

Compositions and methods for modeling Saccharomyces cerevisiae metabolism

Palsson, Bernard; Famili, Imandokht; Fu, Pengcheng; Nielsen, Jens B.; Förster, Jochen

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

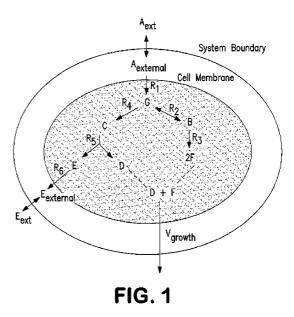
Link back to DTU Orbit

Citation (APA): Palsson, B., Famili, I., Fu, P., Nielsen, J. B., & Förster, J. (2012). Compositions and methods for modeling Saccharomyces cerevisiae metabolism. (Patent No. *WO03036296*).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.


- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

(19) Europäisches Patentamt European Patent Office Office européen des brevets	(11) EP 2 463 654 A1
(12) EUROPEAN PATE	ENT APPLICATION
(43) Date of publication: 13.06.2012 Bulletin 2012/24	(51) Int Cl.: G01N 33/48 ^(2006.01)
(21) Application number: 11182034.6	
(22) Date of filing: 24.10.2002	
 (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR (30) Priority: 02.10.2002 US 263901 26.10.2001 US 344447 P 	 Fu, Pengcheng Honolulu, HI 96822 (US) Nielsen, Jens B. Lyngby (DK) Forster, Jochen Lyngby (DK)
 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 02784306.9 / 1 438 580 	 (74) Representative: Hollywood, Jane Constance Kilburn & Strode LLP 20 Red Lion Street London WC1R 4PJ (GB)
 (71) Applicant: The Regents of The University of California Oakland, CA 94607-5200 (US) (72) Inventors: Palsson, Bernard O. 	<u>Remarks:</u> •This application was filed on 20-09-2011 as a divisional application to the application mentioned under INID code 62. •Claims filed after the date of filing of the application/
La Jolla, CA 92037 (US) • Famili, Imandokht San Diego, CA 92126 (US)	after the date of receipt of the divisional application (Rule 68(4) EPC).

(54) Compositions and methods for modeling saccharomyces cerevisiae metabolism

(57) The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention. The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica *S. cerevisiae* model and methods for determining a *S. cerevisiae* physiological function using a model of the invention.

Description

[0001] This invention was **made** with United States **Government support** under grant NIH RO1HL59234 awarded by the National Institutes of Health. The U.S. Government has certain rights in this invention.

5

10

20

BACKGROUND OF THE INVENTION

[0002] This invention relates generally to analysis of the activity of a chemical reaction network and, more specifically, to computational methods for simulating and predicting the activity of *Saccharomyces cerevisiae* (*S. cerevisiae*) reaction networks.

[0003] Saccharomyces cerevisiae is one of the best-studied microorganisms and in addition to its significant industrial importance it serves as a model organism for the study of eukaryotic cells (Winzeler et al. Science 285: 901-906 (1999)). Up to 30% of positionally cloned genes implicated in human disease have yeast homologs.

[0004] The first eukaryotic genome to be sequenced was that of *S. cerevisiae*, and about 6400 open reading frames (or genes) have been identified in the genome. *S. cerevisiae* was the subject of the first expression profiling experiments and a compendium of expression profiles for many different mutants and different growth conditions has been established. Furthermore, a protein-protein interaction network has been defined and used to study the interactions between a large number of yeast proteins.

[0005] *S. cerevisiae* is used industrially to produce fuel ethanol, technical ethanol, beer, wine, spirits and baker's yeast, and is used as a host for production of many pharmaceutical proteins (hormones and vaccines). Furthermore, *S. cerevisiae* is currently being exploited as a cell factory for many different bioproducts including insulin.

[0006] Genetic manipulations, as well as changes in various fermentation conditions, are being considered in an attempt to improve the yield of industrially important products made by *S. cerevisiae.* However, these approaches are currently not guided by a clear understanding of how a change in a particular parameter, or combination of parameters,

- ²⁵ is likely to affect cellular behavior, such as the growth of the organism, the production of the desired product or the production of unwanted by-products. It would be valuable to be able to predict how changes in fermentation conditions, such as an increase or decrease in the supply of oxygen or a media component, would affect cellular behavior and, therefore, fermentation performance. Likewise, before engineering the organism by addition or deletion of one or more genes, it would be useful to be able to predict how these changes would affect cellular behavior.
- 30 [0007] However, it is currently difficult to make these sorts of predictions for *S. cerevisiae* because of the complexity of the metabolic reaction network that is encoded by the *S. cerevisiae* genome. Even relatively minor changes in media composition can affect hundreds of components of this network such that potentially hundreds of variables are worthy of consideration in making a prediction of fermentation behavior. Similarly, due to the complexity of interactions in the network, mutation of even a single gene can have effects on multiple components of the network. Thus, there exists a
- ³⁵ need for a model that describes S. cerevisiae reaction networks, such as its metabolic network, which can be used to simulate many different aspects of the cellular behavior of S. cerevisiae under different conditions. The present invention satisfies this need, and provides related advantages as well.

SUMMARY OF THE INVENTION

40

[0008] The invention provides a computer readable medium or media, including: (a) a data structure relating a plurality of reactants in *S. cerevisiae* to a plurality of reactions in *S. cerevisiae*, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product, (b) a constraint set for the plurality of *S. cerevisiae*

⁴⁵ reactions, and (c) commands for determining at least one flux distribution that minimizes or maximizes an objective function when the constraint set is applied to the data representation, wherein at least one flux distribution is predictive of a physiological function of *S. cerevisiae*. In one embodiment, at least one of the cellular reactions in the data structure is annotated to indicate an associated gene and the computer readable medium or media further includes a gene database including information characterizing the associated gene. In another embodiment, at least one of the cellular

⁵⁰ reactions in the data structure is annotated with an assignment of function within a subsystem or a compartment within the cell.

[0009] The invention also provides a method for predicting physiological function of *S. cerevisiae*, including: (a) providing a data structure relating a plurality of *S. cerevisiae* to a plurality of *S. cerevisiae* reactions, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of

⁵⁵ the reaction and a stoichiometric coefficient relating the substrate and the product; (b) providing a constraint set for the plurality of *S. cerevisiae* reactions; (c) providing an objective function, and (d) determining at least one flux distribution that minimizes or maximizes the objective function when the constraint set is applied to the data structure, thereby predicting a *S. cerevisiae* physiological function. In one embodiment, at least one of the *S. cerevisiae* reactions in the

data structure is annotated to indicate an associated gene and the method predicts a *S. cerevisiae* physiological function related to the gene.

[0010] Also provided by the invention is a method for making a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions in a computer readable medium or media, including: (a) identifying a

- ⁵ plurality of *S. cerevisiae* reactions and a plurality of reactants that are substrates and products of the reactions; (b) relating the plurality of reactants to the plurality of reactions in a data structure, wherein each of the reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product; (c) determining a constraint set for the plurality of *S. cerevisiae* reactions; (d) providing an objective function; (e) determining at least one flux distribution that minimizes or maximizes the objective
- ¹⁰ function when the constraint set is applied to the data structure, and (f) if at least one flux distribution is not predictive of a physiological function of *S. cerevisiae*, then adding a reaction to or deleting a reaction from the data structure and repeating step (e), if at least one flux distribution is predictive of a physiological function of the eukaryotic cell, then storing the data structure in a computer readable medium or media. The invention further provides a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of reactions, wherein the data structure is produced by the
- 15 method.

20

BRIEF DESCRIPTION OF THE DRAWINGS

- [0011] Figure 1 shows a schematic representation of a hypothetical metabolic network.
- [0012] Figure 2 shows the stoichiometric matrix (S) for the hypothetical metabolic network shown in Figure 1.

[0013] Figure 3 shows mass balance constraints and flux constraints (reversibility constraints) that can be placed on the hypothetical metabolic network shown in Figure 1. (∞ , infinity; Y₁, uptake rate value)

- [0014] Figure 4 shows an exemplary metabolic reaction network in *S. cerevisiae*.
- [0015] Figure 5 shows a method for reconstruction of the metabolic network of *S. cerevisiae*. Based on the available ²⁵ information from the genome annotation, biochemical pathway databases, biochemistry textbooks and recent publications, a genome-scale metabolic network for *S. cerevisiae* was designed. Additional physiological constraints were considered and modeled, such as growth, non-growth dependent ATP requirements and biomass composition.
- [0016] Figure 6 shows a Phenotypic Phase Plane (PhPP) diagram for *S. cerevisiae* revealing a finite number of qualitatively distinct patterns of metabolic pathway utilization divided into discrete phases. The characteristics of these distinct phases are interpreted using ratios of shadow prices in the form of isoclines. The isoclines can be used to classify these phases into futile, single and dual substrate limitation and to define the line of optimality. The upper part of the figure shows a 3-dimensional *S. cerevisiae* Phase Plane diagram. The bottom part shows a 2-dimensional Phase Plane diagram with the line of optimality (LO) indicated.

[0017] Figure 7 shows the respiratory quotient (RQ) versus oxygen uptake rate (mmole/g-DW/hr) (upper left) on the

- ³⁵ line of optimality. The phenotypic phase plane (PhPP) illustrates that the predicted RQ is a constant of value 1.06 [0018] Figure 8 shows phases of metabolic phenotype associated with varying oxygen availability, from completely anaerobic fermentation to aerobic growth in *S. cerevisiae*. The glucose uptake rate was fixed under all conditions, and the resulting optimal biomass yield, as well as respiratory quotient, RQ, are indicated along with the output fluxes associated with four metabolic by-products: acetate, succinate, pyruvate, and ethanol.
- 40 [0019] Figure 9 shows anaerobic glucose limited continuous culture of *S. cerevisiae*. Figure 9 shows the utilization of glucose at varying dilution rates in anaerobic chemostat culture. The data-point at the dilution rate of 0.0 is extrapolated from the experimental results. The shaded area or the infeasible region contains a set of stoichiometric constraints that cannot be balanced simultaneously with growth demands. The model produces the optimal glucose uptake rate for a given growth rate on the line of optimal solution (indicated by Model (optimal)). Imposition of additional constraints drives
- the solution towards a region where more glucose is needed (i.e. region of alternative sub-optimal solution). At the optimal solution, the *in silico* model does not secrete pyruvate and acetate. The maximum difference between the model and the experimental points is 8% at the highest dilution rate. When the model is forced to produce these by-products at the experimental level (Model (forced)), the glucose uptake rate is increased and becomes closer to the experimental values. Figure 9B and 9C show the secretion rate of anaerobic by-products in chemostat culture. (q, secretion rate; D, dilution rate).
 - **[0020]** Figure 10 shows aerobic glucose-limited continuous culture of *S. cerevisiae in vivo* and *in silico.* Figure 10A shows biomass yield (Y_X) , and secretion rates of ethanol (Eth), and glycerol (Gly). Figure 10B shows CO₂ secretion rate (q_{CO2}) and respiratory quotient (RQ; *i.e.* q_{CO2}/q_{O2}) of the aerobic glucose-limited continuous culture of *S. cerevisiae.* (exp, experimental).
- 55

DETAILED DESCRIPTION OF THE INVENTION

[0021] The present invention provides an *in silico* model of the baker's and brewer's yeast, *S. cerevisiae*, that describes

the interconnections between the metabolic genes in the *S. cerevisiae* genome and their associated reactions and reactants. The model can be used to simulate different aspects of the cellular behavior of *S. cerevisiae* under different environmental and genetic conditions, thereby providing valuable information for industrial and research applications. An advantage of the model of the invention is that it provides a holistic approach to simulating and predicting the metabolic

⁵ activity of *S. cerevisiae.*

50

55

[0022] As an example, the *S. cerevisiae* metabolic model can be used to determine the optimal conditions for fermentation performance, such as for maximizing the yield of a specific industrially important enzyme. The model can also be used to calculate the range of cellular behaviors that *S. cerevisiae* can display as a function of variations in the activity of one gene or multiple genes. Thus, the model can be used to guide the organismal genetic makeup for a desired application. This ability to make predictions regarding cellular behavior as a consequence of altering specific parameters

- ¹⁰ application. This ability to make predictions regarding cellular behavior as a consequence of altering specific parameters will increase the speed and efficiency of industrial development of *S. cerevisiae* strains and conditions for their use. [0023] The *S. cerevisiae* metabolic model can also be used to predict or validate the assignment of particular biochemical reactions to the enzyme-encoding genes found in the genome, and to identify the presence of reactions or pathways not indicated by current genomic data. Thus, the model can be used to guide the research and discovery
- ¹⁵ process, potentially leading to the identification of new enzymes, medicines or metabolites of commercial importance. [0024] The models of the invention are based on a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactants, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product.
- 20 [0025] As used herein, the term "S. cerevisiae reaction" is intended to mean a conversion that consumes a substrate or forms a product that occurs in or by a viable strain of S. cerevisiae. The term can include a conversion that occurs due to the activity of one or more enzymes that are genetically encoded by a S. cerevisiae genome. The term can also include a conversion that occurs spontaneously in a S. cerevisiae cell. Conversions included in the term include, for example, changes in chemical composition such as those due to nucleophilic or electrophilic addition, nucleophilic or
- ²⁵ electrophilic substitution, elimination, isomerization, deamination, phosphorylation, methylation, glycolysation, reduction, oxidation or changes in location such as those that occur due to a transport reaction that moves a reactant within the same compartment or from one cellular compartment to another. In the case of a transport reaction, the substrate and product of the reaction can be chemically the same and the substrate and product can be differentiated according to location in a particular cellular compartment. Thus, a reaction that transports a chemically unchanged reactant from a
- 30 first compartment to a second compartment has as its substrate the reactant in the first compartment and as its product the reactant in the second compartment. It will be understood that when used in reference to an *in silico* model or data structure, a reaction is intended to be a representation of a chemical conversion that consumes a substrate or produces a product.
- [0026] As used herein, the term "S. cerevisiae reactant" is intended to mean a chemical that is a substrate or a product of a reaction that occurs in or by a viable strain of S. cerevisiae. The term can include substrates or products of reactions performed by one or more enzymes encoded by S. cerevisiae gene(s), reactions occurring in S. cerevisiae that are performed by one or more non-genetically encoded macromolecule, protein or enzyme, or reactions that occur spontaneously in a S. cerevisiae cell. Metabolites are understood to be reactants within the meaning of the term. It will be understood that when used in reference to an *in silico* model or data structure, a reactant is intended to be a representation of a chemical that is a substrate or a product of a reaction that occurs in or by a viable strain of S. cerevisiae.
- [0027] As used herein the term "substrate" is intended to mean a reactant that can be converted to one or more products by a reaction. The term can include, for example, a reactant that is to be chemically changed due to nucleophilic or electrophilic addition, nucleophilic or electrophilic substitution, elimination, isomerization, deamination, phosphorylation, methylation, reduction, oxidation or that is to change location such as by being transported across a membrane or to a different compartment.

[0028] As used herein, the term "product" is intended to mean a reactant that results from a reaction with one or more substrates. The term can include, for example, a reactant that has been chemically changed due to nucleophilic or electrophilic addition, nucleophilic or electrophilic substitution, elimination, isomerization, deamination, phosphorylation, methylation, reduction or oxidation or that has changed location such as by being transported across a membrane or to a different compartment.

[0029] As used herein, the term "stoichiometric coefficient" is intended to mean a numerical constant correlating the number of one or more reactants and the number of one or more products in a chemical reaction. Typically, the numbers are integers as they denote the number of molecules of each reactant in an elementally balanced chemical equation that describes the corresponding conversion. However, in some cases the numbers can take on non-integer values, for example, when used in a lumped reaction or to reflect empirical data.

[0030] As used herein, the term "plurality," when used in reference to *S. cerevisiae* reactions or reactants is intended to mean at least 2 reactions or reactants. The term can include any number of *S. cerevisiae* reactions or reactants in the range from 2 to the number of naturally occurring reactants or reactants for a particular strain of *S. cerevisiae*. Thus,

the term can include, for example, at least 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 600 or more reactions or reactants. The number of reactions or reactants can be expressed as a portion of the total number of naturally occurring reactions for a particular strain of *S. cerevisiae* such as at least 20%, 30%, 50%, 60%, 75%, 90%, 95% or 98% of the total number of naturally occurring reactions that occur in a particular strain of *S. cerevisiae*.

- ⁵ **[0031]** As used herein, the term "data structure" is intended to mean a physical or logical relationship among data elements, designed to support specific data manipulation functions. The term can include, for example, a list of data elements that can be added combined or otherwise manipulated such as a list of representations for reactions from which reactants can be related in a matrix or network. The term can also include a matrix that correlates data elements from two or more lists of information such as a matrix that correlates reactants to reactions. Information included in the
- term can represent, for example, a substrate or product of a chemical reaction, a chemical reaction relating one or more substrates to one or more products, a constraint placed on a reaction, or a stoichiometric coefficient.
 [0032] As used herein, the term "constraint" is intended to mean an upper or lower boundary for a reaction. A boundary can specify a minimum or maximum flow of mass, electrons or energy through a reaction. A boundary can further specify directionality of a reaction. A boundary can be a constant value such as zero, infinity, or a numerical value such as an
- integer and non-integer.
 [0033] As used herein, the term "activity," when used in reference to a reaction, is intended to mean the rate at which a product is produced or a substrate is consumed. The rate at which a product is produced or a substrate is consumed can also be referred to as the flux for the reaction.
- [0034] As used herein, the term "activity," when used in reference to *S. cerevisiae* is intended to mean the rate of a change from an initial state of *S. cerevisiae* to a final state of *S. cerevisiae*. The term can include, the rate at which a chemical is consumed or produced by *S. cerevisiae*, the rate of growth of *S. cerevisiae* or the rate at which energy or mass flow through a particular subset of reactions.

25

[0035] The invention provides a computer readable medium, having a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating

the substrate and the product **[0036]** The plurality of *S. cerevisiae* reactions can include reactions of a peripheral metabolic pathway. As used herein, the term "peripheral," when used in reference to a metabolic pathway, is intended to mean a metabolic pathway that includes one or more reactions that are not a part of a central metabolic pathway. As used herein, the term "central,"

³⁰ when used in reference to a metabolic pathway, is intended to mean a metabolic pathway selected from glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle and the electron transfer system (ETS), associated anapleurotic reactions, and pyruvate metabolism.

[0037] A plurality of *S. cerevisiae* reactants can be related to a plurality of *S. cerevisiae* reactions in any data structure that represents, for each reactant, the reactions by which it is consumed or produced. Thus, the data structure, which is referred to herein as a "reaction network data structure," serves as a representation of a biological reaction network or system. An example of a reaction network that can be represented in a reaction network data structure of the invention is the collection of reactions that constitute the metabolic reactions of *S. cerevisiae*.

[0038] The methods and models of the invention can be applied to any strain of *S. cerevisiae* including, for example, strain CEN.PK113.7D or any laboratory or production strain. A strain of *S. cerevisiae* can be identified according to classification criteria known in the art. Classification criteria include, for example, classical microbiological characteristics, such as those upon which taxonomic classification is traditionally based, or evolutionary distance as determined for example by comparing sequences from within the genomes of organisms, such as ribosome sequences.

[0039] The reactants to be used in a reaction network data structure of the invention can be obtained from or stored in a compound database. As used herein, the term "compound database" is intended to mean a computer readable medium or media containing a plurality of molecules that includes substrates and products of biological reactions. The plurality of molecules can include molecules found in multiple organisms, thereby constituting a universal compound database. Alternatively, the plurality of molecules can be limited to those that occur in a particular organism, thereby constituting an organism-specific compound database. Each reactant in a compound database can be identified according

- to the chemical species and the cellular compartment in which it is present. Thus, for example, a distinction can be made
 between glucose in the extracellular compartment versus glucose in the cytosol. Additionally each of the reactants can
 be specified as a metabolite of a primary or secondary metabolic pathway. Although identification of a reactant as a
 metabolite of a primary or secondary metabolic pathway does not indicate any chemical distinction between the reactants
 in a reaction, such a designation can assist in visual representations of large networks of reactions.
- **[0040]** As used herein, the term "compartment" is intended to mean a subdivided region containing at least one reactant, such that the reactant is separated from at least one other reactant in a second region. A subdivided region included in the term can be correlated with a subdivided region of a cell. Thus, a subdivided region included in the term can be, for example, the intracellular space of a cell; the extracellular space around a cell; the periplasmic space; the interior space of an organelle such as a mitochondrium, endoplasmic reticulum, Golgi apparatus, vacuole or nucleus;

or any subcellular space that is separated from another by a membrane or other physical barrier. Subdivided regions can also be made in order to create virtual boundaries in a reaction network that are not correlated with physical barriers. Virtual boundaries can be made for the purpose of segmenting the reactions in a network into different compartments or substructures.

- ⁵ **[0041]** As used herein, the term "substructure" is intended to mean a portion of the information in a data structure that is separated from other information in the data structure such that the portion of information can be separately manipulated or analyzed. The term can include portions subdivided according to a biological function including, for example, information relevant to a particular metabolic pathway such as an internal flux pathway, exchange flux pathway, central metabolic pathway, or secondary metabolic pathway. The term can include portions subdivided
- ¹⁰ according to computational or mathematical principles that allow for a particular type of analysis or manipulation of the data structure.

[0042] The reactions included in a reaction network data structure can be obtained from a metabolic reaction database that includes the substrates, products, and stoichiometry of a plurality of metabolic reactions of *S. cerevisiae*. The reactants in a reaction network data structure can be designated as either substrates or products of a particular reaction,

- ¹⁵ each with a stoichiometric coefficient assigned to it to describe the chemical conversion taking place in the reaction. Each reaction is also described as occurring in either a reversible or irreversible direction. Reversible reactions can either be represented as one reaction that operates in both the forward and reverse direction or be decomposed into two irreversible reactions, one corresponding to the forward reaction and the other corresponding to the backward reaction.
- 20 [0043] Reactions included in a reaction network data structure can include intra-system or exchange reactions. Intrasystem reactions are the chemically and electrically balanced interconversions of chemical species and transport processes, which serve to replenish or drain the relative amounts of certain metabolites. These intra-system reactions can be classified as either being transformations or translocations. A transformation is a reaction that contains distinct sets of compounds as substrates and products, while a translocation contains reactants located in different compartments.
- 25 Thus, a reaction that simply transports a metabolite from the extracellular environment to the cytosol, without changing its chemical composition is solely classified as a translocation, while a reaction such as the phosphotransferase system (PTS) which takes extracellular glucose and converts it into cytosolic glucose-6-phosphate is a translocation and a transformation.
- **[0044]** Exchange reactions are those which constitute sources and sinks, allowing the passage of metabolites into and out of a compartment or across a hypothetical system boundary. These reactions are included in a model for simulation purposes and represent the metabolic demands placed on *S. cerevisiae*. While they may be chemically balanced in certain cases, they are typically not balanced and can often have only a single substrate or product. As a matter of convention the exchange reactions are further classified into demand exchange and input/output exchange reactions.
- ³⁵ **[0045]** The metabolic demands placed on the *S. cerevisiae* metabolic reaction network can be readily determined from the dry weight composition of the cell which is available in the published literature or which can be determined experimentally. The uptake rates and maintenance requirements for *S. cerevisiae* can be determined by physiological experiments in which the uptake rate is determined by measuring the depletion of the substrate. The measurement of the biomass at each point can also be determined, in order to determine the uptake rate per unit biomass. The maintenance
- 40 requirements can be determined from a chemostat experiment. The glucose uptake rate is plotted versus the growth rate, and the y-intercept is interpreted as the non-growth associated maintenance requirements. The growth associated maintenance requirements are determined by fitting the model results to the experimentally determined points in the growth rate versus glucose uptake rate plot.
- [0046] Input/output exchange reactions are used to allow extracellular reactants to enter or exit the reaction network represented by a model of the invention. For each of the extracellular metabolites a corresponding input/output exchange reaction can be created. These reactions can either be irreversible or reversible with the metabolite indicated as a substrate with a stoichiometric coefficient of one and no products produced by the reaction. This particular convention is adopted to allow the reaction to take on a positive flux value (activity level) when the metabolite is being produced or removed from the reaction network and a negative flux value when the metabolite is being consumed or introduced into
- the reaction network. These reactions will be further constrained during the course of a simulation to specify exactly which metabolites are available to the cell and which can be excreted by the cell.
 [0047] A demand exchange reaction is always specified as an irreversible reaction containing at least one substrate. These reactions are typically formulated to represent the production of an intracellular metabolite by the metabolic network or the aggregate production of many reactants in balanced ratios such as in the representation of a reaction
- ⁵⁵ that leads to biomass formation, also referred to as growth. As set forth in the Examples, the biomass components to be produced for growth include L-Alanine, L-Arginine, L-Asparagine, L-Aspartate, L-Cysteine, L-Glutamine, L-Glutamate, Glycine, L-Histidine, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Phenylalanine, L-Proline, L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine, L-Valine, AMP, GMP, CMP, UMP, dAMP, dCMP, dTMP, dGMP, Glycogen, alpha,alpha-

Trehalose, Mannan, beta-D-Glucan, Triacylglycerol, Ergosterol, Zymosterol, Phosphatidate, Phosphatidylcholine, Phosphatidylethanolamine, Phosphatidyl-D-myo-inositol, Phosphatidylserine, ATP, Sulfate, ADP and Orthophosphate, with exemplary values shown in Table 1.

Table 1. Ce	ellularcompo	nents of <i>S. cerevisiae</i>	e(mmol/gDW).
ALA	0.459	CMP	0.05
ARG	0.161	dAMP	0.0036
ASN	0.102	dCMP	0-0024
ASP	0.297	dGMP	0.0024
CYS	0.007	DTMP	0.0036
GLU	0.302	TAGLY	0.007
GLN	0.105	ERGOST	0.0007
GLY	0.290	ZYMST	0.015
HIS	0.066	PA	0.0006
ILE	0.193	PINS	0.005
LEU	0.296	PS	0.002
LYS	0.286	PE	0.005
MET	0.051	PC	0.006
PHE	0.134	GLYCOGEN	0.519
PRO	0.165	TRE	0.023
SER	0.185	Mannan	0.809
THR	0.191	13GLUCAN	1.136
TRP	0.028	SLF	0.02
TYR	0.102	ATP	23.9166
VAL	0.265	ADP	23.9166
AMP	0.051	PI	23.9456
GMP	0.051	Biomass	1
UMP	0.067		

Table 1. Cellular components of S. cerevisiae (mmol/gDW)

40

45

5

10

15

20

25

30

35

[0048] A demand exchange reaction can be introduced for any metabolite in a model of the invention. Most commonly these reactions are introduced for metabolites that are required to be produced by the cell for the purposes of creating a new cell such as amino acids, nucleotides, phospholipids, and other biomass constituents, or metabolites that are to be produced for alternative purposes. Once these metabolites are identified, a demand exchange reaction that is irreversible and specifies the metabolite as a substrate with a stoichiometric coefficient of unity can be created. With these

specifications, if the reaction is active it leads to the net production of the metabolite by the system meeting potential production demands. Examples of processes that can be represented as a demand exchange reaction in a reaction network data structure and analyzed by the methods of the invention include, for example, production or secretion of an individual protein; production or secretion of an individual metabolite such as an amino acid, vitamin, nucleoside, antibiotic or surfactant; production of ATP for extraneous energy requiring processes such as locomotion; or formation of biomass constituents.

[0049] In addition to these demand exchange reactions that are placed on individual metabolites, demand exchange reactions that utilize multiple metabolites in defined stoichiometric ratios can be introduced. These reactions are referred to as aggregate demand exchange reactions. An example of an aggregate demand reaction is a reaction used to simulate

the concurrent growth demands or production requirements associated with cell growth that are placed on a cell, for example, by simulating the formation of multiple biomass constituents simultaneously at a particular cellular growth rate.
 [0050] A hypothetical reaction network is provided in Figure 1 to exemplify the above-described reactions and their interactions. The reactions can be represented in the exemplary data structure shown in Figure 2 as set forth below.

The reaction network, shown in Figure 1, includes intrasystem reactions that occur entirely within the compartment indicated by the shaded oval such as reversible reaction R_2 which acts on reactants B and G and reaction R_3 which converts one equivalent of B to two equivalents of F. The reaction network shown in Figure 1 also contains exchange reactions such as input/output exchange reactions A_{xt} and E_{xt} , and the demand exchange reaction, V_{growth} , which

- ⁵ represents growth in response to the one equivalent of D and one equivalent of F. Other intrasystem reactions include R₁ which is a translocation and transformation reaction that translocates reactant A into the compartment and transforms it to reactant G and reaction R₆ which is a transport reaction that translocates reactant E out of the compartment. [0051] A reaction network can be represented as a set of linear algebraic equations which can be presented as a stoichiometric matrix S, with S being an m x n matrix where m corresponds to the number of reactants or metabolites
- ¹⁰ and n corresponds to the number of reactions taking place in the network. An example of a stoichiometric matrix representing the reaction network of Figure 1 is shown in Figure 2. As shown in Figure 2, each column in the matrix corresponds to a particular reaction n, each row corresponds to a particular reactant m, and each S_{mn} element corresponds to the stoichiometric coefficient of the reactant m in the reaction denoted n. The stoichiometric matrix includes intra-system reactions such as R₂ and R₃ which are related to reactants that participate in the respective reactions according to a
- ¹⁵ stoichiometric coefficient having a sign indicative of whether the reactant is a substrate or product of the reaction and a value correlated with the number of equivalents of the reactant consumed or produced by the reaction. Exchange reactions such as -E_{xt} and -A_{xt} are similarly correlated with a stoichiometric coefficient. As exemplified by reactant E, the same compound can be treated separately as an internal reactant (E) and an external reactant (E_{externl}) such that an exchange reaction (R₆) exporting the compound is correlated by stoichiometric coefficients of -1 and 1, respectively.
- 20 However, because the compound is treated as a separate reactant by virtue of its compartmental location, a reaction, such as R₅, which produces the internal reactant (E) but does not act on the external reactant (E_{external}) is correlated by stoichiometric coefficients of 1 and 0, respectively. Demand reactions such as V_{growth} can also be included in the stoichiometric matrix being correlated with substrates by an appropriate stoichiometric coefficient.
- [0052] As set forth in further detail below, a stoichiometric matrix provides a convenient format for representing and analyzing a reaction network because it can be readily manipulated and used to compute network properties, for example, by using linear programming or general convex analysis. A reaction network data structure can take on a variety of formats so long as it is capable of relating reactants and reactions in the manner exemplified above for a stoichiometric matrix and in a manner that can be manipulated to determine an activity of one or more reactions using methods such as those exemplified below. Other examples of reaction network data structures that are useful in the invention include a connected graph, list of chemical reactions or a table of reaction equations.
- [0053] A reaction network data structure can be constructed to include all reactions that are involved in *S. cerevisiae* metabolism or any portion thereof. A portion of *S. cerevisiae* metabolic reactions that can be included in a reaction network data structure of the invention includes, for example, a central metabolic pathway such as glycolysis, the TCA cycle, the PPP or ETS; or a peripheral metabolic pathway such as amino acid biosynthesis, amino acid degradation,
- ³⁵ purine biosynthesis, pyrimidine biosynthesis, lipid biosynthesis, fatty acid metabolism, vitamin or cofactor biosynthesis, transport processes and alternative carbon source catabolism. Examples of individual pathways within the peripheral pathways are set forth in Table 2, including, for example, the cofactor biosynthesis pathways for quinone biosynthesis, riboflavin biosynthesis, folate biosynthesis, coenzyme A biosynthesis, NAD biosynthesis, biotin biosynthesis and thiamin biosynthesis.
- 40 [0054] Depending upon a particular application, a reaction network data structure can include a plurality of *S. cerevisiae* reactions including any or all of the reactions listed in Table 2. Exemplary reactions that can be included are those that are identified as being required to achieve a desired *S. cerevisiae* specific growth rate or activity including, for example, reactions identified as ACO1, CDC19, CIT1, DAL7, ENO1, FBA1, FDP1, FUM1, GND1, GDPM1, HXK1, ICL1, EDH1, IDH2, IDP1, IDP2, IDP3, KGD1, KGD2, LPD1, LSC1, LSC2, MDH1, MDH2, MDH3, MLS1, PDC1, PFK1, PFK2, PGI1,
- ⁴⁵ PGK1, PGM1, PGM2, PYC1, PYC2, PYK2, RKI1, RPE1, SOL1, TAL1, TDH1, TDH2, TDH3, TKL1, TPI1, ZWF1 in Table 2. Other reactions that can be included are those that are not described in the literature or genome annotation but can be identified during the course of iteratively developing a *S. cerevisiae* model of the invention including, for example, reactions identified as MET6_2, MNADC, MNADD1, MNADE, MNADF_1, MNADPHPS, MNADG1, MNADG2, MNADH, MNPT1.

50

5	Rxn Name	glk1_1 glk1_2 glk1_3	hxk1_1 hxk1_2	hxk13 hxk1_4	hxk2_1	hxk2_2 hxk2_3	hxk2_4	pgi1 pgi1_2 pgi1 3	pfk2 pfk1_1	pfk1_2	pfk1_3 fba1_1 tpi1	tdh1
10		GLC + ATP -> G6P + ADP MAN + ATP -> MAN6P + ADP bDGLC + ATP -> bDG6P + ADP	bDGLC + ATP -> G6P + ADP GLC + ATP -> G6P + ADP	MAN+ATP -> MAN6P+ADP ATP + FBU -> ADP + F6P	bDGLC+ATP->G6P+ADP	GLC + ATP -> G6P + ADP MAN + ATP -> MAN6P + ADP	• ADP + F6P	6P 6P	FDP + ADP FDP + ADP	ADP +	ATP + S7P -> ADP + S17P FDP <-> T3P2 + T3P1 T3P2 <-> T3P1	T3P1 + PI + NAD <-> NADH + 13PDG
15	Reaction	GLC + ATP -> G6P + ADP MAN + ATP -> MAN6P + AD bDGLC + ATP -> bDG6P + ADP	bDGLC + ATP -> G6P + AD GLC + ATP -> G6P + ADP	MAN+ATP -> MAN6P+AC ATP + FBU -> ADP + F6P	bDGLC+ATF	GLC + ATP -> G6P + ADP MAN + ATP -> MAN6P + AD	ATP + FRU -> ADP + F6P G6P F6P	G6P <-> bDG6P bDG6P <-> F6P	F6P + ATP -> FDP + ADP F6P + ATP -> FDP + ADP	ATP + TAG6P -> ADP + TAG16P	ATP + S7P -> ADP + 5 FDP <-> T3P2 + T3P1 T3P2 <-> T3P1	T3P1 + P1 + N + 13PDG
20			so called so called	so called to called	lso called	lso called lso called	lso called	isomerase isomerase	beta subunit alpha subunit	alpha subunit	alpha subunit e aldolase ierase	osphate
25	<u>tble 2</u> Gene Description	Glucokinase Glucokinase Glucokinase	Hexokinase I (PI) (also called Hexokinase A) Hexokinase I (PI) (also called Hexokinase A)	Hexokinase I (PI) (also called Hexokinase Hexokinase	Hexokinase A) Hexokinase A) Hexokinase II (PII) (also called Hexokinase B)	Hexokinase II (PII) (also called Hexokinase B) Hexokinase II (PII) (also called Hexokinase	Hexokinase II (PII) (also called Hexokinase B) Gluccse-6-phosobate isomerase	Glucose-6-phosphate isomerase Glucose-6-phosphate isomerase	phosphofructokinase beta subunit phosphofructokinase alpha subunit	phosphofructokinase alpha subunit	phosphofructokinase alpha subunit fructose-bisphosphate aldolase triosenhosphate isomerase	Glyceraldehyde-3-phosphate dehydrogenase 1
30	<u>Table 2</u> Gene	Glucc Glucc Glucc	Hexo Hexo Hexo	Hexo Hexo Hexo	Hexo Hexo Hexo	Hexo Hexo Hexo Hexo	Hexo Hexo		lsoud lsoud	lsoud	phos; fructo triose	Glyce dehyd
35												
40	Gene	GLK1 GLK1 GLK1	HXK1 HXK1	HXK1 HXK1	HXK2	HXK2 HXK2	HXK2 PGH	PGI1	PFK2 PFK1	PFK1	PFK1 FBA1 TPI1	HOT
45												
50	Locus # E.C. # Carbohydrate Metabolism Glvcolvsis/Gluconeodenesis	2.7.1.2 2.7.1.2 2.7.1.2	2.7.1.1 2.7.1.1	2.7.1.1	2.7.1.1	2.7.1.1	2.7.1.1 5 3 1 9	5.3.1.9 5.3.1.9 5.3.1.9	2.7.1.11 2.7.1.11	2.7.1.11	2.7.1.11 4.1.2.13 5.3.1.1	1.21.12
55	Locus # Carbohydratt Glvcolvsis/G	YCL040W YCL040W YCL040W	YFR053C YFR053C	YFR053C YFR053C	YGL253W	YGL253W YGL253W	YGL253W VBR196C	YBR196C	YMR205C YGR240C	YGR240C	YGR240C YKL060C YDR050C	YJL052W

5	Rxn Name	tdh2	tdh3	pgk1	gpm1_1	gpm1_2	gpm2	gpm3	eno1	eno2	eno3	eno4	eno5	cdc19	pyk2	pdal				cit1
10		T3P1 + PI + NAD <-> NADH + 13PDG	T3P1 + PI + NAD <-> NADH + 13PDG	13PDG + ADP <-> 3PG + ATP	23PDG	IJ	IJ	IJ	Ъ	Ъ	д	Ъ	Ъ	PEP + ADP -> PYR + ATP	РЕР + ADP -> РҮR + ATP	PYRm + COAm + NADm -> NADHm + CO2m + ACCOAm				ACCOAm + OAm -> COAm + CITm
15	Reaction	T3P1 + PI + + 13PDG	T3P1 + PI + + 13PDG	13PDG + AI ATP	13PDG <-> 23PDG	3PG <-> 2PG	3PG <-> 2PG	3PG <-> 2PG	2PG <-> PEP	2PG <-> PEP	2PG <-> PEP	2PG <-> PEP	2PG <-> PEP	PEP + ADP	PEP + ADP	PYRm + COAm + N NADHm + CO2m + ACCOAm				ACCOAm + + CITm
20		hate	ohate	Û	se	se	hoglycerate	se			enolases				e-repressed	e (lipoamide) 1 component,	e (lipoamide) 1 component,	yltransferase,		ar encoded
25	tinued) Gene Description	glyceraldehyde 3-phosphate dehydrogenase	Glyceraldehyde-3-phosphate dehydrogenase 3	phosphoglycerate kinase	Phosphoglycerate mutase	Phosphoglycerate mutase	Similar to GPM1 (phosphoglycerate mutase)	phosphoglycerate mutase			Protein with similarity to enolases	enolase related protein	enolase related protein	kinase	Pyruvate kinase, glucose-repressed isoform	pyruvate dehydrogenase (lipoamide) alpha chain precursor, E1 component, alpha unit	pyruvate dehydrogenase (lipoamide) beta chain precursor, E1 component, beta unit	dihydrolipoamide S-acetyltransferase, E2 component		Citrate synthase, Nuclear encoded mitochondrial protein.
30	(continued) Gene De :	glyceraldehyde dehydrogenase	Glyceraldehyde- dehydrogenase	ondsond	Phospho	Phospho	Similar to mutase)	Soydsoyd	enolase I	enolase	Protein w	enolase r	enolase r	Pyruvate kinase	Pyruvate isoform	pyruvate o alpha chai alpha unit	pyruvate beta chai beta unit	dihydrolipoami E2 component		Citrate sy mitochon
35																				
40	Gene	TDH2	TDH3	PGK1	GPM1	GPM1	GPM2	GPM3	EN01	ENO2	ERR1	ERR2	ERR1	CDC19	PYK2	PDA1	PDB1	LAT1		CIT1
45																				
50	E.C. # abolism	1.2.1.12	1.2.1.12	2.7.2.3	5.4.2.1	5.4.2.1	5.4.2.1	5.4.2.1	4.2.1.11	4.2.1.11	4.2.1.11	4.2.1.11	4.2.1.11	2.7.1.40	2.7.1.40	1.2.4.1	1.2.4.1	2.3.1.12	cycle)	4.1.3.7
55	Locus # E.C. # Carbohydrate Metabolism Clucohycie/Clucomodolosm	YJR009C	YGR192C	YCR012W	YKL152C	YKL152C	YDL021 W	YOL056W	YGR254W	YHR174W	YMR323W	YPL281C	YOR393W	YAL038W	YOA347C	YER178w	YBR221c	YNL071w	Citrate cycle (TCA cycle)	YNR001C

10

5		cit2	cit3	aco1	aco2	idh 1		idp1_1	idp2_1	idp3_1	idp1_2	idp2_2	idp3_2	kgd1a		lsc2	lsc1		sdh3	
10 15		ACCOA + OA -> COA + CIT	ACCOAm + OAm -> COAm + CITm	CITm <-> ICITm	CITm <-> ICITm	ICITm + NADm -> CO2m + NADHm + AKGm		ICITm + NADPm -> NADPHm + OSUCm	ICIT + NADP -> NADPH + OSUC	ICIT + NADP -> NADPH + OSUC	OSUCm -> CO2m + AKGm	OSUC -> CO2 + AKG	OSUC -> CO2 + AKG	AKGm + NADm + COAm -> CO2m + NADHm + SUCCOAm		ATPm + SUCCm + COAm <- > ADPm + Plm + SUCCOAm	ATPm + ITCm+ COAm <-> ADPm + Plm + ITCCOAm		SUCCm + FADm ↔ FUMm + FADH2m	
20		Citrate synthase, non-mitochondrial citrate synthase	ochondrial thase	drial	golomor	socitrate dehydrogenase (NAD+) mito, subuintl	lsocitrate dehydrogenase (NAD+) mito, subunit2	socitrate dehydrogenase (NADP+)	socitrate dehydrogenase (NADP+)	socitrate dehydrogenase (NADP+)	lsocitrate dehydrogenase (NADP+)	socitrate dehydrogenase (NADP+)	socitrate dehydrogenase (NADP+)	alpha-ketoglutarate dehydrogenase complex, E1 component	Dihydrolipoamide S- succinyltransferase, E2 component	Succinate-CoA ligase (GDP-forming)	succinate-CoA ligase alpha subunit		succinate dehydrogenase cytochrome b	succinate dehydrogenase cytochrome b
25		/nthase, nor nthase	Citrate synthase, Mitochondrial isoform of citrate synthase	Aconitase, mitochondrial	aconitate hydratase homolog	e dehydroger vuintl	adehydroger unit2	e dehydroger	e dehydroger	e dehydroger	ehydroger	ehydroger	ehydroger	toglutarate dehy E1 component	Dihydrolipoamide S- succinyltransferase, I	e-CoA ligase	e-CoA ligase		e dehydrogei	e dehydrogei
30	(continued)	Citrate synthase citrate synthase	Citrate si isoform o	Aconitas	aconitate	Isocitrate deh mito, subuintl	lsocitrate deh) mito, subunit2	lsocitrate	lsocitrate	lsocitrate	lsocitrat∈	lsocitrat∈	lsocitrate	alpha-ket complex,	Dihydroli succinylt	Succinat	succinate		succinate b	succinate b
35																				
40		CIT2	cit3	acol	YJL200C	IDH1	IDH2	IDP1	IDP2	IDP3	IDP1	IDP2	IDP3	kgd1	KGD2	LSC2	LSC1		SDH3	SDH1
45																.1.5	.1.5	ll xəldu		
50		(TCA cycle) 4.1.3.7	4.1.3.7	4.2.1.3	4.2.1.3	1.1.1.41	1.1.1.41	1.1.1.42	1.1.1.42	1.1.1.42	1.1.1.42	1.1.1.42	1.1.1.42	1.2.4.2	2.3.1.61	6.2.1.4/6. 2.1.5	6.2.1.4/6. 2.1.5	Electron Transport System, Complex II	1.3.5.1	1.3.5.1
55		Citrate cycle (TCA cycle) YCR005C 4.1.3.	YPR001W	YLR304C	YJL200C	YNL037C	YOR136W	YDL066W	YLR174W	YNL009W	YDL066W	YLR174W	YNL009W	YIL125W	YDR148C	YGR244C	YOR142W	Electron Trans	YKL141w	YKL148c

5							frds1	osm1		fum1_1	fum1_2	mdh1	mdh3	mdh2		icl1	icl2	dal7	mls1	pck1	fbp1
10 15							$FADH2m + FUM \to SUCC + FADm$	FADH2m + FUMm → SUCCm + FADm		$FUMm \leftrightarrow MALm$	$FUM\leftrightarrowMAL$	MALm + NADm <-> NADHm + OAm	MAL + NAD <-> NADH + OA	MAL + NAD <-> NADH + OA		ICIT -> GLX + SUCC	ICIT -> GLX + SUCC	ACCOA + GLX -> COA + MAL	ACCOA + GLX -> COA + MAL	OA + ATP -> PEP + CO2 + ADP	FDP -> F6P + PI
20		nase ur protein	succinate dehydrogenase membrane anchor subunit	H4P	cinate	scinate orotein	ctase,	fumarate osmotic				mitochondrial malate dehydrogenase	GENASE,	malate dehydrogenase, cytoplasmic			lsocitrate lyase, may be nonfunctional			phosphoenolpyruvate carboxylkinase	hatase
25		Succinate dehydrogenase (ubiquinone) iron-sulfur protein subunit	e dehydrogen subunit	strong similarity to SDH4P	strong similarity to succinate dehydrogenase	strong similarity to succinate dehydrogenase flavoprotein	soluble fumarate reductase, cytoplasmic	Mitochondrial soluble fumarate reductase involved in osmotic	u n	ase	ase	ndrial malate (MALATE DEHYDROGENASE, PEROXISOMAL	lehydrogenas		e lyase	e lyase, may b	Malate synthase	Malate synthase	enolpyruvate	fructose-1,6-bisphosphatase
30	(continued)	Succina (ubiquin subunit	succinate dehy anchor subunit	strong s	strong similarity dehydrogenase	strong s dehydro	soluble fume cytoplasmic	Mitocho	regulation	Fumaratase	Fumaratase	mitocho	MALATI PEROX	malate c		isocitrate lyase	lsocitrat	Malate s	Malate s	phospho	fructose
35																					
40		SDH2	SDH4	YLR164 w	YMR118 c	YJL045w	YEL047c	osm1		FUM1	FUM1	MDH1	MDH3	MDH2		ICL1	ICL2	dal7	MLS1	pckl	FBP1
45		ll xəldı																			
50		Electron Transport System, Complex II YLL041c 1.3.5.1	1.3.5.1	1.3.5.1	1.3.5.1	1.3.5.1	1.3.99.1	1.3.99.1		4.2.1.2	4.2.1.2	1.1.1.37	1.1.1.37	1.1.1.37	actions	4.1.3.1	4.1.3.1	4.1.3.2	4.1.3.2	4.1.1.49	3.1.3.11
55		<i>Electron Trans</i> । YLL041c	YDR178w	YLR164w	YMR118c	YJL045w	YEL047c	YJR051W		YPL262W	YPL262W	YKL085W	YDL078C	YOL126C	Anaplerotic Reactions	YER065C	YPR006C	YIR031C	YNL117W	YKR097W	YLR377C

12

5		pyc1	pyc2	mae1	zwfl		sol1	sol2	sol3	sol4	gnd2	gnd1	Ipel	rkil	tkl2_1	tkl2_2	tkl1_1	tkl1_2	tal1_1	tal1_2	rbk1_1	rbk1_2	pgm1_1	pgm1_2	pgm2_1	pgm2_2
10 15		PYR + ATP + CO2 -> ADP + OA + PI	PYR + ATP + CO2 -> ADP + OA + PI	MALm + NADPm -> CO2m + NADPHm + PYRm	G6P + NADP <-> D6PGL +	NADPH	D6PGL -> D6PGC	D6PGL -> D6PGC	D6PGL -> D6PGC	D6PGL -> D6PGC	D6PGC + NADP -> NADPH + CO2 + RL5P	D6PGC + NADP -> NADPH + CO2 + RL5P	RL5P <-> X5P	RL5P <-> R5P	R5P + X5P <-> T3P1 + S7P	X5P + E4P <-> F6P + T3P1	R5P + X5P <-> T3P1 + S7P	X5P + E4P <-> F6P + T3P1	T3P1 + S7P <-> E4P + F6P	T3P1 + S7P <-> E4P + F6P	$RIB + ATP \leftrightarrow R5P + ADP$	$DRIB + ATP \leftrightarrow DR5P + ADP$	$R1P\leftrightarrowR5P$	$G1P \leftrightarrow G6P$	$R1P\leftrightarrowR5P$	$G1P \leftrightarrow G6P$
20		ŝe	Se	enzyme	ite-l-		Possible 6-phosphogluconolactonase	Possible 6-phosphogluconolactonase	Possible 6-phosphogluconolactonase	Possible 6-phosphogluconolactonase	dehydrogenase	dehydrogenase	lerase	se									se	se l	se	se
25	lued)	pyruvate carboxylase	pyruvate carboxylase	mitochondrial malic enzyme	Glucose-6-phosphate-I-	dehydrogenase	ssible 6-phospho	ssible 6-phosphc	ssible 6-phospho	ssible 6-phospho	6-phophogluconate dehydrogenase	6-phophogluconate dehydrogenase	ribulose-5-P 3-epimerase	ribose-5-P isomerase	transketolase	transketolase	transketolase	transketolase	transaldolase	transaldolase	Ribokinase	Ribokinase	phosphoglucomutase	phosphoglucomutase	phosphoglucomutase	Phosphoglucomutase
30	(continued)	λd	λd	Ē	ច	de	Pc	Pc	Pc	P	- 9	9	rib	rib	tre	tre	tre	tre	tre	tre	ΪΉ	Ϊ	рh	Ъ	Ъ	đ
35		F	Q	÷			-	0	m	4	N	F	F							043 C	-	-	_	_		01
40		PYC1	PYC2	MAE	zwfl		SOL1	SOL2	SOL3	SOL4	GND2	GND1	RPE1	RKI1	TKL2	TKL2	TKL1	TKL1	TAL1	YGR043	RBK1	RBK1	pgm1	pgm1	pgm2	pgm2
45																										
50		6.4.1.1	6.4.1.1	1.1.1.38 tuhate cvcle	1.1.1.49		3.1.1.31	3.1.1.31	3.1.1.31	3.1.1.31	1.1.144	1.1.144	5.1.3.1	5.3.1.6	2.2.1.1	2.2.1.1	2.2.1.1	2.2.1.1	2.2.1.2	2.2.1.2	2.7.1.15	2.7.1.15	5.4.2.2	5.4.2.2	5.4.2.2	5.4.2.2
55	Anontorotic Docotiono	YGL062W	YBR218C	YKL029C 1.1.1.3 Pentose nhosnhate cycle	YNL241C		YNR034W	YCR073 W-A	YHR163W	YGR248W	YGR256W	YHR183W	YJL121C	YOR095C	YBR117C	YBR117C	YPR074C	YPR074C	YLR354C	YGR043C	YCR036W	YCR036W	YKL127W	YKL127W	YMR105C	YMR105C

5		pmi40	secoo nea1	- 200		pfk26	pfk27	fbp26	frc3		sor1		gal1	gal7	gal10	ugp1_2	ugp1_1			mel1_2	mel1_3	mel1_4	mel1_5	mel1_6	mel1_7	
10		MAN6P ↔ F6P MANED ↔ MANED	GTP + MAN1P → PPI +			ATP + F6P \rightarrow ADP + F26P	ATP + F6P \rightarrow ADP + F26P	-6P + PI	F1P + ATP o FDP + ADP		$SOT + NAD \rightarrow FRU + NADH$		GLAC + ATP -> GAL1P + ADP	UTP + GAL1P <-> PPI + UDPGAL	UDPGAL <-> UDPG	G1P + UTP <-> UDPG + PPI	G1P + UTP <-> UDPG + PPI			DFUC -> GLC + GLAC	RAF -> GLAC + SUC	GLACL <-> MYOI + GLAC	EPM <-> MAN + GLAC	GGL <-> GL + GLAC	MELT <-> SOT + GLAC	
15		MAN6P <> F6P	AINIALA GTD + M/	GDPMAN		ATP + F6	ATP + F6	$F26P \rightarrow F6P + PI$	F1P + AT		SOT + NA		GLAC + A ADP	UTP + GA UDPGAL	UDPGAL	G1P + UT	G1P + UT			DFUC -> 0	RAF -> GI	GLACL <-	EPM <->	GGL <-> (MELT <->	
20		somerase		-mannose		lase	e	tase	(Fructose 1-	0	(L-iditol 2-			uridyl	se	nate			ellulase) w	elibiase)	elibiase)	elibiase)	elibiase) W	elibiase) W	elibiase) W	
25		nannose-6-phosphate isomerase	priosprioritatiirioritutase mannose-1-nhosnhate	guanyltransferase, GDP-mannose pyrophosphorylase		6-Phosphofructose-2-kinase	6-phosphofructo-2-kinase	Fructose-2,6-biphosphatase	1-Phosphofructokinase (Fructose 1- phosphate kinase)	oinitol, galactine	sorbitol dehydrogenase (L-iditol 2- dehydrorenase)		nase	galactose-1-phosphate uridyl transferase	UDP-glucose 4-epimerase	UTPGlucose 1-Phosphate Uridylyltransferase	Uridinephosphoglucose	pyrophosphorylase	Alpria-galactosidase (meliblase) vv	Alpha-galactosidase (melibiase)	Alpha-galactosidase (melibiase)	Alpha-galactosidase (melibiase)	Alpha-galactosidase (melibiase) W	Alpha-galactosidase (melibiase) W	Alpha-galactosidase (melibiase) W	
30	(continued)	mannose	ningsolid	guanyltra		6-Phosph	6-phosph	Fructose-	1-Phosphofructoki phosphate kinase)	itol, ribitol, arat	sorbitol dehydro	So in Alion	galactokinase	galactose-1 transferase	UDP-gluc	UTPGlu Uridylyltra	Uridineph	pyrophos	Alpria-ga	Alpha-ga	Alpha-ga	Alpha-ga	Alpha-ga	Alpha-ga	Alpha-ga	
35										, mannitol, xyli																
40		PM140	SEC33	-		PFK26	pfk27	FBP26		S.c. does not metabolize sorbitol, erythritol, mannitol, xylitol, ribitol, arabinitol, galactinol	SOR1		gal1	gal7	gal10	YHL012 W	UGP1			YBR184 W	YBR184 W	YBR184 W	YBR184	YBR184	YBR184	
45										: metabolize so																
50		5.3.1.8 5.4.2.0	0.4.2.0 2 7 7 13	2		2.7.1.105	2.7.1.105	3.1.3.46	2.7.1.56 -	S.c. does not	1.1.1.4	olism	2.7.1.6	2.7.7.10	5.1.3.2	2.7.7.9	2.7.7.9		2.2.1.22	3.2.1.22	3.2.1.22	3.2.1.22	3.2.1.22	3.2.1.22	3.2.1.22	
55	Mannose	YER003C			Fructose	YIL107C	YOL136C	YJL155C	ı	Sorbose	YJR159W	Galactose metabolism	YBR020W	YBR018C	YBR019C	YHL012W	YKL035W			YBR184W	YBR184W	YBR184W	YBR184W	YBR184W	YBR184W	

5		mal32a	mal32b	mal12a	mal12b	mal12c	fsp2a	fsp2b	unkrx10	tps1	tsl1	tps3	tps2	ath1	nth2	nth 1	glc3	gphl
10 15		MLT -> 2 GLC	MLT -> 2 GLC	MLT -> 2 GLC	MLT -> 2 GLC	MLT -> 2 GLC	MLT -> 2 GLC	6DGLC -> GLAC + GLC	UDPG + GAL1P <-> G1P + UDPGAL	UDPG + G6P -> UDP + TRE6P	UDPG+G6P->UDP+TRE6P	UDPG+G6P->UDP+TRE6P	TRE6P -> TRE + PI	TRE -> 2 GLC	TRE -> 2 GLC	TRE -> 2 GLC	GLYCOGEN + PI -> G1P	GLYCOGEN + PI -> G1P
20			ucosidase		ucosidase	glucosidase	tase(alpha-D-	tase(alpha-D-	UDPglucosehexose-1-phosphate uridylyltransferase	S	ene	trehalose-6-P synthetase, 115 kD regulatory subunit of trehalose-6- phosphate synthaseVphosphatase complex	Trehalose-6-phosphate phosphatase		Neutral trehalase, highly homologous to Nth1p		,4-glucan-6-(1,4-	lorylase
25 30	(continued)	Maltase	putative alpha glucosidase	Maltase	putative alpha glucosidase	probable alpha-glucosidase (MALTase)	homology to maltase(alpha-D- glucosidase)	homology to maltase(alpha-D glucosidase)	UDPglucosehexc uridylyltransferase	trehalose-6-P synthetase, 56 kD synthase subunit of trehalose-6- phosphate synthaseVphosphata complex	trehalose-6-P synthetase, 123 kD regulatory subunit of trehalose-6- phosphate synthaseVphosphatas complex\; homologous to TPS3 g product	trehalose-6-P synthetase, 115 kD regulatory subunit of trehalose-6- phosphate synthaseVphosphatas complex	Trehalose-6-phos	Acid trehalase	Neutral trehalase Nth1p	neutral trehalase	Branching enzyme, 1 dureano)-transferase	Glycogen phosphorylase
35																		
40		MAL32	YGR287 C	MAL12	YIL172C	YJL216C	FSP2	FSP2	GAL7	TPS1	ts:1	TPS3	TPS2	ATH1	NTH2	NTH1	glc3	GPH1
45																	e allu suga	
50		etabolism 3.2.1.20	3.2.1.20	3.2.1.20	3.2.1.20	3.2.1.20	3.2.1.20	3.2.1.20	2.7.12	2.4.1.15	2.4.1.15	2.4.1.15	3.1.3.12	3.2.1.28	3.2.1.28	YDR001C 3.2.1.28 NTH1	2.4.1.18	2.4.1.1
55		Galactose metabolism YBR299W 3.2	YGR287C	YGR292W	YIL172C	YJL216C	YJL221C	YJL221C	YBR018C Trehalose	YBR126C	YML100W	YMR261C	YDR074W	YPR026W	YBR001C	YDR001C	YEL011W	YPR160W

5		gsy1	gsy2		acs1	acs2	sfa1_1		unkrx11	pdc6	pdc5	pdc1	ach1_1	ach1_2	lys21		lys20	lys20a	adh4	adh3	adh2	adh5	adh1	sfa1_2
10		UDPG -> UDP + GLYCOGEN	UDPG -> UDP + GLYCOGEN		ATPm + ACm + COAm -> AMPm + PPIm + ACCOAm	ATP + AC + COA -> AMP + PPI + ACCOA	FALD + RGT + NAD -> FGT	_	FGT <-> RGT + FOR	PYR -> CO2 + ACAL	PYR -> CO2 + ACAL	PYR -> CO2 + ACAL	COA + AC -> ACCOA	COAm + ACm -> ACCOAm	ACCOA + AKG -> HCIT +		ACCOA + AKG -> HCIT + COA	ACCOAm + AKGm -> HCITm + COAm	ETH + NAD <-> ACAL + NADH	ETHm + NADm <-> ACALm + NADHm	ETH + NAD <-> ACAL + NADH	ETH + NAD <-> ACAL + NADH	ETH + NAD <-> ACAL + NADH	ETH + NAD <-> ACAL + VADH
15		UDPG ->	UDPG ->		ATPm + AMPm -	ATP + AC + C PPI + ACCOA	FALD +	+ NAUH	FGT <->	PYR ->	PYR ->	PYR ->	COA + /	COAm -	ACCOA	COA	ACCOA	ACCOAr + COAm	ETH + N NADH	ETHm + N/ + NADHm	ETH + N NADH	ETH + N NADH	ETH + N NADH	ETH + N NADH
20		DP-gluocse ase)	DP-gluocse ase)		rnthetase	rnthetase	ogenase/long-	genase	nydrolase	se	se	se			synthase,	e precursor	, cytosolic		se isoenzyme IV	se isoenzyme III	se II	se isoenzyme V	se	se
25	d)	Glycogen synthase (UDP-gluocse starch diucosvitransferase)	Glycogen synthase (UDP-gluocse starch glucosyltransferase)		acetyl-coenzyme A synthetase	acetyl-coenzyme A synthetase	Formaldehyde dehydrogenase/long-	cnain alconol denydrogenase	S-Formylglutathione hydrolase	pyruvate decarboxylase	pyruvate decarboxylase	pyruvate decarboxylase	acetyl CoA hydrolase	acetyl CoA hydrolase	probable homocitrate synthase,	mitochondrial isozyme precursor	homocitrate synthase, cytosolic isozyme	Homocitrate synthase	alcohol dehydrogenase isoenzyme IV	alcohol dehydrogenase isoenzyme III	alcohol dehydrogenase II	alcohol dehydrogenase isoenzyme V	Alcohol dehydrogenase	Alcohol dehydrogenase
30	(continued)	Glyco	Glyco starch		acety	acety	Form -	chair	S-Fo	byruv	byruv	byruv	acety	acety	prob:	mitoo	homocitr isozyme	Нот	alcoh	alcoh	alcoh	alcoh	Alcoh	Alcoh
35																								
40	ar meteholiem)	GSY1	GSY2		acs1	ACS2	SFA1			PDC6	PDC5	pdc1	ACH1	ACH1	LYS21		LYS20	LYS20	adh4	adh3	adh2	ADH5	adh1	SFA1
45																								
50	Givonan Mataholism (surorosa and surar mataholism)	2.4.1.11	2.4.1.11	tabolism	6.2.1.1	6.2.1.1	1.2.1.1		3.1.2.12	4.1.1.1	4.1.1.1	4.1.1.1	3.1.2.1	3.1.2.1	4.1.3.21		4.1.3.21	4.1.3.21	1.1.1	1.1.1.1	1.1.1.1	1.1.1.1	1.1.1	1.1.1.
55	Glyconen Met	YFR015C	YLR258W	Pyruvate Metabolism	YAL054C	YLR153C	YDL168W		YJL068C	YGR087C	YLR134W	YLR044C	YBL015W	YBL015W	YDL131W		YDL182W	YDL182W	YGL256W	YMR083W	YMR303C	YBR145W	YOL086C	YDL168W

5		glo1 glo2 glo4	ipp1 ppa2	fdng ndi1	ndh2	ndh1	ncp1	fad				cyto		
10 15		RGT + MTHGXL <-> LGT LGT -> RGT + LAC LGTm -> RGTm + LACm	PPI -> 2 PI PPIm -> 2 PIm	FOR + Qm -> QH2m + CO2 +2 HEXT NADHm + Qm -> QH2m +	NADm NADH + Qm -> QH2m + NAD	NADH + Qm -> QH2m + NAD	NADPH + 2 FERIm -> NADP + 2 FEROm	FADH2m + Qm <-> FADm + QH2m				O2m + 4 FEROm + 6 Hm -> 4 FERIm		
			- Iqq nIqq	FOR+ HEXT NADH			NAD 2 FE		م م					
20		Lactoylglutathione lyase, glyoxalase I Hydroxyacylglutathione hydrolase glyoxalase II (hydroxyacylglutathione	atase c	ise (ubiquinone)	Mitochondrial NADH dehydrogenase that catalyzes the oxidation of cytosolic NADH	Mitochondrial NADH dehydrogenase that catalyzes the oxidation of cytosolic NADH	itein reductase	succinate dehydrogenase cytochrome b	succinate dehydrogenase cytochrome b succinate dehydrogenase cytochrome b	succinate dehydrogenase cytochrome b		ubiquinol-cytochrome c reductase iron- sulfur subunit	c reductase	c reductase t
25	6	Lactoylglutathione lyase, glyoxalas Hydroxyacylglutathione hydrolase glyoxalase II (hydroxyacylglutathio	nyarolase) Inorganic pyrophosphatase mitochondrial inorganic	pyrophosphatase Formate dehydrogenase NADH dehydrogenase (ubiquinone)	Mitochondrial NADH dehydrogenase that catalyzes the oxidation of cytosol NADH	ondrial NADH c talyzes the oxid	NADPHferrihemoprotein reductase	ate dehydrogen:	ate dehydrogen ate dehvdrogen	ate dehydrogen		ubiquinol-cytochrome sulfur subunit	ubiquinol-cytochrome c reductase cvtochrome b subunit	ubiquinol-cytochrome c reductase cytochrome c1 subunit
30	(continued)	Lacto) Hydro glyoxa	nyarolase) Inorganic p mitochondr	pyroph Format NADH	Mitocho that cat NADH	Mitoch that cat NADH	NADPI	succine	succine	succine		ubiquin sulfur s	ubiquin cvtochi	ubiquin cytochi
35														
40		GL01 GL02 GL04	ipp1 ppa2	FDNG NDI1	NDH2	NDH1	NCP1	SDH3	SDH1 SDH2	SDH4		RIP1	сутв	CYT1
45	e metabolism										mplex III			
50	Glyoxylate and dicarboxylate metabolism Glyoxal Pathway	4.4.1.5 3.1.2.6 3.1.2.6	slism sphorylation 3.6.1.1 3.6.1.1	1.2.2.1 1.6.5.3	1.6.5.3	1.6.5.3	1.6.2.4	1.3.5.1	1.3.5.1 1.3.5.1	1.3.5.1	Electron Transport System, Complex III	1.10.2.2	1.10.2.2	1.10.2.2
55	Glyoxylate and d Glyoxal Pathwav	YML004C YDR272W YOR040W	Energy Metabolism Oxidative Phosphorylation YBR011C 3.6.1.1 YMR267W 3.6.1.1	YML120C	YDL085W	YMR145C	YHR042W	YKL141w	YKL148c YLL041c	YDR178w	Electron Transp	YEL024W	Q0105	YOR065W

5											n cytr													lm atp1	
10 15											QH2m + 2 FERIm + 1.5 + Hm -> Qm 2 FEROm													ADPm + Plm -> ATPm + 3 Hm	
			0								α Υ													ADI	
20		ubiquinol-cytochrome c reductase core subunit 1	ubiquinol-cytochrome c reductase core subunit 2	c reductase	c reductase	c reductase	c reductase	c reductase	c reductase		subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l	subunit l		x, F1 alpha	x, F1 epsilon
25	0	ol-cytochrome 1	ol-cytochrome 2	ubiquinol-cytochrome c reductase	ubiquinol-cytochrome c reductase subunit 6	ubiquinol-cytochrome c reductase subunit 7	ubiquinol-cytochrome c reductase subunit 8	ubiquinol-cytochrome c reductase subunit 9	ubiquinol-cytochrome c reductase subunit 10		cytochrome c oxidase subunit l	cytochrome c oxidase subunit		F1F0-ATPase complex, F1 alpha	F1F0-ATPase complex, F1 epsilon subunit										
30	(continued)	ubiquinol subunit 1	ubiquinol- subunit 2	ubidn	ubiquinol- subunit 6	ubiquinol subunit 7	ubiquinol- subunit 8	ubiquinol- subunit 9	ubiquinol-c subunit 10		cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr	cytochr		F1F0-A	F1F0-A subunit
35																									
40		COR1	QCR1	QCR2	QCR6	QCR7	QCR8	QCR9	QCR10		COX1	COX2	COX3	COX9	COX4	COX13	COX6	COX5B	COX12	COX8	COX7	COX5A		ATP1	ATP15
45		piex III								plex IV															
50	of Oratom Com	clection i ratisport ovstern, complex m YBL045C 1.10.2.2	1.10.2.2	1.10.2.2	1.10.2.2	1.10.2.2	1.10.2.2	1.10.2.2	1.10.2.2	Electron Transport System, Complex IV	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1		3.6.1.34	3.6.1.34
55	Elontron Transm	riection Halispo YBL045C	YPR191W	YPR191W	YFR033C	YDR529C	YJL166W	YGR183C	ҮНR001W-A	Electron Transpo	Q0045	Q0250	Q0275	YDL067C	YGL187C	YGL191W	YHR051W	YIL111W	YLR038C	YLR395C	YMR256C	YNL052W	ATP Synthase	YBL099W	YPL271W

10																								
15																								
20		ATPase delta	F1F0-ATPase complex, FO A subunit	F1 gamma	H+-ATPase V1 domain 60 KD subunit,		r I della	F1F0-ATPase complex, OSCP subunit	subunit f	F1F0-ATPase complex, F1 beta subunit	F1F0-ATPase complex, FO D subunit	_	F-type H+-transporting ATPase subunit		F-type H+-transporting ATPase subunit c	mitochondrial	t form of ⊃ synthase	V-type H+-transporting ATPase subunit AC39	V-type H+-transporting ATPase subunit F	V-type H+-transporting ATPase subunit C	V-type H+-transporting ATPase subunit A	V-type H+-transporting ATPase subunit B	V-type H+-transporting ATPase subunit E	ATPase
25		F-type H+-transporting ATPase delta chain	Pase complex	F1F0-ATPase complex, F1 gamma	ise V1 domain	-	r i ru-A i rase compiex, subunit	Pase complex	ATP synthase complex,	Pase complex,	Pase complex	ATP synthase subunit h	+-transporting /		⊦-transporting /	ATP synthase k chain, mitochondrial	subunit G of the dimeric form of mitochondrial F1F0-ATP synthase	+-transporting /	+-transporting ,	+-transporting /	+-transporting ,	+-transporting ,	+-transporting ,	V-type H+-transporting ATPase proteolipid subunit
30	(continued)	F-type H⊦ chain	F1F0-ATI	F1F0-ATI	H+-ATPa	vacuolar	subunit	F1F0-ATI	ATP synt	F1F0-ATI	F1F0-ATI	ATP synt	F-type H+	8	F-type H+ c	ATP synt	subunit G mitochon	V-type H+ AC39	V-type H- F	V-type H- C	V-type H- A	V-type H- B	V-type H- E	V-type H- proteolipi
35																								
40		ATP16	ATP6	ATP3	VMA2		AIF4	ATP5	ATP17	ATP2	ATP7	ATP14	ATP8		АТР9	ATP19	ATP20	VMA6	VMA7	VMA5	TFP1	VMA2	VMA4	CUP5
45																								
50		3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34		3.D.I.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34		3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34
55	ATD Sunthace	YDL004W	Q0085	YBR039W	YBR127C			YDR298C	YDR377W	YJR121W	YKL016C	YLR295C	Q0080		Q0130	YOL077W-A	YPR020W	YLR447C	YGR020C	YKL080W	YDL185W	YBR127C	YOR332W	YEL027W

5										-> 4 cox1												im+ cyb2	m + dld1
10										4 FEROm + O2m + 6 Hm -> 4 FERIm												2 FERIm + LLACm -> PYRm + 2 FEROm	FERIm + LACm -> PYRm + FEROm
15				it	Ť	Ť		0		4 FEROm FERIm												2 FERIm + 2 FEROm	2 FERIm - 2 FEROm
20		ıg ATPase	ıg ATPase	V-type H+-transporting ATPase subunit	V-type H+-transporting ATPase subunit I	V-type H+-transporting ATPase subunit D	se subunit G	V-type H+-transporting ATPase 54 kD subunit		e subunit l	ie subunit III, d	e subunit II	e	e chain IV	e chain Vla	e subunit VI	e chain Vb	e, subunit VIB	e chain VIII	e, subunit VII	e chain V.A	enase	e D-lactate doreductase
25	d)	V-type H+-transporting ATPase proteolipid subunit	V-type H+-transporting ATPase proteolipid subunit	e H+-transportir	e H+-transportir	e H+-transportir	vacuolar ATP synthase subunit G	e H+-transportir iit		cytochrome-c oxidase subunit l	Cytochrome-c oxidase subunit III, mitochondrially-coded	cytochrome-c oxidase subunit II	Cytochrome-c oxidase	cytochrome-c oxidase chain IV	cytochrome-c oxidase chain Vla	cytochrome-c oxidase subunit VI	cytochrome-c oxidase chain Vb	cytochrome-c oxidase, subunit VIB	cytochrome-c oxidase chain VIII	cytochrome-c oxidase, subunit VII	cytochrome-c oxidase chain V.A precursor	Lactic acid dehydrogenase	mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase
30	(continued)	V-type protec	V-type protec	V-type	- type I	V-typ. D	vacuc	V-type I subunit		cytoc	Cytoc mitocl	cytoch	Cytoc	cytoch	cytoch	cytoch	cytoch	cytocl	cytocl	cytoch	cytochrom precursor	Lactic	mitocl ferricy
35																							
40		PPA1	TFP3	STV1	VPH1	VMA8	VMA10	VMA13		COX1	COX3	COX2	COX9	COX4	GOX13	COX6	COX5b	COX12	COX8	COX7	COX5A	cyb2	DLD1
45									complex IV														
50		3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	3.6.1.34	Electron Transport System, Complex IV	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.9.3.1	1.1.2.3	1.1.2.4
55	ATP Svnthase	YHR026W	YPL234C	YMR054W	YOR270C	YEL051W	YHR039C-A	YPR036W	Electron Trans	Q0045	Q0275	Q0250	YDL067C	YGL187C	YGL191W	YHR051W	YIL111W	YLR038C	YLR395C	YMR256C	YNL052W	YML054C	YDL174C

5		tfo1a	tfo1b	fdh1		dur1	dur2	nit2		ecm17			faa2	faa3	faa1	faa4	fox2b	pot1_1	erg10_1	erg10_2
10		FOR + NAD -> CO2 + NADH	FOR + NAD -> CO2 + NADH	FOR + NAD <-> CO2 + NADH		ATP + UREA + CO2 <-> ADP + PI + UREAC	UREAC -> 2 NH3 + 2 CO2	ACNL -> INAC + NH3		H2SO3 + 3 NADPH <-> H2S + 3 NADP			ATP + LCCA + COA <-> AMP + PPI + ACOA	ATP + LCCA + COA <-> AMP + PPI + ACOA	COA <-> AMP	COA <-> AMP	HACOA + NAD <-> OACOA + fox2b NADH	OACOA + COA -> ACOA + ACCOA	A<->COA+AACCOA	2 ACCOAm <-> COAm + AACCOAm AACCOAm
		FOF	_	_			UR	ACI		н29 + ЭЗ			ATP + PF	АТР + РF	ATP + PF	АТР + РF	HACO NADH	0A0 ACO	2 AC	2 AC
20		Irogenase/	putative poetaoogene putative formate debudrorenese/nutative pseudorene	e pseudogene o formate		aining urea ıate hydrolase							CoA ligase,	CoA ligase,	CoA ligase,	ng-chain fatty ibutes to nyristate	hydrogenase	ð	nsferase, THIOLASE	Insferase, THIOLASE
25		putative formate dehydrogenase/ outative occurdorane	formate	denydrogenaserputauve pseudo Protein with similarity to formate dehydrogenases		urea amidolyase containing urea carboxylase / allophanate hydrolase	Allophanate hydrolase			Sulfite reductase			Long-chain-fatty-acidCoA ligase, Acyl-CoA synthetase	Long-chain-fatty-acidCoA ligase, AcvI-CoA svnthetase	Long-chain-fatty-acidCoA ligase, AcvI-CoA svnthetase	Acyl-CoA synthase (long-chain fatty acid CoA ligase); contributes to activation of imported myristate	3-Hydroxyacyl-CoA dehydrogenase	3-Ketoacyl-CoA thiolase	Acetyl-CoA C-acetyltransferase, ACETOACETYL-COA THIOLASE	Acetyl-CoA C-acetyltransferase, ACETOACETYL-COA THIOLASE (mitoch)
30	(continued)	putative	putative formate	Protein v dehydrog		urea an carboxy	Allopha	nitrilase		Sulfite n			Long-chi Acyl-Co/	Long-ch Acvl-Co/	Long-ch Acvl-Co/	Acyl-Co/ acid Co/ activatio	3-Hydro)	3-Ketoac	Acetyl-C ACETO/	Acetyl-C ACETO/ (mitoch)
35																				
40		YPL275 W	YPL276 W/	FDH1		DUR1	DUR1	NIT2	maybe)	ECM17			FAA2	FAA3	FAA1	FAA4	FOX2	pot1	erg10	erg10
45									ynthesis											
50	olism	1.2.1.2	1.2.1.2	1.2.1.2	abolism	6.3.4.6	3.5.1.54	3.5.5.1	Sulfur metabolism (Cystein biosynthesis maybe)	1.8.7.1	sm	synthesis	6.2.1.3	6.2.1.3	6.2.1.3	6.2.1.3	1.1.1	2.3.1.16	2.3.1.9	2.3.1.9
55	Methane metaholism	YPL275W	YPL276W	YOR388C	Nitrogen metabolism	YBR208C	YBR208C	YJL126W	Sulfur metabc	YJR137C	Lipid Metabolism	Fatty acid biosynthesis	YER015W	VIL009W	YOR317W	YMR246W	YKR009C	YIL160C	YPL028W	YPL028W

21

5	ACP1		3 Typell_1	0 Typell_2	2 Typell_3	1 Typell_4	4 Typell_5	3 Typell_6
10	NADHm + Qm -> NADm + QH2m		ACACPm + 4 MALACPm + 8 NADPHm -> 8 NADPm + C100ACPm + 4 CO2m + 4 ACPm	ACACPm + 5 MALACPm + 10 NADPHm -> 10 NADPm + C120ACPm + 5 CO2m + 5 ACPm	ACACPm + 6 MALACPm + 12 NADPHm -> 12 NADPm + C140ACPm + 6 CO2m + 6 ACPm	ACACPm + 6 MALACPm + 11 NADPHm -> 11 NADPm + C141ACPm+ 6 CO2m + 6 ACPm	ACACPm + 7 MALACPm + 14 Typell_5 NADPHm -> 14 NADPm + C160ACPm + 7 CO2m + 7 ACPm	ACACPm + 7 MALACPm + 13 TypeII_6
15			ACACPm + NADPHm -> C100ACPm ACPm	ACACPm+{ NADPHm -> C120ACPm ACPm	ACACPm+(NADPHm-> C140ACPm ACPm	ACACPm+(NADPHm-> C141ACPm- ACPm	ACACPm + NADPHm -> C160ACPm ACPm	ACACPm +
20	ntinued) Acyl carrier protein, component of mitochondria tvoe II fattv acid svnthase	-facyl-carrier- protein rotein]	Q	ŵ	ų	ų	Q	Ð
25	ntinued) Acyl carrier protein, component of mitochondria tvoe II fattv acid svnt	Beta-ketoacyl-ACP synthase, mitochondrial (3-oxoacyl-[Acyl-carrier- protein] synthase) Malonyl CoA:acyl carrier protein transferase 3-Oxoacyl-[acyl-carrier-protein] reductase	Type II fatty acid synthase	Type II fatty acid synthase	Type II fatty acid synthase	Type II fatty acid synthase	Type II fatty acid synthase	Type II fatty acid synthase
30	(continued) Acyl carrie mitochond	Beta-ketoacyl-ACF mitochondrial (3-o protein] synthase) Malonyl CoA:acyl transferase 3-Oxoacyl-[acyl-ce reductase	Type II fatt	Type II fatt	Type II fatt	Type II fatt	Type II fatt	Type II fatt
35								
40	ACP1	CEM1 MCTI OAR1	ACP1/C EM1/MC T1/OAR 1	ACP1/C EM1/MC T1/OAR 1	ACP1/C EM1/MC T1/OAR 1	ACP1/C EM1/MC T1/OAR 1	ACP1/C EM1/MC T1/OAR	ACP1/C
45	ynthase							
50	oolism e II fatty acid s 1.6.5.3		1.6.5.3/- /-/-	1.6.5.3/- /-/-	1.6.5.3/- /-/-	1.6.5.3/-	1.6.5.3/- /-/-	1.6.5.3/-
55	Fatty Acids Metabolism Mitochondrial type II fatty acid synthase YKL192C 1.6.5.3	YER061C YOR221C YKL055C	YKL192C/Y ER061C/YO R221C/YKL 055C	YKL192C/Y ER061C/YO R221C/YKL 055C	YKL192C/Y ER061C/YO R221C/YKL 055C	YKL192C/Y ER061C/YO /-/- R221C/YKL 055C	YKL192C/Y ER061C/YO R221C/YKL 055C	YKL192C/Y

5		Typell_7	Typell_8	Typell_9	acc1 fas1_1	fas1_2 ceml c100sn
10 15	NADPHm -> 13 NADPm + C161ACPm + 7 CO2m + 7 ACPm	ACACPm + 8 MALACPm + 16 Typell_7 NADPHm -> 16 NADPm + C180ACPm + 8 CO2m + 8 ACPm	ACACPm + 8 MALACPm + 15 Typell_8 NADPHm -> 15 NADPm + C181ACPm + 8 CO2m + 8 ACPm	ACACPm + 8 MALACPm + 14 Typell_9 NADPHm -> 14 NADPm + C182ACPm + 8 CO2m + 8 ACPm	ACCOA + ATP + CO2 <-> MALCOA + ADP + PI MALCOA+ACP <-> MALACP + COA	ACCOA + ACP <-> ACACP + COA MALACPm + ACACPm -> ACPm + CO2m + 30ACPm ACACP + 4 MALACP + 8 NADPH - -> 8 NADP + C100ACP + 4 CO2 + 4
	NADP C161A ACPm	ACACF NADPF C180A(ACPm	ACACF NADPF C181A ACPm	ACACF NADPH C182A ACPm	. с	
20		a.			ACC) / bio beta chair alpha cha	beta chair otein] ه (C10,0),
25		Type II fatty acid synthase	Type II fatty acid synthase	Type II fatty acid synthase	acetyl-CoA carboxylase (ACC) / biotin carboxylase fatty-acyl-CoA synthase, beta chain fatty-acyl-CoA synthase, alpha chain	fatty-acyl-CoA synthase, beta chain 3-Oxoacyl-[acyl-carrier-protein] synthase b-Ketoacyl-ACP synthase (C10,0), fatty acyl CoA synthase
30	(continued)	Type II fat	Type II fai	Type II fai	acetyl-CoA c carboxylase fatty-acyl-Cc fatty-acyl-Cc	fatty-acyl 3-Oxoacy synthase b-Ketoacy fatty acyl
35						
40	EM1/MC T1/OAR	1 ACP1/C EM1/MC T1/OAR	ACP1/C EM1/MC T1/OAR	EM1/MC T1/OAR	ACC1 fas1 FAS2	fas1 CEM1 ACB1/A CC1/fas1
45	d synthase			0	6.4.1.2 6.3.4.14 4.2.1.61;1.3.1.9;2.3.1.38;2. 3.1.39;3.1.2.14;2.3.1.86 2.3.1.85; 1.1.1.100 ; 2.3.1.41	4.2.1.61;1.3.1.9;2.3.1.38;2. 3.1.39;3.1.2.14;2.3.1.86 2.3.1.41 6.4.1.2; 6.3.4.1; 4
50	ıbolism pe II fatty acit /-/-	1.6.5.3/- /-/-	1.6.5.3/- /-/-	1.6.5.3/- acid svnthesi	6.4.1.2.6.3.4.14 4.2.1.61;1.3.1.9 3.1.39;3.1.2.14 2.3.1.85; 1.1.1.1 2.3.1.41	4.2.1.61;1 3.1.39;3.1 2.3.1.41 6.4.1.2; 6.3.4.1; 4
55	Fatty Acids Metabolism Mitochondrial type II fatty acid synthase ER061C/YO R221C/YKL	055C YKL192C/Y ER061C/YO R221C/YKL	055C YKL192C/Y ER061C/YO R221C/YKL	YKL192C/Y 1.6.5.3/- ER061C/YO /-/- R221C/YKL 055C Cvtosolic fatty acid svnthesis	YNR016C YKL182w YPL231w	YKL182W YER061C YGR037C/Y NR016C/YK

5		c120sn	c140sn	c141sy	c160sn	c161sy
10 15	<u>ņ</u> .	ACACP + 5 MALACP + 10 NADPH -> 10 NADP + C120ACP + 5 CO2 + 5 ACP	ACACP + 6 MALACP + 12 NADPH -> 12 NADP + C140ACP + 6 CO2 + 6 ACP	ACACP + 6 MALACP + 11 NADPH -> 11 NADP + C141ACP + 6 CO2 + 6 ACP	ACACP + 7 MALACP + 14 NADPH -> 14 NADP + C160ACP + 7 CO2 + 7 ACP	ACACP + 7 MALACP + 13 NADPH -> 13 NADP + C161ACP + 7 CO2 + 7 ACP
	ACP	A A A A A A A A A A A A A A A A A A A	0 A A A A A A A A A A A A A A A A A A A	A N A O	A N N N N N N N N N N N N N N N N N N N	AC C1
20		se (C12,0),	se (C14,0)	se I (C14,1)	se I (C16,0)	se I (C16,1)
25		b-Ketoacyl-ACP synthase (C12,0), fatty acyl CoA synthase	b-Ketoacyl-ACP synthase (C14,0)	b-Ketoacyl-ACP synthase I (C14,1)	b-Ketoacyl-ACP synthase I (C16,0)	b-Ketoacyl-ACP synthase I (C16,1)
30	(continued)	b-Ketoac) fatty acyl	b-Ketoac)	b-Ketoac)	b-Ketoac)	b-Ketoac)
35				/FAS2/		
40	/FAS2/	ACB1/A CC1/fas1 /FAS2/	ACB1/A CC1/fas1 /FAS2/	ACB1/A 4 CC1/fas1 /FAS2/	ACB1/A CC1/fas1 /FAS2/	ACB1/A 4 CC1/fas1 /FAS2/
45	2.3.1.41;	2.3.1.41;	2.3.1.41;	.1.1.100; 2.161	2.3.1.41;	2.3.1.41;
50	id synthesis 2.3.1.85; 1.1.1.100 ;2.3.1.41; 4.2.1.61	6.3.4.1.2; 6.3.4.1; 4 2.3.1.85; 1.1.1.100 ;2.3.1.41;	4.2.1.61 6.4.1.2; 6.3.4.1; 4 2.3.1.85; 1.1.1.100 ;2.3.1.41;	4.2.1.61 6.4.1.2; 6.3.4.1; 2.3.1.85; 1.1.1.100 ; 2.3.1.47.4.2.161	6.4.1.2; 6.4.1.2; 6.3.4.1; 4 2.3.1.85; 1.1.1.100;2.3.1.41; 4.2.1.61	4.2.1.61 6.4.1.2; 6.3.4.1; 2.3.1.85; 1.1.1.100 ;2.3.1.41; 4.2.1.61
55	<mark>Cytosolic fatty acid synthesis</mark> L182W/ҮРL 2.3.1.85; 231w 1.1.1.00 <i>;</i> 2 4.2.1.61	YGR037C/Y NR016C/YK L182W/YPL 231w	YGR037C/Y NR016C/YK L182W/YPL 231w	YGR037C/Y NR016C/YK L182W/YPL 231w	YGR037C/Y NR016C/YK L182W/YPL 231w	YGR037C/Y NR016C/YK L182W/YPL 231w

24

5		c180sy	c182sy	fas1_3 fas1_4	c140dg	c160dg	c180dg
10		ACACP + 8 MALACP + 16 NADPH -> 16 NADP + C180ACP + 8 CO2 + 8 ACP ACACP + 8 MALACP + 15 NADPH c181sy -> 15 NADP + C181ACP + 8 CO2 + 8 ACP	ACACP + 8 MALACP + 14 NADPH -> 14 NADP + C182ACP + 8 CO2 + 8 ACP	3HPACP <-> 2HDACP AACP + NAD <-> 23DAACP	+ NADH C140 + ATP + 7 COA + 7 FADm + 7 NAD -> AMP + PPI + 7 FADH2m + 7 NADH+ 7 ACCOA	C160 + ATP + 8 COA + 8 FADm + 8 NAD -> AMP + PPI + 8 FADH2m + 8 NADH + 8 ACCOA	C180 + ATP + 9 COA + 9 FADm + 9 NAD -> AMP + PPI + 9 FADH2m + 9 NADH + 9 ACCOA
15		ACACP + NADPH -> C180ACP ACACP + NADPH c1 + C181ACI	ACACP + NADPH -> C182ACP	3HPACP < AACP + N	+ NADH + NADH C140 + AT FADM+ 71 + 7 FADH2 + 7 FADH2 ACCOA	C160 + AT FADm + 81 + 8 FADH2 ACCOA	C180 + AT FADm + 91 + 9 FADH2 ACCOA
20		se I (C18,0) se I (C18,1)	se I (C18,2)	l-carrier			
25		b-Ketoacyl-ACP synthase I (C18,0) b-Ketoacyl-ACP synthase I (C18,1)	b-Ketoacyl-ACP synthase I (C18,2)	3-hydroxypalmitoyl-[acyl-carrier protein] dehydratase Enoyl-ACP reductase	Fatty acid degradation	Fatty acid degradation	Fatty acid degradation
30	(continued)	b-Ketoacy b-Ketoacy	b-Ketoacy	3-hydroxy protein] d Enoyl-AC	Fatty acid	Fatty acid	Fatty acid
35							
40		ACB1/A CC1/fas1 /FAS2/ ACB1/A CC1/fas1	ACB1/A 4 CC1/fas1 /FAS2/	fas1 fas1	POX1/F OX2/PO T3	POX1/F OX2/PO T3	POX1/F OX2/PO T3
45	<u>v</u>	6.4.1.2; 6.3.4.1, 4 2.3.1.85; 1.1.1.100 ; 2.3.1.41; 4.2.1.61 6.4.1.2; 6.3.4.1; 4 2.3.1.85: /FAS2/1.1.1.100 ;	2.3.1.41; 4.2.1.61 6.4.1.2; 6.3.4.1; 2.3.1.85; 1.1.1.100 ;				
50	id svnthes	6.4.1.2; 6.3.4.1; 4 6.3.4.1; 4 2.3.1.85; 2.3.1.41; 4 6.4.1.2; 6.3.4.1; 4 6.3.4.1; 4	2.3.1.41; 4.2.1.61 6.4.1.2; 6.3.4.1; 2.3.1.85; 1.1.1.10 2.3.1.41; 4.2.461	4.2.1.61 4.2.1.61 1.3.1.9	1.3.3.6/2. 3.1.18	1.3.3.6/2. 3.1.18	1.3.3.6/2. 3.1.18
55	Cvtosolic fattv acid svnthesis	YGR037C/Y NR016C/YK L182W/YPL 231w YGR037C/Y NR016C/YK L182W/YPL 231w	YGR037C/Y NR016C/YK L182W/YPL 231w	YKL182W YKL182W	Fatty acid degradation YGL205W/ YKR009C/Y IL160C	YGL205W/ YKR009C/Y IL160C	YGL205W/ YKR009C/Y IL 160C

5	Gat1_1	Gat2_1	Gat1_2	Gat2_2	ADHAPR
10	GL3P + 0.017 C100ACP + 0.062 C120ACP + 0.1 C140ACP + 0.27 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> AGL3P + ACP	GL3P + 0.017 C100ACP + 0.062 C120ACP + 0.1 C140ACP + 0.27 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> AGL3P + ACP	T3P2 + 0.017 C100ACP + 0.062 C120ACP + 0.1 C140ACP + 0.27 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> AT3P2 + ACP	T3P2 + 0.017 C100ACP + 0.062 C120ACP + 0.1 C140ACP + 0.27 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> AT3P2 + ACP	AT3P2 + NADPH -> AGL3P + NADP
15	GL3P + GL3P + 0.062 C C140AC + 0.169 + 0.093(+ ACP	GL3P + 0.062 C C140AC + 0.169 C180AC + 0.093 (+ ACP	T3P2 + (0.062 C C140AC + 0.169 C180AC + 0.093 (+ ACP	T3P2 + (0.062 C C140AC C140AC + 0.169 C180AC + 0.093 (+ ACP	AT3P2 + + NADP
20	acyltransferase	Glycerol-3-phosphate acyltransferase	Glycerol-3-phosphate acyltransferase	. acyltransferase	sphosphate
25	tinued) Glycerol-3-phosphate acyltransferase	erol-3-phosphate	erol-3-phosphate	Glycerol-3-phosphate acyltransferase	Acyldihydroxyacetonephosphate reductase
30	(continued) Glycerc	Glyc	Glyc	Glyc	Acyl
35					
40				'	
45					
50	Phospholipid Biosynthesis -				
55	Phospholipi			'	

5		sic.	AGAT	cds1a	cdslb	cho1a	cho1b	psd2	psd1	cho2	opi3_1	opi3_2	cki1	pctl	cptl
10 15		AGL3P + 0.017 C100ACP + 0.062 C120ACP + 0.100 C140ACP + 0.270 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> PA + ACP	AGL3P + 0.017 C100ACP + 0.062 C120ACP + 0.100 C140ACP + 0.270 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> PA + ACP	PAm + CTPm <-> CDPDGm + PPIm	PA + CTP <-> CDPDG + PPI	CDPDG + SER <-> CMP + PS	CDPDGm + SERm <-> CMPm + PSm	PS -> PE + CO2	PSm -> PEm + CO2m	SAM + PE -> SAH + PMME	SAM + PMME -> SAH + PDME	PDME + SAM -> PC + SAH	ATP + CHO -> ADP + PCHO	PCHO + CTP -> CDPCHO + PPI	CDPCHO + DAGLY -> PC + CMP
20		phosphate	phosphate	erol synthetase	erol synthetase	ne synthase	ine synthase	phosphatidylserine decarboxylase located in vacuole or Golgi	Phosphatidylserine Decarboxylase 1	anolamine N- se	Methylene-fatty-acyl-phospholipid synthase.	Phosphatidyl-N-methylethanolamine N-methyltransferase		te Ise	ransferase
25 30	(continued)	1-Acylglycerol-3-phosphate acyltransferase	1-Acylglycerol-3-phosphate acyltransferase	CDP-Diacylglycerol synthetase	CDP-Diacylglycerol synthetase	phosphatidylserine synthase	Phosphatidylserine synthase	phosphatidylserine decarb located in vacuole or Golgi	Phosphatidylseri	Phosphatidylethanolamine N- methyltransferase	Methylene-fatty- synthase.	Phosphatidyl-N-meth N-methyltransferase	Choline kinase	Cholinephosphate cytidylyltransferase	Diacylglycerol cholinephosphotransferase
35	(co														
40		SLC1		CDS1	CDS1	chol	cho1	PSD2	PSD1	CH02	OPI3	OP13	CK1	PCT1	CPT1
45															
50	liosynthesis	2.3.1.51	2.3.1.51	2.7.7.41	2.7.7.41	2.7.8.8	2.7.8.8	4.1.1.65	4.1.1.65	2.1.1.7	2.1.1.16	2.1.1.16	2.7.1.32	2.7.7.15	2.7.8.2
55	Phospholipid Biosynthesis	YDL052C		YBR029C	YBR029C	YER026C	YER026C	YGR170W	YNL169C	YGR157W	YJR073C	YJR073C	YLR133W	YGR202C	YNL130C

5		eki1	ect1	ept1	inol	impal	pis1	tor1	tor2	vps34	pik1	:	sst4	fab1		mss4	plc1	pgs1 pgpa	crdl
10		M -> ADP +	PETHM + CTP -> CDPETN + PPI	CDPETN+DAGLY <-> CMP + PE	д	'01 + PI	CDPDG + MYOI → CMP + PINS	ATP + PINS -> ADP + PINSP	ATP + PINS -> ADP + PINSP	ATP + PINS -> ADP + PINSP	: -> ADP +		5 -> ADP +	PINS4P + ATP -> D45Pl + ADP		PINS4P + ATP -> D45PI + ADP	D45Pl -> TPl + DAGLY	CDPDGm + GL3Pm <-> CMPm + PGPm PGPm -> PIm + PGm	CDPDGm + PGm -> CMPm + CLm
15		ATP + ETHM -> ADP PETHM	PETHM + O + PPI	CDPETN+ + PE	G6P -> MI1P	MI1P -> MYOI + PI	CDPDG + N PINS	ATP + PINS	ATP + PINS	ATP + PINS	ATP + PINS -> ADP +	PINS4P	A I P + PINS -> AUP PINS4P	PINS4P + A ADP		PINS4P + / ADP	D45Pl -> TI	CDPDGm + CMPm + PG Plm + PGm	CDPDGm + + CLm
20				ansferase.	e synthase		hase	kinase	kinase	kinase	nase (PI 4-	s 4-P	nase	-OL-4- ; 1- nosphate		osphate 5- er cvtoskeleton	5- esterase	ne O- osphate	
25		Ethanolamine kinase	Phosphoethanolamine cytidylyltransferase	Ethanolaminephosphotransferase.	myo-Inositol-1-phosphate synthase	myo-Inositol-1(or 4)-monophosphatase	phosphatidylinositol synthase	1-Phosphatidylinositol 3-kinase	1-Phosphatidylinositol 3-kinase	1-Phosphatidylinositol 3-kinase	Phosphatidylinositol 4-kinase (PI 4-	kinase), generates Ptdins 4-P	Phosphatidylinositol 4-kinase	PROBABLE PHOSPHATIDYLINOSITOL-4- PHOSPHATE 5-KINASE, 1- phosphatidylinositol-4-phosphate		Phosphatidylinositol-4-phosphate 5- kinase; required for proper ordanization of the actin cvtoskeleton	1-phosphatidylinositol-4,5- bisphosphate phosphodiesterase	CDP-diacylglycerolserine O- phosphatidyltransferase Phosphatidylglycerol phosphate	Cardiolipin synthase
30	(continued)	Ethanol	Phospho cytidylyli	Ethanola	myo-lno	myo-lno 4)-mono	phosphe	1-Phosp	1-Phosp	1-Phosp	Phosph	kinase),	Phosphe	PROBABLE PHOSPHAT PHOSPHAT phosphatidy	kinase	Phospha kinase; r organize	1-phosp bisphosi	CDP-diacylglyc phosphatidyltra Phosphatidylgly phosphatase A	Cardiolig
35																			
40		EKI1	MUQ1	EPT1	ino1	INM1	PIS1	tor1	tor2	vps34	PIK1		S114	FAB1		MSS4	plc1	PGS1	CRD1
45																		.3.27	
50	Biosynthesis	2.7.1.82	2.7.7.14	2.7.8.1	5.5.1.4	3.1.3.25	2.7.8.11	2.7.1.137	2.7.1.137	2.7.1.137	2.7.1.67		2.7.1.67	2.7.1.68		2.7.1.68	3.1.4.11	2.7.8.8 3.1.3.27	2.7.8.5
55	Phospholipid Biosynthesis	YDR147W	YGR007W	YHR123W	YJL153C	YHR046C	YPR113W	YJR066W	YKL203C	YLR240W	YNL267W		YLH305C	YFR019W		YDR208W	YPL268W	YCL004W -	YDL142C

5		dpp1	lpp1	lcb2	lcb1	tsc10	sur2	csyna	csynb	scs7	aurl	csg2	sur1	iptl	lcb4_1	lcb5_1	lcb4_2
10 15		PA -> DAGLY + PI	DGPP -> PA + PI	PALCOA + SER -> COA + DHSPH + CO2	PALCOA + SER -> COA + DHSPH + CO2	DHSPH + NADPH -> SPH + NADP	SPH + 02 + NADPH -> PSPH + NADP	PSPH + C260COA -> CER2 + COA	PSPH + C240COA -> CER2 + COA	CER2 + NADPH + 02 -> CER3 + NADP	CER3 + PINS -> IPC	IPC + GDPMAN -> MIPC	IPC + GDPMAN -> MIPC	MIPC + PINS -> MIP2C	SPH + ATP -> DHSP + ADP	SPH + ATP -> DHSP + ADP	PSPH+ATP->PHSP+ADP
20 25						3-Dehydrosphinganine reductase DI	SYRINGOMYCIN RESPONSE SI PROTEIN 2 +	-		acyl /Iceramide	-	is of the	is of the	۲.	involved in	involved in	involved in
30	(continued)	diacylglycerol pyrophosphate phosphatase	lipid phosphate phosphatase	Serine C-palmitoyltransferase	Serine C-palmitoyltransferase	3-Dehydrosphir	SYRINGOMYC PROTEIN 2	Ceramide synthase	Ceramide synthase	Ceramide hydroxylase that hydroxylates the C-26 fatty- moiety of inositol-phosphory	IPS synthase, AUREOBA RESISTANCE PROTEIN	Protein required for synthes mannosylated sphingolipids	Protein required for synthesi mannosvlated sphingolipids	MIP2C synthase, MANNOSY DIPHOSPHORYLINOSITOL CERAMIDE SYNTHASE	Long chain base kinase, sphingolipid metabolism	Long chain base kinase, sphingolipid metabolism	Long chain base kinase, sphingolipid metabolism
35																	
40		DPP1	LPP1	LCB2	LCB1	TSC10	SUR2			SCS7	AUR1	CSG2	SUR1	IPT1	LCB4	LCB5	LCB4
45																	
50	Phosnholinid Biosvnthesis		YDR503C Sohingoolvcolinid Metabolism	2.3.1.50	2.3.1.50	1.1.1.102								2			
55	Phospholinic	YDR284C	YDR503C Sphingoglyc	YDR062W	YMR296C	YBR265w	YDR297W	·		YMR272C	YKL004W	YBR036C	YPL057C	YDR072C	YOR171C	YLR260W	YOR171C

5		lcb5_2	lcb3	ysr3	dpl1	sgmh	hmg2	hmg1	erg12_1	erg12_2	erg12_3	erg12_4	erg8	mvd1	idil	erg20_1 erg20_2
10 15		PSPH + ATP -> PHSP + ADP	IH + HAS <- ASHO	IH + HAS <- ASHO	DHSP -> PETHM + C16A	H3MCOA + COA <-> ACCOA + AACCOA	MVL + COA + 2 NADP <-> H3MCOA + 2 NADPH	MVL + COA + 2 NADP <-> H3MCOA + 2 NADPH	ATP + MVL -> ADP + PMVL	CTP + MVL -> CDP + PMVL	GTP + MVL -> GDP + PMVL	UTP + MVL -> UDP + PMVL	ATP + PMVL -> ADP + PPMVL	ATP + PPMVL -> ADP + Pl + IPPP + CO2	PPP <-> DMPP	DMPP + IPPP -> GPP + PPI GPP + IPPP -> FPP + PPI
20		involved in	(0		Dihydrosphingosine-1-phosphate lyase D	3-hydroxy-3-methylglutarylcoenzymeA H synthase			A	0	U				lethylallyl	
25	(pe	Long chain base kinase, involved in sphingolipid metabolism	Sphingoid base-phosphate phosphatase, putative regulator of sphingolipid metabolism and stress response	Sphingoid base-phosphate phosphatase, putative regulator of sphingolipid metabolism and stress response	drosphingosine-1.	łroxy-3-methylglu iase	3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase isozyme	3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase isozyme	mevalonate kinase	mevalonate kinase	mevalonate kinase	mevalonate kinase	48 kDa Phosphomevalonate kinase	Diphosphomevalonate decarboxylase	lsopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP isomerase)	prenyltransferase Farnesyl diphosphate synthetase (FPP synthetase)
30	(continued)	Long sphi	Sphi phos sphi resp	Sphi phos sphi resp	Dihyo	3-hydrox) synthase	3-hyo A (Hh	3-hyo A (HN	meva	meva	meva	meva	48 K	Dipho	Isope dipho isomo	pren) Farne synth
35																
40		LCB5	LCB3	YSR3	DPL1	HMGS	hmg2	hmg1	erg12	erg12	erg12	erg12	ERG8	MVD1	idi1	ERG20 ERG20
45	E															
50	Sphingoglycolipid Metabolism	-			thesis	4.1.3.5	1.1.1.34	1.1.1.34	2.7.1.36	2.7.1.36	2.7.1.36	2.7.1.36	2.7.4.2	4.1.1.33	5.3.3.2	2.5.1.1 2.5.1.10
55	Sphingoglyce	YLR260W	YJL134W	YKR053C	YDR294C Sterol biosynthesis	YML126C	YLR450W	YML075C	YMR208W	YMR208W	YMR208W	YMR208W	YMR220W	YNR043W	YPL117C	YJL167W YJL167W

5	dpl1 erg9	erg1	erg7	erg11_1	erg24	erg25_1	erg26_1	(erg11_2	erg25_2	erg26_2	erg11_3	erg6	erg2	erg3	erg5	erg4	unkrxn3
10 15	DHSP -> PETHM + C16A 2 FPP + NADPH -> NADP + SQL	SQL + 02 + NADP -> S23E + NADPH	S23E -> LNST	LNSI + KFP + 02 -> 1GSI + OFP	IGST + NADPH -> DMZYMST + NADP	3 02 + DMZYMST -> IMZYMST	IMZYMST -> IIMZYMST +		IIMZYMST + NADPH -> MZYMST + NADP	3 02 + MZYMST -> IZYMST	ZYMST → IIZYMST + CO2	IIZYMST + NADPH -> ZYMST + NADP	ZYMST+SAM->FEST+SAH	FEST -> EPST	EPST + 02 + NADPH -> NADP + ERTROL	ERTROL + 02 + NADPH -> NADP + ERTEOL	ERTEOL + NADPH -> ERGOST + NADP	LNST+302+4NADPH+NAD -> MZYMST+CO2+4NADP + NADH
20			ase		⊻ +		_				_			H	□ +		шШ	<u></u> ↑ + , <u></u>
25	rtinued) Dihydrosphingosine-1-phosphate lyase Squalene synthase.	Squalene monooxygenase	2,3-oxidosqualene-lanosterol cyclase	cytocnrome ⊬450 lanosterol 14a- demethylase	C-14 sterol reductase	C-4 sterol methyl oxidase	C-3 sterol dehydrogenase (C-4	ruuxyiase)	C-3 sterol keto reductase	C-4 sterol methyl oxidase	C-3 sterol dehydrogenase (C-4 decarboxylase)	C-3 sterol keto reductase	S-adenosyl-methionine delta-24-sterol- c-methyltransferase	C-8 sterol isomerase	C-5 sterol desaturase	C-22 sterol desaturase	sterol C-24 reductase	
30	(continued) Dihydro Squalen	Squa	2,3-0	cytoo deme	C-14	C-4 s	C-3 s den	ueca 0 0	5-3 0	C-4 s	C-3 s deca	C-3 s	S-ad c-me	C-8 (C-5 s	C-22	stero	
35								(:)			0						
40	DPL1 ERG9	ERG1	ERG7	erg1	ERG24	ERG25	ERG26		YLH100 C	ERG25	ERG26	YLR100 C	erg6	ERG2	ERG3	ERG5	ERG4	
45																		
50	2.5.1.21	1.14.99.7	5.4.99.7	1.14.14.1	1	1	5.3.3.1			1	5.3.3.1		2.1.1.41		1	1.14.14	1	
55	YDR294C YHR190W	YGR175C	YHR072W	YHHUU/C	YNL280c	YGR060w	YGL001c		YLH100C	YGR060w	YGL001c	YLR100C	YML008c	YMR202W	YLR056w	YMR015c	YGL012w	

5	dpl1 unkrxn4	cdisoa		prs5	prs4	prs2	prs3	prs1	dal1	dal2	dal3		cyr1	guk1_1	guk1_2	guk1_3	ade4	ade5	ade8	ade6	ade7
10 15	DHSP -> PETHM + C16A MZYMST + 3 02 + 4 NADPH + NAD -> ZYMST + CO2 + 4 NADP + NADH	ZYMST + SAM -> ERGOST + SAH		R5P + ATP <-> PRPP + AMP	R5P + ATP <-> PRPP + AMP	R5P + ATP <-> PRPP + AMP	R5P + ATP <-> PRPP + AMP	R5P + ATP <-> PRPP + AMP	ATN <-> ATT	ATT <-> UGC + UREA	UGC <-> GLX + 2 NH3 + CO2		ATP -> cAMP + PPI	GMP + ATP <-> GDP + ADP	DGMP + ATP <-> DGDP + ADP	GMP + DATP <-> GDP + DADP	PRPP + GLN -> PPI + GLU + PRAM	PRAM + ATP + GLY <-> ADP + PI + GAR	GAR + FTHF -> THF + FGAR	FGAR + ATP + GLN -> GLU + ADP + PI + FGAM	FGAM+ATP->ADP+PI+AIR
		ZYM SAH							ATN	ATT	ng		АТР	Ю М	DGM ADP	GMP + DADP	PRPP.	РР./ Ч	GAF		FG/
20	-phosphate lyas	nerase		phosphokinase	phosphokinase	phosphokinase	phosphokinase	phosphokinase			ase						osphate	ynthetase and le synthetase	ansformylase	yl glycinamidine	glycinamide
25	rtinued) Dihydrosphingosine-1-phosphate lyase	Cholestenol delta-isomerase		ribose-phosphate pyrophosphokinase	ribose-phosphate pyrophosphokinase 4	ribose-phosphate pyrophosphokinase 2	ribose-phosphate pyrophosphokinase 3	ribose-phosphate pyrophosphokinase	inase	icase	ureidoglycolate hydrolase		adenylate cyclase	guanylate kinase	guanylate kinase	guanylate kinase	phosphoribosylpyrophosphate amidotransferase	glycinamide ribotide synthetase and aminoimidazole ribotide synthetase	glycinamide ribotide transformylase	5'-phosphoribosylformyl glycinamidine synthetase	Phosphoribosylformylglycinamide cyclo-ligase
30	(continued) Dihydro	Choles		ribose	ribose	ribose	ribose	ribose	allantoinase	allantoicase	ureido		adenyl	guany	guany	guany	phosp amidot	glycina aminoi	glycine	5'-phospho synthetase	Phosphorib cyclo-ligase
35																					
40	DPL1			PRS5	PRS4	PRS2	PRS3	PRS1	dal1	dal2	dal3		CYR1	GUK1	GUK1	GUK1	ade4	ade5,7	ade8	ade6	ade5,7
45																					
50		5.3.3.5	tabolism ynthesis	2.7.6.1	2.7.6.1	2.7.6.1	2.7.6.1	2.7.6.1	3.5.2.5	3.5.3.4	3.5.3.19	olism	4.6.1.1	2.7.4.8	2.7.4.8	2.7.4.8	2.4.2.14	6.3.4.13	2.1.2.2	6.3.5.3	6.3.3.1
55	YDR294C		Nucleotide Metabolism Histidine Biosynthesis	YOL061W	YBL068W	YER099C	YHL011C	YKL181W	YIR027C	YIR029W	YIR032C	Purine metabolism	YJL005W	YDR454C	YDR454C	YDR454C	YMR300C	YGL234W	YDR408C	YGR061C	YGL234W

5		ade2	ade1	ade13_1	ade16_1	ade17_1	ade16_2	ade17_2	ade12	ade13_2	fun63	pur5	prm5	prm4	pm6	gual	amd1
10		CAIR <-> AIR+ CO2	CAIR + ATP + ASP <-> ADP + PI + SAICAR	SAICAR <-> FUM + AICAR	AICAR + FTHF <-> THF + PRFICA	AICAR + FTHF <-> THF + PRFICA	PRFICA <-> IMP	PRFICA <-> IMP	IMP + GTP + ASP -> GDP + PI + ASUC	ASUC <-> FUM + AMP	IMP + NAD -> NADH + XMP	IMP + NAD -> NADH + XMP	IMP + NAD -> NADH + XMP	IMP + NAD -> NADH + XMP	IMP + NAD -> NADH + XMP	XMP + ATP + GLN -> GLU + AMP + PPI + GMP	AMP -> IMP + NH3
15		CAIR <	CAIR + ATP + PI + SAICAR	SAICAI	AICAR + PRFICA	AICAR + PRFICA	PRFIC/	PRFIC/	IMP + GT + ASUC	ASUC.	IMP +	IMP + N	IMP +	IMP + N		XMP + AMP +	AMP ->
20		imidazole-	ozamide	5-	arboxamide () vclohvdrolase	arboxamide () vclohvdrolase	arboxamide () vclohvdrolase		hetase	se	nophosphate		onophosphate	onophosphate	Protein with strong similarity to inosine- 5'-monophosphate dehydrogenase, frameshifted from YAR073W, possible		
25	d)	phosphoribosylamino-imidazole- carboxvlase	phosphoribosyl amino imidazolesuccinocarbozamide svnthetase	5Phosphoribosyl-4-(N- succinocarboxamide)-5- aminoimidazole lyase	5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylaseVIMP cvclohydrolase	5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformvlaseVIMP cvclohvdrolase	5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformvlaseVIMP cvclohvdrolase	IMP cyclohydrolase	adenylosuccinate synthetase	Adenylosuccinate Lyase	putative inosine-5'-monophosphate dehydrogenase	purine excretion	probable inosine-5'-monophosphate dehydrogenase (IMP	probable inosine-5'-monophosphate dehydrogenase (IMP	Protein with strong similarity to inosi 5'-monophosphate dehydrogenase, frameshitted from YAR073W, possit	GMP synthase	AMP deaminase
30	(continued)	phosp carbo	phosphorib imidazolesu svnthetase	5'-Pho succir amino	5-amii ribonu transfe	5-amii ribonu transf	5-ami ribonu transfe	IMP C	adeny	Aden	putativ dehyd	purine	probal dehyd	probal dehyd	Frotei 5'-moi frame:	GMP	AMP
35															3		
40		ade2	ade1	ADE13	ADE16	ADE17	ADE16	ADE17	ade12	ADE13	fun63	bur5	IMD4	IMD3	YAR075 W	GUA1	amd1
45																4.1	
50	olism	4.1.1.21	6.3.2.6	4.3.2.2	2.1.2.3	2.1.2.3	3.5.4.10	2.1.2.3	6.3.4.4	4.3.2.2	1.1.1.205	1.1.1.205	1.1.1.205	1.1.1.205	1.1.1.205	6.3.5.2, 6.3.4.1	3.5.4.6
55	Purine metaholism	YOR128C	YAR015W	YLR359W	YLR028C	YMR120C	YLR028C	YMR120C	YNL220W	YLR359W	YAR073 W	YHR216W	YML056C	YLR432W	YAR075 W	YMR217W	YML035C

5		pde1	pde2_1	pde2_2	pdel2_3	pde2_4	pde2_5	apa2		aba	apa1_3			ura2_1	ura4	ura1_1	ura1_2	, ura5	ura10	ura3	npk	fur1		fcy1	tdk1	tdk2	urk1_1	urk1_2
10 15		cAMP -> AMP	cAMP -> AMP	cdAMP -> DAMP	cIMIP -> IMP	cGMP -> GMP	cCMP -> CMP	ADP + ATP -> PI + ATRP	מסדע יומ י מדי ימתע		GDP + GTP -> PI + GTRP II			CAP + ASP -> CAASP + PI	CAASP <-> DOROA	DOROA + 02 <-> H2O2 + OROA	DOROA + Qm <-> QH2m + OROA	OROA + PRPP <-> PPI + OMP	OROA + PRPP <-> PPI + OMP	OMP -> CO2 + UMP	ATP + UMP <-> ADP + UDP	URA + PRPP -> UMP + PPI		CYTS -> URA + NH3	DU + ATP -> DUMP + ADP	DT + ATP -> ADP + DTMP	URI + GTP -> UMP + GDP	CYTD + GTP -> GDP + CMP
		сA	сA	сd	сIN	Ö	ő	AD	<		В			Ú	Ö	Зö	Зö				AT	IJ		ΰ	ď	5	IJ	ΰ
20		e ow affinity	e igh affinity					osphate	0+04000	ospilate	osphate			ransferase		rogenase	Irogenase	syltransferase 1	Orotate phosphoribosyltransferase 2	orotidine-5'-phosphate decarboxylase	e kinase		erase		line) kinase	line) kinase		
25	(3',5'-Cyclic-nucleotide phosphodiesterase, low affinity	3,5'-Cyclic-nucleotide phosphodiesterase, high affinity					5',5"'-P-1,P-4-tetraphosphate	pnospnorylase II 5' E''' D 1 D 4 totrochoochoto	o,o -r-ı,r-4-tetrapri bhosphorvlase II	5',5'"-P-1,P-4-tetraphosphate	phosphorylase		Aspartate-carbamoyltransferase	dihydrooratase	dihydroorotate dehydrogenase	Dihydroorotate dehydrogenase	Orotate phosphoribosyltransferase	e phosphoribos	ie-5'-phosphat	Nucleoside-phosphate kinase	UPRTase, Uracil	phosphoribosyltransferase	cytosine deaminase	Thymidine (deoxyuridine) kinase	Thymidine (deoxyuridine) kinase	Jridine kinase	Cytodine kinase
30	(continued)	3',5'-C) phospf	3',5'-C) phosph					5',5"-F	pnospr z' z'' n	⊓- c,c †asoha	5',5"-F	hosph		Asparte	dihydro	dihydro	Dihydro	Orotate	Orotate	orotidir	Nucleo	UPRTe	hosph	cytosin	Thymic	Thymic	Uridine	Cytodir
35																												
40		PDE1	pde2	pde2	pde2	pde2	pde2	APA2	0000	ayaı	apal			ura2	ura4	ura1	РҮКО	URA5	URA10	ura3	URA6	fur1		FCY1			URK1	URK1
45																												
50	lism	3.1.4.17	3.1.4.17	3.1.4.17	3.1.4.17	3.1.4.17	3.1.4.17	2.7.7.53	0 7 7 60	CC. 1. 1.2	2.7.7.53		stabolism	2.1.3.2	3.5.2.3	1.3.3.1	1.3.3.1	2.4.2.10	2.4.2.10	4.1.1.23	2.7.4.14	2.4.2.9		3.5.4.1	2.7.1.21	2.7.1.21	2.7.1.48	2.7.1.48
55	Purine metabolism	YGL248W	YOR360C	YOR360C	YOR360C	YOR360C	YOR360C	YDR530C			YCL050C		Pyrimidine metabolism	YJL130C	YLR420W	YKL216W	YKL216W	YML106W	YMR271C	YEL021W	YKL024C	YHR128W		YPR062W	•	I	YNR012W	YNR012W

		က	-	ក្ត	-	~	~				cdc21 cmka1		a2		-	ب	2	2	+ _
5		urk1_3	deoal	deoa2	cdd1 1	cdd1	cdc8	trr1	trr2	dutl	cdc2		cmka2	dcd1	ura7_1	ura8_1	ura7_2	ura8_	pus4 pus1
10 15		URI+ATP-> ADP+UMPUMP	purine DU + PI <-> URA + DR1P	purine DT + PI <-> THY + DR I P	CYTD -> URI + NH3	DC -> NH3 + DU	DTMP + ATP <-> ADP + DTDP	othio + Nadph -> Nadp + Rthio	0THIOm + NADPHm -> NADPm + RTHIOm	DUTP -> PPI + DUMP	DUMP + METTHF -> DHF +	U IMP UCMP + AIP <-> AUP + DCDP	CMP + ATP <-> ADP + CDP	DCMP <-> DUMP + NH3	UTP + GLN + ATP -> GLU + CTP + ADP + PI	UTP + GLN + ATP -> GLU + CTP + ADP + PI	ATP + UTP + NH3 -> ADP + PI + CTP	ATP + UTP + NH3 -> ADP + PI + CTP	URA + R5P <-> PURI5P URA + R5P <-> PURI5P
		URI-	purine DR1P	purin I P	СY	- DC	DTM	OTHIO RTHIO	0TH NAD	DUT		H DCDP	CMP	DCN	UTP CTP	UTP CTP	АТР + + СТР	ATP + + CTP	URA URA
20		ts ATP and	Protein with similarity to human nucleoside phosphorylase, Thymidine (deoxyuridine) phosphorylase, Purine	Protein with similarity to human nucleoside phosphorylase, Thymidine (deoxyuridine) phosphorylase					mitochondrial thioredoxin reductase	dUTP pyrophosphatase (dUTPase)	Thymidylate synthase Cytidylate kinase				CTP synthase, highly homologus to URA8 CTP synthase		CTP synthase, highly homologus to		Pseudouridine synthase intranuclear protein which exhibits a nucleotide-specific intron-dependent tRNA pseudouridine synthase activity
25		Uridine kinase, converts ATP and uridine to ADP and	Protein with similarity to human nucleoside phosphorylase, Thyi (deoxyuridine) phosphorylase, F nucleotide phosphorylase	Protein with similarity to human nucleoside phosphorylase, Thy (deoxyuridine) phosphorylase	Cytidine deaminase	Cytidine deaminase	ase	Thioredoxin reductase	drial thioredo	ophosphatas	ate synthase		e kinase	aminase	CTP synthase, highly URA8 CTP synthase	hase	CTP synthase, highly	hase	Pseudouridine synthase intranuclear protein whic nucleotide-specific intror tRNA pseudouridine syn
30	(continued)	Uridine ki uridine to	Protein w nucleosid deoxyuri	Protein w nucleosid (deoxyuri	Cytidine o	Cytidine d	dTMP kinase	Thioredo	mitochone	dUTP pyr	Thymidyl		Cytidylate kinase	dCMP deaminase	CTP synt URA8 CT	CTP synthase	CTP synt	CTP synthase	Pseudour intranucle nucleotidk tRNA pse
35																			
40		URK1	L d N d	PNP1	CDD1	CDD1	cdc8	TRR1	TRR2	DUT1	cdc21			DCD1	URA7	URA8	URA7	URA8	PUS4 PUS1
45											14								
50	stabolism	2.7.1.48	2.4.2.4	2.4.2.4	3.5.4.5	3.5.4.5	2.7.4.9	1.6.4.5	1.6.4.5	3.6.1.23	2.1.1.45 2.7.4.14		2.7.4.14	3.5.4.12	6.3.4.2	6.3.4.2	6.3.4.2	6.3.4.2	4.2.1.70 4.2.1.70
55	Dvrimidine metaholism	YNR012W	YLR209C	YLR209C	YLR245C	YLR245C	YJR057W	YDR353W	YHR106W	YBR252W	YOR074C -		ı	YHR144C	YBL039C	YJR103W	YBL039C	YJR103W	YNL292W YPL212C

5	pus2 deg1		apt1	apt2	aah1a	aahlb	xapa1	xapa2	xapa3	xapa4	xapa5	xapa6	xapa7	gpt1	pur21	pur11	prm2	adk1_1	adk1_2
10 15	URA + R5P <-> PURI5P URA + R5P <-> PURI5P		PRPP ->	+ PRPP -> PPI + AMP	ADN -> INS + NH3	DA -> DIN + NH3	DIN + PI <-> HYXN + DR1P	DA + Pl <-> AD + DR1P	DG + Pl <-> GN + DR1P	HYXN + R1P <-> INS + PI	AD + R1P <-> PI + ADN	GN + R1P <-> PI + GSN	XAN + R1P <-> PI + XTSINE	XAN + PRPP -> XMP+PPI	GSN -> GN + RIB	ADN -> AD + RIB	ADN + ATP -> AMP + ADP	ATP + AMP <-> 2 ADP	GTP + AMP <-> ADP + GDP
	UR/ UR/		AD	AD +	ADN	DA	DIN	DA	DG	ΥΥ Η	AD	GN	XAN	XAN	<u>G</u> SN	ADN	ADN	ATF	GTF
20	se 2 /ltransferase ins) and ein (alkaline	5' region) from	syltransferase	erase	ase (adenine	tse (adenine	sphorylase, vlase	/lase, Purine ase	vlase	vlase, Purine ase	ylase, Purine lase	/lase, Purine lase	/lase, Purine lase	erase				nase	lase
25	ntinued) pseudouridine synthase 2 Similar to rRNA methyltransferase (Caenorhabditis elegans) and hypothetical 28K protein (alkaline	endoglucanase gene 5' region) from Bacillus sp.	Adenine phosphoribosyltransferase	similar to adenine phosphoribosyltransferase	adenine aminohydrolase (adenine deaminase)	adenine aminohydrolase (adenine deaminase)	Purine nucleotide phosphorylase, Xanthosine phosphorylase	Xanthosine phosphorylase, nucleotide phosphorylase	Xanthosine phosphorylase	Xanthosine phosphorylase, nucleotide phosphorylase	Xanthosine phosphorylase, nucleotide phosphorylase	Xanthosine phosphorylase, nucleotide phosphorylase	Xanthosine phosphorylase, nucleotide phosphorylase	Xanthine-guanine phosphoribosyltransferase	Purine nucleosidase	Purine nucleosidase	Adenosine kinase	cytosolic adenylate kinase	cytosolic adenylate kinase
30	(continued) pseudou Similar t (Caenor hypothe	endoglucan Bacillus sp.	Adenin	similar phosph	adenine am deaminase)	adenine ami deaminase)	Purine Xantho	Xantho nucleot	Xantho	Xantho	Xantho nucleot	Xantho nucleot	Xantho nucleot	Xanthir phosph	Purine	Purine	Adenos	cytosol	cytosol
35																	Ν		
40	PUS2 deg1		APT1	APT2	AAH1	AAH1	PNP1	PNP1	PNP1	PNP1	PNP1	PNP1	PNP1	XPT1	urhl	urhl	YJR105 W	adk1	adk1
45																			
50	t abolism 4.2.1.70 4.2.1.70	ays	2.4.2.7	2.4.2.7	3.5.4.4	3.5.4.4	2.4.2.1	2.4.2.1	2.4.2.1	2.4.2.1	2.4.2.1	2.4.2.1	2.4.2.1	2.4.2.22	3.2.2.1	3.2.2.1	2.7.1.20	2.7.4.3	2.7.4.3
55	Pyrimidine metabolism YGL063W 4.2.1 YFL001W 4.2.1	Salvage Pathways	YML022W	YDR441C	YNL141W	YNL141W	YLR209C	YLR209C	YLR209C	YLR209C	YLR209C	YLR209C	YLR209C	YJR133W	YDR400W	YDR400W	YJR105W	YDR226W	YDR226W

5		adk1_3	adk2_1		adk2_2	adk2 3				rnr3					ynk1_1	ynk1_2	ynk1_3	ynk1_4	ynk1_5	ynk1_6	ynk1_7	ynk1_8	ynk1_9	dampk	yicp	gsk1	gsk2	hpt1_1	
10		TP + AMP <-> ADP + IDP	ATPm + AMPm <-> 2 ADPm		GTPm + AMPm <-> ADPm + GDPm	TPm + AMPm <-> ADPm +				ADP + RTHIO -> DADP +	0				UDP + ATP <-> UTP + ADP	CDP + ATP <-> CTP + ADP	DGDP+ATP<->DGTP+ADP	DUDP+ATP <-> DUTP+ADP	DCDP + ATP <-> DCTP + ADP	DTDP + ATP <-> DTTP + ADP	DADP + ATP <-> DATP + ADP	GDP + ATP <-> GTP + ADP	IDP + ATP <-> ITP + IDP	DAMP + ATP <-> DADP + ADP	AD -> NH3 + HYXN	INS + ATP -> IMP + ADP	GSN + ATP -> GMP + ADP	НҮХN + РЯРР -> РРІ + ІМР	
15		+ 4TI	ATPm		GTPm	TPm	IDPm			ADP +	OTHIO				UDP +	CDP +	DGDP	DUDP	рсрр	DTDP	DADP	GDP+	IDP +	DAMP	AD ->	INS +	1 USD	НYXN	
20		ISE	chondrial GTP:	se)	chondrial GTP:	co, chondrial GTP:	se)	e, small subunit		se	ohate	t, alpha chain	cleotide		e kinase	P kinase				ase									
25		cytosolic adenylate kinase	Adenylate kinase (mitochondrial GTP:	AMP phosphotransferase)	Adenylate kinase (mitochondrial GTP: AMP phosphotransferase)	Adenylate kinase (mitochondrial GTP:	AMP phosphotransferase)	ribonucleotide reductase, small subunit	(alt), beta chain	Ribonucleotide reductase	(ribonucleoside-diphosphate	reductase) large subunit, alpha chain	small subunit of ribonucleotide	reductase, beta chain	Nucleoside-diphosphate kinase	Nucleoside diphosphate kinase	Nucleoside diphosphate kinase	Adenylate kinase, dAMP kinase	Adenine deaminase	kinase	Guanosine kinase	Hypoxanthine phosphoribosyltransferase							
30	(continued)	cytosoli	Adenyla	AMP ph	Adenyla AMP nł	Adenyla	AMP pr	ribonuc	(alt), be	Ribonud	(ribonuc	reducta	small su	reducta	Nucleo	Adenyla	Adenine	Inosine kinase	Guanos	Hypoxanthine phosphoribosy									
35																													
40		adk1	ADK2		adk2	adk2		RNR4		RNR3			mr2		YNK1		AAH1			HPT1									
45																													
50	vavs		2.7.4.3		2.7.4.3	2.7.4.3		1.17.4.1		1.17.4.1			1.17.4.1		2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.6	2.7.4.11	3.5.4.2	2.7.1.73	2.7.1.73	2.4.2.8	
55	Salvage Pathways	YDR226W	YER170W		YER170W	YER170W		YGR180C		YIL066C			YJL026W		YKL067W		YNL141W		,	YDR399W									

5		hpt1_2	dpn	pyrh1		cmpg	dcd	usha1	usha2	usha3	usha4	usha5	usha6	usha7	usha8	usha9	usha12	usha11	rnr1_1		rnr1_2	rnr1_3	rnr1_4	nrdd1	nrdd2	nrdd3
10		GN + PRPP -> PPI + GMP	JRI + PI <-> URA + R1P	JMP + ATP <-> UDP + ADP	DUMP+ATP <-> DUDP+ADP	CMP -> CYTS + R5P	DCTP -> DUTP + NH3	N + PI)T + PI	JA + PI	DG + PI	DC + PI	/TD + PI	+ ADN	+ GSN	+ INS	+ XTSINE	+ URI	ADP + RTHIO -> DADP +		GDP + RTHIO -> DGDP + OTHIO	CDP + RTHIO -> DCDP + OTHIO	UDP + RTHIO -> OTHIO + DUDP	ATP + RTHIO -> DATP + OTHIO	GTP + RTHIO -> DGTP + OTHIO	CTP + RTHIO -> DCTP + OTHIO
15		GN + PRP	URI + PI <	UMP + ATI	DUMP+A	CMP -> C)	DCTP -> D	DUMP -> DU + PI	DTMP -> DT + PI	DAMP -> DA + PI	DGMP -> DG + PI	DCMP -> DC + PI	CMP -> CYTD + P	AMP -> PI + ADN	GMP -> PI + GSN	IMP -> PI + INS	XMP -> PI + XTSINE	UMP -> PI + URI	ADP + RTI	OTHIO	GDP + RTI OTHIO	CDP + RTI OTHIO	UDP + RTI DUDP	ATP + RTH OTHIO	GTP + RTH OTHIO	CTP + RTH OTHIO
20		ase																	Ribonucleoside-diphosphate reductase		Ribonucleoside-diphosphate reductase	Ribonucleoside-diphosphate reductase	Ribonucleoside-diphosphate reductase	Ribonucleoside-triphosphate reductase	Ribonucleoside-triphosphate reductase	Ribonucleoside-triphosphate reductase
25	d)	Hypoxanthine ohosohoribosvitransferase	Uridine phosphorylase	Uridylate kinase	Jridylate kinase	CMP glycosylase	dCTP deaminase	5'-Nucleotidase	5'-Nucleotidase	ucleoside-diphos		ucleoside-diphos	ucleoside-diphos	ucleoside-diphos	ucleoside-triphos	ucleoside-triphos	ucleoside-triphos									
30	(continued)	KoqYH asoha	Uridin	Uridyl	Uridyl	CMP	dCTP	5'-Nuc	5'-Nuc	Ribon	I	Ribon	Ribon	Ribon	Ribon	Ribon	Ribon									
35																										
40		HPT1		URA6	URA6		DCD1												RNR1		RNR1	RNR1	RNR1			
45																										
50	SVEW	2.4.2.8	2.4.2.3	2.1.4	2.1.4	3.2.2.10	3.5.4.13	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	3.1.3.5	1.17.4.1		1.17.4.1	1.17.4.1	1.17.4.1	1.17.4.2	1.17.4.2	1.17.4.2
55	Salvade Pathwavs	YDR399W	·	YKL024C	YKL024C		YHR144C	,	ı		ı	ı	ı	ı	ı	ı			YER070W		YER070W	YER070W	YER070W			ı

5	nrdd4	mutt1 mutt2 amn	amn1 amn2	btn2 uga1	gabda	gfa1	gnal	pcm1a qril	chs3 chs2	chs1 put2_1 put2	glt1	gdh2
10 15	UTP + RTHIO -> OTHIO + М ITD	GTP -> GSN + 3 PI DGTP -> DG + 3 PI AMP -> AD + R5P	AMP -> AD + R5P AMP -> AD + R5P	GLU -> GABA + CO2 GABA + AKG -> SUCCSAL + GLU	SUCCSAL + NADP -> SUCC + NADPH	F6P + GLN -> GLU + GA6P	ACCOA + GA6P <-> COA + NAGA6P	NAGA1P <-> NAGA6P UTP + NAGA1P <-> UDPNAG + PPI	UDPNAG -> CHIT + UDP UDPNAG -> CHIT + UDP	UDPNAG -> CHIT + UDP GLUGSALm + NADPm -> NADPHm + GLUm P5Cm + NADm -> NADHm + GLUm	AKG + GLN + NADH -> NAD + 2 GLU	GLU + NAD -> AKG + NH3 + NADH
20	rtinued) Ribonucleoside-triphosphate reductase	latase latase	/ to AMP / to AMP	Glutamate decarboxylase B Aminobutyrate aminotransaminase 2	lyde ADP	Glutamine_fructose-6-phosphate amidotransferase (glucoseamine-6- phosphate synthase)	nate N-	Phosphoacetylglucosamine Mutase N-Acetylglucosamine-1-phosphate- uridyltransferase		arboxylate	(HQPH)	enase
25	eoside-triph	Nucleoside triphosphatase Nucleoside triphosphatase AMP deaminase	Protein with similarity to AMP deaminase Protein with similarity to AMP deaminase	Glutamate decarboxylase B Aminobutyrate aminotransar	Succinate semialdehyde dehydrogenase —NADP	Glutamine_fructose-6 amidotransferase (glu phosphate synthase)	Glucosamine-phosphate N- acetyltransferase	acetylgluco: jlucosamine sferase	thase 3 thase 2	chitin synthase 2 delta-1-pyrroline-5-carboxylate dehydrogenase	Glutamate synthase (NADH)	glutamate dehydrogenase
30	(continued) Ribonucle	Nucleoside tripho Nucleoside tripho AMP deaminase	Protein with deaminase Protein with deaminase	Glutamat Aminobut	Succinate dehydrog	Glutamin amidotrar phosphat	Glucosamine-pho acetyltransferase	Phosphoacetylglu N-Acetylglucosar uridyltransferase	chitin synthase 3 chitin synthase 2	chitin synthase 2 delta-1-pyrroline- dehydrogenase	Glutamat	glutamate
35												
40		AMD1	YBR284 W YJL070C	GAD1 uga1	YBR006 w	GFA1	GNA1	PCM1 QRI1	chs3 CHS2	CHS1 put2	GLT1	GDH2
45				ugars met)								
50	ys 1.17.4.2	3.6.1 3.6.1 3.2.2.4	3.2.2.4 3.2.2.4	Amino Acid Metabolism Glutamate Metabolism (Aminosugars met) YMR250W 4.1.1.15 YGR019W 2.6.1.19	1.2.1.16	2.6.1.16	2.3.1.4	5.4.2.3 2.7.7.23	2.4.1.16 2.4.1.16	2.4.1.16 1.5.1.12	1.4.1.14	1.4.1.4
55	Salvage Pathways -	YML035C	YBR284W YJL070C	Amino Acid Metabolism Glutamate Metabolism (, YMR250W 4.1.1 YGR019W 2.6.1	YBR006w	YKL104C	YFL017C	YEL058W YDL103C	YBR023C YBR038W	YNL192W YHR037W	YDL171C	YDL215C

40

5		asn1	asn2	mhtl	sam4	rnas	ded81	asp3_1	asp3_2	asp3_3	asp3_4	asp1		ser3	ser33	ser1_1	ser2	shm1	shm2	agt	gcv1_1	gcv1_2
10 15		$\begin{array}{l} ASP + ATP + GLN \rightarrow GLU + \\ ASN + AMP + PPI \end{array}$	$\begin{array}{l} ASP + ATP + GLN \rightarrow GLU + \\ ASN + AMP + PPI \end{array}$	$SAM + HCYS \to SAH + MET$	$SAM + HCYS \to SAH + MET$	ATPm + ASPm + TRNAm → AMPm + PPIm + ASPTRNAm	$\begin{array}{l} ATP \texttt{+} ASP \texttt{+} TRNA \rightarrow AMP \texttt{+} \\ PPI \texttt{+} ASPTRNA \end{array}$	$ASN \to ASP + NH3$		$ASN \to ASP + NH3$		$ASN \to ASP + NH3$		$3PG + NAD \rightarrow NADH + PHP$	$3PG + NAD \rightarrow NADH + PHP$	+ 3PSER	$3PSER \rightarrow PI + SER$	THFm + SERm ↔ GLYm + METTHFm	$THF + SER \leftrightarrow GLY + METTHF$	ALA + GLX ↔ PYR + GLY	GLYm + THFm + NADm → METTHFm + NADHm + CO2 + NH3	THF + NAD → METTHF H + CO2 + NH3
20		Se	se	lependent hyltransferase, hyltransferase	lependent hyltransferase	asn-tRNA synthetase, mitochondrial	()	sellular	sellular	sellular	extracellular			hydrogenase	hydrogenase	aminase	ohatase	ıyltransferase	nyltransferase	xylate srine pyruvate	glycine cleavage T protein (T subunit of glycine decarboxylase complex	glycine cleavage T protein (T subunit of glycine decarboxylase complex
25	(þ.	asparagine synthetase	asparagine synthetase	Putative cobalamin-dependent homocysteine S-methyltransferase, Homocysteine S-methyltransferase	Putative cobalamin-dependent homocysteine S-methyltransferase	RNA synthetas€	asn-tRNA synthetase	Asparaginase, extracellular	Asparaginase, extracellular	Asparaginase, extracellular	Asparaginase, extrac	Asparaginase		Phosphoglycerate dehydrogenase	Phosphoglycerate dehydrogenase	phosphoserine transaminase	phosphoserine phosphatase	Glycine hydroxymethyltransferase	Glycine hydroxymethyltransferase	Putative alanine glyoxylate aminotransferase (serine pyruvate aminotransferase)	ycine cleavage T protein (T subu glycine decarboxylase complex	glycine cleavage T protein (T su glycine decarboxylase complex
30	(continued)	aspari	aspari	Putati homo Homo	Putati homo	asn-tF	asn-tF	Aspar	Aspar	Aspar	Aspar	Aspar		Phosp	Phosp	dsoyd	dsoyd	Glycir	Glycin	Putati amino amino	glycin of glyc	glycin glycin
35																				_		
40		ASN1	ASN2	MHT1	SAM4	YCR024 c	DED81	ASP3-1	ASP3-2	ASP3-3	ASP3-4	asp1		ser3	ser33	ser1	ser2	SHM1	SHM2	YFL030 W	GCV1	GCV1
45	olism												metabolism									
50	partate Metabo	6.3.5.4	6.3.5.4	2.1.1.0	2.1.1.10	6.1.1.22	6.1.1.23	3.5.1.1	3.5.1.1	3.5.1.1	3.5.1.1	3.5.1.1	and threonine	1.1.1.95	1.1.1.95	2.6.1.52	3.1.3.3	2.1.2.1	2.1.2.1	2.6.1.44	2.1.2.10	2.1.2.10
55	Alanine and Aspartate Metabolism	YPR145W	YGR124W	YLL062C	YPL273W Asparagine	YCR024c	YHR019C	YLR155C	YLR157C	YLR158C	YLR160C	YDR321W	Glycine, serine and threonine metabolism	YER081W	YIL074C	YOR184W	YGR208W	YBR263W	YLR058C	YFL030W	YDR019C	YDR019C

5		hom3	hom2	hom6_1	hom6_2	thr1	thr4_1	cys4	gly1	gcv2		cha1 1	ilv1	cha1_2		sdl1	tdh1c		metc	sah1	met6	met6_2 cys3
10 15		$ASP + ATP \to ADP + BASP$	BASP + NADPH → NADP + PI + ASPSA	ASPSA + NADH → NAD + HSER	ASPSA + NADPH → NADP + HSER	$HSER + ATP \rightarrow ADP + PHSER$	PHSER → PI + THR	$SER + HCYS \to LLCT$	$GLY + ACAL \rightarrow THR$	$GLYm + LIPOm \leftrightarrow SAPm +$	CO2m	THR → NH3 + OBUT	THRm → NH3m + OBUTm	$SER \to PYR + NH3$		$SER \to PYR + NH3$	THR + NAD \rightarrow GLY + AC + NADH		$LLCT \to HCYS + PYR + NH3$	$SAH \to HCYS + ADN$	HCYS + MTHPTGLU → THPTGLU + MET	HCYS + MTHF → THF + MET LLCT → CYS + NH3 + OBUT
20		Aspartate kinase, Aspartate kinase I, II, III	lehyde Irtate ogenase	ğenase l	jenase l			nthase		Glycine decarboxylase complex (P-	subunit), glycine synthase (P-subunit), Glycine cleaverse system (P-subunit),			onine)		onine)	nase			putative S-adenosyl-L-homocysteine hydrolase	vitamin B12-(cobalamin)-independent isozyme of methionine synthase (also called N5-methyltetrahydrofolate homocysteine methyltransferase or 5- methyltetrahydropteroyl triglutamate	ransterase) -lyase
25		te kinase, Asp	aspartic beta semi-aldehyde dehydrogenase, Aspartate semialdehyde dehydrogenase	Homoserine dehydrogenase	Homoserine dehydrogenase	homoserine kinase	threonine synthase	Cystathionine beta-synthase	Threonine Aldolase	decarboxylas), glycine synth	diyclirle cleavage sysi threonine deaminase	L-Serine dehydratase	catabolic serine (threonine)	atase	catabolic serine (threonine) dehydratase	Threonine dehydrogenase		Cystathionine-b-lyase	S-adenosyl-L se	vitamin B12-(cobalamin)-indeper isozyme of methionine synthase called N5-methyltetrahydrofolate homocysteine methyltransferase methyltetrahydropteroyl triglutam	nomocysteine methylitransferase) Methionine synthase cystathionine gamma-lyase
30	(continued)	Asparta III	aspartic dehydrc semiald	Homose	Homose	homose	threonir	Cystath	Threoni	Glycine	subunit) Glycing	threonir	L-Serine	cataboli	dehydratase	catabolic ser dehydratase	Threoni		Cystath	putative S hydrolase	vitamin isozyme called N homocy methyltu	nomocy Methior cystathi
35																						
40		hom3	hom2	hom6	hom6	thr1	thr4	CYS4	GLY1	GCV2		cha1	iivl	chal		YIL167 W			YFR055 W	SAH1	met6	cys3
45	metabolism																					
50	and threonine	2.7.2.4	1.2.1.11	1.1.13	1.1.1.3	2.7.1.39	4.2.99.2	4.2.1.22	4.1.2.5	1.4.4.2		4.2.1.16	4.2.1.16	4.2.1.13		4.2.1.13	1.1.1.103	abolism	4.4.1.8	3.3.1.1	2.1.1.14	2.1.1.13 4.4.1.1
55	Glvcine. serine and threonine metabolism	YER052C	YDR158W	YJR139C	YJR139C	YHR025W	YCR053W	YGR155W	YEL046C	YMR189W		YCI 064C	YER086W	YCL064C		YIL167W		Methionine metabolism	YFR055W	YER043C	YER091C	- YAL012W

5	met2	met17_1	met17_2	met17_3	met17h	sam2	sam1	dph5	met3	met14	met10	cys1	sul11	met22	met16	apal_2		bat1_1	bat1_2
10 15	ACCOA + HSER ↔ COA + OAHSER	OAHSER + METH → MET + AC	OAHSER + H2S → AC + HCYS	OAHSER + H2S → AC + HCYS	OSLHSER ↔ SUCC + OBUT + NH4	$MET+ATP\toPPI+PI+SAM$	$MET+ATP\toPPI+PI+SAM$	$SAM + CALH \to SAH + DPTH$	SLF + ATP → PPI + APS	$APS + ATP \to ADP + PAPS$	H2SO3 + 3 NADPH <-> H2S + 3 NADP	SER + ACCOA -> COA + ASER	ASER + H2S -> AC + CYS	PAP o AMP + PI	PAPS + RTHIO → OTHIO + H2SO3 + PAP	ADP + SLF ↔ PI + APS		OICAPm + GLUm ↔ AKGm + LEUm	OMVALm + GLUm ↔ AKGm + ILEm
	ACC	NO AP	0AHS HCYS	OAHSI HCYS		ЫΣ	МΕ	SAN	SLF	APS	H2S 3 N/	SER + ASER	ASE	PAF	PAF H2S	ADF		OICAF	OMVAI + ILEm
20	cetylase	hiol)-lyase	hiol)-lyase	llfhydrylase rts O- homocysteine	putative cystathionine gamma-synthase	synthetase	synthetase						iase (O- ase) (O-	leotidase		-4- norylase I		acid	acid
25	ntinued) homoserine O-trans-acetylase	O-Acetylhomoserine (thiol)-lyase	O-Acetylhomoserine (thiol)-lyase	O-acetylhomoserine sulfhydrylase (OAH SHLase); converts O- acetylhomoserine into homorysteine	e cystathionine ç	S-adenosylmethionine synthetase	S-adenosylmethionine synthetase	Diphthine synthase	ATP sulfurylase	adenylylsulfate kinase	sulfite reductase	Serine transacetylase	putative cysteine synthase (O- acetylserine sulfhydrylase) (O-	3'-5'Bisphosphate nucleotidase	PAPS Reductase	diadenosine 5',5'"-P1,P4- tetraphosphate phosphorylase		Branched chain amino acid aminotransferase	Branched chain amino acid aminotransferase
30	(continued) homose	O-Ace	O-Ace	O-ace (OAH acetvll	putativ	S-ade	S-ade	Diphth	ATP s	adeny	sulfite	Serine	putativ acetyls	3'-5'Bi	PAPS	diader tetrapł		Brancl amino	Brancl amino
<i>35</i> 40	(c. met2	MET17	MET17	met17	YML082 W	sam2	sam1	DPH5	met3	met14	met10		YGR012 W	MET22	MET16	apal	e, Leucine and Isoleucine)	BAT1	BAT1
	E	2	≥	٤	≻	ö	ö		F	F	F		≻	≥	Σ	ធ	aline,	Ш	Ш
45				4.2.99.10													Branched Chain Amino Acid Metabolism (Valin		
50	2.3.1.31	4.2.99.10	4.2.99.8	4.2.99.8, 4.2.99.10	4.2.99.9	2.5.1.6	2.5.1.6	2.1.1.98	nthesis 2.7.7.4	2.7.1.25	1.8.1.2	2.3.1.30	4.2.99.8	3.1.3.7	1.8.99.4	2.7.7.5	n Amino Acid	2.6.1.42	2.6.1.42
55	YNL277W	YLR303W	YLR303W	YLR303W	YML082W	YDR502C	YLR180W	YLR172C	Cysteine Biosynthesis 4JR010W 2.7	YKL001C	Y FR030W		YGR012W	YOL064C	rpr167C	YCL050C	anched Chai	YHR208W	YHR208W

5		bat2_1	bat2_2	bat2_3	ilv2_1	ilv2_2	+ ilv5_1	ilv5_2	ilv3_1 ilv3_2	leu4		leu2	lvs3	lys4	lys12	lys12b amit	lys2_1
10 15		OMVAL + GLU <-> AKG + ILE	OIVAL + GLU ↔ AKG + VAL	OICAP + GLU <-> AKG + LEU	OBUTm + PYRm → ABUTm + CO2m	2 PYRm → CO2m + ACLACm _ilv2_2	ACLACm + NADPHm → NADPm DHVALm	ABUTm + NADPHm → NADPm + DHMVAm	DHVALm → OIVALm DHMVAm → OMVALm	ACCOAm+OIVALm→COAm + IPPMALm	CBHCAP HIPMAL	רדשאב ↔ ורדשאב וPPMAL + NAD → NADH + OICAP + CO2	HCITm ↔ HACNm	HICITm ↔ HACNm	HICITm + NADm ↔ OXAm + CO2m + NADHm	OXAm ↔ CO2m + AKAm AKA + GLU ↔ AMA + AKG	AMA + NADPH + ATP → AMASA + NADP + AMP + PPI
20		-	-	egulated				-				-					
25	ed)	branched-chain amino acid transaminase, highly similar to mammalian ECA39, which is regulated by the oncogene mvc	Branched chain amino acid aminotransferase	branched-chain amino acid transaminase, highly similar to mammalian ECA39, which is regulated by the oncodene mvc	Acetolactate synthase, large subunit	Acetolactate synthase, small subunit Acetolactate synthase, large subunit Acetolactate synthase small subunit	Keto-acid reductoisomerase	Keto-acid reductoisomerase	Dihydroxy acid dehydratase Dihvdroxy acid dehvdratase	alpha-isopropylmalate synthase (2- lsopropylmalate Synthase)	Isopropylmalate isomerase	isopropyinialate isomerase beta-IPM (isopropyimalate) dehydrogenase	2-Methvlcitrate dehvdratase	Homoaconitate hydratase	Homoisocitrate dehydrogenase (Strathern:1.1.87)	non-enzymatic 2-Aminoadipate transaminase	L-Aminoadipate-semialdehyde dehydrogenase, large subunit
30	(continued) ne)		Bran	bran trans marr bv th	Acet	Acet Acet	Keto	Keto	Dihy	alpha Isopr	Igosl	beta dehy	2-Me	Hom	Hom (Stra	non- 2-An	L-Am dehy
35	e, Leucine and Isoleucine)																
40	(Valine, Leucir	BAT2	BAT2	BAT2	ilv2	ILV6 ilv2 II V6	ilv5	ilv5	ilv3 ilv3	LEU4	leu1	leu2		lys4	LYS12		lys2
45	Metabolism												tion				
50	Branched Chain Amino Acid Metabolism (Valin	2.6.1.42	2.6.1.42	2.6.1.42	4.1.3.18	4.1.3.18 4.1.3.18 4.1.3.18	1.1.1.86	1.1.1.86	4.2.1.9 4.2.1.9	4.1.3.12	4.2.1.33	4.2.1.25 1.1.1.85	Lysine biosynthesis/degradation -	4.2.1.36	1.1.1.155	2.6.1.39	1.2.1.31
55	Branched Ché	YJR148W	YJR148W	YJR148W	YMR108W	YCL009C YMR108W VCL009C	YLR355C	YLR355C	YJR016C YJR016C	YNL104C	YGL009C	YCL018W	Lysine biosyr -	YDR234W	YIL094C		YBR115C

5			lys2_2		lys9	lysta	krsl	msk1		ecm40_1	arg6	arg5	arg8	ecm40_2	ura2_2	cpa2		arg3 car2
10 15			AMA + NADH + ATP → AMASA + NAD + AMP + PPI		GLU + AMASA + NADPH ↔ 1 SACP + NADP	<pre> FLYS + AKG + </pre>	LYS + LTRNA → AMP - LLTRNA	ATPm + LYSm + LTRNAm → r AMPm + PPIm + LLTRNAm		GLUm + ACCOAm → COAm • + NAGLUm	NAGLUm + ATPm → ADPm + § NAGLUPm	NAGLUPm + NADPHm → 8 NADPm + PIm + NAGLUSm	c	NAORNm + GLUm → ORNm • + NAGLUm	GLN + 2 ATP + CO2 → GLU + t CAP + 2 ADP + PI	$GLN + 2 ATP + CO2 \rightarrow GLU + CO2 + CO2 + 2 ADP + PI$		+ CAP → CITR + PI + AKG → GLUGSAL +
20		lehyde ubunit			(NADP+,				Ictase		NAG				_		ynthetase, ecific	
25	(þ	L-Aminoadipate-semialdehyde dehvdrogenase, small subunit	L-Aminoadipate-semialdehyde dehydrogenase, large subunit	L-Aminoadipate-semialdehyde dehydrogenase, small subunit	Saccharopine dehydrogenase (NADP+, L-dlutamate forming)	Saccharopine dehydrogenase (NAD+, L-Ivsine formina)	lysyl-tRNA synthetase, cytosolic	lysyl-tRNA synthetase, mitochondrial	similar to aldo-keto reductase	Amino-acid N-acetyltransferase	Acetylglutamate kinase	N-acetyl-gamma-glutamyl-phosphate reductase and acetylglutamate kinase	Acetylornithine aminotransferase	Glutamate N-acetyltransferase	carbamoyl-phophate synthetase, aspartate transcarbamylase, and glutamine amidotransferase	carbamyl phosphate synthetase, large chain	Carbamoyl phosphate synthetase, samll chain, arginine specific	Ornithine carbamoyltransferase Ornithine transaminase
30	(continued)	L-Ami dehvo	L-Ami dehvo	L-Ami dehyc	Sacch L-glut	Sacch L-Ivsir	lysyl-t	lysyl-t	simila	Amino	Acety	N-ace reduc	Acety	Gluta	carba aspar glutar	carbal chain	Carba samll	Ornith
35 40		lys5	lys2	lys5	lys9	51	krs1	msk1	YPR1	ECM40	arg5	arg5	arg8	ECM40	ura2	CPA2	cpa1	arg3 car2
45		lys	Ŋ	syl	Ŋ	lys1	Кr	Ë	Υ	Ш	ar	ar	ar	Ē	Ľ	ō	d	ca ar
50	Lysine biosynthesis/degradation	1.2.1.31	1.2.1.31	1.2.1.31	1.5.1.10	1.5.1.7	6.1.1.6	6.1.1.6	1.1.1 oolism	2.3.1.1	2.7.2.8	1.2.1.38	2.6.1.11	2.3.1.35	6.3.5.5	6.3.5.5	6.3.5.5	2.1.3.3 2.6.1.13
55	Lvsine biosvnt	YGL154C	YBR115C	YGL154C	YNR050C	YIR034C	YDR037W	YNL073W	YDR368W 1. Arginine metabolism	YMR062C	YER069W	YER069W	YOL140W	YMR062C	YJL130C	YJR109C	YOR303W	YJL088W YLR438W

5		arg1	arg4	spe1	spe2	spe3		spe4	amd2_1	amd	car1	atrna	msr1	dys1		his1	his4_1	his4_2	his6	his3	his5	his2	
10 15		CITR + ASP + ATP ↔ AMP + PPI + ARGSUCC	$ARGSUCC \leftrightarrow FUM + ARG$	$ORN \rightarrow PTRSC + CO2$	$SAM\leftrightarrowDSAM+CO2$	$PTRSC + SAM \to SPRMD +$	5MTA	DSAM + SPRMD → 5MTA + SPRM	GBAD ightarrow GBAT + NH3	GBAD ightarrow GBAT + NH3	ARG o ORN + UREA	$ATP + ARG + ATRNA \rightarrow AMP + PPI + ALTRNA$	ATP + ARG + ATRNA → AMP + PPI + ALTRNA	SPRMD + Qm → DAPRP + QH2m		$PRPP+ATP\toPPI+PRBATP$	/ PRBATP → PPI + PRBAMP	PRBAMP o PRFP	PRFP → PRLP	DIMGP o IMACP	IMACP + GLU → AKG + HISOLP	HISOLP → PI + HISOL	
20								מֿסֿ	Ū	Ū	A								nerase			_	
25	(pənu	arginosuccinate synthetase	argininosuccinate lyase	Ornithine decarboxylase	S-adenosylmethionine decarboxylase	putrescine aminopropyltransferase	(spermidine synthase)	Spermine synthase	Amidase	Probable Amidase	arginase	arginyl-tRNA synthetase	arginyl-tRNA synthetase	deoxyhypusine synthase		ATP phosphoribosyltransferase	phosphoribosyI-AMP cyclohydrolase phosphoribosyI-ATP pyrophosphohydrolase / histidinol dehydrogenase	histidinol dehydrogenase	phosphoribosyl-5-amino-1- phosphoribosyl-4- imidazolecarboxiamide isomerase	imidazoleglycerol-phosphate dehydratase	nistidinol-phosphate aminotransferase	Histidinolphosphatase	
30	(continued)	arç	arc	ō	ů.	nd	ds)	д У	An	Pre	arç	arç	arç	de		АТ	ų ų b p	his	ťa ä	imi de	his	His	
35 40		arg1	arg4	spe1	spe2	SPE3		SPE4	AMD2	YMR293 C	car1	YDR341 C	MSR1	DYS1		his1	his4	his4	his6	his3	his5	his2	
45		ŭ	G	S	S	0)		CU.	4	7	U	7	2			ч	£	£	£	£	F	£	
50	lism	6.3.4.5	4.3.2.1	4.1.1.17	4.1.1.50	2.5.1.16		2.5.1.22	3.5.1.4	3.5.1.4	3.5.3.1	6.1.1.19	6.1.1.19	1.5.99.6	lism	2.4.2.17	3.6.1.31	3.5.4.19	5.3.1.16	4.2.1.19	2.6.1.9	3.1.3.15	
55	Arcinine metabolism	YOL058W	YHR018C	YKL184W	YOL052C	YPR069C		YLR146C	YDR242W	YMR293C	YPL111W	YDR341C	YHR091C	YHR068W	Histidine metabolism	YER055C	YCL030C	YCL030C	YIL020C	YOR202W	YIL116W	YFR025C	

46

5	his4_3	his7	hts1	hmt1		aro4	aro3	aro1_1	aro1_2 aro1_3
10 15	/ HISOL + 2 NAD → HIS + 2 NADH	PRLP + GLN → GLU + AICAR +	DIMGP ATP + HIS + HTRNA → AMP + PPI + HHTRNA	SAM + HIS → SAH + MHIS		E4P + PEP → PI + 3DDAH7P	E4P + PEP → PI + 3DDAH7P	3DDAH7P → DQT + PI	DQT → DHSK DHSK + NADPH → SME + NADP
20	cyclohydrolase	e / histidinol ferase:cyclase	ase	sthyltransferase ransferase sis	e ansferase	eptulosonate 7- /nthase	a. phospho-2- onate aldolase, ed; phospho-2- te aldolase\; 2- sphoheptonate arabine-	heptulosonate-7-phosphate synthase pentafunctional arom polypeptide (contains: 3-dehydroquinate synthase, 3-dehydroquinate dehydratase (3- dehydroquinase), shikimate 5- dehydrogenase, shikimate kinase, and	hydratase nase
25	ntinued) phosphoribosyl-AMP cyclohydrolase phosphoribosyl-ATP	pyrophosphohydrolase / histidinol dehydrogenase glutamine amidotransferase:cyclase	histidyl-tRNA synthetase	hnRNP arginine N-methyltransferase putative RNA methyltransferase ubiquinone biosynthesis methlyrransferase COO5	rRNA (guanosine-2'- O-)-methyltransferase dimethyladenosine transferase	д 3-deoxy-D-arabino-heptulosonate 7- phosphate (DAHP) synthase isoenzyme	DAHP synthasek, a.k.a. phospho-2- dehydro-3-deoxyheptonate aldolase, phenylalanine-inhibited\; phospho-2- keto-3-deoxyheptonate aldolase\; 2- dehydro-3-deoxyphosphoheptonate aldolase\; 3-deoxy-D-arabine-	heptulosonate-7-phosphate synthase pentafunctional arom polypeptide (contains: 3-dehydroquinate synthase, 3-dehydroquinate dehydratase (3- dehydroquinase), shikimate 5- dehydrogenase, shikimate kinase, ano	epsp symmese) 3-Dehydroquinate dehydratase Shikimate dehydrogenase
30	(continued) phospho phospho	pyro dehy gluta	histic	hnRl puta ubiqi	rRN rRN 0-)-r dime	3-de phos	DAH DAH dehy keto dehy aldol	nept con 3-de dehy	9 9 D NiK
35					YOR201C 2.1.1 pet56 c rf C C YPL266W 2.1.1 diml diml Dhenvialanine tvrosine and trvotonhan biosvothesis (Aromatic Amino Acids)				
40	his4	his7	hts1	hmt1 spb1 coq5	pet56 diml	AR04	ARO3	aro1	aro1 aro1
45					trutoria netrotoria				
50	tabolism 1.1.1.23	2.4.2	6.1.1.21	2.1.1 2.1.1 2.1.1	2.1.1 2.1.1 De tyrosine and	4.1.2.15	4.1.2.15	4.6.1.3	4.2.1.10 1.1.1.25
55	Histidine metabolism YCL030C	YBR248C	YPR033C	YBR034C YCL054W YML110C	YOR201C YPL266W Dhenvlalanin	YBR249C	YDR035W	YDR127W	YDR127W YDR127W

5		aro1_4	aro1_5	aro2	aro7	pha2	aro9_1		tyr1	aro8	aro9_2	tyra2	trp2_1	trp3_1	trp4	trp1	trp3_2	trp5	cta1	ctt1	aat1_2	aat2_2	ald2	ald3		ald4_1	ald4_2
10 15		$SME + ATP \to ADP + SME5P$	SME5P + PEP → 3PSME + PI	$3PSME \rightarrow PI + CHOR$	CHOR → PHEN	$PHEN \rightarrow CO2 + PHPYR$	PHPYR + GLU ↔ AKG + PHE		PHEN+NADP→4HPP+CO2 + NADPH	4HPP + GLU $ ightarrow$ AKG + TYR	4HPP + GLU \rightarrow AKG + TYR	PHEN + NAD → 4HPP + CO2 + NADH	CHOR + GLN → GLU + PYR + AN	$CHOR + GLN \to GLU + PYR + AN$	AN + PRPP \rightarrow PPI + NPRAN	NPRAN → CPAD5P	$CPAD5P \rightarrow CO2 + IGP$	$IGP + SER \rightarrow T3P1 + TRP$	2 H2O2 → O2	2 H2O2 → O2	4HPP + GLU \leftrightarrow AKG + TYR	$4HPP + GLU \leftrightarrow AKG + TYR$	ACAL + NAD \rightarrow NADH + AC	$ACAL + NAD \to NADH + AC$		ACALm + NADm → NADHm + ACm	ACALm + NADPm → NADPHm + ACm
20		ง	งิ	ЗF	Ō			=		_			Ō +	0 +					0	0							
25	()	Shikimate kinase I, II	3-Phosphoshikimate-1- carboxyvinyltransferase	Chorismate synthase	Chorismate mutase	prephenate dehydratase	putative aromatic amino acid	aminotransferase	Prephenate dehydrogenase (NADP+)	aromatic amino acid aminotransferase	aromatic amino acid aminotransferase II	Prephanate dehydrogenase	Anthranilate synthase	Anthranilate synthase	anthranilate phosphoribosyl transferase	n-(5'-phosphoribosyl)-anthranilate isomerase	Indoleglycerol phosphate synthase	tryptophan synthetase	ie A	cytoplasmic catalase T	Asparate aminotransferase	Asparate aminotransferase	Cytosolic aldeyhde dehydrogenase	strong similarity to aldehyde	dehydrogenase	mitochondrial aldehyde dehydrogenase	mitochondrial aldehyde dehydrogenase
30	(continued) Acids)	Shikim	3-Phos carbox	Chorist	Chorist	prephe	putativ	aminot	Prephe	aromat	aromat	Prepha	Anthra	Anthra	anthrar	n-(5'-phosp isomerase	Indoleç	tryptop	catalase A	cytopla	Aspara	Aspara	Cytoso	strong	dehydr	mitoch	mitoch
35	matic Amino																										
40	(con Phenylalanine, tyrosine and tryptophan biosynthesis (Aromatic Amino Acids)	aro1	aro1	aro2	aro7	pha2	AR09		tyr1	AR08	A R09		trp2	trp3	trp4	trp1	trp3	trp5	CTA1	CTT1	AAT1	AAT2	ALD2	ALD3		ALD4	ALD4
45	yptophan bi																										
50	, tyrosine and tr	2.7.1.71	2.5.1.19	4.6.1.4	5.4.99.5	4.2.1.51	2.6.1		1.3.1.13	2.6.1	2.6.1	1.3.1.12	4.1.3.27	4.1.3.27	2.4.2.18	5.3.1.24	4.1.1.48	4.2.1.20	1.11.1.6	1.11.1.6	2.6.1.1	2.6.1.1	1.2.1.5	1.2.1.5		1.2.1.3	1.2.1.3
55	Phenylalanine	YDR127W	YDR127W	YGL148W	YPR060C	YNL316C	YHR137W		YBR166C	YGL202W	YHR137W	ı	YER090W	YKL211C	YDR354W	YDR007W	YKL211C	YGL026C	YDR256C	YGR088W	YKL106W	YLR027C	YMR170C	YMR169C		YOR374W	YOR374W

5		ald5_1	ald6	tdo2			kfor	kynu_1	kmo						kynu_2	bnal				aaaa	aaab		aaac	tyrdega	turdadh	tyrdegc	trydegd
10		ACALm + NADPm → NADPHm + ACm	ACAL + NADP → NADPH + AC	$TRP + O2 \to FKYN$			FKYN → FOR + KYN	$KYN \to ALA + AN$	KYN + NADPH + O2 → HKYN						HKYN → HAN + ALA	$HAN + O2 \to CMUSA$				$CMUSA \rightarrow CO2 + AM6SA$	AM6SA + NAD -> AMUCO +		AMUCO + NADPH -> AKA + NADP + NH4	4HPP + O2 → HOMOGEN +	HOMOGEN + O2 V MACAC		FUACAC -> FUM + ACTAC
15		ACALm NADPH	ACAL+	TRP + (FKYN –	KYN ↓	NYN+NYX	+ NAUF					HKYN					CMUSA	AM6SA	NADH	AMUCO + NA NADP + NH4			MACAC	FUACA
20		Ø	hydrogenase	o indoleamine	cn catalyze an and other	kynurenines, enase	se	: (L-kynurenine	ase, NADPH-	oxygenase mar ation of	ykynurenine in	and nicotinic	nine 3-		: (L-kynurenine	3-hydroxyanthranilate 3,4-dioxygenase		droxyanthranilic	vdenase)	ylase				4-Hydroxyphenylpyruvate dioxygenase		omerase	
25	d)	mitochondrial Aldehyde Dehydrogenase	Cytosolic Aldehyde Dehydrogenase	Protein with similarity to indoleamine	2,3-dioxygenases, wnich catalyze conversion of tryptophan and other	indole derivatives into kynurenines, Tryptophan 2,3-dioxygenase	Kynurenine formamidase	probable kynureninase (L-kynurenine hydrolase)	Kynurenine 3-hydroxylase, NADPH-	dependent liavin monooxygenase mat catalvzes the hvdrovvlation of	kynurenine to 3-hydroxykynurenine in	tryptophan degradation and nicotinic	acid synthesis, Kynurenine 3-	monooxygenase	probable kynureninase (L-kynurenine hydrolase)	3-hydroxyanthranilate 3,4-dioxygene (3-HAO) (3- hydroxyanthranilic acid	dioxygenase) (3-	hydroxyanthranilatehydroxyanthranilic	acid dioxygenase) (3- hvdroxvanthranilate oxvgenase)	Picolinic acid decarboxylase				roxyphenylpyruv	Homorantisata 1 2-diovuranasa	Maleyl-acetoacetate isomerase	Fumarylacetoacetase
30	(continued) • Acids)	, mitoch Dehyd	Cytose	Protei	Z,3-dic convei	indole Trypto	Kynur	probable k hydrolase)	Kynur	uepen catalyr	kynure	tryptop	acid s	monoc	probable k hydrolase)	3-hydr	dioxyg	hydro	acid di hvdro	Picolir				4-Hyd	Цото	Malev	Fumar
35	(con thesis (Aromatic Amino Acids)																										
40	osynthesis (Arol	ALD5	ALD6	YJR078 W				YLR231 C	YBL098 W						YLR231 C	BNA1											
45	/ptophan bi																										
50	Phenylalanine, tyrosine and tryptophan biosyn	1.2.1.3	1.2.1.3	1.13.11.1 1			3.5.1.9	3.7.1.3	1.14.13.9						3.7.1.3	1.13.11.6				4.1.1.45	1.2.1.32		1.5.1	1.3.11.27	1 12 11 5	5.2.1.2	3.7.1.2
55	Phenylalanine	YER073W	YPL061W	YJR078W				YLR231C	YBL098W						YLR231C	YJR025C				ı			ı	ľ			,

5	msw1	amd2_2	amd2_3	spra	sprb	sprc	sprd	spre	pro1	pro2_1	pro2_2	gps1 aps2	pro3_1	pro3_3	pro3_4 pro3_5
10 15	ATPm + TRPm + TRNAm → AMPm + PPIm + TRPTRNAm	$PAD \to PAC + NH3$	$ AD \rightarrow AC + NH3 $	SPRMD + ACCOA → ASPERMD + COA	$\label{eq:aspectation} ASPERMD + O2 \to APRUT + APROA + H2O2$	APRUT + O2 → GABAL + APROA + H2O2	$SPRM + ACCOA \to ASPRM + COA$	ASPRM + O2 → ASPERMD + APROA + H2O2	GLU + ATP o ADP + GLUP	GLUP + NADH → NAD + PI + GLUGSAL	GLUP + NADPH → NADP + PI + GLUGSAL	GLUGSAL ↔ P5C GLUGSALm ↔ P5Cm	P5C + NADPH → PRO + NADP	PHC + NADPH → HPRO + NADP	$\begin{array}{l} PHC + NADH \to HPRO + NAD \\ PROm + NADm \to P5Cm + \\ NADHm \end{array}$
20		<u>د</u>	1		A A	Υ Υ		4 4		gamma-glutamyl phosphate reductase G G	gamma-glutamyl phosphate reductase G +				
25	ntinued) ;) tryptophanyl-tRNA synthetase, mitochondrial	putative amidase	putative amidase	Diamine transaminase	Polyamine oxidase	Polyamine oxidase	Diamine transaminase	Polyamine oxidase	gamma-glutamyl kinase, glutamate kinase	a-glutamyl phos	a-glutamyl phos	spontaneous conversion (Strathern) spontaneous conversion (Strathern)	Pyrroline-5-carboxylate reductase	Pyrroline-5-carboxylate reductase	Pyrroline-5-carboxylate reductase Proline oxidase
30	(continued) io Acids) tryptophanyl-i mitochondrial	putative	putative	Diamin	Polyam	Polyam	Diamin	Polyam	gamma kinase	gamme	gamma	spontar spontar	Pyrrolir	Pyrrolir	Pyrrolir Proline
35	Aromatic Amin														
40	i iosynthesis (/ MSW1	AMD2	AMD2						pro1	PR02	pro2		pro3	pro3	pro3 PUT1
45	d tryptophan b														
50	(con Phenylalanine, tyrosine and tryptophan biosynthesis (Aromatic Amino Acids) YDR268w 6.1.1.2 tt n	3.5.1.4	3.5.1.4	2.6.1.29	1.5.3.11	1.5.3.11	2.6.1.29	1.5.3.11 Inthesis	2.7.2.11	1.2.1.41	1.2.1.41		1.5.1.2	1.5.1.2	1.5.1.2 1.5.3
55	Phenylalanin YDR268w	YDR242W	YDR242W	ı	ı	ı	ı	- Proline biosvnthesis	YDR300C	YOR323C	YOR323C		YER023W	YER023W	YER023W YLR142W

5	ald1	ald5_2	nit2_1 nit2_2	nmt1	nat1	nat2	gsh1	gsh2	gpx2	hyr1	gpx i glr1	ecm38		gsc2	fks1	fks3	exg2
10 15	GABALm + NADm → GABAm + NADHm	LACALm+ NADm↔ LLACm + NADHm	APROP → ALA + NH3 ACYBUT → GLU + NH3	TCOA + GLP → COA + TGLP	$ACCOA + PEPD \rightarrow COA + APEP$	ACCOA + PEPD → COA + APEP	$CYS + GLU + ATP \rightarrow GC + PI + ADP$	$GLY + GC + ATP \rightarrow RGT + PI$ + ADP	2 RGT + H2O2 ↔ OGT	2 RGT + H2O2 ↔ OGT	z rgi + nzoz ⇔ ugi NADPH + OGT → NADP + RGT	RGT + ALA → CGLY + ALAGLY		$UDPG \to 13GLUCAN + UDP$	UDPG → 13GLUCAN + UDP	UDPG → 13GLUCAN + UDP	13 GLUCAN \rightarrow GLC
20 25	tinued) aldehyde dehydrogenase, mirochondrial 1	al Aldehyde ase		e N- Ittransformed	Peptide alpha-N-acetyltransferase	Peptide alpha-N-acetyltransferase	gamma-glutamylcysteine synthetase	Synthetase	beroxidase	beroxidase	Glutathione peroxidase Glutathione oxidoreductase	gamma-glutamyltranspeptidase		1,3-beta-Glucan synthase	1,3-beta-Glucan synthase	Protein with similarity to Fkslp and Gsc2p	lcanase
30	(continued) aldehyde deh	mitochondrial Aldehyde Dehydrogenase	NITRILASE NITRILASE	Glycylpeptide N-	Peptide alph	Peptide alph	gamma-gluta	Glutathione Synthetase	Glutathione peroxidase	Glutathione peroxidase	Glutathione peroxidase Glutathione oxidoreduct	gamma-glute		1,3-beta-Glu	1,3-beta-Glu	Protein with Gsc2p	Exo-1,3-b-glucanase
35																	
40		ALD5	NIT2 NIT2	olism nmt1	nat1	NAT2	GSH1	GSH2	GPX2	HYR1	GLR1	ECM38		GSC2	FKS1	FKS3	exg2
45	s			ids Metab								drates					
50	Metabolism of Other Amino Acids beta-Alanine metabolism 1.2.1.3	1.2.1.3	суапоатило аски текароныт YJL126W 3.5.5.1 YJL126W 3.5.5.1	Proteins, Peptides and Aminoacids Metabolism YLR195C 2.3.1.97	2.3.1.88	2.3.1.88 Biosvnthesis	6.3.2.2	6.3.2.3	1.11.1.9	1.11.1.9	1.11.1.9 1.6.4.2	YLR299W 2.3.2.2 Metabolism of Complex Carbobydrates	Starch and sucrose metabolism	2.4.1.34	2.4.1.34	2.4.1.34	3.2.1.58
55	Metabolism of Other Ami beta-Alanine metabolism 1.2.1.	YER073W	Cyanoamino YJL126W YJL126W	Proteins, Pep i YLR195C	YDL040C	YGR147C 2.3.1.8 Glutathione Biosvnthesis	YJL101C	YOL049W	YBR244W	YIR037W	YPL091W	YLR299W Metaholism oʻ	Starch and su	YGR032W	YLR342W	YGR306W	YDR261C

5		bgl2 exg1	spr1	sec59	dpm1	pmt2	pmt5	pmt1	pmt6	pmt4	pmt3	ktr4		ktr3	kre2	yurl	(KILZ	ktr1	ktr6
10 15		\uparrow \uparrow	13GLUCAN → GLC	CTP + DOI → CDP + DOI P	$GDPMAN + DOLP \to GDP + DOLMANP$	DOLMANP → DOLP + MANNAN	$\begin{array}{l} MAN2PD + 2 \; GDPMAN \to 2 \\ GDP + \end{array}$	2MANPD	MAN2PD + 2 GDPMAN → 2 GDP + 2MANPD	MAN2PD + 2 GDPMAN → 2	GDP + 2MANPU MAN2PD + 2 GDPMAN → 2		MANZPD + Z GDPMAN → Z GDP + 2MANPD	MAN2PD + 2 GDPMAN → 2 GDP + 2MANPD	MAN2PD + 2 GDPMAN → 2 GDP + 2MANPD					
20		Cell wall endo-beta-1,3-glucanase Exo-1,3-beta-glucanase	sporulation-specific exo-1,3-beta- glucanase		oeta-D-	Dolichyl-phosphate-mannoseprotein mannosyltransferase	Dolichyl-phosphate-mannoseprotein mannosyltransferase	Dolichyl-phosphate-mannoseprotein mannosyltransferase	Dolichyl-phosphate-mannoseprotein mannosyltransferase	Dolichyl-phosphate-mannoseprotein mannosvltransferase	Dolichyl-phosphate-mannoseprotein mannosyltransferase									anno
25		Cell wall endo-beta-1,3-	1-specific e	nase	Dolichyl-phosphate beta-D- mannosvltransferase	Dolichyl-phosphate-m mannosyltransferase	Dolichyl-phosphate-m mannosyltransferase	Dolichyl-phosphate-m mannosyltransferase	Dolichyl-phosphate-m mannosyltransferase	Dolichyl-phosphate-m mannosyltransferase	Dolichyl-phosphate-m mannosyltransferase	2-alpha-	mannosyltransferase	Glycolipid 2-alpha- mannosyltransferase	2-alpha-	mannosyltransterase Glycolipid 2-alpha-	mannosyltransferase	Giycolipid 2-alpna- mannosyltransferase	Glycolipid 2-alpha- mannosyltransferase	Glycolipid 2-alpha-manno syltransferase
30	(continued)	Cell wall e Exo-1,3-be	sporulatior glucanase	Dolichol kinase	Dolichyl-ph mannosvlt	Dolichyl-ph mannosylt	Dolichyl-ph mannosylt	Dolichyl-ph mannosylt	Dolichyl-ph mannosylt	Dolichyl-ph mannosylt	Dolichyl-pf mannosylt	Glycolipid 2-alpha-	mannosylt	Glycolipid 2-alpha- mannosyltransfera	Glycolipid 2-alpha-	mannosyltranstera Glycolipid 2-alpha-	mannosylt	Giycolipid 2-alpha- mannosyltransfera	Glycolipid 2-alpha- mannosyltransfera	Glycolipid 2-al syltransferase
35																				
40		BGL2 exg1	spr1	sec59	DPM1	PMT2	PMT5	PMT1	PMT6	PMT4	PMT3	KTR4		KTR3	kre2	yur1		X I KY	KTR1	KTR6
45	hydrates m	=	:	egradation																
50	Complex Carbo	3.2.1.58 3.2.1.58 3.2.1.58	3.2.1.58	osynthesis / Do	2.4.1.83	2.4.1.109	2.4.1.109	2.4.1.109	2.4.1.109	2.4.1.109	2.4.1.109	2.4.1.131		2.4.1.131	2.4.1.131	2.4.1.131		2.4.1.131	2.4.1.131	2.4.1.131
55	Metabolism of Complex Carbohydrates	YGR282C	YOR190W	Glycoprotein Biosynthesis / Degradation VMR013C 2 7 1 108	YPR183W	YAL023C	YDL093W	YDL095W	YGR199W	YJR143C	YOR321W	YBR199W		YBR205W	YDR483W	YJL139C			YOR099W	YPL053C

5		hor2	rnrz rda1	cda2			dak2	dak1	gpd1	gpd2	gut1	gut2	-	aaga							thi80_1	thi80_2	thic	thi20	
10 15		GL3P → GL + PI	GL3F → GL + PI CHIT → CHITO + AC	$CHIT \rightarrow CHITO + AC$			$GLYN + ATP \rightarrow T3P2 + ADP$	$GLYN + ATP \rightarrow T3P2 + ADP$	T3P2 + NADH → GL3P + NAD	T3P2 + NADH → GL3P + NAD	GL + ATP o GL3P + ADP	$GL3P + FADm \rightarrow T3P2 +$		DAGLY + 0.017 CT00ACF +	C140ACP+0.270 C160ACP+	0.169 C161ACP + 0.055	C180ACP + 0.235 C181ACP +	0.093 C182ACP → TAGLY +	ACP		ATP + THIAMIN \rightarrow AMP + TPP	ATP + TPP $ o$ AMP + $TPPP$	$AIR \to AHM$	AHM + ATP → AHMP + ADP	
20		natase	lalase				lase	etone kinase	glycerol-3-phosphate dehydrogenase (NAD)	glycerol-3-phosphate dehydrogenase (NAD)		glycerol-3-phosphate dehydrogenase									okinase	okinase		Bipartite protein consisting of N-terminal hydroxymethylpyrimidine phosphate (HMP-P) kinase domain, needed for thiamine biosynthesis, fused to C-	domain of n
25	()	DL-glycerol-3-phosphatase	UL-glycerol-3-pnospnalase Chitin Dearetvlase	Chitin Deacetvlase			dihydroxyacetone kinase	putative dihydroxyacetone kinase	ol-3-phosphate	ol-3-phosphate	glycerol kinase	ol-3-phosphate									Thiamin pyrophosphokinase	Thiamin pyrophosphokinase	otein	Bipartite protein consisting of N-tern hydroxymethylpyrimidine phospha (HMP-P) kinase domain, needed 1 thiamine biosynthesis, fused to C-	terminal Pet18p-like domain of indeterminant function
30	(continued)	DL-gly	UL-GIY Chitin	Chitin			dihydr	putativ	glycerc (NAD)	glycer (NAD)	glycerd	glycero									Thiami	Thiami	thiC protein	Biparti hydrox (HMP- thiamir	termina
35																									
40		HOR2		CDA2			DAK2	DAK1	GPD1	GPD2	GUT1	GUT2								Juner Substances	THI80	THI80		THI20	
45						ism)														nins, and t ism					
50	Aminosugars metabolism	3.1.3.21	3.1.3.21 3.5.1.41	3.5.1.41	Metabolism of Complex Lipids	Glycerol (Glycerolipid metabolism)	2.7.1.29	2.7.1.29	1.1.1.8	1.1.1.8	2.7.1.30	1.1.99.5								Metabolism of Colactors, vitamins, and Other (Thiamine (Vitamin B1) metabolism	2.7.6.2	2.7.6.2		2.7.1.49	
55	Aminosugars	YER062C		YLR308W	Metabolism (Glycerol (Gly	YFL053W	YML070W	YDL022W	YOL059W	YHL032C	YIL155C								Thiamine (Vi	YOR143C	YOR143C	ı	YOL055C	

5		thi21	thi22	thid	unkrxn1	thig			thie	thif	thih	thim	thi6		thil	unkrxn8		rib1	ribdl	rib7
10		AHM + ATP → AHMP + ADP 1	Bipartite protein consisting of N-terminal AHM + ATP → AHMP + ADP thy droxymethylpyrimidine phosphate (HMP-P) kinase domain, needed for thiamine biosynthesis, fused to C-terminal Pet18p-like domain of the domain	AHMP + ATP → AHMPP + tl ADP	$T3P1 + PYR \rightarrow DTP$ u	DTP + TYR + CYS \rightarrow THZ + 1			+ CYS → IHZ +	+ CYS → THZ +	+ CYS \rightarrow THZ +	THZ + ATP \rightarrow THZP + ADP the theorem of the theorem of the tensor of tensor	THZP + AHMPP → THMP + 1		THMP + ATP \leftrightarrow TPP + ADP t	THMP → THIAMIN + PI u		Ē	D6RP5P → A6RP5P + NH3 r	A6RP5P + NADPH → r A6RP5P2 + NADP
15			AHM + /	AHMP + ADP	T3P1 +	DTP + T	HBA +		DIP + IYH HBA + CO2	DTP + TYR HRA + CO2	DTP + TYR HBA + CO2	THZ + A	THZP +	ЫЧ	THMP +	THMP -		$GTP \rightarrow $	D6RP5F	A6RP5F A6RP5F
20		Bipartite protein consisting of N-terminal hydroxymethylpyrimidine phosphate (HMP-P) kinase domain, needed for thiamine biosynthesis, fused to C- terminal Pet18p-like domain of indeterminant function	ting of N-terminal ine phosphate in, needed for fused to C- omain of	ő								kinase	ise,	dinase	nase	hatase 2		I	nd step in the s pathway	
25	d)	Bipartite protein consisting of N-termin hydroxymethylpyrimidine phosphate (HMP-P) kinase domain, needed for thiamine biosynthesis, fused to C- terminal Pet18p-like domain of indeterminant function	Bipartite protein consisting of N-termir hydroxymethylpyrimidine phosphate (HMP-P) kinase domain, needed for thiamine biosynthesis, fused to C- terminal Pet18p-like domain of indeterminant function	HMP-phosphate kinase	Hypothetical	thiG protein			thie protein	rotein	thiH protein	Hydroxyethylthiazole kinase	TMP pyrophosphorylase,	hydroxyethylthiazole kinase	Thiamin phosphate kinase	(DL)-glycerol-3-phosphatase		GTP cyclohydrolase II	HTP reductase, second step in the riboflavin biosynthesis pathway	Pyrimidine reductase
30	(continued)	Bipart hydro (HMP thiami termir indefe	Bipart hydro: (HMP (HMP thiami termir indete	HMP-	Hypot	thiG p		Li Ta	thir p	thiF protein	thiH p	Hydro	TMP	hydro	Thiam	-(η)		GTP (HTP r ribofla	Pyrim
35																				
40	Metabolism of Cofactors, Vitamins, and Other Substances Thiamine (Vitamin B1) metabolism	THI21	THI22	THI20								THI6	THI6					rib1	RIB7	rib7
45	nins, and (ism																			
50	Metabolism of Cofactors, Vitamins Thiamine (Vitamin B1) metabolism	2.7.1.49	2.7.1.49	2.7.4.7								2.7.1.50	2.5.1.3		2.7.4.16	3.1.3	etabolism	3.5.4.25	3.5.4.26	1.1.1.193
55	Metabolism ot Thiamine (Vita	YPL258C	YPR121 W	YOL055C		•			ı	ŀ	ı	YPL214C	YPL214C		I		Riboflavin metabolism	YBL033C	YBR153W	YBR153W

5	prm ribb	rib5	pho11 fmn1_1	fmn1_2	fad1 fad1b	pdxka pdxkb	pdxkc pdx3_1	pdx3_2 pdx3_3 pdx3_4	pdx3_5 ser1_2	thr4_2 hor2b
10 15	A6RP5P2 → A6RP + Pl RL5P → DB4P + FOR	DB4P + A6RP → D8RL + PI	FMN → RIBFLAV + PI RIBFLAV + ATP → FMN +	AUF RIBFLAVm + ATPm → FMNm + ADPm	FMN + ATP → FAD + PPI FMNm + ATPm → FADm + PDIm	PYRDX + ATP → P5P + ADP PDLA + ATP → PDLA5P +	PL + ATP → PL5P + ADP PDLA5P + 02 → PL5P + H2O2 + NH3	P5P + 02 ↔ PL5P + H2O2 PYRDX + 02 ↔ PL + H2O2 PL + 02 + NH3 ↔ PDLA +	PDLA5P + 02 → PL5P + H2O2 + NH3 OHB + GLU ↔ PHT + AKG	PHT → 4HLT + PI PDLA5P → PDLA + PI
20		nazine azine		< Œ 4	- ഥഥ					
25	ntinued) Pyrimidine phosphatase 3,4 Dihydroxy-2-butanone-4-	Riboflavin biosynthesis pathway enzyme, 6,7-dimethyl-8-ribityllun synthase, apha chain Riboflavin biosynthesis pathway	synthase, beta chain Acid phosphatase Riboflavin kinase	Riboflavin kinase	FAD synthetase FAD synthetase	Pyridoxine kinase Pyridoxine kinase	Pyridoxine kinase Pyridoxine 5'-phosphate oxidase	Pyridoxine 5'-phosphate oxidase Pyridoxine 5'-phosphate oxidase Pyridoxine 5'-phosphate oxidase	Pyridoxine 5'-phosphate oxidase Hypothetical transaminase/	phosphoserine transaminase Threonine synthase Hypothetical Enzyme
30	(continued) Pyrimidii 3,4 Dihy	Riboflav enzyme, synthase Riboflav	synthase Acid pho Riboflav	Riboflav	FAD synthetase FAD synthetase	Pyridoxii Pyridoxii	Pyridoxii Pyridoxii	Pyridoxii Pyridoxii Pyridoxii	Pyridoxii Hypothe	phospho Threonir Hypothe
35										
40		RIB5 RIB4	pho11 FMN1	FMN1	FAD1	abolism	PDX3	РDX3 РDX3 РDX3	PDX3 ser1	thr4
45						/nthesis met				
50	abolism	2.5.1.9 2.5.1.9	3.1.3.2 2.7.1.26	2.7.1.26	2.7.7.2 2.7.7.2	idoxine) Bios) 2.7.1.35 2.7.1.35	2.7.1.35 1.4.3.5	1.4.3.5 1.4.3.5 1.4.3.5	1.4.3.5 2.6.1.52	4.2.99.2 3.1.3
55	Riboflavin metabolism - -	YBR256C YOL143C	YAR071W YDR236C	YDR236C	YDL045C	Vitamin B6 (Pyridoxine) Biosynthesis metaboli - 2.7.1.35 - 2.7.1.35	- ҮВR035С	YBR035C YBR035C YBR035C	YBR035C YOR184W	YCR053W

5		:OA + 2 bio1	O2+COA biof	AMOB + bio3	$\Gamma P \leftrightarrow DTB bio4$	bio2	D fol2	PP ntpa	8ohq Ic	dhdnpa	GLAL fol1_1	AMP + foll_2	DCHOR + abz1	- PABA pabc	PPI + fol1_3	DHPT foll_4 $I \rightarrow ADP + folc$	→ NADPm dfr1_1	
15		3 MALCOA → CHCOA + 2 COA + 2 CO2	ALA + CHCOA ↔ CO2 + COA + AONA	SAM + AONA ↔ SAMOB + DANNA	$CO2 + DANNA + ATP \leftrightarrow DTB + PI + ADP$	$DTB + CYS \leftrightarrow BT$	GTP o FOR + AHTD	AHTD → PPI + DHPP	AHTD → DHP + 3 PI	DHPP → DHP + PI	DHP → AHHMP + GLAL	AHHMP + ATP → AMP + AHHMD	$CHOR + GLN \to ADCHOR$ GLU	ADCHOR \rightarrow PYR + PABA	PABA + AHHMD → DHPT	PABA + AHHMP → DHPT DHPT + ATP + GLU → ADP +	PI + DHF DHFm + NADPHm → NADPm	i Li F
20			anoate synthase	onic acid DAPA)	tase			riphosphate	se, Alkaline eoside	nonophosphate	Idolase	',8 dihydropterin e	mate synthase	nate lyase	nthase	nthase ıase	ctase	
25 30	(continued)		8-Aimino-7-oxononanoate synthase	7,8-diamino-pelargonic acid aminotransferase (DAPA) aminotransferase	dethiobiotin synthetase	Biotin synthase	GTP cyclohydrolase I	Dihydroneopterin triphosphate pyrophosphorylase	Glycerophosphatase, Alkaline phosphatase; Nucleoside triphosphatase	Dihydroneopterin monophosphate dephosphorylase	Dihydroneopterin aldolase	6-Hydroxymethyl-7,8 dihydropterin pvrophosphokinase	Aminodeoxychorismate synthase	Aminodeoxychorismate lyase	Dihydropteroate synthase	Dihydropteroate synthase Dihydrofolate synthase	Dihydrofolate reductase	
35	(co																	
40				BIO3	BIO4	BIO2	fol2		pho8	YDL100 C	fol1	fol1	ABZ1		fol1	fol1	dfr1	
45	synthesis																	
50	Pantothenate and CoA biosynthesis		2.3.1.47	2.6.1.62	6.3.3.3	2.8.1.6 nthesis	3.5.4.16	3.6.1	3.1.3.1	3.6.1	4.1.2.25	2.7.6.3	4.1.3	4	2.5.1.15	2.5.1.15 6.3.2.12	1.5.1.3	
55	Pantothenate	ı		YNR058W	YNR057C	YGR286C 2 Folate biosvuthesis	YGR267C	ı	YDR481C	YDL100C	YNL256W	YNL256W	YNR033W		YNL256W	YNL256W -	YOR236W	

5		ftfa	ftfb	rmal	fol3	met7		met12	met13	mis1_1	ade3_1	mis1_2	ade3_2	mis1_3	ade3_3	mtd1		fmt1
10 15		ATPm + FTHFm → ADPm + Plm + MTHFm	ATP + FTHF → ADP + Pl + MTHF	THF + ATP + GLU ↔ ADP + PI + THFG	THF + ATP + GLU ↔ ADP + PI + THFG	THF + ATP + GLU ↔ ADP + PI + THFG		METTHFm + NADPHm → NADPm + MTHFm	METTHFm + NADPHm → NADPm + MTHFm	METTHFm + NADPm ↔ METHFm + NADPHm	METTHF + NADP ↔ METHF + NADPH	THFm + FORm + ATPm → ADPm + Plm + FTHFm	THF + FOR + ATP → ADP + PI + FTHF	METHFm ↔ FTHFm	METHF ↔ FTHF	$METTHF + NAD \rightarrow METHF +$	NADH	FTHFm + MTRNAm → THFm fmt1 + FMRNAm
20		5-Formyltetrahydrofolate cyclo-ligase	5-Formyltetrahydrofolate cyclo-ligase	ase; converts glutamate to	Se	Folylpolyglutamate synthetase, involved in methionine biosynthesis and maintenance of mitochondrial genome)	Methylene tetrahydrofolate reductase	Methylene tetrahydrofolate reductase	al enzyme	enzyme	enzyme	enzyme	enzyme	al enzyme CI-			
25		etrahydrofola	tetrahydrofola	Protein with similarity to folylpolyglutamate synths tetrahydrofolyl-[Glu(n]] + tetrahvdrofolyl-[Glu(n+1)]	Dihydrofolate synthetase	Folylpolyglutamate synthetase, involved in methionine biosynthe maintenance of mitochondrial c		e tetrahydrofo	e tetrahydrofo	the mitochondrial trifunction C1-tetrahydroflate synthase	the cytoplasmic trifunctional ∈ C1-tetrahvdrofolate svnthase	the mitochondrial trifunction C1-tetrahvdroflate synthase	the cytoplasmic trifunctional ∈ C1-tetrahydrofolate synthase	the mitochondrial trifunction C1-tetrahydroflate synthase	the cytoplasmic trifunction tetrahvdrofolate svnthase	NAD-dependent 5,10-	methylenetetrahydrafolate dehydrogenase	Methionyl-tRNA Transformylase
30	(continued)	5-Formyli	5-Formyll	Protein w folylpolyg tetrahydr tetrahvdr	Dihydrofo	Folylpoly; involved i maintena		Methylen	Methylen	the mitoc C1-tetrah	the cytop C1-tetrah	the mitoc C1-tetrah	the cytop C1-tetrah	the mitoc C1-tetrah	the cytopl tetrahvdr	NAD-dep	methylenetetrah dehydrogenase	Methiony
35																		
40				RMA1	FOL3	MET7		MET12	met13	mis1	ade3	mis1	ade3	mis1	ade3	MTD1		fmt1
45							P:00670]											
50	ie	6.3.3.2	6.3.3.2	6.3.2.17	6.3.2.17	6.3.2.17	by folate [MA	1.5.1.20	1.5.1.20	1.5.1.5	1.5.1.5	6.3.4.3	6.3.4.3	3.5.4.9	3.5.4.9	1.5.1.15		2.1.2.9
55	Eolata hioevuthaeis			YKL132C	YMR113W	YOR241W	One carbon pool by folate [MAP:00670]	YPL023C	YGL125W	YBR084W	YGR204W	YBR084W	YGR204W	YBR084W	YGR204W	YKR080W		YBL013W

5	ecm31	pane	ilv5_3	panca	coaa	pclig	pcdcl	patrana	patranb	dphcoaka	dphcoakb	pancb	acps
10	OIVAL + METTHF → AKP + THF	AKP + NADPH → NADP + PANT	AKPm + NADPHm → NADPm ilv5_ + PANTm	$\begin{array}{l} PANT \texttt{+} \texttt{bALA} \texttt{+} \texttt{ATP} \rightarrow \texttt{AMP} \\ \texttt{+} \texttt{PPI} \texttt{+} \texttt{PNTO} \end{array}$	$\rightarrow ADP +$	4PPNTO+CTP+CYS→CMP + PPI + 4PPNCYS	$4PPNCYS \rightarrow CO2 + 4PPNTE$	TP → PPI +	4PPNTEm + ATPm → PPlm + DPCOAm	$DPCOA + ATP \rightarrow ADP + COA$ dphcoaka	DPCOAm + ATPm → ADPm + COAm	+ bALA	+ ACP
15	OIVAL + ME ⁻ THF	AKP + NADF PANT	AKPm + NAC + PANTm	PANT + bALA + PPI + PNTO	PNTO + ATP → ADP + 4PPNTO	4PPNTO+CTP+C + PPI+4PPNCYS	4PPNCYS →	$\begin{array}{l} \text{4PPNTE} + \text{ATP} \rightarrow \text{PPI} + \\ \text{DPCOA} \end{array}$	4PPNTEm + DPCOAm	DPCOA + AT	DPCOAm+/ COAm	$ASP \to CO2 + bALA$	COA → PAP + ACP
20	nethyl	transferase Putative ketopantoate reductase (2- dehydropantoate 2-reductase) involved in coenzyme A synthesis, has similarity to Cbs20. Ketopantoate reductase	lerase	ase	kinase involved hesis,	cysteine ligase	cysteine			0	0		ıthase, rotein
25	rtinued) Ketopentoate hydroxymethyl	transferase Putative ketopantoate reductase (2- dehydropantoate 2-reductase) involved in coenzyme A synthesis, has similarity to Cbs2p. Ketopantoate reductase	Ketol-acid reductoisomerase	Pantoate-b-alanine ligase	Putative pantothenate kinase involved in coenzyme A biosynthesis, Pantothenate kinase	Phosphopantothenate-cysteine ligase	Phosphopantothenate-cysteine decarboxylase	Phospho-pantethiene adenylyltransferase	Phospho-pantethiene adenylyltransferase	DephosphoCoA kinase	DephosphoCoA kinase	ASPARTATE ALPHA- DECARBOXYLASE	Acyl carrier-protein synthase, phosphopantetheine protein transferase for Acp1p
30	(continued) Ketopen	transferase Putative ket dehydropan in coenzymd to Cbs2b. K	Ketol-a	Pantos	Putativ in coer Pantot	Phosp	Phosp decarb	Phosp adenyl	Phosp adenyl	Depho	Depho	ASPAI	Acyl ca phospl transfe
35					2								
40	ECM31	PAN5	ilv5	YIL145C	YDR531 W								PPT2
45													
50	<mark>Coenzyme A Biosynthesis</mark> YBR176W 2.1.2.11	1.1.1.169	1.1.1.86	6.3.2.1	2.7.1.33	6.3.2.5	4.1.1.36	2.7.7.3	2.7.7.3	2.7.1.24	2.7.1.24	4.1.1.11	2.7.8.7
55	Coenzyme A I YBR176W	YHR063C	YLR355C	YIL145C	YDR531W			·			ı	ľ	YPL148C

5		nadh nptl nadb	nada nadc	naddl	nade	nadf_1 I	nadf 2	nadf_5	nadphps	naai nadg1	nadg2		mnadc	mnadd1	mnadd2	mnade
10		NAM ↔ NAC + NH3 NAC + PRPP → NAMN + PPI ASP + FADm → FADH2m + ISLICC	ISUCC + T3 P2 \rightarrow PI + QA QA + PRPP \rightarrow NAMN + CO2	NAMN + ATP → PPI + NAAD	NAAD + ATP + NH3 \rightarrow NAD + AMP + PPI	NAD + ATP → NADP + ADP	NAD + ATP → NADP + ADP	NAD + ATP → NADP + ADP	NADP → NAD + PI	ИАU → NAM + AUPHIB ADN + PI <-> AD + RIP	GSN + PI <-> GN + RIP		QAm + PRPPm → NAMNm + CO2m + PPIm	NAMNm + ATPm → PPlm + NAADm	NMNm + ATPm → NADm + PPIm	NAADm + ATPm + NH3m → NADm + AMPm + PPIm
15		NAM ↔ N NAC + PF ASP + FA	QA + PRI	NAMN +	NAAD + AT AMP + PPI	NAD + A ⁻	NAD + A ⁻	NAD + A ⁻		NAU → N ADN + PI	GSN + PI	(QAm + PRPPr CO2m + PPIm	NAMNm. NAADm	NMNm + PPIm	NAADm + NADm +
20			osyl transferase	cleotide (NMN)	nia ligase	IOSPHATE ' NAD+ KINASE	IOSPHATE ' NAD+ KINASE	IOSPHATE ' NAD+ KINASE		ine-nucleoside	ine-nucleoside		osyl transferase	erase	erase	nia ligase
25	(p	Nicotinamidase NAPRTase Aspartate oxidase	Quinolate synthase Quinolate phosphoribosyl transferase	Nicotinamide mononucleotide (NMN) adenylyltransferase	Deamido-NAD ammonia ligase	NAD kinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD kinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD kinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NADP phosphatase	strong similarity to purine-nucleoside phosphorylases	strong similarity to purine-nucleoside phosphorylases	:	Quinolate phosphoribosyl transferase	NAMN adenylyl transferase	NAMN adenylyl transferase	Deamido-NAD ammonia ligase
30	(continued)	Nicoti NAPF Aspaı	Quino Quino	Nicoti adeny	Dearr	NAD KINA: (EC 2	NAD KINA: (EC 2	KINA: (EC 2	NADF	stronç phosp	strong		Quino	NAM	NAM	Dearr
35				8			2							×	N	
40		PNC1 NPT1	QPT1	YLR328 W	QNS1	utrl	YEL041 w	POS5					QPT1	YLR328 W	YLR328 W	QNS1
45												TRP ה				
50		a.5.1.19 3.5.1.19 2.4.2.11 1.4.3	1.4.3.16 2.4.2.19	2.7.7.18	6.3.5.1	2.7.1.23	2.7.1.23	2.7.1.23	3.1.2 0.001	3.2.2.5 2.4.2.1	2.4.2.1	Nicotinic Acid synthesis from TRP	2.4.2.19	2.7.7.18	2.7.7.18	6.3.5.1
55		YGL037C YGR209C	YFR047C	YLR328W	YHR074W	YJR049c	YEL041w	YPL188w				Nicotinic Aci	YFR047C	YLR328W	YLR328W	YHR074W

		-	۵.	ى ا	sduc	11	Ş	_	mnpt1 mnadi								<u> </u>	~	-+	10	0		
5		mnadf_1	mnadf_2	mnadf_5	mnadphps	mnadg1	mnadg	mnadh	mnpt1				hem1	hem2	hem3	hem4	hem12	hem13	hem14	hem15	unrxn10	mse1	met1
10 15		NADm + ATPm → NADPm + ADPm	NADm + ATPm → NADPm + ADPm	NADm + ATPm → NADPm + ADPm	NADPm -> NADm + Plm	$ADNm + PIm \leftrightarrow ADm + RIPm$	GSNm+Plm↔GNm+RlPm mnadg2	NAMm 🗠 NACm ± NH3m	NACm + PRPPm → NAMNm + PPIm NADm → NAMm +	ADPRIBm			SUCCOAm + GLYm → ALAVm + COAm + CO2m	2 ALAV o PBG	$4 \text{ PBG} \rightarrow \text{HMB} + 4 \text{ NH3}$	$HMB \to UPRG$	$UPRG \to 4\;CO2 + CPP$	$02 + CPP \rightarrow 2 CO2 + PPHG$	$02 + PPHGm \rightarrow PPIXm$	PPIXm → PTHm	$GLU + ATP \to GTRNA + AMP$ + PPI	GLUm + ATPm → GTRNAm +	SAM + UPRG → SAH + PC2
20		VAD kinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NADkinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD kinase, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)		strong similarity to purine-nucleoside	prosprorylases strong similarity to purine-nucleoside phosphorylases						ynthase	nydratase	Hydroxymethylbilane synthase	Uroporphyrinogen-III synthase	Uroporphyrinogen decarboxylase	Coproporphyrinogen oxidase, aerobic	ı oxidase		glutamyl-tRNA synthetase, cytoplasmic		uroporphyrin-III C-methyltransferase
25		se, POLYI EC 2.7.4. ⁻ .23)	е, РОLYP ЕС 2.7.4. .23)	se, POLYI EC 2.7.4. ⁻ .23)	NADP phosphatase	ilarity to p	ylases nilarity to p ylases	idace	e e e				5-Aminolevalinate synthase	Aminolevulinate dehydratase	nethylbilan	yrinogen-l	yrinogen c	phyrinogei	Protoporphyrinogen oxidase	atase	RNA syntl		rrin-III C-m
30	(continued)	NAD kinase, KINASE (EC (EC 2.7.1.23)	NADkinase, P KINASE (EC (EC 2.7.1.23)	NAD kinase, KINASE (EC (EC 2.7.1.23)	NADP ph	strong sin	prospriorylases strong similarity phosphorylases	Nicotinamidase	NAPRTase				5-Aminole	Aminolevi	Hydroxyn	Uroporphi	Uroporphi	Coproport	Protoporp	Ferrochelatase	glutamyl-t		uroporphy
35																							
40		utrl	POS5	YEL041 w		PNP1	PNP1	FONG	NPT1				hem1	HEM2	HEM3	HEM4	HEM12	HEM13	HEM14	HEM15	YGL245 W	MSE1	met1
45	ТВР								.2.5		:	tabolism											
50	Nicotinic Acid svnthesis from TBP	2.7.1.23	2.7.1.23	2.7.1.23	3.1.2	2.4.2.1	2.4.2.1	35110	2.4.2.11 3.2.2.5		ays	Porphyrin and Chlorophyll Metabolism	2.3.1.37	4.2.1.24	4.3.1.8	4.2.1.75	4.1.1.37	1.3.3.3	1.3.3.4	4.99.1.1	6.1.1.17	6.1.1.17	2.1.1.107
55	Nicotinic Acid	YJR049c	YPL188w	YEL041w	,	YLR209C	YLR209C	VGL037C	YOR209C		Uptake Pathways	Porphyrin and	YDR232W	YGL040C	YDL205C	YOR278W	YDR047W	YDR044W	YER014W	YOR176W	YGL245W	YOL033W	YKR069W

5		trp3_3	trp2_2	PPI bet2			l coq1	ol coq2	ol cox10	l ram1		ol rer2	ol srtl	pad1_2	qiqn	H dim1	n ubih	coq5	coq6b	n ubig
10		CHOR → 4HBZ + PYR	\rightarrow 4HBZ + PYR	4HBZ + NPP → N4HBZ + PF			4HBZ + NPP → N4HBZ + PPI	4HBZ + NPP → N4HBZ + PPI	4HBZ + NPP → N4HBZ + PPI	protein farnesyltransferase beta subunit 4HBZ + NPP \rightarrow N4HBZ + PPI		4HBZ + NPP → N4HBZ + PPI	4HBZ + NPP → N4HBZ + PPI	→ CO2 + 2NPPP	2NPPP + 02 \rightarrow 2N6H	$2N6H + SAM \rightarrow 2NPMP + SAH$	$2NPMPm + O2m \rightarrow 2NPMBm$	2NPMBm + SAMm →	ZNPMMBm + O2m → 2NMHMBm	2NMHMBm+SAMm→QH2m ubig + SAHm
15			I CHOR	4HBZ +				4HBZ +	4HBZ +	4HBZ +		4HBZ +	4HBZ +	N4HBZ	2NPPP	2N6H+	2NPMP		2NPMMBm 2NMHMBm 2NMHMBm	2NMHMI + SAHm
20		anthranilate synthase Component II and indole-3-phosphate (multifunctional enzyme)	Component	ase type II beta	geranylgeranyltransferase type II alpha subunit	ase type I beta	Hexaprenyl pyrophosphate synthetase, catalyzes the first step in coenzyme Q (ubiquinone) biosynthesis pathway	1	transferase, or	rase beta subunit	rase alpha	yl diphospate	yl diphospate	nzoate	rdroxylase		kyphenol	ky-1,4-	0 2 0	÷
25	(p	anthranilate synthase Component II: indole-3-phosphate (multifunctional enzyme)	anthranilate synthase Component	geranylgeranyltransferase type II beta subunit	/lgeranyltransfer it	geranylgeranyltransferase type I beta subunit	Hexaprenyl pyrophosphate synthetase, catalyzes the first step in coenzyme Q (ubiquinone) biosynthesis pathway	para-hydroxybenzoate polyprenyltransferase	protoheme IX farnesyltransferase, mitochondrial precursor	n farnesyltransfe	protein farnesyltransferase alpha subunit	putative dehydrodolichyl diphospate synthetase	putative dehydrodolichyl diphospate synthetase	Octaprenyl-hydroxybenzoate decarboxylase	2-Octaprenylphenol hydroxylase		2-Octaprenyl-6-methoxyphenol hvdroxvlase	2-Octaprenyl-6-methoxy-1,4-	COQ6 monooxygenase	3-Dimethylubiquinone 3- methyltransferase
30	(continued)	anthranil indole-3- enzyme)	anthre	geranylı subunit	geranyl subunit	geranylı subunit	Hexap cataly (ubiqu	para-h polypr	protoh mitoch	proteir	protein subunit	putative de synthetase	putative de synthetase	Octap decart	2-Octa		2-Octs hvdro	2-Octa	COQE	3-Dim methy
35																				
40		trp3	trp2	BET2	BET4	cdc43	coq1	C0Q2	COX10	ram1	RAM2	RER2	SRT1	PAD1		DIM1		COQ5	COQ6	COQ3
45																				
50	synthesis	4.1.3.27	4.1.3.27	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	2.5.1	4.1.1	1.13.14	2.1.1	1.14.13	2.1.1	1.14.13	2.1.1.64
55	Quinone Biosynthesis	YKL211C	YER090W	YPR176C	YJL031C	YGL155W	YBR003W	YNR041C	YPL172C	YDL090C	YKL019W	YBR002C	YMR101C	YDR538W	I	YPL266W	·	YML110C	YGR255C	YOL096C

5	20 20	mco2	meth	mnh3	mmthn	mthf	mmthf	mser	mgly	mcbh	moicap	mpro	mcmp	mac	macar_	mcar_	maclac	mactc	mslf	mthr	maka	aac1	pet9		aac3	mir1a	mir1d	dic1_1	dic1_2
10		m	E	Ę	THNm	Ľ.	→ METTHF	Ë,	≻_	CBHCAP	OICAP	Q D	MP		ARm	AR	CLACM	CTACM	n + Hm	Ħ	S	ADP + ATPm + Pl → Hm + ADPm + ATP + Plm	$ADP + ATPm + PI \rightarrow Hm +$	o + Plm	$ADP + ATPm + PI \rightarrow Hm + ADPm + ATP + PIm$	mlo	PIm	MAL + SUCCm ↔ MALm +	accc MAL + Plm ↔ MALm + Pl
15	02 ↔ O2m	CO2 ↔ CO2m	ETH ↔ ETHm	NH3 ↔ NH3m	$MTHN\leftrightarrowMTHNm$	THFm ↔ THF	METTHFm ↔ METTHF	SERm ↔ SER	GLYm ↔ GLY	CBHCAPm ↔ CBHCAP	OICAPm ↔ OICAP	PROm ↔ PRO	$CMPm\leftrightarrowCMP$	$ACm\leftrightarrowAC$	ACAR o ACARm	CARm ightarrow CAR	ACLAC ↔ ACLACm	ACTAC ↔ ACTACm	SLF o SLFm + Hm	$THRm\leftrightarrowTHR$	AKAm o AKA	ADP + ATPm + PI	ADP + ATPn	ADPm + ATP + Plm	ADP + ATPm + Pl – ADPm + ATP + Plm	PI ↔ Hm + Plm	PI + OHm ↔ Plm	MAL + SUCC	acco MAL + PIm ∢
20																						tein (MCF)	tein (MCF)		tein (MCF)		similarity to C.elegans mitochondrial phosphate carrier		
25	d) ted manner:																					ADP/ATP carrier protein (MCF)	ADP/ATP carrier protein (MCF)		ADP/ATP carrier protein (MCF)	phosphate carrier	similarity to C.elegar phosphate carrier	dicarboxylate carrier	dicarboxylate carrier
30	(continued) - <i>carrier-mediate</i>																					ADP/A	ADP/A		ADP/A	phospl	similar	dicarbo	dicarbo
35	nbrane in a non																										3 C		
40	ochondiral men																					AAC1	pet9		AAC3	MIR1	YER053 C	DIC1	DIC1
45	ansport the inner mitc																												
50	ansport Membrane Tr diffuse through																												
55	(continued) Memberane Transport Mitochondiral Membrane Transport The followings diffuse through the inner mitochondiral membrane in a non-carrier-mediated manner:																					YMR056c	YBL030C		YBR085w	YJR077C	YER053C	YLR348C	YLR348C

	<u>-</u>	dic1_3 mmlt	q	-	∾_	ε Γ	nlac																						
5	• • •	dic	moab	ctp1_1	ctp1_2	ctp1_3	mlac																						
10		SUCC + PIm → SUCCm + PI MALT + PIm ↔ MALTm + PI	$OA\leftrightarrowOAm+Hm$	$CIT + MALm \leftrightarrow CITm + MAL$	$CIT + PEPm \leftrightarrow CITm + PEP$	CIT + ICITm ↔ CITm + ICIT	LAC ↔ LACm + Hm						al	val					оа			It		d			0	E	_
10	Č		A↔	CH CH	CH CH		LAC	pyrca	gca	gcb	ort	crc1	moival	momval	mfad		mribo	mdtb	mmcoa	hmv	mpa	mppnt	mad	mprpp	mdhf	mqa	ddom	msam	msah
20			etate carrier	ц	ц	с				_		R + ACARm			m + FMN		Ľ,		Am			E							
25	1 manner:	dicarboxylate carrier	Mitochondrial oxaloacetate carrier	citrate transport protein	citrate transport protein	citrate transport protein		PYR ↔ PYRm + Hm	GLU ↔ GLUm + Hm	GLU + OHm → GLUm	ORN + Hm ↔ ORNm	$CARm + ACAR \to CAR + ACARm$	OIVAL ↔ OIVALm	OMVAL ↔ OMVALm	FAD + FMNm → FADm + FMN		RIBFLAV ↔ RIBFLAVm	DTBm	H3MCOA ↔ H3MCOAm	MVLm	Am	$4PPNTE \leftrightarrow 4PPNTEm$	Ш	РКРР ↔ РКРРт	DHFm	Am	ОРРт	SAMm	SAHm
30	(continued) ier-mediated	Icarbox	litochor	itrate tra	itrate tra	itrate tra		YR ⇔	åLU ↔ (ILU + C	RN + F	:ARm +	→ JAVI	MVAL	AD + F		IIBFLA	DTB ↔ DTBm	I3MCO/	$MVL\leftrightarrowMVLm$	$PA\leftrightarrowPAm$	PPNTE	$AD\leftrightarrowADm$	RPP←	DHF ↔ DHFm	QA ↔ QAm	ОРР ↔ ОРРт	$SAM\leftrightarrowSAMm$	SAH ↔ SAHm
30	(cont on-carrier-m	σ	2	0	0	0		<u>م</u>	G	G	0	0	0	0			œ		Т	2	۵.	4	A	С.		Ø	0	S	S
35	brane in a no							e carrier	glutamate carrier		e carrier	e carrier			Protein involved in transport of FAD from cytosol into the	mitochondrial matrix													
40	ondiral mem	בוכו	0AC1	CTP1	CTP1	CTP1		pyruvate carrier	glutamai		ornithine carrier	carnitine carrier			Protein i of FAD f	mitochol													
45	nsport the inner mitoch																												
50	(continued) Memberane Transport Mitochondiral Membrane Transport The followings diffuse through the inner mitochondiral membrane in a non-carrier-mediated manner:										ORT1	CRC1			FLX1														
55	Memberane Transport Mitochondiral Membra <i>The followings diffuse th</i>	YLH348C	YKL120W	YBR291C	YBR291 C	YBR291C					YOR130C	YOR100C			YIL134W														

10																	
15	stc1	odc1 odc2		C +	mi3p mgl3p		hxt4	gal2_3	hxt11	sti1_1	hxt1_1	hxt11_1	hxt13_1	hxt15_1	hxt16_1	hxt10_1	hxt17_1
20	CCm + FUM	+ OXAm + OXAm															
25	ntinued) <i>mediated manner:</i> SUCC + FUMm → SUCCm + FUM	ר + OXA ↔ AKG ר + OXA ↔ AKG			I 3PZM → I 3PZ GL3P → GL3Pm		GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	GLCxt → GLC	$GLCxt \rightarrow GLC$	GLCxt → GLC	GLCxt → GLC
30	(continued) <i>ier-mediate</i> SUCC +	AKGn AKGn			GL3F		GLCX	GLCX	GLCX	GLCXI	GLCM	GLCX	GLCXI	GLCX	GLCX	GLCX	GLCX
<i>35</i> 40	(continued) Memberane Transport Mitochondiral Membrane Transport The followings diffuse through the inner mitochondiral membrane in a non-carrier-mediated manner: YJR095W SFC1 Mitochondrial membrane SUCC + FUMm → succinate-fumarate transporter, member of the mitochondrial carrier family (MCF) of membrane transporter	2-oxodicarboylate transporter AKGm + OXA ↔ AKG + OXAm 2-oxodicarboylate transporter AKGm + OXA ↔ AKG + OXAm	-				moderate- to low-affinity glucose transporter	galactose (and glucose) permease	low affinity glucose transport protein	Protein member of the hexose transporter family	High-affinity hexose(glucose) transporter	Glucose permease	high-affinity hexose transporter	Hexose transporter	hexose permease	high-affinity hexose transporter	Putative hexose transporter
45	t n <i>er mitochondiral</i> Mi su tra mi						dr dr	g De De	<u></u>	Pr tra	tra tra	ច	hiç tra	Η	he	hiç tra	Ρ
50	port mbrane Transpol <i>ise through the in</i> SFC1	ODC1 ODC2	Shuttle e	e shuttle		e Transport	HXT4	GAL2	HXT11	stl1	hxt1	HXT11	HXT13	HXT15	HXT16	HXT10	HXT17
55	Memberane Transport Mitochondiral Membrane Transport <i>The followings diffuse through the inne</i> YJR095W SFC1	YPL134C YOR222W	Malate Aspartate Shuttle Included elsewhere	Glycerol phosphate shuttle		Plasma Membrane Transport Carbohydrates	YHR092c	YLR081w	YOL156W	YDR536W	YHR094c	YOL156W	YEL069c	YDL245c	YJR158w	YFL011w	YNR072w

10																															
15		hxt2_1	hxt4_1	hxt3_1	hxt5_1	hxt6_1	hxt7_1	hxt8_4	hxt9_1	gal2_1	hxt10_4		hxt11_4	hxt14		hxt9_4	stl1_4		agp3_3			stl1_2	gap8		gap24		dip10	0 1140	0 110	hxt1_2	
20																															
25		GLCxt → GLC	GLCxt → GLC	$GLCxt \to GLC$	GLCxt → GLC	$GLCxt \rightarrow GLC$	$GLCxt \rightarrow GLC$	$GLCxt \rightarrow GLC$	GLCxt → GLC	$GLACxt + HEXT \to GLAC$	$GLACxt + HEXT \to GLAC$		$GLACxt + HEXT \rightarrow GLAC$	$GLACxt + HEXT \rightarrow GLAC$		$GLACxt + HEXT \rightarrow GLAC$	$GLACxt + HEXT \to GLAC$		GLUxt + HEXT ↔ GLU			GLUxt + HEXT ↔ GLU	GLUxt + HEXT ↔ GLU		GLUxt + HEXT ↔ GLU		GLUxt + HEXT ↔ GLU		+ וובאו ↔ פרט	+ HEXT → FRU	
30	(continued)	GLCxt	GLCxt	GLCxf	GLCxt	GLCxt	GLCxt	GLCxt	GLCxt	GLACX	GLACX		GLACX	GLACX		GLACX			GLUxt				GLUX		GLUxt		GLUxt			FRUxt	
35	0)	high affinity hexose transporter-2	High-affinity glucose transporter	Low-affinity glucose transporter	hexose transporter	Hexose transporter	Hexose transporter	hexose permease	hexose permease	galactose permease	high-affinity hexose	orter	Glucose permease	Member of the hexose	transporter family	hexose permease	Protein member of the hexose	transporter family	Amino acid permease for	serine, aspartate, and	ate	Protein member of the hexose	transporter tamıly General amino acid	ase	Amino acid permease for	most neutral amino acids	Dicarboxylic amino acid	uoc	transporter family	High-affinity hexose (glucose) FRUxt + HEXT \rightarrow FRU	orter
40		high affinity h transporter-2	High-affinit transporter	Low-affinity transporter	hexose	Hexose	Hexose	hexose	hexose	galacto	high-af	transporter	Glucos	Membe	transpo	hexose	Protein	transpo	Amino	serine,	glutamate	Protein	transpo Genera	permease	Amino	most n	Dicarboxyl		transpo	High-al	transporter
45																															
50	ane Transport	HXT2	hxt4	hxt3	HXT5	HXT6	HXT7	HXT8	HXT9	gal2	HXT10		HXT11	HXT14		HXT9	stl1		AGP3			stl1	gap1		AGP1		DIP5	+1+0	011	hxt1	
55	Plasma Membrane Transport Carbohvdrates	YMR011w	YHR092c	YDR345c	YHR096c	YDR343c	YDR342c	YJL214w	YJL219w	YLR081w	YFL011w		YOL156W	YNL318c		YJL219w	YDR536W		YFL055w			YDR536W	ҮКR039W		YCL025C		YPL265W			YHR094c	

10							
15	hxt10_2	hxt11_2 hxt13_2	hxt15_2 hxt16_2 hxt17_2 hxt2_2	hxt3_2 hxt4_2	hxt5_2 hxt6_2 hxt7_2 hxt9_5	hxt1_5 hxt10_3 hxt11_3	hxt13_3 hxt15_3 hxt16_3 hxt17_3 hxt2_3 hxt2_3
20							
25	rtinued) FRUxt + HEXT → FRU	FRUxt + HEXT → FRU FRUxt + HEXT → FRU	FRUxt + HEXT → FRU FRUxt + HEXT → FRU FRUxt + HEXT → FRU FRUxt + HEXT → FRU	FRUxt + HEXT → FRU FRUxt + HEXT → FRU	$FRUxt + HEXT \rightarrow FRU FRUxt + HEXT \rightarrow FRU FRU FRU FRU FRU FRU FRU FRU FRU FRU$	$MANXt + HEXT \rightarrow MAN$ $MANXt + HEXT \rightarrow MAN$ $MANXt + HEXT \rightarrow MAN$	MANXt + HEXT \rightarrow MAN MANXt + HEXT \rightarrow MAN MANXt + HEXT \rightarrow MAN MANXt + HEXT \rightarrow MAN MANXt + HEXT \rightarrow MAN
30	(continued) FRUxt +	FRUx	FRUX	FRUX	FRUX FRUX FRUX		MANX MANX MANX MANX MANX MANX
35	/ hexose	transporter Glucose permease high-affinity hexose transporter	Hexose transporter hexose permease Putative hexose transporter high affinity hexose	transporter-2 Low-affinity glucose transporter High-affinity glucose	transporter hexose transporter Hexose transporter hexose transporter hexose permease	High-affinity hexose (glucose) transporter high-affinity hexose transporter Glucose permease	high-affinity hexose transporter Hexose transporter hexose permease Putative hexose transporter high affinity hexose transporter-2 Low-affinity glucose transporter
40	high-af	transporter Glucose pe high-affinity transporter	Hexose hexose Putativ high af	transporter-2 Low-affinity g transporter High-affinity (transporter hexose tran Hexose tran Hexose tran hexose per	High-affinity transporter high-affinity transporter Glucose pe	high-affinity F transporter Hexose trans hexose perm Putative hexo high affinity h transporter-2 Low-affinity g transporter
45							
50	ane Transport HXT10	HXT11 HXT13	HXT15 HXT16 HXT17 HXT2	hxt3 hxt4	НХТ5 НХТ6 НХТ7 НХТ8 НХТ8	hxt1 HXT10 HXT11	HXT13 HXT15 HXT16 HXT17 HXT2 hxt3
55	Plasma Membrane Transport Carbohydrates YFL011w HXT10	YOL156w YEL069c	YDL245c YJR158w YNR072w YMR011w	YDR345c YHR092c	YHR096c YDR343c YDR342c YJL214w YJL214w	YHR094c YFL011w YOL156w	YEL069c YDL245c YJR158w YNR072w YMR011w YDR345c

10																																	
15		hxt4_3	hxt5_3	hxt6_3	hxt7_3	hxt8_6	hxt9_3	itr1	itr2	mltup	suc2		sucup	mal31	akmup		amgup	sorup	arbup1	fucup	gltlupb	gltup	gaup	glup	lacup1	mntup	melup_1	nagup	rmnup	ribup	ireup_1	treup_2	xylup
20															Gxt																		
25		MANxt + HEXT → MAN	$MANxt + HEXT \to MAN$	$HEXT \rightarrow MAN$	$MIxt + HEXT \rightarrow MI$	$MIxt + HEXT \to MI$	$MLTxt + HEXT \to MLT$	SUCxt → GLCxt + FRUxt		SUCxt + HEXT → SUC	$MALxt + HEXT \leftrightarrow MAL$	$MALxt + AKG \leftrightarrow MAL + AKGxt$		→ AMG	SOR	$ARABxt\leftrightarrowARAB$	FUCxt + HEXT ↔ FUC	$GLTLxt + HEXT \rightarrow GLTL$	$GLTxt + HEXT \rightarrow GLT$	$GLAMxt + HEXT \leftrightarrow GLAM$	GL	$LACxt + HEXT \leftrightarrow LAC$	$MNTxt + HEXT \to MNT$	$MELIxt + HEXT \to MELI$	$NAGxt + HEXT \to NAG$	RMNxt + HEXT o RMN	RIBxt + HEXT o RIB	$^{TRExt} + HEXT \to TRE$	TRExt ightarrow AATRE6P	۰ XYL			
30	(continued)	MANxt +	MANxt +	MANxt +	MANxt +	MANxt +	MANxt + HEXT	MIxt + H	MIxt + H	MLTxt +	SUCxt -		SUCxt +	MALxt +	MALxt +		AMGxt ↔ AMG	SORxt ↔ SOR	ARABxt	FUCxt +	GLTLxt -	GLTxt +	GLAMxt	$GLxt \leftrightarrow GL$	LACxt +	MNTxt +	MELIxt +	NAGxt +	RMNxt +	RIBxt + H	TRExt +	TRExt	XYLxt ↔ XYL
35	9	High-affinity glucose transporter	hexose transporter	Hexose transporter	Hexose transporter	hexose permease	hexose permease	myo-inositol transporter	myo-inositol transporter	Maltase permease	invertase (sucrose	hydrolyzing enzyme)		rylates	a-Ketoglutarate/malate	ator	a-methylglucoside		Arabinose (low affinity)				nine		Lactate transport		0	N-Acetylglucosamine	se		ē		
40		High-affinit; transporter	hexose t	Hexose 1	Hexose 1	hexose p	hexose p	myo-inos	myo-inos	Maltase	invertase	hydrolyzi	sucrose	Dicarboxylates	a-Ketogl	translocator	a-methyl	Sorbose	Arabinos	Fucose		Glucitol	Glucosamine	Glycerol	Lactate t	Mannitol	Melibiose	N-Acetyl	Rhamnose	Ribose	Trehalose		
45																																	
50	e Transport	hxt4	HXT5	HXT6	HXT7	HXT8	НХТ9	ITRI	ITR2		SUC2			MAL31										FPS1	JEN1								
55	Plasma Membrane Transport Carbohydrates	YHR092c	YHR096c	YDR343c	YDR342c	YJL214w	YJL219w	YDR497c	YOL103W		YIL162W 3.2.1.26			YBR298c										YLL043W	YKL217W								

10																								
15		gap1_1	dip5	gap25	tat5	put4	gapZ	can1_1	alp1		gap3	gap21	gnp2	dip6		agp3_2		gap4	din 7	2 din	gap5	cino.3	5	bap2_1
20																								
25		ALAxt + HEXT ↔ ALA	ALAxt + HEXT ↔ ALA	$ALAxt + HEXT \leftrightarrow ALA$	$ALAxt + HEXT \leftrightarrow ALA$	$ALAxt + HEXT \leftrightarrow ALA$	AHGXI + HEXI ↔ AHG	ARGxt + HEXT ↔ ARG	ARGxt + HEXT ↔ ARG		ASNxt + HEXT ↔ ASN	$ASNxt + HEXT \leftrightarrow ASN$	$ASNxt + HEXT \leftrightarrow ASN$	ASNxt + HEXT ↔ ASN		ASPxt + HEXT ↔ ASP		ASPxt + HEXT ↔ ASP			CYSxt + HEXT ↔ CYS	CYSxt + HFXT ↔ CYS		CYSxt + HEXT ↔ CYS
30	(continued)	ALAxt +	ALAxt +	ALAxt +	ALAxt +	ALAxt +	AHGXI +	ARGxt +	ARGxt +		ASNxt +	ASNxt +	ASNxt +	ASNxt +		ASPxt +		ASPxt +			CYSxt +	CYSxt +	-	CYSxt +
35	o)	General amino acid	permease Dicarboxylic amino acid permease	Amino acid permease for most neutral amino acids	Tryptophan permease	ermease	General amino acid permease	Permease for basic amino	Protein with strong similarity	ases	General amino acid permease	Amino acid permease for most neutral amino acids	Glutamine permease (high	aunuy) Dicarboxylic amino acid	0	Amino acid permease for serine, aspartate, and	0	General amino acid	permease Dicerbowilic amino acid		General amino acid	permease Glutamine nermease /hinh		Branched chain amino acid permease
40		General ar	Dicarboxyl	Amino ac most neu	Tryptoph	Proline permease	bermease	Permeas	Protein w	to permeases	General ar permease	Amino ac most neu	Glutamin	aiiiniiy) Dicarbox <u>y</u>	permease	Amino ac serine, as	glutamate	General a	Dicarbow	permease	General a	Glutamine	affinity)	Branched permease
45																								
50		gap1	DIP5	AGP1	TAT2	PUT4	gap1	can1	ALP1		gap1	AGP1	GNP1	DIP5		AGP3		gap1	אסות	2	gap1	GNP1	-	BAP2
55	Amino Acide	YKR039W	YPL265W	YCL025C	YOL020W	YOR348C	YKHU39W	YEL063C	YNL270C		YKR039W	YCL025C	YDR508C	YPL265W		YFL055W		YKR039W	VDI 266M		YKR039W	YDR508C		YBR068C

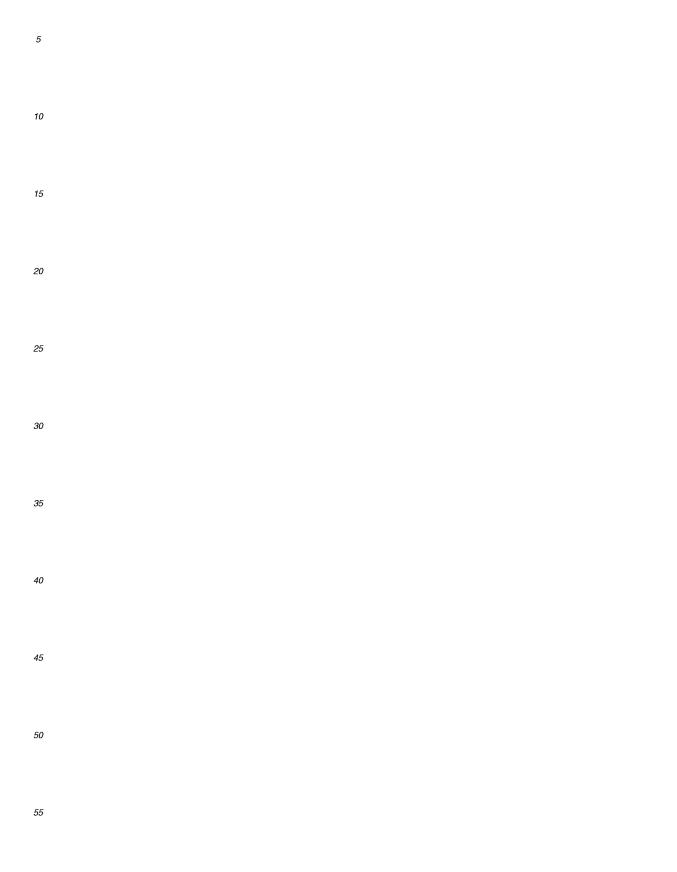
10																																	
15		bap3_1	vap7	tat7	gap6		tat6	dip8		put5	gap7		gap22	Lann	2	dip9		hip1	gap9		gap23		vap6	tat1_2			gap10		gap32		bap2_2	0 0004	Daps_z
20																																	
25		CYSxt + HEXT ↔ CYS	CYSxt + HEXT ↔ CYS	$CYSxt + HEXT \leftrightarrow CYS$	GLYxt + HEXT ↔ GLY		GLYxt + HEXT ↔ GLY	GLYxt + HEXT ↔ GLY		GLYxt + HEXT ↔ GLY	$GLNxt + HEXT \leftrightarrow GLN$		$GLNxt + HEXT \leftrightarrow GLN$	GI Nxt + HEXT ↔ GI N		GLNxt + HEXT ↔ GLN		-IISxt + HEXT ↔ HIS	HISxt + HEXT ↔ HIS		HISxt + HEXT ↔ HIS		HISxt + HEXT ↔ HIS	ILExt + HEXT ↔ ILE			ILExt+ HEXT ↔ ILE		$ Ext + HEXT \leftrightarrow LE$		ILExt + HEXT ↔ ILE		חבאו ↔ ורב
30	(continued)	CYSxt +	CYSxt +	CYSxt +	GLYxt +		GLYxt +	GLYxt +		GLYxt +	GLNxt +		GLNxt +	t NXI 10	1	GLNxt +		HISXt +	HISXt +		HISxt +		HISXt +	ILEXt +			ILEXt+ F		ILExt +		ILExt +	- ל נו	+ ILEXI
35	(c	Branched chain amino acid	Amino acid permease	Tryptophan permease	General amino acid	е	Tryptophan permease	Dicarboxylic amino acid	e	Proline permease	General amino acid	e	Amino acid permease for	most neutral amino acios Glutamine nermease <i>(</i> hinh		Dicarboxylic amino acid	e	Histidine permease	General amino acid	e	Amino acid permease for	most neutral amino acids	Amino acid permease	Amino acid permease that	transports valine, leucine,	isieuciire, tyrosiire, trvntonhan and threonine	General amino acid	е	Amino acid permease for	most neutral amino acids	Branched chain amino acid	e ط ملمان مستمم ممنط	branched chain amino acid permease
40		Branched	Amino ad	Tryptoph	General	permease	Tryptoph	Dicarbox	permease	Proline p	General	permease	Amino ad	Glutamir	affinity)	Dicarbox	permease	Histidine	General	permease	Amino a	most nei	Amino a	Amino a	transport	tryntonhs	General	permease	Amino a	most neı	Branche	Branchod	permease
45																																	
50		BAP3	VAP1	TAT2	gap I		TAT2	DIP5		PUT4	gap1		AGP1	GNP1	-	DIP5		HIP1	gap1		AGP1		VAP1	TAT1			gap1	1	AGP1		BAP2	2002	DAF3
55	Amino Acide	YDR046C	YBR069C	YOL020W	YKR039W		YOL020W	YPL265W		YOR348C	YKR039W		YCL025C	YDR508C		YPL265W		YGR191W	YKR039W		YCL025C		YBR069C	YBR069C			YKR039W		YCL025C		YBR068C		

10																		
15		vap3 tat1_3	gap11	gap33	bap2_3	bap3_3	vap4	/duɓ	gap13	gap26	gnp4	bap2_4	bap3_4	mup1	mup3	gap14	gap29	tat4
20																		
25		LExt + HEXT ↔ ILE LEUxt + HEXT ↔ LEU	LEUxt + HEXT ↔ LEU	LEUxt + HEXT ↔ LEU	LEUxt + HEXT ↔ LEU	LEUxt + HEXT ↔ LEU	LEUxt + HEXT ↔ LEU	LEUXî + HEXI ↔ LEU	$METxt + HEXT \leftrightarrow MET$	METxt + HEXT ↔ MET	$METxt + HEXT \leftrightarrow MET$	$METxt + HEXT \leftrightarrow MET$	METxt + HEXT ↔ MET	$METxt + HEXT \leftrightarrow MET$	$METxt + HEXT \leftrightarrow MET$	PHExt + HEXT ↔ PHEN	PHExt + HEXT ↔ PHEN	PHExt + HEXT ↔ PHEN
30	(continued)	ILExt + [†] LEUxt +	LEUxt +	LEUxt +	LEUxt +	LEUxt +	LEUxt +	LEUXt +	METxt +	METxt +	METxt +	METxt +	METxt +	METxt +	METxt +	PHExt +	PHExt +	PHExt +
35) (c	Amino acid permease Amino acid permease that transports valine, leucine, isleucine, tyrosine,	General amino acid	permease Amino acid permease for most neutral amino acids	Branched chain amino acid permease	Branched chain amino acid Dermease	Amino acid permease	Glutamine permease (high affinity)	General amino acid	permease Amino acid permease for most neutral amino acids	Glutamine permease (high affinitv)	Branched chain amino acid bermease	Branched chain amino acid bermease	High-affinity methionine permease	Low-affinity methionine permease	General amino acid	permease Amino acid permease for most neutral amino acids	Tryptophan permease
40		Amino ac Amino ac transports isleucine,	General a	Amino ació most neutr	Branched	Branched	Amino ac	Glutamine affinity)	General a	permease Amino acio most neutr	Glutamine	Branched	Branched	High-affini permease	Low-affinit permease	General a	permease Amino acio most neutr	Tryptoph
45																		
50		VAP1 TAT1	gap1	AGP1	BAP2	BAP3	VAP1	GNP1	gap1	AGP1	GNP1 I	BAP2	BAP3	MUP1	MUP3	gap1	AGP1	TAT2
55	Amino Acido	YBR069C YBR069C	YKR039W	YCL025C	YBR068C	YDR046C	YBR069C	YDH508C	YKR039W	YCL025C	YDR508C	YBR068C	YDR046C	YGR055W	YHL036W	YKR039W	YCL025C	YOL020W

10																															
15		bap2_5	bap3_5	gap15	put6	tat1_6		gap18		vap2	tat3	bap2_6		bap3_6		tat1_7				gap19		gap28		bap2_7		vap1	tat2	bap3_7		gap20	
20																															
25	(1	PHExt + HEXT ↔ PHEN	PHExt + HEXT ↔ PHEN	PROxt + HEXT ↔ PRO	PROxt + HEXT ↔ PRO	TRPxt + HEXT ↔ TRP		TRPxt + HEXT ↔ TRP		$TRPxt + HEXT \leftrightarrow TRP$	$TRPxt + HEXT \leftrightarrow TRP$	$TRPxt + HEXT \leftrightarrow TRP$		TRPxt + HEXT ↔ TRP		$TYRxt + HEXT \leftrightarrow TYR$				TYRxt + HEXT ↔ TYR		TYRxt + HEXT ↔ TYR		TYRxt + HEXT ↔ TYR		TYRxt + HEXT ↔ TYR	$TYRxt + HEXT \leftrightarrow TYR$	ΓΥRxt + HEXT ↔ ΤΥR		VALxt + HEXT ↔ VAL	
30	(continued)	PHExt	PHExt	PROxt	PROX	TRPxt		TRPxt		TRPxt	TRPxt	TRPxt		TRPxt		TYRxt				TYRxt		TYRxt		TYRxt		TYRxt	TYRxt	TYRxt		VALxt	
35	o)	Branched chain amino acid	permease Branched chain amino acid nermease	General amino acid Dermease	Proline permease	Amino acid permease that transports valine. leucine.	isleucine, tyrosine, trvptophan. and threonine	General amino acid	в	Amino acid permease	Fryptophan permease	Branched chain amino acid	е	Branched chain amino acid	Ð	Amino acid permease that	transports valine, leucine,	Isleucine, tyrosine,	tryptopnan, and threonine	General amino acid	Ð	Amino acid permease for	most neutral amino acids	Branched chain amino acid	Ð	Amino acid permease	Гryptophan permease	Branched chain amino acid	в	General amino acid	Ð
40		Branche	bermease Branched	General ar	Proline p	Amino ad transport	isleucine tryptoph	General	permease	Amino ao	Tryptoph	Branche	permease	Branche	permease	Amino ac	transport	Isleucine	Iryptopna	General	permease	Amino ao	most ner	Branche	permease	Amino ac	Tryptoph	Branche	permease	General	permease
45																															
50		BAP2	BAP3	gap1	PUT4	TAT1		gap1		VAP 1	TAT2	BAP2		BAP3		TAT1				gap 1		AGP1		BAP2		VAP1	TAT2	BAP3		gap1	
55	Amino Acide	YBR068C	YDR046C	YKR039W	YOR348C	YBR069C		ҮК В039W		YBR069C	YOL020W	YBR068C		YDR046C		YBR069C				YKR039W		YCL025C		YBR068C		YBR069C	YOL020W	YDR046C		YKR039W	

10																											
15		gap31	bap3_8	vap5	bap2_8	aqp3 1	5	dap27	-	gnp5	gap16		dip11	T T T T	lal _			gap30		gap17		gube		lyp1	gap12		mmp1
20																											
25		VALxt + HEXT ↔ VAL	$VALxt + HEXT \leftrightarrow VAL$	VALxt + HEXT ↔ VAL	$VALxt + HEXT \leftrightarrow VAL$	SERxt + HEXT ↔ SER		SERxt + HEXT ↔ SER		SERxt + HEXT ↔ SER	SERxt + HEXT ↔ SER		SERxt + HEXT ↔ SER		וחראו + חבא ו ↔ וחה			THRxt + HEXT ↔ THR		THRxt+ HEXT ↔ THR		IHKXt+ HEXI ↔ IHK		LYSxt + HEXT ↔ LYS	LYSxt + HEXT ↔ LYS		MMETxt + HEXT → MMET
30	(continued)	VALxt +	VALxt +	VALxt +	VALxt +	SERxt -		SERxt -		SERxt -	SERxt -		SERxt -	Ē				THRxt -		THRXt+		HHXt+		LYSXt +	LYSxt +		MMETx
35))	Amino acid permease for most neutral amino acids	Branched chain amino acid permease	Amino acid permease	Branched chain amino acid	permease Amino acid permease for	serine, aspartate, and	giutarriate Amino acid permease for	most neutral amino acids	Glutamine permease (high affinitv)	General amino acid	ë	Dicarboxylic amino acid	e H	Amino acia permease mai transports valine. leucine.	isleucine, tyrosine,	tryptophan, and threonine	Amino acid permease for	most neutral amino acids	General amino acid	ë	Glutamine permease (high	3	Lysine specific permease (high affinity)	General amino acid	ņ	High affinity S- methylmethionine permease
40		Amino a	Branched	Amino a	Branche	permease Amino acio	serine, a	giutarriate Amino aci	most nei	Glutamir affinitv)	General	permease	Dicarboy	permease	transpor	isleucine	tryptoph	Amino a	most nei	General	permease	Glutamir	aminity)	Lysine specif (high affinity)	General	permease	High affinity S- methylmethion
45																											
50		AGP1	BAP3	VAP1	BAP2	AGP3		AGP1		GNP1	gap1		DIP5	, F < F				AGP1		gap 1		GNP1		LYP1	gap1		MMP1
55	Amino Acide	YCL025C	YDR046C	YBR069C	YBR068C	YFL055W		YCL025C		YDR508C	YKR039W		YPL265W		1 BHUGSU			YCL025C		YKR039W		YDH508C		YNL268W	YKR039W		YLL061W

10																														
15		sam3	put7	uga4	agp2	5	hnm1	bio5a	uga5	qaplb	-	can1b		ptrup	sprup1	ptr2	ptr3	ptr4	uraup 1	dnumn		fcy2_1	fcy2_2	fcy2_3	fcy21_1	fcy21_2	fcy21_3	fcy22_1		fcy22_2
20														0	Q															
25	d)	SAMxt + HEXT → SAM	$GABAxt + HEXT \to GABA$	$GABAxt + HEXT \to GABA$	CARxt ↔ CAR		$CHOxt + HEXT \to MET$	BIOxt + HEXT → BIO	$ALAVxt + HEXT \rightarrow ALAV$	ORNxt + HEXT ↔ ORN		ORNxt + HEXT ↔ ORN		$PTRSCxt + HEXT \rightarrow PTRSC$	SPRMDxt + HEXT \rightarrow SPRMD	$DIPEPxt + HEXT \to DIPEP$	$OPEPxt + HEXT \rightarrow OPEP$	$PEPTxt + HEXT \to PEPT$	URAxt + HEXT o URA	$NMNxt + HEXT \to NMN$		$CYTSxt + HEXT \rightarrow CYTS$	$ADxt + HEXT \rightarrow AD$	GNxt + HEXT ↔ GN	$CYTSxt + HEXT \to CYTS$	ADxt + HEXT o AD	GNxt + HEXT ↔ GN	$CYTSxt + HEXT \to CYTS$		ADxt + HEXT → AD
30	(continued)	SAMxt	GABA	GABA	CARxt		снох	BIOX	ALAV	ORNX		ORNX		PTRS(SPRM	DIPEP	OPEP	PEPT)	URAxt	NMN		CYTS)	ADxt +	GNxt -	CYTS)	ADxt +	GNxt -	CYTS)		ADxt +
<i>3</i> 5 40	o)	High affinity S- adenosylmethionine permease	Proline permease	Amino acid permease with	nign specificity for പ്പപ്പA Plasma membrane carnitine	transporter	Choline permease	transmembrane regulator of KAPA/DAPA transport	Amino acid permease with bich specificity for GABA	General amino acid	permease	Permease for basic amino	acids	Putrescine	Spermidine & putrescine	Dipeptide	Oligopeptide	Peptide	Uracil	Nicotinamide	mononucleotide transporter	Cytosine purine permease	Adenine	Guanine	Cytosine purine permease	Adenine	Guanine	Cytosine purine permease		Adenine
40		n Hic a Hic be	Ľ Å	An	on ag	tra	ъ	tra KA	An	Ű	be	Ре	ac	Pu	Sp	Ö	Ö	Ре	Ď	Nic	Ĕ	δ	Ad	פו	δ	Ad	ฮ	S		Ad
45																														
50		SAM3	PUT4	uga4	AGP2		HNM1	BIO5	uga4	qap1	-	can1				PTR2	PTR2	PTR2	FUR4			FCY2	FCY2	FCY2	FCY21	FCY21	FCY21	FCY22		FCY22
55	Amino Acide	YPL274W	YOR348C	YDL210W	YBR132C		YGL077C	YNR056C	YDL210W	YKR039W		YEL063C				YKR093W	YKR093W	YKR093W	YBR021 W			YER056C	YER056C	YER056C	YER060W	YER060W	YER060W	YER060W-	۷	YER060W- A


10				
15		fcy22_3 cytup1 adup1 gnup ncgup3 ncgup4 ncgup6 ncgup6 ncgup8 ncgup9	ncgup 10 ncgup 11 ncgup 12 nccup2 nccup3 nccup4 nccup5 nccup5 nccup7	ncup2 ncup3 ncup5
20		Ш Z		
25	(d)	$\begin{array}{l} GNxt + HEXT \leftrightarrow GN\\ CYTSxt + HEXT \rightarrow CYTS\\ ADxt + HEXT \rightarrow CYTS\\ ADxt + HEXT \rightarrow AD\\ GNxt + HEXT \leftrightarrow GN\\ GNxt + HEXT \rightarrow GSN\\ GSNxt + HEXT \rightarrow GSN\\ URIxt + HEXT \rightarrow GSN\\ URIxt + HEXT \rightarrow UR\\ INSxt + HEXT \rightarrow INS\\ INSxt + HEXT \rightarrow INS\\ INSxt + HEXT \rightarrow INS\\ DIxt + HEXT \rightarrow DI\\ DINxt + HEXT \rightarrow DI\\ DGxt + HEXT \rightarrow DG\\ DGxt + HEXT \rightarrow DG\\ DGxt + HEXT \rightarrow DG\\ \end{array}$	$\begin{array}{l} DAxt + HEXT \to DA \\ DCxt + HEXT \to DC \\ DUxt + HEXT \to DC \\ DUxt + HEXT \to DU \\ ADNxt + HEXT \to ADN \\ URlxt + HEXT \to URl \\ CYTDxt + HEXT \to DT \\ DTxt + HEXT \to DT \\ DAxt + HEXT \to DC \\ DUxt + HEXT \to DU \\ ADNxt + HEXT \to DU \\ ADNxt + HEXT \to ADN \end{array}$	GSNxt + HEXT → GSN URIxt + HEXT → URI CYTDxt + HEXT → CYTD INSxt + HEXT → INS
30	(continued)			GSNx URIxt CYTD INSXt
35	5)	Guanine A Cytosine purine permease Adenine Guanine G-system G-system G-system G-system G-system G-system G-system G-system G-system G-system	G-system G-system G-system C-system Uridine permease, C-system C-system C-system C-system C-system C-system	deoxynucleoside Nucleosides and deoxynucleoside Uridine permease, Nucleosides and deoxynucleoside Nucleosides and deoxynucleoside deoxynucleoside
40		Guanine A Cytosine p Adenine Guanine G-system G-system G-system G-system G-system G-system G-system	G-system G-system G-system C-system C-system C-system C-system C-system C-system	deoxy Nucle Uridin Nucle deoxy deoxy Nucle deoxy deoxy
45				
50		FCY22 YGL186 C YGL186 C YGL186 C FUI1	FUI	FUI
55	Amino Acide	YER060W- YGL186C YGL186C YGL186C YBL042C	YBL042C	YBL042C

10																			
15		ncup7	ncup8	ncup9	ncup10	cup11	ncup12	hyxnup xanup		acup	forup	ethup	succup	Jeni		dur3	mep1	mep2	mep3
20																A			
25	(DTxt + HEXT o DT	DINxt + HEXT → DIN	DGxt + HEXT o DG	$DAxt + HEXT \to DA$	$DCxt + HEXT \rightarrow DC$	DUxt + HEXT → DU	HYXNxt + HEXT ↔ HYXN XANxt ↔ XAN	t L	ACxt + HEXT ↔ AC	FORxt ↔ FOR	ETHxt ↔ ETH	SUCCXt + HEXT ↔ SUCC	רזא לא ו+ חבאו → רזא		$UREAxt + 2 HEXT \leftrightarrow UREA$	NH3xt ↔ NH3	NH3xt ↔ NH3	NH3xt ↔ NH3
30	(continued)	DTxt +	DINxt +	DGxt +	DAxt +	DCxt +	DUxt +	HYXN) XANxt		ACxt +	FORxt	ETHxt	SUCC	г и и		UREA	NH3xt	NH3xt	NH3xt
35	Ĵ	Nucleosides and deoxvnucleoside	Nucleosides and deoxynucleoside	Nucleosides and	uccovinceoside Nucleosides and deoxynucleoside	Nucleosides and deoxynucleoside	Nucleosides and deoxynucleoside	nthine e	:	Probable acetic acid export pump, Acetate transport	Formate transport	Ethanol transport	Succinate transport	ryruvale laciale prolon symport		Urea active transport	Ammonia transport	Ammonia transport, low	capacity nigh affinity Ammonia transport, high capacity low affinity
40		Nucleos	Nucleos	Nucleos	Nucleos deoxyni	Nucleos	Nucleos deoxyni	Hypoxanthine Xanthine	-	Probabl	Formate	Ethanol	Succine	symport		Urea ac	Ammon	Ammon	capacity Ammon capacity
45																			
50									ducts	BPH1				JEAN		dur3	MEP1	MEP2	MEP3
55	Amino Acids								Metabolic By-Products	YCR032W					Other Compounds	YHL016C	YGR121C	YNL142W	YPR138C

10									
15	trkl	sult Sult	suic sulup pho84	citup fumup	taup1 faup2 faup3 faup4 faup5 akoup	nha1 fen2 atpmt	pmp1 pmp2	pma1	pma2
20									
25	ntinued) Kxt + HEXT ↔ K	SLFxt → SLF SI Fyt → SLF	טבר או → טבו Plxt + HEXT ↔ Pl	CIT×t + HEXT ↔ CIT FUM×t + HEXT ↔ FUM	G140xt → C140 C160xt → C160 C161xt → C161 C 180xt → C180 C181xt → C180 C181xt → C181	NAXt ↔ NA + HEXT PNTOXt + HEXT ↔ PNTO ATP → ADP + PI	$ATP \rightarrow ADP + PI + HEXT$ $ATP \rightarrow ADP + PI + HEXT$	ATP → ADP + Pl + HEXT	ATP → ADP + PI + HEXT
30	(continued) e Kxt + HI	SLFy SLFy	SLF) PIXT		G140 C167 C167 C187 C187 AKG	NAX PNT ATP	ATP ATP	АТР	ATP
35	(c Potassium transporter of the plasma membrane, high affinity, member of the	family of membrane transporters Sulfate permease	Sulfate permease inorganic phosphate	transporter, transmembrane protein Citrate Dicarboxylates	Fatty acid transport Fatty acid transport Fatty acid transport Fatty acid transport Fatty acid transport a-Ketoolutarate	Putative Na+/H+ antiporter Pantothenate ATP drain flux for constant maintanence requirements	H+-ATPase subunit, plasma membrane H+-ATPase subunit, plasma	membrane H+-transporting P-type ATPase, major isoform,	H+-transporting P-type ATPase, minor isoform, plasma membrane
40	Pota plasr affini	rans Sulfa Sulfa	Sulfa Sulfa inorg	transpo protein Citrate Dicarbo	Fatty Fatty Fatty Fatty Ae,Ke	Puta Pant ATP main	H+-A mem H+-A	mem H+-tr ATPa plasr	ATPa Plasr
45									
50	ds trk1	SUL1	YGR125 W pho84			NHA1 FEN2	PMP1 PMP2	PMA1	PMA2
55	Other Compounds YJL129C	YBR294W VI R092W	YGR125W YML123C			YLR138W YCR028C	YCR024c-a YEL017c-a	YGL008c	YPL036w

10																											
15		acaltx	thm1	thm2		thm3	dal4	da15	mthup	papx	dttpx	thyx	ga6pup	btup				kapaup	dapaup	ogtup	sprmup	pimeup	o2tx	co2tx	ergup	zymup	rflup
20																			_								>
25 30	(continued)	ACALxt ↔ ACAL	THMxt + HEXT → THIAMIN	$THMxt + HEXT \to THIAMIN$		IHMXT + HEXT → THIAMIN	$ATNxt \rightarrow ATN$	$ATTxt \rightarrow ATT$	MTHNxt ↔ MTHN	$PAPxt\leftrightarrowPAP$	DTTPxt ↔ DTTP	THYxt ↔ THY + HEXT	$GA6Pxt\leftrightarrowGA6P$	$BTxt + HEXT \leftrightarrow BT$				AONAXt + HEXT \leftrightarrow AONA	$DANNAxt + HEXT \leftrightarrow DANNA$	$OGTxt \rightarrow OGT$	SPRMxt → SPRM	$PIMExt \to PIME$	$O2xt \leftrightarrow O2$	$CO2xt \leftrightarrow CO2$	$ERGOSTxt \leftrightarrow ERGOST$	ZYMSTxt ↔ ZYMST	$RFLAVxt + HEXT \to RIBFLAV$
35	(co	Acetaldehyde transport	Thiamine transport protein	Probable low affinity thiamine		Probable low attinity thiamine transporter								H+/biotin symporter and	member of the allantoate	permease family of the major	facilitator superfamily						Oxygen transport	Carbon dioxide transport		Putative sterol transporter	
40		Acet	Thia	Prob	trans	trans								q/+Н	men	pem	facili						Oxyg	Carb		Puta	
45																											
50	spu		THI7	YOR071 C		YORI92 C	dal4	da15						VHT1											AUS1	AUS1	
55	Other Compounds		YLR237W	YOR071C		YORIBZC	YIR028W	YJR152W						YGR065C											YOR011W	YOR011W	

[0055] Standard chemical names for the acronyms used to identify the reactants in the reactions of Table 2 are provided in Table 3.

5	
10	
15	
20	d olichol
25	دان iosyldiphospho bhospho
30	
35	-protein] -protein] ta"-D-mannosy ta"-D-mannosy ol -benzoquinone thoxy-1,4-benz nol nol nol nol -cheptonate 7-t -carrier proteir -cysteine L-cysteine L-cysteine th, 3H)-pyrimidi lamino)uracil amino)uracil
40	TAB Metabolite 1,3-beta-D-Glucan 3-Phospho-D-glyceroyl phosphate 2,3-Dehydroacyl-[acyl-carrier-protein] 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl phosphate 2,3-Bisphospho-D-glyceroyl ("alpha"-D-mannosyl/flacp] 2,1-D-mannosyl/flacp] 2,1-Donaprenyl-6-methoxyphenol 3-Demethylubiquinone-9 3-Demethylubiquinone-9 3-Demethylubiquinone-9 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyphenol 2-Nonaprenyl-6-methoxyhphenol 2-Nonaprenyl-6-methoxyhmol 2-Nonaprenyl-6-methoxyhmol 2-Nonaprenyl-6-methoxyhmol 3-Phospho-D-glycerate 2-Nonaprenyl-6-methoxyhmol 3-Phosphose 2-Nonaprenyl-6-methoxyhmol 3-Phosphose 2-Nonaprenyl-6-methoxyhmol 3-Phosphose 3-Phosphose 3-Phosphose 3-Phosphose 3-Phosphose 3-Phosphose 3-Phosphose
45	Metabolite 1,3-beta-D-Glucan 3-Phospho-D-glyceroyl pho. 2,3-Bisphospho-D-glycerate Haxadecenoyl-[acyl-acyl- 2,3-Bisphospho-D-glycerate Haxadecenoyl-[acyl-acyl- ""alpha"-D-mannosyl)(,2)-"b 2-Nonaprenyl-6-methoxyph 2-4-Phosphopantothenoy 2-4-Phosphopantothenoy 2-4-Phosphopantothenoide 2-4-Phosphopantothenoide 2-4-Phosphopantothenoide 2-4-Phosphopantothenoide 2-4-1-phosphotenide 2-4-1-pho
50	Abbreviation 13GLUCAN 13PDG 23DAACP 23PDG 22HDACP 2NMHMB 2NMHMB 2NMHMB 2NMHMB 2NMHMB 2NMHMB 2NPMBMMBM 2NPMBM 2NPMB
55	

Metabolite Acetoscetvi	Metabolite ∆retracet/LCr∆∆			(continued)			
Acyl-[ac	Acyl-[acyl-carrier-protein]	ein]					
Ipha,a	pha'-Trehalos	alpha, alpha'-Trehalose 6-phosphate					
2-Aceto	2-Aceto-2-hydroxy butyrateM	tyrateM					
Acetate							
Acyl-[ac	Acyl-[acyl-carrier protein]	ein]					
Acyl-[ac	Acyl-[acyl-carrier prote	protein]M					
Acetaldehyde							
Acetald	AcetaldehydeM						
4-Acety	4-Acetylcarnitine						
D-Acety	O-AcetylcarnitineM						
Acetyl-CoA	CoA						
Acetyl-CoAM	CoAM						
2-Aceto	2-Acetolactate						
2-Aceto	2-AcetolactateM						
AcetateM	Σ						
3-Indol€	3-Indoleacetonitrile						
Acyl-CoA	Ą						
Acyl-ca	rrier protein						
Acyl-ca	Acyl-carrier proteinM						
Acetoacetate	cetate						
Acetoac	AcetoacetateM						
gamma	-Amino-gamm	gamma-Amino-gamma-cyanobutanoate	ate				
Adenine	0						
4-aminc	4-amino-4-deoxychorismate	smate					
AdenineM	Me						
Adenosine	ine						
AdenonsineM	sineM						
ADP							
ADPM							
ADPribose	ose						
ADPriboseM	bseM						
Vovl-en-	A cut on churchel O shocked	مغد ما مده					

55	50	45	40	35	30	25	20	15	10	5
					(continued)					
Abbrev AHMD	Abbreviation	Metabolite 2-4mino-7 &-riihvrkro-4-hvrkrovv-6-/riinhosnhoovvmethvl\briteridine	A-hvidrovv-6-(c	vinhosnhoov.	mathvil)ntaridina					
AHHMP	AP	2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine	-hydroxymeth)	/l-7,8-dihydrop	steridine					
AHM		4-Amino-5-hydroxymethyl-2-methylpyrimidine	ethyl-2-methyl	pyrimidine						
AHMP	д.	4-Amino-2-methyl-5-phosphomethylpyrimidine	ohosphomethy	lpyrimidine						
AHMPP	РР	2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate	lydroxymethyl	oyrimidine dip	hosphate					
AHTD	0	2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)-dihydropteridine triphosphate	-(erythro-1,2,3	-trihydroxypro	pyl)-dihydropterid	dine triphospha	te			
AICA	œ	1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide)-5-amino-4-im	iidazolecarbox	amide					
AIR		Aminoimidazole ribotide	ide							
AKA		2-Oxoadipate								
AKAm	F	2-OxoadipateM								
AKG		2-Oxoglutarate								
AKG	F	2-OxoglutarateM								
AKP		2-Dehydropantoate								
AKPr	F	2-DehydropantoateM								
ALA		L-Alanine								
ALAGLY	ארא	R-S-Alanylglycine								
ALAm	F	L-AlanineM								
ALAV		5-Aminolevulinate								
ALAVm	/m	5-AminolevulinateM								
ALTF	NA	L-Arginyl-tRNA(Arg)								
AM6SA	SA	2-Aminomuconate 6-	6-semialdehyde							
AMA		L-2-Aminoadipate								
AMASA	SA	L-2-Aminoadipate 6-s	6-semialdehyde							
AMG		Methyl-D-glucoside								
AMP		AMP								
AMPm	E	AMPM								
AMUCO	00	2-Aminomuconate								
AN		Anthranilate								
AONA	A	8-Amino-7-oxononanoate	oate							
APEP	Ο	Nalpha-Acetylpeptide								
APROA	AC	3-Aminopropanal								
APROP	ОР	alpha-Aminopropiononitrile	nitrile							
APRUT	5	N-Acetylputrescine								

5	
10	
15	
20	
25	হ
30	(continued)
35	aphosphate otein] otein]M
40	Metabolite Adenylysulfate D-Arabinose D-Arabinose D-Arabinono-1,4-lactone L-Arginine N-(L-Arginino)succinate N-(L-Arginino)succinate O-Acetyl-L-serine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate N1-Acetylspermine L-Aspartate Norosyl-facyl-carrier protein] Myristoyl-[acyl-carrier protein]
45	Metabolite Adenylylsulfate D-Arabinose D-Arabinose D-Arabinose D-Arabinose L-Arginine N-(L-Arginino)succinate C-Acetyl-L-serine L-Asparagine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate N1-Acetylspermine L-Asparate D-Acetyl-L-serine ATP ATP ATP ATP ATP ATP ATP ATP ATP ATP
50	Abbreviation APS ARAB ARABLAC ARABLAC ARGSUCC ASER ASPERMD ASP
55	

5	
10	
15	
20	
25	(peq)
30	(continued)
35	(contin Metabolite Myristoyl-[acyl-carrier protein]M Tetradecenoyl-[acyl-carrier protein]M Tetradecenoyl-[acyl-carrier protein]M Palmitate Hexadecenoyl-[acy]M Hexadecenoyl-[acy]M Hexadecenoyl-[acy]M Hexadecenoyl-[acyl-carrier protein]M C16_aldehydes Stearroyl-[acyl-carrier protein]M C16_aldehydes Stearroyl-[acyl-carrier protein]M Honolyl-[acyl-carrier protein]M Honolyl-[acyl-carr
40	Metabolite Myristoyl-[acyl-carrier protein]M Tetradecenoyl-[acyl-carrier protein]M Palmitate Hexadecanoyl-[acyl-carrier protein]M 1-Hexadecanoyl-[acyl-carrier protein]M 1-Hexadecanoyl-[acyl-carrier protein]M 1-Hexadecane Palmitoyl-[acyl-carrier protein]M 1-Hexadecane Palmitoyl-[acyl-carrier protein]M 1-Hexadecane Palmitoyl-[acyl-carrier protein]M 1-Octadecene Stearate Stearate Stearate Stearate Stearoyl-[acyl-carrier protein]M 1-Octadecene Oleoyl-[acyl-carrier protein]M 1-Octadecene Oleoyl-[acyl-carrier protein]M 1-Octadecene Oleoyl-[acyl-carrier protein]M 1-Octadecene 0leoyl-[acyl-carrier protein]M 1-Octadecene 1-Octadecene 0leoyl-[acyl-carrier protein]M 1-Octadecene 1-Octadec
45	Metabolite Myristoyl-[acyl-carrier] Myristoyl-[acyl-carrier] Tetradecenoyl-[acyl-ca Palmitate Hexadecanoyl-[acyl-carrier Palmitoyl-[acyl-carrier pr 1-Hexadecene Palmitoyl-[acyl-carrier pr C16_aldehydes Stearate Stearate Stearate Stearate C16_aldehydes Stearate Stearoyl-[acyl-carrier pr C16_oldehydes Stearate Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C16_aldehydes Stearate C27 C27 C27 C27 C27 C27 C27 C27 C27 C27
50	Abbreviation C140ACPm C141ACP C141ACPm C160ACPm C160ACPm C161ACP C161ACP C161ACPm C161ACPm C161ACPm C181ACP C182ACPm C182ACPm C182ACPm C182ACPm C182ACPm C182ACPm C182ACPm C182ACPm CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR
55	

5	
10	
15	
20	
25	
30	(continued) phosphate)-pyrimidine
25	bse 5-p laminc
35	Metabolite Ceramide-2 Ceramide-3 Ceramide-3 Ceramide-3 Ceramide-3 Ceramide-3 Ceramosyl-CoA 6-Carboxyhexanoyl-CoA 6-Carboxyhexanoyl-CoA Chitin Chitosan Choline Carbine Chorismate 3'5'-Cyclic IMP Citrate Chorismate 3'5'-Cyclic IMP Citrate Chorismate 3'5'-Cyclic IMP Chorismate Chorismate Chorismate Chorismate Chorismate CardiolipinM CMP CMP CoP CoP CoP CoP CoP CoP CoP CoP CoP Co
40	MP kanoyl-CoA hP henylamino) rinogen gluconate 5-lactone 6-p 6-hydroxy-4-(
45	Metabolite Ceramide-2 Ceramide-3 Cys-Gly 3',5'-Cyclic GMP 6-Carboxyhexanoyl-CoA Chitin Chitosan Choine Core Core Core Core Core Core Core Cor
50	SP C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C
55	Abbre CER2 CER3 CGLY CHIT CHIT CHIT CHIT CHIT CHIT CHIT CHIT

50	45	40	35	30	25	20	15	10	5
	Metabolite Diacylglycerol dAMP			(continued)					
	7,8-Diaminononanoate	e							
	1,3-Diaminopropane								
	dATP								
	L-3,4-Dihydroxy-2-bui	butanone 4-phosphate	phate						
	Deoxycytidine								
	dCDP								
	dCMP								
	dCTP								
	alpha-D-Fucoside								
	Deoxyguanosine								
	dGDP								
	dGMP								
	Diacylglycerol pyroph	phosphate							
	dGTP								
	Dihydrofolate								
	DihydrofolateM								
	(R)-2,3-dihydroxy-3-methylbutanoateM	nethylbutanoat	еМ						
	2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropy))-7,8-dihydropteridine	-(D-erythro-1,2	2,3-trihydroxy	oropyl)-7,8-dihyd	Iropteridine				
	Dihydroneopterin phosphate	sphate							
	Dihydropteroate								
	3-Dehydroshikimate								
	Sphinganine 1-phosphate	hate							
	3-Dehydrosphinganine	Ð							
	(R)-3-Hydroxy-3-meth	iethyl-2-oxobutanoateM	oateM						
	D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate	-4-yl)glycerol 3	3-phosphate						
	Deoxyinosine								
	Dipeptide								
	2,3-bis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-2,3-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate	adecanoyl)-D-ç	glucosaminyl-	1,6-beta-D-2,3-b	is(3-hydroxytetr	adecanoyl)-bet	ta-D-glucosami	inyl 1-phosphe	te
	DihydrolipoamideM								
	Dimethylallyl diphosphate	hate							

5	
10	
15	
20	
25	
30	(continued)
35	ate propyJ-L-histidi
40	sterol annosyl phosph e iphosphate b-phosphate 5-phosphate ninamine -pentulose sphate kronate hronate hronate hronate hronate hronate hronate hronate
45	Metabolite (0 4.4-Dimethylzymosterol Dolichol Dolichyl beta-D-mannosyl phosphate Dolichyl beta-D-mannosyl phosphate Dolichyl beta-D-mannosyl phosphate Dolichyl beta-D-mannosyl phosphate Dehydrodolichol diphosphate Dolichyl phosphate Dehydrodolichol diphosphate Dehydrodolichol diphosphate Dephospho-CoAM 2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine 3-Dehydroquinate 2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine 3-Dehydroquinate 2-Beoxy-D-ribose 5-phosphate Deoxyr-Ibose 1-phosphate 2-Booxy-D-ribose 5-phosphate Deoxyribose 2-Booxy-D-ribose 5-phosphate Deoxyribose 2-Booxy-D-ribose 5-phosphate Deoxyribose 2-Booxy-d-threo-2-pentulose Dethiobiotin dTP Dethiobiotin dTP Deoxyr-d-threo-2-pentulose dUP dUNP dUP dUNP dUNP Deoxyruciane Episterol 2-Florose Perposphate Episterol dUNP Deoxyruciane Episterol Ergosterol Ergosterol Ergosterol
50	Viation A A A A A A A A A A A A A A A A A A A
55	Abbrey Dold Dold Dold Dold Dold Dold Dold Dold

5		
10		
15		
20		
25		
30	(continued) dine	
35	e namide e	
40	osphate oisphosphate - 6-phosphate - 6-phosphate - 1,6-bisphosphe - cM - cM - cM - cM - cM - cM - cM - cM	leuðaeini
45	() Metabolite D-Fructose 1-phosphate beta-D-Fructose 6-phosphate FAD FAD FAD FAD FAD FAD FAD FAD	4-Ammodulyrair
50	Abbreviation F1P F26P FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD	
55		,

10		
15		
20		
25	(p)	
30	(continued)	
35	a a a a a a a a a a a a a a a a a a a	
40	Metabolite 4-AminobutanoateM D-Galactose 1-phosphate 5'-Phosphoribosylglycinamide 4-Guanidino-butanoate gamma-L-Glutamyl-L-cysteine gamma-L-Glutamyl-L-cysteine GDP GDPM GDPM GDPmannose GDPM GDPmannose GDPM GDPmannose Galactosylglycerol Glycerol Sn-Glycerol 3-phosphate sn-Glycerol 3-phosphate sn-Glycerol Glycorate 1-alpha-D-Galactosyl-myo-inositol Glycorate 1-alpha-D-Galactosyl-myo-inositol Glycorate C-Glutamine Glycorate L-Glutamate L-Glutamate L-Glutamate L-Glutamate L-Glutamate C-Clutamate C	
45	Metabolite 4-AminobutanoateM 2-Galactose 1-phosphate 5'-Phosphoribosylglycinam 4-Guanidino-butanamide 4-Guanidino-butanoate gamma-L-Glutamyl-L-cyste GDP GDPM GDPM GDPM GDPM GDPM GDPM GDPM	Glycine
50	Abbreviation GABAm GAL1P GAL1P GAR GAR GBAT GBAT GBAT GBAT GBAT GBAT GBA GC GC GC GC GC GC GC GC GC GC GC GC GC	GLY
55		

10 15																																
15																																
20																																
25	ed)																															
30	(continued)																															
35												traphosphate				utaryl-CoA	utaryl-CoAM	/lateM				carboxylate	carpoxylately				to A					
40						ohosphate		M		l-tRNA(Glu)	l-tRNA(Glu)M	P1,P4-Bis(5'-guanosyl) tetraphosphate		sulfide		(S)-3-Hydroxy-3-methylglutaryl-CoA	(S)-3-Hydroxy-3-methylglutaryl-CoAM	But-1-ene-1,2,4-tricarboxylateM	(3S)-3-Hydroxyacyl-CoA		-benzyl alcohol	2-Hydroxybutane-1,2,4-tricarboxylate	∠-⊓yuroxypularie- i ,∠,4-tricarpoxylateiw Homoovsteine		RNA(His)	(S)-3-Hydroxyisobutyrate	(S)-3-Hydroxyisobutyryl-CoA	trateM		_	L-Histidinol phosphate	kynurenine
45	Metabolite		Glycerone	GMP Guanine	GuanineM	Geranyl diphosph	Guanosine	GuanosineM	GTPM	L-Glutamyl-tRNA	L-Glutamyl-tRNA(P1,P4-Bis(H202	Hydrogen sulfide	Sulfite	(S)-3-Hydr	(S)-3-Hydro	But-1-ene-	(3S)-3-Hyd	3-Hydroxy₅	4-Hydroxy-benzyl	2-Hydroxyt	∠-⊓yuroxyputa Homocwstaina	H+EXT	L-Histidyl-tRNA(His)	(S)-3-Hydr	(S)-3-Hydr	HomoisocitrateM	L-Histidine	L-Histidinol	L-Histidino	3-Hydroxykynurenine
50 55	Abbreviation	GLYCOGEN GLYm	GLYN	GMP UN	GNm	GPP	GSN	GSNm OTD	GTPm	GTRNA	GTRNAm	GTRP	H202	H2S	H2SO3	H3MCOA	H3MCOAm	HACNm	HACOA	HAN	HBA			HEXT	HHTRNA	HIB	HIBCOA	HICITM	HIS	HISOL	HISOLP	НКYN

5 10 15	
20	
25	(per
30	(continued)
35	lane L-proline de yl-CoA yl-CoA sphate esta-8,14,24-trienol thylzymosterol_II nosterol_II nosterol_II nosterol_II vosterol_II nosterol_II sphate eM
40	Metabolite H+M Hydroxymethylbilane Homogentisate trans-4-Hydroxy-L-proline L-Homoserine tRNA(His) Hypoxanthine L-Homoserine tRNA(His) Hypoxanthine Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Intermediate_Xymosterol_I Intermediate_Xymosterol_I Intermediate_Xymosterol_I Intermediate_Methylzymosterol_I Intermediate_Methylzymosterol_I Intermediate_Methylzymosterol_I Intermediate_Methylzymosterol_I Indoleacetate Inosin
45	Metabolite H+M H+M Hydroxymethylbilane Homogentisate trans-4-Hydroxy-L-pro L-Homoserine tRNA(His) Hypoxanthine Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate Indole-3-acetate IDPM IDP IDPM IDP IDPM IDP IDPM IDP IDPM IDP IDPM IDP IDPM IDP IDPM IDPM
50 55	Abbreviation Hm HMB HOMOGEN HPRO HPRO HPRO HSER HYXAN IAC IBCOA IBCOA IBCOA IBCOA IBCOA IBCOA IBCOA IMP IZYMST IIZYMST

10	
15	-bisphate
20	glucosamine 1,4
25 30	(continued) saminyl-1,6-beta-D-5
35	(con
40	ol_I e acid e eM oxytetradecano <u>.</u> oA otein] otein]
45	(continued) Metabolite TPM TPM a Methylbutanoyl-CoA intermediate_Zymosterol_I Potassium L-Kynnenine (A)-Lactate (B)-S-Lactoylgutathione (B)-S-Lactowlgutathione (B)-S-Lactoylgutathione (B
50	Lion E
55	Abbreviati ITPm IVCOA IZYMST KYN KYN KYN LACM LACM LACM LACM LACM LACM LACM LACM

5 10 15 20	
25	
30	(continued)
35	phosphate cetylchitobiosyldiphosp hate -CoA -CoA -CoA ate ydrofolate hydrofolate coA ceramide ceramide ceramide
40	(con Metabolite MalateM Malanate MalonateM MalonateM MalonateM alpha-D-Mannose 1-phosphodolichol beta-D-Mannose 1-phosphate beta-D-Mannose 1-phosphate beta-D-Mannose 6-phosphate beta-D-Mannose 6-phosphate beta-D-Mannose 6-phosphate beta-D-Mannose 6-phosphate beta-D-Mannose 1-phosphate Mannan Methylbutry-CoA Mannan Methylbutr-2-enoyl-CoA Meso-diaminopimelate Melibiose Mesibiose Mesibiose Methanethiol L-Methylbut-2-enoyl-CoA Mestanethiol 5, 10-MethenyltetrahydrofolateM 5, 10-MethenyltetrahydrofolateM 5, 10-MethollateM 5, 10-MethollateM 5, 10-Methylbut-D-hydroxyaleryl-CoA Methylbut-hydroxyaleryl-CoA Methylbuteconyl-CoA Methylbut-b-hydroxyaleryl-CoA myo-Inositol 1L-myo-Inositol 1-phosphate Mannose-inositol-P-ceramide Manose inositol-P-ceramide Methylmalonyl-CoA S-Methylmalonate semialdehyde (S)-Methylmalonate semialdehyde D-Mannitol 1-phosphate
45	Metabolite MalateM MalateM Malonate Malonate MalonateM alpha-D-Mannose alpha-D-Mannose alpha-D-Mannose beta-D-Mannose beta-D-Mannose beta-D-Mannose beta-D-Mannose Mannan Mannan Mannan Methylbutyryl-CoA 2-Methylbut-2-enoyl-CoA 2-Methylbut-2-enoyl-CoA Meso-diaminopimelate Melibiose Methylbut-2-enoyl-CoA 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 5,10-Methylenetetrahydro 1,1-myo-Inositol 1,1-myo-Inositol 1,1-myo-Inositol 1-phosph Mannose inositol-P-cerar Menaquinone Methylmalonyl-CoA S-Methylmalonyl-CoA S-Methylmalonate semi D-Mannitol 1-phosphate
50	Abbreviation MALT MALT MALT MALT MANPD MANPD MANSPD MANSPD MANSPD MANSPD MANSPD MANSPD MANSPD MANSPD MANSPD MANSPD MAS METHF METHF MAS MIPC MIPC MIPC MIPC MIPC MIPC MIPC MMCOA MIPC MMS MMTS MMT6P MMT6P
55	

55	50	45	40	35	30	25	20	15	10	5
4	Abbrowiotion	Motologita			(continued)					
Ĭ	MTHFm	5-MethyltetrahydrofolateM	ateM							
Σ	MTHGXL	Methylglyoxal								
Σ	MTHN	Methane								
Σ	MTHNm	MethaneM								
Σ	MTHPTGLU	5-Methyltetrahydropteroyltri-L-glutamate	eroyltri-L-glutar	nate						
Σ	MTRNA m	L-Methionyl-tRNAM								
ž	MVL	(R)-Mevalonate								
ž	MVLm	(R)-MevalonateM								
Σ	MYOI	myo-Inositol								
M	MZYMST	4-Methylzymsterol								
Z	N4HBZ		droxybenzoate							
Ν	_	Sodium								
Ž	NAAD	Deamino-NAD+								
N	NAADm	Deamino-NAD+M								
Ν	NAC	Nicotinate								
Ž	NACm	NicotinateM								
Ž	NAD	NAD+								
Ž	NADH	NADH								
Ž	NADHm	NADHM								
N	NADm	NAD+M								
N	NADP	NADP+								
Ž	NADPH	NADPH								
Ž	NADPHm	NADPHM								
Z	NDPm	NADP+M								
Ž	NAG	N-Acetylglucosamine								
N	NAGA1P	N-Acetyl-D-glucosamine 1-phosphate	ine 1-phospha	te						
N	NAGA6P	N-Acetyl-D-glucosamine 6-phosphate	ine 6-phospha	te						
N	NAGLUM	N-Acetyl-L-glutamateM	Σ							
N	NAGLUPm	N-Acetyl-L-glutamate 5-phosphateM	5-phosphateN	_						
N	NAGLUSm	N-Acetyl-L-glutamate 5-semialdehydeM	5-semialdehy	deM						
N	NAM	Nicotinamide								
Ž	NAMm	NicotinamideM								
Ň	NAMN	Nicotinate D-ribonucl	ucleotide							

0	5)	5	,			
				(continued)			
NAMNm	Nicotinate D-ribonucleotideM	cleotideM					
NAORNm NH3	N2-Acetyl-L-ornithineM NH3	leM					
IH4							
NPP	all-trans-Nonaprenyl diphosphate	rl diphosphate					
JPPm	all-trans-Nonaprenyl diphosphateM	rl diphosphateM					
NPRAN	N-(5-Phospho-D-ribosyl)anthranilate	osyl)anthranilate					
02	Oxygen						
02m	OxygenM						
A	Oxaloacetate						
OACOA	3-Oxoacyl-CoA						
AHSER	O-Acetyl-L-homoserine	rine					
0Am	OxaloacetateM						
BUT	2-Oxobutanoate						
BUTm	2-OxobutanoateM						
JFP	Oxidized flavoprotein	'n					
OGT	Oxidized glutathione	Ð					
HB	2-Oxo-3-hydroxy-4-phosphobutanoate	phosphobutanoate					
Hm	M-OH						
OICAP	3-Carboxy-4-methyl-2-oxopentanoate	I-2-oxopentanoate					
lICAPm	3-Carboxy-4-methyl-2-oxopentanoateM	l-2-oxopentanoatel	⋝				
VAL	(R)-2-Oxoisovalerate	e					
NVALm	(R)-2-OxoisovalerateM	ieM					
MP	Orotidine 5'-phosphate	ate					
MVAL	3-Methyl-2-oxobutanoate	noate					
OMVALm	3-Methyl-2-oxobutanoateM	noateM					
DEP	Oligopeptide						
ORN	L-Ornithine						
ORNm	L-OrnithineM						
OROA	Orotate						
OSLHSER	O-Succinyl-L-homoserine	serine					

5	
10	
15	
20	
25	
30	(continued)
35	a in e
40	xin xinM carboxylate carboxylate hate carboxylate in the isphosphate ine ine tylsulfate ine tylsulfate ine thylethanol ine thylethanol ine thylethanol ine ssphate ine osphate colm vate ssphate colm scophosphate ine
45	Metabolite OxalosuccinateM OxalosuccinateM Oxidized thioredoxinM Oxidized thioredoxinM OxaloglutarateM (S)-1-Pyrroline-5-carboxylate (S)-1-Pyrroline-5-carboxylateM (S)-1-Pyrroline-5-carboxylateM (S)-1-Pyrroline-5-carboxylateM (S)-1-Pyrroline-5-carboxylateM Phosphatidate 2-Phenylacetic acid 2-Phenylacetamide Phenylacetic acid 2-Phenylacetamide PhosphatidateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-PantoateM (R)-Phosphatidylcholine 2'Phosphatidylcholine Prosphatidylethanolamine Phosphatidylet
50	Abbreviation OSUCm OTHIO OTHIO OXAm P5C P5C P5C P5C P5C P5C P4C P4C P4C P4C P4C P4C P4C P4C P4C P4
55	

5																																			
10																																			
15																																۵) ۵	arboxamide		
20																																5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide	N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5"-phospho-D-ribosyl)-4-imidazolecarboxamide		
25	ed)																														de	syl)-imidazol	spho-D-ribos		
30	(continued)																														olecarboxami	5-phosphoribo	nino-1-(5"-pho		
35		oxylate						0	nine					D-myo-inositol 4-phosphate	D-myo-inositol 3-phosphate			amine											0		nido-4-imidaz	ormimino)-1-(€	rmimino)-5-an		
40		L-1-Pyrroline-3-hydroxy-5-carboxylate	Ð		xypyruvate	0	nomoserine	Phytosphingosine 1-phosphate	O-Phospho-4-hydroxy-L-threonine	e	eM		1-Phosphatidyl-D-myo-inositol	-1D-myo-inositc	-1D-myo-inositc		phate	Phosphatidyl-N-methylethanolamine	mevalonate	ate	ogen IX	ogen IXM		M	Σ	eate	nomevalonate	sylamine	N1-(5-Phospho-D-ribosyl)-AMP	N1-(5-Phospho-D-ribosyl)-ATP	1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide	D-ribosylaminof	-D-1'-ribulosylfo		
45	Metabolite	L-1-Pyrroline-3	L-Phenylalanine	Prephenate	3-Phosphonooxy	Phenylpyruvate	O-Phospho-L-homoserine	Phytosphingos	O-Phospho-4-	Orthophosphate	Orthophosphatel	Pimelic Acid	1-Phosphatidy	1-Phosphatidyl-1	1-Phosphatidyl-1	Pyridoxal	Pyridoxal phosphate	Phosphatidyl-N	(R)-5-Phosphomevalonate	(R)-Pantothenate	Protoporphyrinogen IX	Protoporphyrinogen IXM	Pyrophosphate	PyrophosphateM	ProtoporphyrinM	2-IsopropyImaleate	(R)-5-Diphosphomevalonate	5-Phosphoribosy	N1-(5-Phospho	N1-(5-Phospho	1-(5'-Phosphor	5-(5-Phospho-	N-(5'-Phospho	L-Proline	
50	Abbreviation	0	UI	Z	0	рнрүг	PHSER	SP	F		_	Щ	S	PINS4P	PINSP		Ь	ME	۸L	TO	ų	PPHGm		E	PPIXm	PPMAL	PPMVL	AM	PRBAMP	PRBATP	PRFICA	d 1	٩	0	
55	Abk	PHC	PHE	PHEN	днд	ΗH	ЪН	PHSP	РНТ	Ы	Plm	PIME	PINS	NIA	PIN	ЪГ	PL5P	PMME	PMVL	PNTO	рнд	ЪРŀ	Ыd	PPIm	Ыdd	Чdd	Иdd	PRAM	PRI	PRE	PRI	PRFP	PRLP	PRO	

5	
10	
15	
20	
25	
30	(continued) imidine
35	(con D-ribose 1-diphosphate D-ribose 1-diphosphate e e M phosphate boxylate boxybyrimidi f f sphosphate boxybyrimidi f sphosphate boxybyrimidi f sphosphate boxybyrimidi f sphosphate boxybyrimidi f sphosphate f f sphosphate f sphosphosphate f sphosphosphate f sphosphosphate f sphosphosphosphosphate f sphosphosphosphate f sphosphosphate f sphosphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphosphate f sphospha
40	-D-ribose 1- -D-ribose 1- ne ne ne phosphate choxylate choxylate chate ohate ohate no)-5-amino- stein sphate
45	Metabolite L-ProlineM Propanoyl-CoA 5-Phospho-alpha-D-ribose 1-diphosphate 5-Phospho-alpha-D-ribose 1-diphosphateM PhosphatidylserineM Phytosphingosine 1-diphosphate PhosphatidylserineM Phytosphingosine 1-diphosphate PhosphatidylserineM Phytosphingosine 2-diphosphate Pyruvate Pyruvate PyruvateM Ubiquinone-9 Pyridine-2,3-dicarboxylate Diquinol Ubiquinol Ubiquinol D-Ribose 1-phosphate Bible D-Ribose 1-phosphate Bible D-Ribose 1-phosphate D-Ribose 1-phosphate D-Ribose 5-phosphate D-Ribose 5-phosphate
50 55	Abbreviation PROPCOA PRPPM PRPPM PSPH PSPH PSPH PSPH PSPH PSPH PSPH P

50 55	45	40	35	30	25	20	15	10	5
				(continued)					
Abbreviation	Metabolite								
	Reduced thioredoxin	2							
		N							
С 017D	Sultur Sodoboatuloco 1 7 hicebocebato	icobocoboto							
S23E	(S)-2,3-Epoxysqualene	ispilospilate Ne							
S7P	Sedoheptulose 7-phosphate	osphate							
SACP	N6-(L-1,3-Dicarboxypropyl)-L-lysine	oropyl)-L-lysine							
SAH	S-Adenosyl-L-homocysteine	systeine							
SAHm	S-Adenosyl-L-homocysteineM	systeineM							
SAICAR	1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole)-5-amino-4-(N-	succinocarbox	(amide)-imidazol	Ð				
SAM	S-Adenosyl-L-methionine	nine							
SAMm	S-Adenosyl-L-methionineM	nineM							
SAMOB	S-Adenosyl-4-methylthio-2-oxobutanoate	Ithio-2-oxobutar	noate						
SAPm	S-AminomethyldihydrolipoylproteinM	rolipoylproteinN	-						
SER	L-Serine								
SERm	L-SerineM								
SLF	Sulfate								
SLFm	SulfateM								
SME	Shikimate								
SMESP	Shikimate 3-phosphate	ate							
SOR	Sorbose								
SOR1P	Sorbose 1-phosphate	0							
SOT	D-Sorbitol								
SPH	Sphinganine								
SPMD	Spermidine								
SPRM	Spermine								
SPRMD	Spermidine								
SQL	Squalene								
SUC	Sucrose								
SUCC	Succinate								
SUCCM	SuccinateM								
SUCCOAM	Succinyl-CoAM								

5	
10	
15	
20	
25	
30	(continued)
35	()
40	Metabolite Succinate semialdehyde D-Glyceraldehyde 3-phosphate Glycerone phosphate Glycerone phosphate Glycerone phosphate D-Tagatose 1,6-bisphosphate Triacylglycerol Tetrahydrofolyl-[Glu](n) Tetrahydrofolyl-[Glu](n) Tetrahydrofolate Tetrahydrofolate Tetrahydrofolate Thiamin Thiamin Thiamin Thiamin Thiamin Thiamin Thiamin triphosphate Thireonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine C-Threonine Thiamin triphosphate Thiamin triphosphate Thi
45	Metabolite Succinate semialdehyde D-Glyceraldehyde 3-phosphate Glycerone phosphate Glycerone phosphate Glycerone phosphate D-Tagatose 6-phosphate D-Tagatose 6-phosphate Triacylglycerol Tetrahydrofolyte Triacylglycerol Tetrahydrofolate Tetrahydrofolate Thiamin Th
50	Abbreviation SUCCSAL T3P1 T3P2 T3P2 T3P2 T3P2 TAG16P TAG16P TAG16P TAG16P TAG10 THF THF THF THF THF THF THAM TRNAG
55	

5	
10	
15	
15	
20	
25	
	(pe
30	(continued) e samine
	amine amine glucose
35	glucose -glucos -acetylę
	(lyona) - (lyor - (lyor)
40	etradec adecar samin ate e
	(continu Metabolite UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine UDP-3-0-(3-hydroxytetradecanoyl)-D-glucosamine UDP-3-0-(3-hydroxytetradecanoyl)-N-acetylglucosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetylglucosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetylglucosamine UDP-N-acetylglucosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-galactosamine UDP-N-acetyl-D-glucosamine UDP-N-acetyl-D-Glucosamine UDP-N-acetyl-D-Glucosamine UDP-N-acetyl-D-Glucosamine UDP-N-acetyl-DGlucosamine UDP-N-acetyl-D-Glucosamine UDP-N-acetyl-DGlucosamine UDP-N-acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosamine UDP-N-Acetyl-D-C-Glucosam
45	Metabolite UDP-2,3-bis(3-hydroxytel UDP-3-O-(3-hydroxytel UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact UDP-N-acetyl-D-galact Undecaprenyl diphospl (-)-Ureidoglycolate Undecaprenyl diphospl Urea Urea Urea Urea Urea Urea Urea Urea
40	Metabolite UDP-2,3-bis UDP-3-0-(3 UDP-3-0-(3 UDP-D-gala UDP-D-gala UDP-D-gala UDP-D-gala UDP-1-carb Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil Uracil D-Xylose-5- Xanthosine Xanthosine Xanthosine Zymosterol Zymosterol
50	viation 23A AL AG
	Abbreviation UDPG2A UDPG2A UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG2AA UDPG UDP UDP UDP UDP UDP UDPG2AA VAL XTSINE XTSIN
55	

[0056] Depending upon the particular environmental conditions being tested and the desired activity, a reaction network data structure can contain smaller numbers of reactions such as at least 200, 150, 100 or 50 reactions. A reaction network data structure having relatively few reactions can provide the advantage of reducing computation time and resources required to perform a simulation. When desired, a reaction network data structure having a particular subset

- of reactions can be made or used in which reactions that are not relevant to the particular simulation are omitted. Alternatively, larger numbers of reactions can be included in order to increase the accuracy or molecular detail of the methods of the invention or to suit a particular application. Thus, a reaction network data structure can contain at least 300, 350, 400, 450, 500, 550, 600 or more reactions up to the number of reactions that occur in or by *S. cerevisiae* or that are desired to simulate the activity of the full set of reactions occurring in *S. cerevisiae*. A reaction network data
- structure that is substantially complete with respect to the metabolic reactions of *S. cerevisiae* provides the advantage of being relevant to a wide range of conditions to be simulated, whereas those with smaller numbers of metabolic reactions are limited to a particular subset of conditions to be simulated.
 [0057] A *S. cerevisiae* reaction network data structure can include one or more reactions that occur in or by *S. cerevisiae*
- and that do not occur, either naturally or following manipulation, in or by another prokaryotic organism, such as *Escherichia coli, Haemophilus influenzae, Bacillus subtilis, Helicobacter pylori* or in or by another eukaryotic organism, such as *Homo sapiens*. Examples of reactions that are unique to *S. cerevisiae* compared at least to *Escherichia coli, Haemophilus influenzae*, and *Helicobacter pylori* include those identified in Table 4. It is understood that a *S. cerevisiae* reaction network data structure can also include one or more reactions that occur in another organism. Addition of such heterologous reactions to a reaction network data structure of the invention can be used in methods to predict the consequences
- 20 of heterologous gene transfer in *S. cerevisiae*, for example, when designing or engineering man-made cells or strains.

25

30

35

40

45

50

Table 4. Reactions specific to 5. cerevisiae metabolic network
glk1_3, hxk1_1, hxk2_1, hxk1_4, hxk2_4, pfk1_3, idh1, idp1_1, idp1_2, idp2_1, idp3_1, idp2_2, idp3_2, 1sc1R, pyc1, pyc2, cyb2, dld1, ncp1, cytr_, cyto, atpl, pma1, pma2, pmp1, pmp2, cox1, rbkl2, ach1_1, ach1_2, sfa1_1R, unkrx11R, pdc1, pdc5, pdc6, lys20, adh1R, adh3R, adh2R, adh4R, adh5R, sfa1_2R, psa1, pfk26, pfk27, fbp26, gal7R, mel1_2, mel1_3, mel1_4R, mel1_5R, mel1_6R, mell_7R, fsp2b, sor1, gsy1, gsy2, fks1, fks3, gsc2, tps1, tps3, tsl1, tps2, ath1, nth1, nth2, fdh1, tfo1a, tfo1b, dur1R, dur2, nit2, cyr1, guk1_3R, ade2R, pde1, pde2_1, pde2_2, pde2_3, pde2 4, pde0_5, pare1, ach1_2, pare1, ach1_2, purp1, purp
pde2_5, apa2, apa1_1, apa1_3, apa1_2R, ura2_1, ura4R, ura1_1R, ura10R, ura5R, ura3, npkR, furl, fcy1, tdk1, tdk2, urk1_1, urk1_2, urkl_3, deoa1R, deoa2R, cdd1_1, cdd1_2, cdc8R, dut1, cdc21, cmka2R, dcd1R, ura7_2, ura8_2, deglR, pus1R, pus2R, pus4R, ura1_2R, ara1_1, ara1_2, gna1R, pcm1aR, qri1R, chs1, chs2, chs3, put2_1, put2, glt1, gdh2, cat2, yat1, mht1, sam4, ecm40_2, cpa2, ura2_2, arg3, spe3, spe4, amd, amid2_1, atrna, msr1, rnas, ded81, hom6_1, cys4, gly1, agtR, gcv2R, sah1, met6, cys3, met17_1, metl7hR, dph5, met3, met14, met17_2,
met17_3, lys21, lys20a, lys3R, lys4R, lys12R, lys12bR, amitR, lys2_1, lys2_2, lys9R, lys1aR, krs1, msk1, pro2_1, gps1R, gps2R, pro3_3, pro3_4, pro3_1, pro3_5, dal1R, dal2R, dal3R, his4_3, hts1, hmt1, tyr1, cta1, ctt1, ald6, ald4_2, ald5_1, tdo2, kfor_, kynu_1, kmo, kynu_2, bnal, aaaa, aaab, aaac, tyrdega, tyrdegb, tyrdegc, trydegd, mswl, amd2_2, amd2_3, spra, sprb, sprc, sprd, spre, dys1, leu4, leu1_2R, pclig, xapa1R, xapa2R, xapa3R, ynk1_6R, ynk1_9R, udpR, pyrh1R, pyrh2R, cmpg, usha1, usha2, usha5, usha6, usha11, gpx1R, gpx2R, hyr1R, ecm38, nit2_1, nit2_2, nmt1, nat1, nat2, bg12, exg1, exg2, spr1, thi80_1, thi80_2, unkrxn8, pho11, fmn1_1, fmn1_2, pdx3_2R, pdx3_3R,
pdx3_4R, pdx3_1, pdx3_5, bio1, fol1_4, ftfa, ftfb, fol3R, met7R, rma1R, met12, met13, mis1_2, ade3_2, mtdl, fmt1, Typell_1, Typell_2, Typell_4, Typell_3, Typell_6, Typell_5, Typell_9, Typell_8, Typell_7, c100sn, c180sy, c182sy, faa1R, faa2R, faa3R, faa4R, fox2bR, pot1_1, erg10_1R, erg10_2R, Gat1_2, Gat2_2, ADHAPR, AGAT, slc1, Gat1_1, Gat2_1, cho1aR, cho1bR, cho2, opi3_1, opi3_2, cki1, pct1, cpt1, eki1, ect1, ept1R, inol, impal, pis1, tor1, tor2, vps34, pik1, sst4, fab1, mss4, plc1, pgs1R, crd1, dpp1, lpp1, hmgsR, hmg1R, hmg2R, erg12_1, erg12_2, erg12_3, erg12_4,
erg8, mvd1, erg9, erg1, erg7, unkrxn3, unkrxn4, cdisoa, erg11_1, erg24, erg25_1, erg26_1, erg11_2, erg25_2, erg26_2, erg11_3, erg6, erg2, erg3, erg5, erg4, lcb1, lcb2, tsc10, sur2, csyna, csynb, scs7, aurl, csg2, sur1, ipt1, lcb4_1, lcb5_1, lcb4_2, lcb5_2, lcb3, ysr3, dpl1, sec59, dpml, pmt1, pmt2, pmt3, pmt4, pmt5, pmt6, kre2, ktr1, ktr2, ktr3, ktr4, ktr6, yurl, hor2, rhr2, cda1, cda2, daga, dak1, dak2, gpd1, nadg1R, nadg2R, npt1, nadi, mnadphps,
mnadg1R, mnadg2R, mnpt1, mnadi, hem1, bet2, coq1, coq2, cox10, ram1, rer2, srt1, mo2R, mco2R, methR, mmthnR, mnh3R, mthfR, mmthfR, mserR, mglyR, mcbhR, moicapR, mproR, mcmpR, macR, macar_, mcar_, maclacR, mactcR, moivalR, momvalR, mpmalRR, mslf, mthrR, maka, aac1, aac3, pet9, mir1aR, mir1dR, dic1_2R, dic1_1R, dic1_3, mmltR, moabR, ctp1_1R, ctp1_2R, ctp1_3R, pyrcaR, mlacR, gcaR, gcb, ortlR, crc1, gut2, gpd2, mt3p, mgl3p, mfad, mriboR, mdtbR, mmcoaR, mmvIR, mpaR, mppntR, madR, mprppR, mdhfR, mqaR, moppR, msamR, msahR, sfc1, odc1R, odc2R, hxt1_2, hxt10_2, hxt11_2, hxt13_2, hxt15_2, hxt16_2, hxt17_2, hxt2_2, hxt3_2, hxt4_2, hxt5_2, hxt6_2, hxt7_2, hxt8_5, hxt9_2, sucup, akmupR, sorupR, arbup1R, gltlupb, gal2_3, hxt1_1, hxt10_1, hxt11, hxt11_1, hxt13_1, hxt15_1, hxt16_1, hxt17_1, hxt2_1, hxt3_1, hxt4, hxt4_1, hxt5_1, hxt6_1, hxt7_1, hxt8_4, hxt9_1, stl1_1,
gaupR, mmp1, mltup, mntup, nagup, rmnup, ribup,
treup_2, treup_1, xylupR, uga5, bap2_1R, bap3_1R, gap5R, gnp3R, tat7R, vap7R, sam3, put7, uga4, dip9R, gap22R, gap7R, gnp1R, gap23R, gap9R, hip1R, vap6R, bap2_4R, bap3_4R, gap13R, gap26R, gnp4R, mup1R, mup3R, bap2_5R, bap3_5R, gap14R, gap29R, tat4R, ptrup, sprupl, ptr2, ptr3, ptr4, mnadd2, fcy2_3R, fcy21_3R, fcy22_3R, gnupR, hyxnupR, nccup3, nccup4, nccup6, nccup7, ncgup4, ncgup7, ncgup11, ncgup12, ncup4, ncup7, ncup11, ncup12, ethupR, sul1, sul2, sulup, citupR, amgupR, atpmt, glaltxR, dal4, dal5, mthupR, papxR, thyxR, ga6pupR, btupR, kapaupR, dapaupR, ogtup, sprmup, pimeup, thm1, thm2, thm3, rflup, hnm1, ergupR, zymupR, hxt1_5, hxt10_3, hxt11_3, hxt13_3, hxt15_3, hxt16_3, hxt17_3, hxt2_3, hxt13_3, hxt14_3, hxt5_3, hxt6_3, hxt7_3, hxt8_6, hxt9_3, itr1, itr2, bio5a, agp2R, dttpxR, gltup

45

50

[0058] A reaction network data structure or index of reactions used in the data structure such as that available in a metabolic reaction database, as described above, can be annotated to include information about a particular reaction. A reaction can be annotated to indicate, for example, assignment of the reaction to a protein, macromolecule or enzyme that performs the reaction, assignment of a gene(s) that codes for the protein, macromolecule or enzyme, the Enzyme Commission (EC) number of the particular metabolic reaction or Gene Ontology (GO) number of the particular metabolic reaction belongs, citations to references from which information was obtained, or a level of confidence with which a reaction is believed to occur in *S. cerevisiae*. A computer readable medium or media of the invention can include a gene database containing annotated reactions. Such information can be obtained during the course of building a metabolic reaction database or model of the invention as described below.

⁵⁵ **[0059]** As used herein, the term "gene database" is intended to mean a computer readable medium or media that contains at least one reaction that is annotated to assign a reaction to one or more macromolecules that perform the reaction or to assign one or more nucleic acid that encodes the one or more macromolecules that perform the reaction. A gene database can contain a plurality of reactions some or all of which are annotated. An annotation can include, for

example, a name for a macromolecule; assignment of a function to a macromolecule; assignment of an organism that contains the macromolecule or produces the macromolecule; assignment of a subcellular location for the macromolecule; assignment of conditions under which a macromolecule is being expressed or being degraded; an amino acid or nucleotide sequence for the macromolecule; or any other annotation found for a macromolecule in a genome database such as

- those that can be found in *Saccharomyces* Genome Database maintained by Stanford University, or Comprehensive Yeast Genome Database maintained by MIPS.
 [0060] A gene database of the invention can include a substantially complete collection of genes and/or open reading frames in *S. cerevisiae* or a substantially complete collection of the macromolecules encoded by the *S. cerevisiae* genome. Alternatively, a gene database can include a portion of genes or open reading frames in *S. cerevisiae* or a
- 10 portion of the macromolecules encoded by the *S. cerevisiae* genome. The portion can be at least 10%, 15%, 20%, 25%, 50%, 75%, 90% or 95% of the genes or open reading frames encoded by the *S. cerevisiae* genome, or the macromolecules encoded therein. A gene database can also include macromolecules encoded by at least a portion of the nucleotide sequence for the *S. cerevisiae* genome such as at least 10%, 15%, 20%, 25%, 50%, 75%, 90% or 95% of the *S. cerevisiae* genome. Accordingly, a computer readable medium or media of the invention can include at least one reaction
- 15 for each macromolecule encoded by a portion of the *S. cerevisiae* genome.
 [0061] An *in silico S. cerevisiae* model according to the invention can be built by an iterative process which includes gathering information regarding particular reactions to be added to a model, representing the reactions in a reaction network data structure, and performing preliminary simulations wherein a set of constraints is placed on the reaction network and the output evaluated to identify errors in the network. Errors in the network such as gaps that lead to non-
- 20 natural accumulation or consumption of a particular metabolite can be identified as described below and simulations repeated until a desired performance of the model is attained. An exemplary method for iterative model construction is provided in Example I.

[0062] Thus, the invention provides a method for making a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions in a computer readable medium or media. The method includes the steps of: (a)

- 25 identifying a plurality of *S. cerevisiae* reactions and a plurality of *S. cerevisiae* reactants that are substrates and products of the *S. cerevisiae* reactions; (b) relating the plurality of *S. cerevisiae* reactants to the plurality of *S. cerevisiae* reactions in a data structure, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product; (c) making a constraint set for the plurality of *S. cerevisiae* reactions; (d) providing an objective function; (e) determining
- 30 at least one flux distribution that minimizes or maximizes the objective function when the constraint set is applied to the data structure, and (f) if *at least* one flux distribution is not predictive of *S. cerevisiae* physiology, then adding a reaction to or deleting a reaction from the data structure and repeating step (e), if *at least* one flux distribution is predictive of *S. cerevisiae* physiology, then adding a reaction *cerevisiae* physiology, then storing the data structure in a computer readable medium or media.
- [0063] Information to be included in a data structure of the invention can be gathered from a variety of sources including, for example, the scientific literature or an annotated genome sequence of *S. cerevisiae* such as the Genbank, a site maintained by the NCBI (ncbi.nlm.gov), the CYGD database, a site maintained by MIPS, or the SGD database, a site maintained by the School of Medicine at Stanford University, etc.

[0064] In the course of developing an *in silico* model of *S. cerevisiae* metabolism, the types of data that can be considered include, for example, biochemical information which is information related to the experimental characterization of a chemical reaction, often directly indicating a protein(s) associated with a reaction and the stoichiometry of the reaction or indirectly demonstrating the existence of a reaction occurring within a cellular extract; genetic information which is information related to the experimental identification and genetic characterization of a gene(s) shown to code for a particular protein(s) implicated in carrying out a biochemical event; genomic information which is information related

- to the identification of an open reading frame and functional assignment, through computational sequence analysis, that
 is then linked to a protein performing a biochemical event; physiological information which is information related to overall
 cellular physiology, fitness characteristics, substrate utilization, and phenotyping results, which provide evidence of the
 assimilation or dissimilation of a compound used to infer the presence of specific biochemical event (in particular trans locations); and modeling information which is information generated through the course of simulating activity of *S. cerevisiae* using methods such as those described herein which lead to predictions regarding the status of a reaction
- 50 such as whether or not the reaction is required to fulfill certain demands placed on a metabolic network. [0065] The majority of the reactions occurring in *S. cerevisiae* reaction networks are catalyzed by enzymes/proteins, which are created through the transcription and translation of the genes found on the chromosome(s) in the cell. The remaining reactions occur through non-enzymatic processes. Furthermore, a reaction network data structure can contain reactions that add or delete steps to or from a particular reaction pathway. For example, reactions can be added to
- ⁵⁵ optimize or improve performance of a *S. cerevisiae* model in view of empirically observed activity. Alternatively, reactions can be deleted to remove intermediate steps in a pathway when the intermediate steps are not necessary to model flux through the pathway. For example, if a pathway contains 3 nonbranched steps, the reactions can be combined or added together to give a net reaction, thereby reducing memory required to store the reaction network data structure and the

computational resources required for manipulation of the data structure. An example of a combined reaction is that for fatty acid degradation shown in Table 2, which combines the reactions for acyl-CoA oxidase, hydratase-dehydrogenase-epimerase, and acetyl-CoA C-acyltransferase of beta-oxidation of fatty acids.

- [0066] The reactions that occur due to the activity of gene-encoded enzymes can be obtained from a genome database that lists genes or open reading frames identified from genome sequencing and subsequent genome annotation. Genome annotation consists of the locations of open reading frames and assignment of function from homology to other known genes or empirically determined activity. Such a genome database can be acquired through public or private databases containing annotated *S. cerevisiae* nucleic acid or protein sequences. If desired, a model developer can perform a network reconstruction and establish the model content associations between the genes, proteins, and reactions as
- ¹⁰ described, for example, in Covert et al. Trends in Biochemical Sciences 26:179-186 (2001) and Palsson, WO 00/46405. [0067] As reactions are added to a reaction network data structure or metabolic reaction database, those having known or putative associations to the proteins/enzymes which enable/catalyze the reaction and the associated genes that code for these proteins can be identified by annotation. Accordingly, the appropriate associations for some or all of the reactions to their related proteins or genes or both can be assigned. These associations can be used to capture the
- non-linear relationship between the genes and proteins as well as between proteins and reactions. In some cases, one gene codes for one protein which then perform one reaction. However, often there are multiple genes which are required to create an active enzyme complex and often there are multiple reactions that can be carried out by one protein or multiple proteins that can carry out the same reaction. These associations capture the logic (i.e. AND or OR relationships) within the associations. Annotating a metabolic reaction database with these associations can allow the methods to be used to determine the effects of adding or eliminating a particular reaction not only at the reaction level, but at the genetic.
- ²⁰ used to determine the effects of adding or eliminating a particular reaction not only at the reaction level, but at the genetic or protein level in the context of running a simulation or predicting *S. cerevisiae* activity.
 [0068] A reaction network data structure of the invention can be used to determine the activity of one or more reactions in a plurality of *S. cerevisiae* reactions independent of any knowledge or annotation of the identity of the protein that performs the reaction or the gene encoding the protein. A model that is annotated with gene or protein identities can
- 25 include reactions for which a protein or encoding gene is not assigned. While a large portion of the reactions in a cellular metabolic network are associated with genes in the organism's genome, there are also a substantial number of reactions included in a model for which there are no known genetic associations. Such reactions can be added to a reaction database based upon other information that is not necessarily related to genetics such as biochemical or cell based measurements or theoretical considerations based on observed biochemical or cellular activity. For example, there are
- 30 many reactions that are not protein-enabled reactions. Furthermore, the occurrence of a particular reaction in a cell for which no associated proteins or genetics have been currently identified can be indicated during the course of model building by the iterative model building methods of the invention.

[0069] The reactions in a reaction network data structure or reaction database can be assigned to subsystems by annotation, if desired. The reactions can be subdivided according to biological criteria, such as according to traditionally

- ³⁵ identified metabolic pathways (glycolysis, amino acid metabolism and the like) or according to mathematical or computational criteria that facilitate manipulation of a model that incorporates or manipulates the reactions. Methods and criteria for subdividing a reaction database are described in further detail in Schilling et al., J. Theor. Biol. 203:249-283 (2000). The use of subsystems can be advantageous for a number of analysis methods, such as extreme pathway analysis, and can make the management of model content easier. Although assigning reactions to subsystems can be achieved
- without affecting the use of the entire model for simulation, assigning reactions to subsystems can allow a user to search for reactions in a particular subsystem, which may be useful in performing various types of analyses. Therefore, a reaction network data structure can include any number of desired subsystems including, for example, 2 or more subsystems, 5 or more subsystems, 10 or more subsystems, 25 or more subsystems or 50 or more subsystems.
- [0070] The reactions in a reaction network data structure or metabolic reaction database can be annotated with a value indicating the confidence with which the reaction is believed to occur in *S. cerevisiae*. The level of confidence can be, for example, a function of the amount and form of supporting data that is available. This data can come in various forms including published literature, documented experimental results, or results of computational analyses. Furthermore, the data can provide direct or indirect evidence for the existence of a chemical reaction in a cell based on genetic, biochemical, and/or physiological data.
- 50 [0071] The invention further provides a computer readable medium, containing (a) a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product, and (b) a constraint set for the plurality of *S. cerevisiae* reactions. [0072] Constraints can be placed on the value of any of the fluxes in the metabolic network using a constraint set.
- These constraints can be representative of a minimum or maximum allowable flux through a given reaction, possibly resulting from a limited amount of an enzyme present. Additionally, the constraints can determine the direction or reversibility of any of the reactions or transport fluxes in the reaction network data structure. Based on the *in vivo* environment where *S. cerevisiae* lives the metabolic resources available to the cell for biosynthesis of essential molecules for can

be determined. Allowing the corresponding transport fluxes to be active provides the *in silico S. cerevisiae* with inputs and outputs for substrates and by-products produced by the metabolic network.

[0073] Returning to the hypothetical reaction network shown in Figure 1, constraints can be placed on each reaction in the exemplary format, shown in Figure 3, as follows. The constraints are provided in a format that can be used to constrain the reactions of the stoichiometric matrix shown in Figure 2. The format for the constraints used for a matrix or in linear programming can be conveniently represented as a linear inequality such as

$$\beta_j \leq v_j \leq \alpha_j : j = 1...n$$
 (Eq. 1)

where v_j is the metabolic flux vector, β_j is the minimum flux value and α_j is the maximum flux value. Thus, α_j can take on a finite value representing a maximum allowable flux through a given reaction or β_j can take on a finite value representing minimum allowable flux through a given reaction. Additionally, if one chooses to leave certain reversible reactions or transport fluxes to operate in a forward and reverse manner the flux may remain unconstrained by setting β_j to negative

- ¹⁵ infinity and α_j to positive infinity as shown for reaction R_2 in Figure 3. If reactions proceed only in the forward reaction β_j is set to zero while α_j is set to positive infinity as shown for reactions R_1 , R_3 , R_4 , R_5 , and R_6 in Figure 3. As an example, to simulate the event of a genetic deletion or non-expression of a particular protein, the flux through all of the corresponding metabolic reactions related to the gene or protein in question are reduced to zero by setting α_j and β_j to be zero. Furthermore, if one wishes to simulate the absence of a particular growth substrate, one can simply constrain the
- ²⁰ corresponding transport fluxes that allow the metabolite to enter the cell to be zero by setting α_j and β_j to be zero. On the other hand if a substrate is only allowed to enter or exit the cell via transport mechanisms, the corresponding fluxes can be properly constrained to reflect this scenario.

[0074] The *in silico S. cerevisiae* model and methods described herein can be implemented on any conventional host computer system, such as those based on Intel.RTM. microprocessors and running Microsoft Windows operating systems. Other systems, such as those using the UNIX or LINUX operating system and based on IBM.RTM., DEC.RTM.

- ²⁵ tems. Other systems, such as those using the UNIX or LINUX operating system and based on IBM.RTM., DEC.RTM. or Motorola.RTM. microprocessors are also contemplated. The systems and methods described herein can also be implemented to run on client-server systems and wide-area networks, such as the Internet.
- [0075] Software to implement a method or model of the invention can be written in any well-known computer language, such as Java, C, C++, Visual Basic, FORTRAN or COBOL and compiled using any well-known compatible compiler.
 ³⁰ The software of the invention normally runs from instructions stored in a memory on a host computer system. A memory or computer readable medium can be a hard disk, floppy disc, compact disc, magneto-optical disc, Random Access Memory, Read Only Memory or Flash Memory. The memory or computer readable medium used in the invention can be contained within a single computer or distributed in a network. A network can be any of a number of conventional network systems known in the art such as a local area network (LAN) or a wide area network (WAN). Client-server
- ³⁵ environments, database servers and networks that can be used in the invention are well known in the art. For example, the database server can run on an operating system such as UNIX, running a relational database management system, a World Wide Web application and a World Wide Web server. Other types of memories and computer readable media are also contemplated to function within the scope of the invention.
- [0076] A database or data structure of the invention can be represented in a markup language format including, for example, Standard Generalized Markup Language (SGML), Hypertext markup language (HTML) or Extensible Markup language (XML). Markup languages can be used to tag the information stored in a database or data structure of the invention, thereby providing convenient annotation and transfer of data between databases and data structures. In particular, an XML format can be useful for structuring the data representation of reactions, reactants and their annotations; for exchanging database contents, for example, over a network or internet; for updating individual elements using
- the document object model; or for providing differential access to multiple users for different information content of a data base or data structure of the invention. XML programming methods and editors for writing XML code are known in the art as described, for example, in Ray, Learning XML O'Reilly and Associates, Sebastopol, CA (2001).
 [0077] A set of constraints can be applied to a reaction network data structure to simulate the flux of mass through
- the reaction network under a particular set of environmental conditions specified by a constraints set. Because the time constants characterizing metabolic transients and/or metabolic reactions are typically very rapid, on the order of milli-seconds to seconds, compared to the time constants of cell growth on the order of hours to days, the transient mass balances can be simplified to only consider the steady state behavior. Referring now to an example where the reaction network data structure is a stoichiometric matrix, the steady state mass balances can be applied using the following system of linear equations

5

$$\mathbf{S} \bullet \mathbf{v} = \mathbf{0} \tag{Eq. 2}$$

where S is the stoichiometric matrix as defined above and v is the flux vector. This equation defines the mass, energy, and redox potential constraints placed on the metabolic network as a result of stoichiometry. Together Equations 1 and 2 representing the reaction constraints and mass balances, respectively, effectively define the capabilities and constraints of the metabolic genotype and the organism's metabolic potential. All vectors, v, that satisfy Equation 2 are said to occur

- in the mathematical nullspace of S. Thus, the null space defines steady-state metabolic flux distributions that do not violate the mass, energy, or redox balance constraints. Typically, the number of fluxes is greater than the number of mass balance constraints, thus a plurality of flux distributions satisfy the mass balance constraints and occupy the null space. The null space, which defines the feasible set of metabolic flux distributions, is further reduced in size by applying the reaction constraints set forth in Equation 1 leading to a defined solution space. A point in this space represents a
- flux distribution and hence a metabolic phenotype for the network. An optimal solution within the set of all solutions can be determined using mathematical optimization methods when provided with a stated objective and a constraint set. The calculation of any solution constitutes a simulation of the model.
 [0078] Objectives for activity of *S. cerevisiae* can be chosen to explore the improved use of the metabolic network
- within a given reaction network data structure. These objectives can be design objectives for a strain, exploitation of the
 metabolic capabilities of a genotype, or physiologically meaningful objective functions, such as maximum cellular growth.
 Growth can be defined in terms of biosynthetic requirements based on literature values of biomass composition or
 experimentally determined values such as those obtained as described above. Thus, biomass generation can be defined
 as an exchange reaction that removes intermediate metabolites in the appropriate ratios and represented as an objective function. In addition to draining intermediate metabolites this reaction flux can be formed to utilize energy molecules
- 20 such as ATP, NADH and NADPH so as to incorporate any growth dependent maintenance requirement that must be met. This new reaction flux then becomes another constraint/balance equation that the system must satisfy as the objective function. Using the stoichiometric matrix of Figure 2 as an example, adding such a constraint is analogous to adding the additional column V_{growth} to the stoichiometric matrix to represent fluxes to describe the production demands placed on the metabolic system. Setting this new flux as the objective function and asking the system to maximize the
- value of this flux for a given set of constraints on all the other fluxes is then a method to simulate the growth of the organism. [0079] Continuing with the example of the stoichiometric matrix applying a constraint set to a reaction network data structure can be illustrated as follows. The solution to equation 2 can be formulated as an optimization problem, in which the flux distribution that minimizes a particular objective is found. Mathematically, this optimization problem can be stated as:

Minimize Z (Eq. 3)

where (Eq. 4)

$$z = \sum c_i \cdot v_i$$

- ⁴⁰ where Z is the objective which is represented as a linear combination of metabolic fluxes v_i using the weights c_i in this linear combination. The optimization problem can also be stated as the equivalent maximization problem; i.e. by changing the sign on Z. Any commands for solving the optimization problem can be used including, for example, linear programming commands.
- [0080] A computer system of the invention can further include a user interface capable of receiving a representation of one or more reactions. A user interface of the invention can also be capable of sending at least one command for modifying the data structure, the constraint set or the commands for applying the constraint set to the data representation, or a combination thereof. The interface can be a graphic user interface having graphical means for making selections such as menus or dialog boxes. The interface can be arranged with layered screens accessible by making selections from a main screen. The user interface can provide access to other databases useful in the invention such as a metabolic
- ⁵⁰ reaction database or links to other databases having information relevant to the reactions or reactants in the reaction network data structure or to *S. cerevisiae* physiology. Also, the user interface can display a graphical representation of a reaction network or the results of a simulation using a model of the invention.

[0081] Once an initial reaction network data structure and set of constraints has been created, this model can be tested by preliminary simulation. During preliminary simulation, gaps in the network or "dead-ends" in which a metabolite can be produced but not consumed or where a metabolite can be consumed but not produced can be identified. Based on the results of preliminary simulations areas of the metabolic reconstruction that require an additional reaction can be identified. The determination of these gaps can be readily calculated through appropriate queries of the reaction network

35

data structure and need not require the use of simulation strategies, however, simulation would be an alternative approach to locating such gaps.

[0082] In the preliminary simulation testing and model content refinement stage the existing model is subjected to a series of functional tests to determine if it can perform basic requirements such as the ability to produce the required

- ⁵ biomass constituents and generate predictions concerning the basic physiological characteristics of the particular organism strain being modeled. The more preliminary testing that is conducted the higher the quality of the model that will be generated. Typically the majority of the simulations used in this stage of development will be single optimizations. A single optimization can be used to calculate a single flux distribution demonstrating how metabolic resources are routed determined from the solution to one optimization problem. An optimization problem can be solved using linear program-
- ¹⁰ ming as demonstrated in the Examples below. The result can be viewed as a display of a flux distribution on a reaction map. Temporary reactions can be added to the network to determine if they should be included into the model based on modeling/simulation requirements.

[0083] Once a model of the invention is sufficiently complete with respect to the content of the reaction network data structure according to the criteria set forth above, the model can be used to simulate activity of one or more reactions in a reaction network. The results of a simulation can be displayed in a variety of formats including, for example, a table, graph, reaction network, flux distribution map or a phenotypic phase plane graph.

[0084] Thus, the invention provides a method for predicting a *S. cerevisiae* physiological function. The method includes the steps of (a) providing a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactants, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a

15

- reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product;
 (b) providing a constraint set for the plurality of *S. cerevisiae* reactions;
 (c) providing an objective function, and
 (d) determining at least one flux distribution that minimizes or maximizes the objective function when the constraint set is applied to the data structure, thereby predicting a *S. cerevisiae* physiological function.
- [0085] As used herein, the term "physiological function," when used in reference to *S. cerevisiae*, is intended to mean an activity of a *S. cerevisiae* cell as a whole. An activity included in the term can be the magnitude or rate of a change from an initial state of a *S. cerevisiae* cell to a final state of the *S. cerevisiae* cell. An activity can be measured qualitatively or quantitatively. An activity included in the term can be, for example, growth, energy production, redox equivalent production, biomass production, development, or consumption of carbon, nitrogen, sulfur, phosphate, hydrogen or oxygen. An activity can also be an output of a particular reaction that is determined or predicted in the context of substantially
- all of the reactions that affect the particular reaction in a *S. cerevisiae* cell or substantially all of the reactions that occur in a *S. cerevisiae* cell. Examples of a particular reaction included in the term are production of biomass precursors, production of a protein, production of an amino acid, production of a purine, production of a pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, or transport of a metabolite. A physiological function can include an emergent property which emerges from the whole but not from the sum of parts where the parts are observed in isolation (see for example, Palsson Nat. Biotech 18:1147-1150 (2000)).
- [0086] A physiological function of *S. cerevisiae* reactions can be determined using phase plane analysis of flux distributions. Phase planes are representations of the feasible set which can be presented in two or three dimensions. As an example, two parameters that describe the growth conditions such as substrate and oxygen uptake rates can be defined as two axes of a two-dimensional space. The optimal flux distribution can be calculated from a reaction network
- 40 data structure and a set of constraints as set forth above for all points in this plane by repeatedly solving the linear programming problem while adjusting the exchange fluxes defining the two-dimensional space. A finite number of qualitatively different metabolic pathway utilization patterns can be identified in such a plane, and lines can be drawn to demarcate these regions. The demarcations defining the regions can be determined using shadow prices of linear optimization as described, for example in Chvatal, Linear Programming New York, W.H. Freeman and Co. (1983). The
- ⁴⁵ regions are referred to as regions of constant shadow price structure. The shadow prices define the intrinsic value of each reactant toward the objective function as a number that is either negative, zero, or positive and are graphed according to the uptake rates represented by the x and y axes. When the shadow prices become zero as the value of the uptake rates are changed there is a qualitative shift in the optimal reaction network.
- [0087] One demarcation line in the phenotype phase plane is defined as the line of optimality (LO). This line represents the optimal relation between respective metabolic fluxes. The LO can be identified by varying the x-axis flux and calculating the optimal y-axis flux with the objective function defined as the growth flux. From the phenotype phase plane analysis the conditions under which a desired activity is optimal can be determined. The maximal uptake rates lead to the definition of a finite area of the plot that is the predicted outcome of a reaction network within the environmental conditions represented by the constraint set. Similar analyses can be performed in multiple dimensions where each dimension on
- 55 the plot corresponds to a different uptake rate. These and other methods for using phase plane analysis, such as those described in Edwards et al., Biotech Bioeng. 77:27-3 6(2002), can be used to analyze the results of a simulation using an *in silico S. cerevisiae* model of the invention.

[0088] A physiological function of S. cerevisiae can also be determined using a reaction map to display a flux distribution.

A reaction map of *S. cerevisiae* can be used to view reaction networks at a variety of levels. In the case of a cellular metabolic reaction network a reaction map can contain the entire reaction complement representing a global perspective. Alternatively, a reaction map can focus on a particular region of metabolism such as a region corresponding to a reaction subsystem described above or even on an individual pathway or reaction. An example of a reaction map showing a subset of reactions in a reaction network of *S. cerevisiae* is shown in Figure 4.

- ⁵ subset of reactions in a reaction network of *S. cerevisiae* is shown in Figure 4. [0089] The invention also provides an apparatus that produces a representation of a *S. cerevisiae* physiological function, wherein the representation is produced by a process including the steps of: (a) providing a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction.
- 10 and a stoichiometric coefficient relating said substrate and said product; (b) providing a constraint set for the plurality of S. cerevisiae reactions; (c) providing an objective function; (d) determining at least one flux distribution that minimizes or maximizes the objective function when the constraint set is applied to the data structure, thereby predicting a S. cerevisiae physiological function, and (e) producing a representation of the activity of the one or more S. cerevisiae reactions.
- ¹⁵ **[0090]** The methods of the invention can be used to determine the activity of a plurality of *S. cerevisiae* reactions including, for example, biosynthesis of an amino acid, degradation of an amino acid, biosynthesis of a purine, biosynthesis of a piprimidine, biosynthesis of a lipid, metabolism of a fatty acid, biosynthesis of a cofactor, transport of a metabolite and metabolism of an alternative carbon source. In addition, the methods can be used to determine the activity of one or more of the reactions described above or listed in Table 2.
- 20 [0091] The methods of the invention can be used to determine a phenotype of a *S. cerevisiae* mutant. The activity of one or more *S. cerevisiae* reactions can be determined using the methods described above, wherein the reaction network data structure lacks one or more gene-associated reactions that occur in *S. cerevisiae*. Alternatively, the methods can be used to determine the activity of one or more *S. cerevisiae* reactions when a reaction that does not naturally occur in *S. cerevisiae* is added to the reaction network data structure. Deletion of a gene can also be represented in a model
- of the invention by constraining the flux through the reaction to zero, thereby allowing the reaction to remain within the data structure. Thus, simulations can be made to predict the effects of adding or removing genes to or from *S. cerevisiae*. The methods can be particularly useful for determining the effects of adding or deleting a gene that encodes for a gene product that performs a reaction in a peripheral metabolic pathway.
- **[0092]** A drug target or target for any other agent that affects *S. cerevisiae* function can be predicted using the methods of the invention. Such predictions can be made by removing a reaction to simulate total inhibition or prevention by a drug or agent. Alternatively, partial inhibition or reduction in the activity a particular reaction can be predicted by performing the methods with altered constraints. For example, reduced activity can be introduced into a model of the invention by altering the α_j or β_j values for the metabolic flux vector of a target reaction to reflect a finite maximum or minimum flux value corresponding to the level of inhibition. Similarly, the effects of activating a reaction, by initiating or increasing the
- activity of the reaction, can be predicted by performing the methods with a reaction network data structure lacking a particular reaction or by altering the α_j or β_j values for the metabolic flux vector of a target reaction to reflect a maximum or minimum flux value corresponding to the level of activation. The methods can be particularly useful for identifying a target in a peripheral metabolic pathway.
- [0093] Once a reaction has been identified for which activation or inhibition produces a desired effect on *S. cerevisiae* function, an enzyme or macromolecule that performs the reaction in *S. cerevisiae* or a gene that expresses the enzyme or macromolecule can be identified as a target for a drug or other agent. A candidate compound for a target identified by the methods of the invention can be isolated or synthesized using known methods. Such methods for isolating or synthesizing compounds can include, for example, rational design based on known properties of the target (see, for example, DeCamp et al., Protein Engineering Principles and Practice, Ed. Cleland and Craik, Wiley-Liss, New York, pp.
- 45 467-506 (1996)), screening the target against combinatorial libraries of compounds (see for example, Houghten et al., Nature, 354, 84-86 (1991); Dooley et al., Science, 266, 2019-2022 (1994), which describe an iterative approach, or R. Houghten et al. PCT/US91/08694 and U.S. Patent 5,556,762 which describe a positional-scanning approach), or a combination of both to obtain focused libraries. Those skilled in the art will know or will be able to routinely determine assay conditions to be used in a screen based on properties of the target or activity assays known in the art.
- ⁵⁰ **[0094]** A candidate drug or agent, whether identified by the methods described above or by other methods known in the art, can be validated using an *in silico S. cerevisiae* model or method of the invention. The effect of a candidate drug or agent on *S. cerevisiae* physiological function can be predicted based on the activity for a target in the presence of the candidate drug or agent measured *in vitro* or *in vivo*. This activity can be represented in an *in silico S. cerevisiae* model by adding a reaction to the model, removing a reaction from the model or adjusting a constraint for a reaction in
- ⁵⁵ the model to reflect the measured effect of the candidate drug or agent on the activity of the reaction. By running a simulation under these conditions the holistic effect of the candidate drug or agent on *S. cerevisiae* physiological function can be predicted.

[0095] The methods of the invention can be used to determine the effects of one or more environmental components

or conditions on an activity of *S. cerevisiae*. As set forth above, an exchange reaction can be added to a reaction network data structure corresponding to uptake of an environmental component, release of a component to the environment, or other environmental demand. The effect of the environmental component or condition can be further investigated by running simulations with adjusted α_i or β_i values for the metabolic flux vector of the exchange reaction target reaction

- 5 to reflect a finite maximum or minimum flux value corresponding to the effect of the environmental component or condition. The environmental component can be, for example an alternative carbon source or a metabolite that when added to the environment of *S. cerevisiae* can be taken up and metabolized. The environmental component can also be a combination of components present for example in a minimal medium composition. Thus, the methods can be used to determine an optimal or minimal medium composition that is capable of supporting a particular activity of *S. cerevisiae*.
- ¹⁰ **[0096]** The invention further provides a method for determining a set of environmental components to achieve a desired activity for *S. cerevisiae*. The method includes the steps of (a) providing a data structure relating a plurality of *S. cerevisiae* reactants to a plurality of *S. cerevisiae* reactions, wherein each of the *S. cerevisiae* reactions includes a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating the substrate and the product; (b) providing a constraint set for the plurality of *S. cerevisiae* reactions; (c) applying the
- ¹⁵ constraint set to the data representation, thereby determining the activity of one or more *S. cerevisiae* reactions (d) determining the activity of one or more *S. cerevisiae* reactions according to steps (a) through (c), wherein the constraint set includes an upper or lower bound on the amount of an environmental component and (e) repeating steps (a) through (c) with a changed constraint set, wherein the activity determined in step (e) is improved compared to the activity determined in step (d).
- 20 **[0097]** The following examples are intended to illustrate but not limit the present invention.

EXAMPLE I

Reconstruction of the metabolic network of S. cerevisiae

25

30

[0098] This example shows how the metabolic network of *S. cerevisiae* can be reconstructed.

[0099] The reconstruction process was based on a comprehensive search of the current knowledge of metabolism in *S. cerevisiae* as shown in Figure 5. A reaction database was built using the available genomic and metabolic information on the presence, reversibility, localization and cofactor requirements of all known reactions. Furthermore, information on non-growth-dependent and growth-dependent ATP requirements and on the biomass composition was used.

[0100] For this purpose different online reaction databases, recent publications and review papers (Table 5 and 9), and established biochemistry textbooks (Zubay, Biochemistry Wm.C. Brown Publishers, Dubuque, IA (1998); Stryer, Biochemistry W.H. Freeman, New York, NY (1988)) were consulted. Information on housekeeping genes of *S. cerevisiae* and their functions were taken from three main yeast on-line resources:

35

• The MIPS Comprehensive Yeast Genome Database (CYGD) (Mewes et al., Nucleic Acids Research 30(1): 31-34 (2002));

- The Saccharomyces Genome Database (SGD) (Cherry et al., Nucleic Acids Research 26(1): 73-9 (1998));
- The Yeast Proteome Database (YPD) (Costanzo et al., Nucleic Acids Research 29(1): 75-9 (2001)).
- 40

45

[0101] The following metabolic maps and protein databases (available online) were investigated:

• Kyoto Encyclopedia of Genes and Genomes database (KEGG) (Kanehisa et al., Nucleic Acids Research 28(1): 27-30 (2000));

- The Biochemical Pathways database of the Expert Protein Analysis System database (ExPASy) (Appel et al., Trends Biochem Sci. 19(6): 258-260 (1994));
- ERGO from Integrated Genomics (www.integratedgenomics.com)
- SWISS-PROT Protein Sequence database (Bairoch et al., Nucleic Acids Research 28(1): 45-48 (2000)).
- ⁵⁰ **[0102]** Table 5 lists additional key references that were consulted for the reconstruction of the metabolic network of *S. cerevisiae.*

55

Г	а	b	I	e	5

	Table 5
	Amino acid biosynthesis
5	Strathern et al., The Molecular biology of the yeast Saccharomyces : metabolism and gene expression Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1982))
	Lipid synthesis
10	Daum et al., Yeast 14(16): 1471-510 (1998); Dickinson et al., The metabolism and molecular physiology of Saccharomyces cerevisiae Taylor & Francis, London; Philadelphia (1999); Dickson et al., Methods Enzymol. 311:3-9 (2000);
15	Dickson, Annu Rev Biochem 67: 27-48 (1998); Parks, CRC Crit Rev Microbiol 6(4): 301-41 (1978))
	Nucleotide Metabolism
00	Strathern et al., <u>supara</u> (1982))
20	<i>Oxidative phosphorylation and electron transport</i> (Verduyn et al., Antonie Van Leeuwenhoek 59(1): 49-63 (1991); Overkamp et al., J. of Bacteriol 182(10): 2823-2830 (2000))
25	Primary Metabolism
	Zimmerman et al., Yeast sugar metabolism : biochemistry, genetics, biotechnology, and applications Technomic Pub., Lancaster, PA (1997);
	Dickinson et al., <u>supra</u> (1999);
30	Strathern et al., <u>supra</u> (1982))
	Transport across the cytoplasmic membrane
35	Paulsen et al., FEBS Lett 430(1-2): 116-125 (1998); Wieczorke et al., FEBS Lett 464(3): 123-128 (1999); Regenberg et al., Curr Genet 36(6): 317-328 (1999); Andre, Yeast 11(16): 1575-1611 (1995))
40	<i>Transport across the mitochondrial membrane</i> Palmieri et al., J Bioenerg Biomembr 32(1): 67:77 (2000);
	Palmieri et al., Biochim Biophys Acta 1459(2-3): 363-369 (2000); Palmieri et al., J Biol Chem 274(32):22184-22190 (1999);
45	Palmieri et al., FEBS Lett 417(1): 114-118 (1997); Paulsen et al., <u>supra</u> (1998); Pallotta et al., FEBS Lett 428(3): 245-249 (1998);

[0103] All reactions are localized into the two main compartments, cytosol and mitochondria, as most of the common 50 metabolic reactions in S. cerevisiae take place in these compartments. Optionally, one or more additional compartments can be considered. Reactions located in vivo in other compartments or reactions for which no information was available regarding localization were assumed to be cytosol. All corresponding metabolites were assigned appropriate localization and a link between cytosol and mitochondria was established through either known transport and shuttle systems or through inferred reactions to meet metabolic demands.

Tzagologg et al. Mitochondria Plenum Press, New York (1982); Andre Yeast 11(16): 1575-611 (1995))

55 [0104] After the initial assembly of all the metabolic reactions the list was manually examined for resolution of detailed biochemical issues. A large number of reactions involve cofactors utilization, and for many of these reactions the cofactor requirements have not yet been completely elucidated. For example, it is not clear whether certain reactions use only NADH or only NADPH as a cofactor or can use both cofactors, whereas other reactions are known to use both cofactors. For example, a mitochondrial aldehyde dehydrogenase encoded by *ALD4* can use both NADH and NADPH as a cofactor (Remize et al. Appl Environ Microbiol 66(8): 3151-3159 (2000)). In such cases, two reactions are included in the reconstructed metabolic network.

[0105] Further considerations were taken into account to preserve the unique features of S. cerevisiae metabolism.

- S. cerevisiae lacks a gene that encodes the enzyme transhydrogenase. Insertion of a corresponding gene from Azetobacter vinelandii in S. cerevisiae has a major impact on its phenotypic behavior, especially under anaerobic conditions (Niessen et al. Yeast 18(1): 19-32 (2001)). As a result, reactions that create a net transhydrogenic effect in the model were either constrained to zero or forced to become irreversible. For instance, the flux carried by NADH dependent glutamate dehydrogenase (Gdh2p) was constrained to zero to avoid the appearance of a net transhydrogenase activity
 through coupling with the NADPH dependent glutamate dehydrogenases (Gdh1p and Gdh3p).
- [0106] Once a first generation model is prepared, microbial behavior can be modeled for a specific scenario, such as anaerobic or aerobic growth in continuous cultivation using glucose as a sole carbon source. Modeling results can then be compared to experimental results. If modeling and experimental results are in agreement, the model can be considered as correct, and it is used for further modeling and predicting *S. cerevisiae* behavior. If the modeling and experimental
- ¹⁵ results are not in agreement, the model has to be evaluated and the reconstruction process refined to determine missing or incorrect reactions, until modeling and experimental results are in agreement. This iterative process is shown in Figure 5 and exemplified below.

EXAMPLE II

20

25

Calculation of the P/O ratio

[0107] This example shows how the genome-scale reconstructed metabolic model of *S. cerevisiae* was used to calculate the P/O ratio, which measures the efficiency of aerobic respiration. The P/O ratio is the number of ATP molecules produced per pair of electrons donated to the electron transport system (ETS).

- **[0108]** Linear optimization was applied, and the *in silico* P/O ratio was calculated by first determining the maximum number of ATP molecules produced per molecule of glucose through the electron transport system (ETS), and then interpolating the *in silico* P/O ratio using the theoretical relation (i.e. in *S. cerevisiae* for the P/O ratio of 1.5, 18 ATP molecules are produced).
- 30 [0109] Experimental studies of isolated mitochondria have shown that *S. cerevisiae* lacks site I proton translocation (Verduyn et al., Antonie Van Leeuwenhoek 59(1): 49-63 (1991)). Consequently, estimation of the maximum theoretical or "mechanistic" yield of the ETS alone gives a P/O ratio of 1.5 for oxidation of NADH in *S. cerevisiae* grown on glucose (Verduyn et al., <u>supra</u> (1991)). However, based on experimental measurements, it has been determined that the net *in vivo* P/O ratio is approximately 0.95 (Verduyn et al., <u>supra</u> (1991)). This difference is generally thought to be due to the
- ³⁵ use of the mitochondrial transmembrane proton gradient needed to drive metabolite exchange, such as the protoncoupled translocation of pyruvate, across the inner mitochondrial membrane. Although simple diffusion of protons (or proton leakage) would be surprising given the low solubility of protons in the lipid bilayer, proton leakage is considered to contribute to the lowered P/O ratio due to the relatively high electrochemical gradient across the inner mitochondrial membrane (Westerhoff and van Dam, Thermodynamics and control of biological free-energy transduction Elsevier, New York, NY (1987)).
- [0110] Using the reconstructed network, the P/O ratio was calculated to be 1.04 for oxidation of NADH for growth on glucose by first using the model to determine the maximum number of ATP molecules produced per molecule of glucose through the electron transport system (ETS) (YATP,max=12.5 ATP molecules/glucose molecule via ETS in silico). The in silico P/O ratio was then interpolated using the theoretical relation (i.e. 18 ATP molecules per glucose molecule are
- ⁴⁵ produced theoretically when the P/O ratio is 1.5). The calculated P/O ratio was found to be close to the experimentally determined value of 0.95. Proton leakage, however, was not included in the model, which suggests that the major reason for the lowered P/O ratio is the use of the proton gradient for solute transport across the inner mitochondrial membrane. This result illustrates the importance of including the complete metabolic network in the analysis, as the use of the proton gradient for solute transport across the mitochondrial P/O ratio.
- 50

EXAMPLE III

Phenotypic phase plane analysis

55 [0111] This example shows how the *S. cerevisiae* metabolic model can be used to calculate the range of characteristic phenotypes that the organism can display as a function of variations in the activity of multiple reactions.
 [0112] For this analysis, O₂ and glucose uptake rates were defined as the two axes of the two-dimensional space. The optimal flux distribution was calculated using linear programming (LP) for all points in this plane by repeatedly solving

the LP problem while adjusting the exchange fluxes defining the two-dimensional space. A finite number of quantitatively different metabolic pathway utilization patterns were identified in the plane, and lines were drawn to demarcate these regions. One demarcation line in the phenotypic phase plane (PhPP) was defined as the line of optimality (LO), and represents the optimal relation between the respective metabolic fluxes. The LO was identified by varying the x-axis

5 (glucose uptake rate) and calculating the optimal y-axis (O2 uptake rate), with the objective function defined as the growth flux. Further details regarding Phase-Plane Analysis are provided in Edwards et al., Biotechnol. Bioeng. 77:27-36 (2002) and Edwards et al., Nature Biotech. 19:125-130 (2001)).

[0113] As illustrated in Figure 6, the S. cerevisiae PhPP contains 8 distinct metabolic phenotypes. Each region (P1-P8) exhibits unique metabolic pathway utilization that can be summarized as follows:

10 [0114] The left-most region is the so-called "infeasible" steady state region in the PhPP, due to stoichiometric limitations. [0115] From left to right:

P1: Growth is completely aerobic. Sufficient oxygen is available to complete the oxidative metabolism of glucose [0116] to support growth requirements. This zone represents a futile cycle. Only CO2 is formed as a metabolic by-product. The growth rate is less than the optimal growth rate in region P2. The P1 upper limit represents the locus of points for which

- 15 the carbon is completely oxidized to eliminate the excess electron acceptor, and thus no biomass can be generated. [0117] P2: Oxygen is slightly limited, and all biosynthetic cofactor requirements cannot be optimally satisfied by oxidative metabolism. Acetate is formed as a metabolic by-product enabling additional high-energy phosphate bonds via substrate level phosphorylation. With the increase of O2 supply, acetate formation eventually decreases to zero.
 - [0118] P3: Acetate is increased and pyruvate is decreased with increase in oxygen uptake rate.
- 20 [0119] P4: Pyruvate starts to increase and acetate is decreased with increase in oxygen uptake rate. Ethanol production eventually decreases to zero.

[0120] P5: The fluxes towards acetate formation are increasing and ethanol production is decreasing.

[0121] P6: When the oxygen supply increases, acetate formation increases and ethanol production decreases with the carbon directed toward the production of acetate. Besides succinate production, malate may also be produced as

25 metabolic by-product.

[0122] P7: The oxygen supply is extremely low, ethanol production is high and succinate production is decreased. Acetate is produced at a relatively low level.

[0123] P8: This region is along the Y-axis and the oxygen supply is zero. This region represents completely anaerobic fermentation. Ethanol and glycerol are secreted as a metabolic by-product. The role of NADH-consuming glycerol for-30 mation is to maintain the cytosol redox balance under anaerobic conditions (Van Dijken and Scheffers Yeast 2(2): 123-7 (1986)).

[0124] Line of Optimality: Metabolically, the line of optimality (LO) represents the optimal utilization of the metabolic pathways without limitations on the availability of the substrates. On an oxygen/glucose phenotypic phase plane diagram, LO represents the optimal aerobic glucose-limited growth of S. cerevisiae metabolic network to produce biomass from

35 unlimited oxygen supply for the complete oxidation of the substrates in the cultivation processes. The line of optimality therefore represents a completely respiratory metabolism, with no fermentation by-product secretion and the futile cycle fluxes equals zero.

[0125] Thus, this example demonstrates that Phase Plane Analysis can be used to determine the optimal fermentation pattern for S. cerevisiae, and to determine the types of organic byproducts that are accumulated under different oxygenation conditions and glucose uptake rates.

EXAMPLE IV

Calculation of line of optimality and respiratory quotient

45

50

40

[0126] This example shows how the S. cerevisiae metabolic model can be used to calculate the oxygen uptake rate (OUR), the carbon dioxide evolution rate (CER) and the respiration quotient (RQ), which is the ratio of CER over OUR. [0127] The oxygen uptake rate (OUR) and the carbon dioxide evolution rate (CER) are direct indicators of the yeast metabolic activity during the fermentation processes. RQ is a key metabolic parameter that is independent of cell number. As illustrated in Figure 7, if the S. cerevisiae is grown along the line of optimality, LO, its growth is at optimal aerobic rate with all the carbon sources being directed to biomass formation and there are no metabolic by-products secreted except CO2. The calculated RQ along the LO is a constant value of 1.06; the RQ in P1 region is less than 1.06; and the RQ in the remaining regions in the yeast PhPP are greater than 1.06. The RQ has been used to determined the cell

growth and metabolism and to control the glucose feeding for optimal biomass production for decades (Zeng et al. 55 Biotechnol. Bioeng. 44:1107-1114 (1994)). Empirically, several researchers have proposed the values of 1.0 (Zigova, J Biotechnol 80: 55-62 (2000). Journal of Biotechnology), 1.04 (Wang et al., Biotechnol & Bioeng 19:69-86 (1977)) and 1.1 (Wang et al., Biotechnol. & Bioeng. 21:975-995 (1979)) as optimal RQ which should be maintained in fed-batch or continuous production of yeast's biomass so that the highest yeast biomass could be obtained (Dantigny et al., Appl.

Microbiol. Biotechnol. 36:352-357 (1991)). The constant RQ along the line of optimality for yeast growth by the metabolic model is thus consistent with the empirical formulation of the RQ through on-line measurements from the fermentation industry.

5 EXAMPLE V

Computer simulations

[0128] This example shows computer simulations for the change of metabolic phenotypes described by the yeast PhPP.
 [0129] A piece-wise linearly increasing function was used with the oxygen supply rates varying from completely anaerobic to fully aerobic conditions (with increasing oxygen uptake rate from 0 to 20 mmol per g cell-hour). A glucose uptake rate of 5 mmol of glucose per g (dry weight)-hour was arbitrarily chosen for these computations. As shown in Figure 8A, the biomass yield of the *in silico S. cerevisiae* strain was shown to increase from P8 to P2, and become optimal on the LO. The yield then started to slowly decline in P1 (futile cycle region). At the same time, the RQ value declines in relation

¹⁵ to the increase of oxygen consumption rate, reaching a value of 1.06 on the LO1 and then further declining to become less than 1.

[0130] Figure 8B shows the secretion rates of metabolic by-products; ethanol, succinate, pyruvate and acetate with the change of oxygen uptake rate from 0 to 20 mmol of oxygen per g (dry weight)-h. Each one of these by-products is secreted in a fundamentally different way in each region. As oxygen increases from 0 in P7, glycerol production (data

not shown in this figure) decreases and ethanol production increases. Acetate and succinate are also secreted.

EXAMPLE VI

Modeling of phenotypic behavior in chemostat cultures

25

[0131] This example shows how the *S. cerevisiae* metabolic model can be used to predict optimal flux distributions that would optimize fermentation performance, such as specific product yield or productivity. In particular, this example shows how flux based analysis can be used to determine conditions that would minimize the glucose uptake rate of *S. cerevisiae* grown on glucose in a continuous culture under anaerobic and under aerobic conditions.

- ³⁰ **[0132]** In a continuous culture, growth rate is equivalent to the dilution rate and is kept at a constant value. Calculations of the continuous culture of *S. cerevisiae* were performed by fixing the *in silico* growth rate to the experimentally determined dilution rate, and minimizing the glucose uptake rate. This formulation is equivalent to maximizing biomass production given a fixed glucose uptake value and was employed to simulate a continuous culture growth condition. Furthermore, a non growth dependent ATP maintenance of 1 mmol/gDW, a systemic P/O ratio of 1.5 (Verduyn et al. Antonie Van
- 35 Leeuwenhoek 59(1): 49-63 (1991)), a polymerization cost of 23.92 mmol ATP/gDW, and a growth dependent ATP maintenance of 35.36 mmol ATP/gDW, which is simulated for a biomass yield of 0.51 gDW/h, are assumed. The sum of the latter two terms is included into the biomass equation of the genome-scale metabolic model.
 [0133] Optimal growth properties of *S. cerevisiae* were calculated under anaerobic glucose-limited continuous culture at dilution rates varying between 0.1 and 0.4 h⁻¹. The computed by-product secretion rates were then compared to the
- experimental data (Nissen et al. Microbiology 143(1): 203-18 (1997)). The calculated uptake rates of glucose and the production of ethanol, glycerol, succinate, and biomass are in good agreement with the independently obtained experimental data (Figure 9). The relatively low observed acetate and pyruvate secretion rates were not predicted by the *in silico* model since the release of these metabolites does not improve the optimal solution of the network.
 [0134] It is possible to constrain the *in silico* model further to secrete both, pyruvate and acetate at the experimental
- ⁴⁵ level and recompute an optimal solution under these additional constraints. This calculation resulted in values that are closer to the measured glucose uptake rates (Figure 9A). This procedure is an example of an iterative data-driven constraint-based modeling approach, where the successive incorporation of experimental data is used to improve the *in silico* model. Besides the ability to describe the overall growth yield, the model allows further insight into how the metabolism operates. From further analysis of the metabolic fluxes at anaerobic growth conditions the flux through the
- ⁵⁰ glucose-6-phosphate dehydrogenase was found to be 5.32% of the glucose uptake rate at dilution rate of 0.1 h⁻¹, which is consistent with experimentally determined value (6.34%) for this flux when cells are operating with fermentative metabolism (Nissen et al., Microbiology 143(1): 203-218 (1997)).

[0135] Optimal growth properties of *S. cerevisiae* were also calculated under aerobic glucose-limited continuous culture in which the Crabtree effect plays an important role. The molecular mechanisms underlying the Crabtree effect in *S. cerevisiae* are not known. The regulater features of the Crabtree effect (up Dilkon et al. Antonio Von Loguna post)

⁵⁵ in S. cerevisiae are not known. The regulatory features of the Crabtree effect (van Dijken et al. Antonie Van Leeuwenhoek 63(3-4):343-52 (1993)) can, however, be included in the *in silico* model as an experimentally determined growth ratedependent maximum oxygen uptake rate (Overkamp et al. J. of Bacteriol 182(10): 2823-30 (2000))). With this additional constraint and by formulating growth in a chemostat as described above, the *in silico* model makes quantitative predictions

about the respiratory quotient, glucose uptake, ethanol, CO2, and glycerol secretion rates under aerobic glucose-limited continuous condition (Fig. 10).

EXAMPLE VII

5

Analysis of deletion of genes involved in central metabolism in S. cerevsiae

[0136] This example shows how the *S. cerevisiae* metabolic model can be used to determine the effect of deletions of individual reactions in the network.

¹⁰ **[0137]** Gene deletions were performed *in silico* by constraining the flux(es) corresponding to a specific gene to zero. The impact of single gene deletions on growth was analysed by simulating growth on a synthetic complete medium containing glucose, amino acids, as well as purines and pyrimidines.

[0138] In silico results were compared to experimental results as supplied by the *Saccharomyces* Genome Database (SGD) (Cherry et al., Nucleic Acids Research 26(1):73-79 (1998)) and by the Comprehensive Yeast Genome Database

- (Mewes et al., Nucleic Acids Research 30(1):31-34 (2002)). In 85.6% of all considered cases (499 out of 583 cases), the *in silico* prediction was in qualitative agreement with experimental results. An evaluation of these results can be found in Example VIII. For central metabolism, growth was predicted under various experimental conditions and 81.5% (93 out of 114 cases) of the *in silico* predictions were in agreement with *in vivo* phenotypes.
- [0139] Table 6 shows the impact of gene deletions on growth in *S. cerevisiae*. Growth on different media was considered, including defined complete medium with glucose as the carbon source, and minimal medium with glucose, ethanol or acetate as the carbon source. The complete reference citations for Table 6 can be found in Table 9.
 [0140] Thus, this asympted demonstrates that the *in silica* model can be used to uncover essential genes to augment.

[0140] Thus, this example demonstrates that the *in silico* model can be used to uncover essential genes to augment or circumvent traditional genetic studies.

25				т	able 6	
	Defined Medium	Complete	Minimal	Minimal	Minimal	
	Carbon Source	Glucose	Glucose	Acetate	Ethanol	
	Gene	in silicol	in silico/	in silico/	in silicol	References:
30	Gene	in vivo	in vivo	in vivo	in vivo	(Minimal media)
30	ACO1	+/+	-/-			(Gangloff et al., 1990)
	CDC19#	+/-	+/-			(Boles et al., 1998)
	CIT1	+/+	+/+			(Kim et al., 1986)
	CIT2	+/+	+/+			(Kim et al., 1986)
35	CIT3	+/+				
	DAL7	+/+	+/+	+/+	+/+	(Hartig et al., 1992)
	ENO1	+/+				
	ENO2 ^{\$\$}	+/-	+/-			
40	FBA1*	+/-	+/-			
40	FBP1	+/+	+/+		-/-	(Sedivy and Fraenkel, 1985; Gancedo and Delgado, 1984)
	FUM1	+/+				
	GLK1	+/+				
45	GND1##	+/-	+/-			
	GND2	+/+				
	GPM1	+/-	+/-			
	GPM2	+/+				
	GPM3	+/+				
50	HXK1	+/+				
	HXK2	+/+				
	ICL1	+/+	+/+			(Smith et al., 1996)
	IDH1	+/+	+/+			(Cupp and McAlister-Henn, 1992)
55	IDH2	+/+	+/+			(Cupp and McAlister-Henn, 1992)
	IDP1	+/+	+/+			(Loftus et al., 1994)
	IDP2	+/+	+/+			(Loftus et al., 1994)

				(co	ontinued)	
	Defined Medium	Complete	Minimal	Minimal	Minimal	
	Carbon Source	Glucose	Glucose	Acetate	Ethanol	
5	IDP3	+/+				
5	KGD1	+/+	+/+			(Repetto and Tzagoloff, 1991)
	KGD2	+/+	+/+			(Repetto and Tzagoloff, 1991)
	LPD1	+/+				
	LSC1	+/+		+/+	+/+	(Przybyla-Zawislak et al., 1998)
10	LSC2	+/+		+/+	+/+	(Przybyla-Zawislak et al., 1998)
	MAE1	+/+	+/+		+/+	(Boles et al., 1998)
	MDH1	+/+	+/+	+/-		(McAlister-Henn and Thompson, 1987)
	MDH2	+/+		+/-	+/-	(McAlister-Henn and Thompson, 1987)
15	MDH3	+/+				
15	MLS1	+/+	+/+	+/+	+/+	(Hartig et al., 1992)
	OSM1	+/+				
	PCK1	+/+				
	PDC1	+/+	+/+			(Flikweert et al., 1996)
20	PDC5	+/+	+/+			(Flikweert et al., 1996)
	PDC6	+/+	+/+			(Flikweert et al., 1996)
	PFK1	+/+	+/+			(Clifton and Fraenkel, 1982)
	PFK2	+/+	+/+			(Clifton and Fraenkel, 1982)
25	PGI1* ^{&}	+/-	+/-			(Clifton et al., 1978)
25	PGK1*	+/-	+/-			
	PGM1	+/+	+/+			(Boles et al., 1994)
	PGM2	+/+	+/+			(Boles et al., 1994)
	PYC1	+/+	+/+	+/-	+/-	(Wills and Melham, 1985)
30	PYC2	+/+				
	PYK2	+/+	+/+		+/+	(Boles et al., 1998; McAlister-Henn and Thompson, 1987)
	RKI1	-/-				
	RPE1	+/+				
35	SOL1	+/+				
	SOL2	+/+				
	SOL3	+/+				
	SOL4	+/+				
40	TAL1	+/+	+/+			(Schaaff-Gerstenschläger and Zimmermann, 1993)
	TDH1	+/+				
	TDH2	+/+				
	TDH3	+/+				
45	TKL1	+/+	+/+			(Schaff-Gerstenschläger and Zimmermann, 1993)
	TKL2	+/+				
	TPI1*,\$	+/-				

				(co	ntinued)	
	Defined Medium	Complete	Minimal	Minimal	Minimal	
	Carbon Source	Glucose	Glucose	Acetate	Ethanol	
5	ZWF1	+/+	+/+			(Schaaff Gerstenschläger and Zimmermann, 1993)

+/- Growth/no growth

The isoenyzme Pyk2p is glucose repressed, and cannot sustain growth on glucose.

* Model predicts single deletion mutant to be (highly) growth retarded.

¹⁰ \$ Growth of single deletion mutant is inhibited by glucose.

& Different hypotheses exist for why Pgi1p deficient mutants do not grow on glucose, *e.g.* the pentose phosphate pathway in *S. cerevisiae* is insufficient to support growth and cannot supply the EMP pathway with sufficient amounts of fructose-6-phosphate and glyceraldehydes-3-phosphate (Boles, 1997).

|| The isoenzymes Gpm2p and Gpm3p cannot sustain growth on glucose. They only show residual *in vivo* activity when they are expressed from a foreign promoter (Heinisch et al., 1998).

Gnd1p accounts for 80% of the enzyme activity. A mutant deleted in GND1 accumulates gluconate-6-phosphate, which is toxic to the cell (Schaaff-Gerstenschläger and Miosga, 1997).

\$\$ ENO1 plays central role in gluconeogenesis whereas ENO2 is used in glycolysis (Müller and Entian, 1997).

20 EXAMPLE VIII

15

Large-scale gene deletion analysis in S. cerevisiae

[0141] A large-scale *in silico* evaluation of gene deletions in *S. cerevisiae* was conducted using the genome-scale metabolic model. The effect of 599 single gene deletions on cell viability was simulated *in silico* and compared to published experimental results. In 526 cases (87.8%), the *in silico* results were in agreement with experimental observations when growth on synthetic complete medium was simulated. Viable phenotypes were predicted in 89.4% (496 out of 555) and lethal phenotypes are correctly predicted in 68.2% (30 out of 44) of the cases considered.

- [0142] The failure modes were analyzed on a case-by-case basis for four possible inadequacies of the *in silico* model:
 ³⁰ 1) incomplete media composition; 2) substitutable biomass components; 3) incomplete biochemical information; and 4) missing regulation. This analysis eliminated a number of false predictions and suggested a number of experimentally testable hypotheses. The genome-scale *in silico* model of *S. cerevisiae* can thus be used to systematically reconcile existing data and fill in knowledge gaps about the organism.
- **[0143]** Growth on complete medium was simulated under aerobic condition. Since the composition of a complete medium is usually not known in detail, a synthetic complete medium containing glucose, twenty amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, valine) and purines (adenine and guanine) as well as pyrimidines (cytosine and thymine) was defined for modeling purposes. Furthermore, ammonia, phosphate, and sulphate were supplied. The *in silico* results were initially compared to experimental data from a competitive growth assay (Winzeler
- 40 et al., Science 285:901-906 (1999)) and to available data from the MIPS and SGD databases (Mewes et al., Nucleic Acids Research 30(1):31-34 (2002); Cherry et al., Nucleic Acids Research 26(1):73-79 (1998)). Gene deletions were simulated by constraining the flux through the corresponding reactions to zero and optimizing for growth as previously described (Edwards and Palsson, Proceedings of the National Academy of Sciences 97(10):5528-5533 (2000)). For this analysis, a viable phenotype was defined as a strain that is able to meet all the defined biomass requirements and

thus grow. Single gene deletion mutants that have a reduced growth rate compared to the wild type simulation are referred to as growth retarded mutants.

[0144] The analysis of experimental data was approached in three steps:

- The initial simulation using the synthetic medium described above, referred to as simulation 1.
- ⁵⁰ False predictions of simulation 1 were subsequently examined to determine if the failure was due to incomplete information in the *in silico* model, such as missing reactions, the reversibility of reactions, regulatory events, and missing substrates in the synthetic complete medium. In simulation 2, any such additional information was introduced into the *in silico* model and growth was re-simulated for gene deletion mutants whose *in silico* phenotype was not in agreement with its *in vivo* phenotype.
- ⁵⁵ A third simulation was carried out, in which dead end pathways (i.e. pathways leading to intracellular metabolites that were not further connected into the overall network), were excluded from the analysis (simulation 3).

[0145] The effect of single gene deletions on the viability of *S. cerevisiae* was investigated for each of the 599 single

gene deletion mutants. The in silico results were categorized into four groups:

- 1. True negatives (correctly predicted lethal phenotype);
- 2. False negatives (wrongly predicted lethal phenotype);
- 3. True positives (correctly predicted viable phenotypes);
 - 4. False positives (wrongly predicted viable phenotypes).

[0146] In simulation 1, 509 out of 599 (85%) simulated phenotypes were in agreement with experimental data. The number of growth retarding genes in simulation 1 was counted to be 19, a surprisingly low number. Only one deletion, the deletion of *TPl1*, had a severe impact on the growth rate. Experimentally, a deletion in *TPl1* is lethal (Ciriacy and Breitenbach, J Bacteriol 139(1):152-60 (1979)). *In silico,* a tpi1 mutant could only sustain a specific growth rate of as low as 17% of the wild type. All other growth retarding deletions sustained approximately 99% of wild type growth, with the exception of a deletion of the mitochondrial ATPase that resulted in a specific growth rate of approximately 90% of wild type.

- ¹⁵ **[0147]** Predictions of simulation 1 were evaluated in a detailed manner on a case-by-case basis to determine whether the false predictions could be explained by:
 - 1. Medium composition used for the simulation;
 - 2. The biomass composition used in the simulation;
 - 3. Incomplete biochemical information; and
 - 4. Effects of gene regulation.

[0148] Analysis of the false predictions from simulation 1 based on these possible failure modes resulted in model modifications that led to 526 out of 599 correctly predicted phenotypes (87.8%), i.e. simulation 2.

- 25 [0149] Simulation 3 uncovered some 220 reactions in the reconstructed network that are involved in dead end pathways. Removing these reactions and their corresponding genes from the genome-scale metabolic flux balance model, simulation 3 resulted in 473 out of 530 (89.6%) correctly predicted phenotypes of which 91.4% are true positive and 69.8% are true negative predictions.
- [0150] Table 7 provides a summary of the large-scale evaluation of the effect of *in silico* single gene deletions in *S. cerevisiae* on viability.

				Table 7	
	Simulation	1	2	Genes involved in dead end pathways	3
35	Number of deletion	599	599		530
	Predicted Total	509	526		475
	True positive	481	496	51	445
	True negative	28	30	0	30
40	False positive	63	59	17	42
	False negative	27	14	1	13
	Overall Prediction	85.0%	87.8%		89.6%
45	Positive Prediction	88.4%	89.4%		91.4%
	Negative Prediction	50.9%	68.2%		69.8%

[0151] A comprehensive list of all the genes used in the *in silico* deletion studies and results of the analysis are provided in Table 8. Table 8 is organized according to the categories true negative, false negative, true positive and false positive predictions. Genes highlighted in grey boxes, such as *INO1*, corresponded initially to false predictions (simulation 1); however, evaluation of the false prediction and simulation 2 identified these cases as true predictions. ORFs or genes

in dead end pathways.

55

50

5

20

that are in an open box, such as TRR2 were excluded in simulation 3, as the corresponding reactions catalysed steps

Table 8

5 False Positive

ACS2 AURI BET2 CDC19 CDC21 CDC8 CYRI DED81 DFRI DIM1 DUTI DYSI ENO2 ERG10 ERG13 FADI FMN1 FOLI FOL2 FOL3 GFAI GPMI HEM1 HEM12 HEM13 HEM13 HEM2 HEM3 HEM4 HIP1 HTS1 ILV3 ILV5 KRS1 LCB1 LCB2 MSS4 NAT2 NCP1 NMT1 PCMI PET9 PGS1 PIK1 PMA1 PRO3 QNS1 QR11 RER2 RIB5 SEC59 STT4 TH180 TOR2 TPI TSC10 UGP1 URA6 YDR341C YGL245W

10

False Negative ADE3 ADK1 CHO1 CHO2 DPP1 ERG3 ERG4 ERG5 ERG6 INM1 MET6 OP13 PPT2 YNK1

True Negative

¹⁵ ACCI <u>ADE13</u> CDS1 DPM1 ERG1 ERG7 ERG8 ERG9 ERG11 ERG12 ERG20 ERG25 ERG26 ERG27 FBA1 <u>GLN1</u> GUK1 IDI1 IPP1 MVD1 PGI1 PGK1 PIS1 PMI40 PSA1 RKI1 SAH1 SEC53 TRR1 YDR531W

True Positive

AACI AAC3 AAHI AATI AAT2 ABZI ACOI ACSI ADEI ADEI2 ADEI6 ADEI7 ADE2 ADE4 ADE5 ADE6 ADE7
 ADE8 ADHI ADH2 ADH3 ADH4 ADH5 ADK2 AGPI AGP2 AGP3 ALD2 ALD3 ALD4 ALD5 ALD6 ALP1 ASP1
 ATH1 ATP1 BAP2 BAP3 BATI BAT2 BGL2 BIO2 BIO3 BIO4 BIO5 BNAI CANI CARI CAR2 CAT2 CDA1 CDA2
 CDD1 CEMI CHAI CHSI CHS2 CHS3 CITI CIT2 CIT3 CKII COQ1 COQ2 COQ3 COQ5 COQ6 COXI COXI0
 CPA2 CPTI CRCI CRD1 CSG2 CTAI CTP1 CTT1 CYB2 CYS3 CYS4 DAK1 DAK2 DAL1 DAL2 DAL3 DAL4
 DAL5 DAL7 DCD1 DEGI DICI DIP5 DLD1 DPH3 DPL1 DURI DUR3 ECMI7 ECM3 ECM40 ECTI EKII

ENOI EPTI ERG2 ERG24 ERRI ERR2 EXGI EXG2 FAAI FAA2 FAA3 FAA4 FABI FASI FBP1 FBP26 FCY1 FCY2 FKS1 FKS3 FLX1 FMT1 FOX2 FRDS FUII FUMI FUN63 FURI FUR4 GADI GALI GALI0 GAL2 GAL7 GAP1 GCV1 GCV2 GDH1 GDH2 GDH3 GLC3 GLK1 GLO1 GLO2 GLO2 GLR1 GLT1 GLY1 GN41 GND1 GND

30 GAPI GCV1 GCV2 GDH1 GDH2 GDH3 GLC3 GLK1 GLO1 GLO2 GLO4 GLR1 GLT1 GLY1 GNA1 GND1 GND2 GNP1 GPD1 GPD2 GPH1 GPM2 GPM3 GPX1 GPX2 GSC2 GSH1 GSH2 GSY1 GSY2 GUA1 GUT1 GUT2 HEM14 HIS1 HIS2 HIS3 HIS4 HIS5 HIS6 HIS7 HMG1 HMG2 HMT1 HNM1 HOM2 HOM3 HOM6 HOR2 HPT1 HXK1 HXK2 HXT1 HXT10 HXT11 HXT13 HXT14 HXT15 HXT16 HXT17 HXT2 HXT3 HXT4 HXT5 HXT6 HXT7 HXT8 HXT9 HYR1 ICL1 ICL2 IDH1 IDP1 IDP2 IDP3 ILV1 ILV2 INO1 [PT1] ITR1 ITR2 JEN1 KGD1 KRE2 KTR1 KTR2

- ³⁵ KTR3 KTR4 KTR6 LCB3 LCB4 LCB5 LEUI LEU2 LEU4 LPDI LPPI LSCI LSC2 LYPI LYSI LYSI2 LYS2 LYS20 LYS21 LYS4 LYS9 MAEI MAK3 MAL12 MAL31 MAL32 MDH1 MDH2 MDH3 MELI MEP1 MEP2 MEP3 METI METI0 MET12 MET13 MET14 MET16 MET17 MET2 MET22 MET3 MET7 MHT1 MIRI MISI MLSI MMPI MSEI MSK1 MSR1 MSW1 MTD1 MUP1 MUP3 NATI NDH1 NDH2 NDI1 NHA1 NIT2 NPT1 NTA1 NTH1 NTH2 OAC1
- 40 ODC1 ODC2 ORTI OSMI PADI PCKI PCTI PDAI PDC1 PDC5 PDC6 PDE1 PDE2 PDX3 PFK1 PFK2 PFK26 PFK27 PGMI PGM2 PHA2 PHO8 PHO11 PHO84 PLC1 PMA2 PMP1 PMP2 PMT1 PMT2 PMT3 PMT4 PMT5 PMT6 PNC1 PNP1 POS5 POT1 PPA2 PRM4 PRM5 PRM6 PRO1 PRO2 PRS1 PRS2 PRS3 PRS4 PRS5 PSD1 PSD2 PTR2 PUR5 PUS1 PUS2 PUS4 PUT1 PUT2 PUT4 PYC1 PYC2 PYK2 QPT1 RAM1 RBK1 RHR2 RIB1 RIB4 RIB7 RMA1 RNR1 RNR3 RPE1 SAM1 SAM2 SAM3 SAM4 SCS7 SDH3 SER1 SER2 SER3 SER33 SFA1 SFC1 SHM1
- ⁴⁵ SHM2 SLC1 SOL1 SOL2 SOL3 SOL4 SORI SPE1 SPE2 SPE3 SPE4 SPR1 SRT1 STL1 SUC2 SUL1 SUL2 SUR1 SUR2 TAL1 TAT1 TAT2 TDH1 TDH2 TDH3 THI20 THI21 THI22 TH16 TH17 THM2 THM3 THR1 THR4 TKL1 TKL2 TOR1 TPS1 TPS2 TPS3 TRK1 TRP1 TRP2 TRP3 TRP4 TRP5 TRR2 TSL1 TYR1 UGA1 UGA4 URA1 URA2 URA3 URA4 URA5 URA7 URA8 URA10 URH1 URK1 UTR1 VAP1 VPS34 XPT1 YAT1 YSR3 YUR1 ZWF1 YBL098M YBR006W YBR284W YDL100C YDR111C YEL041W YER053C YFL030W YFR055W YGR012W YGR043C YGR125W
- 50 YBR006W YBR284W YDL100C YDR111C YEL041W YER053C YFL030W YFR055W YGR012W YGR043C YGR125W YGR287C YIL145C YIL167W YJL070C YJL200C YJL216C YJL218W YJR078W YLR089C YLR231C YLR328W YML082W YMR293C

[0152] The following text describes the analysis of the initially false predictions of simulation 1 that were performed, leading to simulation 2 results.

Influence of media composition on simulation results:

[0153] A rather simple synthetic complete medium composition was chosen for simulation 1. The in silico medium contained only glucose, amino acids and nucleotides as the main components. However, complete media often used for experimental purposes, e.g. the YPD medium containing yeast extract and peptone, include many other components,

which are usually unknown.

[0154] False negative predictions: The phenotype of the following deletion mutants: $ecm1\Delta$, $yi|145c\Delta$, $erg2\Delta$, erg24 Δ , fas1 Δ , ura1 Δ , ura2 Δ , ura3 Δ and ura4 Δ were falsely predicted to be lethal in simulation 1. In simulation 2, an additional supplement of specific substrate could rescue a viable phenotype in silico and as the supplemented substrate

10 may be assumed to be part of a complex medium, the predictions were counted as true positive predictions in simulation 2. For example, both Ecm1 and Yil145c are involved in pantothenate synthesis. Ecm1 catalyses the formation of dehydropantoate from 2-oxovalerate, whereas Yil145c catalyses the final step in pantothenate synthesis from β -alanine and panthoate. In vivo, $ecm1\Delta$, and $vil145c\Delta$ mutants require pantothenate for growth (White et al., J Biol Chem 276(14): 10794-10800 (2001)). By supplying pantothenate to the synthetic complete medium in silico, the model predicted a 15

viable phenotype and the growth rate was similar to in silico wild type S. cerevisiae. [0155] Similarly other false predictions could be traced to medium composition:

 Mutants deleted in ERG2 or ERG24 are auxotroph for ergosterol (Silve et al., Mol Cell Biol 16(6): 2719-2727 (1996); Bourot and Karst, Gene 165(1): 97-102 (1995)). Simulating growth on a synthetic complete medium supplemented with ergosterol allowed the model to accurately predict viable phenotypes.

• A deletion of FAS1 (fatty acid synthase) is lethal unless appropriate amounts of fatty acids are provided, and by addition of fatty acids to the medium, a viable phenotype was predicted.

• Strains deleted in URA1, URA2, URA3, or URA4 are auxotroph for uracil (Lacroute, J Bacteriol 95(3): 824-832 (1968)), and by supplying uracil in the medium the model predicted growth.

25

30

20

5

[0156] The above cases were initially false negative predictions, and simulation 2 demonstrated that these cases were predicted as true positive by adjusting the medium composition.

[0157] False positive predictions: Simulation 1 also contained false positive predictions, which may be considered as true negatives or as true positives. Contrary to experimental results from a competitive growth assay (Winzeler et al., Science 285: 901-906 (1999)), mutants deleted in ADE13 are viable in vivo on a rich medium supplemented with low concentrations of adenine, but grow poorly (Guetsova et al., Genetics 147(2): 383-397 (1997)). Adenine was supplied in the in silico synthetic complete medium. By not supplying adenine, a lethal mutant was predicted. Therefore, this case was considered as a true negative prediction.

[0158] A similar case was the deletion of GLN1, which codes a glutamine synthase, the only pathway to produce 35 glutamine from ammonia. Therefore, gln1 Δ mutants are glutamine auxotroph (Mitchell, Genetics 111(2):243-58 (1985)). In a complex medium, glutamine is likely to be deaminated to glutamate, particularly during autoclaving. Complex media are therefore likely to contain only trace amounts of glutamine, and gln1 mutants are therefore not viable. However, in silico, glutamine was supplied in the complete synthetic medium and growth was predicted. By not supplying glutamine to the synthetic complete medium, the model predicted a lethal phenotype resulting in a true negative prediction.

40 [0159] IIv3 and IIv5 are both involved in branched amino acid metabolism. One may expect that a deletion of ILV3 or ILV5 could be rescued with the supply of the corresponding amino acids. For this, the model predicted growth. However, contradictory experimental data exists. In a competitive growth assay lethal phenotypes were reported. However, earlier experiments showed that *ilv3* and *ilv5* mutants could sustain growth when isoleucine and valine were supplemented to the medium, as for the complete synthetic medium. Hence, these two cases were considered to be true positive

45 predictions.

Influence of the definition of the biomass equation

[0160] The genome-scale metabolic model contains the growth requirements in the form of biomass composition. 50 Growth is defined as a drain of building blocks, such as amino acids, lipids, nucleotides, carbohydrates, etc., to form biomass. The number of biomass components is 44 (see Table 1). These building blocks are essential for the formation of cellular components and they have been used as a fixed requirement for growth in the in silico simulations. Thus, each biomass component had to be produced by the metabolic network otherwise the organism could not grow in silico. In vivo, one often finds deletion mutants that are not able to produce the original biomass precursor or building block;

55 however, other metabolites can replace these initial precursors or building blocks. Hence, for a number of strains a wrong phenotype was predicted in silico for this reason.

[0161] Phosphatidylcholine is synthesized by three methylation steps from phosphatidylethanolamine (Dickinson and Schweizer, The metabolism and molecular physiology of Saccharomyces cerevisiae Taylor & Francis, London : Phila-

delphia (1999)). The first step in the synthesis of phosphatidylcholine from phosphatidylethanolamine is catalyzed by a methyltransferase encoded by *CHO2* and the latter two steps are catalyzed by phospholipid methyltransferase encoded by *OPI3*. Strains deleted in *CHO2* or *OPI3* are viable (Summers et al., Genetics 120(4): 909-922 (1988); Daum et al., Yeast 14(16): 1471-1510 (1998)); however, either null mutant accumulates mono- and dimethylated phosphatidyleth-

- ⁵ anolamine under standard conditions and display greatly reduced levels of phosphatidylcholine (Daum et al., Yeast 15 (7): 601-614 (1999)). Hence, phosphatidylethanolamine can replace phosphatidylcholine as a biomass component. *In silico*, phosphatidylcholine is required for the formation of biomass. One may further speculate on whether an alternative pathway for the synthesis of phosphatidylcholine is missing in the model, since Daum et al., <u>supra</u> (1999) detected small amounts of phosphatidylcholine in *cho2*∆ mutants. An alternative pathway, however, was not included in the *in silico* and *in silico*.
- 10 model.

20

[0162] Deletions in the ergosterol biosynthetic pathways of *ERG3, ERG4, ERG5 or ERG6* lead *in vivo* to viable phenotypes. The former two strains accumulate ergosta-8,22,24 (28)-trien-3-beta-ol (Bard et al., Lipids 12(8): 645-654 (1977); Zweytick et al., FEBS Lett 470(1): 83-87 (2000)), whereas the latter two accumulate ergosta-5,8-dien-3beta-ol (Hata et al., J Biochem (Tokyo) 94(2): 501-510 (1983)), or zymosterol and smaller amounts of cholesta-5,7,24-trien-3-beta-ol and cholesta-5,7,22,24-trien-3-beta-ol (Bard et al., <u>Supra</u> (1977); Parks et al., Crit Rev Biochem Mol Biol 34(6):

¹⁵ beta-ol and cholesta-5,7,22,24-trien-3-beta-ol (Bard et al., <u>supra</u> (1977); Parks et al., Crit Rev Biochem Mol Biol 34(6): 399-404 (1999)), respectively, components that were not included in the biomass equations. **17** The the time of the tim

[0163] The deletion of the following three genes led to false positive predictions: *RER2, SEC59* and *QIR1*. The former two are involved in glycoprotein synthesis and the latter is involved in chitin metabolism. Both chitin and glycoprotein are biomass components. However, for simplification, neither of the compounds was considered in the biomass equation. Inclusion of these compounds into the biomass equation may improve the prediction results.

Incomplete biochemical information

[0164] For a number of gene deletion mutants (*inm1*Δ, *met6*Δ, *ynk1*Δ, *pho84*Δ. *psd2*Δ, *tps2*Δ), simulation 1 produced false predictions that could not be explained by any of the two reasons discussed above nor by missing gene regulation (see below). Further investigation of the metabolic network including an extended investigation of biochemical data from the published literature showed that some information was missing initially in the *in silico* model or information was simply not available.

- **[0165]** Inm1 catalyses the ultimate step in inositol biosynthesis from inositol 1-phosphate to inositol (Murray and Greenberg, Mol Microbiol 36(3): 651-661 (2000)). Upon deleting *INM1*, the model predicted a lethal phenotype in contrary to the experimentally observed viable phenotype. An isoenzyme encoded by *IMP2* was initially not included in the model, which may take over the function of *INM1* and this addition would have led to a correct prediction. However, an *inm1* $\Delta imp2\Delta$ *in vivo* double deletion mutant is not inositol auxotroph (Lopez et al., Mol Microbiol 31(4): 1255-1264 (1999)). Hence, it appears that alternative routes for the production of inositol probably exist. Due to the lack of comprehensive
- ³⁵ biochemical knowledge, effects on inositol biosynthesis and the viability of strains deleted in inositol biosynthetic genes could not be explained.

[0166] *Met6*∆ mutants are methionine auxotroph (Thomas and Surdin-Kerjan, Microbiol Mol Biol Rev 61(4):503-532 (1997)), and growth may be sustained by the supply of methionine or S-adenosyl-L-methionine. *In silico* growth was supported neither by the addition of methionine nor by the addition of S-adenosyl-L-methionine. Investigation of the

- 40 metabolic network showed that deleting MET6 corresponds to deleting the only possibility for using 5-methyltetrahydrofolate. Hence, the model appears to be missing certain information. A possibility may be that the carbon transfer is carried out using 5-methyltetrahydropteroyltri-L-glutamate instead of 5-methyltetrahydrofolate. A complete pathway for such a by-pass was not included in the genome-scale model.
- [0167] The function of Ynk1p is the synthesis of nucleoside triphosphates from nucleoside diphosphates. YNK1∆ mutants have a 10-fold reduced Ynk1p activity (Fukuchi et al., Genes 129(1):141-146 (1993)), though this implies that there may either be an alternative route for the production of nucleoside triphosphates or a second nucleoside diphosphate kinase, even though there is no ORF in the genome with properties that indicates that there is a second nucleoside diphosphate kinase. An alternative route for the production of nucleoside triphosphate is currently unknown (Dickinson et al., supra (1999)), and was therefore not included in the model, hence a false negative prediction.
- 50 [0168] PHO84 codes for a high affinity phosphate transporter that was the only phosphate transporter included in the model. However, at least two other phosphate transporters exist, a second high affinity and Na⁺ dependent transporter Pho89 and a low affinity transporter (Persson et al., Biochim Biophys Acta 1422(3): 255-72 (1999)). Due to exclusion of these transporters a lethal *pho84* mutant was predicted. Including *PHO89* and a third phosphate transporter, the model predicted a viable deletion mutant.
- ⁵⁵ **[0169]** In a null mutant of *PSD2*, phosphatidylethanolamine synthesis from phosphatidylserine is at the location of Psd1 (Trotter et al., J Biol Chem 273(21): 13189-13196 (1998)), which is located in the mitochondria. It has been postulated that phosphatidylserine can be transported into the mitochondria and phosphatidylserine can be transported out of the mitochondria. However, transport of phosphatidylethanolamine and phosphatidylserine over the

mitochondrial membrane was initially not included in the model. Addition of these transporters to the genome-scale flux balance model allowed in silico growth of a PSD2 deleted mutant.

[0170] Strains deleted in TPS2 have been shown to be viable when grown on glucose (Bell et al., J Biol Chem 273 (50): 33311-33319 (1998)). The reaction carried out by Tps2p was modeled as essential and as the final step in trehalose

5 synthesis from trehalose 6-phosphate. However, the in vivo viable phenotype shows that other enzymes can take over the hydrolysis of trehalose 6-phosphate to trehalose from Tps2p (Bell et al., supra (1998)). The corresponding gene(s) are currently unknown. Inclusion of a second reaction catalyzing the final step of trehalose formation allowed for the simulation of a viable phenotype.

[0171] Strains deleted in ADE3 (C1-tetrahydrofolate synthase) and ADK1 (Adenylate kinase) could not be readily 10 explained. It is possible that alternative pathways or isoenzyme-coding genes for both functions exist among the many orphan genes still present in the S. cerevisiae.

[0172] The reconstruction process led to some incompletely modeled parts of metabolism. Hence, a number of false positive predictions may be the result of gaps (missing reactions) within pathways or between pathways, which prevent the reactions to completely connect to the overall pathway structure of the reconstructed model. Examples include:

15

20

40

Sphingolipid metabolism. It has not yet been fully elucidated and therefore was not included completely into the model nor were sphingolipids considered as building blocks in the biomass equation.

- Formation of tRNA. During the reconstruction process some genes were included responsible for the synthesis of tRNA (DED81, HTS1, KRS1, YDR41C, YGL245W).
- However, pathways of tRNA synthesis were not fully included.

 Heme synthesis was considered in the reconstructed model (HEM1, HEM12, HEM13, HEM15, HEM2, HEM3, HEM4). However no reaction was included that metabolized heme in the model.

• Hence, the incomplete structure of metabolic network may be a reason for false prediction of the phenotype of aur1 Δ , lcb1 Δ , lcb2 Δ , tsc10 Δ , ded81 Δ , hts1 Δ , krs1 Δ , ydr41c Δ , ygl245w Δ , hem1 Δ , hem12 Δ , hem13 Δ , hem15 Δ ,

- 25 hem2\(\Left), hem3\(\Left), and hem4\(\Left) deletion mutants. Reaction reversibility. The CHO1 gene encodes a phosphatidylserine synthase, an integral membrane protein that catalyses a central step in cellular phospholipid biosynthesis. In vivo, a deletion in CHO1 is viable (Winzeler et al., Science 285: 901-906 (1999)). However, mutants are auxotrophic for choline or ethanolamine on media containing glucose as the carbon source (Birner et al., Mol Biol Cell 12(4): 997-1007 (2001)).
- 30 Nevertheless, the model did not predict growth when choline and/or ethanolamine were supplied. Further investigation of the genome-scale model showed that this might be due to defining reactions leading from phosphatidylserine to phosphatidylcholine via phosphatidylethanolamine exclusively irreversible. By allowing these reactions to be reversible, either supply of choline and ethanolamine could sustain growth in silico.

35 Gene Regulation

[0173] Whereas many false negative predictions could be explained by either simulation of growth using the incorrect in silico synthetic complete medium or by initially missing information in the model, many false positives may be explained by in vivo catabolite expression, product inhibition effects or by repressed isoenzymes, as kinetic and other regulatory constraints were not included in the genome-scale metabolic model.

[0174] A total of 17 false positive predictions could be related to regulatory events. For a deletion of CDC19, ACS2 or ENO2 one may usually expect that the corresponding isoenzymes may take over the function of the deleted genes. However, the corresponding genes, either PYK2, ACS1 or ENO1, respectively, are subject to catabolite repression (Boles et al., J Bacteriol 179(9): 2987-2993 (1997); van den Berg and Steensma, Eur J Biochem 231(3): 704-713 (1995);

- 45 Zimmerman et al., Yeast sugar metabolism : biochemistry, genetics, biotechnology, and applications Technomic Pub., Lancaster, PA (1997)). A deletion of GPM1 should be replaced by either of the two other isoenzymes, Gpm2 and Gpm3; however for the two latter corresponding gene products usually no activity is found (Heinisch et al., Yeast 14(3): 203-13 (1998)).
- [0175] Falsely predicted growth phenotypes can often be explained when the corresponding deleted metabolic genes 50 are involved in several other cell functions, such as cell cycle, cell fate, communication, cell wall integrity, etc. The following genes whose deletions yielded false positive predictions were found to have functions other than just metabolic function: ACS2, BET2, CDC19, CDC8, CYR1, DIM1, ENO2, FAD1, GFA1, GPM1, HIP1, MSS4, PET9, PIK1, PMA1, STT4, TOR2. Indeed, a statistical analysis of the MIPS functional catalogue (http://mips.gsf.de/proj/yeast/) showed that in general it was more likely to have a false prediction when the genes that had multiple functions were involved in 55
- cellular communication, cell cycling and DNA processing or control of cellular organization.

Table 9. Reference list for Table 2

[0176]

10

30

45

- ⁵ Boles, E., Liebetrau, W., Hofmann, M. & Zimmermann, F.K. A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur. J. Biochem. 220, 83-96 (1994).
 - Boles, E. Yeast sugar metabolism. Zimmermann, F.K. & Entian, K.-D. (eds.), pp. 81-96(Technomic Publishing CO., INC., Lancaster, 1997).
 - Boles, E., Jong-Gubbels, P. & Pronk, J.T. Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J. Bacteriol. 180, 2875-2882 (1998).
- Clifton,D., Weinstock,S.B. & Fraenkel,D.G. Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88, 1-11 (1978).
 - Clifton, D. & Fraenkel, D.G. Mutant studies of yeast phosphofructokinase. Biochemistry 21, 1935-1942 (1982).
- Cupp, J.R. & McAlister-Henn, L. Cloning and Characterization of the gene encoding the IDH1 subunit of NAD(+)-de pendent isocitrate dehydrogenase from Saccharomyces cerevisiae. J. Biol. Chem. 267, 16417-16423 (1992).

Flikweert,M.T. et al. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12, 247-257 (1996).

- 25 Gancedo,C. & Delgado,M.A. Isolation and characterization of a mutant from Saccharomyces cerevisiae lacking fructose 1,6-bisphosphatase. Eur. J. Biochem. 139,651-655 (1984).
 - Gangloff,S.P., Marguet,D. & Lauquin,G.J. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol 10, 3551-3561 (1990).
 - Hartig,A. et al. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res. 20, 5677-5686 (1992).
- Heinisch, J.J., Muller, S., Schluter, E., Jacoby, J. & Rodicio, R. Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase. Yeast 14, 203-213 (1998).
 - Kim,K.S., Rosenkrantz,M.S. & Guarente,L. Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol. Cell Biol. 6, 1936-1942 (1986).
- ⁴⁰ Loftus,T.M., Hall,L.V., Anderson,S.L. & McAlister-Henn,L. Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase. Biochemistry 33, 9661-9667 (1994).
 - McAlister-Henn,L. & Thompson,L.M. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J. Bacteriol. 169, 5157-5166 (1987).
 - Muller,S. & Entian,K.-D. Yeast sugar metabolism. Zimmermann,F.K. & Entian,K.-D. (eds.), pp. 157-170 (Technomic Publishing CO.,INC., Lancaster,1997).
- Ozcan,S., Freidel,K., Leuker,A. & Ciriacy,M. Glucose uptake and catabolite repression in dominant HTR1 mutants
 of Saccharomyces cerevisiae. J. Bacteriol. 175, 5520-5528 (1993).
 - Przybyla-Zawislak, B., Dennis, R.A., Zakharkin, S.O. & McCammon, M.T. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. Eur. J Biochem. 258, 736-743 (1998).
- ⁵⁵ Repetto,B. & Tzagoloff,A. In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex.
 Mol. Cell Biol. 11, 3931-3939 (1991).

Schaaff-Gerstenschlager, I. & Zimmermann, F.K. Pentose-phosphate pathway in Saccharomyces cerevisiae: anal-

ysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. Curr. Genet. 24, 373-376 (1993).

Schaaff-Gerstenschlager, I. & Miosga, T. Yeast sugar metabolism. Zimmermann, F.K. & Entian, K.-D. (eds.), pp. 271-284 (Technomic Publishing CO., INC., Lancaster, 1997).

Sedivy, J.M. & Fraenkel, D.G. Fructose bisphosphatase of Saccharomyces cerevisiae. Cloning, disruption and regulation of the FBP1 structural gene. J. Mol. Biol. 186, 307-319 (1985).

¹⁰ Smith,V., Chou,K.N., Lashkari,D., Botstein,D. & Brown,P.O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069-2074 (1996).

Swartz, J. A PURE approach to constructive biology. Nat. Biotechnol. 19, 732-733 (2001).

¹⁵ Wills,C. & Melham,T. Pyruvate carboxylase deficiency in yeast: a mutant affecting the interaction between the glyoxylate and Krebs cycles. Arch. Biochem. Biophys. 236, 782-791 (1985).

[0177] Throughout this application various publications have been referenced. The disclosures of these publications in their entireties are hereby incorporated by reference in this application in order to more fully describe the state of the art to which this invention pertains.

[0178] Although the invention has been described with reference to the examples provided above, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is only limited by the claims.

Aspects and features of the present disclosure are set out in the following numbered clauses which contain the subject matter of the claims of the parent application as filed.

20

30

50

55

1. A computer readable medium or media, comprising:

a) a data structure relating a plurality of saccharomyces cerevisiae reactants to a plurality of Saccharomyces cerevisiae reactions, wherein each of the said Saccharomyces cerevisiae reactions comprises a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product, wherein at lease one of said Saccharomyces cerevisiae reactions is annotated to indicate an associated gene;

b) a gene database comprising information characterising said associated gene;

- c) a constraint set for said plurality of *Saccharomyces cerevisiae* reactions, and
 d) commands for determining at least one flux distribution that minimises or maximises an objective function wherein said constraint set is applied to said data representation, wherein said at least one flux distribution is predictive of a *Saccharomyces cerevisiae* physiological function.
- 40 2. The computer readable medium or media of clause 1, wherein at least one reactant in said plurality of Saccharomyces cerevisiae reactants or at least one reaction in said plurality of Saccharomyces cerevisiae reactions is annotated with an assignment to a subsystem or compartment.

3. The computer readable medium or media of clause 1, wherein said plurality of reactions comprises at least one reaction from a peripheral metabolic pathway.

4. The computer readable medium or media of clause 3, wherein said peripheral metabolic pathway is selected from the group consisting of an amino acid biosynthesis, amino acid degradation, purine biosynthesis, pyrimide biosynthesis, lipid biosynthesis, fatty acid metabolism, cofactor biosynthesis, cell wall metabolism and transport processes.

5. The computer readable medium or media of clause 1, wherein said *Saccharomyces cerevisiae* physiological function is selected from the group consisting of growth, energy production, redox equivalent production, biomass production, production of biomass precursors, production of protein, production of an amino acid, production of a purine, production of a pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, production of a cell wall component, transport of a metabolite, consumption of a carbon, nitrogen, sulphur, phosphate, hydrogen or oxygen.

6. The computer readable medium or media of clause 1, wherein *Saccharomyces cerevisiae* physiological function is selected from the group consisting of degradation of a protein, degradation of an amino acid, degradation of a purine, degradation of a pyrimidine, degradation of a lipid, degradation of a fatty acid, degradation of a cofactor and degradation of a cell wall component.

5

7. The computer readable or media of clause 1, wherein said data structure comprises a set of linear algebraic equations.

10

8. The computer readable or media of clause 1, wherein said data structure comprises a matrix.

- 9. The computer readable or media of clause 1, wherein said commands comprise an optimisation problem.
- 10. The computer readable or media of clause 1, wherein said commands comprise a linear program.
- ¹⁵ 11. The computer readable medium or media of clause 2, wherein a first substrate or product in said plurality of *Saccharomyces cerevisiae* reactions is assigned to a first compartment and a second substrate or product in said plurality of *Saccharomyces cerevisiae* reactions is assigned to a second compartment.
- 12. The computer readable medium or media of clause 1, wherein a plurality of said *Saccharomyces cerevisiae* reactions is annotated to indicate a plurality of associated genes and wherein said gene database comprises information characterising said plurality of associated genes.
 - 13. A computer readable medium or media, comprising:
- a) a data structure relating a plurality of Saccharomyces cerevisiae reactants to a plurality of Saccharomyces cerevisiae reactions comprises a reactant identified as a substrate of a reaction, a reactant identified as a product of a reaction and a stoichimetric coefficient relating said substrate and said product;
 - b) a constraint set for said plurality of Saccharomyces cerevisiae reactions, and
- 30 c) commands for determining at least on flux distribution that minimises or maximises an objective function when said constraint set is applied to said data representation, wherein said at least one flux distribution is predictive of *Saccharomyces cerevisiae* growth.
 - 14. A method of predicting a Saccharomyces cerevisiae physiological function , comprising:
- 35

40

45

a) providing a data structure relating a plurality of *Saccharomyces cerevisiae* reactants to plurality of reactions, wherein each of said *Saccharomyces cerevisiae* reactions comprises a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product, wherein at least one of said *Saccharomyces cerevisiae* reactions is annotated to indicate an associated gene;

- b) providing a constraint set for said plurality of Saccharomyces cerevisiae reactions;
- c) providing an objective function, and

d) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, thereby predicating a *Saccharomyces cerevisiae* physiological function related to said gene.

15. The method of clause 14, wherein said plurality of *Saccharomyces cerevisiae* reactions comprises at least one reaction from a peripheral metabolic pathway.

- ⁵⁰ 16. The method of clause 14, wherein said peripheral metabolic pathway is selected from the group consisting of amino acid biosynthesis, amino acid degradation, purine biosynthesis, pyrimide biosynthesis, lipid biosynthesis, fatty acid metabolism, cofactor biosynthesis, cell wall metabolism and transport processes.
- 17. The method of clause 14, wherein said *Saccharomyces cerevisiae* physiological function is selected from the group consisting of growth, energy production, redox equivalent production, biomass production, production of biomass precursors, production of a protein, production of an amino acid, production of a purine, production of a pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, production of a cell wall component, transport of a metabolite, consumption of a carbon, nitrogen, sulphur, phosphate, hydrogen or oxygen.

18. The method of clause 14, wherein said *Saccharomyces cerevisiae* physiological function is selected from the group consisting of glycolysis, the TCA cycle, pentose phosphate pathway, respiration, biosynthesis of an amino acid, degradation of an amino acid, biosynthesis of a purine, biosynthesis of a pyrimidine, biosynthesis of a lipid, metabolism of a fatty acid, biosynthesis of a cofactor, metabolism of a cell wall component, transport of a metabolite and metabolism of a carbon source, nitrogen source, oxygen source, phosphate source, hydrogen source or sulphur source.

19. The method of clause 14, wherein said data structure comprises a set of linear algebraic equations.

10 20. The method of clause 14, wherein said data structure comprises a matrix.

- 21. The method of clause 14, wherein said flux distribution is determined by linear pro gramming.
- 22. The method of clause 14, further comprising:
 - e) providing a modified data structure, wherein said modified data structure comprises at least one added reaction, compared to the data structure of part (a), and

f) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applies to said modified data structure, thereby predicting a *Saccharomyces cerevisiae* physiological function.

23. The method of clause 22, further comprising identifying at least one participant in said at least one added reaction.

24. The method of clause 23, wherein said identifying at least one participant comprises associating a *Saccharomyces cerevisiae* protein with said at least one reaction.

25. The method of clause 24, further comprising identifying at least one gene that encodes said protein.

- 26. The method of clause 23, further comprising identifying at least one compound that alters the activity or amount of said at least one participant, thereby identifying a candidate drug or agent that alters a *Saccharomyces cerevisiae* physiological function.
 - 27. The method of clause 14, further comprising:
- e) providing a modified data structure, wherein said modified data structure lacks at least one reaction compounded to the data structure of part (a), and
 f) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said modified data structure, thereby predicting a *Saccharomyces cerevisiae* physiological function.

40

5

15

20

28. The method of clause 27, further comprising identifying at least one participant in said at least one reaction.

29. The method of clause 28, wherein said identifying at least one participant comprises associating a *Saccharomyces cerevisiae* protein with said at least one reaction.

45

30. The method of clause 29, further comprising identifying at least one gene that encodes said protein that performs said at least one reaction.

- 31. The method of clause 28, further comprising identifying at least one compound that alters the activity or amount
 of said at least one participant, thereby identifying a candidate drug or agent that alters a *Saccharomyces cerevisiae* physiological function.
 - 32. The method of clause 14, further comprising:
- e) providing a modified constraint set, wherein said modified constraint set comprises a changed constraint for at least one reaction compared to the constraint for said at least one reaction in the data structure of part (a), and
 f) determining at least one flux distribution that minimises or maximises said objective function when said modified constraint set is applied to said data structure, thereby predicating a *Saccharomyces cerevisiae* phys-

iological function.

- 33. The method of clause 32, further comprising identifying at least one participant in said at least one reaction.
- 5 34. The method of clause 33, wherein said identifying at least one participant comprises associating a *Saccharomyces cerevisiae* protein with said at least one reaction.
 - 35. The method of clause 34, further comprising identifying at least one gene that encodes said protein.
- 10 36. The method of clause 33, further comprising identifying at least one compound that alters the activity or amount of said at least one participate, thereby identifying a candidate drug or agent that alters a *Saccharomyces cerevisiae* physiological function.
- 37. The method of clause 14, further comprising providing a gene database relating one or more reactions in said data structure with one or more genes or proteins in *Saccharomyces cerevisiae*.
 - 38. A method of predicting Saccharomyces cerevisiae growth, comprising;
- a) providing a data structure relating a plurality of Saccharomyces cerevisiae reactants to plurality of Saccha *romyces cerevisiae* reactions, wherein each of said Saccharomyces cerevisiae reactions comprises a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product;
 - b) providing a constraint set for said plurality of Saccharomyces cerevisiae reactions;
 - c) providing an objective function, and
- d) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, thereby predicting *Saccharomyces cerevisiae* growth.

39. A method for making a data structure relating a plurality of *Saccharomyces cerevisiae* reactants to plurality of *Saccharomyces cerevisiae* reactions in a computer readable medium or media, comprising:

- a) identifying a plurality of *Saccharomyces cerevisiae* reactions and a plurality of *Saccharomyces cerevisiae* reactants that are substrates and products of said *Saccharomyces cerevisiae* reactions;
- b) relating said plurality of *Saccharomyces cerevisiae* reactants to said plurality of *Saccharomyces cerevisiae* reactions in a data structure, wherein each of the said *Saccharomyces cerevisiae* reactions comprises a reactant
 identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product;
 c) determining a constraint set for said plurality of *Saccharomyces cerevisiae* reactions;
 - d) providing a objective function;

e) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, and

- 40 f) if said least one flux distribution is not predictive of a Saccharomyces cerevisiae physiological function, then adding a reaction to or deleting a reaction from said data structure and repeating step (e), if said at least one flux distribution is predictive of a Saccharomyces cerevisiae physiological function, then storing said data structure is in a computer readable medium or media.
- 45 40. The method of clause 39, wherein a reaction in said data structure is identified from an annotated genome.

41. The method of clause 40, further comprising storing said reaction that is identified from an annotated genome in a gene database.

50 42. The method of clause 39, further comprising annotation a reaction in said data structure.

43. The method of clause 42, wherein said annotation is selected from the group consisting of assignment of a gene, assignment of a protein, assignment of a subsystem, assignment of a confidence rating, reference to a genome annotation information and reference to a publication.

55

30

44. The method of clause 39, wherein step (b) further comprises identifying an unbalanced reaction in said data structure and adding a reaction to said data structure, thereby changing said unbalanced reaction to a balanced reaction.

45. The method of clause 39, wherein said adding a reaction comprises adding a reaction selected from the group consisting of an intra-system reaction, an exchange reaction, a reaction from a peripheral metabolic pathway, reaction from a central metabolic pathway, a gene associated reaction and a non-gene associated reaction.

- ⁵ 46. The method of clause 45, wherein said peripheral metabolic pathway is selected from the group consisting of amino acid biosynthesis, amino acid degradation, purine biosynthesis, pyrimidine biosynthesis, lipid biosynthesis fatty acid metabolism, cofactor biosynthesis, cell wall metabolism and transport processes.
- 47. The method of clause 39, wherein said *Saccharomyces cerevisiae* physiological function is selected from the from group consisting of growth, energy production, redox equivalent production, biomass production, production of biomass precursors, production of a protein, production of an amino acid, production of a purine, production of a pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, production of a cell wall component, transport of a metabolite, development, intercellular signalling, consumption of carbon, nitrogen, sulphur, phosphate, hydrogen or oxygen.
- 15

48. The method of clause 39, wherein said *Saccharomyces cerevisiae* physiological function is selected from the group consisting of degradation of an amino acid, degradation of a purine, degradation of a pyrimidine, degradation of a lipid, degradation of a fatty acid, degradation of a cofactor and degradation of a cell wall component.

- 49. The method of clause 39, wherein said data structure comprises a set of linear algebraic equations.
 - 50. The method of clause 39, wherein said data structure comprises a matrix
- 25

30

51. The method of clause 39, wherein said flux distribution is determined by linear programming.

52. A data structure relating a plurality of *Saccharomyces cerevisiae* reactants, to a plurality of *Saccharomyces cerevisiae* reactions wherein said data structure is produced by a process comprising:

a) identifying a plurality of *Saccharomyces cerevisiae* reactions and a plurality of *Saccharomyces cerevisiae* reactants that are substrates and products of said *Saccharomyces cerevisiae* reactions;

b) relating said plurality of Saccharomyces cerevisiae reactants to said plurality of Saccharomyces cerevisiae reactions in a data structure, wherein each of said Saccharomyces cerevisiae reactions comprises a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product;

- 35 c) determining a constraint set for said plurality of *Saccharomyces cerevisiae* reactions;
 - d) providing an objective function;

e) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, and

f) if said at least one flux distribution is not predictive of Saccharomyces cerevisiae physiology, then adding a reaction to or deleting a reaction from said data structure and repeating step (e), if said at least one flux distribution is predictive of Saccharomyces cerevisiae physiology, then storing said data structure in a computer readable medium or media.

45 Claims

50

- **1.** A method for predicting a yeast physiological function, comprising:
 - (a) providing a data structure relating a plurality of yeast reactants to a plurality of reactions, wherein each of said yeast reactions comprises a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product, wherein at least one of said yeast reactions is annotated to indicate an associated gene;
 - (b) providing a constraint set for said plurality of yeast reactions;
 - (c) providing an objective function, and
- (d) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, thereby predicting a yeast physiological function related to said gene.

- 2. The method of claim 1, wherein said plurality of yeast reactions comprises at least one reaction from a peripheral metabolic pathway, optionally wherein said peripheral metabolic pathway is selected from the group consisting of amino acid biosynthesis, amino acid degradation, purine biosynthesis, pyrimidine biosynthesis, lipid biosynthesis, fatty acid metabolism, cofactor biosynthesis, cell wall metabolism and transport processes.
- 5

10

- 3. The method of claim 2, wherein said yeast physiological function is selected from the group consisting of growth, energy production, redox equivalent production, biomass production, production of biomass precursors, production of a protein, production of an amino acid, production of a purine, production of a pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, production of a cell wall component, transport of a metabolite, consumption of a carbon, nitrogen, sulfur, phosphate, hydrogen or oxygen, glycolysis, the TCA cycle, pentose phosphate pathway, respiration, biosynthesis of an amino acid, degradation of an amino acid, biosynthesis of a purine, biosynthesis of a pyrimidine, biosynthesis of a lipid, metabolism of a carbon source, nitrogen source, oxygen source, phosphate source, hydrogen source or sulfur source.
- 15
- 4. The method of claim 1, wherein said data structure comprises a set of linear algebraic equations, or a matrix, and/or wherein said flux distribution is determined by linear programming.
- 5. The method of claim 1, further comprising:
- 20

25

(e) providing a modified data structure, wherein said modified data structure comprises at least one added reaction, or lacks at least one reaction compared to the data structure of part (a), and
(f) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applies to said modified data structure, thereby predicting a yeast physiological function.

- 6. The method of claim 5, further comprising identifying at least one participant in said at least one added reaction or at least one reaction, optionally wherein said identifying at least one participant comprises associating a yeast protein with said at least one reaction, and optionally further comprising identifying at least one gene that encodes said protein that performs said at least one reaction.
- 30

35

7. The method of claim 1, further comprising:

 (e) providing a modified constraint set, wherein said modified constraint set comprises a changed constraint for at least one reaction compared to the constraint for said at least one reaction in the data structure of part (a), and
 (f) determining at least one flux distribution that minimises or maximises said objective function when said modified constraint set is applied to said data structure, thereby predicting a yeast physiological function.

- 8. The method of claim 7, further comprising identifying at least one participant in said at least one reaction.
- **9.** The method of claim 6 or 8, wherein said identifying at least one participant comprises associating a yeast protein with said at least one reaction, and optionally further comprising identifying at least one gene that encodes said protein.
 - **10.** The method of claim 6 or 8, further comprising identifying at least one compound that alters the activity or amount of said at least one participant, thereby identifying a candidate drug or agent that alters a yeast physiological function.
- 45

50

- **11.** The method of claim 1, further comprising providing a gene database relating one or more reactions in said data structure with one or more genes or proteins in yeast.
- **12.** A method for making a data structure relating a plurality of yeast reactants to plurality of yeast reactions in a computer readable medium or media, comprising:

(a) identifying a plurality of yeast reactions and a plurality of yeast reactants that are substrates and products of said yeast reactions;

(b) relating said plurality of yeast reactants to said plurality of yeast reactions in a data structure, wherein each
 of the said yeast reactions comprises a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product;

(c) determining a constraint set for said plurality of yeast reactions;

(d) providing a objective function;

(e) determining at least one flux distribution that minimises or maximises said objective function when said constraint set is applied to said data structure, and

(f) if said at least one flux distribution is not predictive of a yeast physiological function, then adding a reaction to or deleting a reaction from said data structure and repeating step (e), if said at least one flux distribution is predictive of a yeast physiological function, then storing said data structure is in a computer readable medium or media.

13. The method of claim 12, wherein

10 i) a reaction in said data structure is identified from an annotated genome, and optionally further comprising storing said reaction that is identified from an annotated genome in a gene database, ii) step (b) further comprises identifying an unbalanced reaction in said data structure and adding a reaction to said data structure, thereby changing said unbalanced reaction to a balanced reaction and/or wherein said data structure comprises a set of linear algebraic equations, or a matrix and/or wherein said flux distribution is 15 determined by linear programming.

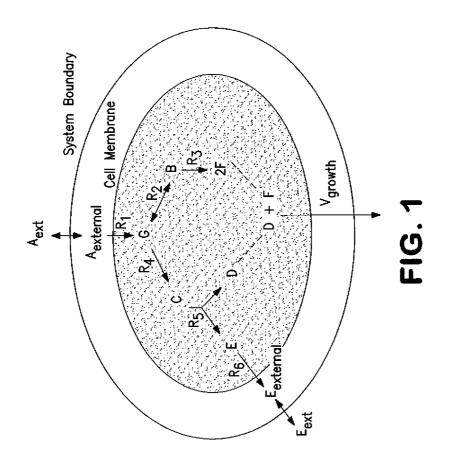
14. The method of claim 12, further comprising annotation of a reaction in said data structure, optionally wherein said annotation is selected from the group consisting of assignment of a gene, assignment of a protein, assignment of a subsystem, assignment of a confidence rating, reference to a genome annotation information and reference to a publication.

15. The method of claim 14, wherein said adding a reaction comprises adding a reaction selected from the group consisting of an intra-system reaction, an exchange reaction, a reaction from a peripheral metabolic pathway, reaction from a central metabolic pathway, a gene associated reaction and a non-gene associated reaction, optionally wherein said peripheral metabolic pathway is selected from the group consisting of amino acid biosynthesis, amino acid degradation, purine biosynthesis, pyrimidine biosynthesis, lipid biosynthesis fatty acid metabolism, cofactor biosynthesis, cell wall metabolism and transport processes and/or said yeast physiological function is selected from the group consisting of growth, energy production, redox equivalent production, biomass production, production of biomass precursors, production of a protein, production of an amino acid, production of a purine, production of a 30 pyrimidine, production of a lipid, production of a fatty acid, production of a cofactor, production of a cell wall component, transport of a metabolite, development, intercellular signaling, consumption of carbon, nitrogen, sulfur, phosphate, hydrogen or oxygen, degradation of an amino acid, degradation of a purine, degradation of a pyrimidine, degradation of a lipid, degradation of a fatty acid, degradation of a cofactor and degradation of a cell wall component.

35

5

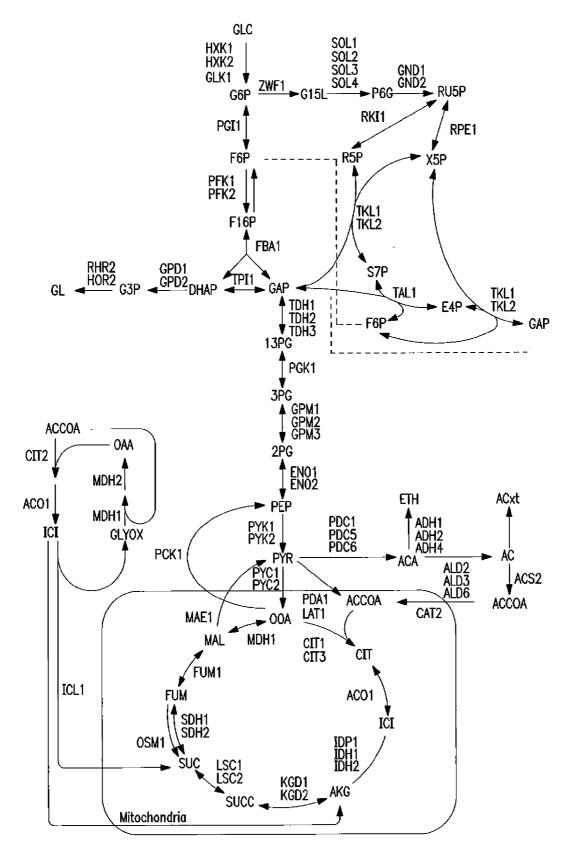
20

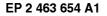

25

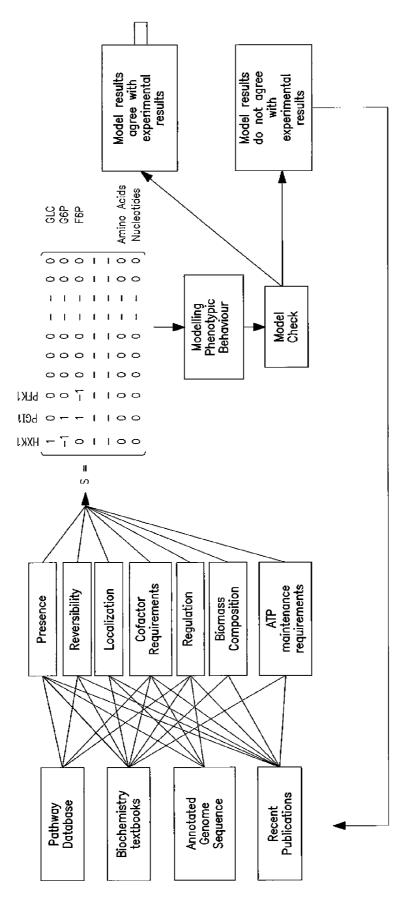
40

45

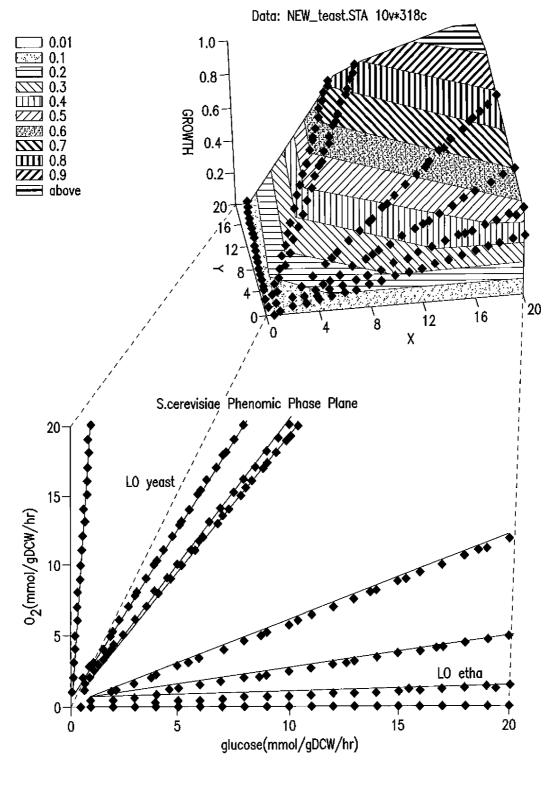
50

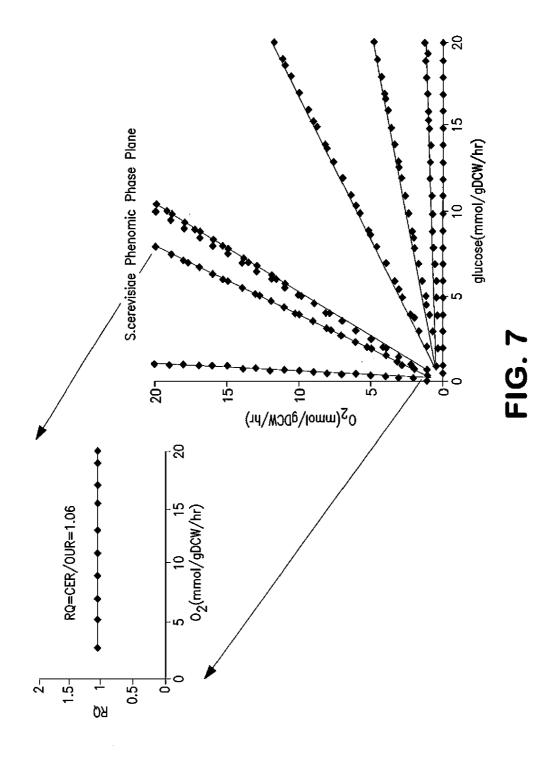

55

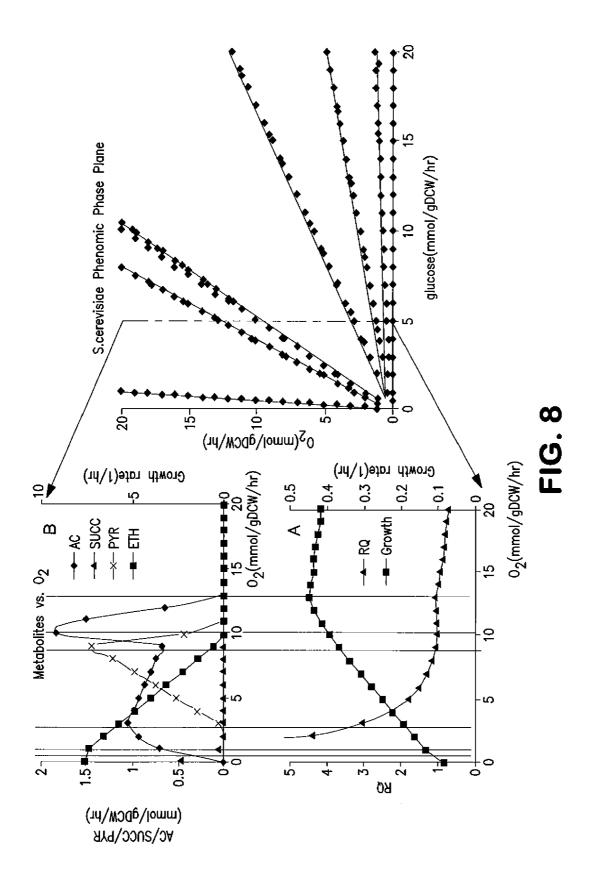


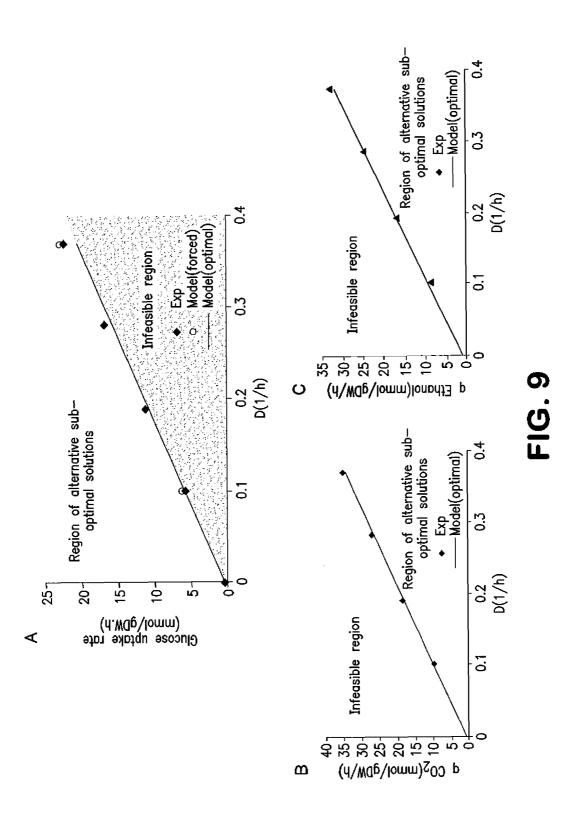

	0	0	0	0	0	Q	0	0
		-		II				
[R1	- £	۰Æ	ۍ ۲	. Æ	° Æ	Varowth	, Avt	
¥	0	0	0	0	0	0	0	T,
		0				o	•	
Vgrowth	0	0	ī	0	ī	0	0	0
ഷ്	0	0	0	ī	0	0	0	-
ጜ	0	ī	-	-	0	0	0	0
ጿ	0	-	0	0	0	ī	0	0
Ł	ī	0	0	0	2	0	0	0
ጜ	-	0	0	0	0	ī	0	0
ъ.	٥	0	0	0	0	-	ī	Ĵ
	в	с С	٥	ш	Ŀ	с С	Aexternal	Eexternal

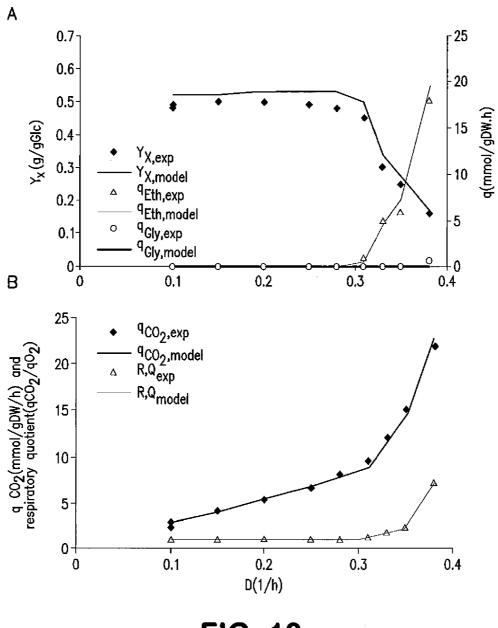
EP 2 463 654 A1


Flux Constraints	Objective Function
$0 \leq R_{1} \leq \infty$ $-\infty \leq R_{2} \leq \infty$ $0 \leq R_{3} \leq \infty$ $0 \leq R_{5} \leq \infty$ $0 \leq R_{6} \leq \infty$ $0 \leq V_{growth} \leq \infty$ $\gamma_{1} \leq A_{xt} \leq \gamma_{1}$ $-\infty \leq E_{xt} \leq \infty$ $\gamma_{1} = const.$	Z=Vgrowth
Mass Balance B: $R_2-R_3=0$ C: $R_4-R_5=0$ D: $R_5-V_{growth}=0$ E: $R_5-R_6=0$ F: 2 $R_3-V_{growth}=0$ G: $R_1-R_2-R_4=0$ G: $R_1-R_2-R_4=0$ Aexternal : $R_6-E_{xt}=0$ Eexternal : $R_6-E_{xt}=0$	Objective Z=V ₁









EUROPEAN SEARCH REPORT

Application Number EP 11 18 2034

	DOCUMENTS CONSIDE	RED TO BE RELEVANT		
Category	Citation of document with indi of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Х	W0 00/46405 A2 (PALS 10 August 2000 (2000 * page 3, line 24 - * page 5, line 34 - p * page 7, line 5 - 1 * page 7, line 19 - * page 7, line 29 - p * page 8, line 34 - p * page 9, line 13 - * figure 2; table 1	-08-10) line 26 * page 6, line 2 * line 8 * line 20 * page 8, line 5 * page 9, line 1 * line 17 *	1-15	INV. G01N33/48
X	requirements",	netabolism: wth-rate dependent and mechanistic energy DENGINEERING, WILEY & S, pages 398-421,	1-15	TECHNICAL FIELDS SEARCHED (IPC) G06F
X	EDWARDS J S ET AL: Mg1655 in silico meta definition, character capabilities", PROCEEDINGS OF THE N/ SCIENCES OF USA, NAT SCIENCE, WASHINGTON, vol. 97, no. 10, 9 Ma pages 5528-5533, XPOO ISSN: 0027-8424 * the whole document	1-15	GOIN	
	The present search report has been place of search	en drawn up for all claims Date of completion of the search		Examiner
	Munich	7 May 2012	Sis	sk, Aisling
X : part Y : part doou A : teoh O : non	ATEGORY OF CITED DOCUMENTS ioularly relevant if taken alone ioularly relevant if combined with another iment of the same category nological background written disclosure mediate document	T : theory or principl E : earlier patent do after the filing dat D : document oited i L : document oited f & : member of the sa document	cument, but publi e n the application or other reasons	shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 11 18 2034

	DOCUMENTS CONSIDERED	TO BE RELEVANT		
Category	Citation of document with indicatio of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	SCHILLING C H ET AL: " PHENOMICS: ANALYSIS OF FLUX BALANCES", BIOTECHNOLOGY PROGRESS, vol. 15, no. 5, May 199 288-295, XP000961124, ISSN: 8756-7938 * the whole document * 	GENOMIC DATA USING	1-15	TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been dr	awn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	7 May 2012	Sis	sk, Aisling
CATEGORY OF CITED DOCUMENTS X : partioularly relevant if taken alone Y : partioularly relevant if combined with another document of the same category A : technological background			cument, but public te in the application for other reasons	shed on, or
O : non-	written disclosure mediate document	& : member of the s document		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 11 18 2034

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-05-2012

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0046405 A2	10-08-2000	AU 3482200 A EP 1147229 A2 US 2002012939 A1 US 2008270096 A1 WO 0046405 A2	25-08-2000 24-10-2001 31-01-2002 30-10-2008 10-08-2000
N PO459			
종 같이 같이 다 다 more details about this annex : see C	Official Journal of the Euro	pean Patent Office, No. 12/82	

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0046405 A, Palsson [0066]
- US 9108694 W, R. Houghten [0093]

Non-patent literature cited in the description

- WINZELER et al. Science, 1999, vol. 285, 901-906
 [0003] [0143] [0157] [0172]
- COVERT et al. Trends in Biochemical Sciences, 2001, vol. 26, 179-186 [0066]
- SCHILLING et al. J. Theor. Biol., 2000, vol. 203, 249-283 [0069]
- RAY. Learning XML. O'Reilly and Associates, 2001 [0076]
- PALSSON. Nat. Biotech, 2000, vol. 18, 1147-1150 [0085]
- CHVATAL. Linear Programming. W.H. Freeman and Co, 1983 [0086]
- EDWARDS et al. Biotech Bioeng., 2002, vol. 77, 27-3 6 [0087]
- **DECAMP et al.** Protein Engineering Principles and Practice. Wiley-Liss, 1996, 467-506 [0093]
- HOUGHTEN et al. Nature, 1991, vol. 354, 84-86
 [0093]
- DOOLEY et al. Science, 1994, vol. 266, 2019-2022 [0093]
- ZUBAY. Biochemistry. Wm.C. Brown Publishers, 1998 [0100]
- STRYER. Biochemistry. W.H. Freeman, 1988 [0100]
- MEWES et al. Nucleic Acids Research, 2002, vol. 30 (1), 31-34 [0100] [0138] [0143]
- CHERRY et al. Nucleic Acids Research, 1998, vol. 26 (1), 73-9 [0100]
- COSTANZO et al. Nucleic Acids Research, 2001, vol. 29 (1), 75-9 [0100]
- KANEHISA et al. Nucleic Acids Research, 2000, vol. 28 (1), 27-30 [0101]
- APPEL et al. *Trends Biochem Sci.,* 1994, vol. 19 (6), 258-260 [0101]
- BAIROCH et al. Nucleic Acids Research, 2000, vol. 28 (1), 45-48 [0101]
- STRATHERN et al. The Molecular biology of the yeast Saccharomyces : metabolism and gene expression, 1982 [0102]
- DAUM et al. Yeast, 1998, vol. 14 (16), 1471-510 [0102]
- DICKINSON et al. The metabolism and molecular physiology of Saccharomyces cerevisiae. Taylor & Francis, London, 1999 [0102]

- US 5556762 A [0093]
- DICKSON et al. Methods Enzymol., 2000, vol. 311, 3-9 [0102]
- DICKSON. Annu Rev Biochem, 1998, vol. 67, 27-48
 [0102]
- PARKS. CRC Crit Rev Microbiol, 1978, vol. 6 (4), 301-41 [0102]
- VERDUYN et al. Antonie Van Leeuwenhoek, 1991, vol. 59 (1), 49-63 [0102] [0109] [0132]
- OVERKAMP et al. J. of Bacteriol, 2000, vol. 182 (10), 2823-2830 [0102]
- ZIMMERMAN et al. Yeast sugar metabolism : biochemistry, genetics, biotechnology, and applications. Technomic Pub, 1997 [0102] [0174]
- PAULSEN et al. FEBS Lett, 1998, vol. 430 (1-2), 116-125 [0102]
- WIECZORKE et al. FEBS Lett, 1999, vol. 464 (3), 123-128 [0102]
- REGENBERG et al. Curr Genet, 1999, vol. 36 (6), 317-328 [0102]
- ANDRE. Yeast, 1995, vol. 11 (16), 1575-1611 [0102]
- PALMIERI et al. J Bioenerg Biomembr, 2000, vol. 32 (1), 67-77 [0102]
- PALMIERI et al. Biochim Biophys Acta, 2000, vol. 1459 (2-3), 363-369 [0102]
- PALMIERI et al. J Biol Chem, 1999, vol. 274 (32), 22184-22190 [0102]
- PALMIERI et al. FEBS Lett, 1997, vol. 417 (1), 114-118 [0102]
- PALLOTTA et al. FEBS Lett, 1998, vol. 428 (3), 245-249 [0102]
- TZAGOLOGG et al. Mitochondria. Plenum Press, 1982 [0102]
- ANDRE. Yeast, 1995, vol. 11 (16), 1575-611 [0102]
- REMIZE et al. Appl Environ Microbiol, 2000, vol. 66 (8), 3151-3159 [0104]
- NIESSEN et al. Yeast, 2001, vol. 18(1), 19-32 [0105]
- WESTERHOFF ; VAN DAM. Thermodynamics and control of biological free-energy transduction. Elsevier, 1987 [0109]
- EDWARDS et al. Biotechnol. Bioeng., 2002, vol. 77, 27-36 [0112]
- EDWARDS et al. Nature Biotech., 2001, vol. 19, 125-130 [0112]

- VAN DIJKEN ; SCHEFFERS. Yeast, 1986, vol. 2 (2), 123-7 [0123]
- ZENG et al. Biotechnol. Bioeng., 1994, vol. 44, 1107-1114 [0127]
- ZIGOVA. J Biotechnol, 2000, vol. 80, 55-62 [0127]
- WANG et al. Biotechnol & Bioeng, 1977, vol. 19, 69-86 [0127]
- WANG et al. Biotechnol. & Bioeng., 1979, vol. 21, 975-995 [0127]
- DANTIGNY et al. Appl. Microbiol. Biotechnol., 1991, vol. 36, 352-357 [0127]
- NISSEN et al. *Microbiology*, 1997, vol. 143 (1), 203-18 [0133]
- NISSEN et al. *Microbiology*, 1997, vol. 143 (1), 203-218 [0134]
- VAN DIJKEN et al. Antonie Van Leeuwenhoek, 1993, vol. 63 (3-4), 343-52 [0135]
- OVERKAMP et al. J. of Bacteriol, 2000, vol. 182 (10), 2823-30 [0135]
- CHERRY et al. Nucleic Acids Research, 1998, vol. 26 (1), 73-79 [0138] [0143]
- EDWARDS ; PALSSON. Proceedings of the National Academy of Sciences, 2000, vol. 97 (10), 5528-5533 [0143]
- CIRIACY ; BREITENBACH. J Bacteriol, 1979, vol. 139 (1), 152-60 [0146]
- WHITE et al. J Biol Chem, 2001, vol. 276 (14), 10794-10800 [0154]
- SILVE et al. Mol Cell Biol, 1996, vol. 16 (6), 2719-2727 [0155]
- BOUROT ; KARST. Gene, 1995, vol. 165 (1), 97-102 [0155]
- LACROUTE. J Bacteriol, 1968, vol. 95 (3), 824-832
 [0155]
- GUETSOVA et al. Genetics, 1997, vol. 147 (2), 383-397 [0157]
- MITCHELL. Genetics, 1985, vol. 111 (2), 243-58
 [0158]
- DICKINSON; SCHWEIZER. The metabolism and molecular physiology of Saccharomyces cerevisiae. Taylor & Francis, 1999 [0161]
- SUMMERS et al. Genetics, 1988, vol. 120 (4), 909-922 [0161]
- DAUM et al. Yeast, 1998, vol. 14 (16), 1471-1510
 [0161]
- DAUM et al. Yeast, 1999, vol. 15 (7), 601-614 [0161]
- BARD et al. Lipids, 1977, vol. 12 (8), 645-654 [0162]
- ZWEYTICK et al. FEBS Lett, 2000, vol. 470 (1), 83-87 [0162]
- HATA et al. J Biochem, 1983, vol. 94 (2), 501-510
 [0162]
- PARKS et al. Crit Rev Biochem Mol Biol, 1999, vol. 34 (6), 399-404 [0162]
- MURRAY ; GREENBERG. *Mol Microbiol*, 2000, vol. 36 (3), 651-661 [0165]
- LOPEZ et al. Mol Microbiol, 1999, vol. 31 (4), 1255-1264 [0165]

- THOMAS; SURDIN-KERJAN. Microbiol Mol Biol Rev, 1997, vol. 61 (4), 503-532 [0166]
- FUKUCHI et al. Genes, 1993, vol. 129 (1), 141-146
 [0167]
- PERSSON et al. Biochim Biophys Acta, 1999, vol. 1422 (3), 255-72 [0168]
- TROTTER et al. J Biol Chem, 1998, vol. 273 (21), 13189-13196 [0169]
- BELL et al. J Biol Chem, 1998, vol. 273 (50), 33311-33319 [0170]
- BIRNER et al. Mol Biol Cell, 2001, vol. 12 (4), 997-1007 [0172]
- BOLES et al. J Bacteriol, 1997, vol. 179 (9), 2987-2993 [0174]
- VAN DEN BERG ; STEENSMA. Eur J Biochem, 1995, vol. 231 (3), 704-713 [0174]
- HEINISCH et al. Yeast, 1998, vol. 14 (3), 203-13
 [0174]
- BOLES,E.; LIEBETRAU,W.; HOFMANN,M.; ZIM-MERMANN,F.K. A family of hexosephosphate mutases in Saccharomyces cerevisiae. *Eur. J. Biochem.*, 1994, vol. 220, 83-96 [0176]
- BOLES, E. Yeast sugar metabolism. Technomic Publishing CO., INC, 1997, 81-96 [0176]
- BOLES,E.; JONG-GUBBELS,P.; PRONK,J.T. Identification and characterization of MAE1,the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. *J. Bacteriol.*, 1998, vol. 180, 2875-2882 [0176]
- CLIFTON,D.; WEINSTOCK,S.B.; FRAEN-KEL,D.G. Glycolysis mutants in Saccharomyces cerevisiae. *Genetics*, 1978, vol. 88, 1-11 [0176]
- CLIFTON,D.; FRAENKEL,D.G. Mutant studies of yeast phosphofructokinase. *Biochemistry*, 1982, vol. 21, 1935-1942 [0176]
- CUPP,J.R.; MCALISTER-HENN,L. Cloning and Characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J. Biol. Chem., 1992, vol. 267, 16417-16423 [0176]
- FLIKWEERT, M.T. et al. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast, 1996, vol. 12, 247-257 [0176]
- GANCEDO,C.; DELGADO,M.A. Isolation and characterization of a mutant from Saccharomyces cerevisiae lacking fructose 1,6-bisphosphatase. *Eur. J. Biochem.*, 1984, vol. 139, 651-655 [0176]
- GANGLOFF,S.P.; MARGUET,D.; LAUQUIN,G.J. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. *Mol Cell Biol*, 1990, vol. 10, 3551-3561 [0176]
- HARTIG,A. et al. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. *Nucleic Acids Res.*, 1992, vol. 20, 5677-5686 [0176]

- HEINISCH,J.J.; MULLER,S.; SCHLUTER,E.; JACOBY,J.; RODICIO,R. Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase. *Yeast*, 1998, vol. 14, 203-213 [0176]
- KIM,K.S.; ROSENKRANTZ,M.S.; GUARENTE,L. Saccharomyces cerevisiae contains two functional citrate synthase genes. *Mol. Cell Biol.*, 1986, vol. 6, 1936-1942 [0176]
- LOFTUS,T.M.; HALL,L.V.; ANDERSON,S.L.; MCALISTER-HENN,L. Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase. *Biochemistry*, 1994, vol. 33, 9661-9667 [0176]
- MCALISTER-HENN,L.; THOMPSON,L.M. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J. Bacteriol., 1987, vol. 169, 5157-5166 [0176]
- MULLER,S.; ENTIAN,K.-D. Yeast sugar metabolism. Technomic Publishing CO.,INC, 1997, 157-170 [0176]
- OZCAN,S.; FREIDEL,K.; LEUKER,A.; CIRIA-CY,M. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J. Bacteriol., 1993, vol. 175, 5520-5528 [0176]
- PRZYBYLA-ZAWISLAK,B.; DENNIS,R.A.; ZAKHARKIN,S.O.; MCCAMMON,M.T. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. Eur. J Biochem., 1998, vol. 258, 736-743 [0176]

- REPETTO,B.; TZAGOLOFF,A. In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex. *Mol. Cell Biol.*, 1991, vol. 11, 3931-3939 [0176]
- SCHAAFF-GERSTENSCHLAGER,I.; ZIMMER-MANN,F.K. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. *Curr. Genet.*, 1993, vol. 24, 373-376 [0176]
- SCHAAFF-GERSTENSCHLAGER,I.; MIOSGA,T. Yeast sugar metabolism. Technomic Publishing CO.,INC, 1997, 271-284 [0176]
- SEDIVY,J.M.; FRAENKEL,D.G. Fructose bisphosphatase of Saccharomyces cerevisiae. Cloning, disruption and regulation of the FBP1 structural gene. J. Mol. Biol., 1985, vol. 186, 307-319 [0176]
- SMITH,V.; CHOU,K.N.; LASHKARI,D.; BOTSTEIN,D.; BROWN,P.O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. *Science*, 1996, vol. 274, 2069-2074 [0176]
- SWARTZ,J. A PURE approach to constructive biology. Nat. Biotechnol., 2001, vol. 19, 732-733 [0176]
- WILLS,C.; MELHAM,T. Pyruvate carboxylase deficiency in yeast: a mutant affecting the interaction between the glyoxylate and Krebs cycles. Arch. Biochem. Biophys., 1985, vol. 236, 782-791 [0176]