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PREFACE 

 

This thesis is submitted to the Technical University of Denmark (DTU) as partial 

fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) in 

Electronics and Communication. The work presented in the thesis was completed 

between March 15, 2011 and June 14, 2014 at Acoustic Technology, Department of 

Electrical Engineering, DTU, under the supervision of Associate Professor Finn 

Jacobsen at DTU (main supervisor) for two years, and Associate Professor Jonas 

Brunskorg at DTU (main supervisor) who took over after Finn Jacobsen passed 

away. The thesis is also co-supervised by Associate Professor Finn T. Angerkvist at 

DTU and Dr Pang Sze Kim at DSO National Laboratories. The project was co-

funded by DSO National Laboratories (Singapore) and DTU Elektro. 

 This PhD dissertation follows a monograph format, as recommended by the 

DTU PhD guidelines. 

 Chapter 1 (Introduction) defines the motivation of the project with main goal to 

examine the use of the recorded seismic signals, the combination of physical 

models, seismic inversion and seismic beamforming signal processing algorithms to 

detect the underground inhomogeneities such as underground facilities. The chapter 

provides a general introduction to the active seismic methodology related to 

detection of underground facilities, and gives a comparison of the proposed 

methodology developed in the PhD study against the literature findings. 
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 Chapter 2 (Background), provides the general background relevant to the 

study, discussing the seismic wavefield theory, the beamforming and Bayesian 

inversion signal processing methodologies, and the measurement setup of the 

seismic signals for the underground tunnel localization problem. 

Chapter 3 to Chapter 5 contain the main contributions of the PhD work. The work 

described in Chapter 3 has been accepted for publication by the Journal of 

Acoustical Society of America and been scheduled for publication in the first issue 

that appear three months from 6 June 2014. In addition, part of the work in Chapter 3 

has been published in Proceedings of Meetings on Acoustics, Volume 19, Number 1. 

The work described in Chapter 4 and 5 are submitted as well.  

Chapter 3 (Investigation of model based beamforming and Bayesian inversion 

signal processing methods for seismic localization of underground sources), 

consider the problem of determining the location of an underground tunnel using 

seismic interrogation signals. The ground where the tunnel is located is assumed to 

be a horizontally stratified medium, where complete knowledge of material elastic 

parameters is available from separate geophysical measurements. The chapter 

proposed combination of two physical models (acoustic approximation ray tracing 

model and the finite difference time domain (FDTD) 3D elastic wave model to 

represent the received seismic signal), and two localization algorithms (beamforming 

and Bayesian inversion methods), leading to four methodologies for solving the 

location of the underground tunnel. The proposed four methodologies are 

demonstrated and compared using seismic signals recorded by geophones set up 

on the ground surface generated by a surface seismic excitation, and tested with the 

field data. The results show that inversion for localization is most advantageous 
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when the forward model completely describe all the elastic wave components as is 

the case of the FDTD 3D elastic model.  

Chapter 4 (Joint seismic inversion and localization comparing Simulated 

Annealing and Metropolis Hasting), extends the findings in Chapter 3 to apply the 

combination of elastic wavefield model and Bayesian inversion to solve a joint 

Bayesian inversion problem to determine the tunnel position in the ground and also 

the material elastic parameters of a horizontally stratified medium.  The chapter 

proposes a reduced modelling scheme to reduce the dimension of the unknown 

material elastic parameter vector so as to improve the stability and convergence of 

the inversion process.  Two Monte Carlo algorithms, Monte Carlo Metropolis Hasting 

and Simulated Annealing, are implemented. The performance of algorithms are 

illustrated through a simulation example and compared.  

Chapter 5 (Seismic inversion applied to underground tunnel localization problem) 

extends the investigation of the joint Bayesian Inversion algorithm developed in 

Chapter 4 to solve a real-world problem to detect and localize the presence of  an 

underground tunnel from measurements made by an array of seismic sensors 

deployed on the ground surface. The results reflect that the point MAP estimate 

provides a more accurate representation for the location parameters exhibiting multi-

modal distribution behaviour as observed in the field data. 

Finally the thesis ends with conclusions and suggestions for further research 

(Chapter 6). 
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SUMMARY (ENGLISH) 

 

This PhD study examines the use of seismic technology for the problem of 

detecting underground facilities, whereby a seismic source such as a sledgehammer 

is used to generate seismic waves through the ground, sensed by an array of 

seismic sensors on the ground surface, and recorded by the digital device. The 

concept is similar to the techniques used in exploration seismology, in which 

explosions (that occur at or below the surface) or vibration wave-fronts generated at 

the surface reflect and refract off structures at the ground depth, so as to generate 

the ground profile of the elastic material properties such as the elastic wave speeds 

and soil densities.  One processing method is casting the estimation problem into an 

inverse problem to solve for the unknown material parameters. The forward model 

for the seismic signals used in the literatures include ray tracing methods that 

consider only the first arrivals of the reflected compressional P-waves from the 

subsurface structures, or 3D elastic wave models that model all the seismic wave 

components. The ray tracing forward model formulation is linear, whereas the full 3D 

elastic wave model leads to a nonlinear inversion problem.  

In this PhD study, both the linear and nonlinear inverse problems are 

investigated, in order to solve the problem to locate the position of an underground 

tunnel. One practical limitation of geophysics inversion problem is the high 

dimension of the unknown parameter space, such as the elastic wave speeds, soil 

density values of the discretized ground medium, which leads to time-consuming 
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computations and instability behaviour of the inversion process. In addition, the 

geophysics inverse problem is generally ill-posed due to non-exact forward model 

that introduces errors. The Bayesian inversion method through the probability 

density function permits the incorporation of a priori information about the 

parameters, and also allow for incorporation of theoretical errors. This opens up the 

possibilities of application of inverse paradigm in the real-world geophysics inversion 

problems.  

In this PhD study, the Bayesian inversion paradigm for the tunnel localization 

problem was investigated. A formulation of the mathematical framework of the 

inverse problem to solve the specific tunnel localization problem defined in the PhD 

study has been proposed. On this basis, two optimization algorithms, namely the 

Monte Carlo Metropolis Hasting and Simulated Annealing have been studied, and a 

new reduced modelling scheme to reduce the dimension of the ground material 

elastic parameter space has been proposed. Also, the linear ray tracing and 

nonlinear 3D elastic wave models have been examined using the Bayesian inversion 

algorithms and conventional source localization beamforming algorithms. 

Additionally, an experiment validation of the inversion framework is performed 

through conducting seismic measurements at an underground tunnel site using an 

array of geophones deployed on the ground surface and using a surface seismic 

source.  

 The examples show with the field data, inversion for localization is most 

advantageous when the forward model completely describe all the elastic wave 

components as is the case of the FDTD 3D elastic model. The simulation results of 

the inversion of the soil density values show that both the global optimization 
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method, i.e., Monte Carlo Metropolis Hasting algorithm and Simulated Annealing, are 

able to provide fairly good estimates which agree with the investigations in the 

literatures that focus only on geo-inversion of the elastic medium. The results of 

Monte Carlo Metropolis Hasting inversion to solve the source localization problem, 

i.e., invert for source depth and source range, display large fluctuations in the range 

and depth samples generated. However the point MAP estimates derived from 5000 

runs of the Metropolis Hasting method are relatively close to the true values. The 

results of the Simulated Annealing using an initial guess as the MAP estimate 

calculated from a small number of runs of the Monte Carlo Metropolis Hasting 

algorithm (in the simulation, we use 50 runs), is able to improve the accuracy of the 

range and depth estimate of the source. The field results of the joint inversion of 

material elastic parameters and tunnel location show an agreement with the 

simulated results. The PDF curves of range and depth derived from Monte Carlo 

Metropolis Hasting samples shows multi-modal distribution behaviour, which made 

the mean estimate not a suitable parameter for processing the Monte Carlo samples. 

The MAP estimates derived from both the Monte Carlo Metropolis Hasting and 

Simulated Annealing methods however match well against the location of the 

underground tunnel. These results reflect that the point MAP estimate, in agreement 

with the simulation results, provides a more accurate representation for the location 

parameters exhibiting multi-modal distribution behaviour.  
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SUMMARY (DANISH) 

 

Denne ph.d.-projekt undersøger brugen af seismiske teknologier til at detektere 

underjordiske anlæg, ved at bruge en seismisk kilde, såsom en forhammer, til at 

generere seismiske bølger gennem jorden, som opfanges af en et antal seismiske 

sensorer på jordoverfladen, og registreres digitalt. Metoden er meget lig de 

teknikker, der anvendes til seismologisk efterforskning, hvor eksplosioner eller 

vibrations bølge-fronter genereret på reflekteres og spredes af strukturer i jorden, 

dette giver mulighed for at bestemme jordens elastiske materialeegenskaber såsom 

elastiske bølge hastigheder og jordmassefylder. I en af disse metoder omformuleres 

problemet i et inverst problem at løse for det ukendte materiale parametre. Modeller 

for de seismiske signaler, der anvendes i litteraturen omfatter både 

strålegangsmetoder som kun betragter de første modtagelser af de reflekterede 

kompression P-bølger fra undergrunden, og 3D elastiske bølge modeller, der 

medtager alle komponenter i de seismiske bølger. Strålegangsmodelformuleringen 

er lineær, mens den fuld 3D elastiske bølgemodel fører til et ikke-lineært inverst 

problem. I dette ph.d.-studie undersøges begge aspekter, det lineære og ikke-

lineære inverse problem at finde placeringen af en underjordisk tunnel. En praktisk 

begrænsning af geofysiske inversion problemer er den høje dimension af det 

ukendte parameterrum, såsom de elastiske bølgehastigheder, jorddensitetsværdier 

af det diskretiserede jordmedium, hvilket fører til tidskrævende beregninger og 

ustabilitet i inversionsprocessen. Desuden er inverse geofysiske problemer generelt 

dårligt stillet på grund af manglende nøjagtigheder i udbredelsesmodellen. 
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Bayesianske inversion metoder tillader inkorporering af a priori information om 

parametrene og deres sandsynlighedsfordelingsfunktion, og giver også mulighed for 

inkludere af teoretiske fejl. Dette gør det muligt at anvende inverse metoder på 

praktiske geofysiske problemer. 

I dette ph.d.-studie undersøges Bayesianske inversion metode til tunnel 

lokaliserings problemet. En matematisk formulering beregnet på at løse det 

specifikke tunnel lokalisering problem er defineret i ph.d.-studiet. På dette grundlag 

har to optimeringsalgoritmer, nemlig Monte Carlo Metropolis Hasting og ’Simuleret 

nedkøling’ blevet undersøgt, og der foreslås et ny algoritme med et reduceret antal 

dimensioner af jordens elastiske materialeparametre. Desuden er de lineære 

strålegangs- og ulineær 3D elastiske bølgemodeller blevet undersøgt ved hjælp af 

Bayesian inversion algoritmer og konventionelle kilde lokalisering algoritmer, som 

beamforming. Derudover er en eksperimentel validering de inverse metoderne udført 

via af seismiske målinger på en underjordisk tunnel hvor et antal geofoner opsat på 

jordoverfladen og en seismisk kilde placeret på jordoverfalden. 

Eksemplerne viser med feltdata inversion til lokalisering er mest fordelagtigt, når 

fremad model fuldstændigt beskrive alle de elastiske bølgekomponenter som det er 

tilfældet i FDTD 3D elastiske model. Simuleringen resultater af inversion af 

tæthedsværdier jord viser, at både den globale optimering metode, dvs Monte Carlo 

Metropolis Hasting algoritme og Simuleret nedkøling, er i stand til at give rimeligt 

gode skøn, som er enige med undersøgelserne i litteratur, der fokuserer kun på geo 

-inversion af elastisk medium. Resultaterne af Monte Carlo Metropolis Hasting 

inversion at løse kilden lokalisering problem, nemlig, vendes til kilden dybde og kilde 

rækkevidde, viser store udsving i omfanget og dybden prøver genereret, selvom 
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Point Kort estimater stammer fra 5000 løber af Metropolis Hasting metoden er 

relativt tæt på den sande values.The resultaterne af Simuleret nedkøling ved hjælp 

af et indledende gæt som MAP estimat beregnet ud fra et lille antal kørsler af Monte 

Carlo Metropolis Hasting algoritme (i simuleringen, bruger vi 50 kørsler), er i stand til 

at forbedre nøjagtigheden af omfanget og dybden estimat af kilden. Feltet 

resultaterne af den fælles inversion af væsentlige elastiske parametre og tunnel 

placering viser en aftale med de simulerede resultater. PDF kurver af rækkevidde og 

dybde stammer fra Monte Carlo Metropolis Hasting prøverne viser multimodal 

fordeling adfærd, hvilket gjorde den gennemsnitlige estimat ikke et egnet parameter 

til behandling af de Monte Carlo prøver. Kortet skøn udledt fra både Monte Carlo 

Metropolis Hasting og Simuleret nedkøling metoder dog passer godt mod 

placeringen af den underjordiske tunnel. Disse resultater afspejler, at det punkt MAP 

skøn efter aftale med simuleringen resultater, giver en mere nøjagtig gengivelse af 

de geografiske parametre udviser multimodal fordeling adfærd
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CHAPTER 1  

INTRODUCTION 

 

This PhD study examines the use of seismic technology for the problem of 

detecting underground facilities. The main goal of the study is to examine the use of 

the recorded seismic signals, the combination of physical models, seismic inversion 

and seismic beamforming algorithms to detect the underground inhomogeneities 

such as underground facilities. In the thesis, the case of an underground tunnel is 

used as an example of an underground facility. 

Detection of underground facilities is a difficult but important problem. 

Underground facilities are used to conceal unwanted activities that pose a threat to 

security. These unwanted underground activities include border tunnels used for 

smuggling drugs, weapons and people. There are several techniques that have been 

investigated, some of which include [1] imagery (visible, IR and SAR) techniques, 

vibration sensing of man-made sources in underground facilities, detection of 

chemical and biological signatures, detection of low-frequency electromagnetic 

emissions from man-made sources, seismic imaging (active and passive), 

gravimetry, low-frequency electromagnetic induction (resistivity imaging), etc. For the 

active seismic method investigated in this thesis, a seismic source such as a 

sledgehammer is used to generate seismic waves through the ground, sensed by an 

array of seismic sensors on the ground surface, and recorded by the digital device. 
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The concept is similar to the techniques used in exploration seismology, in which 

explosions (that occur at or below the surface) or vibration wavefronts generated at 

the surface reflect and refract off structures at the ground depth. In exploration 

seismology [2], the recorded signals are processed to generate the ground profile of 

the elastic material properties including the elastic wave speeds and soil densities.   

The aim of the study is to investigate the methodologies, which include the 

beamforming and seismic inversion algorithms, for detection of the underground 

facilities. The main objective is to determine in the ground the position of the 

underground facilities. Two aspects of the problem have been examined as follows: 

The first aspect of the study looks into the investigation of both acoustic model and 

elastic model for representation of the seismic signals and combination of either 

beamforming algorithm or Bayesian inversion algorithm to solve for the position of 

the underground facilities. The term ‘acoustic model’ means that the seismic signal is 

estimated using approximation represent by the acoustic wave equation. The term 

‘elastic model’ means that the seismic signal is estimated using the elastic Navier 

wave equation. These terminologies are often used in the field of geophysical signal 

processing.  In the first attempt to implement the seismic inversion algorithm, it is 

assumed that the ground elastic material parameters are known from geophysical 

survey. Hence, in such cases, the inversion algorithm is intended to only determine 

the position of the underground facilities. On the other hand, the inversion algorithm 

also has the possibility to include estimation of the ground elastic material 

parameters. As it may be difficult at times to conduct a geophysical survey at the 

exact site where the underground facilities are located, the second aspect of this 

thesis investigates the inversion problem to jointly solve for the position and ground 

elastic material parameters.  
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The core part of the work is presented in Chapter 3 through 5 in this thesis. The 

work described in Chapter 3 has been accepted for publication by the Journal of 

Acoustical Society of America and been scheduled for publication in the first issue 

that appear three months from 6 June 2014. In addition, part of the work in Chapter 3 

has been published in Proceedings of Meetings on Acoustics, Volume 19, Number 1. 

The work described in Chapter 4 and 5 are submitted as well. Each of the chapters 

in the thesis is self-contained with their own bibliography section. 

 

1.1 Active Seismic Detection of Underground Facilities 

There are good reasons why the active seismic method has become an essential 

technique for detecting underground facilities [3-7]. The main advantage of the 

method is that it can provide images of underground structures giving detailed 

information about the depth and dimension of the underground facilities. The images 

are typically obtained from the reflected waves, while the material elastic parameters 

of the soil above the underground facilities can be determined through analysis of 

the refracted waves and the reflected waves [1].   Figure 1-1 describes the 

propagation behaviour in the elastic ground medium. Typically the ground is 

assumed as a horizontally stratified elastic medium where both compressional P-

wave and shear S-wave propagate. More details about the different types of seismic 

waves (compressional P-waves, shear S-waves and Rayleigh R-wave) that 

propagate in the elastic ground medium will be explained in Chapter 2. The seismic 

source on the ground surface generates seismic waves that propagate through the 

ground, which produce reflected & refracted waves at the soil layer interface, as well 

as from the underground facilities. 
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Figure 1-1 Diagram of the elastic waves in the ground.  
Each soil layer is characterized by the elastic material properties that comprises 

of the elastic wave speeds and soil densities. 
 

 

The seismic sensors deployed on the ground surface for measurement are 

typically geophones which are used for geophysical exploration. Figure 1-2 

displays the setup of an array of GS11D vertical component geophones.  These 

geophones measure only the vertical component of the particle velocity of the 

ground vibrations. 

Geophones which measure the particle velocity of the ground vibration are 

based on an inertial mass suspended from a spring. They function much like a 

microphone and are constructed with a coil of wire surrounding a magnet. The 

magnet is fixed to the geophone case and the coil represents the proof mass. 

The natural frequency of the GS11D geophone used in the measurement is 4.5 

Hz. In Figure 1-3, a picture of the GS11D geophone is displayed. The geophone 

is preferred over the accelerometer (which measures the physical quantity 

acceleration of the ground vibration) as it has better sensitivity in the low 

seismic source 

 Diffracted & reflected 

waves from tunnel 

 Refracted energy of 

head wave Soil layer 1:  

Soil layer 2:  

Soil layer 3   

seismic sensors 

Reflected waves 
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frequency range (below 100 Hz) where the dominant seismic energy is lying. The 

frequency range of the GS11D geophones is from 4.5 Hz to 100 Hz. 

 

 

 

Figure 1-2 Picture of an array of GS11D vertical component geophone array set 
up on the ground surface for the measurement 

 
 

 
Figure 1-3 Picture of a GS11D vertical component geophone. 
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The underground facility of interest to detect in this thesis is a heritage tunnel 

located in Singapore, see Figure 1-4. The tunnel is 3 m in diameter and buried in 

depth approximately 6 m to 8 m deep. The geophones are deployed not far from the 

tunnel location at a distance about 8 m to 15 m on the ground surface. Geophysical 

surveys are conducted along LINE-1, LINE-2A and LINE-2B (see Figure 1-4). The 

geophone array is deployed on the surface in a linear configuration perpendicular to 

LINE-1 along the axis of the tunnel length (Line-G). 

 

 

 

 

Figure 1-4. Picture of layout of a heritage tunnel located in Singapore 
 

 

 

Line-G 
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1.2 Comparison of the Proposed Methodology with Findings in 

the Literature 

In the seismic reflection methods reported in the literatures [8-14], which rely on 

the seismic waves reflected from geological interfaces to detect presence of 

underground cavity, the general approach is to rely on the processing of the first 

arrivals of the reflected P-wave from the underground cavity. In geophysical 

exploration, the common approach [15-17] to estimating the elastic material 

parameters of the ground is also to pose the problem into a linear seismic inverse 

problem by assuming a smooth background model with perturbations for the 

subsurface. This assumption will allow one to solve the forward problem in the 

inversion processing using a combination of the Born or single scattering 

approximation and ray theoretical methods. The ray theoretical methods work by 

stating the ray geometries and paths, while the Born approximation describes the 

solution of the forward model as a sum of single reflected waves. Hence the ray and 

Born combination implies that the solution of the wave equation is defined by the 

sum of primary reflected waves from a set of selected reflectors in the ground model. 

More discussions of the ray method are presented in Chapter 2.   

In recent years, there have been many efforts involved in solving the full wave 

inversion (FWI) problem. The full wave inversion problem exploits all components of 

the elastic waves propagating in the ground. Virieux & Operto [18] cited three 

challenges for efficient implementation of FWI as follows: (1) Building an accurate 

forward model to describe the complex elastic field recorded by the seismic sensors. 

(2) Defining a robust minimization criteria for the inversion processing so as to 

reduce the sensitivity of the inversion process to errors and noises, and also when 
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estimating a large dimension of parameters. (3) Improving the computational 

efficiency of the elastic FWI processing.  

Pioneering successful applications for seismic efficiency imaging of the ground 

subsurface were restricted to processing the reflection data of the seismic body 

waves only. There remains a gap to incorporate the surface waves in the imaging 

process. In his paper [19], Rydén proposes a forward model to calculate the phase-

velocity spectrum of the surface waves and applies fast simulated annealing 

algorithms to solve the inversion problem that minimize the difference between the 

measure phase-velocity spectrum and that calculated from a theoretical layer model. 

For efficient implementation of FWI that incorporate the inversion of both the seismic 

body and surface waves, one challenge that remains to be solved is to derive 

efficient optimization framework to ensure the convergence of the elastic mullti-

parameter space to the true values, as the discretization of the ground medium 

contributes to a large unknown parameter dimension space.  

 

In this thesis, we look into different physical models (acoustic ray tracing, 3D 

finite difference time difference (FDTD) elastic model), and different signal 

processing algorithm (frequency-wavenumber beamformer or time-delay 

beamformer, acoustic or full elastic wave-form Bayesian inversion Bayesian 

inversion) to solve the underground tunnel localization problem assuming that the 

ground elastic properties are known. An investigation of different combination of the 

physical models and signal processing methods are conducted and validated with 

field data. Our results show that the combination of the 3D FTDTD elastic model and 

full elastic waveform Bayesian inversion lead to the best performance for the source 

position estimation. The second part of the thesis then focuses on improvement of 
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the efficiency and accuracy of full elastic waveform inversion (FEWI) problem. The 

FEWI problem is now extended to jointly solve for the ground elastic parameter 

values and the position of the underground tunnel using observational data made 

with an array of geophones deployed on the ground surface. We develop a physical 

ground model for dimension reduction of the ground elastic parameter space so as 

to reduce ill-posedness arising from having to infer many parameters from a few 

observations. Two optimization algorithms, the Monte Carlo Metropolis Hasting and 

Simulated Annealing, are subsequently investigated for sampling the reduced 

parameter space to solve the Bayesian inversion problem. All the above-mentioned 

methodologies are evaluated first on synthetic data, and then further verified on field 

data collected at the heritage tunnel located in Singapore.   
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1.3 Summary of the Thesis 

The main part of the thesis consists of three self-contained chapters, chapters 3 - 

5. The main subject is related to detection of underground facilities using the active 

seismic technology. Both the acoustic and elastic models are used for representation 

of the recorded seismic signals, and then combinations with either the beamforming 

or Bayesian inversion algorithm are applied to determine in the ground subsurface 

the location of the underground facilities. For the Bayesian inversion to work 

effectively, a crucial aspect is the availability of a fairly accurate ground model for the 

forward model which solves the elastic wave equation. The Bayesian inversion 

algorithm is expanded to jointly estimate the tunnel location and the elastic material 

parameters. In the thesis, the algorithms developed are evaluated using the field 

data collected at the heritage tunnel site described. 

 The paper in Chapter 3, Investigation of linear and nonlinear signal 

processing methods for seismic localization of underground tunnels, presents 

the techniques to determine the location of an underground tunnel with seismic 

interrogation signals. Much of the work has involved either defining a P-wave 

acoustic model or a dispersive surface wave model to the received signal, and 

applying the time-delay processing technique and frequency-wavenumber (F-k) 

processing to determine the location of the underground tunnel. Considering the 

case of determining the location of an underground tunnel, this chapter proposed two 

physical models, the acoustic approximation ray tracing model and the FDTD 3D 

elastic wave model to represent the received seismic signal. Two localization 

algorithms, beamforming and Bayesian inversion, are developed for each physical 

model. The beam-forming algorithms implemented are the modified time-and-delay 
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beamformer and the F-K beamformer. Inversion is posed as an optimization problem 

to estimate the unknown position variable using the described physical forward 

models. The proposed four methodologies are demonstrated and compared using 

seismic signals recorded by geophones set up on the ground surface generated by a 

surface seismic excitation. The examples show with the field data, inversion for 

localization is most advantageous when the forward model completely describe all 

the elastic wave components as is the case of the FDTD 3D elastic model. 

Chapter 4, Joint seismic inversion and localization comparing Simulated 

Annealing and Metropolis Hasting, presents two optimization methods (Simulated 

Annealing and the Metropolis Hasting algorithm) to solve the joint Bayesian inversion 

problem to estimate the material elastic parameters of a horizontally stratified 

medium, and the tunnel position in the ground.  A reduced modelling scheme is 

proposed to reduce the size of the material elastic parameter vector in the 

estimation. The algorithms are then illustrated through a simulation example and 

compared. The results of the inversion of the soil density values show that both the 

global optimization method, i.e., Monte Carlo Metropolis Hasting algorithm and 

Simulated Annealing, are able to provide fairly good estimates which agree with the 

investigations in the literatures that focus only on geo-inversion of the elastic 

medium. As for the inversion result of the unknown source position, the range and 

depth samples generated by the Monte Carlo Metropolis Hasting inversion method 

display large fluctuations. But the point MAP estimates of the range and depth 

derived from 5000 runs of the Metropolis Hasting method are relatively close to the 

true range and depth of the source position. Simulated Annealing method which was 

implemented using an initial guess derived from the MAP value estimated from a 

small number of runs of the Monte Carlo Metropolis Hasting algorithm (in the 
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simulation, we use 50 runs), is able to improve the accuracy of the range and depth 

estimate of the source position.  

Chapter 5, Seismic inversion applied to underground tunnel localization 

problem, extends the investigation of the joint Bayesian Inversion algorithm 

developed in Chapter 4 to solve a real-world problem to detect and localize the 

presence of  an underground tunnel from measurements made by an array of 

seismic sensors deployed on the ground surface. The PDF curves of range and 

depth derived from Monte Carlo Metropolis Hasting samples shows multi-modal 

distribution behaviour, which made the mean estimate not a suitable parameter for 

processing the Monte Carlo samples. The MAP estimates derived from both the 

Monte Carlo Metropolis Hasting and Simulated Annealing methods however match 

well against the location of the underground tunnel, in agreement with the results of 

chapter 4 for the simulated data.  
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CHAPTER 2  

BACKGROUND  

 

This chapter starts with a presentation of the basic equations of the theory of 

elasticity, which are required in the theory of the propagation of seismic wave. This is 

followed by a discussion of the methods (FDTD and ray tracing with the eikonal 

equation) used to generate synthetic seismograms and forward models in this thesis. 

The formulation of the seismic localization of a subsurface structure is next 

discussed in Section 2.3. In this thesis, we considered specifically the localization of 

an underground tunnel. The signal processing algorithms considered in this thesis to 

solve the localization problems are the beamforming and Bayesian (and other) 

inversion methods, which are elaborated in Section 2.4 & 2.5 respectively. Finally 

this chapter concludes with a discussion of the setup of the seismic experiments. 

 

2.1 The seismic wave equation and representation of seismic 

signals 

Seismic wave propagation in an elastic earth medium can be described by a 

differential vector equation that describes the direction and the quantity of energy 

transport at each location x in the medium as a function of time, see Aki and 

Richards  [1]. In this chapter, x (x1,x2,x3) is used in place of the normal (x,y,z).   
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The fundamental basis for the wave equation is the Newton’s law of motion given 

as follows,  

.f
xt

u
)( i

j

iji 










2

2

x      Equation (2-1) 

 

The displacement vector field ),( txu  at position x  is described by a differential 

equation involving the stress tensor  , an external force f provided by a point 

impulsive source, and density )(x of the ground. Each of the terms iu , ij and if  is 

a function of position x and time.   

Figure 2-1 introduces the components of the stress tensor  . The meaning of the 

individual subscripts in the stress tensor components ij is explained as follow. The 

first subscript, i , indicates that the plane element is perpendicular to the i-th axis. 

The second subscript, j , denotes the j-th component of the corresponding force.  For 

example, 21 , 22  and 23  are the components of the force acting on a surface 

element that is perpendicular to the axis 2x , see Figure 2-1.  

 

Figure 2-1 Introduction of the components of the stress tensor and the 
coordinate system 

x2 

x1 

x3 

σ22 

σ21 

σ23 
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 The stress tensor  and the strain tensor   satisfy a stress-strain relation known 

as the Hooke’s law in a linear elastic medium, defined as follows, 
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    Equation (2-2) 

where ijklc  is the fourth-order viscoelastic Hooke’s tensor and the repeated latin 

indexes are summed according to Einstein’s sum convention. The general elastic 

Hooke’s tensor has 8134   components, but the number of independent elastic 

coefficients can be reduced to 21 for an arbitrary anisotropic medium [1]. 

The strain tensor ij is defined by, 
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For an isotropic, elastic medium ( ijklc  is invariant with respect to rotation) which 

has the same elastic properties in all directions, the elasticity is characterized by two 

elastic coefficients which can be represented by the Lamé parameters λ(x) and μ(x).  

The Hooke’s law for an isotropic medium then takes the form as follows, 

 ,c jkiljlikklijijkl     Equation (2-3) 

where δij is the Kronecker delta. The coefficient μ(x) is the stress modulus that is the 

measure of the resistance of the material to stress but the coefficient λ(x) has no 

immediate physical interpretation. In this case, a complete description of the material 

properties is given by )(),(),( xxx  . Another equivalent parameterization, that is 

adopted in this study, is  )(),(v),(v sp xxx   where )(vp x , )(vs x  denote the wave 



37 

 

speeds of the P and S waves, and )(x  denotes the soil density. The two set of 

parameters are related as follow, 

,v p
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        

Substitution of Equation (2-3) into Equation (2-2) gives the stress-displacement 

equation 

   .uuu ijjikkijij     Equation (2-4) 
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Combination of Equation (2-4) into the Newton’s equation of motion Equation (2-1) 

gives the elastic wave equation for particle displacement (Navier equation), 
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The Navier equation can be expressed in the vector form as follows 
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where  is the vector operator  321 ,, xxx   and 2 is the scalar operator 
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 . The Navier equation completely specifies all the seismic waves in 

an isotropic, purely elastic system. The system is linear as there is no higher order 

term in the displacement vector u, and  and 2 are linear operators. The Navier 

equation can be applied directly to solve for synthetic seismograms.  

 

From the Navier equation, one can also derive two special forms of the equation of 

motion for a homogeneous isotropic medium, known as the wave equations. Here, 

the body force f is neglected. Applying the divergence operator to the Navier 

equation and we arrive at a scalar wave equation for the acoustic potential or volume 

dilatation 
3

3

2

2

1

1

x
u

x
u

x
u













 u , 

 
 ,

vt
p

u
u




 2

22

2 1
    Equation (2-7) 

where )(xpv  denotes the velocity of propagation of dilatation changes (longitudinal 

waves, compressional waves)  such that 


 2
pv .  

Applying the curl operator to Navier equation and we arrive at vector wave equation,  
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where 



sv  is the velocity of the propagation of distortion changes (transverse 

waves, shear waves) .The operator is defined as follows, 
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It follows from Equations (2-8) and (2-9) that two types of elastic waves can 

propagate in a homogeneous elastic medium. These two types of elastic waves are 

namely the longitudinal compressional wave (P-wave) and the transverse shear 

waves (S-wave). The superposition of the P and S waves produces surface waves 

that also propagate in the elastic medium, see Aki and Richards [1]. There are two 

types of surface waves, namely the Rayleigh wave (R-wave) and Love wave (L-

wave).  

In a transversely isotropic Earth (e.g. the horizontally stratified elastic medium 

assumed in this study), the wave speed of Rayleigh wave is a function of the 

compressional, and vertically polarized shear wave speeds. The direction of the 

Rayleigh wave displacement is a combination of compressional and vertically 

polarized shear displacement. The wave speed of the Love wave in a transversely 

isotropic Earth depends primarily on the horizontally polarized shear wave speed. 

Moreover the displacement of the Love wave is parallel to the displacement 

associated with a horizontally polarized shear wave. In a transversely isotropic 

media, both types of surface waves exhibit a dispersion nature, i.e. their wave 

speeds depends on frequency. In this thesis, we are mainly concerned with the R-

waves as the seismic source is a surface source generating mostly R-waves, and 

also the selected seismic sensors are vertical component geophones measuring the 

vertical ground vibrations, being related to the R-wave. 
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2.2 Methods for Computing Synthetic Seismograms 

Finite difference (FD) [2-5], finite-element (FEM) [6-7], and ray-tracing [9-10] 

are among the main methods applied for the computation of seismic wavefields.  

FD and FEM methods give complete solution of the wave equation, where 

accuracy of solution is related to the discretization of the elastic continuum by a 

discrete set of grid points or model elements to approximate the differentials in the 

Navier equation. In this thesis, we implemented the Finite Difference Time Domain 

(FDTD) method that employs finite differences as approximations to both the spatial 

and temporal partial derivatives that appear in the Navier equation. The other 

seismic wavefield generation method implemented in the thesis is asymptotic ray 

tracing methods based on high frequency asymptotic.  Unlike FD and FEM, the 

calculation of ray-tracing methods is not performed directly in terms of the spatial 

coordinates of the ground medium. The wave-field is considered as an ensemble of 

rays in the high frequency approximation such that each ray is parameterized by a 

travel time and an amplitude function. As an example, the seismic wave-field is given 

as a sum of pre-specified events, such as, a sum of the primary reflected P-waves 

from a set of selected reflectors in the ground model. 

2.2.1 Finite Difference Modelling 

Consider the Cartesian representation of the elastic wave equation (refer to 

Equation (2-5) which is formulated in the 2D coordinate (x1, x2) as follow, 
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and a similar equation for 
2xu displacement with an exchange of x1 and x2. 
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2.2.1.1 FDTD Equations 

In the FDTD calculations, the partial differential operators in the elastic wave 

equations are expressed via 2nd order finite differential expansion in space and time 

respectively. In this thesis, we applied the 2D FDTD numerical algorithm from the 

CREWES numerical software [34]. The method keeps track only of the displacement 

of seismic wavefield and provides the output of the x1 and x2 displacements for each 

time step. The numerical algorithm applies the differential equation for the 

displacement 
1xu  (Equation 2-10) directly for calculation at each time step. This is 

done through applying the finite difference representation to the components of 

Equation (2-10) and implementing a staggered grid (see Figure 2-2) for displacement 

representation in which the velocities and stresses are computed at different grid 

points, offset by half a grid length in both x1 and x2 illustrated by Figure 2-2. The error 

in this approximation is smaller because the sampling interval has been halved. 

 

Figure 2-2 The staggered grid for displacement representation [34] . Similarly we 
can replace the same calculations for the x2 displacement at the next time step with 

the components rotated 90 degrees. 
 

2xu  

1xu
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2.2.1.2 Initial Conditions 

The elastic ground medium is in equilibrium at time t = 0, i.e., stress and 

displacement are set to zero everywhere in the medium. 

2.2.1.3 Boundary Conditions 

The internal interfaces within the elastic ground medium are represented in terms 

of the changes of elastic wave speeds and density in a horizontally stratified medium 

assumed in this thesis. The explicit boundary conditions are imposed on the four 

edges of the finite-sized vertical grid where the FDTD calculations are performed. 

Different boundary conditions can be defined dependent on the problem to 

investigate. In the FDTD calculations performed in this thesis, the boundary 

conditions on the edges of the stratified soil layer model (excluding the source) are 

defined as followed; a free surface at z=0, a mirror surface at offset x=0, a 

transparent boundary at the right side, and a rigid bottom. The free surface boundary 

condition at z=0 simulates a real seismic experiment under flat topography and allow 

R-waves to be simulated. The mirror surface at offset x=0 act as if there is a 

continued geological model anti-symmetric about the zero x axis. The bottom is 

modelled as a rigid boundary and therefore a strong reflector. In our case where 

these reflections are not wanted, we introduce a large value for the depth of the final 

ground layer.   



43 

 

2.2.1.4 Source Excitation 

  The source is modelled with forcing input to the Navier wave equation using a 

Ricker1 wavelet with a mean spectral energy density at 0.5 Hz, and a spatial delta 

function.  

2.2.2 Ray Theory and the Eikonal Equations 

Ray theory is only strictly valid for medium where length scale variations of the 

Lamé parameters are much larger than the seismic wavelength. This is known as the 

high frequency assumption. At low frequencies, diffraction and scattering can be 

significant such that ray theory is generally not valid. In the implementation of the ray 

theory method, the seismic wave-field is considered as an ensemble of rays in the 

high frequency approximation such that each ray is parameterized by a travel time 

and an amplitude function. Thus solving the elastic wave equations, with substitution 

of the travelling wave expression for displacement u into the elastic wave equations, 

is reduced to solving for the travel times and amplitude functions. The travelling 

wave expression for displacement u is given as follows, 

  srsrr xxxxx ;(exp);(),( TtiAtu     Equation (2-11) 

where );( sr xxA  denotes the wave amplitudes, and );( sT xxr  is a phase function 

which describes the arbitrary distribution in space of a surface of constant phase. 

The notations rx  and sx  denote the position vectors of the seismic receiver and the 

source respectively.  

 

                                                           
1
Ricker wavelets are zero-phase wavelets with a central peak and two smaller side-lobes. A Ricker wavelet is 

uniquely defined in terms of its peak frequency given as    222222 exp21)( tftftr   . Ricker wavelet is 

commonly used by geophysicists to generate synthetic seismograms. 
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Consider the propagation of P-waves (refer to Equation (2-7)) given as 
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   Equation (2-12) 

where  represents the scalar potential of a P-wave and )(xpv  denotes the velocity 

of propagation of dilatation changes (compressional waves). Substitution of Equation 

(2-11) into (2-12) leads to the following, 
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The Eikonal equation is derived from the real part by dividing through by 2A  and 

taking the high frequency approximation yielding the expression as follow: 
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Equation (2-14) models the kinematic propagation of the high frequency waves and 

solving it leads to estimation of the phase function );( sT xxr  of the ray solution. The 

Transport equation is derived by dividing through by   the imaginary part of 

Equation (2-13). The Transport equation is used for computation of the wave 

amplitude );( sr xxA .Similar substitution into the S-wave vector potential described by 

Equation (2-8) leads to identical expressions for eikonal and transport equations.          
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2.3 Seismic Localization of Subsurface Structures 

The principal task is to locate a subsurface structure in an elastic medium using 

the scatterings from a subsurface structure recorded by an array of seismic sensors 

on the ground surface. This thesis considers a tunnel as the subsurface structure of 

interest to locate in the problem. 

The geometry of the problem is shown in Figure 2-3. The environment consists of 

an elastic bottom half-space with air in the upper half space. There is a tunnel 

present in the bottom half space as shown in Figure 2-3. The medium inside the 

tunnel is air. To represent the active scenario, there is a source on the surface that 

generates seismic waves that will travel through the elastic medium to interact with 

the tunnel. The seismic sensors to detect the seismic sensors are placed on the 

ground surface that perpendicular to the tunnel to represent a 2D problem. The 

source is a weight generating an impulse.  

 

Figure 2-3 A general scenario representing the problem of seismic localization of 
subsurface structure 
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2.4 Seismic Beamforming Methods 

2.4.1 Summary of work done in Seismic beamforming in the Literatures 

The basic principle of beamforming techniques [11] for localization consists of 

first computing the relative time difference of arrivals to the signals recorded at the 

seismic array in order to correct for the non-coincidence arrival of the seismic waves 

at the different seismic sensors, and then averaging the energy of the seismic 

signals. The position of the seismic source is computed from the averaged 

beamformed output corresponding to the position where a peak in the beamformer 

power occurs.  The time delays are defined by the physical model, which is 

described by a signal model represented by the elastic wave equation, and by the 

model parameters that include subsurface geology, position of seismic sensors & 

source.  

In [12], the authors apply the sum-delay beamforming technique to noisy seismic 

refraction data. The time delays are calculated from the travel time curve for the 

different refraction segments corresponding to the each soil layer (see Figure 1-1). In 

[13], the sum-delay beamformer was first tested using synthetic seismic reflection 

data from shots in a borehole to a linear array on the ground surface, and the 

earthquake data recorded with a broadband three-component array. A three-

component array is an array of three-component geophones that measure the 

seismic waves along the three orthogonal directions of the x, y, z axes.  

In [14], Lacosse et al. applied a frequency domain beamformer, namely the 

frequency-wavenumber analysis (F-K) for analysing the wave speeds and frequency 

properties of seismic waves. The F-K beamformer performed a search on a dense 

wavenumber grid for each frequency for estimation of both the seismic source 
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location and the seismic wave speed corresponding to maximum F-K beamformer 

power. The F-K analysis is used mostly for analyzing the dispersive R-wave 

propagation in the elastic ground medium [15-16]. 

2.4.2 Sum-Delay Beamformer 

The sum-delay beamformer is one of the simplest beamforming algorithm. It 

works by assuming that the signals recorded by the seismic array comprises of one 

type of elastic wave with wave speed v.  The seismic sensor j records the time series 

)(tx j  as 

  ),t(nts)t(x jjj      Equation (2-15) 

where j denotes the time for the elastic wave to propagate from the seismic source 

to the sensor, and  jts   denotes the delayed seismic velocity signal. The notation 

)(tn j  denotes the measurement noise. 

Assume that the tunnel is located at ),( ss zx , and we can write j  as, 

),z,x()z,x( ssjssj  0   

where ),(0 ss zx  denotes the time it takes for the elastic wave to travel from the 

seismic source to the tunnel location, and ),( ssj zx  denotes the time for the elastic 

scatterings from the tunnel to reach seismic sensor j. 

In the sum-delay beamformer, a search space is considered where the tunnel is 

assumed to be located. For each assumed location of the tunnel at ),( zx , the 

algorithm computes the times of arrival j  for all sensors in the array and perform 

time-shifting as follows,  
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 .tx)t(x jj

~

j       Equation (2-16) 

The beamforming power of the time-shifted signals for the seismic array comprising 

of M sensors is then computed as follows,   
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The location of the tunnel is subsequently derived from the location ),( zx  where the 

peak in the beamforming power occurs.  

2.4.3 Frequency-Wavenumber (F-K) Beamformer 

A frequency-wavenumber (F-K) beamformer simultaneously calculates the 

beamformer power distributed among different slowness vector s  for a fixed 

frequency of the seismic signal. The slowness vector is dependent on the azimuth 

angle  (see Figure 2-4) and the wave speed v  as follow, 
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The slowness vector s is also related to the wavenumber vector k as follow, 
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Figure 2-4 A general scenario representing the F-K beamforming problem 

 

The first step of the F-K beamformer is a filtering process to transform the signals 

to a narrowband signal. Let fo denotes the center frequency of the filtered signal. The 

F-K beamforming computes the time shifts for all plausible combinations of wave 

speed v  and azimuth angle   for the seismic array, and then summed up the time-

shifted seismic array signal to find the best  ,v  parameter combination that gives 

the highest amplitude of the summed signals. From this, the position of the tunnel 

can be estimated. 

 

2.5 Seismic Inversion 

Generally stated, inverse problems are concerned with determining causes for a 

desired or observed effect (Engl, Hankel and Neuber [17]). The opposite problem is 

finding the effect of a cause, also known as the forward modelling problem.  

2.5.1 Summary of work done in Seismic Inversion in the Literatures 

The scenario of a typical seismic inversion problem [18] is described as follow. A 

seismic source at known location excites the ground surface producing a seismic 

θ 
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wave that travels through the soil, interacting with the subsurface, and the waves 

reflected from the subsurface are recorded by an array of seismic sensors on the 

ground surface. The calculation of the synthetic seismic data for a known ground 

model is called the seismic forward modelling problem, while seismic inversion is 

concerned with finding material elastic properties of the ground model from the 

recorded data. 

The seismic inversion problem of finding the elastic material properties (P, S 

wave speeds and soil densities) of the ground is a large scale optimization problem 

involving a large set of parameters depending on the discretization of the ground. 

Most of the recent real-data case studies of seismic full wave inversion have 

been performed at acoustic isotropic approximation, considering only the P-wave 

velocities as the model parameter [19-26] to reduce the dimension of the unknowns 

so as to make the inversion better posed. 

A limited number of full waveform inversion of all the elastic parameters have 

been proposed. Tarantola [27] recommends inversion first for P-wave speeds, 

second for S-wave speeds, and finally for density. This strategy is generally suitable 

if the footprint of the S-wave velocity structure on the seismic wavefield is small. In 

their paper [28], Brossier et al conclude that joint inversion for the P and S wave 

speeds is necessary for inversion of land data involving both body waves and 

surface waves. The presence of the high amplitude surface waves require inversion 

of the S wave speeds with the P wave speeds. Another recent application of elastic 

full wave inversion to a gas field is presented in [29]. The authors invert the Lamé 

parameters and image the Poisson’s ratio anomalies associated with presence of 

gas.  
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2.5.2 Formulation of the Inversion Problem for Tunnel Localization 

In our study, we are interested to infer from the seismic measurements both the 

material elastic properties and information about presence of the tunnel such as its 

location.  

Hence we formulate the seismic inversion problem as follow. To determine from 

the seismic observational data measured by an array of seismic sensors on the 

ground surface an unknown parameter vector m(x) ,   sssp zxvv ,),(),(),( xxxm(x)   

and 
Nm(x)   

The ground is modelled as a horizontally stratified medium comprising of K soil 

layers. The model parameter dimension can be calculated as 23  KN . In this 

study, we adopt a five layer soil structure which leads to a search space of 

dimension 17N  that is also considered as a large scale optimization problem in the 

inversion process. In Chapter 5 of this dissertation, we have proposed a reduced 

modelling scheme with a ground model to reduce the search dimension for the 

ground elastic parameters. 

2.5.3 Forward Modelling 

The forward model is the calculation of the synthetic seismogram comprising of 

the scatterings (reflections, diffraction waves) from the tunnel, given that the seismic 

source signature and the ground model are known. The tunnel investigated in the 

study is of diameter 3 m with height 3 m. It is made of concrete and filled with air 

cavity. Researchers using seismic techniques for cavity detection apply the presence 

of three phenomena for evidence of a cavity: free oscillations or resonance of the 

cavity walls, anomalous amplitude attenuations, and delay of arrival times [30-33]. 
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The cavity with the thick concrete walls can be assumed to act as a point source that 

will cause the seismic waves impinge on it be reflected, and the scatterings are then 

recorded by the sensors deployed on the ground surface.  

We introduced the forward model to model the scatterings (reflections & 

diffractions) from the complex tunnel structure as follow. Assume that a source is 

located at the tunnel location  ss zx ,  and the ground is described by a horizontally 

stratified medium. Apply the 2D FDTD method to solve the Navier equation to 

generate the elastic particle displacement measured by an array of seismic sensors 

placed on the ground surface. 

2.5.4 Classical Inversion 

The discretized seismic data recorded by an array of M seismic sensors on the 

ground surface is given by, 

,)(gobs nmd       Equation (2-20) 

where g is a nonlinear forward modelling operator and n is the error term. The error 

terms models the random ambient noise and the system errors. There is no explicit 

expression for the forward modelling operator in this case. However it can be 

implemented numerically by solving the Navier wave equation using the FDTD 

method (see Section 2.2.1). 

The deterministic inverse problem is interested to estimate m  from obsd  by 

minimizing the misfit between the forward model predictions )(mg and the observed 

data obsd  in the W-norm. 
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where MM W is a matrix.  For most deterministic inversion algorithms, the 

matrix W is generally defined as the identity matrix. Equation (2-21) is subsequently 

solved by  interative local search methods such as steepest descent, conjugated 

gradients, Gauss-Newton or the Levenberg-Marquard methods [36]. However a 

problem with these local search techniques is that the search could be trapped in 

local optima due to the non-convex nature of the objective function defined by 

Equation (2-21). Possible ways around this problem is to apply global search 

strategy such as simulated annealing [37], and genetic algorithms [38]. Both the local 

and global optimization methods only provide a point estimate of the solution and do 

not provide uncertainty analysis for the solutions obtained. Whereas, the Bayesian 

inversion algorithm which allows incorporation of the probabilistic models for the 

signal and noise will provide both the point MAP estimate and the posterior statistical 

information such as the mean and variance. 

The deterministic inverse objective function defined by Equation (2-21) is often 

compared and related to the maximum likelihood function. If the error terms n is 

assumed to be zero-mean Gaussian with covariance Cnoise, the maximum likelihood 

solution is defined by minimizing the following expression, 

   ,)(g)(g)E( obsnoiseobs dmCdmm  1

2

1
  Equation (2-22) 
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which is identical to the weighted least squares expression described Equation (2-

21) where the weighting matrix W is given by the inverse of the noise covariance 

matrix. 

2.5.5 Bayesian Inversion 

Inverse problems are usually ill-posed where many different choices of model 

parameters may be consistent with the data. One reason for the non-uniqueness is 

the uncertainty in both the measurements and the model. The classicial inversion 

algorithms described in the previous section only estimate the “best” parameter 

values that fit the data. However we are interested in not just getting the point 

estimate of the best-fit parameters but also to obtain a complete statistical 

description of the model parameter values. The Bayesian method is able to do so by 

formulating the inverse problem as a statistical inference framework, incorporating 

uncertainties in the measurements & forward model, and prior information on the 

model parameters. The solution of the Bayesian inversion method is the posterior 

joint probability density function of the parameters that contains the uncertainty level 

or degree of confidence of the estimated parameter values. 

The Bayes theorem expresses the posterior probability density of the model 

parameters given the data obsd  as the conditional probability given as, 

   
   
  

  
  

obs

obsprior

obsposterior
d

mdm
dmm




   .  Equation (2-23) 

)(prior m  is the prior probability density function for the model parameter m  which 

expresses the probability distribution of the model parameter before the data is 

observed. The probability density function  md  obs  defines a function of m known as 
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the likelihood function.  obsd  is the marginal density for the data obsd  and is written 

as follow, 

      .dm mmdd     obspriorobs    Equation (2-24) 

As  obsd  does not depend on the unknown m , it can be considered as a 

normalizing constant. Henceforth we can write Equation (2-24) into another form as 

follows, 

     ,m mdm    obspriorposterior     Equation (2-25) 

where the symbol   indicates proportionality. The complete solution for m is hence 

represented by the posterior distribution which also includes the uncertainty. The 

posterior solution for m  includes the posterior mean and the maximum posterior 

(MAP), while the uncertainty is described by the posterior covariance matrix. 

The conditional mean estimate is defined as  

     ,dt,z,x|E obsCM mdmmdmm   obs   Equation (2-26) 

where E is the expectation operator (which in Monte Carlo simulations can be 

realized as the arithmetic mean). 

The maximum posterior (MAP) solution which provides the point estimate for m  is 

defined as follows, 

   .t,z,xarg*

obs max dmm
m

    Equation (2-27) 
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The uncertainty of the model is described by the posterior covariance matrix 

calculated as follows, 

 
            mdmmmmmmmmmCm dtzxT

CMCM

T

CMCM   ,,E obs     
 

          Equation (2-28) 

The variances of the solution model given by the diagonal components of the 

covariance matrix provide a means for evaluating the quality of the solution to the 

inverse problem. 

2.5.6 Markov Chain Monte Carlo (MCMC) 

For a high dimension m  often encountered in seismic inversion problem, it is 

very time consuming to compute the posterior distribution for all possible 

combinations of m . The MCMC method provides a numerical algorithm to generate 

samples from the posterior distribution by simulating a Markov chain2.  The general 

idea of MCMC is to use the previous sample values to randomly generate the next 

sample value, generating a Markov chain (here the transition probabilities between 

sample values are only a function of the most recent previous value). In our 

example, the variables are the unknown parameter vector m . By generating 

successive values of the model variables jm , 1jm , 2jm …, using MCMC sampling 

method, it can be shown that the distribution of sj 'm when j is large is close to the 

posterior distribution. We may therefore say that for sufficiently large j, the random 

model variable sj 'm  is approximately the variable we are seeking. 

                                                           
2
 A Markov chain is a discrete-time stochastic process X1, X2, …, taking values in an arbitrary state space  that  

has the Markov property and stationary transition probabilities: 

 the conditional distribution of Xn given X1,…Xn-1 is the same as the conditional probability of  Xn  given 

Xn-1 only, and 

 the conditional distribution of Xn given Xn-1 does not depend on n.  
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In this study, we implement the Metropolis Hasting algorithm which was proposed 

by Metropolis et al [39], and later generalized by Hastings [40]. Each step of the 

Metropolis algorithm is made up of two interacting random steps. The first step was a 

Monte Carlo simulation step to generate the model parameter set. The second step 

was accepting or rejecting the model parameter set proposed by the Monte Carlo 

simulation step, using an acceptance probability derived from the data noise 

distribution and the forward model.  

Figure 2-5 describes the Metropolis Hasting sampling scheme while the pseudo-

code of the Metropolis Hasting algorithm can be written as follow,  

 At each step, vary one component of the parameter vector Rm  generated 

from prior distribution  Rmq  

 Compute 
md using the forward model. 

 Compute the acceptance probability
 
 )(

)(

cur

posterior

pro

posterior

accP
m

m




 , )( pro

m  is the 

proposed variable, and )(cur
m  is the current variable value. The parameters 

are changed at each step by random selection from a uniform probability 

density function.  

 Accept the changes to )( pro
m  if   rand1,min accP ;  
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Figure 2-5 Metropolis Hasting sampling scheme:  

Sample a candidate )( pro
m and a variable u from uniform distribution. 

Accept the candidate sample if     )()( pro

posterior

cur

posterior u mm  , 

otherwise reject it.  
The red pdf curve is the converged posterior pdf curve after multiple 

iterations of the Monte Carlo Metropolis Hasting sampling, while the blue 
pdf curve is the initial posterior pdf curve. 

 
 

2.5.7 Simulated Annealing 

Simulated annealing is a probabilistic approach proposed in Kirkpatrick, Gelett 

and Vecchi (1983) and Cerny (1985) for finding the global minimum of a cost 

function that may possess several local minima. It originates from a physical process 

whereby a solid is slowly cooled so that when eventually its structure is “frozen”, this 

happens at a minimum energy configuration. The cooling process is controlled by the 

temperature T such that the molecules are allowed to move freely at high 

temperatures and restricting their motion at low temperatures. 

The steps to implement the simulated annealing are described as follow [43]. 

 Consider decreasing series of temperatures T(t)  

 For each temperature, iterate these steps: 

 

Accept region 

Reject region 
 

 cur

posterior m  

 pro

posterior m  

  ucur

posterior  m  
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- Propose an update )1( j

Rm  of the unknown parameter and evaluate the 

optimization function )( )1( j

RF m  

- Accept updates that improve solution 

- Accept some updates that don’t improve solution. Acceptance 

probability depends on “temperature” parameter and is defined as 

follow,  







 )()( )()1( j

R

j

R FF
T(t)

mm
1

-exp  

- As T goes to zero, the values simulated from this distribution becomes 

more concentrated around a narrow neighbor-hood of F. 

 

2.6 Seismic Tunnel Experiments 

The principal objective of the experiment is the detection of unknown tunnels by 

seismic experiments involving active sources on the ground surface and geophone 

arrays.  

The experiment was performed as follows. The experiment was carried in 

Labrador park in Singapore to detect a heritage tunnel (see Figure 1-4). A geophone 

array is deployed along LINE 1 (see Figure 2-6), crossing the tunnel at 90 degrees. 

Figure 2-6 describes the topological information of the tunnel site. 

A geophysical survey for determining the compressional P-wave speed profile 

was carried out along LINE-01, LINE-2A and LINE-2B respectively. The seismic 

refraction method [44] widely used in engineering application is applied in the 

geophysical survey. The method measures the time it takes for a compressional 

sound wave generated by a sound source to travel down through the layers of the 

earth and back up to the geophones placed on the ground surface.  From the time-
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distance information, the compressional P-wave speed variations and depths to 

individual layers are calculated and modelled. The P-wave profile measured along 

LINE-01 which is the closest to the tunnel is applied for the inversion processing in 

the later chapters. The compressional wave profile for LINE-01 is displayed in Figure 

2-10 where it can be seen that the compressional wave travels faster with increasing 

soil depth. 

The seismic source is provided by a weight drop. A cylinder with a hemispherical 

end cap weighing 18 kg is designed to drop from a 1 m height to generate the 

seismic impact forcing on the ground surface. The support structure functions as a 

guide to ensure that the weight will not tumble when it lands on the ground surface. 

In addition, soft rubber pads are added on the metal plate at the base of the support 

structure so as to ensure that the weight will generate one main broadband seismic 

impulse function (see Figure 2-11) with minimum spurious re-bounce signals. The 

seismic sensors used for the experiment are the geophones (see Figure 2-12) which 

measures particle velocity of ground motion. In the experiment, two vertical 

component GS11D geophones are deployed which are capable of recording seismic 

vibration along the vertical component in the 4.5 to 100 Hz range. The geophone 

resonant or natural frequency which determine the low-frequency limit of the reliable 

seismic measurement is 4.5 Hz The geophones are connected to the Brüel & Kjær 

32-bit, 4-channel digital recorder to digitize the measured seismic signals where the 

sampling frequency is fixed at 4096 Hz. 
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Figure 2-6 Location map of the geophone (LINE 1) relative to the tunnel and the 

survey lines. 
 

 

 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Estimated topographical information of tunnel trial site 

 

 

 

Figure 2-8 Seismic source (weight drop) used in the geophysical survey 
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Figure 2-9 Setup of survey line 1 for the geophysical measurement 

 

 

 

 

Figure 2-10 Compressional wave speed profile along LINE-01 located near tunnel 
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Figure 2-11 Seismic source, weight drop,  
(b) Spectrogram of the measured source function from weight drop.  

The signal is measured by an accelerometer mounted on the 18kg weight drop. 
 

 

 

(a)      (b)  

Figure 2-12 Seismic sensors and the acquisition system.  
(a) Vertical GS11D geophones, (b) Brüel & Kjǽr digital recorder 

 
 

(a) 

(b) 



65 

 

BIBLOGRAPHY 

 

1. K. Aki, P. G. Richards, “Quantitative Seismology, Second Edition,” (University 

Science Books, Sausalito, California, 2002). 

2. J. Virieux, “SH-wave propagation in heterogeneous media: Velocity-stress finite-

difference method,” Geophysics, 49, 1933-1942, 1984. 

3. J. Virieux, “P – SV wave propagation in heterogeneous media: Velocity-stress 

finite difference method,” Geophysics, 51, 889-901, 1986. 

4. A. R. Levander, “Fourth-order finite-difference P – SV seismograms,” 

Geophysics, 53, 1425-1436, 1988. 

5. J. Carione, D. Kosloff, R. Kosloff, “Viscoacoustic wave propagation simulation in 

the earth,” Geophysics, 53, 769-777, 1988. 

6. J. Lysmer, L. A. Drake, “A finite element method for seismology,” in B. Aider, B. 

S. Fernback, and B. A. Bolt, Eds., Methods in computational physics 11, 

Seismology: Academic Press. 

7. K. J. Marfurt, “Seismic modeling: A frequency-domain finite element approach,” 

54th Ann. Internat. Mtg., Soc. Expl. Geophtsics., Expanded Abstracts, 1984. 

8. V. Červenŷ, I. Molotkov, II. Psencik, “Ray methods in seismology,” Uiniverzita 

Karlova, 1977. 

9. V. Červenŷ, “The application of ray tracing to the numerical modeling of seismic 

wavefields in complex structures,” in G. Dohr, Ed., Seismic Shear Waves, Part A: 

Theory. 

10. J. Virieux, G. Lambaré, “Theory and observations – body waves: ray methods 

and finite frequency effects,” in B. Romanovitz & A. Diewonski (eds), Treatise of 

Geophysics, Volume 1: Seismology and structure of the Earth, Elsevier. 



66 

 

11. S. Rost, C. Thomas, “Array seismology: Methods and Applications,” Review of 

Geophysics, 40(3), 2-1 to 2-27, 2002. 

12. A. J. Ogah, A. D. Chinedu, “The beam-forming technique for enhancement of 

noisy seismic refraction data,” International Journal of Geoscience, 3, 866-871, 

2012. 

13. W. Mao, D. Gubbina, “Simultaneous determination of time delays and stacking 

weights in seismic array beamforming,” Geophysics, 60(2), 491-502, 1995. 

14. R. T. Lacoss, E. J. Kelly, M. N. Toksov, “Estimation of seismic noise structure 

using arrays,” Geophysics, 34, 21-38, 1969. 

15.  S. R. Cinras, J. J. G-Merino, P. Alfaro, J. R-Herranz, “Optimizing the number of 

stations in array measurements: Experimental outcomes for different array 

geometries and the f-k method,” Journal of Applied Geophysics, 102, 96-133, 

2014. 

16. S. Foti, R. Lancellotta, L. Sambuelli, L. V. Socco, “Notes on fk analysis of surface 

waves,” ANNALI DI GEOFISICA, 43(6), 1199-1209, 2000. 

17. H. W. Engl, M. Hanke, A. Neubauer, “Regularization of Inverse Problems,” 

(Kluwer Academic Publisher, Netherlands, 2000), Chap.1. 

18. N. Bleistein, J. K. Cohen, J. W. Stockwell, Jr., “Mathematics of multidimensional 

seismic imaging, migration and inversion,” (Springer-Verlag, New York, 2001). 

19. J. X. Dessa, G. Pascal, “Combined traveltime and frequency domain seismic 

waveform inversion: A case study on multi-offset ultrasonic data,” Geophysical 

Journal International, 154, 117-113, 2003. 

20. C. Ravaut, S. Operto, L. Improta, J. Virieux, A. Herrero, P. Dell’ Aversana, “Multi-

scale imaging of complex structures from multi-fold wide-aperture seismic data by 



67 

 

frequency-domain full-wavefield inversions: Application to a thrust belt,” 

Geophysical Journal International, 159, 1032-1056, 2004. 

21. C. Chironi, J. V. Morgan, M. R. Warner, “Imaging of intrabasalt and subbasalt 

structure with full wavefield seismic tomography,” Journal of Geophysical 

Research, 11, B05313, doi:10.1029/2004JB003593, 2006. 

22. F. Gao, A. R. Levander, R. G. Pratt, C. A. Zelt, G. L. Fradelizio, “Waveform 

tomography at a groundwater contamination site: Surface reflection data,” 

Geophysics, 72(5), G45-G55, 2006. 

23.  F. Gao, A. R. Levander, R. G. Pratt, C. A. Zelt, G. L. Fradelizio, “Waveform 

tomography at a groundwater contamination site: VSP-surface data set,” 

Geophysics, 71(1), H1-H11, 2006. 

24. F. Bleibinhaus, J. A. Hole, T. Ryberg, G. S. Fuis, “Structure of the California 

Coast Ranges and San Andreas fault at SAFOD from seismic waveform 

inversion and reflection imaging,” Journal of Geophysical Research, doi: 

10.1029/2006JB004611, 2007. 

25. K. Ellefsen, “A comparison phase inversion and traveltime tomography for 

processing of near-surface refraction traveltimes,” Geophysics, 74, WCB11-

WCB24, 2009. 

26. C. Shin, Y. H. Cha, “Waveform inversion in the Laplace-Fourier domain,” 

Geophysical Journal International, 173, 922-931, 2009. 

27. A. Tarantola, “A strategy for nonlinear inversion of seismic reflection data,” 

Geophysics, 51, 1893-1903. 

28. R. Brossier, S. Operto, J. Virieux, “Seismic imaging of complex structures by 2D 

elastic frequency-domain full wave inversion,” Geophysics, 74(6), WCC105-

WCC118, 2009. 



68 

 

29. Y. Shi, W. Zhao, H. Cao, “Nonlinear process control of wave equation inversion 

and its application in the detection of gas,” Geophysics, 71(4), R9-R18,2007. 

30. J. C. Cook, “Seismic mapping of underground cavities using reflection 

amplitudes,” Geophysics, 30(4), 527-538, 1965. 

31. W. Fisher, “Detection of abandoned underground coal mines by geophysical 

methods,” USEPA Water Pollution Control Res. Ser., Project 14010EHN, 94 

pages. 

32. J. S. Watkins, R.H. Dodson, K. Watson, “Seismic detection of near-surface 

cavities,” U. S. Geological Survey, Professional Paper 599-A, 12 pages. 

33. R. Miller, C. B. Park, J. Ivanov, D. W. Steeples, N. Ryden, R. F. Ballard, J. L. 

Llopis, T. S. Anderson, M. L. Moran, S. A. Ketcham, “Tunnel Detection Using 

Seismic Methods,” in Proc. American Geophysical Union Meeting, Baltimore MD, 

2007. NS21A-07. 

34. P. M. Manning, G. F. Margrave, “Elastic wave finite difference modeling as a 

practical exploration tool,” CREWES Research Report, Vol. 10, 18-1 to 18-16, 

1998. 

35. P. M. Sheary, “Introduction to Seismology, Second Edition,” (Cambridge 

University Press, New York, 2009). 

36. L. R. Lines, S. Treitel, “Tutorial: A review of least-squares inversion and its 

application to geophysical problems,” Geophys. Prosp., 32, 159-186, 1984. 

37. S. C. Kirkpatrick, D. Gelatt, M. O. Vecchi, “Optimization by simulated annealing,” 

Science, 220, 671-780,1983. 

38. D. E. Goldberg, “Genetic algorithms in search, optimization and machine 

learning,” Addison-Wesley, 1989. 



69 

 

39. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, 

“Equation of state calculations by fast computing machines,” J. Che. Phys., 1, 

1087-1092, 1953. 

40. W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their 

applications,” Biometrika, 57, 97-109, 1970. 

41. S. Kirkpatrick, C. D. Gelett, M. P. Vecchi, “Optimization by simulated annealing,” 

Science, 220, 621-630, 1983. 

42. V. Cerny, “A thermodynamic approach to the travelling salesman problem: An 

efficient simulation,” J. Optim. Theory Appl., 45, 41-51, 1985. 

43. B. Dimitris, J. Tsitsiklis, “Simulated Annealing,” Statistical Science, 8(1), 10-15, 

1983. 

44. M. B. Dobrin, “Introduction to Geophysical Prospecting,” McGraw-Hill Book 

Company, Inc., New York, Second Edition, 1960. 

 

 

 

 

  



70 

 

 

CHAPTER 3 

INVESTIGATION OF MODEL BASED BEAMFORMING AND 

BAYESIAN INVERSION SIGNAL PROCESSING METHODS FOR 

SEISMIC LOCALIZATION OF UNDERGROUND SOURCES 

 

There are various detection technologies available that can be used to detect the 

presence of, e.g., underground tunnels through detection of anomalies in the 

physical properties of the subsurface ground layer. These techniques involve 

measurement of properties of the subsurface that include seismic wave, electrical 

resistivity, and gravitational field. We shall consider the seismic methods in this 

present paper. 

Seismic methods comprise of active and passive seismic detection 

methodologies. The active method works in the same way as seismic survey 

commonly used in oil and gas exploration industry. A seismic source such as a 

sledgehammer is used to generate seismic waves through the ground, sensed by an 

array of seismic sensors on the ground surface, and recorded by the digital device. 

The recorded seismic signals are subsequently processed to provide ground soil 

velocity properties and/or other soil properties. This method is also used to detect 

the underground inhomogeneity such as tunnels. Passive seismic sources, such as 

those from nature or from the underground facilities can also be exploited for seismic 



71 

 

survey. The passive method looks at the detection of seismic activities present in the 

underground facilities e.g. tunnel digging, footsteps and generators.  

In this chapter paper, we focus on the active seismic detection method [1-9] that 

exploits mechanical properties of underground structure and subsurface soil layer. 

To detect subsurface structures, a source at known location excites the ground 

surface producing a seismic wave that travels through the soil to interact with the 

underground objects. The elastic waves propagating back to the ground surface are 

recorded by a geophone array. The recorded seismic signals are further processed 

for location estimation of the underground tunnel in the soil. 

There are three types of elastic waves propagating in the ground, namely the two 

types of body waves, namely compressional wave (P-wave) and shear wave (S-

wave), and the surface wave (R-wave). To solve the source estimation problem in 

the elastic medium, one way is to simplify the elastic wavefield model by 

concentrating only on one class of the elastic waves. Refs. 1-4 assumed a diffraction 

model and define a ray model for the diffracted P-wave for calculation of its arrival 

time at the seismic sensors on the ground surface. This method works well for 

propagation of high frequency reflected P-wave to the ground surface. In Refs. 5-9, 

the authors concentrate on detecting and processing the dispersive surface waves 

traveling in the layered ground medium. The surface wave model is a simplification 

of the elastic wave-field propagating in a layered medium that works based on the 

assumption that the surface waves carry most energy.  Frequency domain technique 

is used for processing the seismic signals as wave speeds of surface waves vary 

with frequency. The seismic data are first filtered in the wavenumber domain so that 

the filtered wave contains only the reflected waves from the underground structure. 
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The source location is then obtained by further windowing in the time around the 

arrival times of the reflected signal and performing averaging on the multichannel 

seismic recordings.  

In the Refs.1-9, the authors apply a P-wave acoustic model or a dispersive 

surface wave model to the received signal, and apply the time-delay processing 

technique and frequency-wavenumber processing to determine the location of the 

underground tunnel, depending on their underlying assumption imposed on the 

seismic signal recorded on the ground surface. In this paper, we define two physical 

models for describing the seismic signals as follow, Physical Model I: Acoustic 

approximation and ray tracing; Physical Model II: Finite Difference Time Domain 

(FDTD) 3D elastic wave model, and apply two post processing techniques of 

Beamforming and Bayesian Inversion, to solve the underground tunnel estimation 

problem. Two variants each from the two categories of post processing techniques 

dependent on the two described physical models will be developed and 

implemented, giving in total four comparisons. The main objective for this paper is to 

integrate the wave-field modeling with the appropriate estimation algorithm to 

compare their performance in order to assess the different limitations of the physical 

model used. 

Model I, the acoustic ray tracing [10] applies a high frequency approximation (i.e. 

assume that the length scale changes of the ground medium is large as compared to 

the seismic signal wavelength) such that ray theory holds. Under the high frequency 

approximation, the P and S waves can be treated separately. We assume negligible 

S-waves, and use ray theory to track the acoustic wave-front of the P wave. Model II, 

the FDTD, makes no such simplification on the elastic wave-field modeling, 
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considering all the body waves (P & S waves) and the surface waves. We apply 

finite difference modeling as it allows the modeling of surface waves for which ray 

tracing cannot be used. Both physical model I [11-18] and physical model II [19-27] 

have been used extensively by researchers as well as describing seismic 

measurements and applied to inversion problems in seismic problems primarily to 

recover elastic structures of the ground, such as sound speeds and density.  

As indicated above, for both the physical models described, we will apply two 

different groups of signal processing methods.  

The first group of methods falls under the category of beamforming algorithms. It 

works by computing the travel times of the seismic waves from the sources to the 

receivers’ positions, and then applying beam-forming algorithms to perform spatially 

filtering to generate images containing the source locations.  The computation of the 

travel times is dependent on the physical models assumed. For Model I, we apply 

the finite difference (FD) eikonal equation solver to the time-domain signal directly for 

estimation of the travel times. For Model II, we filter the time-domain signal in the 

wavenumber domain before applying the FD Eikonal equation solver. 

The second group of methods is the inversion methodology [28] where the 

unknown model parameters are defined as the locations of the underground 

structures. We apply the Bayesian [29] inversion methodologies developed for both 

the linearized and nonlinear inverse scattering for source location estimation through 

incorporating physical models I & II. One advantage of the Bayesian method over the 

beamforming method is the quantification of uncertainty of the seismic data 

collected. Geophysical measurements are often strongly affected by noise and 

measurement uncertainty, and the subsurface elastic model that is derived from 
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geophysical survey measurements may also be highly uncertain. Bayesian setting 

allows one to incorporate prior information about any models with the information in 

the measured data. The outcome of Bayesian inversion is the posterior distribution 

which provides most probable solution based on the corresponding uncertainty.  

The outline of the chapter is described as follows. Section 3.1 present the 

methodologies that include the physical models, algorithms and the seismic 

measurement setup of underground tunnel location problems. Section 3.2 contains 

the results of  applying the algorithms to data collected in the field for the scenario 

with an underground tunnel, and noise clutter. Section 3.3 presents the discussions 

of the four proposed location methodologies, including findings found in the 

literature. Finally we conclude the findings in Section 3.4. 

 

3.1 Methodology 

Contrary to conventional techniques that assume a physical elastic wave-field 

model of either surface waves or P-waves, we propose two other physical models 

indicated above and explained in more details below. Model I is acoustic ray tracing 

assuming that the reflected waves from the underground source are primarily 

composed of P-waves. Model II is the FDTD solution of the elastic wave equation 

that models both the body (P & S waves) and the surface R waves. For both physical 

models, we solve the localization problem using the beamforming and Bayesian 

inversion methods. For Model I, we apply the Delay-and-Sum (DAS) beamforming 

method, and the 2D acoustic full waveform Bayesian inversion technique. And for 

Model II, we propose the frequency-wavenumber (F-K) beamformer, and the 2D 

elastic full waveform Bayesian inversion technique. 
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3.1.1 Physical Models 

In this section, we present the detailed description of the two physical models. 

First we assume that the ground is made up of horizontally stratified layers, and 

the elastic parameters of ground are known from measurements of a geophysical 

survey. Define ),( tu rx as the seismic signal recorded on the ground surface at 

position rx  due to a point impulsive force defined 

as 2

00  ,  where)()(),(  srss xxxxx tttf  . Here we consider the 2D problem, for 

example corresponding to an underground tunnel at location sx . 

3.1.1.1 Model I: Acoustic Approximations & Ray Theory 

For model I, only acoustic P-waves are considered. For a fixed source position, 

the signal measured at a receiver position, ),( tu rx , satisfies the inhomogeneous 

wave equation [11], 
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


  Equation (3-1) 

   

The wave speed profile )(xv of the subsurface is assumed as known and smooth, 

and the density variations are neglected. Further considering first order scatterings 

only, we can rewrite the received signal as follows [11],    

  ,;(tiexp);(A)t,(u srsrr xxxxx     Equation (3-2) 

where );( sr xx defines travel-time from source at position sx  to the receiver at 

position rx , and );( sr xxA  denotes the amplitude function.  
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The travel-time can be estimated by solving the Eikonal equation defined below 

as follows, 

2

2

)(

1
);( 




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


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x
xx sr

v
      Equation (3-3) 

The algorithm searches for first arrival travel-times, i.e., it assumes that there 

should be one ray connecting each source position sx  to each receiver position rx  

(geometric optics assumption). In this paper, we apply the FD Eikonal equation 

solver downloaded from the CREWES numerical software [32]. 

3.1.1.2 Model II: FDTD 3D Elastic Wave Model 

The propagation of seismic waves in Earth is modeled with the elastic wave 

equation [33] 
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x      Equation (3-4) 

which describes the displacement field u  at coordinate i (assumed to range from 1 to 

3 for the 3D x, y, and z directions), to the density )(x of the ground, the stress 

tensor , and an external force f provided by a point impulsive source. Each of the 

terms iu , ij and if is a function of position x and time.  

The stress tensor  and the strain tensor  satisfy a stress-strain relation defined 

as follows, 
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where ijklc  is the fourth-order viscoelastic Hooke’s tensor, and ij is the strain tensor 

defined by, 
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For an isotropic, elastic medium ( ijklc  is invariant with respect to rotation), the 

elasticity is determined by only two elastic parameters such that the Hooke’s tensor 

can be written in terms of the Lamé parameters λ(x) and μ(x) as follows, 

 .c jkiljlikklijijkl     Equation (3-5) 

δij is the Kronecker symbol. The readers can refer to Ref. 31 for detailed derivations. 

A complete description of the ground material properties for an isotropic elastic 

medium is thus given by )(),(),( xxx  . Another parameterization that is adopted 

in this paper is given by  )(),(),( xxx sp vv  where )(xpv and )(xsv  denote the wave 

speeds of the P and S waves. The two sets of parameters are related as follows, 
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Equation (4-4) can be formulated in 2D Cartesian coordinates as  
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 For solving the time dependent elastic wave partial differential equations, we 

apply FD modeling [35, 36]. For all the simulations in this paper, we apply the FDTD 

modeling for elastic waves solver from the CREWES numerical software [35]. The 

FD model consists of a spatial grid where at each node, various propagation 

parameters are specified for the ground material represented. In the paper, we adopt 

a horizontally stratified ground model, and the grid layout is simplified to comprising k 

number of layers with propagation parameters (P and S wave speeds, soil density) 

specified at each layer. The boundary conditions for the simulations are applied as 

followed, a free surface at z=0, a mirror surface at offset x=0, a transparent boundary 

at the right side, and a rigid bottom. 

3.1.2 Signal Processing Methods of Seismic Source Localization 

There is a big variety of methods for performing source localization. This section 

presents four cases that combine physical model I & II with the beamforming 

algorithm or the Bayesian inversion method to solve the problem of estimation of the 

location of the underground tunnel from seismic measurements recorded on the 

ground surface. 

 3.1.2.1 Physical Model I & Delay-and-Sum Beamformer 

The delay-and-sum beamformer [37] is the simplest and most widely used 

technique for localization. Under physical model I, the received seismic signals are 

reflected P-waves which will arrive at the array of seismic sensors on the ground at 

different travel times depending on the location of the underground tunnel. Delay-

and-sum beamformer thus works by first time-aligning the received seismic signals 
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across all possible locations of the underground tunnel, summing the aligned signals 

to generate a 2D beamforming image. The location of the underground tunnel is 

derived by seeking out the peaks in the beamforming image.  

Delay-and-sum beamformer has limitation such as it can only be applied to signal 

with constant propagation speed. In the simulation, the ground is modeled as a 3-

layer structure with constant wave speed defined for each soil layer. The time delays 

are then computed by solving the Eikonal equation (4-3). 

 3.1.2.2 Physical Model II & Frequency-Wavenumber (F-K) Beamforming 

Physical model II assumes a complete description of the recorded seismic 

signals described by the P-wave speed, S-wave speed, and soil density. F-K 

beamforming method [37] is applied as it allows the separation of the different 

seismic body waves (P, S waves) propagating at different wave speeds, and with a 

dispersive R wave. 

Frequency-wavenumber (F-K) beamformer simultaneously calculates the 

beamformer power distributed among different slowness vector s  for a fixed 

frequency of the seismic signal. The slowness vector is dependent on the azimuth 

angle   and the wave speed v  as follows, 

,

v
sin

v
cos



















s

      Equation (3-9) 

The slowness vector s  is also related to the wavenumber vector k as follows, 
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In the F-K beamforming processing, by fixing the frequency of the seismic signal, 

a grid search is performed for all plausible combinations of wave speed v  and 

azimuth angle   in order to find the best  ,v  parameter combination that gives the 

highest amplitude of the summed signal across the seismic signal recorded. As the 

measured signal may contain waves with different wave speeds, this method 

requires careful segmentation of the data to avoid ambiguous phase identification 

problems.  

3.1.2.3 Physical Model I & 2D Acoustic Full Wave-form Bayesian Inversion 

In this section, we shall consider the full waveform inversion with the acoustic 

wave-field model and the Bayesian inversion methodology. In full wave-form 

inversion [38-39], full wave equation modelling is performed at each iteration to solve 

the inverse optimization problem. For the case of physical model I, the acoustic 

wave-equation is solved for the forward modeling. To derive the location of the 

tunnel, Bayesian inversion [40-46] is used. 

3.1.2.3.1 Forward Model 

The forward model here solves the 2D wave equation. The inverse problem is 

solved on the spatial domain ],0[x],0[ zx LL , where ],0[ xLx  represents the range 

on the ground, and ],0[ zLz represents the depth beneath the surface.  The surface 

source is modeled with a right-hand side forcing input to the wave equation (8) using 

a Ricker wavelet with a mean spectral energy density at 0.5 Hz, and a spatial delta 

function at the surface 0z . The ground subsurface model is modeled as a 

horizontally stratified medium, wherein each soil layer has its own elastic values. In 

this paper we shall assume complete knowledge of the seismic properties of the 

ground subsurface that can be extracted from geophysical physical survey 
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conducted before the experiment. For the case of a physical model I, the ground 

elastic parameter is the acoustic compressional P wave speed of the soil layers.   

 3.1.2.3.2 Bayesian Inversion Methodology 

In the Bayesian inversion [38-41] framework, the solution of the inverse problem 

involves a set of observational seismic data obsu , a forward model, setting up the 

parameterization and prior for the model parameters, and finally computing the 

posterior likelihood function PDF )(posterior m as a function of unknown model 

parameters m. In this paper,  ss zx ,m  where   ss zx ,  denotes the location vector of 

the tunnel. 

The forward model )g(m  to map the parameters  m  to the data measurement 

obsu  is given as follows,  

),t(n)g()t,z,x(uobs  m     Equation (3-11) 

where n(t) is a noise signal (comprising sensor and/or background noise). If we 

assume that n is an additive Gaussian noise model with probability distribution of 

zero mean and covariance matrix noiseC , then the probability density function (PDF) 

for ),,( tzxuobs becomes a normal distribution defined as follows, 

   .),(g);t,z,x(u|)t,z,x(uP obsobs noiseCmm   Equation (3-12)  

The solution of the Bayesian inversion methodology is the posterior joint 

probability density of the parameters. Applying Bayes Theorem, the posterior joint 

probability density of the parameters, )(posterior m  can be written as follows,  

         ,t,z,xumt,z,xu mmm     obspriorobsposterior   Equation (3-13) 
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where )(prior m  is the prior distribution, and   m ,,obs tzxu  denotes the likelihood 

function. 

The likelihood function   m obs tzxu ,,  provides a probabilistic measure of how 

well the measured data obsu  matched the data defined by the forward model. 

Applying Equation (3-12), the likelihood function takes the form as follows, 

       ,)t,z,x(u)t,z,x(u)t,z,x(u)t,z,x(uexpt,z,xu
T









 

obsnoiseobsobs  mm Cm
1

2

1

          Equation (3-14) 

where )g(),,( mm tzxu  denotes the data generated by the forward model with the 

unknown model parameter m , and noiseC denotes the noise covariance matrix.  One 

way to model the noise is through measurement of the ambient before the 

experiment recording. In the paper, the noise covariance matrix noiseC  takes the form 

of a diagonal matrix with its elements estimated from the variance of the ambient 

measured at the sensor.  

In this chapter, the Bayesian inversion problem is concerned with the estimation 

of the unknown model parameter m which is defined as the tunnel position, through 

maximization of the posterior PDF defined in Equation (3-11). In our formulation, a 

non-informative, or conservative, prior PDF [42] is used in the Bayesian inference. 

The chosen prior PDF of the unknown tunnel position follows a uniform distribution 

defined over the spatial search grid space where the source is assumed to lie. 

Hence under the assumption that the model m  take values one, the posterior 

density function can be written as follows, 
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      .)t,z,x(u)t,z,x(u)t,z,x(u)t,z,x(uexp
T









 

obsnoiseobsposterior mm Cm
1

2

1  

         Equation (3-15) 

3.1.2.4 Physical Model II & 2D Elastic Full Wave-form Bayesian Inversion 

Contrary to the case of physical model I, the full information content in the 

seismic signal is used in the optimization of the inversion process. Under physical 

model II, all types of the elastic waves are involved in the optimization. Hence we 

shall model the seismic inverse problem using the 3D elastic wave equation.  The 

technique used for the forward modeling is the FDTD [35] where the ground 

subsurface model is a horizontally stratified model wherein each soil layer has its 

own values of density, compressional wave speed values, and shear wave speed 

values. The Bayesian inversion methodology to estimate the unknown source 

location then follows from Section 3.1.2.3.2. 

3.1.3 Experimental Model 

The tunnel that we are interested to detect and locate is a heritage tunnel which 

has depth varying between 3 m to 9 m. Figure 3-1 displays the topological 

information of the tunnel site. A geophysical survey is conducted at the site to 

determine the compression wave speed profile near the tunnel. The compressional 

wave profile displays in Figure 3-2 shows that the compressional wave travels faster 

with increased soil depth. We will be using the soil layering and properties predicted 

from this velocity profile for the signal processing calculations. 
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Figure 3-1 Estimated topographical information of tunnel trial site 

 

 

 

Figure 3-2 Compressional wave speed profile near tunnel 

 

The seismic source is provided by a weight drop. A cylinder with a hemispherical 

end cap weighing 18 kg is designed to drop from a 1 m height to generate the 

seismic impact forcing on the ground surface. The support structure functions as a 

guide to ensure that the weight will not tumble when it lands on the ground surface. 

seismic sensors 
ground surface 

Tunnel 

 

3 m 

2 m 

~8 m 
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In addition, soft rubber pads are added on the metal plate at the base of the support 

structure so as to ensure that the weight will generate one main broadband seismic 

impulse function (see Figure 3-3) with minimum spurious re-bounce signals. The 

seismic sensors used for the experiment are the geophones (see Figure 3-4) which 

measures particle velocity. The geophones provide measurement in frequency range 

from 4.5 Hz to 100 Hz. In the experiment, two vertical component GS11D geophones 

are deployed. The geophones are connected to the Brüel & Kjær 32-bit, 4-channel 

digital recorder to digitize the measured seismic signals. 
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Figure 3-3 (a) Seismic source, weight drop, (b) Spectrogram of the measured source 
function from weight drop. The signal is measured by an accelerometer mounted on 

the 18kg weight drop. 
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(a)     (b)  

Figure 3-4 Seismic sensors and the acquisition system.  
(a) Vertical GS11D geophones, (b) Bruέl & Kjaer digital recorder 

 
 

 

3.2 Results And Analysis 

The ground at the experiment site is uneven and the soil layering is 

inhomogeneous. In our paper, we make some simplification and assume that the 

ground comprises of horizontally stratified layers. Figure 3-5 describes the soil 

layering structure and the 2D search space to solve the tunnel localization problem 

to determine the tunnel range and depth. 
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Figure 3-5 Configuration of the experiment test plan 

 

In the analysis of the field data, two soil models are introduced as follow. The first 

soil model is a 3-layer soil model with a constant P-wave speed for each layer (see 

Table 3-1).  

 

Soil layer profile 

(d denotes the depth in m) 

P wave speed  

pv (m/s) 

Layer 1: 100  d  600  

Layer 2: 2010  d  2000  

Layer 3: 10020  d  3300  

Table 3-1 Soil Model I: P wave speed profile for a 3-layer soil model 
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The second soil model defines a horizontally stratified 5-layer soil structure and 

P, S wave speeds and soil density values for each layer are described in Table 3-2.  

 

Soil layer profile 

(d denotes the depth in m) 

P wave speed 

pv (m/s) 

S wave speed  

sv (m/s) 

Density 

 (g/cm3) 

Layer 1: 10  d  600  100  41.  

Layer 2: 21  d  800  150  41.  

Layer 3: 42  d  1500  300  51.  

Layer 3: 84  d  2000  400  61.  

Layer 5: 1008  d  3000  600  61.  

Table 3-2 Soil model II: P, S wave speed and density profile for a 5-layer 
soil model 

 

3.2.1 Comparison of the Signal Models & Signal Analysis Algorithms 

We shall compare the results for the four cases of the signal models & signal 

analysis algorithms outlined in Section II when implemented on the field data. 

 3.2.1.1 Physical Model I & Delay-and-Sum Beamformer 

 First we examine the result obtained with physical model I of acoustic ray 

tracing signal model and the signal analysis algorithm of sum-delay beamformer. For 

this example, we applied the 3-layer soil model I. The output from the sum-delay 

beamformer is a 2D power image function of location parameter x, z. The location of 

the tunnel is derived by seeking for the position where a peak in the 2D beamformer 

output occurs. The processing result is presented in Figure 3-6. The simplified 

physical model of acoustic approximation & ray tracing leads to a low-resolution 

beamformer output that provides a coarse estimation of the location of the tunnel. 
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One can roughly deduce from Figure 3-6 possibly that the tunnel lies within in the 

region defined by m] m,10 m]x[5 m,25 [20z][x,  . However the beamformer image 

also contains multiple spurious peak locations. Henceforth the result does not 

provide clear distinctive indication of the presence of only one underground source. 

            

Figure 3-6 (Acoustic physical model I & Sum-and-Delay beamformer) 
The figure displays the Sum-and-Delay beamforming power computed over the 

grid space m] m,20 m]x[0 m,30 [0z][x,  . The source location is estimated from 

the location where a peak in the beamforming power output occurs. 

 

3.2.1.2 Physical Model II & Frequency-Wavenumber (F-K) Beamformer 

Before processing the F-K beamformer, the measured seismic signal is first 

filtered into a narrow spectral band of 25 Hz to 45 Hz. Here the 3-layer soil model I is 

also used to describe the ground structure where it is assumed that dispersive R 

wave propagates in the top layer. In the processing of the F-K beamformer, the wave 

speed of the first soil layer is allowed to vary over a range of values of 300 m/s, 400 

m/s, 500 m/s and 600 m/s respectively. Figures 3-7 to 3-10 displays four F-K 
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beamformer outputs corresponding to wave speed values of 300 m/s, 400 m/s, 500 

m/s and 600 m/s respectively. Here the F-K beamformer output corresponding to 

wave speed 300 m/s gives a better resolution of the location of the tunnel as 

compared to the other wave speed values. And comparing against the sum-delay 

beamformer (Figure 3-11) shows a slight improvement where the signal-to-noise 

ratio is slightly enhanced by 0.5 dB, though as before the beamforming result does 

not provide clear distinctive indication of the presence of only one underground 

source. 

   

Figure 3-7.  Elastic physical model II & F-K beamformer (25Hz to 45Hz),  
wave speed = 300 m/s 
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Figure 3-8  Elastics physical model II & F-K beamformer (25Hz to 45Hz), 
wave speed = 400 m/s 

 

Figure 3-9 Elastic physical model II & F-K beamformer (25Hz to 45Hz)  
& wave speed = 500 m/s 
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Figure 3-10 Elastic physical model II & F-K beamformer (25Hz to 45Hz),  
wave speed = 600 m/s 

 

 

Figure 3-11 (a) Acoustic physical model I & Sum-and-Delay beamformer.  

(b) Elastic physical model II & F-K beamformer (spectral bin 25Hz to 45Hz), 
wave speed = 300 m/s 
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3.2.1.3 Physical Model I & Bayesian Inversion 

In this analysis, the forward model is described by physical model I, an acoustic 

approximation of the elastic wave equation. The soil layer structure used in this 

example is the 5-layer soil model II. The source location is obtained by computing 

the posterior PDF given by Equation (3-12) over the full grid and then finding the 

position in the grid space where maximum value of the posterior PDF occurs. In the 

example, the noise covariance matrix is assumed to take a diagonal form where the 

variances are computed from the ambient seismic recording. The grid search is 

carried out in discrete steps of 1 m resolution hence the total number of forward 

model computations is 2025=500 times. The results of inversion are shown in 

Figure 3-12. The posterior PDF values generated for the entire grid space have a 

very small dynamic range (optimal value of the posterior PDF is value one), 

indicating that all positions are equally likely. 
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Figure 3-12. (Acoustic physical model I & Bayesian inversion method) 
The figure displays the posterior PDF values computed over the grid space 

 ]20 ,0]x[30 ,0[],[  m m m mzx  . The source location is estimated from the location 

where a peak in the posterior PDF output occurs. 

 

3.2.1.4 Physical Model II & Bayesian Inversion 

In this analysis, the forward model is described by physical model II, FDTD 3D 

elastic wave model. The ground subsurface elastic model is known and described in 

Table 3-2 which contains the elastic parameters (P, S wave speeds and density) of a 

5-layer soil model.  Applying Equation (3-12), the posterior PDF over the full search 

grid is computed and the results of inversion are shown in Figure 3-13. The location 

of the tunnel is estimated at the position    m  m, zx 922,  deduced from the peak 

position of the posterior PDF image displayed in Figure 3-13.  
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Figure 3-13 (Elastic physical model II & Bayesian inversion method) 
The figure displays the posterior PDF values computed over the grid space 

]20 ,0]x[30 ,0[],[  m m m mzx  . The source location is estimated from the location 

where a peak in the posterior PDF output occurs. 
   

 

3.3 Discussions 

In Section III, we evaluated the four cases of the two physical models with 

beamforming or Bayesian inversion algorithms.  

The beamforming algorithms are less affected by the choice of either physical 

model I or II as the results of both cases do not differ significantly. Both beamformers 

can only provide a coarse resolution of the location of the tunnel.  

The Bayesian inversion algorithm implemented is more sensitive to requirement 

to choose an accurate physical model to describe the received signal. By choosing a 

simplified acoustic ray tracing forward model, the results from the inversion algorithm 

lead to non-conclusive estimate of the location of the tunnel source with the 
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posterior PDF values at the grid space having all equally likely values. The best 

localization result is provided by the choice of physical model II as the forward model 

incorporated in the Bayesian inversion framework. Physical model II which solves 

the 3D FDTD elastic wave equation is at the advantage that the forward model 

completely models all the elastic wave components received.  However this is 

obtained at the expense of increased computational load to implement the FDTD 

elastic wave model as compared to the implementing the simplified acoustic ray 

tracing physical model. 

The dynamic range of the F-K beamformer is slightly larger (0.5 dB) as compared 

to the sum-delay beamformer, as the algorithm models dispersive R wave. This 

result indicates that radiation of R wave constitutes a significant source for 

estimating the location of the tunnel. Similarly in the paper [7] on detection of 

underground buried mines using seismic waves, R wave is used for the detection 

task.  The dominance of R wave also explains the poor performance of the Bayesian 

inversion method applied with the acoustic ray tracing physical model I, since the 

inversion algorithm requires a well-defined forward model to estimate the seismic 

observational data for the inversion process. The use of an appropriately chosen 

physical model II and the Bayesian inversion method afforded a significant 

improvement in the tunnel location estimate. The use of full waveform Bayesian 

inversion35 is an emerging area. Future work can include extending the inversion to 

include the ground subsurface elastic parameters. An important issue will be the 

optimization strategy to implement a multi-dimensional parameter search for the 

Bayesian inversion. One possible approach is to apply the statistical MCMC search 

strategy [45, 46]. 
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3.4 Conclusions 

In this chapter, the concept of using physical models to describe the received 

signal, and then devising beamforming or inversion algorithms for each physical 

model in order to solve the underground seismic source localization problem is 

implemented. Two physical models, the simplified acoustic ray tracing model and the 

FDTD 3D full elastic wave model, and two different beamformers (sum-day 

beamformer and F-K beamformer) and the inversion algorithm for source localization 

are proposed. Four cases of physical model-signal analysis algorithms are 

implemented and evaluated on field data. Our results show that the FDTD 3D elastic 

wave model with the Bayesian inversion algorithm produce the best localization 

results. The Bayesian inversion result with the acoustic ray tracing model is unable 

to provide any estimate of the location with all posterior PDF values calculated over 

the grid space having equally likely values. Both beamformers provide fairly similar 

coarse resolution of the location of the tunnel. We thus obtained the conclusion that 

the use of Bayesian inversion for localization is most advantageous for source 

localization when the forward model is required to completely describe all the elastic 

wave components as is the case of the FDTD 3D elastic model. 
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CHAPTER 4  

JOINT SEISMIC INVERSION & LOCALIZATION COMPARING 

SIMULATED ANNEALING AND METROPLOLIS HASTING  

 

The results presented in chapter 3 have shown that the full waveform Bayesian 

inversion, where full-wave 3D elastic wave equation modelling is performed provides 

the best resolution and accuracy for the localization task. In that formulation, the only 

unknown model parameter to be estimated from the seismic array measurement is 

the (x, z) location of the tunnel. The elastic ground parameters are assumed known 

from a separate geophysical measurement. 

In this chapter, we present methodologies where the inversion problem is 

expanded to a joint inversion problem to solve for both the elastic ground parameters 

and the source location. Two optimization algorithms, namely the Simulated 

Annealing method and the Metropolis Hasting Monte Carlo method, are applied for 

solving the joint inversion problem. Both methodologies fall under the class of global 

optimization methods to provide point estimates by searching for the model 

parameters maximizing the posterior probability density function of the unknown 

model parameters. In addition, the Metropolis Hasting Monte Carlo method can also 

provide a complete solution for the posterior probability density function of the 

unknown model parameter with information that includes the expectation and the 

variance for the model parameters. In this chapter, we evaluate both methodologies 
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on simulated data and compare the results of the joint inversion, while Chapter 5 will 

focus on the evaluation of real field data. 

 

4.1 Methodology 

The seismic inverse problem can be stated as follows: a system comprises of a 

seismic source generates seismic wave-fields as output. From the output, i.e. 

observational data made by seismic sensors, and a forward model relating the 

observational data and seismic source, knowledge about the seismic system can be 

inferred. The Bayesian approach formulates the inverse problem in terms of 

statistical inference, incorporating uncertainties in the seismic measurement, the 

forward model and prior information on the parameters. The solution of the inverse 

problem is the posterior joint probability density of the parameters, which encode the 

degree of confidence in their estimate. The information summarized from the 

posterior distribution includes the maximum posterior solution (MAP), the posterior 

expectation and the posterior covariance. 

The subsection 4.1.1 presents the parameterization of the physical model of the 

elastic earth adopted in the seismic inverse problem studied in this thesis. A reduced 

parameterization scheme of the ground elastic model is proposed in order to 

alleviate the ill-posedness when solving for the inversion of a high dimension 

parameter space. Subsection 4.1.2 outlines the Bayesian inversion framework, with 

discussions on the numerical implementation of the forward model, the formulation of 

the posterior joint probability density of the parameters (the parameters include 

elastic parameters describing the ground medium, and the source location vector), 
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and implementation of two numerical optimization algorithms (Simulated Annealing 

and Monte Carlo Metropolis Hasting) for solving the inversion algorithm. 

4.1.1 Physical Model 

The physical model refers to models of the ground in which the elastic seismic 

waves propagate. In the following subsections, we will describe the parameterization 

used to describe this elastic ground medium.  

4.1.1.1 Parameterization of Elastic Ground Model  

The ground is assumed as a horizontal stratified medium where P and S waves 

propagate. The seismic wave equation is described by the Navier Equation 

(Equation 2-5) and the elastic parameters include the P- and S- wave speeds and 

the soil density. 

In the thesis, we assume a five-layer horizontally stratified elastic ground medium 

described in Figure 4-1 and Table 4-1. Each soil layer is parameterized with P- and 

S-wave speeds and soil density values described by a vector )(m zG  as follows,  

 5,...,1),(),(),(  kzzvzvz kkkG sp
)(m  

and N

G z )(m  ,  N=15.  
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Fgure 4-1 Description of the five layer soil model used in the study. 

 

 

 

Soil layer : zk 

(d denotes depth in m) 

P wave speed 

pv (m/s) 

S wave speed  

sv (m/s) 

Density 

 (g/cm3) 

z1 : 10  d   1zv p   1zvs   1z  

z2: 21  d   2zv p   2zvs   2z  

z3: 42  d   3zv p   3zvs   3z  

z4: 84  d   4zv p   4zvs   4z  

z5: 1008  d   5zv p   5zvs   5z  

Table 4-1 Parameterization of the five-layer soil model 
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4.1.1.2 Reduced Modelling of Ground Elastic Model 

Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis Hasting 

algorithm applied for solving the optimization of Bayesian inversion, works well in low 

dimension of the parameter space [1]. Henceforth it is crucial that some form of 

dimension reduction be applied to the parameter space. The challenge has been in 

the development of appropriate reduced models that are faithful over the full high-

dimensional parameter space, see Ref [1].  

The elastic ground model parameters are the P- and S-wave speeds and soil 

densities defined for each homogeneous soil layer. This thesis adopted a five-layer 

soil model which leads to 15x1 dimension space.  Our approach for dimension 

reduction is to apply the physical relationships between elastic wave speeds and soil 

density so as to solve only for the soil density values of the five soil layers.  

First, we consider the empirical relation between density )(zρ  and the P-wave 

speed )(zv
p

of Gardner et al. [2], defined as follows, 

  .)(31.0)(
25.0

zvz p       Equation (4-1) 

 

The ratio of the P-wave to S-wave speed is dependent on the soil properties 

(porosity, water saturation, crack intensity and clay content). Table 4-2 tabulates the 

measurements for P-wave speed ( pv ), S-wave speed ( sv ) and the ratio 
s

p

v

v
for 

different soil types [3]. We shall apply Table 4-2 for calculations of the S wave 

speeds from the P wave speeds. 
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We can now defined the reduced elastic parameter )(m zR  as follows, 

 ,),(, ssR zxz ρ)(m       Equation (4-2) 

and apply Equation (4-1) and Table (4-2) to compute the P and S wave speeds. 

  

 

Soil & Rock Type 

 

 

)/( smvs  

 

)/( smvs  

 

s

p

v

v
 

Hard 6000 - 4300 4000 - 2700 1.45 -1.5 

Very Stiff 4200 - 3000 2700 - 1500 1.5 - 2 

Stiff 3000 - 2000 1500 - 700 2 - 3 

Moderate 2000 - 1500 700 - 400 3 – 4 

Loose and soft 1500 - 600 400 - 100 4 – 6 

Table 4-2 Values of 
s

p

v

v
for different soil types [3] 

4.1.2 The Joint Bayesian Inversion and Localization Problem 

The joint Bayesian inversion and localization problem is to infer from the seismic 

measurements both information about the physical ground model, and information 

about presence of the tunnel such as its location.  

The joint seismic inversion and localization problem is formulated as follow. To 

determine from the seismic observational data measured by an array of seismic 

sensors on the ground surface an unknown parameter vector,   ss zx ,),(xm(x)  , 

Nm(x)  where  )(x ,  ss zx ,  denote the soil density values and the source 



109 

 

location vector respectively. The forward model )g(m  to map the parameters m  to 

the data measurement obsd is given as follows,  

nmd  )g(obs       Equation (4-3) 

where n is the error term modelling the random ambient noise and the system errors. 

The forward modelling operator g solves the Navier wave equation.  

The solution of the Bayesian inversion methodology is the posterior joint 

probability density of the parameters. Applying Bayes Theorem, the posterior joint 

probability density of the parameters, )(posterior m  can be written as follows, (see 

Chapter 2) 

       mdmdmm         obspriorobsposterior    Equation (4-4) 

where )(prior m  is the prior joint probability density function of the parameters, and 

 md  obs  is the likelihood function.  

4.1.2.1 Forward Model 

The forward model )g(m solves the Navier wave equation defined by Equation (2-

6) to model the elastic waves propagating from the tunnel location to the seismic 

sensors on the ground surface.  We solve the 2D Navier wave equation on the 

spatial domain ],0[],0[Ω zx LL  , where ],0[ xLx  represents the range on the 

ground, and ],0[ zLz represents the depth beneath the surface. The ground is 

assumed as a horizontal stratified medium comprising of multiple horizontal 

homogeneous layers where each layer is parameterized by a P- and S-wave speed 



110 

 

and soil density. The source is modelled with forcing input to the Navier wave 

equation using a Ricker3 wavelet with a mean spectral energy density at 0.5 Hz, and 

a spatial delta function. 

The time dependent Navier wave equation is solved using the FDTD method [4,5] 

where the partial differential operators in the elastic wave equations are expressed 

via 2nd order finite differential expansion in space and time respectively. In this 

thesis, we applied the 2D FDTD numerical algorithm from the CREWES numerical 

software [4].  The initial and boundary conditions for the FDTD solver are defined as 

follows: The elastic ground medium is in equilibrium at time t = 0, i.e., stress and 

displacement are set to zero everywhere in the medium. The internal interfaces 

within the elastic ground medium are represented in terms of the changes of elastic 

wave speeds and density in a horizontal stratified medium assumed in this thesis. 

Explicit boundary conditions are imposed on the four edges of the finite-sized vertical 

grid where the FDTD calculations are performed. Different boundary conditions can 

be defined dependent on the problem to investigate. In the FDTD calculations 

performed in this thesis, the boundary conditions on the edges are defined as 

followed; a free surface at z=0, a mirror surface at offset x=0, a transparent boundary 

at the right side, and a rigid bottom. The free surface boundary condition at z=0 

simulates a real seismic experiment under flat topography and allow R-waves to be 

simulated. The mirror surface at offset x=0 act as if there is a continued geological 

model anti-symmetric about the zero x axis. The bottom is modelled as a rigid 

boundary and therefore a strong reflector. In our case where these reflections are 

                                                           
3
Ricker wavelets are zero-phase wavelets with a central peak and two smaller side-lobes. A Ricker wavelet is 

uniquely defined in terms of its peak frequency given as    222222 exp21)( tftftr   . Ricker wavelet is 

commonly used by geophysicists to generate synthetic seismograms. 
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not wanted, we introduce a large value for the depth of the final ground layer. For the 

FDTD calculations, the ground subsurface is divided into uniform mesh where the 

spatial rate in x- and z-directions is defined in order of 1 m.   

We shall be applying the described forward model as the ‘truth’, i.e., to generate 

the simulated measurement plus added noise (Section 4.1.4). The same forward 

model is also the one used in the inversion. 

4.1.2.2 Prior Selection for Location Vector and Soil Density Vector 

The prior distribution for the soil density vector ρ  is assumed as an increasing 

sequence of step functions, where the bounds for the step function values iρ  are 

selected based on the prior knowledge of the soil layering structure of ground of 

similar type [16]. For example, the  top layer comprises mostly of water saturated 

soft sand, while the other deeper soil layers are assumed to be composed either of 

dry sand or clay.  

The prior pdf for the soil densities is defined as follows, 

 


 


otherwise

  for

0

4321,1 ,,,iba iii

prior ρ    Equation (4-5) 

where the bounds satisfy the following inequality relationships, ii aa 1  & ii bb 1 .  

The density value of the bottom soil layer is assumed as constant,
3

5 /2 cmgρ  .  

The chosen prior PDF of the location vector follows a uniform distribution defined 

over the spatial search grid space where the source is assumed to lie.  

4.1.2.3 Likelihood Function 

The likelihood function  md  obs  defines the probability that a set of parameters 

reproducing the measured data obsd . Apply Equation (4-3) and using an additive 
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Gaussian noise model with probability distribution of zero mean and covariance 

matrix noiseC , the likelihood function is written as follows, 

     








 

obsnoiseobsobs ddCddmd mm

1

2

1
exp

T  Equation (4-6) 

where )(mdm g  satisfies the forward model described in Section 4.1.2.1.  

One way to model the noise is through measurement of the ambient signal before 

the experiment recording. Here the noise covariance matrix takes the form of a 

diagonal matrix with its elements estimated from the variance of the ambient 

measured at the sensor.  

4.1.2.4 Posterior Joint Density Function of Parameters 

The prior distribution for model parameter m ,  which is the soil density vector ρ , 

is an increasing sequence of step functions each of which follows a uniform 

distribution. Hence under the assumption that the model m  take  mprior  values 

one, the posterior density function can be written as follows, 

     








 

obsnoiseobsposterior ddCddm mm

1

2

1
exp

T Equation (4-7) 

  

Under the same assumption that the prior is one, the maximum posterior solution 

(MAP) is defined as follows,  

    
















 

obs

1

noiseobs

*

2

1
expmax arg ddCddm mm

m

T
 Equation (4-8) 

Equation (4-8) can be rewritten into another form such that it minimizes the negative 

log-posterior density function, i.e. 
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   







 

obs

1

noiseobs

*

2

1
min arg ddCddm mm

m

T

R

 Equation (4-9) 

where we can define the optimization cost function as follows, 

     obs

1

noiseobs
2

1
F ddCddm mm  T

  Equation (4-10) 

Equation (4-9) is identical to weight least squares expression (2-14) used in the 

deterministic inversion algorithm where the quantity in bracket of Equation (4-9) is 

minimized as a function of parameters m , subject to the constraint that 

observational data md  satisfies the forward model described in Section 4.1.2.1. 

The other posterior information summarized from the posterior distribution includes 

the posterior expectation (conditional mean) and the posterior covariance described 

as follows, 

     mdmmdmm dtzxobsCM   ,,|E obs    Equation (4-11) 

 

    
       mdmmmmm

mmmmCm

dtzxT

CMCM

T

CMCM

 



,,   

  E

obs  Equation (4-12) 

The posterior expectation and covariance can be calculated from the model samples 

 Nii ,...1: m  generated from the algorithm as follows, 

,
1

1

~





N

i

iCM

N
mm       Equation (4-13) 

 .
1 ~

1

~~
T

CMi

N

i

CMi
N


















 



mmmmCm   Equation (4-14) 
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4.1.3 Optimization Algorithms 

In this section, we present two optimization algorithms for solving the posterior 

joint probability density function for the parameters. 

The first algorithm is the Simulated Annealing method, which solves Equation (4-

9) to determine the point estimate of the parameters. The second algorithm is the 

Monte Carlo Metropolis Hasting method that is able to provide a complete solution of 

the posterior distribution that includes the MAP point estimate, and posterior 

expectation and covariance of the parameters. 

These two optimization methods are designed to search for global optimum 

among the many local optima and have been applied to the seismic inverse 

problems [6-9]. Local optimization algorithms seek the nearest local optimum 

because of the standard strategy where the algorithms generate trial point based on 

current estimates, evaluating function at proposed location and then accepting the 

new value if it improves solution. To avoid being trapped into local optima, the global 

optimization algorithms such as the Simulated Annealing and Metropolis Hasting 

algorithms have developed specific schemes in the search strategy to find other 

optima, i.e., also allowing selection of new points that do not improve solution. The 

details of the search strategies for these two algorithms are described in the next two 

subsections. 

4.1.3.1 Simulated Annealing 

Simulated annealing is a probabilistic approach proposed by Kirkpatrick, Gelett 

and Vecchi [10] and Cerny [11] for finding the global minimum of a cost function that 

may possess several local minima.  It originates from a physical process whereby a 
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solid is slowly cooled so that when eventually its structure is “frozen”; this happens at 

a minimum energy configuration. The cooling process is controlled by the 

temperature such that the molecules are allowed to move freely at high temperatures 

and restricting their motion at low temperatures. 

The steps to implement the simulated annealing are described as follow [12]. 

- Propose an update )1( j
m  of the unknown parameter and evaluate the 

optimization function )F( )1( j
m  

- Accept updates that improve solution 

- Accept some updates that don’t improve solution. Acceptance 

probability depends on “temperature” parameter and is defined as 

follow,  







 )F()F( )()1( jj

T(t)
mm

1
-exp  

- As T goes to zero, the values simulated from this distribution becomes 

More concentrated around a narrow neighbor-hood of F. 

 

In this study, we apply the Matlab function SIMULANNEALBND for the simulated 

annealing calculations. 

4.1.3.2 MCMC Metropolis Hasting Algorithm 

The Metropolis Hasting algorithm [13-15] is an MCMC method. At each step, a 

new sample is generated by proposing a candidate and then accepting or rejecting 

based on the associated Hastings ratio. 

We apply the Metropolis Hasting Algorithm to generate acceptable solutions to 

the problem as follows, 
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 At each step, vary one component of the parameter vector m  generated 

from prior distributions, see Section 4.1.2.2.  

 Compute 
md using the forward model described in Section 4.1.2.1. 

 Compute the acceptance probability
 
 )(

)(

cur

posterior

pro

posterior

accP
m

m




 , )( pro

m  is the 

proposed variable, and )(cur
m  is the current variable value. The parameters 

are changed at each step by random selection from a uniform probability 

density function.  

 Accept the changes to )( pro
m  if   rand1,min accP ;  

4.1.4 Simulation Parameters 

We apply the forward model described in Section 4.1.2.1 to generate a simulation 

set of measurements as follows: The seismic source is modeled with a forcing input 

to the elastic wave equation using a Ricker wavelet. The true location of the source 

is given by    mzx ss   ,101,  . Figure 4-2 describes the physical model where the soil 

density values are given as 
T

2,85.1,8.1,75.1,53.1ρ . The P- and S-wave speeds are 

computed by applying Equation (4-1) and Table (4-2). Applying the above described 

parameters to the forward mode, the “clean” seismic data is generated at 

positions               mzx 145,140,135,130,125,120,  ,   ,   ,   ,   ,   , . The simulation set of 

measurements obsd  is generated by adding a Gaussian noise vector. The noise 

variance is 0.005, while the variance of the clean signal is 5. 
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Figure 4-2 Prior model selection of soil density vector ρ  described as  

an increasing sequence of step functions relative to depth 
 

 

Next, Table 4-3 displays the bounds for the density values needed to define the 

priors for the soil density vector, Section 4.1.2.2. 

 

Density 

values for 

each layer 

Lower bound ia  

(g/cm3) 

Upper bound ib  

(g/cm3) 

1ρ  1.5 1.6 

2ρ  1.7 1.9 

3ρ  1.7 1.9 

4ρ  1.7 1.9 

Table 4-3 Prior bounds for the soil density parameter of the topmost four soil 
layers  

 

z 

)ρ(z  

5

4

3

2

1

 

 

1m 2m        4m    8m                 ….                             100m 
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4.2 Results And Analysis 

In this section, the Simulated Annealing inversion method is compared with the 

MCMC Metropolis Hasting inversion method in solving the tunnel detection problem 

in which the data consists of synthetic traces generated from the steps described in 

Section 4.1.4.  

The analysis of the solution of the posterior distribution derived from the MCMC 

Metropolis Hasting method is first discussed in Section 4.2.1. This is followed by the 

discussion of the results from Simulated Annealing algorithm in Section 4.2.2. Finally 

we conclude with a discussion of the results from these two methods in Section 

4.2.3. 

4.2.1 Results of Monte Carlo Metropolis Hasting Algorithm 

Figure 4-3 plots the course of the posterior joint probability density values 

(Equation 4-7) of the proposed model 
)( pro

m  which are accepted by the Metropolis 

Hasting algorithm for each realization. From Equation (4-7), the optimal value of the 

posterior joint density of the parameters is one, and this occurs when the parameters 

matches the true values. Figure 4-3 shows that the accepted posterior joint density 

values fluctuate over a range between 0.5 and 0.9 over the 5000 iteration runs. The 

average value of the accepted posterior joint density values is 71.0m
 with 

standard deviation 09.0m
. 

Figure 4-5 and 4-6 displays the histogram plots for the samples of two of the 

parameters, namely depth and range, generated by Monte Carlo Metropolis Hasting. 

Recall that the true location of the source is given by    m  ,101, ss zx . Figure 4-5 

shows that the most of the Monte Carlo Metropolis Hasting range samples falls in the 
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bar at 1 m which coincides with the source range xs = 1 m. Whereas Figure 4-6 shows 

that there is no clear specific bar where a majority of the Monte Carlo Metropolis 

Hasting depth samples lie. From Figure 4-6, we observe a peak at bar 10 m (this 

coincides agrees with the source depth zs = 10 m), and another broader peak across 

bars 12 m to 20 m.  

We can compute the posterior mean and variance to get a quantification of the 

uncertainty of the solution. This is done by applying Equation (4-13) and (4-14) on all 

the parameter samples accepted by Monte Carlo Metropolis Hasting algorithm. In 

our calculations, we also include estimation of the mean and variance from different 

subsets of the parameter samples generated from the Monte Carlo Metropolis 

Hasting algorithm. The first subset is formed from the parameter samples which are 

accepted by the Metropolis Hasting algorithm with high confidence, i.e., high 

posterior density values. We form this set from the random samples with posterior 

joint density values larger than   87.0  mm
 where 

m
  denotes the mean of the 

posterior density values for all 5000 random samples, and 
m

  denotes the standard 

deviation or spread of the posterior density values. There are 684 samples accepted 

by the Monte Carlo Metropolis Hasting with posterior joint density larger than 

 
mm   . Also, we compute the mean and variance from subset of parameter 

samples accepted by Monte Carlo Metropolis Hasting with the posterior joint density 

values less than  
mm   . The results of the calculations are displayed in Table 4-

5. The MAP estimate is also presented in the same table.  

From Table 4-5, we observe large deviations from the true values for the means 

of range and depth computed from all the Metropolis Hasting accepted random 
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samples. There is a significant improvement in the results for the means computed 

from the parameter samples with high posterior joint density values. The MAP results 

perform the best, where the MAP estimate of depth deviates less than 10 % from the 

true value, and the MAP range estimate agrees with the true value.   

 

Figure 4-3 Joint posterior density function values of the proposed model 
accepted by the Metropolis Hasting algorithm 

 

Figure 4-4 Histogram plot of the joint posterior density values accepted by the 
Metropolis Hasting algorithm 
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Figure 4-5 Histogram plot of the samples of range (x) parameter accepted by 
the Metropolis Hasting algorithm 

 

Figure 4-6 Histogram plot of the samples of depth (z) parameter accepted by 
the Metropolis Hasting algorithm 
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 True 

values 

(m) 

All parameter 

samples 

accepted by MC 

Metropolis 

Hasting 

Subset of parameter 

samples with posterior 

values>  87.0  mm
 

Subset of parameter 

samples with posterior 

values<  87.0  mm
 

MAP 

estimate 

mean variance mean variance Mean variance 

x 

(range) 

1 5.09 3.79 1.77 1.10 5.61 3.8 1 

z 

(depth) 

10 17.07 4.54 13.74 2.42 17.60 4.58 11 

Table 4-5 Posterior means, variances and MAP calculated from the parameter, x (range) 
and z (depth), accepted by the Metropolis Hasting algorithm 

 

 

Table 4-6 displays the means, standard deviations and the MAP estimates 

computed for the soil density parameter vector. It can be observed from the values 

displayed in Table 4-6 that the Metropolis Hasting inversion is able to provide fairly 

good estimates for the soil densities.  

 

Soil 

density at 

i-th layer 

( i ) 

True 

values 

(g/cm3) 

Mean estimates 

 

Standard deviation 

estimates 

 

MAP estimates 

 

 

1   1.53 1.55 0.0281         1.53 

2   1.75 1.75 0.0397   1.76 

3   1.80 1.80 0.0459       1.78 

4   1.85 1.85 0.0368   1.85 

Table 4-6 Means, standard deviations, and MAP estimates of soil density values 
generated using Metropolis Hasting Monte Carlo algorithm. 
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Figures 4-8 to 4-11 display the histogram plots of the soil density vector samples 

generated by the Metropolis Hasting algorithm. The histogram graph of the 

parameter samples can be interpreted as displaying the approximated PDF of the 

parameter.  Observe only the approximated PDF for soil density of layer number 3 

(see Figure 4-10) matches a Gaussian distribution. The approximated PDF for soil 

density of soil layer 2,4, (Figure 4-9,4-11) are better described by lognormal 

distributions. 

 

Figure 4-8. Histogram display of samples of soil density layer #1 accepted by Monte 

Carlo Metropolis Hasting. Actual density value of soil layer #1 = 1.53g/cm3 
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Figure 4-9. Histogram display of samples of soil density layer #2 accepted by Monte 

Carlo Metropolis Hasting. Actual density value of soil layer #2 = 1.75g/cm3 

 

 

Figure 4-10. Histogram display of samples of soil density layer #3 accepted by Monte 

Carlo Metropolis Hasting. Actual density value of soil layer #3 = 1.8g/cm3 
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Figure 4-11 Histogram display of samples of soil density layer #4 accepted by Monte 

Carlo Metropolis Hasting. Actual density value of soil layer #4 = 1.85g/cm3 

 

4.2.2 Results of Simulated Annealing Algorithm 

In this Section, we present the point estimate of the parameters computed with 

the Simulated Annealing algorithm. The Matlab function SIMULANNEALBND used 

for the calculations allows one to apply the lower and upper bounds on the search 

space for the parameter. Similar to the implementation of the Metropolis Hasting 

algorithm, for the depth and range parameter, the bounds are derived from the 

spatial domain    m  m  25,020,0),(  zx  where the source is expected to be 

located. The bounds for the soil density values follow from Table 4-3.  Simulated 

Annealing requires a good starting point, i.e., a good initial guess for the unknown 

parameters to ensure convergence. The MAP estimate calculated from 50 MCMC 

runs of the Metropolis Hasting algorithm is chosen as the initial input of the 
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parameters for the Simulated Annealing algorithm. For this simulation, 1000  

iterations for the Simulated Annealing function are executed. 

Table 4-7 displays the point estimates of the parameters from Simulated 

Annealing algorithm. The result of the source depth and range from Simulated 

Annealing algorithm performs better as compared against the means calculated by 

Metropolis Hasting Monte Carlo method (Table 4-5), and gives comparable 

performance relative to the MAP estimate. For the soil density estimates, the 

Simulated Annealing algorithm is only able to perform well for the top two soil layers, 

while the results for the bottom two layers are better for the Metropolis Hasting 

algorithm. 

 

 True values Initial Guess from MAP 

estimate calculated 

from 50 MCMC runs of 

the Metropolis Hasting 

algorithm i 

Estimates from 

Simulated Annealing 

xs (m) 1 6 1.64 

zs (m) 10 10 11.10 

ρ1 (g/cm3) 1.53 1.52 1.53 

ρ2 (g/cm3) 1.75 1.74 1.75 

ρ3 (g/cm3) 1.80 1.74 1.86 

ρ4 (g/cm3) 1.85 1.80 1.86 

Table 4-7 Results from the Simulated Annealing algorithm 
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4.3 Discussions 

In this chapter, the concept of jointly solving for the elastic ground parameters 

and the source location is implemented. We implemented two global optimization 

algorithms, namely the Monte Carlo Metropolis Hasting algorithm and the Simulated 

Annealing algorithm, for the inversion. The chapter introduced a ground physical 

model for reduction of the parameter space to reduce the ill-posedness for solving a 

large dimension inversion problem. In addition, we also introduced an additional 

constraint on the prior model for the soil layer density parameter that it be modelled 

as an increasing sequence of step functions relative to depth.  

The results of the inversion of the soil density values show that both the global 

optimization method, i.e., Monte Carlo Metropolis Hasting algorithm and Simulated 

Annealing, are able to provide fairly good estimates which agree with the 

investigations in the literatures that focus only on geo-inversion of the elastic medium 

[6,7,8]. The results of Monte Carlo Metropolis Hasting inversion to solve the source 

localization problem,i.e., invert for source depth and source range, display large 

fluctuations in the range and depth samples generated, though the point MAP 

estimates derived from 5000 runs of the Metropolis Hasting method are relatively 

close to the true values. 

The results of the Simulated Annealing using an initial guess as the MAP 

estimate calculated from a small number of runs of the Monte Carlo Metropolis 

Hasting algorithm (in the simulation, we use 50 runs), is able to improve the accuracy 

of the range and depth estimate of the source. Simulated Annealing also produce 

good estimates of the soil density for the topmost layer and the second soil layer, 
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though there is a slight deviation of the soil density of the deeper soil layer from the 

true values. 

The two global optimization methods, Monte Carlo Metropolis Hasting and 

Simulated Annealing, investigated in this chapter are successful on a global level in 

the estimation of the geo-parameters. The results of the investigation further show 

that the combination of Simulated Annealing and Monte Carlo Metropolis Hasting is 

able to refine and improve the source localization results. 

 

4.4 Conclusions 

We have investigated the use of two global, stochastic inversion method, 

Simulated Annealing and Monte Carlo Metropolis Hasting method, to solve the 

seismic inversion problem. The seismic inversion is formulated into a reduced 

framework such that we only need to invert for the soil density values from the 

seismic observations, and apply the empirical models to estimate the P- and S-wave 

speeds from the inverted soil density values. The inversion also modelled the soil 

density values of the horizontal stratified elastic ground as an increasing sequence of 

step functions so as to improve the efficiency of the search during the inversion 

process. 

The result of the investigation was that the Simulated Annealing using an initial 

guess as the MAP estimate calculated from a small number of runs of the Monte 

Carlo Metropolis Hasting algorithm is able to improve the accuracy of the range and 

depth estimate of the source.   
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CHAPTER 5 

SEISMIC INVERSION APPLIED TO UNDERGROUND TUNNEL 

LOCALIZATION PROBLEM 

 

5.1 Introduction 

The goal of seismic inverse problem is to provide information about the ground 

subsurface from seismic measurements [7-9]. This involves estimation of subsurface 

material properties such as elastic wave velocities, density, etc, from surface [2-4, 6] 

and down-hole [1, 5] measurements of seismic data.  

In the literatures, there are two main approaches to solving the seismic inversion 

problem.  

The first approach solves the linear seismic inverse problem by assuming a 

smooth background model with perturbations for the subsurface. It is then assumed 

dominance presence of only single scattered wave-field. Tarantola [10] casts the 

inverse problem as a local optimization problem, the aim of which is least squares 

minimization of the misfit between the recorded and modelled data. The least 

squares solution is then computed by searching for the perturbation model 

parameter along the gradient of the misfit function. Each step of the iterative 

algorithm consists of a forward propagation of the actual sources in the current 

model, and a forward propagation (backward in time) of the data residuals. The 

correlation at each point of the space of these two fields yields the corrections of the 
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elastic models. This approach is similar to methods of migration of data.  Several 

other studies include the extended ray theory approach [11,12] where the forward 

problem is solved by a combination of the Born approximation and ray theoretical 

methods. The perturbed seismogram is defined in terms of perturbations of P- and 

S-wave impedances and density and the inversion method is based on generalized 

least squares. 

The second approach is the full waveform inversion (FWI) where full wave 

equation modelling is performed in the seismic inversion processing.  All types of 

waves are involved in the optimization which includes multi-scattered waves 

(multiples). A good overview of the full-waveform inversion in exploration geophysics 

can be found by a paper written by Virieux & Operto [13]. Local optimization such as 

least squares does not prevent convergence of the misfit function to local minima for 

FWI contributed by the following factors. Such as the presence of noise, or large 

parameterization of the model space leading to a high underdetermined inversion 

problem, or inaccurate forward modelling of the complex elastic field. All of these 

factors lead to a non-convex optimization function that the seismic inversion problem 

needs to solve. Several global optimization methods have been applied that include 

techniques such as simulated annealing [14], genetic algorithms [15-16] and Monte 

Carlo methods [17-18]. In Chapter 4 of this study, we compare two of these 

techniques, Simulated Annealing and Metropolis Hasting Monte Carlo method, for 

solving a joint seismic inversion and localization problem. The two algorithms are 

analysed using synthetic seismogram, and the results show that both methods 

perform comparably.   
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In this chapter, we expand the work developed in Chapter 4 to solve for both the 

elastic properties of the subsurface and location of an  underground tunnel using 

observational seismic data recorded by an array of geophones on the ground 

surface.  A seismic source (18 kg weight) is used to generate seismic waves through 

the ground and recorded by an array of two geophones deployed on the ground 

surface. The ground elastic medium is modelled as a series of horizontal layers 

separated by straight interfaces. Each layer is characterised by a P-wave speed, S-

wave speed and soil density value. We proposed a ground physical model relating 

the elastic wave speeds and the soil densities so that we need only estimate the soil 

densities and the tunnel location in the inversion. The soil densities for the horizontal 

layers are modelled using a prior of increasing sequence of step functions by 

applying the knowledge from geophysical surveys that the soil densities of the 

ground horizontal stratified layers increase with depths. 

This chapter is organized as follows. In Section 5.2, we describe the seismic 

experiment setup for the underground tunnel localization problem. We refer to the 

readers to Chapter 4.1 for details on the methodologies for the Bayesian inversion 

scheme and the Metropolis Hasting and Simulated Annealing sampling methods. 

Section 5.3 presents the inversion results for the underground tunnel localization 

problem, and Section 5.4 presents the discussions and summarizes the chapter. 

 

5.2 Experiment Setup 

5.2.1 Experiment Layout 

The tunnel that we are interested to detect and locate is a heritage tunnel which 

has depth varying between 3 m to 9 m. Figure 5-1 displays the topological 
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information of the tunnel site and the measurement setup comprising of two 

geophones deployed on the ground surface 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Estimated topographical information of tunnel trial site and the seismic 

measurement setup. 

 

5.2.2 Seismic Source and Seismic Sensors 

The seismic source is provided by a weight drop. A cylinder with a hemispherical 

end cap weighing 18 kg is designed to drop from a 1 m height to generate the seismic 

impact forcing on the ground surface. We refer the readers to Figure 3-3 for the 

display of the seismic signal time series and time-frequency plot generated by 

seismic source.  The signal is impulsive and contains little spurious re-bounce 

signals. The seismic sensors used for the experiment are the geophones (see Figure 

3-4) which measures particle velocity. The geophones provide measurement in 

frequency range from 4.5 Hz to 100 Hz. In the experiment, two vertical component 

seismic sensors 

ground surface 

Tunnel 

 

3 m 

2 m 

~8 m 
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GS11D geophones are deployed. The geophones are connected to the Brüel & Kjær 

32-bit, 4-channel digital recorder to digitize the measured seismic signals.  

5.2.3 Geophysical Survey 

A geophysical survey is conducted at the location site to determine the 

compressional wave speed profile near the tunnel. Figure 5-2 displays the location 

sites with the survey lines. Survey LINE-1 is closest to the tunnel and Figure 5-3 

displays the configuration of the seismic array relative to the survey lines. Figure 5-4 

shows a picture of the setup of the geophone array. Figure 5-5 displays a picture of 

the tunnel entrance walls which are made up of concrete. 

Figure 5-6 displays the measured compressional P-wave profile measured at 

survey LINE-1 using the seismic refraction method [25]. The method measures the 

time it takes for a compressional sound wave generated by a sound source to travel 

down through the layers of the earth and back up to the geophones placed on the 

ground surface. From the time-distance information, the compressional P-wave 

speed variations and depths to individual layers are calculated and modelled. The P-

wave profile measured along survey LINE-1 is used to set up the prior model 

parameters for the elastic parameters. As indicated in the prior model selection for 

the soil densities (see Section 4.1.1.1), the elastic compressional P-wave travels 

faster with increasing soil depth. Table 5-1 displays the bounds on the density values 

calculated from the P-wave speeds (refer to Equation (4-1)). The density value of the 

last layer is fixed, i.e.
3g/cm 25 ρ .  
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Density 

values for 

each layer 

Lower bound ia  

(g/cm3) 

Upper bound ib  

(g/cm3) 

1ρ  1.5 1.6 

2ρ  1.7 1.9 

3ρ  1.7 1.9 

4ρ  1.7 1.9 

Table 5-1 Bounds for soil densities for first four soil layers of the ground model 

 

Figure 5-2 Location map of the tunnel and the survey lines. 
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Figure 5-3 Location map of the seismic array (LINE1) relative to the tunnel and the 

survey lines. 
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Figure 5-4 Picture showing setup of survey LINE-1 for the geophysical measurement 

relative to the tunnel axis 

 

Figure 5-5 Picture of tunnel entrance showing that tunnel is made up of concrete 

walls 

Tunnel 

entrance 

Survey LINE-1 

Axis along 

Tunnel 

entrance 

 axis 
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Figure 5-6 Compressional wave speed profile measured along LINE-1 located near 

tunnel measured using the seismic refraction method  
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5.2.4 Experiment Test Plan  

Figure 5-7 describes the experiment layout. A seismic array comprising of two 

geophones that are spaced 5 m apart are deployed on the ground surface.  The 

underground tunnel is located at m  )5.6,22(),( ss zx . The seismic source is provided 

by a 18 kg weight deployed at m  )0,0(),( ss zx . The seismic source provides a 

seismic wave that will propagate through the ground, interacting with the elastic 

ground medium, and the elastic waves are recorded by the seismic array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7 Configuration of the experiment test plan 
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5.3 Results And Analysis 

The analysis of the solution of the posterior distribution derived from the MCMC 

Metropolis Hasting method is first presented in Section 5.3.1, and Section 5.3.2 

presents the results from the Simulated Annealing method.  

 

5.3.1 Results of Metropolis Hasting Algorithm 

5.3.1.1 Marginal distribution of a posterior information of the source location 

parameter 

Figures 5-8 and 5-9 display the histogram plots of the depth and range of the 

source produced by the above Metropolis Hasting algorithm.  In the calculations, the 

chosen prior PDF of the location vector follows a uniform distribution defined over 

the spatial search grid space where the underground tunnel is assumed occur. The 

spatial search domain is defined as m],[m],[]L,[]L,[ zx 30025000  . 

],0[ xLx  represents the range on the ground, and ],0[ zLz  represents the depth 

beneath the surface.  Both the histograms for the depth and range parameters 

present multiple peaks indicating a multi-modal posterior PDF for each of these two 

location parameters estimated from the observed data. Table 5-2 presents the 

means & variances of the depth and range calculated from the Monte Carlo 

Metropolis Hasting samples. The MAP estimates for the depth and range are also 

computed and also presented in Table 5-2. The MAP estimates for the location 

vector occurs at m  )10,20(),( zx  which compares well against the true values. For 

the specific evaluation presented here, the MAP estimate occurs at iteration run 3508 

and the MAP PDF value is 0.75. The means of depth and range estimated from the 

MCMC samples deviate significantly from the true value. The histogram plots 



142 

 

displayed in Figures 5-8 and 5-9,  show deviation from a simple Gaussian 

distribution. Hence the mean value is inadequate for representing the results 

generated by the MCMC samples. We only consider the set of Monte Carlo 

Metropolis Hasting depth and range samples with posterior values greater than value 

  where ,  denote the mean and standard deviations of the posterior 

values, and re-calculate the mean values of depth and range from this smaller 

subset of MCMC samples. The new mean values of the range and depth yield 

values m )37.9 ,94.17(),( zx  which is more accurate. If we examine Figures 5-8, we 

will observe that the new mean value of the depth coincidence with the location of 

one of the peaks. Similarly the new mean value of the range also coincides with the 

location of one of the many peaks displayed in Figure 5-9.  

 

 

Figure 5-8 Histogram display for depth estimate (z). The horizontal axis plots depth 

of the source, and the vertical axis presents the number of MCMC samples that lie in 

the specific depth bin. 
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Figure 5-9 Histogram display for range estimate (x).  The horizontal axis displays 

range of the source, and the vertical axis presents the number of MCMC samples 

that lie in the specific range bin. 

 

 

Figure 5-10 Posterior PDF values of the proposed model Rm  which are accepted by 

the Metropolis algorithm. 
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 True values 

(m) 

Mean estimates of 

MCMC samples 

accepted by 

Metropolis Hasting 

algorithm 

Standard deviations 

of MCMC samples 

accepted by 

Metropolis Hasting 

algorithm 

MAP estimate 

x  22.5 9.87 5.94 20 

z  6.5 15.11 5.69 10 

Table 5-2 Means and standard deviations of the MCMC samples for model 
parameter x (range) and z (depth) accepted the Metropolis Hasting algorithm. Also 

displayed in table is the MAP estimate. 

 

 

 

 

 

Source 

location 

vector 

True values 

(m) 

Mean estimates of MCMC 

samples accepted by 

Metropolis Hasting 

algorithm with posterior 

values   

> 7335.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

Standard deviations of 

MCMC samples accepted 

by Metropolis Hasting 

algorithm with posterior   

values  

> 7335.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

x  22.5 17.94 0.99 

z  6.5 9.37 2.00 

Table 5-3 Mean and standard deviation of the MCMC samples for model 
parameter x (range) and z (depth) accepted by Metropolis Hasting algorithm with 

posterior values  > 7335.0  where ,  denote the mean and standard 

deviations of the posterior values 

  

We repeat the Metropolis Hasting algorithm for another MCMC run to check on 

the consistency and stability behaviour of the algorithm. The mean and standard 
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deviation results of the source location vector are presented in Table 5-4. A 

comparison of the results displayed with the previous MCMC run (refer to Table 5-3) 

show that the values generated from the two independent MCMC runs are fairly 

similar. 

Source 

location 

vector 

True values 

(m) 

Mean estimates of MCMC 

samples accepted by 

Metropolis Hasting 

algorithm with posterior 

values   

> 7209.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

Standard deviations of 

MCMC samples accepted 

by Metropolis Hasting 

algorithm with posterior   

values  

> 7209.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

x  22.5 19.32 0.77 

z  6.5 10.53 1.62 

Table 5-4 Metropolis Hasting results for a different MCMC run.  

 

5.3.1.2 Marginal distribution of a posterior information of the soil density vector 

The prior model used to describe the soil density vector of the horizontally 

stratified soil layer contains more information than the non-informative uniform priors 

of the source location vector. The prior PDF for the soil density vector is described 

by Equation (4-5) and Table (5-1). 

The histogram plots for the soil density MCMC samples are presented in Figures 

5-11 to 5-14. The histogram plots displayed show that with the exception of the first 

soil layer, the histogram plots of the MCMC density samples for the deeper soil 

layers show small uncertainties in the estimation of the soil density value. The MAP 

estimates of the density vector are presented in Table 5-5 together with the 

corresponding mean estimates. 
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Figure 5-11 Histogram plot for the density value of soil layer # 1 

 

Figure 5-12 Histogram plot for the density value of soil layer # 2 

 



147 

 

 

Figure 5-13 Histogram plot for the density value of soil layer # 3 

 

 

Figure 5-14 Histogram plot for the density value of soil layer # 4 
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Soil 

density  

(g/cm
3) 

Mean estimates of MCMC 

samples accepted by 

Metropolis Hasting 

algorithm with posterior 

values   

> 7335.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

Standard deviations of 

MCMC samples accepted 

by Metropolis Hasting 

algorithm with posterior 

values   

> 7335.0  where 

,  denote the mean and 

standard deviations of the 

posterior values 

MAP estimate 

ρ1 1.54 0.029 1.58 

ρ2 1.76 0.039 1.72 

ρ3 1.81 0.045 1.83 

ρ4 1.85 0.042 1.89 

Table 5-2 Means and standard deviations of the MCMC samples for model 
parameter x (range) and z (depth) accepted the Metropolis Hasting algorithm. Also 

displayed in table is the MAP estimate. 
 
 

5.3.2 Results of Simulated Annealing Algorithm 

We apply the MATLAB function simmulannealbnd.m to find the minimum *

Rm  to the 

objective function specified by Equation (4-9). The matlab function defines a set of 

lower and upper bounds on Rm , so that a solution is found in the range bRb uml  . 

In the calculations, the lower and upper bounds for the soil density values are 

given by Table 5-1. The lower and upper bounds for the location vector  zx,  are 

obtained from the spatial domain mmLL zx ]30,0[]25,0[],0[],0[   where the 

source is expected to be located. ],0[ xLx  represents the range on the ground, and 

],0[ zLz represents the depth beneath the surface.   
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The maximum number of iterations for the Simulated Annealing is fixed at 1000  

runs. For efficient implementation that ensures good convergence, the Simulated 

Annealing requires a good starting point, i.e., a good initial guess for the unknown 

parameters. In our calculations, we obtain the initial guess from the MAP estimate 

derived from 50 MCMC runs of the Metropolis Hasting algorithm.  

The results from the calculations of the Simulated Annealing algorithm are 

displayed in Table 5-5. The result of the source location vector from Simulated 

Annealing algorithm performs better as compared against the means calculated by 

Monte Carlo Metropolis Hasting method, and gives comparable performance to 

corresponding MAP estimate by the Metropolis Hasting method (see Table 5-2). 

 

Source location 

vector (x,z) (m) 

Soil density vector 
ρ (g/cm3) 

Initial Guess from MAP 

estimate derived from 50 MCMC 

runs of Metropolis Hasting 

algorithm. 

Estimates from 

Simulated 

Annealing 

x 27 21.63 

z 11 10.53 

ρ1 1.58 1.54 

ρ2 1.71 1.77 

ρ3 1.83 1.84 

ρ4 1.89 1.77 

Table 5-5 Source location vector and soil density vector derived from the 
Simulated Annealing algorithm 
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5.3.3 Discussions  

The histograms of the depth and range parameter computed from the Monte 

Carlo Metropolis Hasting samples both follow multi-modal distribution behaviour. 

Therefore single Gaussian distribution does not describe the data adequately. This is 

again verified in Table 5-2 where it is observed a large deviation of the mean values 

calculated from all the accepted MCMC samples from the location of the tunnel. The 

presence of the multiple peaks in Figure 5-8 and 5-9 indicates the possibilities of 

presence of more than one underground source. Thus the mean values of all the 

independent MCMC range and depth samples generated by the Metropolis Hasting 

sampling deviates largely from the true tunnel position. The MAP estimate calculated 

from the Metropolis Hasting samples however produces an 

estimate, m )10 ,20(),( zx , that is not too far off from the position of the tunnel at 

m )5.6 ,5.22(),( ss zx . This indicates possibility that the tunnel contributes the most 

amount of reflected seismic energy arriving at the geophones.  

The combination of the Monte Carlo Metropolis Hasting algorithm with the 

Simulated annealing method leads to an estimated result, m )53.11 ,63.21(),( zx , 

that is quite close to the Metropolis Hasting MAP estimate. The application of 

stochastic optimization method such as Simulated Annealing has been tried in 

geophysical applications [28-31] but the experience with the authors is that the 

method is very difficult to use. The main challenge is finding the annealing 

temperature schedule, and the optimum number of iterations to arrive at a good 

estimate. Our proposed method to use the Monte Carlo Metropolis Hasting algorithm 

to provide an initial guess for the algorithm, as well as incorporation of the prior 
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information for the model parameter greatly improve the efficiency of the simulated 

annealing method. 

 

5.4 Conclusions 

In this study, we applied the full 3D elastic wave Bayesian inversion for joint 

estimation of the soil layer densities and location of an underground tunnel using 

field seismic data recorded by an array of two seismic sensors on the ground 

surface. Two global optimization algorithms, Monte Carlo Metropolis Hasting and 

Simulated Annealing, are applied. The PDF curves of range and depth derived from 

plotting the histograms of Monte Carlo Metropolis Hasting generated samples 

displays multi-modal distribution behaviour, which made the mean estimate not a 

suitable parameter for processing the Monte Carlo samples. The MAP estimates 

derived from both the Monte Carlo Metropolis Hasting and Simulated Annealing 

methods however match well against the location of the underground tunnel. These 

results reflect that the point MAP estimate provides a more accurate representation 

for the location parameters exhibiting multi-modal distribution behaviour as observed 

in the field data.  
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

 

6.1 Conclusions 

This study has mainly investigated the practical application of geophysics 

inversion to the localization problem of underground tunnel. The solution of 

geophysics inversion problem faces two problems, first is defining the appropriate 

forward model to describe the seismic data recorded, and second is solving the 

stability issue of the inversion when we want to estimate many parameters (such as 

seismic wave speeds and ground soil density values of the discretized ground 

medium) from seismic measurements recorded by an array of seismic sensors. 

For the first problem, this PhD study investigated the linear acoustic ray tracing 

forward model and the nonlinear 3D elastic wave model. Two signal processing 

algorithms, namely the beamforming approach commonly used to solve the 

localization problem and the Bayesian inversion, are implemented to estimate the 

location (depth, range) of an underground tunnel. The Bayesian inversion method 

through the probability density function permits the incorporation of a priori 

information about the parameters, and also allow for incorporation of theoretical 

errors i.e. non-exact relationship between parameters and data. The results of the 

investigation are elaborated in Chapter 3. 
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The work in Chapter 3 assumes full knowledge of the ground material elastic 

parameters, hence leaving only the inversion process to estimate two parameters, 

depth and range, parameterizing the location of the tunnel. The second half of the 

thesis work focuses on the joint inversion of the material elastic parameters and the 

depth and range values of the tunnel location. This leads to the need to deal with the 

issues solving a large dimension parameter estimation problem with a finite data set. 

In Chapter 4, a reduced modelling scheme to reduce the dimension of the elastic 

parameter space is proposed so as to reduce the ill-posedness that arises from 

inferring many parameters from a few observations. Two different optimization 

algorithms, the Monte Carlo Metropolis Hasting and Simulated Annealing, are also 

investigated for sampling the reduced parameter space. Simulated Annealing has 

been tried in geophysical applications but the reported experience is that the method 

is very difficult to use. The main challenge is finding the annealing temperature 

schedule, and the optimum number of iterations to arrive at a good estimate. 

Similarly for Monte Carlo Metropolis Hasting algorithm, the challenge is finding the 

optimum number of iterations to get a good parameter estimate. Our proposed 

method to use a combination of the Monte Carlo Metropolis Hasting algorithm to first 

provide an initial guess for the algorithm, with incorporation of prior information of the 

soil layer structure to improve the sampling efficiency of the soil parameter vector 

greatly improve the efficiency of the simulated annealing method. This work has also 

be validated with field data recorded using an array of two geophones deployed on 

the ground surface to record the reflected and refracted seismic signals from an 

underground tunnel generated by a surface seismic source. The results of the 

analysis are presented in Chapter 5. 
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6.2 Suggestions of future works 

One suggestion for future research and topics that have not been investigated in 

this project is incorporating more sophisticated wave phenomena of attenuation and 

anisotropy in the forward modelling and inversion. Another area of work will be 

looking into strategies to speed up the forward problem, such as devising more 

efficient numerical algorithms to solve the 3D seismic wave equation. 


