	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Pip_B	
   1617133	
   G-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  
Pip_B	
   1617134	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Pip_B	
   4183082	
   A-­‐>G	
   NP_418414.1	
   rpoB	
   RNA	
  polymerase;	
  beta	
  subunit	
   No	
  

Pip_C	
   92326	
   C-­‐>T	
   NP_414626.1	
   ftsI	
  

transpeptidase	
  involved	
  in	
  septal	
  
peptidoglycan	
  synthesis	
  (penicillin-­‐
binding	
  protein	
  3)	
   No	
  

Pip_C	
   99209	
   G-­‐>T	
   NP_414631.1	
   ftsW	
   Lipid	
  II	
  flippase	
   No	
  
Pip_C	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

Pip_C	
   1977294	
   C-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

Pip_C	
   3533169	
   A-­‐>C	
   NP_417863.1	
   envZ	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  OmpR	
   No	
  

PipAmk_A	
   485598	
   G-­‐>A	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

PipAmk_A	
   4102886	
   A-­‐>G	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

PipAmk_B	
   3470123	
   G-­‐>A	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

PipAmk_C	
   2623803	
   G-­‐>C	
   NP_416997.1	
   ppx	
   exopolyphosphatase	
   No	
  

PipAmk_C	
   3471188	
   C-­‐>A	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  factor	
  EF-­‐G;	
  GTP-­‐
binding	
   No	
  

PipAmk_C	
   4102452	
   C-­‐>T	
   NP_418347.1	
   cpxA	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  CpxR	
   No	
  

PipAmk_C	
   4632747	
   A-­‐>C	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

PipChl_A	
   485024	
   C-­‐>T	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

PipChl_A	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
PipChl_A	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipChl_A	
   4187340	
   C-­‐>T	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

PipChl_A	
   4275549	
   C-­‐>T	
   NP_418487.1	
   soxR	
  
DNA-­‐binding	
  transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  redox-­‐sensing	
   No	
  

PipChl_B	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipChl_B	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  
PipChl_B	
   4184379	
   G-­‐>C	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

PipChl_B	
   4632867	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

PipChl_C	
   484997	
   A-­‐>G	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
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PipChl_C	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
PipChl_C	
   3214645	
   T-­‐>C	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipChl_C	
   4632867	
   C-­‐>T	
   NP_418813.1	
   rob	
  
right	
  oriC-­‐binding	
  transcriptional	
  
activator;	
  AraC	
  family	
   No	
  

PipTet_A	
   485076	
   C-­‐>A	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

PipTet_A	
   1906727	
   G-­‐>A	
   NP_416340.1	
   mgrB	
  
regulatory	
  peptide	
  for	
  PhoPQ;	
  feedback	
  
inhibition	
   No	
  

PipTet_A	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  
PipTet_A	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipTet_A	
   3533586	
   G-­‐>A	
   NP_417863.1	
   envZ	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  OmpR	
   No	
  

PipTet_B	
   484998	
   C-­‐>T	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  
PipTet_B	
   2729754	
   T-­‐>A	
   NP_417083.1	
   clpB	
   protein	
  disaggregation	
  chaperone	
   Yes	
  

PipTet_B	
   4187339	
   G-­‐>A	
   NP_418415.1	
   rpoC	
   RNA	
  polymerase;	
  beta	
  prime	
  subunit	
   No	
  

PipTet_C	
   484997	
   A-­‐>G	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  
PipTet_C	
   1976527	
   G-­‐>T	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipTet_C	
   1976528	
   G-­‐>A	
   	
  	
   	
  	
   	
  	
   	
  	
  

PipTet_C	
   3533368	
   C-­‐>T	
   NP_417863.1	
   envZ	
  
sensory	
  histidine	
  kinase	
  in	
  two-­‐
component	
  regulatory	
  system	
  with	
  OmpR	
   No	
  

PipTet_C	
   4183090	
   G-­‐>T	
   NP_418414.1	
   rpoB	
   RNA	
  polymerase;	
  beta	
  subunit	
   No	
  

Tet_A	
   484987	
   G-­‐>A	
   NP_414997.1	
   acrR	
   DNA-­‐binding	
  transcriptional	
  repressor	
   No	
  

Tet_A	
   1617480	
   C-­‐>T	
   NP_416047.4	
   marR	
  
DNA-­‐binding	
  transcriptional	
  repressor	
  of	
  
multiple	
  antibiotic	
  resistance	
   No	
  

Tet_A	
   3438262	
   C-­‐>T	
   NP_417754.1	
   rpoA	
   RNA	
  polymerase;	
  alpha	
  subunit	
   No	
  

Tet_B	
   483223	
   G-­‐>T	
   NP_414995.1	
   acrB	
   multidrug	
  efflux	
  system	
  protein	
   No	
  
Tet_B	
   985121	
   A-­‐>C	
   NP_415449.1	
   ompF	
   outer	
  membrane	
  porin	
  1a	
  (Ia	
   No	
  

Tet_C	
   985350	
   G-­‐>A	
   NP_415449.1	
   ompF	
   outer	
  membrane	
  porin	
  1a	
  (Ia	
   No	
  
	
  
	
  

D.	
  	
  INDELs	
  Identified	
  in	
  the	
  evolved	
  MG1655	
  Strain	
  
	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
  Strain/AB_selection	
   From	
  
Position	
  

Type	
   INDEL	
   Genbank	
  ID	
   	
  Gene	
   	
  Product	
  

Amk_B	
   753063	
   insertion	
   C-­‐>CTACGGTTCGCAC	
   NP_415248.1	
   gltA	
   citrate	
  synthase	
  
Amk_B	
   2925947	
   insertion	
   T-­‐>TTATAT	
   	
  	
   	
  	
   	
  	
  

Amk_B	
   4081530	
   deletion	
   GCCATGC-­‐>G	
   NP_418330.1	
   fdoG	
  
formate	
  dehydrogenase-­‐
O;	
  large	
  subunit	
  

AmkTet_A	
   1617207	
   insertion	
   T-­‐>TAATC	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
  

AmkTet_A	
   3469704	
   insertion	
   C-­‐>CAAC	
   NP_417799.1	
   fusA	
  
protein	
  chain	
  elongation	
  
factor	
  EF-­‐G;	
  GTP-­‐binding	
  

AmkTet_A	
   4468534	
   deletion	
   CCG-­‐>C	
   	
  	
   	
  	
   	
  	
  
AmkTet_B	
   484953	
   deletion	
   AT-­‐>A	
   	
  	
   	
  	
   	
  	
  
Chl_A	
   882788	
   insertion	
   A-­‐>AGTAATAAT	
   	
  	
   	
  	
   	
  	
  

Chl_B	
   4254115	
   deletion	
   ACACTGG-­‐>A	
   NP_418465.4	
   plsB	
  
glycerol-­‐3-­‐phosphate	
  O-­‐
acyltransferase	
  

ChlTet_A	
   1617515	
   deletion	
   CA-­‐>C	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
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Cip_A	
   4275869	
   deletion	
   CGCG-­‐>C	
   NP_418487.1	
   soxR	
  

DNA-­‐binding	
  
transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  
redox-­‐sensing	
  

Cip_C	
   987835	
   insertion	
   G-­‐>GGCG	
   NP_415450.1	
   asnS	
  
asparaginyl	
  tRNA	
  
synthetase	
  

Cip_C	
   1142060	
   insertion	
   A-­‐>ACCATCGC	
   NP_415602.1	
   rne	
  

fused	
  ribonucleaseE:	
  
endoribonuclease/RNA-­‐
binding	
  protein/RNA	
  
degradosome	
  binding	
  
protein	
  

Cip_C	
   3445977	
   deletion	
   TGG-­‐>T	
   NP_417769.1	
   rplN	
  
50S	
  ribosomal	
  subunit	
  
protein	
  L14	
  

Cip_C	
   4275871	
   deletion	
   CGCA-­‐>C	
   NP_418487.1	
   soxR	
  

DNA-­‐binding	
  
transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  
redox-­‐sensing	
  

CipAmk_A	
   485481	
   deletion	
   AT-­‐>A	
   NP_414997.1	
   acrR	
  
DNA-­‐binding	
  
transcriptional	
  repressor	
  

CipAmk_A	
   2337194	
   deletion	
   CCGA-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  
topoisomerase);	
  subunit	
  A	
  

CipAmk_B	
   2337194	
   deletion	
   CCGA-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  
topoisomerase);	
  subunit	
  A	
  

CipChl_A	
   458212	
   deletion	
   GA-­‐>G	
   NP_414973.1	
   lon	
  
DNA-­‐binding	
  ATP-­‐
dependent	
  protease	
  La	
  

CipChl_A	
   2337194	
   deletion	
   CCGA-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  
topoisomerase);	
  subunit	
  A	
  

CipChl_B	
   485598	
   insertion	
   C-­‐>CGCC	
   NP_414997.1	
   acrR	
  
DNA-­‐binding	
  
transcriptional	
  repressor	
  

CipChl_B	
   986403	
   deletion	
   TAAC-­‐>T	
   	
  	
   	
  	
   	
  	
  

CipChl_C	
   2337194	
   deletion	
   CCGA-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  
topoisomerase);	
  subunit	
  A	
  

CipChl_C	
   4275869	
   deletion	
   CGCG-­‐>C	
   NP_418487.1	
   soxR	
  

DNA-­‐binding	
  
transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  
redox-­‐sensing	
  

CipPip_B	
   485036	
   insertion	
   T-­‐>TG	
   NP_414997.1	
   acrR	
  
DNA-­‐binding	
  
transcriptional	
  repressor	
  

CipPip_B	
   2337194	
   deletion	
   CCGA-­‐>C	
   NP_416734.1	
   gyrA	
  
DNA	
  gyrase	
  (type	
  II	
  
topoisomerase);	
  subunit	
  A	
  

CipPip_C	
   485136	
   deletion	
   CA-­‐>C	
   NP_414997.1	
   acrR	
  
DNA-­‐binding	
  
transcriptional	
  repressor	
  

CipPip_C	
   4275889	
   insertion	
   A-­‐>AGTA	
   NP_418487.1	
   soxR	
  

DNA-­‐binding	
  
transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  
redox-­‐sensing	
  

CipTet_A	
   986138	
   deletion	
   TGCAG-­‐>T	
   NP_415449.1	
   ompF	
  
outer	
  membrane	
  porin	
  1a	
  
(Ia	
  

CipTet_A	
   4184028	
   insertion	
   C-­‐>CAGC	
   NP_418415.1	
   rpoC	
  
RNA	
  polymerase;	
  beta	
  
prime	
  subunit	
  

CipTet_A	
   4275869	
   deletion	
   CGCG-­‐>C	
   NP_418487.1	
   soxR	
  

DNA-­‐binding	
  
transcriptional	
  dual	
  
regulator;	
  Fe-­‐S	
  center	
  for	
  
redox-­‐sensing	
  

CipTet_B	
   2105	
   deletion	
   CATCA-­‐>C	
   NP_414543.1	
   thrA	
  

fused	
  aspartokinase	
  I	
  and	
  
homoserine	
  
dehydrogenase	
  I	
  

CipTet_B	
   484937	
   deletion	
   AT-­‐>A	
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CipTet_C	
   4632753	
   deletion	
   TTGC-­‐>T	
   NP_418813.1	
   rob	
  

right	
  oriC-­‐binding	
  
transcriptional	
  activator;	
  
AraC	
  family	
  

Pip_A	
   1617115	
   deletion	
  
TGCAACTAATTACTTGCCAGG-­‐
>T	
   	
  	
   	
  	
   	
  	
  

Pip_B	
   1712342	
   deletion	
   CT-­‐>C	
   	
  	
   	
  	
   	
  	
  

PipAmk_B	
   4102928	
   insertion	
   C-­‐>CACCAACATCAAC	
   NP_418347.1	
   cpxA	
  

sensory	
  histidine	
  kinase	
  in	
  
two-­‐component	
  
regulatory	
  system	
  with	
  
CpxR	
  

PipTet_B	
   1617324	
   insertion	
   A-­‐>AA	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
  

PipTet_B	
   3533825	
   deletion	
   GCAAGGTGACGAT-­‐>G	
   NP_417863.1	
   envZ	
  

sensory	
  histidine	
  kinase	
  in	
  
two-­‐component	
  
regulatory	
  system	
  with	
  
OmpR	
  

PipTet_C	
   1617318	
   deletion	
   TG-­‐>T	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
  

Tet_B	
   1617384	
   insertion	
   A-­‐>AAAAGGCTGGGTGG	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
  

Tet_C	
   1617384	
   insertion	
   A-­‐>AAAAGGCTGGGTGG	
   NP_416047.4	
   marR	
  

DNA-­‐binding	
  
transcriptional	
  repressor	
  
of	
  multiple	
  antibiotic	
  
resistance	
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Supplementary Data 1: Dose-response curves 
Dose-response curves for the evolved and the wt strains. The header denotes the 
evolved-to condition. The X-axis is the antibiotic concentration in μM, the Y-axis is
the % inhibition.
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Supplementary information 

Evolution of high-level resistance to drug combination treatment is not 
predicted by epistatic drug interactions

1. Detailed Analysis of Observed Mutations 
2. Supplememtary Figure S1

1. Detailed analysis of observed mutations

Erythromycin.  
The target of macrolides is the protein synthesis process where they disrupt peptide chain elongation 
by binding near the peptide chain exit located on the 50S subunit and blocking the exit tunnel (1-3).  
Large macrolides can directly affect peptide bond formation in the peptidyl transferase center by 
extending up into the exit tunnel (4, 5).  Macrolides are also known to prevent the assembly of new 
ribosomal units (6-9).   
Mutations at or near nucleotide site 2058 (Escherichia coli reference) alter the macrolide binding 
point in the 50S ribosome providing resistance against macrolide drugs.  Modifications at this site 
are generally the result of erm associated methyltransferase (10, 11), which is usually achieved via 
a resistance gene not present in Staphylococcus aureus Newman (12).  In the absence of this gene, 
alteration of the macrolide binding site can be achieved by mutations to rplD and rplV genes (13), 
which respectively code for L4 and L22 ribosomal proteins. Both proteins are in proximity to the 
binding site, which is located near the exit tunnel at the back of the 50S ribosome (14, 15).  Mutations 
in these proteins near the binding site can lead to changes in the exit tunnel shape thereby affecting 
rRNA access.  Two out of three erythromycin evolved strains and two out of three combination 
evolved strains had mutations the rplD (L4) gene.  Mutations in the gene coding for this ribosomal 
protein have been associated with macrolide resistance in several bacterial species (16-18) including 
Staphylococcus aureus   (19) and are increasingly being observed in clinical isolates (20, 21). The 
most characterized erythromycin associated L4 mutations are those involving insertions or deletions 
(17), however neither phenomenon was observed here.  Instead several different missense mutations 
were observed.  Recent work has shown that over 200 different amino acid substitutions in the L4 
and L22 proteins can result in macrolide resistance (13, 17)  and that these substitution mutations do 
no adversely impact growth rate (13). 
An six nucleotide duplication was observed in the extended loop region of the L22 ribosomal protein 
(coded by gene rplV) of erythromycin-fusidic acid evolved lineage A.  Duplication mutations in L22 
have been associated with erythromycin resistance in different organisms (18, 22-25), including 
Staphylococcus aureus (26).  A duplication mutation of this size at a different residue position in this 
protein has previously been observed to slow the growth of an E. coli mutant (18), however growth 
experiments performed on our strain found no negative impact on growth rate. 
In addition to primary target changes, auxiliary mutations were found in the erythromycin evolved 
strains and included modifications to ribosomal proteins L3 and L27 and the ribosomal RNA large 
subunit methyltransferase N (NWMN1128).  Three missense mutations in ribosomal protein L3 were 
found in erythromycin evolved lineage B.  Ribosomal protein L3 is a secondary binding protein in 12S 
region of the 50S ribosome (27).  Mutations to this particular ribosomal protein have been associated 
with linezolid (28-30) and tiamulin (31)  resistance.  Subsequent experiments to test for linezolid 
cross resistance in this particular lineage did not find additional resistance beyond established MIC 
values.  Lineage B also had a single missense mutation in NWMN 1128, which is responsible for the 
methylation of the adenine at position 2503 in the 23S rRNA (32).  The adenosine of 2503 is part 
of a group of adenosines located at the narrow entrance to the peptide exit tunnel (33).  This group 
is thought to play a “quality control role” in monitoring peptides leaving the peptide tunnel (34). The 
position of 2503 is close to the binding sites of several peptidyl transferase center antibiotics (1, 35) 



- 74 -

and modification of the adenosine at 2503 is known to confer resistance to drugs targeting this region 
(32, 36).  Together the supplementary ribosomal mutations observed erythromycin lineage B most 
likely serve in a complementary capacity to the primary target mutation in ribosomal protein L4.  
The single mutation found in ribosomal protein L27 in lineage A may also serve in a complimentary 
role to the mutation in L4.  Ribosomal protein L27 plays a critical role in the proper functioning 
of the 50S ribosome (37, 38).    Organisms without this protein have hindered growth, impacted 
ribosome assembly and reduced peptidyl transferase activity (37).   The role of ribosomal protein L27 
in resistance is unknown.  

Fusidic acid and amikacin.  
Mutations to the fusA gene were observed in the fus-ery, fus-amik CE lineages as well as in the fus, 
amik and ery strains.  Subsequent cross-resistance tests determined that the erythromycin-evolved 
strain was not resistant to fusidic acid above the WT MIC.  fusA gene mutations in the amikacin 
evolved strains were conferred resistance to both amikacin and fusidic acid.  No aminoglycoside 
primary target mutations were observed in the amikacin-evolved lineages. 
The mechanisms of action for fusidic acid and amikacin are distinctly different; however, the targets 
of these two drugs are similar, namely the translocation step of protein synthesis. Fusidic acid 
targets the final step of the protein synthesis process by preventing the release of elongation factor 
G from the ribosome.  These two agents work together to catalyze the movement of the mRNA-tRNA 
complex in the final step of peptide chain elongation (39).  When fused together elongation G and the 
ribosome block the next stage of protein synthesis (40, 41).  
Amikacin, an aminoglycoside, has a two-pronged bactericidal effect.  First, it disrupts the protein 
synthesis process by binding to a region on the 30S ribosome, which is critical for translational fidelity 
(42).  Second, it can disrupt the integrity of the cell envelope if mistranslated proteins are inserted 
into the cell membrane thereby affecting permeability and leading to an increased uptake of amikacin 
(43, 44).  Mutations in the fusA gene resulting in aminoglycoside resistance have previously been 
observed in Staphylococcus aureus (45, 46). 
Amino acid substitutions in the fus A gene (codes for EF-G) are the most characterized mechanism 
of fusidic acid resistance.  To date there are more than 30 subsitutions in fus A, which are known to 
confer varying extents of resistance (47-49).  With the exception of just two mutations, all missense 
mutations found in our evolved fusidic acid, amikacin, erythromycin and fusidic acid combinations 
strains have previously been described (46, 48, 50-55).  The two novel mutational changes observed 
were amino acid substitutions E444L in the fusidic acid-amikacin combination evolved lineage C 
and I619F in the amikacin-evolved lineage B.  The fusidic acid-amikacin combination strain C had 
substitutions in two amino acids- 444 and 457.  Amino acid 444 is situated in a known resistance 
region (47) and is therefore unsurprising.  Substitutions to amino acid 457 are frequently part of 
a mutation combination (49).  This may suggest that E444L/H457Q is a new resistance mutation 
combination.  The I619F mutation is particularly interesting as it is outside the known resistance 
regions and is the only fus A mutation observed in amikacin evolved lineage B.   Moreover, this 
particular strain did not possess any additional mutations associated with fusidic acid or amikacin 
resistance.  
Mutations to the fus A gene are known to have fitness costs.  The extent of these costs varies 
from severe to negligible depending on which amino acid is affected.  Earlier work by Nagaev (47) 
demonstrated that the fitness costs of many of the mutations observed in this study may be considered 
moderate (average relative growth rate 80% of wild type) to negligible (no difference between mutant 
and wild type growth rate).  A severe fitness cost was observed for only one substitution (T436I) 
present in fusidic acid-amikacin combination evolved lineage A.  The cost of this particular substitution 
has previously been shown to reduce growth rate of Staphylococcus aureus in LB to 58% of the wild 
type (47). Strains containing moderate fitness cost mutations were found to have similar to wild type 
growth rates, perhaps indicating that under conditions where competition is absent, the presence of 
fus A mutations makes little difference to a strain’s fitness (Table S4).  Fusidic acid evolved lineage 
B is notable because it is the only isolate to have mutations in an alternative fusidic acid resistance 
mechanism, gene rplF, which codes for the ribosomal protein L6.  Resistance solely due to mutations 
in this gene is rare and is known to have a large fitness cost (46).  Growth experiments demonstrated 
that the additional mutation did not adversely impact the growth rate of this particular lineage, as the 
doubling time of this strain was similar to the wild type.  This finding coupled with the presence of a 
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mutation in the primary fusidic acid resistance mechanism suggests that the rplF mutation is most 
plays a supplementary role at best. 

Ciprofloxacin and ampicillin.  
Sequencing results of the ciprofloxacin-ampicillin group of strains showed an interesting cascade 
of mutations.  Ciprofloxacin-evolved strains were observed to have mutations in the parC and gyr A 
genes, both of which have been well documented in conjunction with ciprofloxacin resistance (56), 
while ampicillin-evolved lineages had mutations in the pbpA gene.  In addition to their respective 
primary target mutations, both sets of evolved strains had mutations in the SaeS gene, part of a 
two component regulatory system directly involved in the expression of several pathogenicity gene 
and virulence factors.  The SaeR/S system is known to be activated in response to environmental 
conditions (57), including sub inhibitory concentrations of beta lactams (58, 59), which may explain 
the mutations observed in the ampicillin evolved strains. The SaeR/S system does not appear to be 
responsible for resistance to beta lactams (59). 
The ciprofloxacin-ampicillin combination evolved strains also had mutations in the parC and pbpA 
genes and shared an unsual mutation with the ampicillin-evolved strains.  Both evolved groups had 
mutations in the NWMN13 gene, a hypothetical signaling protein with strong associations to rplI (50S 
ribosomal protein L9) and cca (a cca adding enzyme), as predicted by STRING 9.0 (60).  Mutations 
in NWMN13 may be in response to environmental stress brought on by the presence of ampicillin.  
The link between stress response genes and resistance remains unknown for many strains (61). 
It is no surprise that supplementary mutations may arise as a result of the stressful environment 
created by two drugs.  Mutations in the relA, NWMN600, and NWMN1950 genes were unique 
to the combination-evolved strains and probably serve as added support mechanism to primary 
target mutations.  The relA gene controls the production of the alarmone ppGpp, which serves as 
global transcriptional regulator and signal that affects a variety of metabolic pathways and bacterial 
physiological processes, including cell wall synthesis, ribosome synthesis, virulence and nucleic 
acid metabolism, and is triggered by environmental stress.  The relationship between production of 
ppGpp and antibiotic resistance is well established (62, 63).  Increased ppGpp production results in 
a slowing or shut down of cell wall synthesis, leading to a loss of target for beta lactam drugs (64, 
65).  This phenomena was recently observed in Staphylococcus isolates, where a single nucleotide 
substitution in relA resulted in a prolonged stringent response activity and reduced growth of clinical 
Staphylococcus  (66).  Results of the growth kinetics tests did not reveal an adverse effect in the growth 
rate of combination-evolved strains with relA mutations (Table S4).  Elevated ppGpp concentrations 
have also been linked to fluroquinolone survival in Pseudomas aeruginosa (67, 68).   Perhaps a 
similar protective benefit may be yielded under the experimental conditions here.  Finally, it has 
been suggested that ppGpp may also play a role in drug efflux pump regulation (69).  This proposed 
function provides an additional resistance mechanism, which may help to explain the mutations in 
NWMN600, a Na+/H+ exchange protein, and NWMN1950, an ammonium transporter, which were 
unique to the combination-evolved strains.  
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Figure S1. Averaged resistance evolution concentrations for each of the conditions investigated.  
Individual drugs are shown in blue and red, while drug combinations are displayed in green.  Values shown were 
determined by taking an average of all the replicate concentrations for each lineage.



- 80 -

Table	
   S2.	
   	
   Clinical	
   breakpoints	
   as	
   published	
   by	
   EUCAST	
   and	
   the	
   final	
   resistance	
  

concentrations	
  for	
  each	
  antibiotic	
  used	
  in	
  this	
  work.	
  	
  	
  

	
  
	
  

	
  
Resistance	
  
breakpoint	
  
(ug/mL)	
  

Final	
  Experimental	
  Conc	
  (ug/mL)	
  
	
   	
  

Drug	
  
Replicate	
  

A	
  
Replicate	
  

B	
  
Replicate	
  

C	
  
	
   	
  Amikacin	
   16	
   273	
   615	
   308	
  
	
   	
  Ampicillin	
   NR	
   13	
   19	
   17	
  
	
   	
  Ciprofloxacin	
   1	
   41	
   50	
   50	
  
	
   	
  Erythromycin	
   2	
   12	
   1468	
   92	
  
	
   	
  Fusidic	
  Acid	
   1	
   232	
   155	
   207	
  
	
   	
  

	
   	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
   	
  NR	
  =	
  not	
  reported	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
  Resistant	
  values	
  taken	
  from	
  EUCAST	
  Clinical	
  breakpoints	
  tables	
  published	
  online	
  2013-­‐02-­‐11	
  
http://www.eucast.org/clinical_breakpoints/	
  

	
   	
   	
  	
  
	
  
	
  
	
  
	
  
	
  
Table	
  S3.	
  	
  Calculated	
  evolvability	
  index	
  (EI)	
  for	
  each	
  drug	
  pair	
  investigated.	
  	
  

	
  
	
  

Combination	
   EI	
  
Fus-­‐Ery	
   0.04	
  
Cpr-­‐Amp	
   0.14	
  
Fus-­‐Amik	
   0.44	
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Horizontal dissemination of antibiotic resistance genes
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Introduction to section 2

Horizontal transfer of antibiotic resistance genes

Resistance genes predate anthropogenic production and dissemination of antimicrobial 

agents, highlighting that they belong to the core repertoire of bacterial functionality1,2. 

Furthermore, genes conferring resistance to penicillin have been predicted to be located 

on plasmids before the wide use of penicillin showing that even mobilization of resistance 

genes predates the period of high antibiotic consumption3. However, since the mid 1900s 

the rise in antibiotic consumption has selected strongly for mobilization and dissemination 

of antibiotic resistance genes, a process mainly facilitated through horizontal gene transfer 

(HGT)4. HGT short-circuits traditional vertical evolution and allows bacterial to share 

favorable genes even across diverging phylogeny5. In contrast to mutational responses, it 

offers a rapid response to changes in the environment. Consequently, HGT play a key role 

in the emergence and dissemination of antibiotics resistance genes. 

Commonly, the resistance gene reservoir within bacterial communities is referred to as the 

“resistome”6. As such it represents all genes that have the potential to become a resistance 

gene. Transition of genes from the resistome to the pool or clinical relevant resistance 

genes is believed to be an important source of novel resistance genes4,7,8. This process 

involves horizontal transfer of antibiotic resistance genes from environmental species to 

human pathogens, which can occur via conjugation, transduction or natural competence. 

In the case of plasmid-mediated transfer, the resistance gene needs to be mobilized 

onto the plasmids9. This process is facilitated by transposons or integrons that can hijack 

chromosomal encoded genes and move them to other genetic locations. Such mobilization 

processes is the first step in bridging environmental resistance gene reservoirs with clinical 

relevant strains.

Studies of the current pandemic extended spectrum beta-lactamse (ESBL) family, CTX-M, 

indicate that this enzyme originate from the chromosome of Kluyvera spp.10. The CTX-M 

enzyme family has in fewer than 10 years become the dominating ESBL gene family and 

exemplifies the process of mobilization and dissemination of novel resistance genes from 

environmental gene reservoirs to human pathogens11.

As a consequec, there has been an increased interest in studying the resistome of different 
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environments12. Traditionally this has been done using PCR or qPCR to look for specific 

resistance genes in total DNA from environmental samples. However, an increasing number 

of studies have also used a more unbiased functional selection approach to uncover 

resistance gene reservoirs13,14.

Even though many studies have suggested that environmental reservoirs are key sources 

of clinically relevant antibiotic resistance genes, more recent studies indicate that HGT is 

confined by environmental barriers15,16. 

In a study by Forsberg et al. functional metagenomic screening was applied to identify 

resistance genes in different soil samples15. The identified genes were compared to 

resistance genes in clinically relevant species and they found that only 7 out of 110 antibiotic 

resistance genes were shared with clinical relevant species. This shows that even though 

antibiotic resistance genes are ubiquitous to soil environments, only a small subset are 

shared with human pathogens.

It is believed that studying resistance reservoirs of different environments gives insight into 

possible future antibiotic resistance genes that can become major threats to human health12.

An environment of particular concern is wastewater treatment plants (WWTPs). In this 

environment bacteria from many different origins are mixed, providing the perfect conditions 

for extensive gene exchange. The majority of bacteria that enter these facilities come from 

either humans or animals and many have been exposed to antibiotics with consequent 

selection of antibiotic resistance. In addition, pathogenic bacteria also enter the WWTPs 

especially from wastewater from hospital sources. Resultantly, WWTP are conceived as the 

ideal site for human pathogens to acquire novel resistance genes8,12,17,18.
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Thesis work

Functional metagenomic selection

A short perspective acticle that gives an in-depth description of the advantages and 

disadvantages is given of functional metagenomic selection.

Resistance gene reservoir of wastewater treatment plants

We wanted to comprehensively map the resistance gene reservoir in wastewater treatment 

plants (WWTPs) and identify the overlap with clinical relevant bacteria. We did this by 

combining functional metagenomic selection with metagenomic sequencing. We found 

that the core antibiotic resistome of WWTPs is highly stable and shared across different 

WWTPs. Furthermore we found that only 6 of the 80 identified WWTP resistance genes, 

had an identity of >95 % to the genbank database, highlighting that there is very little overlap 

between WWTPs resistance gene reservoir and other environments, including human 

pathogens. 

This conclusion challenges the common belief that WWTP play a key role in dissemination of 

antibiotic resistance genes. Instead it suggests that mobilization and dissemination across 

environmental niches is a significant barrier preventing the spread of resistance genes.

Horizontal gene transfer in the human gut

Via a collaboration with the Clinical Microbiology Department at the Sahlgrenska University 

Hospital in Sweden, we had the opportunity to study horizontal gene transfer (HGT) events 

occuring in situ of the human gut. As a part of the ALLERGYFLORA study, clinicians at 

Sahlgrenska samplied the infant gut-microbiota to study its relations to the development of 

allergy19. Fecal samples were collected from the enrolled infants over their first year of life 

and were cultivated on different media selective for relevant species. This resulted in an E. 

coli collection that was MIC tested against several antibiotics19,20. In one of the infants that 

had not received antibiotics, an E. coli isolate’s resistance profile changed at the 2-month 

sampling point. Initially, isolates from this child were sensitive to ampicillin, piperacillin, 

streptomycin and sulfamethoxazole. However, after the two-months sampling point, they 

were resistant to these drugs. 

In a study headed by my colleague Heidi Gumpert, we investigated, at the genomic level, 

the changes in these E. coli strains to uncover the genetic events that lead to the change 
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in resistance profile. We found that horizontal transfer of a large multi-drug resistance 

plasmid was the cause of the change in resistance profile. This is to our knowledge, the 

first observation of HGT of antibiotic resistance genes in situ of the human gut without 

any antibiotic selection. In addition to the plasmid transfer, we also observed several 

remodeling events of the E. coli genomes, including large deletions and phage insertions. 

The results of this study show that dissemination of genetic material is inherent to bacterial 

communities, and that transfer of antibiotic resistance genes does not require a selective 

pressure. Furthermore, the study highlights the power of single isolate genome sequencing 

to uncover strain dynamics in a complex bacterial community.   
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The human intestinal microbiota encode multiple critical functions impacting human health,
including metabolism of dietary substrate, prevention of pathogen invasion, immune sys-
tem modulation, and provision of a reservoir of antibiotic resistance genes accessible to
pathogens. The complexity of this microbial community, its recalcitrance to standard culti-
vation, and the immense diversity of its encoded genes has necessitated the development
of novel molecular, microbiological, and genomic tools. Functional metagenomics is one
such culture-independent technique, used for decades to study environmental microor-
ganisms, but relatively recently applied to the study of the human commensal microbiota.
Metagenomic functional screens characterize the functional capacity of a microbial commu-
nity, independent of identity to known genes, by subjecting the metagenome to functional
assays in a genetically tractable host. Here we highlight recent work applying this technique
to study the functional diversity of the intestinal microbiota, and discuss how an approach
combining high-throughput sequencing, cultivation, and metagenomic functional screens
can improve our understanding of interactions between this complex community and its
human host.

Keywords: functional metagenomics, human intestinal microbiota, antibiotic resistome

INTRODUCTION
A growing body of evidence indicates that human microbial com-
munities play a role in the pathogenesis of diseases as diverse
as neonatal necrotizing enterocolitis, asthma, eczema, inflamma-
tory bowel disease, obesity, atherosclerosis, insulin resistance, and
neoplasia. Because the composition of the intestinal microbiota
is highly variable in early infancy and largely stabilizes by the
end of the first year of life, understanding the determinants of
the composition of the infant enteric microbial community is
of particular interest (Vael and Desager, 2009). The decreased
rates of early childhood infections, atopic disease, diabetes, and
obesity in breastfed infants have been well-documented (Oddy,
2004; Bartok and Ventura, 2009; Duijts et al., 2009; Le Huerou-
Luron et al., 2010; Gouveri et al., 2011), as have the differences
in the composition of the intestinal microbiota between breast-
and formula-fed infants. In breastfed infants, Bifidobacterium spp.
rapidly become the predominant group of organisms (Harm-
sen et al., 2000), while formula-fed infants develop a different
microbial community comprised of some Bifidobacteria and large
proportions of other potentially pathogenic organisms, including
Bacteroides, Staphylococcus, Enterobacteria, Clostridia, and Ente-
rococcus spp. (Yoshioka et al., 1983; Rubaltelli et al., 1998). Fer-
mentative metabolites generated by Bifidobacterium and other

saccharolytic species decrease stool pH, inhibiting the growth of
potential pathogens in breastfed infants (Bullen et al., 1976). Rel-
ative decreases in the proportion of Bifidobacteria and concomi-
tant increases in other enteric flora in infancy have been linked
to disease states later in life: increased numbers of Escherichia
coli and Clostridium difficile are associated with the develop-
ment of atopic disease such as asthma and eczema (Penders
et al., 2007), while lower Bifidobacterial counts and greater num-
bers of Staphylococcus aureus are associated both with overweight
mothers (Collado et al., 2010) and an increased risk of the
infant becoming overweight in early childhood (Kalliomaki et al.,
2008). Bifidobacteria may also enhance intestinal barrier function,
decreasing the likelihood of bacterial translocation during peri-
ods of metabolic stress (Wang et al., 2006; Ruan et al., 2007).
The gastrointestinal microbiota appear essential to the develop-
ment of the immune system (Round and Mazmanian, 2009),
can act as a reservoir for antibiotic resistance genes (van der
Waaij and Nord, 2000), and may contribute to chronic inflam-
matory states (Erridge et al., 2007; Ghanim et al., 2009). Together,
these data suggest that understanding the interactions between
microbial communities and their human hosts may illuminate the
pathogenesis of complex human diseases such as obesity and the
metabolic syndrome, atopic disease, and autoimmune disorders,
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and thereby provide a rich source for mining novel therapeutic
approaches.

To understand microbial community effects on human health,
both the phylogenetic profile of human microbial communities
and the functional capacity of their members must be charac-
terized. Much progress has been made toward these ends using
direct bacterial culture, 16S sequencing, shotgun metagenomic
sequencing, PCR probing for specific genes, and chemical profiling
of microbial metabolites. These approaches have yielded incredi-
ble insights ranging from shifts in prevalent bacterial phylotypes
and altered metabolic profiles in human subjects with inflamma-
tory bowel disease, variations in the composition of the intestinal
microbiota with human diet and functional differences in the gut
microbiota related to host body habitus, developmental changes in
the composition of the gastrointestinal microbiota during infancy
and childhood, and the genetic epidemiology of antibiotic resis-
tance in the intestinal microbiota. (Rimbara et al., 2005; Qin et al.,
2006; Turnbaugh et al., 2006; Bezabeh et al., 2009; Jansson et al.,
2009; Paliy et al., 2009; Gillevet et al., 2010; Kang et al., 2010; Koenig
et al., 2011; Rigsbee et al., 2011). In this perspective, we will focus
on the emerging application of functional metagenomic screens, a
technique developed for investigating unculturable environmental
microbes that neatly complements the aforementioned techniques
currently used to characterize the human microbiota.

Direct culture, historically the sine qua non of microbiology,
readily provides information on the functional characteristics of
the species being investigated. The majority of gastrointestinal
microbiota, however, are obligate anaerobes recalcitrant to culture.
Traditional estimates are that only 15–20% of the gastrointestinal
microbiota are culturable,precluding direct characterization of the
majority of bacterial species (Langendijk et al., 1995; Eckburg et al.,
2005; Gill et al., 2006). A recent report by Goodman et al. (2011)
showed, using high-throughput 16S sequencing in combination

with extensive anaerobic culturing, that up to 56% of gastroin-
testinal microbial species are culturable. Although this represents
a dramatic improvement over standard culturing techniques, there
remains a significant proportion of unculturable organisms that
must be characterized using complementary techniques. Different
approaches have been employed to overcome this problem ranging
from simple PCR-based screens to large metagenomic sequenc-
ing analyses and functional metagenomic screens. Together, these
methods have expanded our knowledge about the fraction of the
GI tract microbiota that cannot be characterized by culture-based
approaches.

FUNCTIONAL METAGENOMICS: AN EMERGING TECHNIQUE
FOR CHARACTERIZING UNCULTURABLE ORGANISMS
Functional metagenomic screens, originally proposed as a method
to characterize the unculturable fraction of soil microbiota (Han-
delsman et al., 1998; Rondon et al., 2000) and successfully used
for years to characterize the functional diversity of microbes in
a variety of environments (Warnecke et al., 2007; Allen et al.,
2009b; Berlemont et al., 2009; Torres-Cortes et al., 2011), has
relatively recently been adapted to characterize the functions of
human microbial communities, representing an interesting cross-
pollination between environmental microbiology and biomedical
science. The functional metagenomic screening method, based
on clone libraries containing genomic DNA from a microbial
community, does not require direct culture of fastidious organ-
isms. Instead, clone libraries are constructed by first extracting
and shearing DNA from a sample of a microbial community,
then cloning the fragmented DNA into a relevant vector, and
subsequently transforming this vector into a suitable host strain
(Figure 1). Once a library is constructed, it can be function-
ally screened by cultivation on selective media or by employing
a reporter system. Using this approach, it is possible to identify

FIGURE 1 | Schematic presentation of the processes leading from fecal
microbial sample to functional selection of antibiotic resistance genes.
Metagenomic DNA is directly extracted from any microbial community (e.g.,
from a fecal sample) and cloned into an expression system in a cultivable,
genetically tractable host strain (e.g., E. coli ). Metagenomic transformants

harboring DNA fragments that encode antibiotic resistance genes are
selected by subjecting the library of clones to specific antibiotics at
concentrations which inhibit the growth of the untransformed indicator strain.
Selected DNA fragments can then be sequenced to identify the specific
resistance genes.
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genes encoding a variety of functions such as antibiotic resis-
tance, metabolism of complex compounds, and modulation of
eukaryotic cells. Subsequent sequencing and in silico analysis of
the DNA inserts from isolated clones provides information about
the source of the genes and the putative mechanisms of action of
their products.

INTERACTIONS WITHIN MEMBERS OF THE INTESTINAL
MICROBIOTA: ANTIBIOTIC RESISTANCE
One area of early success for functional metagenomic screens is in
the discovery of new antibiotic resistance genes in the human gas-
trointestinal microbiota. Multidrug resistant bacteria are increas-
ingly prevalent in both hospitals and the community, and pose
a growing threat to human health (Boucher et al., 2009; Högberg
et al., 2010). Infections with antibiotic resistant organisms are asso-
ciated with increased mortality and cost of treatment (Maragakis
et al., 2008), and novel antibiotic discovery has not kept pace with
the emergence of microbial resistance to existing agents (Högberg
et al., 2010). In order to develop a rational approach to curtail
the emergence of antibiotic resistance in human pathogens, a
deeper understanding of the flow of resistance genes within micro-
bial communities is required. Pathogenic organisms present in
the environment may acquire resistance genes from soil or water
microbes, while commensal gastrointestinal organisms that are
continuously exposed to the outside environment via host inges-
tion of food, may also come in contact with pathogenic bacteria
during the course of an infection. Although great strides have been
made in recent years documenting genetic resistance reservoirs
and patterns of gene flow within and between environmental and
human commensal microbiota, fully characterizing the diversity
and mobility of the environmental resistome will be crucial to con-
trol the emergence of ever more resistant organisms (Aminov and
Mackie, 2007; Martinez, 2008; Aminov, 2009; Allen et al., 2010).

Multiple studies demonstrate the efficacy of simple PCR screens
in the detection and quantification of antibiotic resistance genes
present in the gastrointestinal microbiota. PCR assays have been
used to detect the presence of known tetracycline resistance genes
(tet ) in fecal samples from antibiotic-naive infants (Gueimonde
et al., 2006). Similarly, qPCR has been used to quantify the levels
of tet and erm genes, which confer resistance to tetracycline and
macrolide, lincosamide, and streptogramin B antibiotics respec-
tively, in animal and human waste water (Smith et al., 2004;
Auerbach et al., 2007; Chen et al., 2010). The extraordinary speci-
ficity of PCR-based studies is also an important limitation of the
technique: because PCR can only be used to interrogate a sample
for known genes, it is an ineffective method for identifying novel
resistance genes.

Functional metagenomic screens obviate this problem by iden-
tifying genes by their function in an expression vector rather
than by a specific sequence used for PCR probing. Using this
approach, novel antibiotic resistance genes have been identified
in different environments including oral microbiota, soil micro-
biota, and moth gut flora (Diaz-Torres et al., 2003; Riesenfeld
et al., 2004; Allen et al., 2009a). Sommer et al. (2009) demon-
strated the power of metagenomic functional screens to iden-
tify novel antibiotic resistance genes in fecal samples from two
healthy adults. Metagenomic libraries with a total size of 9.3 Gb

(gigabases) and an average insert size of 1.8 kb (kilobases) were
screened for resistance against 13 different antibiotics, revealing
95 unique inserts representing a variety of known resistance genes
as well as 10 novel beta-lactamase gene families (Sommer et al.,
2009). Genes identified using metagenomic functional screens
were, on average, 61% identical to known resistance genes from
pathogenic organisms, while genes identified via aerobic cultur-
ing of isolates from the same individuals had greater than 90%
sequence identity to previously described resistance genes. One of
the novel resistance genes identified with the functional metage-
nomic screen had 100% sequence identity to a protein of unknown
function, demonstrating the power of metagenomic functional
screens to identify novel resistance genes even in fully sequenced
and apparently well-annotated organisms. Antibiotic resistance
with high sequence identity to known genes were more likely
than novel genes to be flanked by mobile genetic elements such
as transposases, possibly indicating that the novel genes rep-
resent a potential resistance reservoir that has not yet become
widely disseminated. Recent work by Goodman et al. (2011)
demonstrated that interindividual differences in gastrointestinal
antibiotic resistance genes can be detected by subjecting both
uncultured fecal samples as well as pools of phylogenetically rep-
resentative fecal culture collections to metagenomic functional
screens. Notably, the presence or absence of specific resistance
genes (e.g., those encoding amikacin resistance) in uncultured
samples, as determined by functional metagenomics, correlated
with the fraction of cultured isolates phenotypically resistant to
those compounds, and the presence of the exact genes identified
by functional metagenomic screens was reconfirmed by PCR assay
in phenotypically resistant cultured strains. These authors also
found that the nearest genome-sequenced phylogenetic neigh-
bors of the resistant strains isolated from the the gastrointesti-
nal microbiota of the sampled individuals lacked similar resis-
tance genes, further highlighting the diversity and individualized
nature of antibiotic resistomes. Together, these studies indicate
that the gastrointestinal microbiota are likely to harbor many
more resistance genes that will continue to be revealed by further
investigation.

Functional metagenomic screens have also been used to mine
the resistance reservoir in the intestinal microbiota of farm ani-
mals. Livestock are frequently dosed with antibiotics to treat infec-
tions and promote growth, and mounting evidence indicates that
these practices lead to increased antibiotic resistance not only in
the microbiota of the treated animals but also in their human
caregivers (Sorum et al., 2006). The scope of this problem is high-
lighted by the findings of Kazimierczak et al. (2009),who employed
metagenomic functional screens to identify both known and novel
tetracycline resistance genes in fecal samples from organically
farmed pigs that had not been exposed to antibiotics. Most of
these genes were associated with mobile genetic elements, possibly
explaining their persistence in an environment without any obvi-
ous selection pressure. The clinical and epidemiologic relevance of
resistance genes present in the intestinal microbiota must be fur-
ther defined by examining secondary effects of these genes, such as
fitness costs or benefits associated with their expression, as well as
by demonstrating the potential for direct transfer of the resistance
gene to pathogenic organisms.
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FUNCTIONAL METAGENOMICS FOR UNDERSTANDING THE
GENETIC DETERMINANTS OF METABOLIC FUNCTION IN THE
GASTROINTESTINAL MICROBIOTA
As previously noted, specific variations in the composition of
the gastrointestinal microbial community have been linked to
important states of human health and disease. Recent advances
in understanding the interactions between bacterial metabolites
and the host cellular machinery have begun to illuminate the
physiologic basis of microbial contributions to human pathology.
Metabolites generated either directly or indirectly by saccharolytic
species may provide a mechanistic explanation for the observed
human health outcomes associated with different compositions of
the enteric microbial community. Conjugated linoleic acids, which
are generated by some Bifidobacterial species (Rosberg-Cody et al.,
2004), modulate tumorigenesis in animal models (Kelley et al.,
2007), and are being investigated for a role in modulating inflam-
mation and risk for neoplasia in humans (Bhattacharya et al., 2006;
Coakley et al., 2009). Short-chain fatty acids (SCFAs) are bacterial
metabolites that have wide-ranging effects on human physiol-
ogy. In animal models of prematurity, some SCFAs (acetic and
butyric acid) directly injure colonic mucosa in a dose-dependent
fashion in the most immature age groups (Lin et al., 2002), an
effect that disappears with increasing postnatal age (Nafday et al.,
2005). This suggests a possible role for bacterial metabolites in
the complex pathogenesis of necrotizing enterocolitis, a necroin-
flammatory disease commonly seen in preterm infants but non
existent in older age groups. Butyrate, a SCFA that is produced by
fermentation of dietary fiber, has a variety of effects modulating
inflammation and risk for neoplasia (Hamer et al., 2008). Butyrate
is taken up by colonocytes via the MCT1 and SMCT1 transporters
(downregulated in cancer cells), and is protective against colon
cancer in animal models. It also inhibits histone deacetylase and
inhibits TNF-κB activation, which may explain its role in mod-
ulating inflammation. Acetate and propionate, two other SCFAs,
have opposing effects on cholesterol biosynthesis (Wong et al.,
2006). Microbe-generated SCFAs also may contribute to host obe-
sity via interaction with fasting-induced adipocyte factor (Fiaf),
AMPK, and Gpr41, which modulate pathways regulating fatty acid
storage in adipocytes, fatty acid oxidation, gastrointestinal motil-
ity, and nutrient absorption (Backhed et al., 2007; Samuel et al.,
2008).

Functional metagenomic screens offer a powerful means for
detecting the genetic determinants of microbial metabolism. Jones
et al. (2008) employed a functional screen using a large-insert
metagenomic library to identify bile salt hydrolases within the
human gastrointestinal microbiota. End-sequencing of clones dis-
playing bile salt hydrolase activity revealed a broad phylogenetic
distribution of bile salt hydrolase enzymes suggesting that this
metabolic capacity is a conserved trait among bacteria adapted
to life in the human gastrointestinal tract. Since bile salts play
important roles in the processing and uptake of dietary fats in the
intestines, microbial catabolism of these compounds may affect
the amount of energy extracted from the diet.

Catabolism of fibers indigestible by the human host, another
significant activity of the human intestinal microbiota, has been
investigated using successive rounds of functional screens to
enrich the metagenomic library with carbohydrate-metabolizing

enzymes followed by high-throughput sequencing to identify
genetic determinants of carbohydrate metabolism within the
human gastrointestinal microbiota (Tasse et al., 2010). They iden-
tified 73 carbohydrate-metabolizing enzymes from the enriched
library, representing a fivefold increase in active genes identi-
fied compared to metagenomic sequencing without enrichment.
This highlights the strong potential of serial functional screens
combined with high-throughput sequencing to identify novel
genes and yield increasingly comprehensive information on the
metabolic potential of a given microbial community.

INTEGRATING FUNCTIONAL SCREENS WITH SHOT-GUN
METAGENOMIC SEQUENCING ANALYSIS
The advent of convenient applications for metagenomic data
analysis such as MG-RAST and MEGAN have simplified annota-
tion and comparative analysis of functionally selected genes, which
together with the declining cost of high-throughput sequencing,
offer an efficient complement to functional screens (Huson et al.,
2007; Meyer et al., 2008). Several studies have used this approach
to connect functional genes with metabolic capacities and to iden-
tify pathways, such as metabolism of sugars, amino acids, and
nucleotides, that are enriched in the gastrointestinal microbiota
relative to representative genome-sequenced strains (Gill et al.,
2006; Kurokawa et al., 2007; Turnbaugh et al., 2009; Arumugam
et al., 2011). Moreover, by ranking functional gene clusters accord-
ing to their frequencies, a minimal gut genome and a minimal gut
metagenome have been described (Qin et al., 2010). The former
reflects the minimal set of genes required by a single member of
the gastrointestinal microbiota, while the latter indicates the min-
imal set of genes required to sustain the aggregate gastrointestinal
microbiota. The minimal gut genome includes genes essential to
all bacteria (e.g., replication, transcription, translation) as well as
gut-specific genes such as those facilitating adhesion to epithelium.
In contrast, the minimal gut metagenome includes genes necessary
for metabolism of complex sugars, underscoring the importance
of coupled metabolism in sustaining the GI tract microbiota. The
importance of confirming gene function in vitro and in vivo to
ensure reliable annotation is illustrated by Hess et al. (2011), who
used metagenomic sequencing to identify >20,000 carbohydrate
active genes from the cow rumen microbiota. From this gene
set, they selected 90 in silico predicted carbohydrate-metabolizing
genes, expressed them, subjected them to functional assays, and
found that 51 genes were enzymatically active in vitro (Hess et al.,
2011). These studies exemplify how metagenomic sequencing,
automated annotation of large data sets, and functional screening
comprise a powerful toolkit capable of characterizing functional
networks in highly complex environments such as the GI tract
microbiota.

FUNCTIONAL MAPPING OF INTERACTIONS BETWEEN
HUMANS AND THEIR INTESTINAL MICROBIOTA
Functional metagenomic screens may also illuminate the genetic
determinants of microbial interactions with host cells. The intesti-
nal microbiota have long been known to modulate intestinal
epithelia, for instance, by stimulating intestinal cell differentia-
tion (Bry et al., 1996). In order to identify specific bacterial gene
products that directly influence the fate of human cells, Gloux et al.
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(2007) used cell lysate from individual clones in a gastrointestinal
metagenomic library to screen for modulation of cell growth in
CV-1 kidney fibroblast and HT-29 human colonic tumor cells.
Using this approach, they identified 30 growth-stimulating and
20 growth-inhibiting clones, with Bacteroidetes as the dominant
phylum among both sets. Using transposon mutagenesis on these
sets of clones, they identified seven candidate genes with putative
growth modulation effects.

Functional metagenomic screens have also been designed to
investigate the immune-modulatory capacity of the gastrointesti-
nal microbiota. To identify clones modifying the host immune
response, Lakhdari et al. (2010) constructed an NF-κB activated
reporter system from a human colorectal carcinoma cell line.
By screening metagenomic libraries of GI tract microbiota from
patients with Crohn’s disease, in which NF-κB activity is fre-
quently elevated (Ellis et al., 1998), they identified several clones
either inducing or inhibiting NF-κB activity. Together, these stud-
ies demonstrate the potential for functional metagenomic screens
to illuminate the genetic mechanisms for microbial community
contribution to the development of the human immune sys-
tem and the pathogenesis of atopic, autoimmune, and neoplastic
disease, which may provide novel therapeutic targets for these
conditions.

In addition to interacting with human cells, commensal bacte-
ria can also use quorum-sensing to convey signals over distances
and thereby coordinate community gene expression. Guan et al.
(2007) used a metabolite regulated expression(METREX) screen
based on a quorum-sensing inducible promoter fused to gfp to
identify genes encoding a new class of quorum-sensing inducing
molecules in moth gut microbiota, demonstrating the power of
functional metagenomics for characterizing the determinants of
community behavior in uncultured organisms.

FUNCTIONAL METAGENOMICS FOR REFINING PRE- AND
PRO-BIOTIC INTERVENTIONS
Increased understanding of the effects of gastrointestinal micro-
biota on human health has generated interest in targeting these
communities for therapeutic intervention (Cani and Delzenne,
2011). Short-chain carbohydrates that are indigestible by humans
but are fermentable by some microbes have demonstrable efficacy
in increasing the populations of Lactobacilli and Bifidobacteria
in the human gastrointestinal tract (Wang and Gibson, 1993).
Investigations of galactose oligosaccharides (GOS) and fructose
oligosaccharides (FOS) as additives to infant formula have demon-
strated increased Bifidobacterial populations, decreased stool pH,
generation of a stool fatty acid profile more similar to that found in
breastfed infants, and reduced populations of potential pathogens
such as Clostridia spp., Bacteroides spp., and E. coli (Fanaro et al.,
2005; Knol et al., 2005; Costalos et al., 2008; Magne et al., 2008;
Rao et al., 2009). Prebiotic supplementation with oligosaccharides

may promote blooms of beneficial bacteria more effectively than
direct administration of pro-biotic organisms: a study directly
comparing infant formula containing Bifidobacterium animalis
with GOS/FOS-supplemented formula revealed a significantly
greater proportion of Bifidobacterial species in the infants fed
oligosaccharide-containing formula but no difference between the
Bifidobacterial supplemented formula and control formula groups
(Bakker-Zierikzee et al., 2005). Administration of prebiotics such
as inulin and oligosaccharides in adult humans have shown some
effect on hunger and satiety mechanisms (Whelan et al., 2006;
Cani et al., 2009) but inconsistent results when applied to patholo-
gies such as atopy and inflammatory bowel disease (Guarner,
2005; Roberfroid et al., 2010). Functional metagenomics has the
potential to refine current prebiotic therapies by more completely
defining the genetic determinants of metabolism for given con-
stituents of a microbial community, providing a rational basis
for more precise design of prebiotic agents intended to promote
blooming of a specific subset of organisms.

TOWARD A COMPLETE FUNCTIONAL REPRESENTATION OF
THE GASTROINTESTINAL MICROBIOTA
Functional metagenomic screens have been successful in eluci-
dating novel genes encoding microbial antibiotic resistance, meta-
bolic machinery, and immune-modulatory elements. Despite their
demonstrable utility, functional metagenomic screens have several
important limitations. First, the DNA insert must be compatible
with the host’s expression machinery and the gene product must
be non-toxic and functional in the host (for an in-depth review, see
Uchiyama and Miyazaki, 2009). Second, the host must be suited
for the screen: when screening for antibiotic resistance genes, a
host sensitive to the antibiotic of interest must be chosen. Third,
the insert size may restrict the diversity of functions portrayed
in a screen; a small insert library cannot reveal the function of
genes organized in large operons such as many metabolic path-
ways or some efflux pumps associated with antibiotic resistance.
Finally, the expression level of the insert can significantly affect
the result of a functional screen. Using a high-copy plasmid as
vector or a strong synthetic promoter can result in an overesti-
mation of functionality. Conversely, overexpression of potentially
lethal proteins may cause underestimation of functional genes,
(e.g., cell lysis due to overexpression of efflux pumps). Despite
these limitations, multiple studies demonstrate the potential for
functional metagenomic screens to powerfully complement direct
culture, 16S sequencing, shotgun metagenomic sequencing, and
metabolomic analysis to offer new insight into the complex inter-
actions between microbial communities and their human hosts.
Used in concert, these techniques promise to expand our under-
standing of microbial community function, its impact on human
health, and to provide novel targets for therapeutic development
in the coming years.
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Antibiotic resistance genes are ubiquitous 
in bacterial communities throughout all 
environments1-3. When present in non-
pathogenic bacteria these genes can be 
considered as a resistance gene reservoir, 
commonly referred to as the resistome4. It 
has been shown that horizontal acquisition 
of resistance genes from such reservoirs 
represent an important contributor to novel 
antibiotic resistance determinants in human 
pathogens5. One particular environment 
believed to play a central role in the 
transfer of antibiotic resistance genes is 
wastewater treatment plants (WWTPs)6,7. 
In these facilities a mixture of resistant 
and pathogenic bacteria, originating from 
many diverse sources such as hospitals, 
households and animal production farms, 
can interact and exchange genetic material . 
However, the overall impact of the resistance 
reservoir in WWTPs on resistance in human 
pathogens is poorly understood. Using a 
combination of metagenomic functional 
selections and comprehensive sequencing 
we show that WWTPs contain a highly 
stable resistance gene reservoir that is 
shared among members of the WWTP 
communities and across different WWTP 
facilities. Surprisingly, we find that only 6 
of the 80 genes in this reservoir are shared 
with bacteria found outside the WWTPs. This 
suggests that there exists a dissemination 
barrier limiting the spread of resistance 

genes and that only a few genes are capable 
to crossing this barrier. 

Horizontal gene transfer is a major contributor 
to the emergence and dissemination of 
antibiotic resistance genes8. Investigations of 
environmental sources of antibiotic resistance 
genes have shown that many clinical relevant 
resistance genes such as the cephalosporin 
resistance gene family ctx-m and the van 
vancomycin resistance genes,have close 
homologous on the chromosomes of 
environmental non-pathogenic species5,6,9. This 
highlights that mobilization of environmental 
gene-reservoirs represents an important source 
of novel resistance genes. 
Of particular concern is the dissemination 
of antibiotic resistance genes in wastewater 
treatment plants7,10,11. These facilities daily 
receive hundreds of tons of wastewater from 
different sources, including hospital and animal 
farms where antibiotic consumption is high. 
Wastewater from these locations often contains 
antibiotics in concentrations high enough 
to select for resistance12-14. Accordingly, the 
microbe-dense WWTPs are viewed as the ideal 
hub for horizontal exchange of resistance genes 
between a wide range of bacterial species.

Several PCR based studies have shown that 
clinical relevant resistance genes, including 
tem1, ampC, ndm-1, vanA and ermB, can be 
found in WWTPs15-18. In addition, cultivation 
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based studies have shown that important 
resistant pathogens such as vancomycin-
resistant enterococci, methicillin-resistant 
staphylococci and cephalosporin-resistant 
enterobacteriaceae can be isolated from 
WWTPs17,19. Due to these findings, it is 
generally believed that WWTPs are a hot-spot 
for emergence and transfer of novel resistance 
genes7,10 . However, because this conclusion 
is based on studies relying on PCR based 
screening and cultivation, these findings are 
expected to be biased by sequence specificity 
and cultivation conditions, respectively. Thus, 
the magnitude of resistance gene exchange 
between the WWTP resistome and clinically 
relevant bacteria remains poorly understood. 
We combined functional metagenomic selection 
and metagenomic sequencing to fully investigate 
the WWTP antibiotic resistome. Compared to 
PCR and cultivation, functional metagenomic 
selection represents an unbiased approach to 
identifying genes with specific functions, and it 
has been used to identify resistance genes in 
several different environments2,20,21. By coupling 
this screening technique with high-throughput 
metagenomic sequencing, we are able to 
comprehensively investigate the overlap in 
resistome across different environments. 

We used functional metagenomic selection to 
screen an Escherichia coli expression library 
containing more than 0.8 Gb of DNA isolated 
from a large modern WWTP that receive both 
hospital and household wastewater. The 
library was screened on 15 different antibiotics 

representing seven chemical classes; beta-
lactam, aminoglycoside, macrolide, tetracycline, 
phenicol, rifamycin, sulphonamide and 
benzylpyrimidine (Table 1). Inserts conferring 
resistance were found for every antibiotic tested. 
In total 8540 resistant clones were identified 
with an average of 534 colonies per antibiotic 
ranging from 30 colonies for chloramphenicol to 
2000 clones for trimethoprim (Table 1). Of the 
8540 clones identified, the inserts of 749 clones, 
selected proportionally among the different 
classes of antibiotics, were sequenced resulting 
in 80 unique resistance genes (Extended Data 
Table 1). Rarefaction curve analysis indicated 
that the functional screening approach 
recovered most  of the antibiotic resistome 
within the cloned metagenome (Figure 1a). 

Inserts were annotated and we found that 
clones isolated on the same class of antibiotic 
displayed a high degree of conservation in 
their functional classification (Extended Data 
Table 1). Clones isolated on beta-lactam 
antibiotics were primarily classified as beta-
lactamases (86 % (21/24)), clones isolated 
on aminoglycosides were classified as 
aminoglycoside-transferases (phospho-, acetyl- 
or adenylyltransferases) (100 % (9/9)), clones 
isolated on macrolides were primarily classified 
as rRNA methyltransferases (63 % (5/8)), while 
clones isolated on rifampin were classified as 
ADP ribosyl transferases (83 % (5/6)) and clones 
selected on trimethoprim or sulfamethoxazole 
were classified as dihydrofolate reductases 
or thymidylate synthases (90 % (28/31)). For 

Antibiotic Concentration	
  
(µg/ml) Code Class Number of 

colonies
Ampicillin 16 AMP Beta-lactam / Penicillin 660
Amoxicillin 16 AMX Beta-lactam / Penicillin 500
Carbenicillin 64 CAR Beta-lactam / Penicillin 1100
Piperacillin 16 PIP Beta-lactam / Penicillin 800
Ceftazidime 1 CAZ Beta-lactam / Cephalosporin 350
Amikacin 16 AMK Aminoglycoside 220
Gentamicin 8 GEN Aminoglycoside 40
Spectinomycin 32 SPC Aminoglycoside 330
Azithromycin 16 AZI Macrolide 120
Erythromycin 100 ERY Macrolide 200
Tetracycline 4 TET Tetracycline 100
Chloramphenicol 6 CHL Phenicol 30
Rifampicin 16 RIF Rifamycin 210
Trimethoprim 4 TMP Benzylpyrimidine 2000

Sulfamethoxazole / 
Trimethoprim 32:4 SXT Sulfonamide / Benzylpyrimidine 1500

Total 8160

Table 1. Antibiotics used for functional metagenomic selection.
In total 15 different antibiotics were used, resulting in 8160 resistant colonies.
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tetracycline and chloramphenicol only one 
unique gene was identified, a tetracycline efflux-
transporter protein and a chloramphenicol 
acetyltransferase, respectively. In all cases 
the expected resistance mechanism is well 
understood and except for rifampicin, the 
most abundant resistance functions identified 
represent the commonly found resistance 
mechanisms in clinical isolates12,22,23.

Knowing that the functionally selected resistance 
genes from the WWTP encode resistance 
proteins that are functionally equivalent to 
well-known resistance genes we wanted to 
investigate if they also shared high sequence 
identity with known sequences. Comparing the 
identified resistance genes against the genbank 
nucleotide database revealed that the identified 
ORFs had an average sequence similarity of 62 
% and that just 6 ORFs had a sequence identity 
greater than 95 % indicating that the vast 
majority of the functional selected resistance 
genes represent novel sequences (Figure 1b). 
In order to put this finding into perspective, we 
compared the nucleotide identity distribution of 
the WWTP resistome with functional selected 
resistance genes from other environments 
(Figure 1b). We reanalyzed online available 
functional selected resistance genes from the 
human gut and from soil2,20,21,24,25. We found, 
using the current genbank database, that the 
210 functionally selected resistance genes 

from the human gut had an average of 82 % 
identity to genes in genbank while the 70 genes 
from soil had 50 % average identity to genbank 
(Figure 1b). 
The low identity of functionally selected 
resistance genes from the WWTP and soil to 
genbank, compared to genes found in more 
established reservoirs such as the human gut, 
suggests that there is a limited flow of resistance 
genes between environmental gene reservoirs 
and the human gut. This observation is in line 
with a resent study of the shared antibiotic 
resistome of soil and human pathogens26.

To assess how geographical and temporal 
variations affected recovery of the WWTP 
resistance gene reservoir we sequenced 15 
metagenomes from five full scale WWTPs 
all located in Denmark (AAV, EGA, EJB, HJO 
and AAE). Two of the plants were sampled 
repeatedly over a two-year period and all plants, 
except AAE, received domestic as well as 
hospital wastewater (Extended Data Table 2).
Mapping of the WWTP metagenomic reads 
to the functionally selected resistance genes 
revealed that on average each sample 
contained 35 (44 %) of the functionally selected 
resistance genes (Figure 2a) . From AAV, the 
facility corresponding to the functional selected 
genes, we could map 64 (80 %)  of the selected 
genes and 33 (52 %) of these were present in 
four or more of the seven longitudinal samples 
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Figure 1. Functionally identified resistance genes
a) Assessment of sampling effort. In total 749 colonies was sequenced, resulting in 80 unique resistance genes comprising 
most of the cloned resistance genes.
b) Nucleotide identity distribution. The functional selected resistance genes were compared to the genbank database. On 
average the WWTP resistance genes had 62 % to genbank, in comparison functional selected resistance genes from the 
Human gut and Soil has an average identity of 82 % and 50 %, respectively.
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from this location (Figure 2a and b).  The 
common resistance reservoir shared between 
three or more of the five WWTPs contained 
40 (50 %) of the originally identified resistance 
genes, and 17 (21 %) of the genes were present 
in all WWTPs (Figure 2a and b) . This shows, 
that the WWTP resistome is shared and highly 
stable across different treatment facilities and 
sampling times.

In order to investigate if the resistance genes 
found in the WWTP core resistome were shared 
with metagenomes from different environments 
we mapped reads from online available 
metagenomes to the functionally selected 
resistance genes from the WWTPs. These 
auxiliary metagenomes contained sequences 
from the human gut, cow rumen, permafrost 
and aquifer . Interestingly, only 6 (7.5 % ) of 
the WWTP genes were sampled within these 
other metagenomes, confirming that the 
WWTP resistome is distinct from previously 
characterized environments (Figure 2a and c). 
All six genes  found in these other metagenomes 
had an identity greater than 95% to clinically 
relevant resistance genes, highlighting that 
a PCR based approach would successfully 
identify these genes. Rarefaction curve analysis 
showed that the small overlap between the 
environmental metagenomes and the WWTP 
resistome did not result from differences in 
sampling depth of the environments (Figure 3a). 

We wanted to investigate whether the 
functionally selected resistance genes were 
present in only one genetic background (i.e. a 
specific bacterial strain) or were disseminated 
between different genetic backgrounds in the 
WWTPs. By aligning metagenomic reads that 
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Figure 2. Mapping metagenomic reads to functional 
selected genes.
The metagenomes from 19 environments; 15 WWTP 
sample and 4 auxiliary environments were mapped to the 
functional selected resistance genes. a) On average each 
WWTP sample contained 35 of the 80 selected resistance 
genes while the auxiliary metagenomes on average only 
contained 4.
Normalized abundance of reads from WWTPs (a) and 
auxiliary (b) metagenomes that mapped with > 95 % 
identity to the functional selected resistance genes. The 
WWTP samples represent five different WWTPs, 58 (73 
%) of the functional selected genes were present in more 
than one WWTP. In contrast only 6 (8 %) of the resistance 
genes were also fount in auxiliary metagenomes.  



- 100 -

spanned the resistance gene region and the 
flanking regions we could identify variability 
in the flanking regions. Interestingly we found 
that the part of the reads that mapped to the 
resistance gene was highly conserved while 
the part that extended outside of the resistance 
gene were very diverse  (Figure 4a This figure 
is still under construction). This  reveals that 
the functionally selected resistance genes are 
widely shared among members of the bacterial 
WWTP communities . 

Integrating functional metagenomic selection 
with metagenomic sequencing represents 
a powerful approach to comprehensively 
map the shared functionality across different 
environments. 
Using this new approach we found that even 
though WWTPs contain many functional 
resistance genes, only few of these are also 
found outside the WWTP environment. This 
conclusion contrasts the general belief that 
WWTPs are a key source of resistance genes. 
Our findings suggest that mobilization, rather 
than functionality, is the main barrier preventing 
spread of resistance genes from environmental 
reservoirs into human pathogens. This 
conclusion is in line with a general theory of 
ecological niches as drivers of HGT27. However, 
whether certain microbial environments 
contribute more than others to the emergence 
of clinical relevant resistance genes still remains 
an open question.

 Materials and methods

Sampling 
A total of 15 activated sludge samples were 
collected over a period of two years from five 
different Danish WWTPs; Aalborg Vest (AAV), 
Aalborg East (AAE), Hjoerring (HJO), Ejby (EJB) 
and Egaa (EGA), with enhanced biological 
phosphorus removal (Extended Data Table 2). 

Metagenomic DNA extraction 
DNA was extracted using the FastDNA spin kit 
for soil (MP Biomedicals, USA) according to 
the manufacturer’s instructions except an initial 
phenol incubation step for 3 min at 90°C. Briefly, 
1 ml sample aliquots were centrifuged at 13.000 
rpm for 5 min and the supernatant discarded. 
The pellets were dissolved in 250 μl phosphate 
buffer and transferred to the FastDNA bead 
beating tubes. Next, 750 μl preheated phenol 
was added to each tube (Biological grade, 
pH 8, 0.1M EDTA, Sigma-Aldrich) and the 
samples were incubated for 3 min at 90°C 
with occasional shaking. Subsequently, the 
samples were homogenized using the FastPrep 
instrument according to the manufacturer’s 
instructions and centrifuged at 13.000 rpm 
for 10 min to separate the phenol phase from 
aqueous phase. The DNA was extracted 
and further purified using the FastDNA kit 
according to the manufacturer’s instructions. 
DNA concentrations were measured using a 
Qubit (Life technologies) and DNA integrity was 
evaluated using gel electrophoresis. 
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Figure 3. Metagenomic sampling effort and 
gene recovery.
To investigate the effect of sampling depth 
on the recovery of the functional selected 
resistance genes from the metagenomes 
we conducted a rarefaction analysis of each 
metagenome. The WWTP corresponding 
to the functional selected sample (seed) 
was clearly under sampled. Generally the 
WWTP metagenomes generally seem to 
saturate at 5 x 108 reads. In contrast the 
auxiliary metagenomes saturate much earlier, 
highlighting that sampling effort cannot 
account for the low abundance of functional 
selected genes in these metagenomes. 
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Library construction	
DNA used for functional selection was sheared 
by Covaris E220 instrument (USA). In brief, 
200 μl DNA was added to a Covaris mini-tube 
and sheared according to Covaris shearing 
protocol for 2 kbp DNA fragments. Sheared 
DNA was end repaired using the End-It 
end repair kit (Epicentre) according to the 
manufacture’s instructions. End repaired DNA 
was size selected by low melting point agarose 
gel electrophoresis in 0.5X TBE buffer and 
fragments between 1-3 kbp DNA were extracted 
using using the QIAquick Gel Extraction Kit 
(Qiagen). The sheared DNA was blunt ligated 
into pZE21 MCS 1 vector at the HincII site using 
the Fast Link ligation kit (Epicenter) according 
to the manufactory’s instruction. Next, 3 μL of 
the fresh ligation mixture was electroporated 
into 50 μl electrocompetent E. coli TOP10 
cells (Invitrogen). Subsequently, the cells were 
recovered in 1 ml SOC medium for 1 h at 37 
°C. Libraries were titered by plating out 1 μL, 
0.1 μL and 0.01 μL of recovered cells onto LB 
agar plates containing 50 μg/mL kanamycin. 
For each library the insert size distribution was 
estimated by colony PCR products using primers 
flanking the HincII site of the multiple cloning 
site of the pZE21 MCS1 vector. The average 
insert size was found to be 2.07 kbp. The total 
metagenomic library size was estimated to 
828 Mbp by multiplying average PCR based 
insert size with the number of colony forming 
units (cfu). The remaining recovered cells were 
grown overnight in 10 ml LB containing 50 μg/
ml kanamycin. The overnight culture was stored 
in 15 % glycerol at -80 °C.

Functional selections of antibiotic resistant 
clones 
For each metagenomic and genomic library 
tested, 100 μL of library freezer stock 
corresponding to 0.5 x 107 cfu were plated out on 
LB agar plates containing binary combinations 
of kanamycin (50 μg/mL) and one of 15 different 
antibiotics (Table 1) and incubated at 37 °C for 
16 hrs.
To enable functional selections for resistance to 
multiple compounds, the transformed cells were 
allowed to grow up overnight before freezing 
stocks, allowing each clone harboring a unique 
DNA insert to grow, resulting in an amplification 
of the particular clone in the library. Based on 
the original library titers as well as titers of the 
freezer stocks, the average amplification of 

a given library can be estimated. On average 
each unique clone in the libraries screened was 
plated out in 10-100 copies depending on library 
size, corresponding to 10-100 fold amplification. 
To minimize the redundancy of clones in 
subsequent analysis, on average the number of 
colonies picked for sequencing corresponded to 
approximately the number of resistant clones on 
an agar plate divided by the estimated average 
library amplification (Sommer et al., 2009).
Each of the clones picked was inoculated into 
96 deep well plates containing liquid LB medium 
supplemented with kanamycin (50 μg/mL) and 
the relevant antibiotic to which resistance had 
been selected (Table 1) and grown overnight to 
verify resistance phenotype.

Sequencing and analysis of functional 
metagenomic inserts 
Functional selected metagenomic inserts 
harbored by clones were sequenced using 
Sanger sequencing. A total of 749 clones were 
sequenced unidirectional using the reverse 
primer. In 153 of these the resistance gene 
could not be annotated, consequently these 
were sequenced bi-directionally using the 
following primers:
>Forward primer_pZE21_81_104_57C
5’–GAA TTC ATT AAA GAG GAG AAA GGT-3’
>Reverse primer_pZE21_151_174rc_58C
5’– TTT CGT TTT ATT TGA TGC CTC TAG -3’
All reads (≥500 base pairs) obtained after 
reverse primer Sanger sequencing was 
assembled into contigs using CLC Main 
Workbench 6. The sequence from each contig 
corresponds to single clone containing unique 
insert. To get a full sequence of unique insert 
each single clone corresponds to respective 
contigs were sequenced with forward primer 
Sanger sequencing. The full insert sequence 
for each unique insert was obtained by merging 
the forward primer sequence reads and reverse 
primer sequence reads using EMBOSS:Merger 
server (bioinfo.nhri.org.tw/cgi-bin/emboss/
merger, used at MARCH 20, 2013). Open 
reading frames (ORFs) were identified and 
annotated using ORFfinder (http://www.ncbi.
nlm.nih.gov/projects/gorf/, used at April 20, 
2013). 
ORFs were annotated using tblastx, which 
computes local sequence alignment between 
the nucleotide query translated in all 6 frames 
and the GenBank non-redundant nucleotide 
database translated in all 6 frames (May 2013)
(Sommer et al., 2009). For each insert, the 
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genbank ID and the alignment coordinate for 
the top scoring tblastx hit was obtained. The 
top hit were inspected manually and expected 
resistance gene candidates were identified. 
Pairwise sequence alignments between the 
GenBank non-redundant nucleotide hit and 
the identified ORFs were computed using 
EMBOSS:Matcher and the percentage global 
identity was calculated by dividing the number 
of matches with the total query length plus 
possible gaps.

Metagenome by Illumina high-throughput 
sequencing 
Samples were prepared for sequencing using 
the Nextera DNA Sample Preparation Kits 
(Illumina Inc.) with 50 ng of DNA. The library 
DNA concentration was measured using the 
QuantIT kit (Molecular Probes) and paired-
end sequenced (2x151 bp) on an Illumina 
HiSeq2000 using the TruSeq PE Cluster 
Kit v3-cBot-HS and TruSeq SBS kit v.3-HS 
sequencing kit (Illumina Inc.). The sample AAV-
2012-3 was paired-end sequenced (2x301 bp) 
on the Illumina MiSeq platform using the MiSeq 
Reagents kit v2 (Illumina Inc.).

Illumina high-throughput sequencing quality 
filtering and data analysis 
Metagenome reads in fastq format were 
imported to CLC Genomics Workbench v. 5.5.1 
(CLC Bio) and trimmed using a minimum phred 
score of 20, a minimum length of 50 bp, allowing 
no ambiguous nucleotides and trimming off 
Illumina nextera sequencing adapters if found.
In addition, metagenome reads from four other 
environments (Human gut (ERS006497), 
Permafrost (), Cow Rumen (SRP004875) and 
an Aquafier () were downloaded from the NCBI 
SRA and used for comparison.
The trimmed metagenome reads were mapped 
to all antibiotic contigs using a minimum of 95% 
similarity and the number of reads hitting within 
the putative antibiotic gene were counted. All 
subsequent data analysis was conducted using 
R (http://www.r-project.org). 
The trimmed metagenome reads from the AAV-
5-10 sample were assembled using CLC’s de 
novo assembly algorithm, using a kmer of 63 
and a minimum scaffold length of 2 kbp.
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Highlights

•	 Antibiotic resistance genes exchanged between co-existing E.coli lineages in the gut
•	 Resistance genes spread and remain in gut microbiome without antibiotic selection 
•	 Extensive genome dynamics occur in E. coli lineages colonizing the gut microbiota

Summary
The human gut is one of the densest microbial 
ecosystems and is believed to play an important role 
in the exchange of antibiotic resistance genes.  We 
study the dynamics of co-existing Escherichia coli 
lineages in a longitudinally followed infant not receiving 
antibiotics. Using whole genome sequencing, we 
capture the exchange of multidrug resistance genes 
and identify a clinically relevant conjugative plasmid 
mediating the transfer. Quantification of the co-existing 
lineages reveals that the resistant transconjugant is 
maintained for months, demonstrating that antibiotic 
resistance genes disseminate and remain in the gut 
microbiome even in absence of antibiotic selection. 
Furthermore, we observe a large genomic deletion, 
as well as acquisition and loss of phages in these 
lineages during their colonization of the human gut. Our 
findings highlight the dynamic nature of the human gut 
microbiota and provide the first genomic description of 
antibiotic resistance gene transfer between bacteria in 
the unperturbed human gut.  

Introduction
Resistance to antibiotics is an ever-growing public 
health concern.  Antibiotic resistance in bacteria can 
either be achieved through mutation in the genome or 
via horizontal acquisition of foreign genetic material 
that confers resistance (Davies and Davies, 2010).  
While antibiotic resistance achieved through mutation 
is of significant importance during long term treatment 
of chronic infections (Yang et al, 2011), horizontal gene 
transfer plays a key role in the ever-growing problems 

with multidrug resistant human pathogens (Hawkey 
and Jones, 2009).
The environment is considered a reservoir of antibiotic 
resistance genes (D’Costa et al, 2006), and indirect 
evidence has shown that antibiotic resistance genes 
have disseminated from the environment to both 
commensal intestinal microbes and to clinical pathogens 
(Forsberg et al, 2012; Sommer et al, 2009).  In addition 
to the flow of genetic material from environmental 
reservoirs to humans, antibiotic resistance genes 
have also been suggested to spread between bacteria 
within the human microbiome (Sommer and Dantas, 
2011).  In the human intestine, this transfer would 
not only be between members of the commensal 
microbiota, but would also include non-commensal 
bacteria transiting through the intestine (Salyers et 
al, 2004).  While the gut microbiome has been the 
subject of numerous metagenomic studies (Forslund 
et al, 2013; Project, 2013; Qin et al, 2010), including 
a recent study constructing complete genomes of 
various species and strains from metagenomic data 
(Sharon et al, 2013), the use of metagenomics is not 
well-suited to detect horizontal gene transfer events 
between species or strains in the human gut.
Transfer of antibiotic resistance genes within the 
gut microbiota has been shown to occur in animals 
(McConnell et al, 1991), as well as in humans (Lester 
et al, 2006; Trobos et al, 2008).  These studies have 
directly demonstrated antibiotic resistance transfer 
between bacteria in the gut.  However, the studies 
set up an artificial scenario where the host is fed a 
strain that can donate antibiotic resistance genes to 
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the commensal microbiota.  A recipient strain or the 
commensal bacteria is subsequently monitored to 
detect if the antibiotic resistance genes have been 
transferred from the donor strain.   Despite employing 
an artificial experiment set-up, studies have started to 
elucidate factors known to influence transfer between 
bacteria.  For example, Stecher et al reported that 
pathogen-induced gut inflammation of lab mice gives 
rise to an environment where lineages of various 
Enterobacteriaceae species can bloom resulting 
in unprecedented rates of horizontal gene transfer 
between these bacteria (Stecher et al, 2012). 
A few instances of natural transfer of antibiotic 
resistance genes in the unperturbed human gut 
microbiota have been published in reports describing 
changes in the antibiotic resistance profiles of strains 
collected from infants undergoing antibiotic treatment 
(Bidet et al, 2005; Karami et al, 2007).  Additionally, 
one study demonstrates that extensive resistance 
gene exchange has occurred between species of 
Bacteroides in a collection of strains assembled over a 
period of 40 years (Shoemaker et al, 2001). However, 
full genomic data for strains exchanging antibiotic 
resistance genes in situ of the human gut has yet to be 
reported.  In this study, we characterize the transfer of 
antibiotic resistance between co-existing Escherichia 
coli lineages in the infant gut at the genomic level 
using whole genome sequencing.  

Results
E. coli lineage sampling
Our study material was selected from an infant 
enrolled in the ALLERGYFLORA study, which was 
designed to examine the link between the infant gut 
microbial colonization pattern and the development of 
allergies (Nowrouzian et al, 2005).   Faecal samples 
obtained over the course of the first year of life were 
serially diluted and cultured on a range of non-
selective and selective media, including media for 
Enterobacteriaceae selection.  Isolates resembling 
Enterobacteriaceae were selected from each positive 
culture based on differing colony morphology and 
size. The sensitivity threshold of the culture method 
was 102.5 colony-forming units (CFU) per gram 
of fecal matter (Nowrouzian et al, 2005), which is 
several orders of magnitude more sensitive than 
current metagenomic sequencing studies (Sharon et 
al, 2013). Isolates identified as E. coli by biotyping 
were initially assigned to specific lineages based on 
random amplification of polymorphic DNA (RAPD).  
The antibiotic resistance profile was determined for 
each isolate.  Interestingly, a change in the antibiotic 
resistance profile was detected in a set of consecutive 
isolates from one lineage colonizing one of the 
enrolled infants.  The set of E. coli lineages collected 
from this infant are the subject of this study, chosen 
to investigate the genome dynamics involved in the 
acquisition and persistence of antibiotic resistance.
E. coli isolates were obtained from the infant at two 

and four weeks, and at two, six and twelve months 
after birth (Figure 1).  In total, three distinct lineages 
were identified: A, B and C.  The sampling at two and 
four weeks after birth yielded only isolates belonging 
to lineage A, which were sensitive to all antibiotics
tested (Figure 1, Table S1). At the 2-month sampling 
time, lineage B was observed. Lineage B was resistant 
to the antibiotics ampicillin, piperacillin, streptomycin 
and sulfamethoxazole (Figure 1). At the two-month 
sampling time, the antibiotic resistance profile of lineage 
A changed. Lineage A was now resistant to ampicillin, 
piperacillin, streptomycin and sulfamethoxazole.  
Notably, the change in the resistance profile of lineage 
A at two months matches that of the incoming lineage B 
suggesting a transfer of resistance determinants from 
lineage B to A.  Lineages A and B were both present at 
the six months sampling time with no changes in the 
antibiotic resistance profile.  However, at the 12-month 
sampling time only lineage B was still present, with 
the addition of lineage C, which is only resistant to 
sulfamethoxazole (Figure 1).
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Isolates from the lineages A, B and C were genome 
sequenced from each of the sampling points.  In order 
to confirm lineage identities of the isolates, Illumina 
single-end reads were first assembled into contigs for 
each isolate.  Next, reads from all isolates were cross-
aligned to the assembled contigs of the other isolates 
and the number of SNPs between the isolates were 
counted to establish strain relationships (Table S2).  
The three lineages were apparent based on the low 
number of SNPs between isolates in each lineage. 
Interestingly, isolates from lineages A and C had an 
order of magnitude fewer SNPs between them than 
when compared to lineage B (approximately 5,000 
SNPs vs. 70,000 SNPs). Furthermore, lineage A and C 
shared 94.0% of the genomic content.   For subsequent 
analyses, contigs were assembled for each lineage by 

Figure 1.  Sampling and antibiotic resistance of the E. coli strains.
A total of three E. coli lineages were sampled from the infant’s 
intestinal microbiota over the course of the first year of life.  Circles 
indicate both the presence of the lineage at the sampling points, in 
addition to their antibiotic resistance profile to ampicillin (Amp), 
piperacillin (Pip), streptomycin (Str), and sulfamethoxazole (Sfx) at 
the time points.  Filled colored circles indicate resistant isolates, and 
non-filled circles indicate sensitive isolates (Table S1 for MICs).
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pooling reads together from all sampling points.  
Evolutionary relationships amongst the isolates within 
a lineage were established based on the number of 
SNPs identified by aligning reads from each isolate 
to the pooled lineage contigs (Table S3 for full list 
of SNPs).  SNPs occurring in non-genomic regions 
or in homologous regions after genomic deletions 
or acquisitions were filtered, as to not skew the 
relationships of the isolates in the lineages.  SNPs 
identified in isolates from both lineages A and B produce 
consistent phylogenetic trees and show a progression 
in the acquisition of SNPs (Figure 2).  In the A lineage, 
one SNP was identified between the two and four 
week isolates, and this SNP was again identified in all 
isolates of lineage A subsequently sampled.  Similarly, 
lineage B had two SNPs propagated to all isolates 
subsequently obtained after the initial SNP detection.  
The consistent phylogenetic tree and the progression 
of SNPs indicate that the isolates sampled are 
representative clones for both the A and B lineages.
To get further information about the isolated lineages 
we compared the isolates to previously sequenced E. 
coli genomes found in the NCBI reference sequence 
database, based on genomic content in common and 
number of SNPs.  Lineage A had 93.2% genomic 
content in common with the asymptomatic bacteriuria 
(ABU) strain, ABU 83972 (NC_017631.1) (Zdziarski et 
al, 2010). ABU 83972 was also the closest previously 
sequenced strain to lineage C as well, sharing 91.5% 
genomic content.  The ABU 83972 strain, which is 
closely related to the pathogenic CFT073 E. coli strain, 
has been reported to show a tendency to evolve toward 
commensalism from virulence during asymptomatic 
colonization of the bladder via the loss of gene 
function (Zdziarski et al, 2010).  Lineage B shared 
95.4% genomic content with UMN026 (NC_011751.1), 
an extra-intestinal pathogenic strain (Touchon et al, 
2009).  The UMN026 strain belongs to clonal group 
A, which is a globally spread uropathogenic clone 
that frequently carry multiple antibiotic resistance 
determinants (Lescat et al, 2009).

Lineage genome dynamics
By examining the changes in the isolates collected from 
a lineage, we observed that the lineages were highly 
dynamic.  Genome dynamics included acquisition of 
antibiotic resistance, a major genomic deletion, and 
phage infections (Figure 3A).
To identify the genomic changes underlying the 
acquisition of antibiotic resistance in lineage A, 
sequence data collected from the sensitive isolates 
(2 and 4 weeks) was compared to sequence 
data from the resistant isolates (2 and 6 months). 
Two non-conservative genomic mutations in the 
betaine aldehyde dehydrogenase (betB) and 
phosphoenolpyruvate carboxylase (pckA) genes were 
identified, however, these would not be expected to 
contribute to antibiotic resistance. Instead, additional 

genetic information totaling 90kb was found in the 
resistant isolates from the A lineage that were collected 
at the two and six month sampling points compared to 
the A lineage isolates from the 2 and 4 week time points 
(Figure 1).  The read coverage of the newly acquired 
genetic information had 2.0 times greater coverage 
compared to that of the genome, suggesting that a 
newly acquired low-copy number plasmid harbored 
the antibiotic resistance determinants. This putative 
plasmid contained conjugative transfer genes (trb, tra 
and pil operons).  Additionally, the putative plasmid 
contained a beta-lactamase (blaTEM-1c), which has 
been reported to confer resistance to penicillins, 
including ampicillin (Livermore, 1995). The TEM-1 beta-
lactamases are widely disseminated amongst several 
different pathogens including E. coli, Haemophilus 
influenzae and Neisseria gonorrhoeae (Livermore, 
1995).  Furthermore, two genes, aminoglycoside 
3’-phosphotransferase (strA) and streptomycin 
phosphotransferase (strB), known to mediate 
resistance to streptomycin and other aminoglycosides 
were identified, the latter being widely disseminated on 
a broad host range plasmid (Ramirez and Tolmasky, 
2010).  Lastly, a dihydropteroate synthase gene (sul2) 
was found in the putative plasmid. The sul2 gene is 
known to mediate resistance to sulfonamides and is 
also frequently found in clinical isolates (Sköld, 2000). 
Searching sequence databases for similar plasmids 
yielded the clinically important conjugative, IncI1-
type pHUSEC41-1 plasmid of 91,942bp (Kunne et 
al, 2012).  Aligning contigs from the isolates in this 
study to pHUSEC41-1 resulted in 99.3% coverage of 
the plasmid with an average of 99.0% identity.  The 
alignment also showed that there were no insertions 
in the transferred plasmid compared to pHUSEC41-1. 
The pHUSEC41-1 plasmid was initially identified in the 
E. coli serotype O104:H4 strain HUSEC41 isolated 
from a child in Germany with hemolytic-uremic 
syndrome (HUS) (Kunne et al, 2012).  The plasmid 

Figure 2. Phylogenetic tree of the isolates.
Phylogenetic trees based on the number of SNPs found in each of 
the isolates of lineages A and B.  The grey value next to each branch 
indicates the number of SNPs between isolates.
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has additionally been found in other sequenced E. coli 
isolates of serotype O104:H4 isolated from patients in 
France with sporadic cases of HUS (Grad et al, 2013).  
Here, the plasmid was found in E. coli strains of 
serotypes O73: K-:H18 and O179: K12:H- isolated from 
a Swedish infant, highlighting the wide dissemination 
of this multiple antibiotic resistance plasmid amongst 
various E. coli lineages.
The phenotypic resistance patterns (Figure 1) 
suggested that the horizontally acquired resistance 
was transferred from strain B to strain A. To assess this 
we analyzed strain B to see if it contained the acquired 
genetic information of strain A.   Aligning reads from 
strain B to the acquired genetic information of strain 
A resulted in coverage of 100% of the new genetic 
information with only one identified SNP variant 
(Figure 3B).   The high-degree of identity between the 
plasmids and the change in the antibiotic resistance 
profile of strain A to match the profile of strain B is 
consistent with strain B transferring its antibiotic 
resistance plasmid to strain A.  
Interestingly, a large deletion was detected in the 
A lineage at the six-month sampling point, i.e. after 
acquisition of the resistance plasmid.  The lost 

contigs, totaling 83kb, aligned to a contiguous region 
in a similar, sequenced strain, E. coli CFT 073 (Figure 
3C) (NC_004431).  The ABU 83972 strain, which has 
high homology to the CFT 073 strain, was not used 
due to a documented prophage integrated in this 
region (Zdziarski et al, 2010).  Using the alignment 
information, PCR assays were conducted to establish 
that the deletion was an excision (Figures 3C, S1).  
Annotated genes located in the deleted segment 
included iron scavenging genes, such as the iroA gene 
cluster and the hemolysin activator protein, peptide 
antibiotic genes microcin H47 and colicin-E1, which 
target gram-negative bacteria in general and E. coli 
specifically, respectively, and antigen 43, which may 
have a role in adhesion (Selkrig et al, 2012).  Lastly, 
genes involved in fatty-acid synthesis, carbohydrate 
and amino acid metabolism were also lost as a result 
of the deletion (Table S4 for complete list).
Furthermore, phage content varied in the lineages 
across sampling time points, in addition to the several 
stably integrated phages.  At the 6-month sampling 
time, a phage bloom had occurred where both strains 
A and B were infected by phages (Figure 3A).  Strain 
A was infected by a 27.1 kilobase (kb) Lambda-like 

Figure 3. Lineage genome dynamics.
A. Overview of lineage genome dynamics.  The transfer of a multidrug resistance plasmid from the B lineage to the A lineage occurred before 
the 2 month sampling time.  The transfer occurred before diversification of the A lineage.   At the 6 month sampling point, a bcep-mu like phage 
infecting the B lineage was detected.  In addition, both the A and B lineages were infected by lambda-like phages at this time point.  A large 
genomic deletion occurred in the A lineage after the 2 month but before the 6 month sampling point, as detected in the isolate obtained from the 
6 month sample.  No isolates of lineage A were obtained at the final sampling time at 12 months, but a new isolate from lineage C is sampled along 
with lineage B. 
B. Transfer of a plasmid mediating antibiotic resistance.
Contigs corresponding to the newly acquired plasmid were identified by analyzing differences in the read alignment coverage before and after the 
change in the resistance profile. Reads from lineage B are mapped to the acquired plasmid contigs of A, displaying coverage depth.  High coverage 
and identity between the strains was observed.  The acquired plasmid contigs of A were aligned to the sequence of pHUSEC41-1. 
C. Large deletion in the genome of lineage A.  Contigs from strain A were aligned to reference genome CFT073.  Dark grey colored contigs 
represent regions flanking the excision.  Pale colored contigs represent the region lost due to the deletion.  Arrows indicate the position of the 
primers designed based on the CFT073 genome used to confirm the genomic excision.
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phage, while strain B was infected by two phages: a 
different Lambda-like phage of 22.5kb, and a Bcepmu-
like phage of 40.9kb.  Notably, the Bcepmu-like phage 
infecting the B lineage had very high similarity to an 
integrated phage in the genome of the A lineage (at 
least 99.9% similarity covering 97.7%), meaning 
that the B lineage had just acquired an extra 40kb of 
genetic material on par with the A lineage.  However, 
the phage likely did not originate from the A lineage 
due to the differences in both sequence and structure 
in one region.  The integration of several phages at this 
time point comprising more than 90kb highlights how 
phages play a vital role in horizontal gene transfer.  
Interestingly, the phages that infected the lineages 
were not detected in any isolates collected at the later 
sampling time (12 months), suggesting that they did 
not fully establish in the population. 

E. coli lineage population counts in relation to genome 
dynamics.
To investigate whether the various genomic events 
occurring in the E. coli lineages possibly affected 
their fitness in the gut microbiota, we examined the 
population counts of lineages A and B at the different 
sampling points (Figure 4).  In general, population 
numbers of E. coli decrease in the gut of infants over 
the first year of life, in parallel with the establishment 
of a microbiota dominated by anaerobic bacteria  
(Nowrouzian et al, 2003).   
Interestingly, the acquisition of the resistance plasmid 
in lineage A was associated with a very steep drop in 
population counts, from 1010.2 CFU per gram of fecal 
matter in the 4 week sample to 107.8 per gram in the 2 
month sample.  This could possibly relate to a fitness 
cost imposed on lineage A from carrying the resistance 
plasmid. This possibility was further supported by 
pair-wise in vitro growth competition experiments 
comparing the growth of a lineage A isolate from the 
4 week sampling, before acquisition of the plasmid, 
and a lineage A isolate from the 2 month sampling, 
after acquisition of the plasmid.  In these experiments 
carriage of the plasmid incurred a cost of −6.3% +/- 
1.9% per generation on lineage A.  However, despite 
the fitness costs the lineage persisted in the gut for 
at least another 4 months, and even increased in 
numbers during this time.  
At the 2 month sampling time, when lineage B was 
first sampled, lineages A and B had roughly the same 
population counts, 107.8 and 107.7 CFU/g, respectively.  
At the 6 month sampling time, the population counts 
of lineage A were several times higher than the counts 
of lineage B (108.7 versus 108.0 CFU/g,) and had also 
increased competitive advantage.

Discussion
The human gut, as a hub for horizontal gene exchange, 
is expected to play an important role in the exchange 
of antibiotic resistance genes.  Yet to our knowledge, 

there are no prior reports documenting horizontal gene 
exchange events at the genomic level between bacteria 
in the unperturbed human gut.  Here, by genome 
sequencing a collection of co-existing E. coli strains, 
we describe several cases of horizontal gene transfer 
mediated by both integrative phages and conjugative 
plasmids. The substantial genome dynamics captured 
in this study highlight the highly dynamic nature of the 
gut microbiota. 
Specifically, we document at the genomic level 
transfer of a multiple drug resistance plasmid between 
co-existing bacterial lineages in the human gut. 
Notably, the transfer occurred in the gut of an infant 
not treated with antibiotics.  This provides compelling 
evidence to support the idea of the human gut serving 
as a hotspot for horizontal resistance gene exchange 
even in absence of selective pressure from antibiotics.  
Furthermore, the A lineage persisted in the infant 
gut for months after acquisition of the resistance 
plasmid.  The fact that the transconjugant survived 
and even increased its population counts highlights 
that resistance genes might easily disseminate also in 
healthy individuals never treated with antibiotics.
  We also identify the entire mobile genetic element 

Figure 4. Population counts of co-existing E. coli lineages
Faecal population counts of E. coli lineages A, B and C at different 
sampling points during the first year of life of the infant studied. For 
comparison, the mean population levels and +/- 1 and 2 standard 
deviations (SD) at the same sampling points for 272 E. coli strains 
isolated from 128 infants in the ALLERGYFLORA cohort are indicated 
in the figure. 
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responsible for this horizontal gene transfer and 
discover that it is closely related to the clinically 
relevant multidrug resistance plasmid pHUSEC41-1. 
This study highlights the advantages of studying the 
longitudinal dynamics of co-existing bacterial lineages 
in the gut microbiota as a complement to metagenomic 
sequencing studies. The power of this approach 
is expected to increase as cultivation methods for 
representatively sampling the gut microbiota further 
improves and we anticipate that further studies 
augmenting metagenomic sequencing with genomic 
sequencing will provide a richer and more detailed 
view of the highly dynamic nature of strains in the 
human gut microbiota.

Experimental Procedures
Strain Isolation.  Fecal samples were placed in airtight 
containers with an anaerobic sachet (AnaeroGen 
Compact, Oxoid Ltd, Basingstoke, UK) and refrigerated 
until brought to the lab, where they were serially diluted 
and cultivated within 24 hours on Drigalski medium 
for the isolation of Enterobacteriaceae.  Colony types 
were selected based on size, shape, color or texture, 
and speciated using API 20E biotyping (API Systems, 
SA, La Balme les Grottes, Montalieu-Vercieu, France 
). Each morphotype was enumerated separately, and 
the limit of detection was 102.5 CFU/g fecal matter. 
Isolates identified as E. coli were initially typed to the 
strain level using random amplification of polymorphic 
DNA (RAPD) (Nowrouzian et al, 2003) and strain 
identity was confirmed by performing pulse field gel 
electrophoresis (PFGE), prior to genomic sequence 
verification. 

Minimum Inhibitory Concentration (MIC) determination. 
MIC determination was performed in 96 well micro-
titer plates. Each drug gradient consisted of 11 points 
in a two-fold dilution series prepared in MHBII (Sigma) 
medium with a total of 150 µl in each well. The MIC 
plates were inoculated with approximately 105 cells 
per well using a 96-pin replicator. The plates were 
incubated at 37oC for 18 – 20 hours and the optical 
density (OD) at 600 nm was read on a BioTek Epoch 
plate reader.

Genome Sequencing. 
Genomic DNA from each isolate was obtained 
using an UltraClean® Microbial DNA Isolation Kit 
(Mobio Laboratories, Inc.).  The extracted DNA was 
sheared into 200bp fragments using a Covaris E210 
and barcoded libraries were constructed for Illumina 
sequencing and performed by Partners HealthCare 
Center for Personalized Genetic Medicine (Cambridge, 
Massachusetts).  Single-end reads were assembled 
using Velvet (Zerbino and Birney, 2008), with a 
k-mer size of 31 and a coverage cut-off of 3.  Contigs 
were corrected by aligning reads using Bowtie2 

(Langmead and Salzberg, 2012), calling single-
nucleotide polymorphisms (SNPs) using SAMtools 
(Li et al, 2009), and edited using custom biopython 
scripts (Cock et al, 2009).  Contigs with less than 500 
base pairs were filtered.  Genomes were annotated 
using the RAST server (Aziz et al, 2008).  Bowtie2 and 
SAMtools were also used to determine the number 
of SNPs between isolates.  In addition, BEDtools 
(Quinlan and Hall, 2010) was used to calculate read 
coverage across genomes and thus identify acquired 
or deleted genomic information.  MUMmer was used 
to align sequences (Khan et al, 2009). 

Phage Identification.  
The PHAST phage search tool server (Zhou et al, 
2011) was used to identify possible intact phages.  In 
addition, BLAST was used to identify similar previously 
described phages.

Genomic Deletion Verification.  
Based on the alignment of contigs to the genome of 
CFT 073 (NC_004431), primers were designed to 
show that the deletion was an excision, in addition to 
show contiguity prior to the deletion, as well as controls 
for showing the occurrence of the deletion only in the 
lineage A isolate sampled at 6 months.

Competition experiments.
To assess the fitness costs in vitro of carriage of the 
plasmid closely resembling pHUSEC41-1.  To assess 
fitness cost, pair-wise growth competition in Davis 
minimal medium with 25 mg/mL glucose (DM25) was 
performed using isolates of lineage A sampled at 2 
weeks and 2 months, respectively, the latter which had 
acquired the plasmid closely resembling pHUSEC41-1 
(Enne et al, 2004).
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Supplementary data 

Limited exchange of antibiotic resistance genes between 
wastewater treatment plants and human pathogens 
 
Extended Data Table 1 
 Resistance genes identified using metagenomic functional selections from WWTP. Gene ID 
is made up of the 2 or 3-letter code for the antibiotics used for the selections (e.g. CAR 
denotes Carbenicillin, For each gene identified, the most similar gene from any organism in 
GenBank was identified using tblastx). Global sequence identities at the nucleotide level were 
computed using EMBOSS:Stretcher. 
 

Antibiotics Gene ID Gene 

length 
(bp) 

Gene annotations Top hit 

[gbID|title|position] 

GPNI 

C
ar

be
ni

ci
lli

n 

 

CAR_01 507 Beta-lactamase JN559393.1|Pseudomonas 

aeruginosa |8651-9454 

 

56.1 

CAR_02 1005 Beta-lactamase FN640464.1|Uncultured 

bacterium lpxB gene for 

putative lipid-A-disaccharide 

synthase and bla gene for 

beta-lactamase class A, clone 

Ap6-8w|1523-2482 

55.9 

CAR_03 909 Beta-lactamase CP002859.1|Runella 

slithyformis DSM 

19594|5147053-5147949 

66.2 

CAR_04 798 NDM metallo-beta-

lactamase 

JN104597.1|E. coli strain 

EC405|115-927 

57.2 

CAR_05 861 Beta-lactamase JQ624676.1|Mammalian 

expression vector pSA95|4195-

5055 

100 

CAR_06 900 Beta-lactamase GU441460.1|E. coli strain R170 

plasmid pRZA92|3220-4125 

60 

CAR_07 480 Beta-lactamase CP000383.1|Cytophaga 

hutchinsonii ATCC 33406| 

2205559-2206377 

38.1 

CAR_08 825 OXA-2 beta-

lactamase 

JX846494.1|Pseudomonas 

aeruginosa strain Pa314 Class 

I integron OXA-2 like 

protein|109-909 

97.1 

CAR_09 882 Beta-lactamase CP000450.1|Beta-lactamase 80.7 
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Nitrosomonas eutropha C91| 

1096410-1097369 

 

 
P

ip
er

ac
ill

in
 

 
PIP_01 771 Beta-lactamase CP002961.1|Emticicia 

oligotrophica DSM 

17448|1889449-1890237 

 

57.7 

PIP_02 816 Beta-lactamase class 

D 

CP000383.1|Cytophaga 

hutchinsonii ATCC 33406| 

2205559-2206377 

62.6 

C
ef

ta
zi

di
m

e 

 

CAZ_01 759 Beta-lactamase CP002961.1|Emticicia 

oligotrophica DSM 

17448|870369-871124 

70.5 

CAZ_02 768 Beta-lactamase CP002961.1|Emticicia 

oligotrophica DSM 17448| 

870369-871124 

69.7 

CAZ_03 732 Metallo-beta-

lactamase 

FP476056.1|Zobellia 

galactanivorans| 970040-

970783 

58.1 

CAZ_04 768 Hypothetical protein CP003787.1|Riemerella 

anatipestifer RA-CH-1| 30846-

31760 

100 

 

 

 

   
   

   
   

   
   

   
   

 A
m

ox
ic

ill
in

 

 

  AMX_01      651 Beta-lactamase CP000356.1|Sphingopyxis 

alaskensis RB2256|2002725-

2003594 

80 

AMX_02 915 Beta-lactamase CP002859.1|Runella 

slithyformis DSM 

19594|5147053-5147949 

67.8 

AMX_03 975 Beta-lactamase CP001220.1|Comamonas 

testosteroni CNB-2|2966741-

2967490 

57.9 

AMX_04 762 Beta-lactamase CP000361.1|Arcobacter 

butzleri RM4018|1485957-

1486718 

81.2 

AMX_05 417 Beta-lactamase CP002859.1|Runella 

slithyformis DSM 

19594|5147053-5147949 

32.4 

AMX_06 915 Beta-lactamase like 

protein 

CP000248.1|Novosphingobium 

aromaticivorans DSM 

12444|1837704-1838573 

56.2 

AMX_07 858 Penicillin binding 

protein 

CP002961.1|Emticicia 

oligotrophica DSM 

62.9 
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transpeptidase 17448|2038928-2039734 

AMX_08 846 Beta-lactamase CP000269.1|Janthinobacterium 

sp. Marseille|647835-648734 

46.4 

 

   
   

A
m

pi
ci

lli
n 

 

AMP_01 1020 Beta-lactamase AP012047.1|Arcobacter 

butzleri ED-1 DNA|1416170-

1416931 

 

 

60.3 

    
   

   
   

   
   

   
   

   
   

  S
pe

ct
in

om
yc

in
 

 

SPC_01 792 Aminoglycoside 

adenylyltransferase 

JN849689.1|Uncultured 

bacterium plasmid 

pRSB113|6315-7106 

100 

SPC_02 1005 Spectinomyin 

phosphotransferase 

FN650140.1|Legionella 

longbeachae 

NSW150|1157668-1158690 

56.3 

SPC_03 801 Spectinomycin 

phosphotransferase 

FN650140.1|Legionella 

longbeachae 

NSW150|1157668-1158690 

26.9 

SPC_04 1014 Aminoglycoside -

(3'')(9)- 

adenylyltransferase 

FJ172373.1|Uncultured 

bacterium clone BF7_C6 class 

1 integron qacH and aadA 

genes|598-1443 

56.7 

SPC_05 1092 Aminoglycoside 

phosphotransferase 

CP001824.1|Sphaerobacter 

thermophilus DSM 20745| 

940698-941714 

50.7 

  

   
   

   
   

   
  

G
en

ta
m

yc
in

 

 

 

GEN_01 

 

636 

 

GCN5-like N-

acetyltransferase 

 

CP002447.1|Mesorhizobium 

ciceri biovar biserrulae 

WSM1271| 525402-525917 

 

 

59.3 

  

A
m

ik
ac

in
 

 

AMK_01 339 Aminoglycoside 6'-N-

acetyltransferase 

AY566824.1|Uncultured soil 

bacterium clone CR6 putative 

glucosamine-fructose-6-

phosphate aminotransferase 

gene, partial cds; 

aminoglycoside 6'-N-

acetyltransferase gene|249-797 

45.2 

AMK_02 567 Aminoglycoside 6'-N-

acetyltransferase 

AY566824.1|Uncultured soil 

bacterium clone CR6 putative 

glucosamine-fructose-6-

phosphate aminotransferase 

66.4 
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gene, partial cds; 

aminoglycoside 6'-N-

acetyltransferase gene|249-797 

AMK_03 501 Aminoglycoside 6'-N-

acetyltransferase 

AY566820.1|Uncultured soil 

bacterium clone 85C1 putative 

cation efflux family protein and 

aminoglycoside 6'-N-

acetyltransferase genes|354-

905 

 

 

65.9 

 C
hl

or
am

ph
en

ic
o

l    
   

   
   

 

   

 

 

CHL_01 

 

1428 

 

Chloramphenicol 

resistant protein 

 

KC176455.1|RNAi silencing 

vector pCAPD|3580-4239 

 

46.2 

 

 

 

    
   

   

Te
tra

cy
cl

in
e 

 

TET_01 1191 Putative tetracycline 

resistant protein 

CP003504.1|Enterococcus 

hirae ATCC 9790|2237403-

2238605 

54.1 

 

 

 

 

    
   

   
   

   
   

   
   

   
   

 A
zi

th
ro

m
yc

in
 

    

AZI_01 759 Ribosomal RNA 

adenine dimethylase 

family protein 

FR720602.1|Streptococcus 

oralis Uo5| 1839657-1840394 

96.8 

M_02 777 rRNA (adenine N-6-)-

methyltransferase 

CP001778.1|Stackebrandtia 

nassauensis DSM 44728| 

2735336-2736172 

53.9 

AZI_03 618 MscS 

mechanosensitive ion 

channel 

CP002084.1|Dehalogenimonas 

lykanthroporepellens BL-DC-

9|1509935-1510822 

40.5 

 

E
ry

th
ro

m
yc

in
 

 

ERM_01 399 Dimethyl adenine 

transferase 

CP001686.1|Kytococcus 

sedentarius DSM 20547| 

1860415-1861149 

35.3 

ERM_02 636 GTP binding protein 

Hflx 

CP002876.1|Nitrosomonas sp. 

Is79A3|1604493-1605845 

43.6 

ERM_03 438 rRNA(adenine N-6-)- 

methyltransferase 

CP001778.1|Stackebrandtia 

nassauensis DSM 44728| 

2735336-2736172 

31.8 

ERM_04 405 rRNA (adenine N-6-)-

methyltransferase 

CP003922.1|Streptococcus 

suis SC070731| 

53.1 
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715601-716338 

ERM_05 513 Macrolide-efflux 

protein 

EU870852.1|Streptococcus 

pyogenes strain 

MB56Spyo005|1-1227 

40.8 

 

 

 

 

 

Tr
im

et
ho

pr
im

 

              

        T
ri

m
et

ho
pr

im
 

   

TMP_01 306 Dihydrofolate 

reductase 

CP000267.1 |Rhodoferax 

ferrireducens T118| 3291945-

3292439 

 
 

40.7 

TMP_02 696 Thymidylate synthase CP002419.1 |Neisseria 

meningitidis G2136| 1675708-

1676502 

59.2 

TMP_03 408 Thymidylate synthase CP001681.1 |Pedobacter 

heparinus DSM 2366| 

1689195-1689680 

 

52 

TMP_04 489 Dihydrofolate 

reductase 

CP002046.1 |Croceibacter 

atlanticus HTCC2559| 

2891530-2892012 

57.1 

TMP_05 495 Dihydrofolate 

reductase 

CP000449.1 |Maricaulis maris 

MCS10| 2207968-2208489 

61 

TMP_06 501 Dihydrofolate 

reductase 

CP002691.1 

|Haliscomenobacter hydrossis 

DSM 1100| 4468410-4468913 

58.9 

TMP_07 489 Dihydrofolate 

reductase 

CP003178.1 |Niastella 

koreensis GR20-10| 5722263-

5722763 

61.8 

TMP_08 495 Putative 

oxidoreductase 

AP012337.1 |Caldilinea 

aerophila DSM 14535| 

4963388-4964050 

41.4 

TMP_09 468 Dihydrofolate 

reductase 

CP000089.1 |Dechloromonas 

aromatica RCB| 646778-

647269 

58.9 

TMP_10 537 Dihydrofolate 

reductase 

HE965806.1 |Bordetella 

bronchiseptica 253| 2778656-

2779153 

51.4 

TMP_11 432 Thymidylate synthase CP003418.1 |Ignavibacterium 

album JCM 16511|  2413030-

2413917 

76.4 
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TMP_12 510 

 

Dihydrofolate 

reductase 

CP002281.1 |Ilyobacter 

polytropus DSM 2926| 545109-

545585 

48.3 

TMP_13 762 dihydrofolate 

reductase 

CP001013.1 |Leptothrix 

cholodnii SP-6| 1345906-

1346406 

43.3 

TMP_14 480 Dihydrofolate 

reductase 

CR954246.1 

|Pseudoalteromonas 

haloplanktis str. TAC125 

|2808343-2808810 

54.4 

TMP_15 816 Thymidylate synthase CP002542.1 |Fluviicola 

taffensis DSM 16823| 960816-

961610 

70.4 

TMP_16 525 Dihydrofolate 

reductase 

CP001339.1 |Thioalkalivibrio 

sulfidophilus HL-

EbGr7|2890732-2891220 

58.2 

TMP_17 483 Dihydrofolate 

reductase 

CP001638.1|Geobacillus sp. 

WCH70|1654473-1654961 

55 

TMP_18 492 Dihydrofolate 

reductase 

CP000148.1 |Geobacter 

metallireducens GS-15| 

3337712-3338197 

60.8 

TMP_19 483 Dihydrofolate 

reductase 

CU207366.1 |Gramella forsetii 

KT0803| 328588-329070 

69.2 

TMP_20 753 Putative 

oxidoreductase 

AP012337.1 |Caldilinea 

aerophila DSM 14535| 

4963388-4964050 

48.3 

TMP_21 663 Bifunctional 

deaminase/reductase 

protein 

CP002040.1 |Nocardiopsis 

dassonvillei subsp. dassonvillei 

DSM 43111| 3369988-3370797 

39.6 

TMP_22 516 Dihydrofloate 

reductase 

CP000316.1 |Polaromonas sp. 

JS666| 1886763-1887257 

62.6 

TMP_23 525 Dihydrofloate 

reductase 

CP000747.1 

|Phenylobacterium zucineum 

HLK1| 902351-902869 

60.7 

TMP_24 531 Bifucntional 

dihydrofolate 

reductase-

thymidylate synthase 

XM_002512892.1| Ricinus 

communis|1-1587 

23.4 

TMP_25 495 Thymidylate synthase FQ859181.1 |Hyphomicrobium 

sp. MC1|3728475-3729269 

38.2 
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GPNI = Global percent nucleotide identity 
 

 

 

 

       

   
   

   
   

   
   

   
   

   
   

   
   

S
ul

fo
na

m
id

e 
 

        

SXT_01 795 Thymidylate synthase FO082820.1 |Rhizobium sp. 

str. NT-26|2040923-2041717 

71.9 

SXT_02 687 Thymidylate synthase CP000284.1 |Methylobacillus 

flagellatus KT| 953119-953913 

52.2 

SXT_03 444 Thymidylate synthase JF924881.1 |Uncultured 

bacterium clone tri1|390-794 

65.1 

SXT_04 525 Dihydrofolate 

reductase 

CP000747.1 

|Phenylobacterium zucineum 

HLK1|  902351-902869 

60.7 

 

SXT_05 

414 Thymidylate synthase HE774682.1 |Flavobacterium 

indicum GPTSA100-9| 562831-

563655 

33.5 

 

SXT_06 831 Thymidylate synthase CP000082.1 |Psychrobacter 

arcticus 273-4| 2477380-

2478282 

48.7 

SXT_07 483 Dihydrofolate 

reductase 

CU207366.1 |Gramella forsetii 

KT0803| 328588-329070 

69.2 

 

R
ifa

m
pi

ci
n 

             RIF_01 429 

 

 

Rifampin ADP-ribosyl 

transferase 

JX875536.1|Uncultured 

bacterium clone 

WGRif3028|3134-3583 

72.3 

 

 

RIF_02 582 Pentapeptide repeat 

protein 

CP002542.1|Fluviicola taffensis 

DSM 16823| 847426-847995 

59.1 

 

 

 

    RIF_03 426 Rifampin ADP-ribosyl 

transferase 

HE577629.1|Vibrio splendidus 

partial integrative and 

conjugative element 

ICEVspPor2| 7798-8245 

62.9 

RIF_04 744 Rifampin ADP-ribosyl 

transferase 

BA000045.2|Gloeobacter 

violaceus PCC 7421|4141456-

4141998 

55.7 

RIF_05 750 Rifampin ADP-ribosyl 

transferase 

FJ418586.4|Oscillatoria sp. 

PCC 6506 cylindrospermopsin| 

72 

RIF_06 447 Rifampin ADP-ribosyl 

transferase 

CP002859.1|Runella 

slithyformis DSM 19594| 

5150381-5150830 

74.9 
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Extended Data Table 2  
Sampling and sequencing depth for the 15 metagenomes. Aalborg Vest (AAV), Aalborg East 
(AAE), Hjoerring (HJO), Ejby (EJB) and Egaa (EGA). Quarter “5” refers to December. 
 

WWTPs Year Quarter Sequencing platform Trimmed reads 
(millions) 

AAV 2012 3 MiSeq, 2x301 29 
AAV 2012 2 HiSeq2000, 2x151 66 
AAV 2012 1 HiSeq2000, 2x151 59 
AAV 2011 4 HiSeq2000, 2x151 130 
AAV 2010 5 HiSeq2000, 2x151 1109 
AAV 2010 4 HiSeq2000, 2x151 24 
AAV 2010 2 HiSeq2000, 2x151 113 
AAE 2012 2 HiSeq2000, 2x151 151 
HJO 2011 4 HiSeq2000, 2x151 94 
EJB 2012 2 HiSeq2000, 2x151 91 
EJB 2011 4 HiSeq2000, 2x151 127 
EJB 2011 2 HiSeq2000, 2x151 90 
EGA 2012 2 HiSeq2000, 2x151 59 
EGA 2011 4 HiSeq2000, 2x151 137 
EGA 2011 2 HiSeq2000, 2x151 78 
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Supplemental Information  

Inventory: 

Table S1: Minimum Inhibitory Concentrations (MICs) of E. coli lineage isolates.  

Related to main Figure 1, “Sampling and antibiotic resistance of the E. coli 
strains.” 

Table S2: Genomic verification of E. coli lineage identities.  

Related to “E. coli  lineage sampling” section of paper to support assembling one 
set of contigs per E. coli lineage. 

Table S3: Identified SNPs in E. coli lineages A and B across time. 

Related to main Figure 2, “Phylogenetic tree of the isolates”, as the SNP data is 
used to generate the phylogenetic trees. 

Table S4:  List of Annotated Deleted Genes in Lineage A. 

Related to main Figure 3C, “Lineage genome dynamics - Large deletion in the 
genome of lineage A.”  This supplementary table lists the gene name annotations 
that were in the deleted region. 

Figure S1: Confirmation of excision deletion lineage A. 

Related to main Figure 3C, “Lineage genome dynamics - Large deletion in the 
genome of lineage A.”  The A panel of the figure shows the design of the PCR 
primers to verify the occurrence of the deletion and appropriate controls. The B 
panel of the figure shows the corresponding PCR products separated on a gel. 

 

  

Supplementary information

Transfer of multiple antibiotic resistance genes in situ of the infant gut micro-
biota
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Table S1. Minimum Inhibitory Concentrations of E. coli lineage isolates. 

Lineage Lineage A Lineage B Lineage 
C 

Sampling Time 2w 4w 2m 6m 2m 6m 12m 12m 
Antibiotic (ug/mL)         
Ampicillin 2 2 512 512 512 512 512 2 
Piperacillin 1 1 64 64 32 32 32 0.5 
Mecillinam 0.125 0.125 1 1 1 1 0.5 0.125 
Ceftazidime 0.25 0.25 0.25 0.25 0.0625 0.125 0.125 0.125 
Cefuroxime 8 8 8 8 2 4 2 2 
Cefoxitin 2 4 4 4 8 4 8 2 
Chloramphenicol 1 1 1 1 1 1 1 1 
Gentamycin 0.5 0.5 0.5 0.5 1 1 1 1 
Tobramycin 0.25 0.25 0.5 0.125 0.5 0.25 0.5 0.5 
Streptomycin 2 2 64 128 128 128 128 4 
Nalidixic Acid 1 1 1 1 1 0.5 1 0.5 
Tetracycline 0.5 0.5 0.5 0.5 1 1 0.5 1 
Trimethroprim 4 4 2 4 0.125 0 0.125 0.125 
Sulfamethoxazole 8 16 1024 1024 512 1024 1024 512 
 

 

Table S2. Genomic verification of E. coli lineage identities.  

 Contigs Used as Reference 

Lineage A Lineage B Lineage 
C 

2w 4w 2m 6m 2m 6m 12m 12m 

R
ea

ds
 A

lig
ne

d 
to

 
R

ef
er

en
ce

 C
on

tig
s 

A 

2w 0 1 4 34 78404 77641 78132 5709 
4w 4 0 4 44 78160 77406 77788 5735 
2m 4 3 0 22 78096 77369 77678 5649 
6m 12 9 16 0 77893 77053 77559 5372 

B 
2m 78314 68731 77415 76060 0 48 38 76376 
6m 78421 68893 77622 76157 58 0 73 76480 
12m 78359 68773 77455 76147 10 125 0 76355 

C 12m 5714 4728 5575 5450 77836 77044 77446 0 
 

Contigs were assembled from reads from each isolate (columns).  Then reads 
from all isolates were aligned to the assembled contigs from each isolate, and the 
number of SNPs enumerated (rows).  For example, there was 1 SNP when reads 
from the 2 week isolate from lineage A were aligned to the contigs from 4 week 
isolate from lineage A. 
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Table S3.  Identified SNPs in E. coli lineages A and B across time. 

	
  

Lineage A   SNP Annotation 
Contig Position Base in 

reference 
2
w 

4
w 

2
m 

6
m 

Start End Strand Gene Name Original 
Amino 
Acid 

Alternate 
Amino 
Acid 

2013A_NODE_149
_length_3031_cov_
88.721542 188 A    G 

      

2013A_NODE_149
_length_3031_cov_
88.721542 410 G    A 

      

2013A_NODE_154
_length_1161_cov_
75.563309 409 A    G 

      

2013A_NODE_15_l
ength_140483_cov
_65.503220 113786 T  C C C 

      

2013A_NODE_180
_length_75468_cov
_64.760590 28271 C    A 27193 28752 + 

Putative 
oxidoreductase 
subunit A	
   E	
  

2013A_NODE_26_l
ength_113048_cov
_61.368729 83882 G   A  83529 84140 + 

Formate 
hydrogenlyase 
subunit 2 P	
   P	
  

2013A_NODE_33_l
ength_347794_cov
_61.142704 219543 G    A 219217 219663 + 

Putative inner 
membrane protein Q	
   Q	
  

2013A_NODE_392
_length_545_cov_4
2.056881 331 T    C    

   

2013A_NODE_78_l
ength_48679_cov_
62.558968 28660 C   T  27455 30106 - 

Phosphoenolpyru
vate carboxylase  
(EC 4.1.1.31) V M 

2013A_NODE_8_le
ngth_41036_cov_5
9.454357 37903 A   C  37419 38891 + 

Betaine aldehyde 
dehydrogenase  
(EC 1.2.1.8) K T 

2013A_NODE_9_le
ngth_30547_cov_4
9.230759 30352 A    G 
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Lineage B   SNP Annotation 
Contig Position Base in 

reference 
2
m 

6
m 

12
m 

Start End Str
and 

Gene Name Orig. 
Amino 
Acid 

Alt. 
Amino 
Acid 

2013B_NODE_101
_length_90707_cov
_87.091919 71886 A   C 71308 72321 + 

FIG021952: putative 
membrane protein T T 

2013B_NODE_107
2_length_36437_co
v_89.532646 30658 T  A  30642 31139 + 

C-terminal domain of 
CinA type S L Q 

2013B_NODE_108
0_length_11379_co
v_61.034187 10791 T  A  10460 10804 - 

FIG00639301: 
hypothetical protein K I 

2013B_NODE_117
_length_21335_cov
_94.341034 14791 C  A A 14176 15462 + 

DamX, an inner 
membrane protein 
involved in bile 
resistance P T 

2013B_NODE_128
_length_60697_cov
_86.632339 24352 G   C 23271 25238 - 

FUSARIC ACID 
RESISTANCE 
PROTEIN FUSB / 
FUSARIC ACID 
RESISTANCE 
PROTEIN FUSC A G 

2013B_NODE_143
5_length_1638_cov
_86.649574 842 T   A 416 964 - 

Putative transporting 
ATPase E D 

2013B_NODE_177
_length_21153_cov
_93.690826 5021 C   T 4861 5193 + 

LSU ribosomal protein 
L22p (L17e) A V 

2013B_NODE_182
_length_44822_cov
_88.078667 7185 A   T 6422 7549 + 

N-succinyl-L2CL-
diaminopimelate 
desuccinylase (EC 
3.5.1.18) N I 

2013B_NODE_185
_length_42572_cov
_81.927017 33197 G   A 32668 33357 - 

D-Galactonate repressor 
DgoR A V 

2013B_NODE_262
_length_46086_cov
_82.565529 20849 G  A  20296 21306 - 

Alcohol dehydrogenase  
(EC 1.1.1.1) A V 

2013B_NODE_282
_length_58359_cov
_90.223686 37237 T  C  37199 38137 + 

LysR family 
transcriptional regulator 
lrhA L L 

2013B_NODE_343
_length_18910_cov
_70.166420 7016 A   T 6526 8442 + 

Chaperone protein 
DnaK E V 

2013B_NODE_350
_length_24378_cov
_81.994049 125 C   A       
2013B_NODE_39_l
ength_130930_cov
_86.418434 2925 C   T       
2013B_NODE_39_l
ength_130930_cov 56602 A  T  56431 57087 - Putative amidohydrolase H Q 
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_86.418434 

2013B_NODE_399
_length_5672_cov_
30.594675 691 T  A  155 703 + 

Type III secretion inner 
membrane protein 
(YscU,SpaS,EscU,HrcU,
SsaU, homologous to 
flagellar export 
components) N K 

2013B_NODE_419
_length_45352_cov
_85.486702 35483 A  T T 35020 36114 - 

Oligopeptide transport 
system permease 
protein OppB  
(TC 3.A.1.5.1) I N 

2013B_NODE_45_l
ength_26469_cov_
84.598854 23531 A   T       
2013B_NODE_472
_length_8834_cov_
90.308243 943 C  T  894 1847 + 

Iron(III) dicitrate 
transmembrane sensor 
protein FecR S F 

2013B_NODE_550
_length_43301_cov
_83.552345 21521 A  G        

2013B_NODE_963
_length_7960_cov_
87.411812 2701 A  C  2514 3449 + 

Dipeptide transport 
system permease 
protein DppB  
(TC 3.A.1.5.2) E A 
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Table S4.   List of Annotated Deleted Genes in Lineage A. 

Fatty Acid 
Synthesis 

(3R)-hydroxymyristoyl-[ACP] dehydratase (EC 4.2.1.-) 
3-hydroxydecanoyl-[ACP] dehydratase (EC 4.2.1.60) 
3-oxoacyl-[ACP] reductase (EC 1.1.1.100) 
3-oxoacyl-[ACP] synthase 
3-oxoacyl-[ACP] synthase (EC 2.3.1.41) FabV like 
Acyl carrier protein 
Acyl carrier protein (ACP1) 
FIG002571: 4-hydroxybenzoyl-CoA thioesterase domain 
protein 
FIG018329: 1-acyl-sn-glycerol-3-phosphate acyltransferase 
FIG143263: Glycosyl transferase / Lysophospholipid 
acyltransferase 
FIGfam138462: Acyl-CoA synthetase, AMP-(fatty) acid ligase 

Carbohydrate 
and Amino Acid 
Metabolism 

D-galactarate dehydratase (EC 4.2.1.42) 
D-galactarate dehydratase (EC 4.2.1.42) 
Tagatose-6-phosphate kinase AgaZ (EC 2.7.1.144) 
Putative O-methyltransferase 
Aspartate aminotransferase (EC 2.6.1.1) 
2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate 
synthase I alpha (EC 2.5.1.54) 

Iron Scavenging Glycosyltransferase IroB 
ABC transporter protein IroC 
Trilactone hydrolase IroD 
Periplasmic esterase IroE 
Outer Membrane Siderophore Receptor IroN 
Hemolysin activator protein precursor 
Putative large exoprotein involved in heme utilization or 
adhesion of ShlA/HecA/FhaA family 

Bacteriocins and 
Virulence 

antigen 43 precursor  
Colicin-E1*  
mannose-specific adhesin FimH  
Probable microcin H47 secretion/processing ATP-binding 
protein mchF (EC 3.4.22.-)  
MchC protein Putative F1C and S fimbrial switch Regulatory 
protein  
type 1 fimbrae adaptor subunit FimF  
type 1 fimbriae anchoring protein FimD  
type 1 fimbriae major subunit FimA  
type 1 fimbriae protein FimI2C unknown function  
YeeV toxin protein 

Other Transposase  
Transposase  
Transposase  
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Transposase  
Putative Transposase  
Mobile element protein  
Integrase IS2C phage, Tn: Transposon-related functions  
Putative metal chaperone, involved in Zn homeostasis, 
GTPase of COG0523 family  
entry exclusion protein 2  
membrane: Transport of small molecules: Cations  
FIG021862: membrane protein, exporter  
FIG027190: Putative transmembrane protein  
putative membrane protein  
putative membrane protein  
putative secretion permease  
putative regulatory protein  
NgrB  
tRNA-Arg-TCT 
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Figure S1. Confirmation of an excision deletion lineage A. 

	
  
A.  Schematic of PCR reactions that were designed to test whether the deletion 
that occurred in lineage A was an excision.  The schematic shows the positive 
controls, confirmation of contiguous regions, deletion and excision, for both ends 
of the deletion. 
B.  Images of gels of separated PCR reaction products.  Reactions for each end 
of the deletion and the contiguous region produced a product prior to the deletion.  
A PCR product using primers from the region flanking the deletion confirmed that 
the deletion was an excision. 
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