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Adaptive Grouping for the Multi-Level Fast

Multipole Method
Oscar Borries, Student Member, IEEE, Erik Jørgensen, Member, IEEE, Peter Meincke, Member, IEEE,

and Per Christian Hansen

Abstract—An alternative parameter-free adaptive approach
for the grouping of the basis function patterns in the Multi-
Level Fast Multipole Method is presented, yielding significant
memory savings for most discretizations. Results from both a
uniformly and non-uniformly meshed scatterer are presented,
showing how the technique is worthwhile even for regular meshes,
and demonstrating that there is no loss of accuracy in spite of
the large reduction in memory and relatively low computational
cost.

Index Terms—MLFMM, Higher-Order Discretization, Irregu-
lar meshes

I. INTRODUCTION

WHEN solving large-scale electromagnetic scattering

problems, where the unknown is the surface current

density induced by an incident electromagnetic field on a

scatterer, the Multi-Level Fast Multipole Method (MLFMM)

[1]–[4] is one of the most powerful methods for speeding up

the necessary matrix-vector products involved in an iterative

solution.

The MLFMM is a hierarchical algorithm, achieving an

asymptotic complexity of O(N logN), N being the number

of unknowns, by computing interactions between groups of

basis functions rather than individual basis functions. The

multi-level aspect comes from using a hierarchical grouping

to allow interactions over increasing distances to be done by

considering increasingly larger groups.

The first step of the MLFMM is the application of a group-

ing algorithm. The grouping effectively determines the region

of validity of the Greens function expansion underlying the

MLFMM. Furthermore, the grouping dictates the number of

terms needed to represent the functions involved in MLFMM,

often called the bandwidth, and therefore also the required

number of samples of those functions on the unit sphere,

called the sampling rate. In most implementations [2], [4], this

grouping is done by using the Octree algorithm [5]. This is a

fast, easily implemented and conceptually simple algorithm,

designed in computer graphics to adapt very well to any

geometrical shape. In the context of the MLFMM, it also has

the extremely important feature of allowing reuse of some of

the quantities involved [6].
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However, as the discretizations become more irregular, the

Octree grouping at the finest level results in excessive sampling

rates, since it only considers the center of the geometrical

elements, known as patches, in the discretization and the size

of the largest patch, rather than taking into account the size and

shape of the individual patch. To improve on the performance,

particularly for very irregular meshes or for meshes with large

patches, we suggest in this paper a method that allows the

grouping on the finest level to become completely adaptive to

the shape of the patches. While this method is conceptually

simple, it has to our knowledge not been published previously.

The time factor ejωt, where ω is the angular frequency, is

assumed and suppresed throughout.

II. MULTI-LEVEL FAST MULTIPOLE METHOD

In the present paper, the MLFMM is used when iteratively

solving the Electric Field Integral Equation (EFIE) [7]

n̂×Ei = LJS , (1)

where n̂ is a unit vector normal to the scatterer S , Ei is the

incident electric field, and JS is the unknown surface current

density. Further, L is the integral operator

LJS =n̂× jωµ

[
ˆ

S

JS(r
′)G(r, r′)d2r′

+
1

k2

ˆ

S

∇′
S · JS(r

′)∇G(r, r′)d2r′
]

, (2)

where µ is the free-space permeability, k = 2π/λ, with λ

being the free-space wavelength. G(r, r′) = e−jk|r−r
′|

4π|r−r′| is the

free-space Greens function and r, r′ denote observation and

integration points, respectively. For some scenarios, it is more

useful to apply the Combined Field Integral Equation (CFIE)

[7],
[

αL+ (1− α)η

(

1

2
I +K

)]

JS =

αn̂×Ei + (1− α)ηn̂×Hi. (3)

where I is the identity operator, Hi is the incident magnetic

field, η is the free-space impedance, α ∈ [0, 1] is a weighting

factor, and K is the operator

KJS = n̂×−
ˆ

S

JS(r
′)×∇G(r, r′)d2r′, (4)

where −
´

denotes the Cauchy principal value.

The central part of the MLFMM is Rokhlin’s translator [1]

TL(k, k̂,x) =

L
∑

l=0

(−j)l(2l + 1)h
(2)
l (k ‖x‖2)Pl(k̂ · x̂), (5)
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where k̂ is the unit wave vector, x is the vector between two

group centers, x̂ = x/ ‖x‖2, h
(2)
l is the spherical Hankel

function of second kind and order l, and Pl is the Legendre

polynomial of degree l. It is important to note that the

translator does not depend on the absolute position of the

groups, but only on the vector x between their centers. Thus,

the translator can be reused for pairs of groups with the same

x, a key factor in keeping memory consumption low. Typically,

the number of terms L+1 in the translator is determined from

the Excess Bandwidth Formula [8]

L = kD + 1.8β2/3(kD)1/3, (6)

where D =
√
3a is the diameter of the group, a is the

sidelength of the group, and 10−β is the desired relative error.

To discretize the problem, we begin by representing the

surface of the scatterer S by geometric elements known as

patches. Then, (1) is discretized using a Galerkin method

to yield a linear system ¯̄ZĪ = B̄. Here, Ī is a vector

containing coefficients to the basis functions expressing the

surface current density, ¯̄Z is a matrix containing as its (i, j)’th
component the mutual impedance between basis functions fi

and fj , and B̄ is a vector, representing the incident field as

tested by the basis functions [9]. We can consider MLFMM

as a method for splitting the matrix ¯̄Z into two parts

¯̄Z = ¯̄Znear +
¯̄Zfar, (7)

where the near-matrix ¯̄Znear is stored as a sparse matrix, while
¯̄Zfar is not stored directly, but instead the elements required to

multiply ¯̄Zfar with an excitation vector Ī are stored.

Introducing the basis function patterns as

Vjm(k, k̂) =

ˆ

S

fj(r) · [ ¯̄I − k̂k̂]e−jkk̂·(rm−r) d2r, (8)

where ¯̄I is the identity matrix, and utilizing (5), we can express

the matrix elements resulting from the EFIE (1) as

¯̄Zfar(j,i) =

"

V ∗
jm(k, k̂p) ·

(

TL(k, k̂, rmm′)Vim′(k, k̂)
)

d2k̂,

(9)

which is then discretized to

¯̄Zfar(j,i) = κ
K
∑

p=1

wpV
∗
jm(k, k̂p)·

(

TL(k, k̂p, rmm′)Vim′(k, k̂p)
)

,

(10)

where κ is a constant depending on the units of the impedance

matrix ¯̄Z, K = 2(L+ 1)2 is the number of sample points on

the unit sphere [10], and wp are the integration weights. We

assume that fi belongs to group m′ and fj belongs to group

m, rmm′ = rm − rm′ where rm denotes the center of group

m, and we further assume that |rmm′ | > D. If |rmm′ | ≤
D, the element ¯̄Zj,i must be computed directly and stored in
¯̄Znear. For the CFIE (3), the expression for the matrix elements

corresponding to (10) are slightly more complicated [4].

The key issue from (8) and (10) is that the number of sample

points for the basis function patterns Vjm is the same as that

required for the translator, even though the bandwidth of Vjm

is lower [10]. Note that the bandwidth of Vjm is directly

related to the largest value of |rm−r| attained on the domain

of fj , due to the term e−jkk̂·(rm−r) in (8).

D
2

rm′m̄′

Dm̄

2

Fig. 1. 2-D illustration of adaptive grouping. The dashed line is the projection
of a patch onto a plane, while the grey square is the box at the finest level of
the Octree. To the left is shown the scenario obtained with using the Octree
grouping at the finest level as a foundation for the basis function patterns.
Further subpartitioning would disect the patch, which is suboptimal. Instead,
on the right, we introduce an adaptive grouping layer, which has its center
such as to minimize the size of the circle enclosing the patch. We thus see
that the region of validity, indicated by the solid black circle, is much smaller
than it would be if it had to enclose the entire square. The r

m
′
m̄

′ vector
indicates the phase-center shift needed to start the upward pass.

III. GROUPING

An Octree [5] is used here as a hierarchical data structure,

allowing a geometrical object to be spatially partioned in

a fast and simple manner, thereby providing a grouping of

basis functions that are spatially near each other. The Octree

grouping is done by creating an original bounding box for

S , hereafter termed level 1 or the coarsest level. Finer levels

are then created by partitioning boxes such that the diameter

of the boxes at level q is Dq = Dq−1/2. This results in

eight potential boxes per partitioning, of which only those

that contain the center of a patch are kept while the rest are

pruned. This results in a very fast partitioning of the patches

into clusters. The partitioning stops when

Dq/2 < l, (11)

where l is the largest sidelength of any patch in the mesh

surface, yielding q levels in the Octree.

However, as Figure 1 illustrates, this will occasionally

result in unnecessarily large groups at the finest level, simply

because the Octree scheme is not able to adapt to the patches.

Effectively, the center point for Vjm, rm, is positioned such

that the sample rate will be far too large. The memory cost for

this can be very significant. Further, since the sampling rate

for all boxes at each level is the same, and since the finest

level box size is determined by the largest patch length in the

mesh, scenarios with non-uniform patch sizes will result in far

too large sampling rates for the groups with smaller patches.

Therefore, we propose to tabulate each Vjm based on a

seperate adaptive grouping. In this approach, each patch is

associated with its own group, with the center point rm chosen

to minimize the term |rm − r| in (8). D is then found by

the maximum attained value of 2|rm − r|, and the sampling

rate is determined from (6). In this way, the sampling rate is

optimized for each patch, and the basis function patterns are

stored at the coarsest possible sampling density.
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With this adaptive grouping, (10) is changed to

¯̄Zj,i =κ

K
∑

p=1

wpV
∗
jm̄(k, k̂p̄) ·

(

WT e−jkk̂·rm̄m (12)

·TL(k, k̂p, rmm′)e−jkk̂·rm′m̄′WVim̄′(k, k̂p̄)
)

,

where the notation m̄ refers to a group at the adaptive level,

and group m is the group at the finest level of the Octree

containing m̄. W is an interpolation matrix, designed to

increase the sampling density of the basis function patterns

to that of the translator, such that W ∈ R
K×K̄ .

We stress that there are no translations done on the adaptive

grouping level, and therefore the near-matrix ¯̄Znear is not

based on the adaptive level. Basing ¯̄Znear on the adaptive

level would yield a smaller matrix, but this would imply

that seperate translators would have to be computed for each

adaptive group interaction due to the adaptive group center.

Without this possibility of reusing translators, which is perhaps

the greatest strength of the Octree used with the MLFMM,

the memory requirements for the translators, as well as the

additional work in translation on the adaptive level, would

impair the performance. Another advantage in using the larger

Octree groups for the translation is that (5) is more numerically

stable for larger groups due to the so-called sub-wavelength

breakdown [11].

In a practical implementation, if each adaptive group has a

unique diameter, and thus a unique sampling rate, this would

require a significant amount of auxillary data, in particular

the interpolation matrix W for each group. Therefore, our

implementation uses a number of specifically allowed sizes,

and categorizes each adaptive group into those. Note that only

the sampling rate is affected by this categorization, not the

center of the adaptive group. For fairly uniform scatterers, only

2 or 3 possible sizes are needed, while strongly non-uniform

scatterers need a few more. As an estimate for the number of

allowed group sizes Nm̄, we use

Nm̄ =

⌈

maxm̄ Dm̄

minm̄ Dm̄

⌉

, (13)

where m̄ runs through the adaptive groups, and Dm̄ is the

diameter of group m̄.

The adaptive grouping does not affect the number of non-

zeros in the near-matrix ¯̄Znear. To reduce the memory required

for ¯̄Znear, a locally extended Octree grouping can be imple-

mented. This means that l in (11) is modified to equal the

largest sidelength of any quad in the group under consideration

only, rather than considering all quads in the mesh. Thus, if

the mesh is locally very fine, the Octree will locally have

additional levels compared to regions with a coarser mesh.

Figure 2 provides a small 2-D illustration of a locally extended

Octree grouping.

A locally extended Octree was discussed in [12], but was

used as a way to reduce the size of the basis function patterns

only, not to reduce the memory required for ¯̄Znear, since

translations on the extended levels was not performed. Further,

the focus was not on irregular meshes, so neither the approach

nor the results can be compared with the present paper.

Fig. 2. 2-D illustration of an Octree grouping using locally extended levels.
The solid lines indicate the finest level achieved using the standard Octree
grouping. The dashed lines indicate regions where the Octree has been locally
refined due to small patches being present in the groups.

IV. NUMERICAL RESULTS

The first example involves a perfectly electrically con-

ducting (PEC) sphere, designed to illustrate that even for

uniformly meshed scatterers, it is beneficial to apply the

adaptive grouping, particularly if the group size on the finest

level of the Octree is much larger than the patch size. It further

illustrates that there is no loss of accuracy from the adaptive

grouping.

The second example concerns an irregularly meshed circular

PEC plate with several small holes, designed to represent

mounting holes. While we stress that these holes are so small

that they should not be considered in the electromagnetic

representation of the problem, it is fairly common in structures

based on CAD designs to have such features.

The results are based on the implementation detailed in

[13], but the implementation does not utilize the storage of

basis functions using Spherical Harmonics Expansions (SHE)

[14], since we want to isolate the effects of using adaptive

grouping compared to standard Octree grouping at the finest

level. However, these two techniques (adaptive grouping and

SHE) can easily be combined, and their combination allows

use of the SHE to reduce the computational cost of adaptive

grouping. We use Lagrange interpolators to step between the

sampling rates of the levels. When discussing total memory,

we include the memory needed to store the entire MLFMM

structure, including near-matrix, basis function patterns etc.,

as well as minor temporary data, including that needed for

interpolation matrices in the adaptive grouping. Throughout,

the accuracy setting β = 3 is used in (6). The error is

computed as the relative RMS

RelativeRMS =

√

√

√

√

∑Ns

i=1(|Ei,ref| − |Ei,cal|)2
∑Ns

i=1 |Ei,ref|2
, (14)

where Ei,ref and Ei,cal denote the reference and calculated

electric fields at the ith sample point, respectively, and Ns is

the number of samples.

A. Sphere

We consider an x̂-polarized plane wave at 10GHz, propa-

gating in the +ẑ direction, incident on a 1m PEC sphere cen-

tered at the origin of the coordinate system. Using 4th-order

basis functions, we vary the sidelength of the patches in the

fairly uniformly meshed structure, and use the CFIE (3) with
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Fig. 3. Memory for the entire MLFMM structure, as a function of the
accuracy, comparing the traditional Octree grouping at the finest level, using
adaptive grouping only, and using adaptive grouping as well as the locally
extended Octree (”Adaptive”). The RMS is increased by increasing the patch
length.

α = 0.5 to solve the problem, requiring between 322752 and

668352 unknowns. Figure 3 shows the memory consumption

as function of the RMS, illustrating the unfortunate property

of the Octree grouping to have a very complicated dependence

between memory and RMS. In particular, for the scenario

Dq/2 < l ≪ Dq , where l is the largest sidelength in the

mesh and q is the finest level, the standard Octree grouping

results in extreme memory consumption for the basis function

patterns, visible as a peak Figure 3. The adaptive grouping

does not have this problem for the basis function patterns,

though we can still see the effects through the memory used

for the near-matrix. We further see that including the locally

extended Octree only has an effect at a single point, further

smoothing out the ”hump” when the discretization is getting

close to allowing an additional level in the Octree.

Figure 4 illustrates the time spent per matrix-vector product.

We see a modest increase from using the adaptive grouping

due to the extra interpolation step. However, particularly for

Higher-Order discretizations, where there are relatively few

groups at the finest level, and thus fewer interpolation steps,

this will be negligible compared to the significant reduction

in memory. Thus, we can conclude that even for uniformly

meshed scatterers, there is a very significant potential memory

reduction to be achieved by using adaptive grouping at the cost

of a modest increase in computational time.

B. Circular plate with holes

We now consider an x̂-polarized plane wave at 300MHz,

propagating along −ẑ, incident on a 36m diameter circular

plate, centered at the origin and positioned in the xy-plane.

The plate has 9 square mounting holes, each with a sidelength

of 0.1λ, placed in a cross around the center. The meshing of

this surface with quadrilaterals using sidelengths between 0.1λ

10−3 10−2
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Relative RMS

T
im

e
p

er
it
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n

[s
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Time as function of RMS - 10GHz sphere
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Fig. 4. Time per matrix-vector product, as a function of the accuracy, compar-
ing the traditional Octree grouping at the finest level, using adaptive grouping
only, and using adaptive grouping as well as the locally extended Octree
(”Adaptive”). We note that the differences between the adaptive grouping
only and the ”adaptive” approach is predominantly due to inaccuracies in the
timings.

Fig. 5. Circular plate with nine 0.1λ× 0.1λ mounting holes.

and 1.28λ is shown in Figure 5.

The discretization yields N = 51491 unknowns, with

polynomials up to 7th order being used on the largest patches.

The default Octree grouping yields a fairly poor grouping, with

a sidelength at the finest level of 2.25λ. This results in 3.79

GB of total memory. Using the adaptive grouping and locally

extended Octree, the memory is reduced to less than a sixth,

623 MB. The memory for the basis function patterns alone is

reduced from 3.1 GB to 426 MB, a factor of 7.5. We note

that with adaptive grouping, but without the locally extended

Octree, the total memory required would have been 1.09 GB,
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Fig. 6. The scattered far-field for a circular plate with holes, for φ = 0. Both
the results from using Octree grouping and the adaptive grouping is shown,
demonstrating that there is no loss of accuracy.

so for this strongly non-uniform mesh, the locally extended

Octree is effective.

Figure 6 shows the scattered fields from each of the two

techniques, further demonstrating that the proposed adaptive

approach, with both adaptive grouping and a locally extended

Octree, yields the same result as the standard Octree grouping.

V. CONCLUSION

Our results demonstrate that the proposed adaptive grouping

approach should be included in modern implementations of

MLFMM, particularly when using a Higher-Order discretiza-

tion with larger patch sidelengths. Further, for strongly non-

uniform meshes, a locally extended Octree should also be

implemented. For a modest increase in computational time,

the reduction in memory obtained with these methods is

significant and the implementation is simple.
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