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Abstract

With the rapid development of DNA sequencing technology it is today possi-
ble to sequence multiple genomes in a single day at a low cost with a single
machine. This has resulted in several large-scale genomic projects, such as Ten
Thousand Microbial Genomes (BGI) to explore microbial diversity in China,
and understand its influence to the environment and humans; The Human
Microbiome project (NIH) to find microorganisms in association with healthy
and infected humans; and The 100K Genome Project (University of California,
Davis, and FDA), which aims to sequence the genomes of 100,000 infectious
microorganisms and eventually speed up the diagnosis of foodborne illnesses.
This genomic data can give biologists many possibilities to improve knowledge
of organismal evolution and complex genetic systems.

The general interest of this PhD thesis is how to obtain relevant informa-
tion from growing amounts of genomic data and use this to answer important
biological questions. More specifically, comparison of prokaryotic proteomes is
used to determine possible sets of functions, essential to sustain microbial life;
to extract and interpret similarities and variance in genomic content within
different taxonomic groups or genomic structures; and to use the information
of a specific proteome to predict which species it might belong to. Two differ-
ent algorithms, BLAST and profile Hidden Markov Models (HMMs), are used
to determine similarity between sequences and to address the questions in this
thesis.

The first project, described in Chapter 3, is based on using protein Basic
Local Alignment Search Tool (BLAST) comparisons for sequence-based ho-
mology searches. Paper I presents comparative genomics of Bifidobacterium,
Lactobacillus and related probiotic genera.; and Paper II illustrates the use of in
silico analyses for the characterization of two Listeria monocytogenes strains.

Chapter 4 describes the use of profile HMMs for comparative analysis us-
ing for sequence-based homology searches. Paper III introduces PanFunPro �
a new, profile HMM-based method for pan-genome analysis. Paper IV illus-
trates the application of PanFunPro to a set of more than 2000 genomes; this
paper aims to define set of protein families, which are conserved among all the
genomes. Papers V demonstrates comparative genomics analysis of proteomes,
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belonging to Vibrio genus.
In the last project, described in Chapter 5, both BLAST- and profile HMM-

based methods are employed to infer taxonomy group-specific gene families,
which are used for microbial identification. Paper VI illustrates the use of spe-
cific genes for microarray chip design; Paper VII demonstrates the use of the
Salmonella enterica core-genome content for epidemiological typing; and Paper
VIII represents the application of PanFunPro approach for in silico taxonomy
prediction.

In summary, this thesis presents three projects that have contributed to
identification and characterization of microbial organisms, and open new pos-
sibilities for comparative genomics and epidemiology.
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Dansk resume

Grundet en rivende udvikling indenfor DNA sekventerings teknologi er det i
dag muligt at sekventere flere genomer p� en enkelt dag ved brug af en enkelt
maskine til en lav pris. Dette har f�rt til igangs�ttelsen af flere store genom pro-
jekter s� som ”The Ten Thousand Microbial Genomes”(BGI), der har til form�l
at udforske mikrobiel diversitet i Kina og forst� dens indflydelse p� milj�et og p�
mennesker; ”The Human Microbiome project”(NIH) der unders�ger samspillet
mellem mikroorganismer i syge og raske mennesker, og ”The 100K Genome
Project”(University of California, Davis and FDA) der har til m�l at sekven-
tere genomerne fra 100.000 infekti�se mikroorganismer og med tiden forkorte
diagnosetiden p� f�devareb�rne sygdomme. Akkumuleringen af genom data gi-
ver biologer mulighed for at �ge deres viden om evolutionen af mikroorganismer
og giver indblik i komplekse genetiske systemer.

Det generelle fokus for denne PhD afhandling er hvordan man kan opn�
relevant information fra denne voksende m�ngde af data og hvordan denne in-
formation kan bruges til at besvare vigtige biologiske sp�rgsm�l. Mere specifikt
sammenlignes prokaryote proteomer for at estimere mulige protein funktioner,
der er essentielle for at opretholde mikrobielt liv; for at identificere ligheder
og forskelle i genetisk indhold mellem forskellige taksonomiske grupper; og for
at bruge denne information til forudsigelse af den taksonomiske placering af
ukendte arter. To forskellige algoritmer, BLAST og profil HMMs, bruges til at
bestemme similaritet mellem sekvenser og til at adressere PhD studiets centra-
le sp�rgsm�l.

Det f�rste projekt i denne afhandling, beskrevet i kapitel 3, giver eksempler
p� komparativ genom analyse ved brug af BLAST til bestemmelse af sekvens
homologi. Artikel I pr�senterer en komparativ analyse af genomer fra Bifidoba-
cterium, Lactobacillus og besl�gtede probiotiske genera; og Artikel II illustrerer
brugen af in silico analyse til karakterisering af to Listeria monocytogenes
stammer.

Kapitel 4 giver eksempler p� komparativ analyse ved brug af profil HMMs
til bestemmelse af sekvens homologi. I Artikel III introduceres PanFunPro, en
ny metode til analyse af pan-genomer baseret p� profil HMM modeller. Artikel
IV illustrerer hvordan PanFunPro kan bruges til at analysere flere end 2.000
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genomer, med henblik p� identificering af proteiner der er konserverede i alle
genomerne. Artikel V demonstrerer komparativ analyse af genomer fra Vibrio
genus.

I det sidste projekt, beskrevet i kapitel 5, bruges b�de BLAST- og profil
HMM baserede metoder til at udlede gen familier der er specifikke for bestem-
te taksonomiske grupper, og som kan bruges til mikrobiel identifikation. Artikel
VI illustrerer brugen af specifikke gener i microarray design; Artikel VII de-
monstrerer brugen af kerne genomet fra Salmonella enterica til epidemiologisk
klassificering; og Artikel VIII pr�senterer brugen af PanFunPro i in silico tak-
sonomi forudsigelse.

Som opsummering, denne afhandling pr�senterer tre projekter, der har bi-
draget til identifikation og karakterisering af mikrobielle organismer, og som
har �bnet op for nye muligheder indenfor komparativ genom analyse og epide-
miologi.
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Chapter 1

Comparative genomics

Sequencing of the complete genome of Haemophilus influenzae in 1995 pio-
neered a new era in genome sciences. Eight years later the number of complete
sequences had increased to a hundred genomes. This number had doubled to
about two-hundred genomes by the year 2005, and has further increased about
twenty-fold by last year. Today, thousands of genomes are being sequenced
worldwide. Some research groups are sequencing multiple strains from the same
species to explore environmental adaptation and to determine the pan-genome
of closely related organisms; others use bacterial sequencing information from
diverse taxonomic groups to examine microbial variety. While sequencing be-
comes faster and cheaper, this rate of genomic data generation poses significant
challenges for comparative genomics, such as speed and complexity of analy-
sis, data quality assessment, along with result visualization and interpretation.
Multiple approaches have been invented to face and overcome these challenges.

This chapter will briefly introduce the concept of a pan-genome, and several
methods that are used in comparative microbial genomics. These methods are
applied in search similarities and differences between multiple sets of prokary-
otic genomes later in this thesis, as well as some challenges of prokaryotic
pan-genome analysis.
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CHAPTER 1. COMPARATIVE GENOMICS

1.1 The pan-genome

The concept of a bacterial species pan-genome was first introduced by Tettelin
et al. in 2005 and defined as a repertoire of genetic sequences found in a given
bacterial species [1]. Later, it was re-defined and stated that pan-genome con-
sists of core genes, shared among all genomes in given taxonomic group; and
a pool of dispensable genes, which can be present in several strains or specific
to single organism (ORFans) [2].

The focus of pan-genome analysis is to compare the variance in proteomes
between strains. The pan-genome size and content reflects the ability of a
species to gain or loose genes. Multiple proteins can have significant similar-
ity, thus the concept of protein equivalence - homology, should be considered.
Homologs are categorizes into two types: orhtologs, genes diverged though
speciation event from common ancestor, and paralogs, genes diverged through
duplication event [3, 4]. Identification of homologous sequences sets is present
in almost every comparative genomics study and is fundamental in understand-
ing microbial diversity and evolutionary processes [5]. Furthermore, they are
used to establish core and accessory genomes, assign functional annotation to
the proteins of novel genome using previous knowledge of well-studied ones,
and predict the size of the protein families. The core genome gives insight into
functional potential, relations between organisms, genes necessary for distinct
environmental niches, and pathogenicity; as a consequence core genes can be
used as therapeutic and environmental markers for additional characterization
and in determining the likely source of diseases, or in synthetic biology [6, 7, 8].

1.2 Sequence homology search methods

In general, determining homologs is a challenging problem. Many various ap-
proaches and associated databases were invented to determine orthology and
parology. Homology search algorithms can be generally classified into: tree-
based, pairwise similarity search, and profile-based [9, 5, 10].
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1.2.1 Phylogenetic-tree based homology search

Phylogenetic tree-based approaches rely on the evolutionary relationships be-
tween homologous genes in one or multiple organisms. Tree construction usu-
ally starts with a multiple sequence alignment and is further implemented by
either distance-based, Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) [11] and neighbour-joining [12]; or character-based, Maximum par-
simony [13], Maximum likelihood [14], and Bayesian statistics [15], algorithms.
The main advantage of tree-based methods is their sensitivity. They are able
to model the evolution of the whole group of genes at once, using the content
information from the multiple alignment. However trees are generally computa-
tionally expensive when the dataset is too large. Tree construction performance
depends on the accuracy of multiple sequence alignments, which cannot be as-
sured when larger number of sequences is introduced, or when dealing with
multi-domain proteins. Also, they are sensitive to the number of gaps in the
alignment, which can lead to the reduced number of information, from which
the model of evolution will be created in the tree. Therefore, automated phylo-
genetic trees construction is commonly a challenge in comparative genomics [5].

1.2.2 Pairwise homology search

Pairwise similarity search is an alternative way to assess sequence homology.
The backbone of pairwise search is to compare query sequence to the sequence
in the database, and to obtain the score that indicates the likelihood of match-
ing to occur. This procedure is repeated for each sequence in the database
and the best-match relationships are recorded. Pairwise comparison can be
implemented using optimal alignment or heuristic alignment algorithms [10].

Optimal sequence alignment algorithms

Optimal alignment algorithms, such as Needleman-Wunsch [16]and Smith-
Waterman [17], use dynamic programming for sequence alignment. The Needleman-
Wunsch algorithm performs global sequence alignment, which assumes that two
sequences are similar over the entire sequence length. This method is relevant
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CHAPTER 1. COMPARATIVE GENOMICS

to the sequences that are roughly the same size and are expected to be similar
over the entire length. However, the Needleman-Wunsch algorithm is compu-
tationally very demanding concerning time and space, and might be used to
only relatively short sequence comparison [18].

Many proteins have functions described by shorter segments (protein do-
mains), and hence sequence similarity can be defined by presence of these
protein domains in homologous sequences. The Smith-Waterman algorithm,
performs local sequence alignments, which searches for conserved regions in-
stead of aligning the sequences entirely. The algorithm compares different
length fragments and optimizes the matching score with respect to the scor-
ing scheme being used. A local alignment is faster to calculate than a global
alignment, but might report misleading homologs, when the query protein is
multi-domain and shares only one domain with the compared sequence in the
database. On the other hand, a global similarity algorithm may exclude possi-
ble homologs due to low similarity, if functional domains are short [10].

Heuristic sequence alignment algorithms

Heuristic alignments, such as FASTA [19] and BLAST [20], are approximations
to Smith-Waterman algorithm. Heuristic approaches are much faster, easier to
automate and can handle large amounts of data, but the increase in speed is
usually comes with a prize of lower sensitivity and accuracy of prediction [5]].

BLAST

BLAST was invented by Altschul et al. in 1990 [20] and since then has found
many applications in different studies worldwide. It is the most widely used al-
gorithm for sequence similarity search and functional characterization. BLAST
algorithms are available in several versions, depending on the analysis type:
BLASTn compares a nucleotide query sequence to the nucleotide database,
BLASTp compares a protein query sequence to the protein database, BLASTx
compares translated nucleotide query sequence to the protein database, tBLASTn
compares protein query sequence to the translated nucleotide database, and
tBLASTx compares translated nucleotide query sequence to a translated nu-
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cleotide database [21].
BLAST uses scoring method to evaluate the quality of pairwise sequence

alignment, meaning that each position of the alignment is represented by a
score, which is positive for a good match and is negative for a mismatch or
gapped position. Scores for each pair can be obtained from the scoring ma-
trix. DNA-DNA comparisons use straightforward scoring matrices, which gets
a high score for base match and zero for base mismatch. In case of protein-
protein comparison, more sophisticated scoring approach is used. There are
20 possible amino acids, which are grouped by properties, such as polarity,
charge, and hydrophobicity; and overall 210 possible substitution pairs are
available. Substitution matrix gives a measure of probability of a given amino
acid to be substituted by another with respect to amino acid properties [22].
Several substitution matrices were created to address this question. The first
one, the measure of Percentage of Acceptable point Mutations (PAM matrix),
was determined by Dayhoff in 1978 [23] and reflects the measure of probabil-
ity of one amino acid to be substituted by another in a given evolutionary
distance. Higher score represents greater length of evolutionary time in PAM
matrix [22]. PAM-30 and PAM-70 are the most commonly used PAM matri-
ces. Another type of substitution matrices is called BLOck SUbstitution Matrix
(BLOSUM). BLOSUM matrix was suggested by Henikoff and Henikoff in 1992
[24], and was derived by multiple local alignments of evolutionary divergent se-
quences. The blocks are built from conserved regions in the sequence (obtained
with a similarity score over given threshold). BLOSUM-80 and BLOSUM-62
are the most used matrices. For instance, BLOSUM-62 was constructed from
clusters of aligned proteins with identity score greater than 62 [22]. Generally
PAM matrices with larger numbers would be more suitable for larger evolution-
ary distance, while in BLOSUM, matrices with higher scores would represent
higher sequence similarity. The overall used measure of similarity between two
sequences is called Expected value (E-value), which represents the probability
of randomly occurring alignment.

BLAST is an heuristic approach, which provides rapid comparison of the
query sequence to the database of known sequences and allows to retrieve
available functional information. However BLAST doesn’t guarantee optimal
alignment and looses sensitivity with the increase of speed.

7



CHAPTER 1. COMPARATIVE GENOMICS

1.2.3 Profile-based homology search

The assumption that functionally important regions are conserved over evolu-
tion, and that they can be detected in multiple sequences of different organ-
isms, despite the overall low sequence similarity scores, led to the sequence-
profile idea [25]. A variety of approaches, such as SHARP [26], MUSTER
[27], HHpred [28], Metadomain [29] and Meta-MEME [30], were developed for
adequate template-based sequence homology identification and structure pre-
diction. Most of them include PSI-BLAST [21] and HMMER [31] algorithms.
Profile-based searches are considerably more sensitive and accurate than simple
pairwise search, however these methods can be computationally more demand-
ing and slower.

PSI-BLAST

PSI-BLAST is a variation of BLAST algorithm, which looks for profiles - sets of
evolutionary conserved sequence elements. It acquires a position-specific score
matrix (PSSM) from multiple sequence alignment of high scoring sequences
(above specified score) using BLASTp, and later, this PSSM is used to query
database for new matches. The newly detected highly scoring sequences are
used to update the profile [32].

HMMER

Hidden Markov models (HMMs) use stochastic processes that describe a prob-
ability distribution over potentially infinite number of possible sequences [33].
Profile HMMs can model divergent as well as conserved regions within multiple
alignments, considering gaps, insertions and deletions. HMMs are applied to
the problems of statistical modeling, database searching and multiple sequence
alignment of protein families and protein domains.

HMMER is a widely used tool that uses profile-HMMs. It includes a set
of programs sequence database and profile HMM search: hmmscan uses se-
quence as a query and searches it against the profile HMM database; hmm-
search takes profile HMM as query and uses it to search sequence database;

8



phmmer analogously to BLASTp takes a single sequence as query and used it
to search sequence database; and jackhmmer analogously to PSI-BLAST takes
sequence as a query and searches it against the sequence database. Profile
HMM should be built from multiple sequence alignment or formatted using
hmmbuild by HMMER software. Several different multiple alignment formats,
such as CLUSTAL, SELEX, STOCKHOLM and aligned FASTA, are allowed.
HMMER outputs two types of scores, bit-score and E-value; where bit-score is
log-odds ratio score correlating the likelihood of profile HMM with the likeli-
hood of the occurrence of independent, identically distributed random sequence
model; and E-value is the number of randomly occurring hits, expected to reach
equal or greater value of the bit-score [31].

1.3 InterPro

Advances in the sequencing technologies over the past fifteen years have re-
sulted in rapidly growing genome datasets and the need to analyze them. A
plethora of various analyses resulted in large number of databases, each with
its own type of biological focus, signature prediction or search algorithms, and
quality score schemes. In the year 2000, InterPro - an integrated tool for func-
tional and structural classification, was introduced. InterPro provides a single
resource of 13 protein signature collections, such as TIGRFAM [34], PIRSF
[35], ProDom [36], PANTHER [37], SMART [38], PROSITE [37], HAMAP
[39], Pfam [40], PRINTS [41], SUPERFAMILY [42], and Gene3D [43]; and
combines the signature recognition tools and quality check schemes from each
of them into a single format output. Representative databases are integrated
manually, and in principle a manual quality check of all signatures should lower
the amount of false positives [44]. Furthermore, InterPro provides mapping to
Gene Ontology [45] terms and relates InterPro entries to pathway and enzyme
information containing resources, such as KEGG [46], PRIAM [47], Reactome
[48], and UniPathway [49]. GO mapping InterPro signature matches are de-
termined using InterProScan software [50]. InterProScan is implemented in
Java programming language and includes a rapid pre-calculated match lookup
service.
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Pfam

Pfam is a large, widely used collection of domains, motifs, repeats, and protein
families. Pfam contains two types of components: PfamA, high quality and
manually curated entries; and PfamB, automatically generated models using
Automatic Domain Decomposition Algorithm (ADDA) database [51]. Pfam-
A profile HMMs are acquired from high quality multiple alignments; further,
profile HMMs are searched against the UniProtKB sequence database; and
family-specific sequence and domains gathering thresholds (GAs) are chosen
[40]. The database counts 14,831 families in PfamA, and 544,866 families in
PfamB, latest release (version 27.0).

TIGRFAM

TIGRFAM is a collection of full-length proteins and shorter regions at the level
of superfamilies, subfamilies and equivalogs, where equivalogs are sets of ho-
mologous proteins conserved with respect to function. It is manually curated
and described by Hidden Markov Models [52]. The TIGRFAM database counts
4,284 families in the latest release (version 13.0).

SUPERFAMILY

SUPERFAMILY is a collection of structural domains, described by HMMs. SU-
PERFAMILY employs Structural Classification of Proteins (SCOP) domains
definitions at the superfamily level to determine structural annotations. It one
by one models each sequence in the family, and later combines the result. The
latest SCOP release (version 1.75) counts 3902 families and 1962 superfamilies
[42].
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Chapter 2

Microbial identification and
characterization

Epidemic infectious diseases are one of the most serious mortality and mor-
bidity causes worldwide. They are also responsible for significant economic
loss around the world. Every year millions of people are infected by bacterial
pathogens, most of which are transmitted though food and water [53, 54]. The
Vibrio cholerae Haiti outbreak in 2010 is one of recent examples of outbreaks
with a high infection rate, counting 526,524 suspected cases and 7025 death
cases reported by Haitian government in the period of four month from the
start [55]. In light of this, rapid, accurate identification of microbial isolates is
an essential task in modern epidemiology and clinical diagnostics.

2.1 Methods for microbial identification

The improvements in whole genome sequencing (WGS) techniques and bioin-
formatics led to the reduced cost of genome sequencing, therefore allowing the
increase in the number of databases and development of new analytic tools for
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microbial typing methods [56], such as Multi Locus Sequence Typing (MLST)
[57]. MLST is a typing method, which involves sequencing of 450-500 bp se-
quence fragments, of mostly six to eight housekeeping genes, that are nearly
conserved in each genome. For each locus, unique sequence (allele) is given
arbitrary number and, based on the combination of identified alleles (called
allelic profile) the sequence type is determined [58, 59]. MLST established one
of the first publically available typing marker databases, which led to the abil-
ity to easily share the sequence data among different research groups. In 2012,
Jolley at al. [60] proposed the use of 53 genes, encoding ribosomal proteins, for
ribosomal multilocus sequence typing (rMLST). This provided the possibility
to in silico identify bacterial taxonomy down to the strain or subspecies level
using WGS data.

Whole genome sequencing can allow several different sequence-based meth-
ods of taxonomy identification. Similarly, universally conserved genes or pro-
teins, specific to particular taxonomic group can serve as novel targets for
species and strain identification.

2.2 Epidemiological insight into microbial
characterization

Microbial identification and characterization is also performed to support clin-
ical diagnostics and infection control. Whole genome based analyses and com-
parative genomics are of raising interest in investigation of microbial outbreaks,
especially when antibiotic-resistant pathogens, such as strains of Staphylococ-
cus aureus, Clostridium deficile, Mycobacterium tuverculosis, and Escherichia
colli species, are causing the infections. One of the recent outbreak examples
is the outbreak of multi-drug resistant Escherichia coli O104:H4 in Germany,
in May of 2011. This strain caused bloody diarrhea and hemolytic uremic
syndrome (HUS), with more than 3000 infection cases reported in Germany,
and additional 100 in other European countries, USA and Canada. The to-
tal number of 46 cases resulted in death. Several groups were attempting
to characterize and compare the multiple outbreak strains with the histori-
cal enterohaemorrhagic Escherichia coli (EHEC) 0104:H4 isolate (2001, Ger-
many) and enteroaggregative Escherichia coli (EAEC) O104:H4 strain 55989
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(1990, Africa), during the ongoing outbreak, using whole genome based meth-
ods [61, 62]. Results suggested that the outbreak is likely to be clonal and
single-sourced. Strains from both German outbreaks had the similar EAEC
genetic background, which doesn’t cause severe infections like HUS; and is
only distant in relation to EHEC strains. However different from other typical
EAEC strains, the 2001 and 2011 strains carry stx2-harboring prophage inte-
grated in wrbA, which serves also as integration site for stx2-phages in some
EHEC O157:H7 outbreak strains. Stx-producing serotype O104:H4 are rarely
extracted from patients with HUS. The plasmid content comparison showed
that 2011 and 2001 strains contain a tellurite-resistance gene, which is absent
in African strain. Furthermore, genes coding for aggregative adherence fimbri-
aea type I (AAF/I) are also different between African and German outbreak
strains [61].

This is one example of the whole genome characterization in early stages
of outbreak; and in future, it may become a standard procedure, which will
enable fast decisions about the treatment, source of origin, and prevention.
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Chapter 3

BLAST-based comparative
genomics

Comparative genomics usually starts with some sort of sequence similarity
search, often performed with BLAST. This chapter includes two examples of
BLAST-based comparative sequence analyses. Paper I shows the analysis be-
tween over 80 genomes of probiotic Bifidobacterium, Lactobacillus, Lactococcus,
and Leuconostoc genomes, as well as a selection of Enterococcus and Streptococ-
cus genomes, which are represented by both probiotic and pathogenic strains.
Pairwise BLASTP genome comparisons were performed to define pan- and
core-genomes within and between genera, as well as differences and similarities
between probiotic and pathogenic strains.

Paper II demonstrates the use of the whole genome analysis of the two
food-borne human-pathogen Listeria monocytogenes isolates with a purpose
to identify genes or proteins that could contribute to persistence. Two se-
quenced strains were compared to three other publicly available strains of the
same species. This study identified the genomic content that is different be-
tween the strains; however, clear conclusions could not be made about which
genes are responsible for persistence.

17



CHAPTER 3. BLAST-BASED COMPARATIVE GENOMICS

18



3.1 Paper I. Comparative Genomics of Bifidobacterium,
Lactobacillus and Related Probiotic Genera
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Abstract Six bacterial genera containing species commonly
used as probiotics for human consumption or starter cultures
for food fermentationwere compared and contrasted, based on
publicly available complete genome sequences. The analysis
included 19 Bifidobacterium genomes, 21 Lactobacillus
genomes, 4 Lactococcus and 3 Leuconostoc genomes, as
well as a selection of Enterococcus (11) and Streptococcus
(23) genomes. The latter two genera included genomes from
probiotic or commensal as well as pathogenic organisms to
investigate if their non-pathogenic members shared more
genes with the other probiotic genomes than their pathogenic
members. The pan- and core genome of each genus was
defined. Pairwise BLASTP genome comparison was per-
formed within and between genera. It turned out that
pathogenic Streptococcus and Enterococcus shared more
gene families than did the non-pathogenic genomes. In silico
multilocus sequence typing was carried out for all
genomes per genus, and the variable gene content of
genomes was compared within the genera. Informative
BLAST Atlases were constructed to visualize genomic

variation within genera. The clusters of orthologous
groups (COG) classes of all genes in the pan- and core
genome of each genus were compared. In addition, it
was investigated whether pathogenic genomes contain
different COG classes compared to the probiotic or
fermentative organisms, again comparing their pan- and
core genomes. The obtained results were compared with
published data from the literature. This study illustrates
how over 80 genomes can be broadly compared using
simple bioinformatic tools, leading to both confirmation
of known information as well as novel observations.

Introduction

The first bacterial genome sequences were published in
1995, and within 15 years, over a thousand fully sequenced
bacterial genomes have become publicly available [16]. A
number of these genome sequences are derived from
bacteria used as probiotics or starter cultures in food
fermentation, or both. Reid and co-workers [21] defined
probiotics as “live microorganisms which when adminis-
tered in adequate amounts confer a health benefit on the
host”. A number of bacterial species from various genera
are in use as probiotics, including members of Lactobacil-
lus, Lactococcus and, less commonly, Leuconostoc. These
Firmicutes are sometimes collectively described as lactic
acid bacteria (LAB). Other commonly used probiotic
species belong to Bifidobacterium, a genus within the
phylum Actinobacteria. These genera exclusively contain
species that are unlikely to cause disease while colonizing
the intestine, and although some species (e.g. Bifidobacte-
rium dentium) have been associated with dental disease,
these are more commonly members of a normal oral flora.
The distinction between normal gut flora (commensals) and
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probiotic bacteria having a beneficial effect on their host’s
health cannot always be made, for which reason we
collectively describe them here as ‘non-pathogens’. Species
belonging to LAB or Bifidobacterium are also frequently
used in food fermentation, another application where the
bacterial load of food is desirably increased. Besides LAB
and Bifidobacterium, fermentation starter cultures can
typically comprise of Streptococcus thermophilus, a non-
pathogenic member of this genus that mostly contains
pathogenic species. Some strains of Enterococcus are also
in use as starter cultures or probiotics, whereby the used
species also contain pathogenic strains. These two genera
are therefore of interest, and their species that are used as
starter cultures are included in our general description of
‘non-pathogens’. Other types of bacteria (particular strains
of Escherichia coli, Pediococcus species and others) or
yeasts used as starter cultures or probiotics are not treated
here.

For all six genera of interest, multiple genome sequences
are publicly available. In many cases, several genomes per
species have been sequenced, so that the variation between
and even within species can be assessed. One obvious
question that could be addressed by comparison of these
genomes is: what genes (if any) are common to all genomes
of non-pathogens and distinct from genes found in (related)
pathogens? Such a comparison requires including multiple
species and genera of multiple bacterial phyla (in this case,
the phylum of Firmicutes and Actinobacteria). As a general
rule, genetic diversity increases with evolutionary distance,
so that the genetic variation in such a collection of genomes
will be enormous. One way of extracting information from
such complex data is by grouping genes into functional
groups or families, so that gene families rather than
individual genes are compared. Such grouping is based on
protein sequence similarity, as this approximately predicts
conservation of gene function, ignoring the exceptions
resulting from parallel evolution where function similarity
does not coincide with sequence conservation. Slight
differences in function, resulting from minor differences
in sequences, are usually ignored in these groupings, so that
fewer but broader groups can be achieved.

In this contribution, 2 approaches were used to compare
over 80 genomes from 6 bacterial genera of interest. First,
all protein-coding genes from these genomes were grouped
into gene families based on sequence identity using a
defined similarity cut-off, after which comparisons between
and across genera could be performed. Genomes were then
compared within their genus for both conserved and
variable genes. Second, clusters of orthologous groups
(COG) of genes were used to produce functional groups of
genes. An attempt was made to identify differences in
functional gene distribution between pathogenic and non-
pathogenic members of the six genera of interest.

Materials and Methods

Selection of Genomes Used in This Study

Publicly available genomes of the six bacterial genera
analyzed here were identified from the NCBI web pages. All
completely sequenced genomes (as of July 2010) of 4
Lactococcus lactis strains, 3 Leuconostoc species and 21
Lactobacillus strains from 14 species were included. For
Bifidobacterium, 11 completely sequenced and 8 incomplete
genomes were selected; the latter were chosen when fewer
than 70 contigs resulting in 19 genomes from 9 species.
Since only 1 complete Enterococcus genome was available
at the time of analysis, this genome was combined with 10
incomplete sequences, provided they were represented in
fewer than 80 contigs, whereby animal isolates were
excluded. This allowed inclusion of 2 strains obtained from
normal gut flora to give 11 genomes from 4 species. For
Streptococcus, all S. thermophilus genomes were included.
All other species of this genus for which genome sequences
were available are pathogens, and a selection of these was
made of three genomes per species. These were chosen
based on their strain characteristics to cover common but
diverse serotypes. Animal isolates were excluded, although
Streptococcus suis (a typical pig pathogen) was included as it
has been responsible for a large human outbreak in China.
This resulted in 23 genomes from 12 species. All genomes
are listed in Table 1, which also provides characteristics such
as their size, GC content and the strain description. The latter
was extracted from the Genome Project pages at NCBI but
checked in the corresponding genome publication when
available. This resulted in a few small differences from
descriptions listed on the Genome Project Description pages
at NCBI. The derived proteomes (protein-coding sequences
translated from the DNA sequence) were extracted from
GenBank for completed sequences or produced with
Prodigal [14] for incomplete sequences.

Definition of Gene Families and Pan- and Core Genome

The pan-genome of a collection of genomes represents all
genes encountered in these genomes [27]. In order to define
a pan-genome, the criteria to score a gene as ‘conserved’ or
‘novel’ were used as previously described [12]. Simply put,
two genes are considered to belong to the same gene family
and thus ‘conserved’ when their amino acid sequence is at
least 50% identical over at least 50% of the length of the
longest gene. All genes of a genome are thus grouped into
gene families. Multiple genes per genome can belong to a
single gene family, resulting in a lower number of gene
families per genome than the reported number of genes. A
gene not finding a match with the given criteria is put in its
own gene family as a singleton.
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An accumulative pan-genome was constructed according
to Friis et al. [11], who built on work by Tettelin and co-
workers [27]. A resulting pan-genome curve increases in size
as more genomes are analyzed, and its shape is order-dependent,
though the accumulative pan-genome is not influenced by the
order of analysis. Similarly, a core genome is defined as all gene
families conserved in all analyzed genomes, and this decreases
in size as more genomes are analyzed.

Pairwise pan- and core genomes were calculated for all
genome combinations as above, and for each combination,
the obtained core genome was expressed as the fraction of
the pan-genome. These percentages were visualized in a
BLAST Matrix [11].

Core Genome Consensus Tree

Phylogenetic trees were constructed of all core genes that were
conserved within the analyzed Firmicute genomes. Multiple
alignments of all core sequences were performed with
MUSCLE software [7]. PAUP was used to construct a set of
core trees [10]. Later, these trees were compared and a best-fit
consensus tree was constructed as described by Retief [22].

In Silico MLST Analysis

In silico multilocus sequence typing (MLST) analysis was
performed with gene fragments extracted from the genome
sequences. For Bifidobacterium, gene fragments from clpC,
fusA, gyrB, IleS, purF, rplB and rpoB were extracted,
according to the method proposed for Bifidobacterium
bifidum, Bifidobacterium breve and Bifidobacterium lon-
gum [6]. For Enterococcus, the gene set of gdh, gyd, pstS,
gki, aroE, xpt and yqlI, which is advised for use in
Enterococcus faecalis (http://www.mlst.net), was compared
with that designed for Enterococcus faecium, which is
based on atpA, ddl, gdh, purK, gyd, pstS and adk. For
Lactobacillis, de Las Rivas and co-workers [4] described an
MLST gene set specified for Lactobacillis plantarum based
on the target genes pgm, ddl, gyrB, purK1, gdh, mutS and
tkt4. Two alternative combinations of genes have been
proposed for Lactobacillis casei: ftsZ, polA, mutL, metRS,
nrdD and pgm [1] or fusA, ileS, lepA, leuS, pyrG, recA and
recG (http://www.pasteur.fr). A fourth gene set (gdh, gyrA,
mapA, nox, pgmA and pta) has recently been described for
Lactobacillis sanfranciscensis [20], but since this species is
not represented in our dataset, this scheme was not used.
For each genus, after concatenation of the gene fragments, a
maximum likelihood phylogenetic tree was constructed.

Analysis of Variable Gene Content

The variable gene content of the analyzed genomes was
compared using the method by Snipen and Ussery [24].

This method calculates Manhattan distances based on a
matrix in which the presence or absence for each gene in
each genome is scored with the binary score of 0 (absent) or
1 (present). Core genes and singletons are ignored. BLAST
Atlases were produced according to Hallin and co-workers
[12].

COG Analysis

COG is a database of proteins where each sequence is
assigned to some group. All proteins within a group are
believed to have a common ancestor and are likely to share
a common function. The various groups are again clustered
into some super-groups called functional groups [26]. In
this analysis, each found protein was compared to the COG
database using BLASTP to identify the functional groups to
which they belong. An R-script was used to analyze the
protein composition in pan- and core genomes, and the
results were visualized in a pie chart. This was done using
standard operating procedures [19].

Results

Comparison of Pan-Genomes

After the selection of genome sequences as described in the
“Materials and Methods” section, 81 genome sequences
were obtained from organisms listed in Table 1. These
represented 43 different species and coded for 147,074
protein genes in total. Table 2 summarizes some average
findings for each of the analyzed genera. Enterococcus has
the largest average genome size and Leuconostoc the
smallest, a difference that is reflected in their average
number of genes, since gene density is generally conserved
in these bacteria. Bifidobacterium has a significantly higher
CG content, which was one of the reasons to place this
genus in the Actinobacteria [9]. The CG content varied
most within the genus of Lactobacillus, with a CG content
below 37.2% for Lactobacillus acidophilus, Lactobacillus
crispatus, Lactobacillus gasseri, Lactobacillus helveticus,
Lactobacillus johnsonii and Lactobacillus salivarius;
genomes of the other members of this genus contain at
least 38.9% CG. The average number of gene families (as
defined in the “Materials and Methods” section) is also
shown in Table 2. Since multiple genes per genome can
belong to a single gene family, there are fewer gene families
than genes per genome, but the difference is small for
Bifidobacterium. This indicates that there is little gene
redundancy in that genus. Lastly, the pan- and core
genomes of these genera (based on the analyzed genomes)
are quantified in Table 2. The plots resulting in these
running totals are shown in Fig. 1, where the average
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Table 1 Genomes selected for analysis

GPID Strain namea Size, bp or
Mb

%
CG

Contigs Number of
genes

Strain characteristics

82 Lactobacillus acidophilus NCFM 1,993,560 34.7 1 1,862 Commercial strain for yogurt, fluid milk production

404 Lactobacillus brevis ATCC 367 2,340,228 46.1 3 2,218 Starter culture for beer, sourdough, and silage

402 Lactobacillus casei ATCC 334 2,924,325 46.6 2 2,771 Starter culture for milk fermentation and flavour
development of cheese

30359 Lactobacillus casei BL23 3,079,196 46.3 1 3,044 Probiotic strain

46813 Lactobacillus crispatus ST1 2,043,161 36.9 1 2,024 Normal oral/vaginal flora, chicken isolate

16871 Lactobacillus delbrueckii bulgaricus
ATCC 11842

1,864,998 49.7 1 2,096 Yogurt

403 Lactobacillus delbrueckii bulgaricus
ATCC BAA-365

1,856,951 49.7 1 1,721 Thermophilic starter culture for yogurt, Swiss and
Italian-type cheeses

18979 Lactobacillus fermentum IFO 3956 2,098,685 51.5 1 1,843 Not specified

84 Lactobacillus gasseri ATCC 33323 1,894,360 35.3 1 1,755 Human isolate, type strain

17811 Lactobacillus helveticus DPC 4571 2,080,931 37.1 1 1,610 Cheese culture

36575 Lactobacillus johnsonii FI9785 1,785,116 34.4 1 1,737 Competitive exclusion strain in chicken

9638 Lactobacillus johnsonii NCC 533 1,992,676 34.6 1 1,821 Probiotic strain

32969 Lactobacillus plantarum JDM1 3,197,759 44.7 1 2,948 Probiotic strain

356 Lactobacillus plantarum WCFS1 3,348,625 44.4 4 3,101 Human saliva

15766 Lactobacillus reuteri DSM 20016 1,999,618 38.9 1 1,900 Type strain, human isolate

19011 Lactobacillus reuteri JCM 1112 2,039,414 38.9 1 1,820 Human isolate

32195 Lactobacillus rhamnosus GG 3,010,111 46.7 1 2,944 Probiotic strain

40637 Lactobacillus rhamnosus GG
ATCC53103

3,005,051 46.7 1 2,834 Human isolate

32197 Lactobacillus rhamnosus Lc 705 3,033,106 46.7 2 2,992 Probiotic strain

13435 Lactobacillus sakei sakei 23K 1,884,661 41.3 1 1,885 Fermenting

13280 Lactobacillus salivarius UCC118 2,133,977 33.0 4 2,014 Probiotic strain

18797 Lactococcus lactis cremoris MG1363 2,529,478 35.7 1 2,516 Plasmid-cured NCDO712, lab strain

401 Lactococcus lactis cremoris SK11 2,598,348 35.8 6 2,504 Cheese production

72 Lactococcus lactis lactis Il1403 2,365,589 35.3 1 2,266 Laboratory strain

41115 Lactococcus lactis lactis KF147 2,635,654 34.9 1 2,575 Fermenting, non-dairy

16062 Leuconostoc citreum KM20 1,896,614 38.9 5 1,823 Kimchi (food, Korea)

40837 Leuconostoc kimchii IMSNU11154 2,101,787 37.0 1 2,130 Kimchi? not specified

315 Leuconostoc mesenteroides
mesenteroides ATCC 8293

2,075,763 37.7 2 2,005 Food fermentation, not specified

70 Enterococcus faecalis V583 3,359,974 37.4 4 3,265 Clinical, blood isolate, vancomycin resistant

32949 Enterococcus faecalis T11 2,729,089 37.7 49 2,522 Urine isolate

32941 Enterococcus faecalis E1Sol 2,853,151 37.5 75 2,737 Faecal isolate, antibiotic-naïve, normal flora

20843 Enterococcus faecalis OG1RF 2,739,625 37.7 1 2,515 No info - lab strain?

32919 Enterococcus faecalis T3 2,821,089 37.6 40 2,603 Urine isolate

32927 Enterococcus gallinarum EG2 3,134,429 40.6 49 2,985 No info

32931 Enterococcus casseliflavus EC10 3,423,270 42.5 54 3,243 No info

32935 Enterococcus casseliflavus EC20 3,392,502 42.8 57 3,121 No info

46979 Enterococcus faecium PC4.1 2,811,160 37.9 78 2,705 Human microbiome, normal flora

32965 Enterococcus faecium Com12 2,685,402 38.1 67 2,573 No info

32967 Enterococcus faecium Com15 2,771,455 38.3 70 2,698 No info

330 Streptococcus agalactiae 2603V/R 2,160,267 35.6 1 2,124 Clinical isolate, common in adults

326 Streptococcus agalactiae A909 2,127,839 35.6 1 1,996 No info

334 Streptococcus agalactiae NEM316 2,211,485 35.6 1 2,134 Blood isolate

27849 Streptococcus dysgalactiae equisimilis
GGS 124

2,106,340 39.6 1 2,100 No info

34729 Streptococcus gallolyticus UCN34 2,350,911 37.6 1 2,261 Normally rumen flora, this is a clinical human isolate
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Table 1 (continued)

GPID Strain namea Size, bp or
Mb

%
CG

Contigs Number of
genes

Strain characteristics

from endocarditis

66 Streptococcus gordonii str. Challis CH1 2,196,662 40.5 1 2,051 Causes caries and periodontal diseases

20527 Streptococcus infantarius infantarius
ATCC BAA-102

1,925,087 37.6 22 1,962 Human microbiome project, normal flora

16302 Streptococcus mitis B6 2,146,611 40.0 1 2,018 Clinical isolate

28997 Streptococcus mutans NN2025 2,013,587 36.8 1 1,895 Normally oral flora, can cause caries, endocarditis.
Clinical isolate

333 Streptococcus mutans UA159 2,030,921 36.8 1 1,960 Oral flora, can cause caries, caries isolate

31233 Streptococcus pneumoniae ATCC
700669

2,221,315 39.5 1 2,135 Alternative name Spain 23FST81. Pandemic, high
prevalence, invasive

29047 Streptococcus pneumoniae G54 2,078,953 39.7 1 2,115 Resistant clinical isolate

277 Streptococcus pneumoniae TIGR4 2,160,842 39.7 1 2,125 Virulent clinical isolate

269 Streptococcus pyogenes M1 GAS SF370 1,852,441 38.5 1 1,696 Group A

16364 Streptococcus pyogenes MGAS10270 1,928,252 38.4 1 1,987 Sequenced for comparative genome analysis

286 Streptococcus pyogenes MGAS8232 1,895,017 38.5 1 1,845 Serotype M18

13942 Streptococcus sanguinis SK36 2,388,435 43.4 1 2,270 Indigenous oral bacteria, causes dental decay, oral
plaque isolate

17153 Streptococcus suis 05ZYH33 2,096,309 41.1 1 2,186 Causes disease in pigs and occasionally humans

32237 Streptococcus suis BM407 2,170,808 41.0 2 2,058 Human clinical isolate

18737 Streptococcus suis GZ1 2,038,034 41.4 1 1,978 Causes meningitis, arthritis, pneumonia in pigs
human epidemic in China

13163 Streptococcus thermophilus CNRZ1066 1,796,226 39.1 1 1,915 Isolated from yogurt for industrial dairy fermentations

13773 Streptococcus thermophilus LMD-9 1,864,178 39.1 3 1,716 Used in the manufacture of fermented dairy foods

13162 Streptococcus thermophilus LMG 18311 1,796,846 39.1 1 1,889 Isolated from yogurt for industrial dairy fermentations

16321 Bifidobacterium adolescentis ATCC
15703

2,089,645 59.2 1 1,631 Normal gut flora

19423 Bifidobacterium animalis lactis AD011 1,933,695 60.5 1 1,528 Normal gut flora

42883 Bifidobacterium animalis lactis BB-12 1,942,198 60.5 1 1,642 Normal gut flora

32897 Bifidobacterium animalis lactis Bl-04 1,938,709 60.5 1 1,567 Normal gut flora

32893 Bifidobacterium animalis lactis DSM
10140

1,938,483 60.5 1 1,566 Normal gut flora

32515 Bifidobacterium animalis lactis V9 1,944,050 60.4 1 1,572 Normal gut flora

28807 Bifidobacterium animalis lactis HN019 1,915,892 60.4 28 1,578 Normal gut flora

17583 Bifidobacterium dentium Bd1 2,636,367 58.5 1 2,129 Normal oral and gut flora, can cause caries, caries isolate

20555 Bifidobacterium dentium ATCC 27678 2,642,081 58.5 2 2,151 Human microbiome, faeces isolate

18773 Bifidobacterium longum DJO10A 2,389,526 60.2 3 2,003 Normal gut flora, probiotic

328 Bifidobacterium longum NCC2705 2,260,266 60.1 2 1,729 Normal gut flora, probiotic

17189 Bifidobacterium longum infantis ATCC
15697

2,832,748 59.9 1 2,416 Normal gut flora, probiotic

30065 Bifidobacterium longum infantis
CCUG 52486

2,453,376 60.2 55 2,085 Normal gut flora, human microbiome project

47579 Bifidobacterium longum longum JDM301 2,477,838 59.8 1 1,959 Normal gut flora, probiotic

29261 Bifidobacterium angulatum DSM 20098 2,007,108 59.4 17 1,586 Normal gut flora, type strain

30055 Bifidobacterium bifidum NCIMB 41171 2,186,140 62.8 33 1,810 Normal gut flora, probiotic

30749 Bifidobacterium catenulatum DSM
16992

2,058,429 56.1 31 1,720 Normal gut flora

30751 Bifidobacterium gallicum DSM 20093 2,019,802 57.5 27 1,580 Human microbiome project

30373 Bifidobacterium pseudocatenulatum
DSM 20438

2,304,808 56.3 36 1,870 Human microbiome project

a The official abbreviation ‘subsp.’ between species and subspecies name has been deleted throughout this contribution

GPID genome project identification number (NCBI: see http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi), NA not available
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number of gene families present per genome is given as a
green line. In all graphs, the pan-genome and core genome
curves strongly diverge, indicative of a large variation in
gene content between the analyzed genomes within each
genus. The largest difference between the pan- and core
genome, as a measure for the variance within the analyzed
genera, is seen with Lactobacillus (21 genomes of 14
species) and Streptococcus (23 genomes of 12 species). The
variance is larger in four genomes of Lc. lactis than in three
different Leuconostoc species. Thus, intra-species variation
in gene content of Lc. lactis exceeds inter-species variation
of Leuconostoc, at least for these analyzed genomes.

The pan- and core genomes of pairwise genome
comparisons were also determined to establish the percent-
age identity for each combination. This identity was
expressed as the pairwise core genome divided by its pan-
genome and was visualized by colour intensity in a BLAST
Matrix. Figure 2 shows the BLAST Matrix for the
Lactobacillus genomes. The strongest green, indicative of
the highest fraction of genes found similar between two
genomes, are reported for comparisons within a species,
shown at the bottom of the figure. Some species also share
a large fraction of genes between them. For instance, the
two Lb. casei genomes share between 55.5% and 59.3% of
their genes with those of the three Lactobacillus rhamnosus
genomes (represented in the six darker green cells in the
upper part of the matrix). An even higher similarity (62.2–
62.8%) is found between Lb. gasseri and Lb. johnsonii. The
highest similarity recorded is 93.3%, between two Lb.
rhamnosus strains, and the lowest is 11.5%, between Lb.
casei BL23 and Lactobacillus delbrueckii bulgaricus
ATCCBAA-365.

A similar matrix is shown for Bifidobacterium in Fig. 3.
In this case, the similarity between the six Bifidobacterium
animalis genomes is obvious (visible as 15 strongly
coloured cells at the bottom right). Two of these genomes
reach a similarity of 95.5%. The lowest degree of similarity
is seen between Bifidobacterium gallicum and B. longum
infantis strain ATCC 15697 (28.5%).

When a BLAST Matrix was constructed with all genomes
included in the analysis, the similarity between Bifidobacte-
rium genomes and those of the other genera remained below
3%, illustrative of the difference of Bifidobacterium com-
pared to the Firmicutes (results not shown). Thus, despite
their sharing of an ecological niche, these bacteria share
relatively few genes. A comparison of all Firmicute genomes
is provided as Supplementary Fig. S1. As expected, the
found percentage identity within any of these genera is much
higher than that between genera. For instance, the three
Leuconostoc genomes produced a similarity of 49.5–52.3%
between them, but around 8% to 10% to genomes of other
genera. The four Lc. lactis genomes gave slightly higher
similarities of 16.1–18.4% to all other Firmicute genomes
whilst sharing 59.5–66.1% between themselves. An Entero-
coccus and a Streptococcus genome typically share 10% to
15% of their genes, and two genomes of Enterococcus and
Lactococcus 14% to 16%. Different Enterococcus species
share around 30% of their genes, but multiple genomes
within one species of this genus have around 70% of their
genes being similar.

Comparison of Core Genomes and Conserved Genes

The pan-genomes of all six genera were combined to calculate
the core genome shared by all genera. This resulted in only 63
core gene families out of a pan-genome of 37,053 gene
families, using the criteria of gene similarity as described in
the “Materials and Methods” section. These are listed in
Supplementary Table S1. Exclusion of the distinct Bifido-
bacterium genus retained 243 core gene families for the
Firmicute genomes that together produced a pan-genome of
30,615 gene families. Since these core genes are conserved
in all Firmicute genomes analyzed here, phylogenetic trees
could be generated and a consensus tree was generated, as
shown in Fig. 4. The consensus core gene tree split all
Lactobacillus genomes into three main clusters, though Lb.
salivarius is excluded from these groups. The cluster shown
at the top of the figure contains most Lactobacillus species

Table 2 Average findings per genus and their pan- and core genome

Genus Number of
genomes
included

Number
of
species

Average
genome size
(kbp)

Average
% CG

Average number of
genes (min–max
values)

Average number of gene
families (min–max values)

Pan-
genomea

Core
genomea

Lactobacillus 21 14 2,369 42.4 2,235 (1,562–3,059) 2,071 (1,437–2,873) 13,069 363

Lactococcus 4 1 2,532 35.4 2,465 (2,266–2,504) 2,238 (2,118–2,341) 3,389 1,522

Leuconostoc 3 3 2,025 37.9 1,986 (1,820–2,130) 1,896 (1,724–2,050) 2,927 1,164

Enterococcus 11 4 3,041 36.6 3,078 (2,573–2,515) 2,707 (2,439–3,114) 7,519 1,092

Streptococcus 23 12 1,981 38.9 2,018 (1,696–2,270) 1,923 (1,643–2,180) 9,785 638

Bifidobacterium 19 9 2,209 59.5 1,796 (1,528–2,416) 1,746 (1,497–2,287) 6,980 724

a Number of gene families is given

656 O. Lukjancenko et al.



with lower CG content, though it also includes L.
delbrueckii, whose CG content is quite a bit higher. This
clustering, based on these core genes, corroborates the inter-
strain similarities already reported for their complete
genomes, as shown in Fig. 2. The Streptococcus genus is
separated into two large clusters in Fig. 4. Two clusters are
also observed for the Enterococcus species, while Lactococ-
cus is placed outside all other genera.

A more commonly used procedure is to compare only
a small subset of core genes. In population biology,

MLST of six or seven core gene fragments is frequently
used to assess evolutionary distances between isolates
within a species. MLST analysis is based on DNA
sequences. We adapted this approach to perform in silico
MLST for all isolates within a genus, as a measure for
evolutionary distance of core genes, and used this for
analysis of three genera. Unfortunately, despite the
reputation of MLST as being generally applicable and
despite a considerable number of gene families being
conserved even between Firmicutes and Bifidobacteria
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(63 gene families), different MLST target gene sets have
been proposed for various species, and most of these are
not conserved between all species (Supplementary
Table S1). In order to compare our findings with
published data, we have used fragments of various genes
depending on the genus, as suggested in the literature.

For in silico MLST analysis of Bifidobacterium, 7
gene fragments were extracted according to Delétoile and
co-workers [6], as these happened to be conserved in all
19 Bifidobacterium genomes analyzed here. A phyloge-
netic tree of the extracted and concatenated MLST frag-
ments is shown in Fig. 5. Although MLST was not
designed for this purpose, the results show that this
approach can reveal phylogenetic relationship of these
core genes between species within a genus. All multiple
isolates per species are correctly clustered, although
subspecies are not correctly grouped (see the position
of B. longum longum and B. longum infantis). Three
major clusters can be recognized, separated in the figure
by green lines. These findings are in accordance to the
three groups within this genus recognized by Lee and
O’Sullivan [17], based on an extensive 16S ribosomal
RNA gene analysis.

The MLST website (http://www.mlst.net) lists two
different gene sets to be used for Enterococci. Figure 5

(right side) shows the results obtained with each. Both trees
produce little resolution within the species, especially when
compared with the consensus tree based on 243 core genes
in the previous figure.

For Lactobacilli, four MLSTschemes are available: one for
L. plantarum [4], two for Lb. casei ([1], http://www.pasteur.
fr) and one for L. sanfranciscensis [20], which is not
represented in our dataset. The first three MLST schemes
were tested, which produced different trees (Supplementary
Fig. S2). All three trees clustered multiple strains per species,
but the branch positions of these species varied according to
the gene set used. It cannot be stated which MLST tree is
‘correct’ as they all display the evolutionary relationship of
the genes analyzed in question—but obviously, the phylog-
eny of core genes is not always conserved within a genome,
as it is affected by recombination. This is also visible from
the numbers of core genes producing consensus branches in
Fig. 4. With this variation in mind, an MLST tree should be
interpreted with caution, as it represents only a tiny fraction
of the complete core genome of a strain.

Comparison of Variable Gene Content

The pan-genome of a species or genus comprises both
conserved core and variable genes. The latter can also be
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used to establish inter-genome relationships, although not
by phylogeny. Instead, clustering of presence or absence of
variable genes can be performed [24]. This method
calculates Manhattan distances for genes variably present.
Obviously, core genes and genes found present in only one
genome were excluded from this analysis, as they cannot
identify any correlation between genomes. Thus, only genes
whose presence varies, found at least in two genomes but
absent in at least one genome, are assessed. The resulting
clustering is not a phylogenetic tree, since it is not based on
phylogeny of individual genes. Instead, it shows which
genomes share more of their variable genes than others.

Figure 6 shows the hierarchical clustering of the Bifido-
bacterium genomes based on their variable gene content. As
can be seen, genomes of identical species cluster together
and are separated from different species, but the subspecies
of B. longum are not correctly separated. Since their variable
gene content seems to be mixed, this suggests that these two
subspecies share the same gene pool for horizontal gene
transfer events. The similarity, in terms of variable gene
content, between the two species B. catenulatum and B.
pseudocatenulatum is not more than that between various B.
longum subspecies. A deep division splits B. animalis
combined with B. gallicum from the others, which correlates
with the MLST tree shown in Fig. 5.

The analysis of variable gene content can simultaneously
be performed with genomes of varying similarity, so that
Fig. 6b combines all Firmicute genomes. The 21 Lactoba-
cillus genomes are split into two major groups, which match
a deep branch in the phylogenetic tree of 16S rRNA genes
of this genus [2]. However, the clustering based on variable
gene content produces a different picture to the consensus
tree based on core genes (compare Figs. 4 and 6b). This
probably reflects different evolutionary forces at play. Genes
whose presence is variable may be located on mobile
elements or may be more frequently subjected to DNA
recombination than core genes. The three Leuconostoc
genomes are placed within the Lactobacillus genus; appar-
ently, these share a considerable number of variable genes.

The three major clusters within the Streptococcus genus
visible in Fig. 6 largely match their taxonomic relationship
as defined by 16S rRNA [8], although the distance between
S. thermophilus and Streptococcus infantarius, which are
both part of the ‘Salivarius group Streptococci’, is better
captured by variable gene content than by 16S rRNA
phylogeny. The discrepancy between this clustering and the
consensus core gene tree is even more extensive for this
genus.
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Streptococcus and Enterococcus, which reminds of their

51.4 %
1,075 / 2,093

41.6 %
915 / 2,200

38.3 %
894 / 2,336

41.5 %
926 / 2,230

41.4 %
923 / 2,232

40.9 %
920 / 2,247

41.4 %
925 / 2,234

39.6 %
966 / 2,440

55.7 %
1,180 / 2,118

49.2 %
1,226 / 2,492

49.0 %
1,216 / 2,484

38.0 %
875 / 2,304

43.2 %
1,074 / 2,487

45.9 %
1,040 / 2,268

35.4 %
1,040 / 2,939

40.8 %
1,059 / 2,594

42.4 %
1,050 / 2,475

56.2 %
1,235 / 2,196

41.5 %
904 / 2,176

38.0 %
880 / 2,317

41.5 %
916 / 2,207

41.4 %
914 / 2,208

40.9 %
909 / 2,225

41.4 %
916 / 2,210

41.3 %
984 / 2,382

51.7 %
1,110 / 2,149

44.4 %
1,133 / 2,553

44.3 %
1,125 / 2,541

38.3 %
869 / 2,271

42.6 %
1,058 / 2,484

45.2 %
1,018 / 2,254

35.6 %
1,035 / 2,909

41.6 %
1,063 / 2,558

42.3 %
1,039 / 2,458

49.9 %
1,132 / 2,270

83.4 %
1,415 / 1,696

91.9 %
1,455 / 1,584

91.5 %
1,451 / 1,585

90.0 %
1,447 / 1,607

92.1 %
1,458 / 1,583

36.1 %
878 / 2,435

41.7 %
943 / 2,263

38.0 %
1,000 / 2,632

38.0 %
994 / 2,618

45.6 %
965 / 2,114

36.8 %
938 / 2,552

39.5 %
911 / 2,304

30.4 %
910 / 2,993

35.4 %
934 / 2,636

37.6 %
941 / 2,503

40.6 %
967 / 2,380

84.3 %
1,444 / 1,713

84.0 %
1,440 / 1,714

82.5 %
1,434 / 1,738

84.5 %
1,447 / 1,712

33.4 %
859 / 2,570

38.5 %
924 / 2,401

35.2 %
975 / 2,773

35.1 %
968 / 2,761

41.8 %
941 / 2,252

34.2 %
920 / 2,688

36.6 %
893 / 2,440

28.7 %
896 / 3,121

33.1 %
917 / 2,771

35.0 %
924 / 2,637

37.6 %
946 / 2,518

99.5 %
1,537 / 1,544

96.4 %
1,521 / 1,578

99.5 %
1,539 / 1,547

36.2 %
891 / 2,464

41.5 %
954 / 2,297

38.0 %
1,012 / 2,662

38.0 %
1,006 / 2,649

45.6 %
977 / 2,144

37.1 %
956 / 2,577

39.9 %
929 / 2,329

30.8 %
928 / 3,015

35.7 %
951 / 2,661

37.9 %
957 / 2,528

40.6 %
979 / 2,411

96.1 %
1,517 / 1,579

99.4 %
1,537 / 1,546

36.1 %
889 / 2,465

41.3 %
950 / 2,300

37.8 %
1,008 / 2,664

37.8 %
1,002 / 2,652

45.3 %
972 / 2,148

37.0 %
953 / 2,579

39.7 %
926 / 2,331

30.7 %
925 / 3,017

35.6 %
948 / 2,662

37.7 %
954 / 2,530

40.4 %
976 / 2,413

96.3 %
1,521 / 1,580

35.5 %
882 / 2,485

41.0 %
948 / 2,313

37.4 %
1,004 / 2,681

37.5 %
999 / 2,667

44.8 %
969 / 2,163

36.6 %
950 / 2,594

39.3 %
923 / 2,346

30.4 %
921 / 3,033

35.1 %
942 / 2,681

37.3 %
950 / 2,546

40.0 %
971 / 2,430

36.0 %
890 / 2,469

41.4 %
953 / 2,300

37.9 %
1,011 / 2,666

37.9 %
1,005 / 2,653

45.4 %
975 / 2,149

37.0 %
955 / 2,581

39.8 %
928 / 2,333

30.7 %
927 / 3,019

35.6 %
950 / 2,665

37.8 %
956 / 2,532

40.5 %
978 / 2,415

40.1 %
1,003 / 2,501

35.3 %
1,025 / 2,905

35.0 %
1,014 / 2,895

33.4 %
844 / 2,530

42.2 %
1,120 / 2,652

43.9 %
1,071 / 2,438

36.8 %
1,122 / 3,053

41.1 %
1,122 / 2,731

43.3 %
1,126 / 2,602

39.3 %
1,030 / 2,621

49.7 %
1,263 / 2,541

49.8 %
1,258 / 2,528

38.1 %
902 / 2,367

43.4 %
1,110 / 2,556

45.9 %
1,070 / 2,330

35.4 %
1,067 / 3,016

42.2 %
1,113 / 2,639

41.8 %
1,070 / 2,557

61.7 %
1,341 / 2,174

91.6 %
1,982 / 2,164

34.6 %
949 / 2,745

38.8 %
1,144 / 2,946

41.2 %
1,116 / 2,707

32.2 %
1,096 / 3,408

38.2 %
1,152 / 3,015

38.6 %
1,126 / 2,915

49.3 %
1,300 / 2,636

34.7 %
946 / 2,729

38.8 %
1,137 / 2,927

41.0 %
1,107 / 2,698

32.1 %
1,089 / 3,394

38.1 %
1,144 / 3,000

38.8 %
1,123 / 2,898

49.3 %
1,293 / 2,621

33.0 %
883 / 2,675

35.4 %
859 / 2,426

28.5 %
875 / 3,074

32.0 %
882 / 2,755

33.8 %
886 / 2,622

36.5 %
913 / 2,502

68.4 %
1,482 / 2,166

46.0 %
1,355 / 2,944

67.4 %
1,598 / 2,372

61.6 %
1,459 / 2,370

43.5 %
1,151 / 2,648

44.9 %
1,263 / 2,815

64.6 %
1,468 / 2,272

59.2 %
1,343 / 2,269

45.2 %
1,101 / 2,436

44.9 %
1,358 / 3,026

51.3 %
1,438 / 2,801

35.1 %
1,097 / 3,126

57.6 %
1,438 / 2,498

41.8 %
1,144 / 2,738

42.7 %
1,125 / 2,635

B. adolescentis ATCC 15703

1,631 proteins, 1,599 fam
ilies

B. angulatum
 DSM

 20098

1,586 proteins, 1,558 fam
ilies

B. anim
alis lactis AD011

1,528 proteins, 1,497 fam
ilies

B. anim
alis lactis BB-12

1,642 proteins, 1,614 fam
ilies

B. anim
alis lactis Bl-04

1,567 proteins, 1,543 fam
ilies

B. anim
alis lactis DSM

 10140

1,566 proteins, 1,540 fam
ilies

B. anim
alis lactis HN019

1,578 proteins, 1,557 fam
ilies

B. anim
alis lactis V9

1,572 proteins, 1,544 fam
ilies

B. bifidum
 NCIM

B 41171

1,810 proteins, 1,791 fam
ilies

B. catenulatum
 DSM

 16992

1,720 proteins, 1,683 fam
ilies

B. dentium
 ATCC 27678

2,151 proteins, 2,072 fam
ilies

B. dentium
 Bd1

2,129 proteins, 2,068 fam
ilies

B. gallicum
 DSM

 20083

1,580 proteins, 1,542 fam
ilies

B. longum
 DJO10A

2,003 proteins, 1,918 fam
ilies

B. longum
 NCC2705

1,729 proteins, 1,690 fam
ilies

B. longum
 infantis ATCC 15697

2,416 proteins, 2,287 fam
ilies

B. longum
 infantis CCUG 52486

2,085 proteins, 2,031 fam
ilies

B. longum
 longum

 JDM
301

1,959 proteins, 

1,881 fam
ilies

B. a
ng

ula
tu

m
 D

SM
 2

00
98

1,
58

6 
pr

ot
ein

s, 

1,
55

8 
fa

m
ilie

sB. a
nim

ali
s l

ac
tis

 A
D01

1

1,
52

8 
pr

ot
ein

s, 
1,

49
7 

fa
m

ilie
s

B. a
nim

ali
s l

ac
tis

 B
B-1

2

1,
64

2 
pr

ot
ein

s, 
1,

61
4 

fa
m

ilie
s

B. a
nim

ali
s l

ac
tis

 B
l-0

4

1,
56

7 
pr

ot
ein

s, 
1,

54
3 

fa
m

ilie
s

B. a
nim

ali
s l

ac
tis

 D
SM

 1
01

40

1,
56

6 
pr

ot
ein

s, 
1,

54
0 

fa
m

ilie
s

B. a
nim

ali
s l

ac
tis

 H
N01

9

1,
57

8 
pr

ot
ein

s, 
1,

55
7 

fa
m

ilie
s

B. a
nim

ali
s l

ac
tis

 V
9

1,
57

2 
pr

ot
ein

s, 
1,

54
4 

fa
m

ilie
s

B. b
ifid

um
 N

CIM
B 4

11
71

1,
81

0 
pr

ot
ein

s, 
1,

79
1 

fa
m

ilie
s

B. c
at

en
ula

tu
m

 D
SM

 1
69

92

1,
72

0 
pr

ot
ein

s, 
1,

68
3 

fa
m

ilie
s

B. d
en

tiu
m

 A
TCC 2

76
78

2,
15

1 
pr

ot
ein

s, 
2,

07
2 

fa
m

ilie
s

B. d
en

tiu
m

 B
d1

2,
12

9 
pr

ot
ein

s, 
2,

06
8 

fa
m

ilie
s

B. g
all

icu
m

 D
SM

 2
00

83

1,
58

0 
pr

ot
ein

s, 
1,

54
2 

fa
m

ilie
s

B. lo
ng

um
 D

JO
10

A

2,
00

3 
pr

ot
ein

s, 
1,

91
8 

fa
m

ilie
s

B. lo
ng

um
 N

CC27
05

1,
72

9 
pr

ot
ein

s, 
1,

69
0 

fa
m

ilie
s

B. lo
ng

um
 in

fa
nt

is 
ATCC 1

56
97

2,
41

6 
pr

ot
ein

s, 
2,

28
7 

fa
m

ilie
s

B. lo
ng

um
 in

fa
nt

is 
CCUG 5

24
86

2,
08

5 
pr

ot
ein

s, 
2,

03
1 

fa
m

ilie
s

B. lo
ng

um
 lo

ng
um

 JD
M

30
1

1,
95

9 
pr

ot
ein

s, 
1,

88
1 

fa
m

ilie
s

B. p
se

ud
oc

at
en

ula
tu

m
 D

SM
 2

04
38

1,
87

0 
pr

ot
ein

s, 
1,

80
9 

fa
m

ilie
s

Homology between proteomes

99.5 %28.5 %

Bifidobacterium BLAST Matrix

Figure 3 BLAST Matrix for Bifidobacterium genomes. Note that the colour scale is different to that of Fig. 2

Comparative Genomics of Probiotic Bacteria 659



Lb. gasseri ATCC 33323

S. mitis B6

S. agalactiae NEM316

S. infantarius  ATCC BAA-102

S. pneumoniae G54

S. thermophilus CNRZ1066

Leu. citreum KM20

S. suis 05ZYH33

Lb. johnsonii FI9785

S. dysgalactiae  GGS 124

S. suis GZ1

S. pneumoniae TIGR4

Leu. kimchii IMSNU11154

Lb. casei BL23

Lb. acidophilus NCFM

S. thermophilus LMG 18311

Lc. lactis cremoris MG1363

Lb. reuteri JCM 1112

Lc. lactis lactis Il1403

Lb. crispatus ST1

S. sanguinis SK36

E. faecalis OG1RF

E. gallinarum EG2

S. gordonii CH1

E. faecium Com15

Lc. lactis lactis KF147

Lc. lactis cremoris SK11

Lb. brevis ATCC 367

Lb. plantarum WCFS1

Lb. delbrueckii bulgaricus ATCC BAA-365

E. faecium Com12

Lb. casei ATCC 3343

E. casseliflavus EC20

S. mutans NN2025

Lb. fermentum IFO 3956

E. faecalis E1Sol
E. faecalis T11

Lb. reuteri DSM 20016

Lb. delbrueckii bulgaricus ATCC 11842

S. suis BM407

Lb. rhamnosus GG

Lb. sakei sakei 23K

S. agalactiae A909

Lb. helveticus DPC 4571

E. faecium PC4.1

Lb. rhamnosus GG ATCC 53103

S. pyogenes MGAS10270
S. pyogenes MGAS8232 

Lb. johnsonii NCC 533

S. mutans UA159

S. thermophilus LMD-9

S. pneumoniae ATCC 700669

Lb. plantarum JDM1

Lb. rhamnosus Lc705

S. agalactiae 2603V/R

S. pyogenes M1 GAS SF370

Lb. salivarius UCC118

E. casseliflavus EC10

E. faecalis T3

S. gallolyticus UCN34

Leu. mesenteroides  ATCC 8293

E. faecalis V583 

167

102

239

101

163

235

153

220

239

159

101

243

126

136

243
223

228
109

119

168

1

216

121

227

235

130

104

178

159

228

168

236

234

238

189

243

243

243
243

243
243

243

243
243

243

243

243
243

243

243
243

243

243
243
243

243
243

243
243

243
243

243
243

243

243
243
243

243
243

243
243

243

243

243

243

243

243

243
243

243

243

243

243

243

243

243

243
243

243
243

243

243

243

243
243

660 O. Lukjancenko et al.



inclusion, prior to the 1980s, into the single genus Strepto-
coccus [25]. Within the genus Enterococcus, the clustering in
Fig. 6 separates each of the analyzed species and confirms
that Enterococcus casseliflavus and Enterococcus gallinarum
are more related to E. faecium than to E. faecalis.

Visualization of Conserved and Variable Gene Content

Conservation and variation in gene content between
genomes can also be visualized by a BLAST Atlas [12],
which contains information on gene location as well as on
gene presence, at least for the reference genome on which a

BLAST Atlas is based. Two different Bifidobacterium
reference genomes were used in the two BLAST Atlases
shown in Fig. 7 to which all other Bifidobacterium
genomes were compared. Only genes present in the
reference genome are captured in these atlases as these are
used as query, for which the hits in the other genomes are
recorded as colour in the BLAST lanes. The more strongly
a protein gene is conserved, the more intense the colour is.
Different colours are used to separate the different species,
and these colours have been kept constant between the two
panels, so that it is obvious that genes are mostly conserved
within a species. The most inner BLAST lane included in
Fig. 7 is that of the reference genome against itself. This
shows the maximum colour that can be obtained for each
location. Gaps in this ‘Blast-to-self’ lane where BLAST
hits are absent, for instance around 1,700 kb, are due to
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non-translated genes such as ribosomal RNA copies. In
Fig. 7a, a large region around 350–400 kb appears to
produce a gap of non-conserved genes in most Bifidobac-
terium genomes, with the exception of B. longum infantis
CCUG 52486 and B. longum DJO10A. This represents a
region with variable genes within the B. longum genomes
(the red lanes in the atlas), which are completely absent in
the other Bifidobacterium genomes. Other than that, there
appears to be relatively little variation between the B.
longum genomes. Strong conservation within the species is
also observed for B. animalis when used as the reference, as
shown in Fig. 7b. In that lower panel, the B. animalis lanes
are far more darkly coloured than in the top panel, whereas
the B. longum lanes are lighter in colour, illustrating that
stronger homology is identified within a species than across
species. Note that the large gap of the top atlas is no longer
visible now, as the genes that were found in B. longum are
absent in B. animalis and thus are no longer captured when
the latter is used as a reference. Taken together, these data
suggest that there is relatively strong conservation within a
species of Bifidobacterium, an observation that has been
made by others as well [30].

Figure 8 shows two BLAST Atlases of the Lactobacillus
genomes. There appears to be considerably less conserva-
tion between species of this genus compared to Bifidobac-
terium. Even within the species of the two reference
genomes of both panels, there are multiple gaps. This
reflects the higher genetic diversity of the Lactobacillus
genus compared to Bifidobacterium.

A BLAST Atlas of Streptococcus genomes with S.
thermophilus LMD-9 as the reference is provided as
Supplementary Fig. S3. Two non-pathogenic E. faecalis
genomes were included as well, since these are normal
human flora strains and could be considered to share a
similar niche to S. thermophilus, at least when colonizing
the human gut. There is quite a bit of variation in protein-
coding genes between the three S. thermophilus genomes,
and as expected, there is even fewer conservation in other
species of Streptococcus or in the two E. faecalis genomes.
Apparently, similarity in bacterial lifestyle is not necessarily
represented by a significant homology in gene content.

COG Comparison of Pan- and Core Genomes

So far, conservation of genes was assessed and reported
irrespective of their function, but that information is
essential for a biological interpretation. The function of
genes is not always known, but a large number of proteins
have been assigned to a functional category of orthologous
group, based on inference of sequence similarity to
functionally characterized proteins. We have extracted the
top-level COG groups for the genomes of interest and, in a
first step, compared their core and pan-genomes genes. An

example of such a statistical analysis for Bifidobacterium is
shown in Fig. 9. At the bottom, the legend specifies the 3
top-level COG categories: ‘information storage and pro-
cessing’, ‘cellular processes and signaling’ and ‘metabo-
lism’, which are divided into 18 groups. The pie charts
show what the fraction of the complete pan-genome genes
of Bifidobacterium (left) or of the conserved core genes
(right) belongs to each COG group. As expected, genes for
which a function is not precise or not at all predicted build a
significant fraction in the pan-genome, but these are mostly
removed from the core genes, as their presence varies.
More surprisingly, the three top categories are more or less
similarly distributed in the two pie charts (thereby ignoring
the contribution of the grey and black fractions), with a
slight overrepresentation only of the information storage
genes in the core genome compared to the pan-genome.
Within these three broad categories, however, differences
are visible when comparing the pan-genome or the core
genome of these Bifidobacterium genomes. For instance,
within ‘information storage and processing’, class J
(translation, ribosomal structure and biogenesis) is enriched
in the core genome, at the expense of K and L (transcription
and replication, respectively). This means that the gene
content related to these latter information storage processes
is more variable and is hence captured in the pan-genome
but less so in the core genome than the genes related to
translation and ribosome biogenesis. Of interest is also the
shift within the group ‘metabolism’ between classes E and G
(for amino acid and carbohydrate transport/metabolism,
respectively). The results indicate that the gene content for
metabolism of amino acids is more conserved than that for
carbohydrates, at least between these Bifidobacterium
genomes. Lastly, enrichment in the core genome of class
O, for post-translational modification and chaperones, is
apparent within the group ‘cellular processes and signaling’.

The Bifidobacterium findings can be compared to those
of Lactobacillus, shown at the top of Fig. 10. The
distribution of the three top-level COG categories in the
pan-genome of Lactobacillus is different to that of
Bifidobacterium, with more information storage and fewer
metabolism genes. This is more obvious from Table 3,
which lists the relative fractions of these COG classes when
the grey and black fractions are ignored. For the core genes
of Lactobacillus, the relative increase (compared to its pan-
genome) in the fraction of information, storage and
processing genes, at the expense of metabolism genes, is
far more pronounced than for Bifidobacterium. Within the
information and storage group, the enrichment of class J
genes in the core genome of Lactobacillus is also stronger
than reported for Bifidobacterium.

Figure 10 also shows the plots for Lactococcus (middle)
and Leuconostoc (bottom). Although these last two genera
are represented by four and three genomes only, all pan-
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genomes look surprisingly similar. However, when concen-
trating on the functionally annotated genes only (Table 3),
some differences become apparent. The core genes of
Lactococcus and Leuconostoc display a similar distribution
of the three major COG classes as Bifidobacterium (which
is taxonomically removed) that is different to the core
genome of Lactobacillus, to which they are much closer
related. Note that, in their pan-genomes, these three COG
groups are similarly divided in Bifidobacterium and
Lactobacillus. The shifts observed between pan-genome
and core genome within a genus are contrasting between
Lactobacillus and Lactococcus, whereas there is hardly a
shift for Leuconostoc. From Fig. 10, it can be seen that, in
the pan-genome of Lactococcus, class L genes make up a
relatively large proportion. Within the metabolic gene
classes, for Lactobacillus, a strong enrichment of nucleotide
metabolism genes (class F) is observed in the core genes,
whereas genes related to amino acid metabolism (class E)
are more favoured in the core genome of Lactococcus. A
significant increase in the core genes of COG class O (post-
translational modification and chaperones) is observed for
all analyzed genera. This could be an indication of the
importance for such genes in the natural habitat of these gut
bacteria.

The COG distribution plots for the pan-genome genes
and the core genes of Enterococcus and Streptococcus is
provided as Supplementary Fig. S4; the percentages of the
three functionally classified COG top levels are included in
Table 3. In contrast to the above examples, these two
genera contain both pathogenic and non-pathogenic iso-
lates. As in the previous examples, the large fraction of
genes with unknown function is minimized in the core
genome, but for both genera. Metabolism genes are neither
over- nor underrepresented in the core genome. As before, a
strong conservation of genes of COG class J (translation,
ribosomal structure and biogenesis) was observed. Carbo-
hydrate transport and metabolism genes (class G) were
more frequently found in the Enterococcus pan-genome
than in the Streptococcus pan-genome, though this was less
pronounced for their core genomes.

In an attempt to correlate findings with the presence or
absence of pathogenicity, all genomes of pathogenic
isolates (irrespective of their genus) were combined to
collectively compare these with the non-pathogens (pro-
biotic, fermentative and normal gut flora organisms)
combined. The pathogenic group consisted of Enterococcus
and Streptococcus genomes only, whilst the non-pathogenic

group contained genomes of all genera analyzed. The COG
analysis was then repeated for these two phenotypic
collections, whereby the pan- and core genomes obviously
were recalculated. The pathogenic collection had a pan-
genome of 14,209 gene families and a core genome of 508.
The pan-genome of the non-pathogenic collection was
significantly larger (21,087), and this group produced a
core genome of only 278 gene families. The results of the
COG analysis are shown in Fig. 11. Surprisingly, the two
pan-genome statistics look nearly identical, despite the
obvious phenotypic differences between these two groups
that both consist of diverse organisms, with a skewed genus
distribution. However, the COG distribution between the
two core genomes differs dramatically. The fraction of
genes for which no homologue could be identified has
(nearly) disappeared from the core genome of the non-
pathogenic group, but a significant fraction of these genes
was retained in the core genome of pathogens. The top
level of metabolism genes has decreased in both core
genomes, but more so in the group of the non-pathogens.
Thus, the core genes of the non-pathogenic isolates are
more frequently information storage genes and less likely
metabolism genes than the core genes of pathogens
(Table 4). Zooming in on shifts in single categories between
pan- and core genomes, the enrichment of core genes
belonging to class J, already observed for all single genus
plots shown above, is even more extensive and far more
extreme with the collection of non-pathogenic organisms.
An enrichment for class O (post-translational modification
and chaperones) within the top-level ‘metabolism’ is
pronounced in the core genome of both groups, but the
pathogens also show enrichment of class M genes (cell
wall/membrane biogenesis) which is actually reduced in the
core genome of non-pathogens.

Discussion

The comparative analysis presented here of 81 bacterial
genomes, covering 6 genera and 43 different species,
could be performed by grouping their genes into gene
families and comparing core and pan-genomes of various
subsets of genomes. The findings frequently confirmed
taxonomic relationships but could not identify common
signatures, in terms of gene content, for all non-
pathogenic bacteria included in the analysis. This finding
is surprising, as all these species occupy a similar niche.
Conserved genes were compared by means of a consen-
sus tree, while genes variably present were analyzed by
cluster analysis. The latter indicated that Leuconostoc
genomes share a considerable number of variable genes
with Lactobacillus. Functional analysis of the proteins
coded by the genes comprising a genus’ core genome

Figure 7 Blast Atlas of Bifidobacterium genomes with B. longum
strain NCC2705 (top) and B. animalis lactis strain V8 (bottom) as the
reference. To the right, the BLAST lanes for each atlas are listed. The
four circles inwards of the annotation lane of the reference genome
represent stacking energy, position preference, global direct repeats
and GC skew (from out to in)

R
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identified the relative strong conservation of information
storage genes; this was observed for all genera analyzed.
When all genomes were divided into a pathogenic and a

non-pathogenic group, the pan-genome of both groups
showed a surprisingly similar COG distribution; however,
their core genome differed considerably. It was observed
that, in the core genome of non-pathogenic genomes,
genes for post-translational modification and chaperones
were enriched.

Figure 8 BLAST Atlas of Lactobacillus with L. rhamnosus strain
Lc705 (top) and Lb. johnsonii strain NCC533 (bottom) as the
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A simultaneous comparison of the pan- and core
genomes of publicly available genomes of Lactobacillus,
Lactococcus, Leuconostoc, Enterococcus, Streptococcus
and Bifidobacterium, as was performed here, has not been
published before, but similar analyses have been published
for smaller selections of organisms. Canchaya and co-
workers [2] performed comparative genomics of the then
five available Lactobacillus genomes from different species
and commented on the high variability within this genus.
Schleifer and Ludwig [23] stated that “It is widely
recognized that the taxonomy of this genus is unsatisfactory
due to the highly heterogeneous nature of its members”.
Indeed, data presented here illustrate the diversity within
Lactobacillus. However, the heterogeneity of this genus is
not larger than that of other bacteria. Using the same
comparison criteria as applied here, the pan-genome of 53
E. coli genomes was found to comprise 13,000 gene
families, even within this single species [18]. Similarly, an
analysis of 27 genomes from 7 Vibrio species produced a
pan-genome of nearly 15,000 gene families for this genus
[31], and 38 genomes of 5 Burkholderia species contained
as much as 26,000 gene families [28]. Thus, the diversity in
gene content within the genus Lactobacillus, based on the
genome sequences currently available, is not exceptional in
the bacterial world.

Our analyses are mainly based on core genomes, an
approach that others followed as well [2]. Those authors
had defined a core genome for Lactobacillus whose size is
similar to our findings. However, the fraction of identified
orthologous genes in the pairwise comparisons performed
by those authors range from 52.3% to 68.9%, which is
much higher than our findings of between 12% and 42%,
shown in the BLAST Matrix of Fig. 2. The difference may
be due to the way these percentages were calculated.
Whereas we express these as the fraction of gene families
found in the reciprocal pan-genome of the pair of analyzed
genomes, their calculations are different, and they do not

state the cut-off used to recognize orthologous genes as
such. In view of their limited reported range, we believe our
way of expressing pairwise homology is more useful, as it
gives a more sensitive measure. In a subsequent publica-
tion, comparative genomics was performed with a larger set
of 12 Lactobacillus genomes [3]. Inclusion of 7 more
genomes reduced their core genome to 141 genes which
indicates they used more strict criteria of inclusion than the
50–50 rule we applied. Similar to our analysis, these
authors compared the COG classes of the core genes they
had identified, and their findings also reported the largest
class represented to be genes involved in translation,
followed by replication.

Comparative genomics of both Lactobacillus and
Bifidobacterium was presented in a review [30], which
mentioned the ability of Bifidobacterium to “synthesize at
least 19 amino acids and (…) all of the enzymes that are
needed for the biosynthesis of pyrimidine and purine
nucleotides”. These authors further emphasized the im-
portance of carbohydrate metabolism for Bifidobacterium
with its capability to degrade complex sugars. Indeed, top-
level metabolism genes form a major part of the
Bifidobacterium core genome (Fig. 9) with class E (amino
acid metabolism) as the largest fraction within that
category. When we compare this core genome with that
of Lactobacillus (Fig. 10), our analysis shows that class F
genes (nucleotide metabolism) comprise the largest me-
tabolism gene fraction in the Lactobacillus core genome.
Ventura and co-workers [30] used a known physiological
characteristic (Bifidobacterium species are known for their
prototrophy) and looked for evidence of this in the
genomes. In contrast, we have done a neutral analysis of
pan- and core genome COG class representation and then
compared this between genera. Our approach reveals
novel insights that would remain unnoticed when known
phenotypes are taken as a start, for instance the conserva-
tion of COG class O genes, involved in post-translational
modification and chaperones, in both of these genera.

The authors of a recent review on Bifidobacterium
genomics [17] pointed out that most Bifidobacterium

Figure 10 COG distribution of pan-genome genes (left) and core
genes (right) for Lactobacillus (top), Lactococcus (middle) and
Leuconostoc (bottom)

�

Table 3 Relative fractions of COG groups within the functionally annotated genes for the six genera

COG groups Bifidobacterium Lactobacillus Lactococcus Leuconostoc Enterococcus Streptococcus

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Information storage 30.0 33.9 34.0 49.1 ↑↑ 50.5 30.4 ↓↓ 28.1 31.0 26.6 33.8 ↑ 34.7 42.6 ↑↑

Cellular process,
signalling

21.9 20.2 22.7 20.3 17.1 19.1 19.1 20.0 24.4 18.9 ↓ 26.3 20.3 ↓

Metabolism 48.1 45.9 44.3 30.6 ↓↓ 32.2 50.6 ↑↑ 52.7 49.1 50.0 47.8 39.2 36.9

All percentages are expressed as the fraction of all COG classes C to V. The arrows indicate significant shifts between the pan-genome genes and
core genes for a given genus. Percentages do not always add up to 100% due to rounding effects
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and core genome (right) of the collection of genomes from all
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fermentative and normal human gut flora) at the top and pathogenic
isolates at the bottom

Table 4 Relative fractions of
COG groups within the func-
tionally annotated genes for
non-pathogens/pathogens. The
arrows indicate how the reported
percentages increase or decrease
in the core genome compared to
the pan genome.

COG groups Non-pathogens Pathogens

Pan (%) Core (%) Pan (%) Core (%)

Information storage 33.5 64.4 ↑↑ 29.3 42.4 ↑↑

Cell. process, signalling 22.0 16.6 ↓ 25.7 18.9 ↓

Metabolism 44.5 20.2 ↓↓ 44.9 38.7 ↓
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genomes have been sequenced from organisms that have a
long history of culture outside their natural habitat, the gut,
with the exception of B. longum DJO10A. There is good
evidence that the genome of Bifidobacterium is subject to
gene reduction to adapt to prolonged culture conditions.
This could potentially bias our comparative analysis of
Bifidobacterium genomes with that of the other probiotic
organisms.

The term ‘lactic acid bacteria’ is commonly used to
describe bacteria used as starter cultures and fermentation
of foodstuffs. LAB can refer to species from the genera
Lactobacillus, Lactococcus, Leuconostoc, Streptococcus,
Enterococcus, Pediococcus or all of the Lactobacillales,
and sometimes includes Bifidobacterium as well. Howev-
er, there are good reasons why these bacteria have been
placed into different genera and phyla. The analyses
presented here support their current taxonomic positions
and stress their differences in gene content. The term LAB
incorrectly suggests all these organisms are somehow
related; a view that is still being presented in the literature
[15]. The use of the term LAB is a bit misleading, as the
genetic content from these various genera differ signifi-
cantly. Moreover, some of the genera within LAB
comprise only non-pathogenic species (Leuconostoc,
Bifidobacterium, Lactobacillus), whereas other genera
are a mixture of pathogenic and non-pathogenic species
and strains (Streptococcus, Enterococcus). It would be
better to refrain from the term LAB as there is no common
denominator, other than the production of lactic acid
(which is not restricted to these organisms) to collectively
describe all species and strains supposedly included in this
diverse group of organisms.

An extensive comparative study of Enterococcus
genomes could not be identified from the literature. Most
studies concentrate on pathogenicity of E. faecalis. Vebø
and co-workers [29] compared probiotic and (uro-)patho-
genic E. faecalis genomes; however, those comparisons
were not based on sequence data. The Enterococcus
genomes we have included were mostly from pathogenic
organisms (only two non-pathogenic E. faecalis strains
whose sequences were nearing completion were publicly
available at the time of analysis), which limits the strength
of this analysis, as it cannot be used to compare and
contrast multiple non-pathogenic with pathogenic Entero-
coccus genomes. The 11 genomes included represent only 4
species, giving a pan-genome of nearly 8,000 gene families.
The first four species of Lactobacillus or Streptococcus
genomes in the pan-genome plots of Fig. 1 produce smaller
pan-genomes, which could suggest that the diversity of
Enterococcus could be at least as extensive as that of
Lactobacillus. The pairwise BLAST comparison within this
genus resulted in homologues varying from 24% to 84%,
again indicating extensive intra-genus diversity.

Streptococcus and Enterococcus are frequently consid-
ered as closely related, but the BLAST Matrix comparing
all included genomes (Supplementary Fig. S1) does not
support this. Instead, somewhat surprisingly, the observed
homology between Leuconostoc and Streptococcus
genomes is slightly higher than that between Streptococcus
and Enterococcus. On the other hand, Lc. lactis was
positioned in between these two genera in the tree based
on variable gene content. A shared gene pool between these
genera can be hypothesized. Based on the conserved core
genes, however, Enteroccus is more related to Streptococ-
cus, while Lactococcus is more distinct.

A small comparative study of Streptococcus genomes
combined with MLST suggested that S. thermophilus is a
relatively young clone, evolved by genome reduction which
removed or inactivated Streptococcus virulence genes [13].
It is possible, however, that the reduced genomes observed
are the result of prolonged use as starter cultures, as no
fresh human isolates have been sequenced to date. In a
short review, Delorme [5] states that “S. thermophilus is
related to Lactococcus lactis…”. Indeed, from the all-
against-all BLAST Matrix, a similarity between 17.3% and
20.2% is recorded between genomes of these two species,
which is higher than that between S. thermophilus and any
other non-streptococcal genome. However, Lc. lactis also
shares 16.0% to 18.0% of reciprocal genes with S. suis, so
these overlapping percentages of gene similarity are no
indicator of similarity in (probiotic) phenotype. Within the
Streptococcus genus, the stated similarity of S. thermophi-
lus with Streptococcus sanguinis (the only member of the
viridans group for which a genome sequence is available) is
confirmed in our Matrix, but an even higher similarity is
found with Streptococcu gordonii.

The COG analysis of the core genomes of separate
genera identified both similarities and differences. The
three top-level functional COG groups are relatively
equally divided over the functionally annotated pan-
genes of all species, but their core genomes differ.
Notably, Lactobacillus and Leuconostoc both have a
smaller fraction of metabolism core genes than the other
four genera and a larger information storage gene fraction.
Information storage genes are essential, but redundancy
allows so much variation between organisms that they are
not all maintained in a core genome of diverse species. In
the approach presented here, we first identified the core
genomes of groups of bacteria and then sorted the genes in
these core genomes for top-level COG categories. As a
consequence, genes that were insufficiently conserved
based on sequence similarity to be maintained in the core
genome are removed despite their possible functional
conservation. Using this approach, we found no correla-
tion between the diversity within a genus (using the
difference of their pan- and core genome as a measure)
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and the fraction of their information/storage COG genes.
This lack of correlation is illustrated by the core genome of
Bifidobacterium (724, or 10% of its pan-genome) and
Leuconostoc (1,164, or 40% of its pan-genome). These two
core genomes contain 34% and 31% information/storage
genes, respectively, despite a huge difference in the degree of
variation in these two genera.

Of particular interest is the COG analysis where all
genomes were divided into a pathogenic and a non-
pathogenic group. Virulence genes are not a separate COG
category, but from the comparison of the core genomes of the
pathogenic group with that of the non-pathogenic group, we
can hypothesize that genes belonging to COG categories M
(cell wall/membrane biosynthesis) and O (post-translational
modification, chaperones) would mostly contribute to viru-
lence. Conversely, it could be assumed that genes highly
overrepresented in the core genome of the non-pathogenic
group (compared to the core genome of the pathogenic group)
most likely contribute to their probiotic or fermentative
lifestyle. We observe enrichment for genes belonging to
COG class J (translation, ribosomal structure and biogenesis)
and again O (post-translational modification and chaperones).
The finding that core genes of the non-pathogenic isolates are
more frequently information storage genes and less likely
metabolic genes than the core genes of pathogens is counter-
intuitive. It is generally accepted that commensals and
probiotic strains are most adequately equipped to live in
the intestine, which would assume they share a large
number of (conserved) metabolic genes to do so. Instead,
the reduced metabolism gene fraction in their core
genome suggests that there is a large variation within
these genes, which reflects the diversity of the various
commensals, fermentative and probiotic isolates. The
vast enrichment for information/storage genes in the core
genome of the non-pathogenic organisms is possibly a
reflection of the relative poor conservation of all other
functional classes in this group, an effect that appears to
be less pronounced in the (ecologically more diverse)
pathogenic group. The fact that Bifidobacterium are not
present in the pathogenic group may have skewed these
results slightly. A more accurate prediction for conserved
genes with an important role in bacteria with a non-
pathogenic lifestyle may become possible in the future,
when more non-pathogenic Enterococcus genomes be-
come available, which allows comparison of gene content
within a genus or even species.

Conclusions

This study illustrates the value of comparative genomics of
multiple genomes within and between related species and
genera. The applied tools are relatively simple to analyze a

vast number of genes, and the results can support or
contradict existing hypotheses and taxonomic divisions, as
well as generate novel hypotheses. We believe the data
presented here can assist in understanding the commensal
and probiotic relationship of bacteria with their human host.
The work presented here demonstrates that the used
analyses can be applied to large numbers of genomes,
when searching for general mechanisms to predict trends
even across genera. The presented analyses can be taken as
a test case for comparison of multiple genomes from a
largely variable dataset.
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Genome Sequencing Identifies Two Nearly Unchanged Strains of
Persistent Listeria monocytogenes Isolated at Two Different Fish
Processing Plants Sampled 6 Years Apart
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Listeria monocytogenes is a food-borne human-pathogenic bacterium that can cause infections with a high mortality rate. It has

a remarkable ability to persist in food processing facilities. Here we report the genome sequences for two L. monocytogenes

strains (N53-1 and La111) that were isolated 6 years apart from two different Danish fish processers. Both strains are of serotype

1/2a and belong to a highly persistent DNA subtype (random amplified polymorphic DNA [RAPD] type 9). We demonstrate us-

ing in silico analyses that both strains belong to the multilocus sequence typing (MLST) type ST121 that has been isolated as a

persistent subtype in several European countries. The purpose of this study was to use genome analyses to identify genes or pro-

teins that could contribute to persistence. In a genome comparison, the two persistent strains were extremely similar and collec-

tively differed from the reference lineage II strain, EGD-e. Also, they differed markedly from a lineage I strain (F2365). On the

proteome level, the two strains were almost identical, with a predicted protein homology of 99.94%, differing at only 2 proteins.

No single-nucleotide polymorphism (SNP) differences were seen between the two strains; in contrast, N53-1 and La111 differed

from the EGD-e reference strain by 3,942 and 3,471 SNPs, respectively. We included a persistent L. monocytogenes strain from

the United States (F6854) in our comparisons. Compared to nonpersistent strains, all three persistent strains were distinguished

by two genome deletions: one, of 2,472 bp, typically contains the gene for inlF, and the other, of 3,017 bp, includes three genes

potentially related to bacteriocin production and transport (lmo2774, lmo2775, and the 3=-terminal part of lmo2776). Further

studies of highly persistent strains are required to determine if the absence of these genes promotes persistence. While the ge-

nome comparison did not point to a clear physiological explanation of the persistent phenotype, the remarkable similarity be-

tween the two strains indicates that subtypes with specific traits are selected for in the food processing environment and that

particular genetic and physiological factors are responsible for the persistent phenotype.

L
isteria monocytogenes is a Gram-positive, food-borne, human-
pathogenic bacterium that can cause listeriosis in humans. It

affects predominantly immunocompromised individuals, the el-
derly, young babies, and fetuses in utero (1). Although listeriosis
represents only 7.4% of all reported food-borne infections, the
fatality rate (17%) and hospitalization rates (92.6%) are high (2).

The bacterium is common in food products and poses a special
risk in ready-to-eat products that allow proliferation of the patho-
gen. It is not only a safety issue but also an economic concern,
because 61% of food products recalled by the U.S. FDA between
1994 and 1998 were due to L. monocytogenes contamination (3).
The bacterium is an intracellular human pathogen, and it also has
a saprophytic life-style and can therefore be isolated from soil and
decaying plant material (4). Although it can be present in raw food
materials, the processing plant environment is typically the imme-
diate source of L. monocytogenes contamination of food products
(5–8). Even though food processing equipment and facilities are
cleaned frequently, some molecular subtypes of L. monocytogenes
may persist in the food processing environment for many years
(7–9).

We have found that one specific molecular subtype of L. mono-
cytogenes strains was dominant and persistent in several fish pro-
cessing plants (8, 10, 11). Other subtypes were also isolated several
times in the processing plants although not as frequently (8). We
reasoned that if we could understand the physiological and genetic
characteristics that enabled this persistence, we could develop tar-

geted intervention strategies and improve food safety by reducing
or eliminating the highly persistent subtypes. We have investi-
gated a series of behavioral patterns that we hypothesized were
likely to explain the strong persistence. However, these persistent
strains are not particularly common in the outside environment
(12); they do not grow better under food processing conditions,
nor do they form better biofilms (13); and they do not appear to
tolerate biocides (14) or desiccation (15) better than presumed
nonpersistent strains.

Since strains of food processing plant persistent subtypes are
likely contaminants of ready-to-eat products, it is important to
determine the degree of risk to the consumer. In simple eukaryotic
cell models and simple animal models (Caenorhabditis elegans and
Drosophila melanogaster), the highly persistent strains were less
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invasive than human clinical strains (13, 16–18). Surprisingly, in a
more complex biological model (using oral dosing of pregnant
guinea pigs), the strains infected placentas and fetuses just as effi-
ciently as the clinical strains (18). Hence, this particular subtype is
of key interest since it is a recurrent contaminant and may be a
risk, especially to pregnant women.

The genomes of several strains of L. monocytogenes have been
sequenced in recent years (9, 19–22). At present, there are 34 L.
monocytogenes genomes publicly available, of which 16 are fin-
ished and 18 are available as draft sequences. This rapid expansion
in publicly available genome sequences is key to understanding
the evolutionary history of L. monocytogenes and to elucidating
virulence regulation. Our intent here was to harness genome-
based analyses to better understand the basis of this organism’s
persistence in particular food processing environments.

In this work, we initially addressed the discriminatory power of
subtyping by comparing the genome sequences and predicted
proteomes of two strains of L. monocytogenes isolated from differ-
ent plants at different times but which share the same molecular
subtype. These two strains were representative of the above-men-
tioned large group of strains that were isolated repeatedly from
fish processing environments over many years and that were in-
distinguishable by molecular subtyping (8). Subsequently, we
searched for features uniquely shared by these and another (pre-
viously sequenced) persistent strain in order to identify genes that
may contribute to, or detract from, persistence in such environ-
ments.

MATERIALS AND METHODS

Listeria monocytogenes strains. Two L. monocytogenes strains, represent-
ing a highly persistent molecular subtype, were sequenced for this study.
Strain La111 was isolated from a package of cold-smoked salmon in 1996
(11), whereas strain N53-1 was isolated from a processing environment in
2002 (8). These isolates derived from different plants. Both strains were
determined to be serotype 1/2a and lineage II strains. The strains were
deemed identical based on random amplified polymorphic DNA
(RAPD), pulsed-field gel electrophoresis (PFGE), and amplified fragment
length polymorphism (AFLP) typing and similar to a large cluster of mo-
lecular subtypes that are often isolated from Danish fish smokehouses (8).
The strains were isolated following a selective enrichment, streaking onto
Oxford agar, and restreaking onto brain heart infusion (BHI) agar. Stock
cultures were stored at �80°C in a medium containing 4% (wt/vol) glyc-
erol, 2% (wt/vol) skim milk powder, and 3% (wt/vol) tryptone soya broth
(TSB) (catalog number CM0129; Oxoid). Growth in the present study
was performed with TSB at 37°C.

DNA purification. Genomic DNA was purified with a Fast DNA kit
(catalog number 116540-400; MP Biomedicals), with modifications. Cells
were harvested after growth for 24 h in TSB (catalog number CM0129;
Oxoid), and the pellet was resuspended in 210 �l buffer 1 (0.58 M sucrose,
0.01 M Na-P, 10 �g/ml lysozyme). The suspension was heated for 1.5 h at

37°C, followed by washing. The pellet was resuspended in demineralized
water, and the procedure for the Fast DNA kit was followed. RNA was
removed by using Ambion RNase Cocktail (catalog number AM2286;
Invitrogen).

Genome sequencing. L. monocytogenes N53-1 and La111 were se-
quenced by using second-generation methods on the Illumina Genome
Analyzer II (GAII). Approximately 1 �g of total genomic DNA from each
strain was used to generate a short-read library. Library preparation, DNA
sequencing, and raw data processing via the Illumina Genome Analyzer
Analysis Pipeline were carried out in accordance with the manufacturer’s
protocols for single-end 36-bp reads (Illumina, San Diego, CA). The only
exceptions involved the random fractionation of the genomic DNA via
sonication (rather than nebulization) and the use of 5 �l (rather than 1 �l)
of template for the final PCR amplification of the library. The GAII was
employed for 36 cycles to generate the nucleotide data. Each strain was
sequenced in one lane containing 2 pM template and in a second lane
containing 3 pM template.

Assembly of genomes. Prior to assembly, sequences were filtered to
remove those reads that contained one or more ambiguous base calls. The
N53-1 and La111 sequences were assembled separately by using the de

novo assembler Velvet version 1.1.04 (23), with parameters determined by
Velvet Optimizer 2.1.7 (S. Gladman and T. Seeman). A high-resolution,
ordered, and oriented restriction map (optical map) was generated for the
N53-1 genome by using the OpGen system (OpGen Technologies, Mad-
ison, WI) and the NcoI endonuclease. This physical evidence was subse-
quently used to constrain genome assembly of N53-1 contigs using Map-
solver software (OpGen) based on in silico digestion and comparison of
restriction cut site patterns of each contig to the genome. The optical map
of N53-1 was considered dispositive as evidence in placing contigs gener-
ated from the N53-1 isolate. We subsequently explored the applicability of
the N53-1 physical evidence for its potential to assist in the assembly of
La111, premised on the hypothesis that genomes so similar in sequence
content would also share syntenic organization. A minimum score for the
local alignment was set initially to 3 and then reduced to 2. Only unam-
biguous alignments were accepted. For both strains, contigs were concat-
enated in the order and orientation determined by the optical map align-
ment. Between each contig, the sequence 5=-NNNNNCATTCCATTCAT
TAATTAATTAATGAATGAATGNNNNN-3= was inserted (24). This
sequence was designed such that it introduces a stop codon in all six
reading frames as well as a start codon in all reading frames, encouraging
proper annotation of those genes residing near contig junctions (24).

Genome annotation. The predicted proteomes of all analyzed strains
were extracted by using Prodigal software (25), which is able to recognize
prokaryotic genes and identify translational initiation sites. tRNA-encod-
ing sequences were located by using the tRNAscan-SE 1.21 server (26).
Genome comparisons were made by using Mauve v 2.3.1 (27) and BLAST
via the NCBI website.

Genome sequences from online databases. The genome of L. mono-

cytogenes EGD-e (GenBank accession number NC_003210.1), which is a
lineage II, serotype 1/2a strain, was downloaded from the NCBI website
(http://www.ncbi.nlm.nih.gov/) and used as the reference strain (Table 1).
Assembled genomes of L. monocytogenes F6854 and L. monocytogenes

TABLE 1 L. monocytogenes strains used in the present studyb

Strain Serotype Lineage Source of isolation

Reference for

isolation

Reference or source(s) for

nucleotide database

Reference for genome

sequence

N53-1 1/2a II Smokehouse environment 8 This study This study

La111 1/2a II Cold-smoked salmon 10 This study This study

F6854 1/2a II Turkey franks 28 J. Craig Venter Institute, TraceDBa 29

EGD-e 1/2a II Rabbit isolate, 1926 NCBI 30

F2365 4b I Mexican-style cheese 31 J. Craig Venter Institute 29
a Raw data.
b L. monocytogenes N53-1 and La111 have been sequenced in the present study, whereas DNA sequences from F6854, EGD-e, and F2365 were retrieved from online databases.
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F2365 were downloaded from the J. Craig Venter Institute website (http:
//www.jcvi.org/). F6854 belongs to the same ribotype (DUP-1053A) as
two other strains isolated 12 years later and linked to the same food pro-
cessing facility (8) and is, hence, a highly persistent subtype. The raw
sequence data of L. monocytogenes F6854 from TraceDB (ftp://ftp.ncbi
.nih.gov/pub/TraceDB/) was included in the data set for the single-nucle-
otide polymorphism (SNP) analysis.

BLAST Ring Image Generator. Visual comparison of genome homol-
ogy was done by using BRIG (BLAST Ring Image Generator) (32; http:
//sourceforge.net/projects/brig/). BRIG is capable of generating circular
comparison images for prokaryote genomes and displays similarity be-
tween a reference genome in the center and other query sequences. EGD-e
was used as the reference genome and was compared to the genomes of
N53-1, La111, F6854, and F2365. As the similarity is calculated from the
respective reference, regions that are absent from the reference genome
but present in one or more of the query sequences will not be displayed.
The BRIG method uses the software BLASTALL v 2.2.25� for the
searches. The comparisons were done with default settings.

BLAT and BLAT matrices. The similarity between N53-1 and La111,
and the similarity to the other strains of L. monocytogenes, was also as-
sessed by a pairwise genome comparison. A matrix showing the fraction of
genome-specific genes was constructed. For each gene in one genome, a
BLAST-Like Alignment (BLAT) was performed against the second ge-
nome. BLAT rapidly searches for relatively short k-mers and extends these
to high-scoring pairs (HSPs) (33). A given gene was considered to be
specific if there were no HSPs satisfying the 50/50 rule, meaning that no
sequence in the queried genome was at least 50% identical to the gene over
at least 50% of its length.

SNP analysis. For SNP detection, the raw data sequences from N53-1,
La111, and F6854 were mapped to the reference strain EGD-e. N53-1 and
La111 were mapped to both F6854 and F2365. Also, raw data sequences
from N53-1 were mapped to the de novo-assembled La111 genome, and
the raw data sequences of La111 were mapped to the de novo-assembled
N53-1 genome. After mapping the raw data, open reading frames were
identified, and the read mappings were analyzed for the presence of SNPs.
All steps of the SNP analysis were conducted by using CLC Genomics
Workbench v 4.8 (CLC, Aarhus, Denmark) with the default settings, ex-
cept for the minimum variant frequency, which was set at 85%. A list of
the identified SNPs was exported to an Excel spreadsheet. All SNPs coding
for silent mutations were deleted, and further analysis was conducted with
the remaining nonsynonymous SNPs.

In silico MLST analysis. Multilocus sequence typing (MLST) was
used to analyze nucleotide variations in seven housekeeping genes (acbZ,
bglA, cat, dapE, dat, ldh, and lhkA) spread across the bacterial chromo-
some (34; http://www.pasteur.fr/recherche/genopole/PF8/mlst/Lmono
.html). An in silico PCR analysis was conducted on the N53-1 and La111
genomes by using CLC DNA Workbench v 6.5 with default settings. The
obtained in silico PCR products were trimmed and uploaded to the
L. monocytogenes MLST database (http://www.pasteur.fr/recherche
/genopole/PF8/mlst/Lmono.html) for determination of the sequence type
(ST).

Nucleotide sequence accession numbers. Genome sequences have
been submitted to the EMBL database at the EBI website and can be found
under accession numbers HE999704 (strain La111) and HE999705 (strain
N53-1).

RESULTS AND DISCUSSION

General genome features. The next-generation sequencing of L.
monocytogenes N53-1 generated over 70.8 million reads, of which
69.3 million reads were retained after removing those containing
ambiguous base calls within their sequence. The N53-1 reads as-
sembled into 314 contigs (N50 [a statistic measuring assembly
quality] � 100,675). For La111, over 57 million reads were gener-
ated, with 54.8 million reads subsequently analyzed after remov-

ing sequences containing ambiguous base calls. De novo assembly
of the La111 short reads formed 279 contigs (N50 � 106,240).

By using Mapsolver software, the in silico digestions of the de
novo N53-1 assembled contigs were compared to the optical map.
In total, 25 contigs were placed, representing 82.3% of the se-
quence data generated for N53-1 (assembled length excluding
gaps divided by total length of all de novo-assembled contigs) (Ta-
ble 2). Using BLAST, we found that of the three remaining large
contigs (�30 kb), two unplaced contigs aligned well to other pub-
lished L. monocytogenes nuclear genomes, and one aligned to the
plasmid sequence of L. monocytogenes 08-5578. Of the 279 de no-
vo-assembled contigs of La111, 19 aligned to the optical map of
N53-1 under the strict default parameters representing 78.5% of
the genome (assembled length excluding gaps divided by total
length of all de novo-assembled contigs) (Table 2). An alignment
by using BLAST revealed that five of the six unmapped, large con-
tigs ranging in size from 34.9 kb to 54.6 kb aligned closely with the
genomes of L. monocytogenes 08-5578, 08-5923, and/or EGD-e,
and one contig (37.7 kb) aligned to the plasmid sequence from L.
monocytogenes 08-5578. A second BLAST alignment showed that
four of the six large contigs showed a very high level of similarity
(�99%) to the assembled N53-1 genome and, as such, were added
to the La111 alignment based on this similarity. The final La111
assembly consisted of 23 contigs representing 84% of the sequence
data generated.

Excluding the inserted gap sequences (24), the N53-1 genome
assembly was 2,553,709 bp in length, while La111 totaled
2,534,555 bp, and both strains had a G�C content of 37.9% (Ta-
ble 2). These genome sizes are similar to the sizes of other se-
quenced L. monocytogenes genomes, which have been estimated to
be between 2.87 Mb (L. monocytogenes Finland 1988 [GenBank
accession number CP002004.1]) and 3.02 Mb (L. monocytogenes
Scott A [GenBank accession number AFGI00000000.1]). Ninety-
four and 86 tRNAs were predicted within the N53-1 and La111
genome sequences, respectively (Table 2). Using Prodigal for the
protein BLAST matrix, N53-1 was predicted to have 3,323 pro-
teins, and La111 was predicted to have 3,302 proteins (Table 2).
The differences between the two strains likely derive from missing
data in the La111 assembly. Differences in the number of pre-
dicted proteins and predicted tRNAs were observed when using

TABLE 2 Genomic assembly data for L. monocytogenes N53-1 and
La111

Chromosome parameter

Value for indicated strain

N53-1 La111

Total length of all de

novo-assembled contigs (bp)a

3,103,912 3,017,238

Total G�C content (%) 37.9 37.9

Assembled length excluding gap

sequence (bp)b

2,553,709 2,534,555

Assembled G�C content (%) 37.9 37.9

No. of predicted tRNAsc 94 86

No. of predicted proteinsd 3,323 3,302

No. of plasmidse 1 1
a Data were obtained after analysis by Velvet 1.1.04.
b Data were obtained after analysis by Mapsolver.
c Data were obtained after analysis by tRNAScan-SE 1.21.
d Data were obtained after analysis by Prodigal.
e Data were obtained after analysis by BLAST.
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different programs. These differences are due to different algo-
rithms and cutoff values used in the different programs.

Comparative genomics. N53-1 and La111 are very similar
based on DNA subtyping (8), virulence gene sequencing (16), and
phenotypic behavior (13, 16, 17). However, a whole-genome
comparison of these two strains had not yet been attempted.
Strains that are persistent might share genetic features that are not
present in nonpersistent strains. This could include the presence
or absence of entire genes, SNPs, or different patterns of gene
expressions relative to presumably nonpersistent strains.

Conservation and variation in gene content between genomes
were visualized by BRIG. The two newly sequenced genomes of
N53-1 and La111 and the two downloaded genomes (F6854 and
F2365) were included in the comparison, and EGD-e was used as
a reference (Fig. 1). It should be noted that the F6854, N53-1, and
La111 genomes are draft genomes and are not completely closed.
Therefore, regions that are not included in the BRIG alignment
most likely represent regions not sequenced in one or more ge-
nomes, deletions/insertions, or genome fragments replaced by a
nonhomologous sequence.

A gap of 2,472 bp occurred in all three persistent strains

(N53-1, La111, and F6854) relative to EGD-e and F2365, begin-
ning at bp position 429629 and containing the inlF gene in F2365
(Fig. 1). InlF is a surface-anchored protein with unknown func-
tion; however, it plays a role in increased infection of L25 murine
fibroblast cells (35) and is present in a large number of strains. Jia
et al. (36) did not find any inlF-specific PCR products in lineage I
strains, and Tsai et al. (37) found inlF in all tested lineage II strains
and not in lineage I strains using gene sequencing. Doumith et al.
(38) reported inlF in a least two-thirds of both lineage I and lin-
eage II strains using a DNA microarray. Further studies of strains
from highly persistent subtypes are required to determine if the
absence of inlF promotes persistence.

A stretch of DNA of 3,017 bp was absent in N53-1, La111,
and F6854 but present in EGD-e (at bp position 2857618) and
F2365. The area covers lmo2774, lmo2775, and the 3=-terminal
part of lmo2776. lmo2774 encodes a homologue of a putative
bacteriocin export ABC transporter, lmo2775 a homologue
of a bacteriocin-associated integral membrane protein, and
lmo2776 a homologue of lactococcin_972. The genes encoding
these proteins are not well described, and no further information
is available.

FIG 1 Circular map of L. monocytogenes N53-1, La111, F6854, and F2365 using EGD-e as a reference genome. The inner ring denotes the reference EGD-e
genome with corresponding genetic coordinates. The next four rings denote the coding regions for the four queried strains, F6854 (blue), F2365 (purple), N53-1
(red), and La111 (green).
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At bp position 2360713 in EGD-e, a large sequence of approx-
imately 40,000 bp is not present in N53-1, La111, or F2365,
whereas it is present in EGD-e and F6854. In F6854, the sequence
has been identified as comK (major competence transcription fac-
tor). A prophage was previously shown to be inserted into comK in
F6854 at this position (9, 39). Orsi et al. (9) used whole-genome
sequence comparison to analyze four strains from the same pro-
cessing plant: a food and outbreak pair from 1988 and a food and
outbreak pair from 2000. These four strains differed by only 11
SNPs in the backbone sequence (excluding comK and the Thr-4
prophage) by an interstrain comparison. In all four sequenced
strains (9), comK contained a prophage insertion of approxi-
mately 40,000 bp. In spite of the near uniformity of the backbone
sequences, the prophage insert contained 1,274 SNPs that differ-
entiated the pair from 1988 from the pair from 2000.

Recently, it was found that the presence of a prophage in comK
could be a marker for rapid niche-specific adaptation, biofilm
formation, and persistence (39); however, the two processing-
persistent strains used in the present study may lack an intact
prophage insertion in comK (gap of around 40 kbp in N53-1,
La111, and F2365) (Fig. 1). We searched the La111 and N53-1
draft genomes for intact prophages using software described pre-
viously by Bohlin et al. (40) and found none. However, as our
genome assemblies contain gaps representing regions where as-
sembly of sequence data was not achieved, it is difficult to deter-
mine whether the full-length 42-kbp prophage is inserted into the
comK gene within these two Listeria strains. We explored the pos-
sibility that the prophage is not present as one contiguous piece in
our assemblies. Using nucleotide BLAST, portions (approxi-
mately 0.9 kbp) of the 28.5-kb comK prophage sequence from
F6854 aligned well to the La111 and N53-1 assembled contigs. The
most significant alignments occurred in the same area of the scaf-
fold, and some of the alignments ended because of a gap in the
sequences. Using MAQ (Mapping and Assembly with Qualities)
(http://maq.sourceforge.net/), we found significant alignment of
the raw sequence data from both strains across approximately
50% of the comK prophage reference sequence. Hence, there is
strong evidence that at least a portion of a prophage is present in
the La111 and N53-1 draft genomes. However, we are unsure as to
whether the prophage, in its entirety, persists. This may be attrib-
uted to limitations in the assembly of repetitive regions and/or the
inability to map reads that differ by more than 2 bases (a param-
eter of MAQ). Alternatively, the results may represent a relic of a
previous phage insertion and subsequent deletion event. If the two
Listeria strains do contain a prophage in comK, it could potentially
be involved in the persistence mechanism (39).

At bp position 473841 in EGD-e, there is a gap of 7,500 bp in
N53-1 and La111, whereas the gap size in F6854 and F2365 is 8,625
bp. The genes present in this region in EGD-e (lmo0444, lmo0445,
lmo0446 [pva], lmo0447 [gadD1], and lmo0448 [gadT1]), desig-
nated stress survival islet 1 (SSI-1), are responsible for growth at
low pH and at high salt concentrations and the ability to survive
and grow in model food systems (41). The size of the gap is larger
in F6854 and F2365, as the islet in those strains contains only one
gene (LMOf2365_0481 homologue), whereas the islet in N53-1
and La111 contains genes homologous to lin0464 and lin0465. A
more detailed description of SSI-1 is presented below.

Comparative proteomics. The gene content of strains was
compared in a BLAT matrix (Fig. 2). It displays the frequency of
genes found in the “row” genome that are not also found in the

“column” genome, as a proportion of the total number of genes in
the row genome. Strains N53-1 and La111 are extremely similar,
with only 2 (0.06%) of the predicted proteins in N53-1 not present
in La111. In contrast, 144 and 143 (5%) of the predicted proteins
in EGD-e were not present in N53-1 and La111, respectively. The
genomes of both N53-1 and La111 are not fully sequenced, which
could explain the missing predicted proteins in these two strains
compared to EGD-e.

Of two predicted proteins present in N53-1 but absent in
La111, one with unknown function has NACHT and WD repeat
domain-containing protein 1. The WD40 domain is found in a
number of eukaryotic proteins that cover a wide variety of func-
tions, including adaptor/regulatory modules of signal transduc-
tion, pre-mRNA processing, and cytoskeleton assembly (http:
//www.ncbi.nlm.nih.gov/protein/308736994). An uncharacterized
protein, YdeI, is the only predicted protein present in N53-1 and
absent from EGD-e, while the glutamate synthase (NADPH) large
chain and glycine betaine/carnitine/choline transport ATP-bind-
ing protein OpuCA are present in La111 but absent from EGD-e.
As none of these proteins are present in both N53-1 and La111,
none can independently suffice as a cause for persistence each of
these strains. When turning to the 5% of predicted proteins that
are unique to EGD-e, they cover a broad range of protein func-
tions (see Table S1 in the supplemental material).

Single-nucleotide analysis. Although some SNPs may derive
from sequencing errors, true SNPs may be either silent or nonsyn-
onymous, in which case they may change the function of the tran-
scribed protein or result in a truncated protein. An example of the
latter possibility entailed the listerial surface protein InlA, where a
nucleotide substitution from C to T results in a stop codon and
production of a truncated protein (16, 42, 43). In the present
study, SNP analyses assessing only nonsynonymous changes were
carried out after mapping raw reads of the queried strain against a
reference strain (Fig. 3). First, the three persistent strains (N53-1,
La111, and F6854) were mapped against EGD-e, and between
3,471 and 5,037 SNPs were detected (Fig. 3A). Among these, 1,980
SNPs were shared between the three strains.

The numbers of SNPs detected between F6854 and our two
newly sequenced strains were 3,829 and 3,819 for N53-1 and
La111, respectively (Fig. 3B). All three strains belong to serotype
1/2a. Comparing our two newly sequenced strains to F2365, a
serotype 4b strain, identified 5,848 and 5,840 SNPs, respectively
(Fig. 3C).

In contrast, testing of N53-1 and La111 against each other
identified no SNPs when using N53-1 as the reference; using
La111 as the reference suggested only 18 SNPs, substantiating an
extraordinarily close relationship between the two strains in spite
of the 6-year interval separating their dates of isolation. The com-
plete lack of SNPs between strains N53-1 and La111, despite being
isolated 6 years apart from two different factories, may indicate
that this genome type is especially well adapted to persisting in this
environment.

In silico MLST analysis. Seven in silico PCR products of be-
tween 458 and 702 bp were obtained from N53-1 and La111. After
trimming, the sequences were uploaded to the L. monocytogenes
MLST database, and both were identified as belonging to ST121:
abcZ-7, bglA-6, cat-8, dapE-8, dat-6, ldh-37, and lhkA-1. F6854
belongs to ST11, which corresponds to abcZ-7, bglA-6, cat-10,
dapE-6, dat-1, ldh-2, and lhkA-1, and EGD-e belongs to ST35
(abcZ-6, bglA-5, cat-6, dapE-20, dat-1, ldh-4, and lhkA-1) (44). A
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recent study by Hein et al. (45) described ST121 strains isolated in
Austria and Belgium from different ecological niches, including
food, food processing facilities, and human cases, over several
years. Two of the strains were isolated from the same dairy plant
over a course of at least 3 years. L. monocytogenes ST121 strains
have also been reported in France, Italy, and Spain (34, 46, 47). By
PCR, Hein et al. (45) showed that the ST121 strain had a 2.2-kbp
fragment (in N53-1 and La111), whereas the majority of serotype
1/2a strains had a 9.7-kbp fragment. The 9.7-kbp fragment is de-
scribed as a five-gene stress survival islet (SSI-1) and contributes
to growth under suboptimal conditions (41). A BLAST search of
the 2.2-kbp fragment showed 95% identity with the two genes
lin0464 and lin0465 from Listeria innocua CLIP 11262 (GenBank
accession number AL596165.1). Hein et al. (45) speculated that
the two L. innocua genes lin0464 and lin0465 both contribute to
fitness of the ST121 strains in the environment. Furthermore, the
ST121 strains also had the same premature stop codon in inlA,
leading to a truncated InlA, as in our two processing-persistent
strains. Altogether, we can conclude that the ST121 strains de-
scribed in a variety of studies are identical to our two processing-
persistent strains, whose genomes we have now sequenced. Evi-

dence that this group of strains persists in the processing
environment is mounting, and the basis for this attribute warrants
investigation.

Conclusions. Several studies have reported the ability of par-
ticular molecular subtypes of Listeria monocytogenes to persist in
food processing plants (7–9), where they constitute a recurrent
source of product contamination. In the Danish fish processing
industry, strains belonging to one particular subtype of L. mono-
cytogenes have been isolated over several years in different process-
ing plants. Strains of this subtype were isolated from four out of
eight different processing plants and were the persistent and dom-
inant type in three plants over a period of 6 years (8, 11). These
data indicate that certain subtypes of L. monocytogenes may be
specifically adapted to processing plant environments and are able
to persist over long periods of time. However, our data do not
allow us to conclude on the underlying ecology and evolution.
Thus, we cannot say if a particular subtype at random enters the
processing environments and, due to low growth rates, remains
unchanged for years or if the conditions in the environment select
for particular mutational changes over time. The use of genome
sequencing of strains isolated repeatedly from a plant over longer

FIG 2 BLAT matrix of pairwise genome analysis between L. monocytogenes strains N53-1, La111, EGD-e, F2365, and F6854. Each row represents the specific
genome of one genome compared to another, while the diagonal shows comparison to itself. In the matrix cells, the numbers of nonshared protein-coding genes
are given both as a number and as a percentage, based on the ratio of the specific genome and total number of predicted genes of the query genome, as indicated.
The cells in the matrix are colored darker as the fraction of similarity decreases.

Predicted Proteomes of Persistent L. monocytogenes

May 2013 Volume 79 Number 9 aem.asm.org 2949

 on S
eptem

ber 6, 2013 by T
E

C
H

 K
N

O
W

LE
D

G
E

 C
T

R
 O

F
 D

E
N

M
A

R
K

http://aem
.asm

.org/
D

ow
nloaded from

 



periods of time could potentially unravel this. Such approaches
have recently been used to analyze the changes in persistent Pseu-
domonas aeruginosa in cystic fibrosis lungs (48).

The present study is the first to sequence the genomes of two
persistent food processing L. monocytogenes strains belonging to
the same DNA subtype and isolated from two different processing
environments that do not have any intertrade relationship. We
demonstrate that the two persistent food processing strains are
almost identical, as their predicted proteomes differ by only 2
proteins. One would expect that the food processing environment
would impose strong selective pressures on the growth and sur-
vival of bacteria and that these, coupled with chance events, would
result in establishment of different subtypes. Our data indicate
that despite such differences, very specific genetic and physiolog-
ical traits may enable long-term persistence in food processing
factories.

We did find genes and proteins that were uniquely shared or
absent in La111 and N53-1 (compared to the other strains). How-
ever, because the number of strains investigated is relatively lim-
ited, and the genomes of N53-1, La111, and F6854 are draft ge-
nomes, we cannot conclude which genes or mutations best explain
persistence in this instance. Persistence may likely result from a
combination of genetic and environmental characteristics. It is
likely that other ST121 strains originating from other countries
and other food product environments are highly homologous to
the two newly sequenced ST121 strains, and comparing genomic
and proteomic homology between a collection of ST121 strains
could likely point to key persistence markers. Even though this
study did not result in a clear explanation of the persistent pheno-
type of the subgroup of strains isolated in the Danish fish process-

ing industry, the remarkable similarity between the two strains
indicates that subtypes with specific traits are selected for in food
processing environments and that particular genetic and physio-
logical factors are responsible for the persistent phenotype.
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Chapter 4

HMM-based comparative
genomics

Profile-based methods provide an alternative way for sequence similarity search
and whole genome comparison. Such algorithms as PSI-BLAST and HMMER,
suggest statistically significant similarity between homologous sequences and
are generally more sensitive than simple pairwise homology search. This chap-
ter introduces PanFunPro - a new approach for pan-genome analysis (Paper
III), and includes three examples of its application.

One of the main questions in comparative genomics is the number of uni-
versally conserved genes, which can be found in all prokaryotic genomes. In
2010, a study by Lagesen et al. showed that there is not even single protein
conserved in the set of 1000 prokaryotic genomes, using BLAST-based com-
parison. Paper IV demonstrates the comparison of 2110 bacterial and archaeal
genomes using PanFunPro approach, with the purpose re-examine the core set
of proteins found within analysed set of genomes. The results suggest a mini-
mal genome of perhaps about 100 conserved functional domains and provides
the functional annotation of the conserved proteins.

Paper V illustrates the analysis of chromosome-specific families in Vibrio
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CHAPTER 4. HMM-BASED COMPARATIVE GENOMICS

genomes. Whole genome comparison included chromosome-specific genome
estimation within and a mixture of complete and draft genome sequences. Re-
sulting specific proteins families were searched for available Gene Ontology
information in order to access functional categories and possible processes that
differ between two chromosomes.
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4.1 Paper III. (Manuscript). PanFunPro: Pan-genome
analysis based on Functional Profiles
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PanFunPro: PAN-genome Analysis Based on
FUNctional PROfiles

Oksana Lukjancenko∗1, Martin Christen Frølund Thomsen1, Mette Voldby Larsen1 and David Wayne Ussery1,2

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark,
2800 Kongens Lyngby, Denmark

2Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, USA

Abstract

PanFunPro is a tool for pan-genome analysis that integrates functional domains from three HMM
collections, and uses this information to group homologous proteins into families based on func-
tional domain content. We use PanFunPro to compare a set of Lactobacillus and Streptococcus
genomes. The example demonstrates that this method can provide analysis of differences and
similarities in protein content within user-defined sets of genomes. PanFunPro can find various
applications in comparative genomic study, starting with the basic comparison of newly sequenced
isolates to already existing strains, estimation of shared and specific genomic content; and further-
more, it can be potentially used in determination of target sequences for in silico bacterial identi-
fication, and epidemiological studies.

Introduction
Whole genome sequencing continues to become faster and less expensive with time; currently there
are more than 2000 complete microbial genomes that are publically accessible, and the number of
sequences is still growing exponentially. Availability of numerous strains from the same species led
to the development of new analyses, such as the bacterial species pan-genome (1). Pan-genomic
studies aim to determine differences in protein content between organisms and characterize the com-
plete genomic repertoire of certain taxonomic group. Therefore, comparative genomics is the first
fundamental step in pan-genome analysis.

Proteins can be naturally classified into families of homologous sequences that derive from a com-
mon ancestor through a speciation event, or a duplication event. As a result, comparative genomics
usually starts with a sequence similarity search using standard approaches, such as local alignment
search (BLAST (2), FASTA (3)); orthology detection and clustering (CD-HIT (4), OrthoMCL (5),
Inparanoid (6)); or search tools based on Hidden Markov Models (HMM) (7). The comparison of
homologous sequences and analysis of their phylogenetic relationships has important implications
in understanding evolutionary processes and provide very useful information regarding the structure
and function of proteins (8).

Here we present a tool for pan-genome analysis. It is stand-alone tool providing several function-
alities – homology detection and genome annotation by three HMM-collections, pan-/core genome

∗Corresponding author, e-mail: oksana@cbs.dtu.dk
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calculation within a set of proteomes, pairwise pan-/core-genome analysis, specific genome estima-
tion for different sets of genomes as well as pairwise analysis of specific proteomes, basic statistics
for the output proteins from the pan-/core-/specific-genome calculation, and finally analysis of avail-
able Gene Ontology (GO) information for the output proteins from the pan-/core-/specific-genome
calculation.

Design and Implementation

Approach overview
There are four basic steps in the PanFunPro approach, as shown in Figure 1: (1) genome selection;
(2) functional domain collection; (3) construction of functional profiles and and protein grouping; (4)
and finally, analysis of the pan, core and accessory genomes.

Input set of proteomes

InterProScan of all proteins

Proteins with match

CD-HIT Clustering

Combine CD-HIT profiles and HMM-profiles per genome

Prodigal ORFs prediction Genbank/Fasta format

User submitted proteomes

PfamA

TIGRFAM

Superfamily

Domains

MPVLLVGDSLGMVLQGETDTLPVTVDDIAYHTRCVRKGSProfile: A-B-C
A B C

Pan-/core-genome analysis Accessory-genome analysis

Analysis

Non-matched proteins

Profile formation

NON-MATCHED FROM ALL GENOMES

presence/absence of clusters per genome 
(CD-HIT profiles)

presence/absence of profiles per genome
(HMM-profiles)

MATCHED FROM ALL GENOMES

 1. Pan-genome estimation
2. Core-genome estimation
3. Pan-/core-genome plot

4. Pairwise pan-/core-genome matrix
5. Profiles and Gene Ontology for core-genome
6. Profiles and Gene Ontology for pan-genome

   1. Accessory-genome estimation
2. Specific-genome estimation

3. Pairwise specific-genome matrix
4. Profiles and Gene Ontology for specific-genome

5. Profiles and Gene Ontology for accessory-genome

(3)

(2)

(1)

(4)

Figure 1: Schematic of PanFunPro approach. Method includes four basic steps: (1) genome selection; (2)
functional domain collection; (3) construction of functional profiles and and protein grouping; (4) and finally,
analysis of the pan, core and accessory genomes. Blue colour explains profile construction steps, while green
colour indicates possible types of analysis.
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(1) Genome selection
The PanFunPro programme first imports a list of genomes, selected for analysis. Each genome is
represented by a FASTA file of amino acid sequence for all the encoded proteins. In the case of
DNA sequences with no annotated genes, prediction of open-reading frames (ORFs) from the DNA
sequence of the genome is carried out using Prodigal software (9).

(2) Acquiring the functional domains
To form a set of functional profiles for each genome, all proteins are scanned against three collections
of HMMs: PfamA (10), TIGRFAM (11), and Superfamily (12) using InterProScan software (13).

(3) Construction of functional profiles and proteins grouping
Briefly, the functional profile or architecture is a combination of non-overlapping functional domains
(HMMs) found in a particular protein. Only HMM hits with an E-value below 0.001 are considered
significant and are used to create functional architectures. Furthermore, domains of only one database
at a time are considered, meaning that if the protein has any matches in PfamA database, the hits in
TIGRFAM and Superfamily databases are not considered. However, if the scan against the PfamA
database does not result in any hit, analogously TIGRFAM and Superfamily databases are checked.
HMM collections are searched in the following order: PfamA, TIGRFAM, and then Superfamily.
For each protein the functional profile name is created based on alphabetically sorted non-repeating
accession numbers of all non-overlapping domains found in the protein sequence. Multiple proteins
can belong to a single protein family if they share the same functional architecture, resulting in a
lower number of families per genome than the reported number of proteins. Sequences with no
significant matches to any searched HMM-database are collected from each of analysed genomes
and clustered using the CD-HIT tool (4). Clustering is implemented with a five amino acid window
search, allowing two proteins to be in the same protein family if similarity between sequences is at
least 60%. Resulting clusters are considered to be protein families, where the profile name is prefixed
with ‘CL’ (stands for clustering) and followed by cluster identification number. Later, HMM-based
and clustering-based protein families for each genome are joined together to form a whole genome
profile collection.

(4) Analysis
Analysis part includes description of possible ways of result acquisition and visualization.

Core- and pan-genome calculation
The pan-genome is defined as the complete collection of all proteins found in a set of genomes
(1); in our case, this is represented by the collection of all unique functional profiles found in those
genomes. Starting with the first genome, as more genomes are added, an accumulative pan-genome
is constructed and the resulting pan-genome number increases with the addition of more genomes.
Similarly, the core-genome is the collection of conserved proteins (functional profiles) that are con-
served across the analysed genomes, and the size of the core genome decreases as more genomes
are added. Conservation data are stored as table and can be visualized in an accumulative pan-/core-
genome plot. Additionally, lists of profiles, comprising pan- and core-genomes, can be assesses as a
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table.

Pairwise comparison between genome is visualized as a triangle-shaped ‘matrix‘, showing the num-
ber of protein families that are shared between two proteomes, both as percentage and absolute num-
ber; as well as the total amount of protein families found in both genomes. When a strain is compared
to itself, the fraction of protein families with more than one member is provided. The blue colour
gradient indicates homology between different genomes, and the red triangles at the bottom of the
figure represent homology within a genome (e.g., duplicate proteins).

Accessory genome analysis
Differences between proteomes can be assessed by identification of accessory profiles. The accessory
genome includes proteins that are present in several, but not all analysed genomes; or are specific to
particular genome or group of genomes. A protein is considered to be ‘specific’ if the functional
profile is present in the query set of genomes and is absent in subject set of organisms. Estimation
of accessory or specific genomes requires two sets of organisms and can follow four assumptions:
(1) proteins, present in core-genome of first set of genomes, and absent in the core-genome of the
second set of genomes; (2) proteins, present in pan-genome of first set of genomes, and absent in
the core-genome of the second set of genomes; (3) proteins, present in core-genome of first set of
genomes, and absent in the pan-genome of the second set of genomes; (4) and proteins, present in
pan-genome of first set of genomes, and absent in the pan-genome of second set of genomes. Options
(1) and (2) introduce specific-core-genome, while options (3) and (4) – specific-pan-genome. Given
that the first and the second sets of genomes are the same, application of options (3) and (4) will yield
in accessory genome of input set of genomes.

Pairwise analysis of specific content can be visualized as a square-shaped matrix, where each row
represents the specific genome of one organism compared to another, while the diagonal shows the
comparison to itself. In the matrix cells, the amount of non-shared sequences is provided as a ratio
of specific genome to a total number of proteins in the query strain. When compared to itself result
is 0. The colour code indicates the level of similarity.

Basic statistics and Gene Ontology analysis
For a given collection of genomes, the set of core, pan, and accessory proteins is calculated, and the
share of PfamA-, TIGRFAM-, Superfamily-, and CD-HIT-based profiles, as well as protein length
distribution are visualized using R ggplot2 package and can be assessed as a table.

In addition, available GO (14) information can be extracted. Interproscan tool provides possible GO
identification numbers (GO ID) for each domain in the profile. Consequent GO IDs for each of the
profiles are searched for GO term description and grouped by more common functional category us-
ing map2slim tool, part of GO::Parser module. Results are visualized using R package ggplot2.

Results

The case study
The PanFunPro approach was tested on genomes of Lactobacillus and Streptococcus genera, previ-
ously used in comparative genomics study by Lukjancenko et al. (15), further mentioned as BLAST-

4



based study. All Lactobacillus genomes were probiotic, whereas Streptococcus strains contained
both pathogenic and probiotic species.

Here we focus on the types of results PanFunPro (further mentioned as PanFunPro-based analysis)
can generate: a pan-/core-genome plot; a pairwise pan-/core-genome matrix; a pairwise specific-
genome matrix; distribution of database source by which protein was annotated; and finally, distribu-
tion of predicted GO terms among profiles.

Pan- and core-genome overview
Accumulative pan- and core-genome were calculated for both example genera and are shown in Fig-
ure 2. Lactobacillus genus resulted in a total of 467 core and 7009 pan gene families (Figure 2A).
Most of the shared architectures consisted of PfamA domains and for 73% of them GO terms were
available (Figure S1.A), whereas only 37% of pan-genome gene families were HMM-based profiles
and barely half of them had Gene Ontology information available (Figure S1.B). Analysis of GO
IDs distribution among the 3 general functional groups: biological process, molecular function, and
cellular component, resulted in 239, 176 and 26 GOs, respectively, in the core-genome; and 470, 418
and 60 GOs, respectively, in the pan-genome.

Similar analysis, done for genomes of the Streptococcus genus, yielded in 576 shared functional pro-
files and a total amount of 6263 architectures found within the genus (Figure 2B). Similarly to the
Lactobacillus results, core-genome profiles consisted of PfamA domains and 72% of them contained
pathway information (Figure S2.A), whereas only 23% pan-genome profiles were based on HMM-
domains and for more than half of them pathway information was accessible (Figure S2.B). Analysis
of GO IDs distribution among the 3 general functional groups: biological process, molecular func-
tion, and cellular component, resulted in 269, 211 and 36 GOs, respectively, in the core-genome; and
492, 434 and 56 GOs, respectively, in the pan-genome.

Pairwise pan- and core comparison of strains within the Lactobacillusv genus showed that pairs of
genomes from different species share 30-60% of the protein families (profiles), while 70-90% are
shared within the same species (Figure 3). Homology estimation within single proteomes revealed
that approximately 20% of protein families in each genome had more than 1 member.
Comparison of core- and pan-genome analyses, performed by BLAST-based and PanFunPro-based
approaches, found that typically HMM-based grouping of homologous sequences is more sensitive,
and result in significantly reduced number of pan-genome families, 7,009 compared to 13,069 for
Lactobacillus genus, and 6,263 compared to 9,785 in Streptococcus genus. Furthermore, the amount
of shared profiles increased for Lactobacillus genus (363 to 467); however the core of Streptococcus
genus did not follow the expansion tendency, and yielded in 576 compared to 638 profiles.

Specific genome overview
Streptococccus genomes were used as an example of accessory genome analysis. The genus con-
tains twelve species for which complete sequenced genomes are available; S. thermophilus is used in
making yoghurt, and considered probiotic, while other strains are pathogenic. Single representatives
of each pathogenic species and all probiotic genomes were selected for specific genome analysis.
Proteomes were compared in pairs to estimate the fraction of specific profiles, which is present in
one genome and absent in another. The resulting overview is visualized in Figure 4. On average
each proteome contained 30-40% specific profiles compared to other species and 6-20% within the
non-pathogenic species.

5



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
20

00
40

00
60

00
80

00

Total gene families
New gene families
Core genome
Pan genome

1 :  Streptococcus agalactiae 2603V/R
2 :  Streptococcus agalactiae A909
3 :  Streptococcus agalactiae NEM316
4 :  Streptococcus dysgalactiae subsp. equisimilis GGS_124
5 :  Streptococcus gallolyticus UCN34
6 :  Streptococcus gordonii str. Challis substr. CH1
7 :  Streptococcus infantarius subsp. infantarius ATCC BAA
8 :  Streptococcus mitis B6
9 :  Streptococcus mutans NN2025
10 :  Streptococcus mutans UA159
11 :  Streptococcus pneumoniae ATCC 700669
12 :  Streptococcus pneumoniae G54
13 :  Streptococcus pneumoniae TIGR4
14 :  Streptococcus pyogenes M1 GAS_SF370
15 :  Streptococcus pyogenes MGAS10270
16 :  Streptococcus pyogenes MGAS8232
17 :  Streptococcus sanguinis SK36
18 :  Streptococcus suis 05ZYH33
19 :  Streptococcus suis BM407
20 :  Streptococcus suis GZ1
21 :  Streptococcus thermophilus CNRZ1066
22 :  Streptococcus thermophilus LMD 9

23 :  Streptococcus thermophilus LMG 18311

A

B
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00
Total gene families
New gene families
Core genome
Pan genome 1 :  Lactobacillus acidophilus NCFM

2 :  Lactobacillus brevis ATCC 367

3 :  Lactobacillus casei ATCC 334

4 :  Lactobacillus casei BL23

5 :  Lactobacillus crispatus ST1

6 :  Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842

7 :  Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA 365

8 :  Lactobacillus fermentum IFO 3956

9 :  Lactobacillus gasseri ATCC 33323

10 :  Lactobacillus helveticus DPC 4571

11 :  Lactobacillus johnsonii FI9785

12 :  Lactobacillus johnsonii NCC 533

13 :  Lactobacillus plantarum JDM1

14 :  Lactobacillus plantarum WCFS1

15 :  Lactobacillus reuteri DSM 20016

16 :  Lactobacillus reuteri JCM 1112

17 :  Lactobacillus rhamnosus GG

18 :  Lactobacillus rhamnosus GG ATCC53103

19 :  Lactobacillus rhamnosus Lc 705

20 :  Lactobacillus sakei subsp. sakei 23K

21 :  Lactobacillus salivarius UCC118

Figure 2: Pan- and core-genome plot. A. Analysis performed on Lactobacillus genomes. B. Analysis performed
on Streptococcus genomes.
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S. agalactiae A909

S. dysgalactiae subsp. equisimilis GGS 124

S. gallolyticus UCN34

S. gordonii str. Challis substr. CH1

S. infantarius subsp. infantarius ATCC BAA−102 

S. mitis B6

S. mutans NN2025

S. pneumoniae ATCC 700669

S. pyogenes M1 GAS SF370
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S. thermophilus CNRZ1066

S. thermophilus LMD−9

S. thermophilus LMG 18311
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Figure 4: Pairwise specific genome comparison among species within Streptococcus genus.

Further, proteomes from pathogenic genomes were compared to non-pathogenic proteomes. Pro-
files, conserved in each pathogenic strain and absent in probiotic Streptococccus genomes, were
considered to form specific core profiles. Specific-core-genome estimation resulted in 23 functional
architectures formed from PfamA domains (Figure 5A), 14 of them contained Gene Ontology infor-
mation. Each protein could serve multiple functions, though more than one GO ID was available.
The classification of proteins into three common gene ontology groups, as well as less broad term
groups, are shown in Figure 5B. Specific core protein families were involved in metabolic processes,
transport, signal transduction, and various binding and enzyme activity. Similar analysis of specific
pan-genome for pathogenic Streptococcus strains yielded in 4,603 profiles, 31% of which were based
on HMM-domains and 703 contained pathway information (Figure S3). An overview of the GO
functional groups reveals a broader collection of processes that proteins of pathogenic strains are in-
volved in; however, they are not shared among all the Streptococcus pathogens and are most likely to
be species-specific. The BLAST-based analysis included pathogenic strains from other genera, and
thus cannot be comparable.

Performance
The PanFunPro method was designed to integrate the information of functional domains from three
HMM-based databases and group proteins into families according to the domain content within the
protein, and then to further analyze differences and similarities within defined groups of genomes
based on functional architectures and visualize them. The approach includes a complex construction
and assignment of functional profiles step. Therefore, we have measured the time required to collect
functional domain information and perform profile formation for a set of 21 Lactobacillus genomes
(15). The test was performed both on MacBookPro, 2.4 GHz Intel Core i5, 8GB 1067 MHz DDR3;
and on a Cluster with x86 64 architecture using 1 processor per genome and the default InterProScan
settings. As illustrated in Table 1, single genome annotation by the PanFunPro approach takes about
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25 and 14 min, on a laptop and cluster, respectively. To prepare profiles for the whole genus of 21
genomes, scanning one genome at a time, took more than 8h on MacBookPro and approximately 5h
on the cluster. However if we allow scanning of genomes to run simultaneously on the cluster, the
pan-genome calculation takes less than an hour.

Table 1: PanFunPro profile construction performance.

MacBookPro Cluster
1 genome (1 genome per scan) 25 min 52 sec 14 min 8 sec
21 genome (1 genome per scan) 8h 52 min 10 sec 5h 2 min 43 sec
21 genome (21 genome per scan) NA 21 min 33 sec

Availability and Future Directions
The source code for PanFunPro is developed in the Perl programming language for UNIX systems,
and requires access to the following programs: BioPerl, GO Parser, HMMER packages, R program,
Interproscan, Oracle/Sun Java 1.6, CD-HIT clustering tool. Software and instructions are available
via http://www.cbs.dtu.dk/˜oksana/PhD_Thesis/PanFunPro/

PanFunPro has been also implemented as a web server (http://cge.cbs.dtu.dk/services/
PanFunPro/). The user can select a set of genomes from the provided database, including 1982
Bacterial and 128 Archaeal strains; or can upload genome sequence and compare it to the genomes
listed in the database (optional). The input file can be uploaded either in Genbank/FASTA format,
or can already contain predicted proteins. Web server provides 6 analysis possibilities: core-, pan-,
specific-genomes, pan-/core-plot, pan-/core-matrix, and specific-matrix. Results of analysis can be
downloaded as a table and postscript file. For core-, pan-, and specific-gene families basic statistics
and Gene Ontology information can additionally be predicted as described above. More detailed in-
structions and output examples are provided on the server web page.

In the future we plan to update the approach with the analysis features and data visualisation possibil-
ities. Moreover, a web-interface will provide the possibility to compare known genomes to multiple
user-submitted isolates.
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Abstract
There is a core set of functions required for all of life, and in principle
one would expect a corresponding set of core proteins to be conserved
across genomes. Unfortunately, as more genomes have been sequenced,
the set of core genes has continually dropped, from 256 proteins, based on
2 genomes, to 31 proteins, based on about 200 genomes, to zero proteins
conserved in a thousand bacterial genomes. We have developed a novel
method - PanFunPro, and used this to re-examine the core set of proteins
found in 2110 genomes. PanFunPro is based on models of functional do-
mains, present in more than 85% of the proteins for most genomes. We
find a stable set of 39 profiles and more than a hundred domains that are
conserved across more than 99% of the genomes. The majority of these
proteins are involved in protein synthesis, including many ribosomal pro-
teins. We find nearly 100% conservation of amino-acyl tRNA synthetases,
and strong conservation of the 36 large and 21 small ribosomal proteins
across all genomes. Further, we find protein families responsible for the
basic functions for life (replication, regulation, metabolism) to be con-
served across all organisms.

Introduction
Comparison of the first two sequenced genomes, Mycoplasma genitalium (1)
and Haemophilus influenzae (2), found 256 genes as a first estimate of the min-

∗Corresponding author, e-mail: dave@cbs.dtu.dk
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Table 1: History of minimal genome analysis.

Number of genomes analysed Number of conserved genes Reference
2 256 (3)
21 81 (6)
45 23 (7)
66 32 (8)
100 63 (6)
34 80 (9)
147 34 (10)
27 71 (11)
191 31 (12)
1000 0 (13)

imal genome (3). Genes shared by distantly related organisms are likely to be
essential and collection of these genes would reflect a minimal genome (4; 5).
However, as more complete genome sequences have been published – the core
genome has steadily declined, as seen in Table 1. Currently over 2600 complete
prokaryotic genome sequences are available in addition to more than 10,000
draft genomes.

Prokaryotic pan-genome analysis provides insight to the genomic variation within
groups of related microorganisms and can identify gene families strongly con-
served within phylogenetic groups, although even within a large group, such as
Proteobacteria, the number of conserved genes drops to zero (14).

A number of computational approaches are available for pan-genome analysis
and finding possible essential genes. Many of these approaches use fast algo-
rithms for pair-wise analysis and rely on the assumption that close relatives,
sharing, and overall sequence identity above a certain threshold can be grouped
into proteins families. For example, BLAST performs by identification of closely
matching words, which are subsequently joined to build final alignment. How-
ever, there is no certainty that evolutionary processes and functions will be
accurately represented by significant sequence similarity (15; 16). Another cat-
egory of algorithms for sequence comparison is achieved by looking at the basic
functional units that form proteins protein domains (16). Protein domains
are defined as sequential and structural motifs that are found independently in
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different proteins, in different combinations (17). A variety of computational
approaches have been developed to identify protein domains and predict protein
function. Perhaps the most widely used are those that search Hidden Markov
model (HMMs) collections, such as PfamA (18), Superfamily (19) or TIGRFAM
(20), and combine proteins with the same domain architecture. Functional pre-
diction using probabilistic models can improve protein annotation and provide
a better understanding of organism complexity and evolutionary processes.
Here, we performed analysis using PanFuPro approach (21), which uses combi-
nations of functional domains (functional profiles) to group genes into protein
families, with the purpose of estimating the pan-genome of the fairly large set
of more than two thousand genomes, and to identify the minimal genome set of
core genes conserved across all of the genomes.

Results and Discussion
We have combined the sequence information of 2110 prokaryotic genomes, 1982
Bacterial and 128 Archaeal (all of the ‘complete‘ prokaryotic genomes from
NCBI available in September 2012, see Table S1). Proteomes of each genome
were scanned against three HMM collections and the fraction of genes covered
by each of these databases is shown in Figure 1.

On average, more than 80% of proteins encoded by a genome have at least
one significant match in the PfamA database; 0.4% and 2.1% of the remaining
genes could be covered by TIGRFAM and Superfamily databases, respectively.
However, no HMM domains were detected for approximately 15% of the pro-
teins for most genomes. In Figure 1, there are seven genomes (belonging to M.
haemofelis, M. hemocanis, M. wenvonii, Candidatus M. haemoninutum, and M.
leprae) that are clear outliers, with more than half of the proteins not having
any match to the HMMs. This might be due to several causes such as gene
prediction errors (Fig. S1), absence or inability to detect functional domains in
the sequence (Fig. S2), or genome decay (that is, the presence of large numbers
of pseudogenes, as in the known case of M. leprae). At any rate, the proteins in
these seven genomes have significantly fewer matches to any of the databases,
compared to the other 2103 genomes.
The proteome of each genome was grouped into a set of protein families based
on the presence or absence of a functional profile (combination of functional
domains) within the set of proteins. The collection of 2110 single-genome func-
tional profiles was combined into the complete pan-genome (Table S2). The
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Figure 1: Distribution of genes covered by HMM-based databases. Each of 2110 pro-
teomes was searched against PfamA, TIGRFAM, and Superfamily databases in corre-
sponding order. The figure illustrates the fraction of genes covered by each database
with respect to the order in which the groups of proteins were scanned. The last
column represents the fraction of genes, which did not result in any significant hit in
any considered HMM collection.

pan-genome contained a total number of 737,692 distinct protein families, where
10,858 different HMM-based domains served as structural units to compose
40,920 functional families, and more than 720,000 families resulted from clus-
tering of dispensable genes with no matches in PfamA, TIGRFAM or Super-
family. Approximately one fourth of the HMM-based profiles appeared to be a
single domain and almost one half of the domains were seen in only one type of
profiles, while most of the domains tended to combine with other protein units
to form different combinations (Figure S3). On average, each profile consisted
of 9 domains (median = 2), and respectively, each domain was involved in 2
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different combinations (median = 2).
The pan-genome contains all gene families, and it consists of a small set of highly
conserved genes (the core genome) and a large set of accessory proteins, which
are present in some but not all genomes or are unique to a certain strain (22).

We find 19 functional profiles that are strictly conserved amongst all 2110
genomes (17 of these are ribosomal proteins); there are 60 different individual
functional domains conserved across all genomes. As shown in Table 2, allowing
the absence of a functional profile or domain in even a single profile increases the
number, and in 99% of the genomes (that is, missing in fewer than 21 genomes)
we find 39 profiles (Table S3) and a total of 102 domains conserved (Table S4).
We compared core functions estimated by this study to the commonly used set
of 31 universally conserved genes (UCGs), previously suggested by Ciccarelli et
al. (12). Comparison showed that 14 UCGs are present in the core of 100%
of genomes; and 20 are shared by 99% of genomes. On the other hand, if we
consider the core genome of single functional domains, 27 UCGs showed 100%
conservation, three were missing in one genome, and one protein was absent in
more than 1% of the genomes. However, the UCGs are missing several important
proteins, including, for example, translation initiation and elongation factors,
as well as some of the 54 well-conserved ribosomal proteins found in nearly all
bacterial genomes. Computational analysis tends to underestimate the minimal
gene set by considering only those genes that have remained similar enough
during the course of evolution or that share strict domain architecture (23).

To investigate the major functional roles of core genes and characterize biolog-
ical processes shared within the microbial organisms, we compared functional
domains to the Clusters of Orthologous Groups (COG) database (24), as shown
in Figure 2. Nearly all of the conserved domains (101 out of 102) have well-
defined biological functions. Three COG functional groups (J, K, and L) in-
volved in genetic information storage and processing are most abundant within
the set of core domains. These categories contained, on average, 85% of domains
and 91% of profiles in each threshold group. Additionally, proteins involved in
metabolism (C, E and F) and cellular processes and signaling (D, O and U) are
included in the core-genome, although these functions are less enriched.

The strong bias in core genes involved in protein synthesis is consistent with pre-
vious work (12). An alternative approach, based on conserved protein structural
folds in a set of 420 genomes (25), found a minimal core of 70 folds, of which
40 were in the metabolism COG functional group and only 5 folds belonged to
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the "J" translation COG group. However, these results were based on a set of
genomes where parasitic organisms were excluded. We find that exclusion of
the small parasitic genomes has little effect on the distribution and size of the
core (Table 3). Exclusion of genomes encoding less than a thousand proteins
yielded only three new architectures and thirteen domains.

The number of conserved genes varies with the number of analysed genomes
and taxonomic diversity (14). Previously, in the study by Segata et al., sizes of
taxa-specific core-genomes were identified. Genomes belonging to large phyla,
such as Proteobacteria, Firmicutes or Actinobacteria, have one or zero genes in
common. In this study we find that even in large and diverse taxonomic groups,
the core genome size should consist of at least 49 genes. An overview for each
prokaryotic phylum is summarized in Table 4; as more sequenced genomes be-
come available for genomes of the same bacterial species, it is possible to extend
this list to taxa-specific gene families for genera, species, and strains or serovars.

Genes involved in fundamental functions are more universally conserved and are
expected to have a lower number of duplications than non-essential genes. This
occurs because an essential gene‘s function is crucial for the organism to survive
and is less likely to be compensated by its paralog (26; 27). In contrast, mem-
brane proteins, such as transporters or participants of metabolic and cellular
signaling processes can count more than 100 members within the same family.
We extracted the list of the top five most abundant gene families, as shown in
Figure 3. Perhaps not surprisingly, enzymes of these families participate in the
following processes: transmembrane transport (PF00005 and PF07690), peptide
transport (PF00528), oxidation-reduction (PF00106), and transcriptional reg-
ulation (PF00126_PF03466). Even though members within these five families
encode the same function, protein sequences are more distant (Table S5). On
average, protein sequences of the same family are 14% to 26% identical.

Transporters are important for all molecular processes within a living organ-
ism: metabolism, cellular communication, reproduction and biosynthesis. They
allow all essential nutrients to enter the cell and its compartments; catalyze
export and uptake of macromolecules (proteins, complex carbohydrates, lipids
and DNA) and signaling molecules; promote the generation of ion electrochem-
ical gradients; and prevent toxic effects of drugs and toxins by catalyzing their
active efflux (28). Helix-turn-helix are DNA-binding motifs which are associ-
ated with regulation of transcription and short-chain dehydrogenases catalyse
NAD(P)(H)-dependent oxidation/reduction reactions.
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Table 4: Estimation of core genome sizes for different phyla.

Phylum Number of genomes Number of shared genes
Acidobacteria 7 879
Actinobacteria 225 132
Aquificae 11 525
Bacteroidetes 78 172
Caldiserica 1 1202
Chlamydiae 73 422
Chlorobi 11 737
Chloroflexi 17 352
Chrysiogenetes 1 1904
Crenarchaeota 43 265
Cyanobacteria 44 487
Deferribacteres 4 867
Deinococcus-Thermus 17 614
Dictyoglomi 2 1154
Elusimicrobia 2 466
Euryarchaeota 81 2389
Fibrobacteres 2 2156
Firmicutes 448 90
Fusobacteria 5 453
Gemmatimonadetes 1 2516
Ignavibacteria 2 1191
Korarchaeota 1 1229
Nitrospirae 3 681
Planctomycetes 6 661
Proteobacteria 886 49
Spirochaetes 47 190
Synergistetes 5 551
Tenericutes 62 86
Thaumarchaeota 2 789
Thermodesulfobacteria 2 939
Thermotogae 15 510
Verrucomicrobia 4 562
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PF00005 PF00528 PF07690 PF00106 PF00126_PF03466

Protein family
ABC transporter 
Binding-protein-dependent transport 
system inner membrane component
Major facilitator superfamily

Bacterial regulatory helix-turn-helix 
protein lysR

Short chain dehydrogenase

Figure 2: Top 5 most abundant protein families. The plot shows distribution of the
number of genes per each family within a set of 2110 genomes.

Closer look into conservation of functional domains, representing protein fam-
ilies, which are involved in transcriptional regulation, free energy production,
transmembrane transport, and genetic information processing, are shown in Fig-
ures S4-S9. Figure S4 shows the conservation of enzymes involved in the flow
of genetic information. In order for protein synthesis to occur, several essential
enzymes are necessary for three basic steps: Replication, Transcription, and
Translation, coloured green, red and blue in Figure S4, respectively. Note that
in general the DNA polymerization process (green) is highly conserved across
essentially all genomes, and the translation (protein synthesis) is also quite well
conserved, but the transcriptional enzymes (red) appear to be less well con-
served. Genomes were scored for the presence of at least one functional domain
per step (column in the figure). Each group is further divided into factors in-
volved in the polymerization process - Initiation, Elongation, or Termination
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of each step; the names of factors are highligted in light green, yellow, or red,
respectively. Figure S5 examines the conservation of helix-turn-helix regulator
families across the 2100 genomes – only a few (AraC, GntR, RpiR, and BirA) are
found in more than 2000 genomes. But still, this list of different helix-turn-helix
families distributed across the genomes is impressive. As before, the calculation
was done with the assumption that if at least one functional domain represent-
ing the particular helix-turn-helix transcriptional regulator/regulator family is
present in the genome – then this function is conserved in the genome. The
ribosomal proteins and amino-acyl tRNA synthetases are quite well conserved
across all genomes, as can be seen in Figures S6 and S7. In contrast, Figure S8
shows that the proteins involved in membrane transport are not nearly as well
conserved, although a few families are conserved in nearly all genomes. Finally,
conservation of enzymes involved in glycolysis and the TCA were examined,
based on conserved functional domains, as shown in Figure S9. In general, pro-
files for enzymes involved in glycolysis and the TCA cycle can be found most of
the genomes ( 1800 genomes on average, or about 85% of the genomes). Closer
look into conservation of protein families, representing transcriptional regula-
tion, free energy production, and transmembrane transport, within this study,
found lower conservation levels than for proteins involved in genetic information
processing.

Conclusions
In conclusion, an analysis of more than two thousands prokaryotic genomes
suggests that the minimal genome contains approximately one hundred func-
tional domains found in more than 99% of the genomes. We find 19 functional
profiles and more than 60 single functional domains strictly conserved in 100%
of the genomes. This study also confirms that proteins shared amongst all
the genomes are largely involved in processes responsible for genetic informa-
tion processing and some metabolic pathways. In addtion, enzymes involved in
different metabolic pathways, communication gain more flexibility due to the
ability of microbial organisms to adapt to different environmental conditions
and to obtain less-essential genes from the environmental niches in which they
live.
The core genome size varies with phylogenetic diversity and depends on the
number of analysed genomes. Nevertheless, the number of genes shared by the
taxonomic group should be more than zero or one. We find that the set of
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approximately one hundred core domains encodes functions that could allow
organisms to reproduce, respond to the environment, and metabolize food.
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Abstract

We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and
also compared more than 250 draft sequences. These genomes represent a total of 9 known
species and 2 unknown species. Within the finished chromosomes, we find a core set of
1269 gene families for chromosome I, and a core of 252 gene families for chromosome II.
Many of these core genes are also found in the draft genome sequins (although of course
which chromosome they are located on is unknown.) Of these chromosome specific core
gene families, 1169 and 153 are uniquely found in chromosome I and II, respectively. We
found gene ontology (GO) terms for the gene families, and compared the different sets for
each chromosome. A total of 363 different ‘Molecular Function‘ GO categories were found
for chromosome I specific gene families, and these include several broad activities: pyridox-
ine 5’ phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid
binding, and ribosomal components; in contrast, chromosome II specific gene families have
only 66 Molecular Function GO terms, and include many membrane-associated activities,
such as ion channels, transmembrane transporters, and electron transport chain proteins.
Thus, it appears that there are distinct sets of functions that are unique to each chromosome.

Introduction
Strains of the Vibrio genus belong to Gammaproteobacteria, are abundant and highly variable.
These bacteria have the ability to form biofilm on biotic and abiotic surfaces, and are ubiqui-
tous in marine and estuarine environments, at notably high densities in fish, corals, shrimps,
plankton, and mammals (1; 2; 3). Currently the Vibrio genus consists of more than 60 different
species, although complete genome sequences are available for only 10 species. Several species
are known to be pathogens in human, fish, and marine invertebrates, and are well studied. V.
cholerae can act as the causative agent of the severe and sometimes lethal disease cholera, and
is probably the most sequenced and clinically important member of Vibrio species (4; 5). V.
vulnificus causes septicemia in wound infections; however, despite its high fatality rate, hu-
man infections of V. vulnificus are rare (6; 7). V. parahaemolyticus and V. furnissii infections
may lead to gastroenteritis in human via consumption of raw seafood (8; 9). Strains of V. an-
guillarum species are life- threatening to many economically important fish, including Atlantic
salmon, seabass, cod, and rainbow trout (10). V. fischeri participates in beneficial symbioses
with many marine organisms, especially squids (11). V. harveyicauses luminous vibriosis, which
infects prawns, oysters, and lobsters (12). Finally, V. splendidus is known as extensive bivalve

∗Corresponding author, e-mail: dave@cbs.dtu.dk
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pathogen (13).
All known Vibrios have two chromosomes. Chromosome I is usually larger, with relatively

constant size, and possess essential functions; whereas chromosome II is smaller, varies in size,
and shows diversity in the encoded genes. The existence of two chromosomes in all Vibrio
genomes, and variance of chromosome II, has been an insight to many investigations worldwide
and brought up multiple discussions about the purpose and origin of smaller chromosome. One
of such speculations proposed that chromosome II originated as as megaplasmid, although later
Heidelberg et al. have suggested that it may play important role in the organism and could help
optimize the fast replication rate (2; 14; 15; 16).

The aim of this study is to compare more than 300 strains of Vibrio genus, both complete
and available draft genomes, and to focus on distribution of functional genes and available Gene
Ontology information between two chromosomes. Furthermore this study could be extended to
other Vibrios analysis, using information about whether a gene belongs to chromosome I, or
chromosome II.

Material & Methods

Selection and Characteristics of Bacterial strains
Publically available Vibrio strains were selected for this study and obtained from NCBI (July
2012). Initial set included 368 genomes, 18 of them were complete and 350 were retrieved as
Illumina raw reads from NCBI Sequence Read Archive (SRA). Of these, 188 genomes were se-
quenced using a HiSeq 2000 sequencer and the remaining 162 with an Illumina Genome Analyzer
II.

Open-reading frame (ORFs) predictions were carried out by gene-finding tool Prodigal (17).
16S ribosomal RNA sequences were extracted for both complete and draft Vibrio genome using
RNAmmer (18). For each of assembled genome, the number of fragments (contiguous pieces),
genes, and the mean gene length were calculated; strains with an average gene length below 700
bp were excluded from the further analysis. The resulting set consisted of 18 complete genomes
and 284 draft sequences. The distribution of these characteristics for each genome is shown in
Figure 1.

Proteome comparison
Proteome comparison was performed by PanFunPro tool (19). Briefly, genes of each proteome
were annotated as described by Lukjancenko et al. and grouped into gene families. Results of
pan- and core-genome analysis for chromosomes I and II were both visualized as an accumulative
pan-/core-plot and pairwise comparison matrix.

The distribution of unique functional profiles between the large and small chromosomes was
examined, following by brief investigation of available GO functional categories, specific for each
of the chromosomes.

One representative proteome for each species was chosen from the pool of complete genomes
and interspecies analysis of specific-genomes was performed between each pair of species. Re-
sults were visualized as a specific-matrix.

Results & Discussion
The bacterial dataset consisted of 302 genomes, representing 9 known and 2 unknown Vibrio
species. A list of the species and numbers of representing genomes are shown in Table 1. Only
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18 of the strains were completely finished, and for those independent proteomes for both chro-
mosome I and II could be extracted. However most of the genomes (284) were assembled and
present in multiple contigs, with no available information of which gene belongs to which chro-
mosome. Thus it was decided to build analysis around 2 sets: finished genomes (set_18) and
the whole dataset, including the WGS draft genomes (set_302).

Table 1: List of species analysed in this study. For each species the number of available genomes and
sequence status are provided. Species are listed alphabetically.

Species Number of genomes Sequence status
V. alginolyticus 1 Draft
V. anguillarum 1 Complete
V. cholerae 279 Complete, Draft
V. furnissii 1 Complete
V. fischeri 1 Draft
V. harveyi 1 Complete
V. parahaemolyticus 1 Complete
V. splendidus 12 Complete, Draft
V. vulnificus 3 Complete
Vibrio sp. EJY3 1 Complete
Vibrio sp. Ex25 1 Complete

The calculated basic features for each analyzed genome is shown in Figure 1, including the
number of contiguous pieces, predicted genes, average gene lengths, and predicted 16S rRNAs.
A large fraction of the assembled genomes contained between 150 and 190 contigs, with a group
of outlier strains, showing more than 200 pieces per genome. An obvious correlation can be
seen between number of contigs and amount of predicted rRNAs and genes, following by smaller
average gene length in assembled genomes with higher number of contiguous sequences.

Vibrio Chromosome I and Chromosome II comparison
Vibrio chromosome one is larger and more stable, carrying essential genes, whereas chromosome
two is smaller, more variable in size and believed to contain more specific functions. Pairwise
comparison of pan- and core-genome was performed on set_18 for both chromosomes and vi-
sualized in Figure 2. It can be seen that chromosome I and chromosome II share between 10%
and 15% of gene families, while similarity within smaller chromosome ranges between 25% and
96%, and between 55% and 95% in larger chromosome. Since there are multiple genome se-
quences for several different strains available for the V. choleae species, a high similarity within
chromosomes can be found with confidence, although on average only 10% are shared between
chromosomes I and II.

Analysis of the total pan- and core-genome of complete strains resulted in 1269 conserved
protein families shared within chromosome I, and 252 core families in chromosome II; only 104
functional profiles are shared between two chromosomes. When the draft genomes were included,
the core-genomes of chromosomes I and II dropped to 673 and 140 protein families, following
by decrease of shared functional profiles to a total number of 96. The pan- and core- genome
summary results are shown in Table 2 and conserved profiles and their functions in Table S1.

A closer look to the distribution of functions within core-genome of two chromosomes showed
that all of the shared genes are annotated by PfamA database (Figure S1) and most of them
are involved in biological processes or molecular function (Figure 3). The presence of proteins
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Figure 1: Predicted genome characteristics. A. Distribution of number of contiguous pieces; B. Distri-
bution of protein number per genome; C. Distribution of average gene length per genome; D. Number
of predicted 16S rRNA sequences.

involved in essential metabolic and regulatory processes in the shared genomic pool of both chro-
mosomes validates the claim that the smaller chromosome is not a plasmid, but is fundamental
for growth and biological activity.

Are there genes that are conserved in each of two chromosomes and absent in another? For
this purpose, we extracted genes, which would be in the core of chromosome I and are absent
in the core of chromosome II (Figure 4); and vise versa, present in the core of smaller chro-
mosome, and absent in the core of larger chromosome (Figure 5). A total number of 639 GO
IDs could be extracted for chromosome I core-specific profiles (1169 profiles). Of these 438 were
involved in biological process, 53 in cellular component functions and 363 carried molecular
functions. Equivalent analysis of chromosome II core-specific profiles yielded in total 109 Go
IDs (of 153 profiles), and the distribution among three main groups is as follows: 57 in biological
process, 10 in cellular component, and 66 in molecular function. It is not surprising that core of
larger chromosome carries more genes, essential to sustain life and reproduce; and the specific
core for the smaller chromosome contains proteins involved in metabolic processes, enzyme and
membrane associated activity. Addition of 284 draft genomes slightly reduced the number of
specific genes and specific pathway groups in chromosome I, remaining 265 GO terms involved
in biological process, 39 in cellular component functions, and 197 - molecular function (Fig-
ure S2). Whereas, chromosome II contained 15, 4, and 14 GO Terms in each of the following
groups: biological process, cellular component, and molecular function, respectively (Figure S3).
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Table 2: Pan- and core-genome calculation.

set_18 set_302
Core-genome
Chromosome I 1269 673
Chromosome II 252 140
Both chromosomes 104 96
Pan-genome
Chromosome I 5498 NA
Chromosome II 3742 NA
Both chromosomes 7825 17363
NA - proteomes of assembled genomes can not be separated

Interspecies comparison
The genus Vibrio genus comprises a diverse group of bacteria, which can be symbiotic or
pathogenic to mammals and organisms of marine environments. Species-specific genomes can
contain proteins responsible for pathogenicity or crucial for surviving in a given environment.
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Figure 3: GO term analysis in genes shared by chromosome I and II. Distribution is shared both as
percentage on the axis and absolute number above the bar. Absolute number shows the amount of GO
IDs that were connected to the pathway. Colour code is as follows: red is biological process, green is
cellular component, and blue is molecular function.
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Figure 4: GO term analysis in genes shared within chromosome I and missing in the core of chromosome
II. Distribution is shared both as percentage on the axis and absolute number above the bar. Absolute
number shows the amount of GO IDs that were connected to the pathway. Colour code is as follows:
red is biological process, green is cellular component, and blue is molecular function.
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Figure 5: GO term analysis in genes shared within chromosome II and missing in the core of chromosome
I. Distribution is shared both as percentage on the axis and absolute number above the bar. Absolute
number shows the amount of GO IDs that were connected to the pathway. Colour code is as follows:
red is biological process, green is cellular component, and blue is molecular function.
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To show the level of specificity between species of the same chromosome, for 9 strains repre-
senting 7 known and 2 unknown species, pairwise comparison of specific-genome was performed.
Within larger chromosome, fraction of unique proteome varies from 18% to 33% (Figure 6),
whereas genomes of chromosome two differ in larger portion of proteins, ranging from 18% to
64% (Figure 7).
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Figure 6: Pairwise interspecies-specific genome comparison for chromosome I. Analysis included single
representative of 7 known and 2 unknown species. Resulting percentage shows the ration between
the amount of species-specific families and size of total proteome. On average each species contained
between 18% and 33% specific protein families. Colour intensity indicates the level of specificity.
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Vibrio cholerae spp. are known pathogens in human and were chosen as an example of inves-
tigation of which proteins specific-genome contains and what processes species-specific genes are
be involved in. Representative strains of V. cholereae species were compared to other strains,
as shown in Figure 7. Chromosome I and II contained similar amount of specific profiles, 190
and 192, respectively. Most of them were CD-HIT clustering-based, however 81 and 47 were
annotated by PfamA and TIGRFAM collections. A complete list of profiles and corresponding
functions are listed in Table S2.

Proteomes of V. cholerae draft genomes
V. cholerae is one of the most important, highly documented, and mostly sequenced species of
Vibrios. Our dataset included 279 cholera-causing strains, 8 completely sequenced and 271 draft
genomes. Information of proteome separation into chromosome I and II was not available. Core-
genome analysis of 279 V. cholerae strains yielded in 776, 250, and 182 gene families, in large,
small, and both of chromosomes, respectively. Further we extracted all the proteins, which were
not found in pan-genome of both chromosomes within set_18 genomes. Distribution of total
number of 8325 functional profiles is as follows: 2333, 341 and 73 families assigned to PfamA,
Superfamily, and TIGRFAM databases, respectively (Figure 8). Analysis shows, that 271 newly
sequenced V. cholerae strains bring at least 2000 possible profile combinations to the pool of
previously known functions, which represent more than 70 different GO functional categories
(Figure 9). This extracted proteome might as well contain genes belonging to plasmids.

In conclusion, multiple analysis of similarities and differences between Vibrio species, showed
that Vibrios are variable between species and chromosomes. Proteomes of larger chromosome
are more similar, and carry important functions to sustain life.
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Figure 9: GO term analysis in specific to V. cholerae draft genomes. Distribution is shared both as
percentage on the axis and absolute number above the bar. Absolute number shows the amount of GO
IDs that were connected to the pathway. Colour code is as follows: red is biological process, green is
cellular component, and blue is molecular function.
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Chapter 5

Microbial Identification Using
Whole Genome Sequences

Identification of microbial genomes is usually carried out using traditional typ-
ing methods, such as 16S rRNA and MLST. This chapter provides insight into
alternative microbial identification methods, which employ whole genome se-
quence comparison. Paper VI demonstrates the use of species-specific genes for
high-density microarray design, which is used to evaluate the genomic content
of unsequenced bacterial genomes within Enterobacteriaceae family.

Paper VII provides an insight into the use of comparative genomics for
non-traditional epidemiological typing. A number of genes, shared between
79 Salmonella genomes were extracted; and genomic variation within these
core gene was used to infer phylogenetic relationships between closely related
genomes. Results were compared to traditional typing methods, such as 16S
rRNA and MLST.

Taxonomy prediction can also be performed using protein functional con-
tent as a target. TaxonomyFinder is a new in silico approach, which uses
HMM-profile combinations to infer microbial identification of unknown iso-
lates. Performance of the method is shown in Paper VIII. TaxonomyFinder
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CHAPTER 5. MICROBIAL IDENTIFICATION USING WHOLE GENOME
SEQUENCES

was compared to other genomic typing methods, and the performance was
evaluated on two different sets of genomes: Draft genome sequences and SRA
genomes, which were publicly available in Genbank database.
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5.1 Paper VI. Design of an Enterobacteriaceae
Pan-genome Microarray Chip
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Design of an Enterobacteriaceae Pan-Genome  
Microarray Chip 

Oksana Lukjancenko and David W. Ussery 

Center for Biological Sequence Analysis, Department of Systems Biology,  
The Technical University of Denmark, 2800 Kongens Lyngby, Denmark  

Abstract. Microarrays are a common method for evaluating genomic content of 
bacterial species and comparing unsequenced bacterial genomes. This technol-
ogy allows for quick scans of characteristic genes and chromosomal regions, 
and to search for indications of horizontal transfer. A high-density microarray 
chip has been designed, using 116 Enterobacteriaceae genome sequences, tak-
ing into account the enteric pan-genome. Probes for the microarray were 
checked in silico and performance of the chip, based on experimental strains 
from four different genera, demonstrate a relatively high ability to distinguish 
those strains on genus, species, and pathotype/serovar levels. Additionally, the 
microarray performed well when investigating which genes were found in a 
given strain of interest. The Enterobacteriaceae pan-genome microarray, based 
on 116 genomes, provides a valuable tool for determination of the genetic 
makeup of unknown strains within this bacterial family and can introduce in-
sights into phylogenetic relationships. 

Keywords: Enterobacteriaceae, Pan-genome, DNA microarray analysis, gene, 
Escherichia coli. 

1   Introduction 

The risk of dying from disease caused by a bacterial infection is greater than that 
associated with any other type of disease, including cancer or heart attacks [1, 2]. 
Epidemic infectious diseases are the most serious causes of mortality and morbidity 
worldwide, more than all other diseases combined. Infections contribute to significant 
economic loss in most parts of the world, including first world countries that have 
high income and developed surveillance and control systems [3, 4]. Every year thou-
sands of people are infected by bacterial pathogens, most of which are transmitted 
through food [5]. The outcome from food-borne human infections can range from 
mild self-limiting diarrhea to severe illness that requires hospitalization. In rare cases, 
food-borne illnesses are even fatal [5, 6]. Enteric bacteria, particularly Salmonella 
enterica subsp. enterica, are among the leading food-borne pathogens [6, 7]. In light 
of this, the detailed and rapid investigation of enteric pathogens is essential in modern 
epidemiology and clinical diagnostics.  

Enterobacteriaceae are pervasive. They are widespread in the environment, exist-
ing in water, soil, food, and plants, as well as in the normal intestinal flora of many 
animals and humans [8-12]. Pathogens within this group have developed a diversity 
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of strategies to overcome protective host barriers in order to invade the host, resist 
innate immune response, multiply in specific and normally sterile body sites, and 
damage cells in order to establish and maintain a successful infection [13, 14]. Genera 
within Enterobacteriaceae family are of interest, as well, because of problems from 
food spoilage and for that reason are of considerable economic importance [15].  

Bacterial genomes vary in size, even among the strains of the same species. Bacte-
rial species can be characterized by its pan-genome. As defined by Tettelin et al., the 
microbial pan-genome is a complete collection of various genes located within popu-
lations at a particular taxonomic level, commonly within a species. The pan-genome 
concept can of course be expanded to higher levels, such as genus or even a bacterial 
family. The pan-genome includes a core-genome, which is a minor fraction of the 
entire gene pool that is shared between all the given strains.  Furthermore, there is a 
much larger, dispensable portion of bacterial genes, that are missing in one or more 
strains.  Also there are some genes that appear to be unique to each strain [16, 17]. 
Strain-specific genes can, even among a particular species, make up a notably large 
portion of the pan-genome [18].  

Many methods have been developed for characterizing genetic variation. Use of 
DNA microarrays is becoming a standard procedure for evaluating genotyping – that 
is, looking at the genetic content of a bacterial species. The price for microarrays used 
for genotyping was historically expensive, but now is becoming competitive with the 
cost of other commonly used typing methods, such as previously widely used multi-
locus sequence typing (MLST). Moreover, it is becoming increasingly popular, quick, 
and cost-effective to define the presence and absence of each of the assigned genes in 
the pan-genome of a species. Thus, microarrays, imprinted with all the genes from 
species’ pan-genome can be used to compare and characterize the genomic content of 
unknown bacterial isolates and to achieve accurate typing information, that can be 
useful in epidemiological investigations and clinical diagnostics [1, 19]. For instance, 
array comparative genomic hybridization (aCGH) is frequently used in human cancer 
studies to genotype cell lines by determination of gene loss and copy number varia-
tions [20] or to detect single nucleotide polymorphisms at target loci [21]. Addition-
ally, microarrays have been widely used in human screenings for the determination 
and genotyping of bacterial species. Microarrays have changed considerably since 
they were first introduced. Early microarrays for the E. coli genome consisted of long 
fragments of chromosomal DNA (~1000 to 2000 base-pairs), attached to a micro-
scope slide. Later, Affymetrix made an array covering the entire E. coli K-12 genome 
using a set of 10 to 15 probes (synthetic 25mers) for each gene [22], followed shortly 
by an array which contained 4 E. coli genomes [23, 24]. Custom-designed NimbleGen 
chips have been made including 7 and then 32 E. coli genomes [25, 26]. 

This study describes the design and use of a high-density oligonucleotide microar-
ray covering the pan-genome of 116 genomes within the Enterobacteriaceae family. 
Probes are designed to distinguish among organisms at the level of genera, species, 
and even single strains. Moreover, probes for determination of particular gene fami-
lies, comprising Enterobacteriaceae pan-genome, are defined. The performance  
of this microarray is evaluated both in silico and experimentally. Its utility is illus-
trated for the hybridization of genomic DNA in order to compare uncharacterized 
isolates which have not been sequenced with the 116 known, sequenced strains. A 
microarray chip approximating the complete pan-genome of Enterobacteriaceae 
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provides optimal sensitivity to characterize isolates. Gene family microarray analysis 
is useful for medical and environmental diagnoses and will provide an alternative to 
costly genome libraries, as well as to the sequencing of environmental samples. 

2   Materials and Methods 

2.1   Bacterial Strains 

In this study, one hundred and twelve complete Enterobacteriaceae genome se-
quences and four in progress, which were publically available in GenBank database at 
the time of analysis (February, 2010), were used for custom microarray design. An 
overview of the used strains is shown in Table 1 and the complete collection of the 
strains is described in supplementary Table S11.  

Table 1. Enterobacteriaceae genera used in the design of the microarray chip 

Genus Number of strains Genus Number of strains 
Buchnera 6 Photorhabdus 2 
Citrobacter 3 Salmonella 18 
Cronobacter 2 Serratia 1 
Dickeya 3 Shigella 8 
Edwardsiella 2 Sodalis 1 
Enterobacter 2 Wigglesworthia 1 
Escherichia 35 Xenorhabdus 1 
Klebsiella 4 Yersinia 14 
Pectobacterium 3 Erwinia 4 
Proteus 3 Candidatus* 3 

* Candidatus is not a genus; however some strains were included as they were classified as  
   Enterobacteriaceae at the time of study. 

 
Twelve bacterial strains included in experimental evaluation of the chip are listed 

in Table 3 (Results section).  

2.2   Pan-Genomics 

The pan-genome was estimated, as described by Snipen et al [27]. Briefly, all protein 
sequences were compared by BLASTP [28]. Two proteins were attributed to a single 
gene family if they satisfied the 50/50 rule, meaning that when they could produce a 
pairwise BLASTP alignment covering at least 50% amino of the length of the longest 
protein with at least 50% of amino acid identity. Each genome was compared succes-
sively: for each n additional genome, that genome was compared to any combinations 
of n-1 genomes and the number of identical ‘core genes’ and ‘genome specific genes’ 
(specific for genome n) were counted for each n. All cumulative BLASTP hits found 
in the whole set of genomes were plotted as a running total and were considered as 
pan-genome, which increases as more genomes are added. The number of gene fami-
lies with at least one representative in every genome was plotted for the core-genome.  

                                                           
1 Available at http://www.cbs.dtu.dk/~dave/Supplementary_TableS1.pdf 
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2.3   The Custom-Microarray Design 

The custom probe set for the microarrays was designed around 78 different groups of 
genomes (the list of groups is presented in the Results section, Table 2) including a 
collection of generic probes for the entire enteric core (97 genes), as well as for the 
probes that differentiate each genus within Enterobacteriaceae. The custom probe set 
was followed by more specialized probe sets for species-specific classification within 
Klebsiella, Salmonella, Escherichia, Shigella, and Yersinia genera and further probe 
groups were specific for strain and pathotype for Escherichia coli genus. Addition-
ally, sets of probes for all the gene families, comprising pan-genome, were included. 
The custom microarrays, manufactured by NimbleGen, were based on the NimbleGen 
12-plex platform. 

2.4   Constructing Target Gene Sets 

The genome sequences in this study (Table S1) were searched for genes using the 
Prodigal gene-finding approach [29] in order to standardize gene finding. All protein-
coding sequences were aligned all-against-all using BLASTP [28], and similarity was 
decided according to 50/50 rule. Proteins that satisfy this rule were assigned to one 
protein family. ‘Group specific gene families’ (as described above) were found using 
batch Perl script, which outputs a list of gene families that are either common to or 
complementary to the genomes included in pan- and core-genome plots (depending 
on whether unique or core genes are extracted). Representative sequences from each 
gene network were selected by choosing the organism from which the genes should 
be extracted. Unique genes were considered to be those that appeared to be conserved 
only among the strains belonging to a particular group.  

2.5   Probe Selection for Target Genes 

Probes for target genes were selected using the OligoWiz program, previously de-
scribed by Wernersson et al. [30][31]. At each position along all the input sequence, 
the suitability of placing a probe was evaluated according to several criteria: melting 
temperature ( Tm), cross-hybridization, folding (self-annealing), position (within the 
transcript), and ‘low-complexity’ (absence of subsequences that occur very com-
monly in the genome/transcriptome). The weighting scores for these criteria are as 
follow: cross-hybridization, 39%; Tm, 26%; folding, 13%; position, 13%; and low-
complexity, 9%. No probes were accepted unless an overall score of at least 0.3 was 
obtained, and all probes were required to have a length in the range of 42 bp to 50 bp. 
OligoWiz was originally designed for single genome use, and thus, the program was 
modified in order to make the mechanisms screening for cross-hybridization less strict 
as described by Vejborg et al. [32]. A new modified scheme included a log-
transformation in the underlying calculations. The net effect is insignificant near the 
upper boundary of the score, but next to the lower boundary it increases the discrimi-
natory power of the tool.  
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2.6   Probe Evaluation in silico 

Probes were aligned against a database consisting of all possible gene sequences in 
the total data set using BLASTN. The affinity of each probe for every gene was de-
termined and expressed as the number of identical base pairs and by the E-value. 
Sequences for which the E-value was lower than 0 were extracted using a batch Perl 
script. Probes that matched strains not expected to belong to particular group were 
excluded from the further analysis. If more than ten probes per gene remained avail-
able after filtering, only not-overlapping ones were used for subsequent analysis. This 
resulted in the reduction of candidate probes from 106,657 to 53,644. Consequently, 
the number of probes targeting each gene ranged from 3 to 14 with a median coverage 
of about 7 probes per gene. 

2.7   DNA Preparation and Hybridization 

All the experimental isolates were kindly provided by the laboratory of Frank Møller 
Aarestrup (DTU Food, The Technical University of Denmark). All test strains were 
grown overnight on blood agar and genomic DNA was isolated as described in the 
protocol for the Easy-DNA kit from Invitrogen [33]. The method used is briefly de-
scribed here: the lysis of the cells was performed by the addition of solution A and 
subsequent incubation at 65°C. Proteins and lipids were precipitated and extracted by 
the addition of solution B and chloroform. The solution was then centrifuged to sepa-
rate the solution into two phases. The DNA was in the upper, clear aqueous phase, the 
proteins and lipids were in the solid interface, and the chloroform formed the lower 
phase. The DNA was then removed, precipitated with ethanol, and re-suspended in 
TE buffer.  

The genomic DNA was labeled with cy3 dye and hybridized to NimbleGen custom 
arrays according to Arrays User’s Guide for CGH analysis as provided by the manu-
facturer of the arrays (Roche NimbleGen, Madison, Wisconsin, USA). 

2.8   Analysis Methods 

In the initial step, the raw data from multiple microarrays was extracted using Nim-
bleScan software, developed by Roche NimbleGen, and combined as a single input. 
Data analysis was performed in R (a statistical software program), using the ‘oligo’ 
package for analyzing oligonucleotide arrays at the probe level. The package was ob-
tained from Bioconductor [34]. The probes were mapped to each gene group, including 
position, according to the design. Chip analysis workflow then continued as follows:  

 

1. Performance of probe-level normalization using robust multi-array average 
(RMA) algorithm. RMA method had a three-step procedure consisting of back-
ground correction, normalization, and summarization to obtain gene-level relative 
intensity measures from probe-level intensities [35]. 

2. Estimation of gene ‘on/off’ status based on the summarized gene relative intensi-
ties and the median of these intensities for each of the 78 groups. 

 

Supporting microarray chip design information is publicly available2. 
                                                           
2 http://www.cbs.dtu.dk/~dave/Microarray_Chip_Design_Lukjancenko_2010.ndf 
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3   Results 

3.1   Pan-Genome and Core-Genome Estimation 

For each of the considered bacterial strains listed in Table S1 (Supplementary data), 
the genome sequence was downloaded from NCBI/GenBank. Genes were predicted 
by Prodigal [29], and translated into proteins. This resulted in a dataset of 887,184 
entries with considerable redundancy due to the presence of the same gene in multiple 
genomes. To reduce the homology, proteins were grouped into the gene families. 
Proteins were considered conserved (belonging to the same gene group) if they 
showed at least 50% amino acid identity in a BLASTP alignment covering at least 
50% of the length of the longest protein. The combined pan-genome of 116 genomes 
within Enterobacteriaceae was estimated and appeared to contain 44,838 gene fami-
lies. The core-genome, that is, the number of conserved genes present in all 116 ge-
nomes, was estimated to be comprised of 97 conserved gene families.  

3.2   Probe and Microarray Design 

In the presented Enterobacteriaceae pan-genome microarray design strategy, the 
probe set was designed around 78 different groups of genomes. The microarray was 
made up of a collection of probes for each genus within Enterobacteriaceae, being 
species-specific for Klebsiella, Salmonella, Escherichia, Shigella, and Yersinia gen-
era; strain and pathotype specific for Escherichia coli genus; core genes; and all pro-
tein families, comprising pan-genome. Using the data from the pan- and core-genome 
estimation step, the number of ‘group-specific’ genes and probes was determined and 
are shown in Table 2. Genes were considered to be ‘group-unique’ if they were found 
only within genomes, belonging to a particular group, and were absent in all of the 
rest genomes among a set of 116 genomes.  

The final result was a set of 52,356 Enterobacteriaceae target sequences, repre-
senting genes of both specific groups and pan-genome gene families. The oligos were 
then selected using OligoWiz [31] based on several criteria, including their specific-
ity, self-annealing, presence of low-complexity sequences, and their lengths adjusted 
so as to standardize the hybridization strength. Probes were filtered in order to avoid 
complimentarity with unwanted targets. In the end a set of 130,540 non-overlapping 
probes with an average length of 49 bp were obtained. The average number of probes 
per target gene was about 7, although the actual number for any given target depended 
on the length of the sequence, since shorter sequences have space for fewer non-
overlapping probes. For set of probes that represent gene families an average of 3 
probes per family was used.  

3.3 Validation of the Custom Arrays 

The chip design was evaluated by analyzing and comparing hybridization data from 
twelve control strains, shown in Table 3. Microarray data can have noise, coming 
from multiple variations which can occur during the array manufacturing process, the 
preparation of the biological sample for the hybridization, the hybridization of the 
samples to the array itself, and the quantification of the spot intensities [35]. To re-
move such variation, which obviously will affect the measured gene intensity levels,  
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Table 2. Number of ‘group specific’ gene families and probes before and after in silico validation 

Probe group 

Number 
of genes 
before  

validation 

Number 
of probes 

before  
validation 

Number 
of genes

after  
validation 

Number 
of probes 

after  
validation 

Buchnera genus  14 200 14 123 
Candidatus strains 41 584 41 373 
Citrobacter genus 20 171 15 95 
Cronobacter genus 271 3224 270 2002 
Dickeya genus 155 2129 155 1398 
Edwardsiella genus 318 3803 317 2447 
Enterobacter genus 40 511 40 318 
Erwinia genus 217 2919 217 1840 
Escherichia genus 1 15 1 10 
Escherichia coli 042  106 1047 79 450 
Escherichia coli 536 142 1207 95 436 
Escherichia coli 55989 72 646 45 272 
Escherichia coli APEC 116 1287 14 83 
Escherichia coli APEC O1 116 1287 14 83 
Escherichia coli Avirulent 69 508 39 241 
Escherichia coli B phylogroup 14 175 14 100 
Escherichia coli CFT073 292 2251 115 393 
Escherichia coli E24377A 249 1700 90 511 
Escherichia coli EAEC 72 646 45 272 
Escherichia coli ED1a 159 1545 146 823 
Escherichia coli EHEC 21 173 13 27 
Escherichia coli EPEC 142 1685 126 893 
Escherichia coli ETEC 249 1700 90 511 
Escherichia coli ExPEC 52 392 17 131 
Escherichia coli HS  90 642 44 313 
Escherichia coli IAI1 67 499 39 238 
Escherichia coli IAI39 77 609 48 262 
Escherichia coli K-12 11 159 11 113 
Escherichia coli O103:H2 65 693 50 377 
Escherichia coli O111:H- 148 1536 54 250 
Escherichia coli O127:H6 142 1685 126 893 
Escherichia coli O157:H7 68 709 52 379 
Escherichia coli O26:H11 74 690 48 280 
Escherichia coli S88 52 392 17 131 
Escherichia coli SE11 178 1692 70 360 
Escherichia coli SE15 58 609 49 328 
Escherichia coli SMS-3-5 145 1064 106 501 
Escherichia coli UMN026 113 1026 85 505 
Escherichia coli UPEC 121 983 49 179 
Escherichia coli UTI89 85 754 35 192 
Escherichia/Shigella genera 15 184 15 113 
Klebsiella genus 242 3296 242 2090 
Klebsiella pneumoniae 342 11 93 8 50 
Klebsiella pneumoniae MGH 78578 21 237 14 49 
Klebsiella pneumoniae NTUH-K2044 339 2636 233 863 
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Table 2. (Continued) 
 

Klebsiella variicola At-22 115 1282 110 758 
Pectobacterium genus 166 2287 166 1422 
Proteus genus 355 4782 355 3006 
Photorhadbus genus 318 4392 318 2728 
Salmonella genus 69 933 69 575 
Salmonella enterica Agona 136 1151 111 568 
Salmonella arizonae 477 3828 474 2245 
Salmonella enterica Choleraesuis 92 804 44 87 
Salmonella enterica Dublin 101 526 22 77 
Salmonella enterica Enteritidis 20 217 9 55 
Salmonella enterica Gallinarum 10 88 5 14 
Salmonella enterica Heidelberg 91 608 51 249 
Salmonella enterica Newport 189 1967 111 351 
Salmonella enterica Paratyphi A 10 80 7 10 
Salmonella enterica Paratyphi B 436 1982 175 547 
Salmonella enterica Paratyphi C 54 266 20 47 
Salmonella enterica Schwarzengrund 139 1025 122 498 
Salmonella enterica Typhi 69 759 63 326 
Salmonella enterica Typhimurium 9 113 3 30 
Serratia genus 780 10393 780 6777 
Shigella boydii 19 164 16 52 
Shigella dysenteriae 113 1216 98 348 
Shigella flexneri 17 218 17 123 
Shigella genus 28 401 25 178 
Shigella sonnei 48 531 32 152 
Sodalis genus 420 5697 420 3464 
Wigglesworthia genus 212 3029 212 1789 
Xenorhabdus genus 82 855 82 527 
Yersinia genus 97 4189 97 809 
Yersinia enterocolitica 336 1312 336 2655 
Yersinia pestis 7 26 5 5 
Yersinia pseudotuberculosis 23 165 13 24 
Core genes 97 1378 97 850 
Gene families 42151 180219 27536 76896 

 
normalization was performed. A set of twelve arrays (one 12plex array) used in the 
experiment was printed at the same time, so background noise effects were expected 
to be reasonably similar across all arrays. Only one out of the twelve the results were 
not as anticipated. The single exception being for the Salmonella enterica serovar 
Choleraesuis isolate, which shows variation. Thus it was decided to exclude hybridi-
zation data of this isolate from further analysis. RMA normalization, performed for 
microarray data of the remaining eleven samples, made the distribution of probe in-
tensities for each array in a set of arrays nearly the same.  

In the workflow of further microarray data analysis, the evaluation of which genus, 
species, pathotype/serovar or strain, the experimental isolate is most likely to be simi-
lar to. For each of the seventy-eight gene sets, the median of signal intensities were 
calculated. The analysis was performed based on both distribution of probe log inten-
sities and the signal median. The examples are shown in Figures 1-3, which visualize  
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Fig. 1. Distribution of signal intensity and signal median for Escherichia coli ECOR20 strain 
among the set of seventy-eight groups, mentioned previously in Table 2. a. Box-and-whisker 
plot, showing signal intensity distribution. b. Bar plot, showing expression signal median dis-
tribution. X-axis elements are sorted by genus, based on the order showed in Table 2. Colour 
code is based on the genera, where 12-colour palette represents 20 genera. 

the resulting plots for single representative of three chosen genera Escherichia, Sal-
monella and Yersinia. Those were Escherichia coli ECOR20, Salmonella enterica 
serovar Dublin and Yersinia frederiksii, respectively. Table 3 overviews the results for 
all the eleven isolates, used in the study. 

Both box-and-whisker and bar plots for Escherichia coli ECOR20, represented in 
Fig. 1, show high signal intensity among the genes comprising core and Escherichia-
and-Shigella groups. Additionally, results show high similarity to several pathogenic 
E. coli strains, such as Escherichia coli CFT073, and strains of O111:H-, UPEC and 
EHEC pathotypes. Apart from being highly expressed among the genes belonging to 
Escherichia genus, microarray data show relatively high signal level to Shigella genus  
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Fig. 2. Distribution of signal intensity and signal median for Salmonella enterica serovar Dub-
lin strain among the set of seventy-eight groups, mentioned previously in Table 2. a. Box-and-
whisker plot, showing signal intensity distribution. b. Bar plot, showing expression signal 
median distribution. X-axis elements are sorted by genus, based on the order showed in Table 
2. Colour code is based on the genera, where 12-colour palette represents 20 genera. 

strains, thus, resulting in another proof of Escherichia and Shigella genera strains 
being very similar.  

Fig. 2 visualizes the comparison of data for Salmonella enterica serovar Dublin 
isolate. Genes have high intensity values within strains belonging to Salmonella genus 
and core group. The highest similarity is shown to be Dublin serovar; however, DNA 
sequences appeared to hybridize with the high strength to Newport, Choleraesuis and 
Paratyphi A serovar representing probes as well.  

In the case of the chosen representative for Yersinia genus, Yersinia frederiksi, re-
sults, shown in Fig. 3, are not that positive, since any obvious high intensity signal 
cannot be seen. This might occur as a consequence of impropriate isolation of ge-
nomic DNA, low concentration of labeled DNA, which was obviously not enough for 
proper hybridization to target genes, or cross-hybridization effect. 
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Fig. 3. Distribution of signal intensity and signal median for Yersinia frederiksii strain among 
the set of seventy-eight groups, mentioned previously in Table 2. a. Box-and-whisker plot, 
showing signal intensity distribution. b. Bar plot, showing expression signal median distribu-
tion. X-axis elements are sorted by genus, based on the order showed in Table 2. Colour code is 
based on the genera, where 12-colour palette represents 20 genera. 

Isolates, results for which are presented in Table 3, show different chip perform-
ances. Several of them can be easily proved to belong to a particular genus, specific 
species and be most likely similar to a particular genus, species or serovar/serotype. 

However, some samples, likewise Yersinia frederiksii, do not show obvious results. 
This can consider the presence of uncertainties included in genomic DNA purification 
and sample preparation for the hybridization.  



176 O. Lukjancenko and D.W. Ussery 

Table 3. Overview of experimental validation results 

Isolate / Distinguishing level Genera Species Pathotype/Serovar 
Escherichia coli ECOR20 + + - 
Salmonella enterica serovar Dublin D6 + + + 
Salmonella enterica serovar Paratyphi B var Java b + + + 
Salmonella enterica serovar Isangi 2005-60-2087-1 + +  
Salmonella enterica Typhimurium HN-GSS-2007-016 + + + 
Salmonella enterica serovar Choleraesuis 2870/08    
Shigella sonnei phase 12006-077 - -  
Shigella flexneri 4 2006-054 + +  
Shigella boydii 9S - - - 
Yersinia entericolitica O3 98-30624-5 - - - 
Yersinia ruckerii NCTC 10476 - - - 
Yersinia frederiksii P963 - - - 
‘+’ is a positive result, ‘-‘ is a negative result and absence of any mark means no analysis with 
this purpose was made or results are not analysed 

4   Discussion and Perspective 

The design of a microarray chip covering 116 bacterial genomes has proven to be a 
considerable challenge. Multiple aspects had to be examined, such as the number of 
possible sequences to be included in the database, various criteria to select the unique 
set of genes to particular groups of genomes, and to design probes for them. The 
greatest difficulty was to optimize these criteria and to filter out the false positive 
representative sequences for each sequence of interest. Some genera within Entero-
bacteriaceae, such as Escherichia and Shigella, are quite similar, thus it was difficult 
to find genus-specific genes. For example, the Escherichia genus appeared to have 
only a single gene family conserved among all the strains belonging to this genus, and 
being absent in the other enterics. Thus it was an obvious decision to design probes 
for Escherichia-and-Shigella genera-specific genes.  

Along with choosing representative sequence for each of unique gene family, a 
problem of selecting the right organism to extract representative sequences for core-
genome set became evident. In this study, core-genome genes were extracted from 
type species of the type genus Escherichia coli K-12 MG1655 strain. The unique sets 
of genes were selected on protein level, that is, similarity/dissimilarity was based on 
alignment using BLASTP, and gene family members were considered based on the 
50/50 rule, described above. Thus this might be an explanation of why some probes 
did not show high intensity levels at the DNA level as was predicted.  

Selecting the probes is indeed a challenging aspect. On the one hand, probes 
should cover all versions of the same gene, however, at the same time they should be 
able to distinguish between different genera, species, pathotypes/serovars, and strains. 
Furthermore, the array should allow various numbers of probes per gene in order to 
acquire the sufficient coverage of genes. Longer sequences require higher numbers of 
probes, whereas design of the same number of probes for short genes would result in 
low quality probes [36]. Therefore, the challenge is to find the best possible solution, 
with least time, money, and personal energy consumption.  
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Several improvements and suggestions could be considered for the design of an 
Enterobacteriaceae pan-genome microarray chip. To obtain more sufficient unique 
gene finding, searchs should be done on DNA level with an appropriate cut-off value. 
Alignment using the BLASTN algorithm would be able to efficiently identify ho-
mologous nucleotide sequences based on similarity and would be helpful in avoiding 
non-specific probes.  

Furthermore, for the validation of the chip step, sample preparations, such as ge-
nomic DNA isolation, labeling, and preparation to hybridize an array should be done 
according to protocols.  Purity of DNA should be checked before the DNA labeling 
step to avoid small quantities of labeled DNA, which hybridizes to wrong sequences 
and fails to recognize the expected target sequence.  

5   Conclusion 

In this study, an Enterobacteriaceae pan-genome microarray chip was developed 
based on 116 genomes within this bacterial family. The typical genome size (with the 
exception of the reduced endosymbiont genomes of Buchnera, Wigglesworthia and 
Sodalis genera) contained between 3500 and 5500 genes. This made it possible to find 
at least 10 genus-, species- and pathotype/serovar-genes among all the analysed ge-
nomes. This resulted in 53644 unique probes, which were expected to hybridize to 
particular target sequence. High-density pan-genome microarrays can be very useful 
in both characterizing DNA content and monitoring expression levels for thousands of 
genes simultaneously. The comparison of two or more arrays can display the distinct 
patterns of gene expression or signal intensity level that are useful in the definition of 
unknown strains or genes included in these genomes. Using some experimental tests 
the ability of the microarray to determine bacterial strains within Escherichia spp., 
Shigella spp., Salmonella spp. and Yersinia spp. was demonstrated. Most of the re-
sults showed discriminative power, although some samples did not show a clear con-
nection to the bacterial strain they are most likely to be similar to. This could be due 
to low quality DNA from the experiment.  

It can be concluded that a Enterobacteriaceae pan-genome microarray, based on 
116 genomes provides a perfect tool for determination of the genetic makeup of un-
known strains within this bacterial family and can introduce insights into phylogenetic 
relationships. 
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Abstract

Background: Technological advances in high throughput genome sequencing are making whole genome

sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of

relevant genes and of variation are needed to enable comparison between studies and over time. The core genes–

the genes that are conserved in all (or most) members of a genus or species–are potentially good candidates for

investigating genomic variation in phylogeny and epidemiology.

Results: We identify a set of 2,882 core genes clusters based on 73 publicly available Salmonella enterica genomes

and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S

and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST;

the pan-genome family tree is similar to the consensus tree, but with higher confidence. The core genes can be

divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low

variance. For the most variable core genes, the variance in amino acid sequences is higher than for the

corresponding nucleotide sequences, suggesting that there is a positive selection towards mutations leading to

amino acid changes.

Conclusions: Genomic variation within the core genome is useful for investigating molecular evolution and

providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation

is important especially in trend analysis.

Background

With the increasing number of available bacterial gen-

ome sequences, when these genomes are compared, the

genetic variation within bacterial species is greater than

previously predicted [1,2]. Rapid and reliable sub-typing

of bacterial pathogens is important for identification of

outbreaks and monitoring of trends in order to establish

population structure and to study the evolution among

bacterial genomes especially within and between the out-

break strains. Today, the most widely used typing meth-

ods for bacterial genomes include multilocus sequence

typing (MLST), pulsed field gel electrophoresis (PFGE),

sequencing of 16S rRNA genes, and multilocus variable-

number of tandem-repeat analysis (MLVA).

PFGE and MLVA have major benefits, but are time

consuming and the results are difficult to standardize [3].

Other typing methods which rely on one or a few ubiqui-

tous genes, such as the 16S rRNA gene or a set of house-

keeping genes in MLST, are capable of classification at

the species level and sometimes also at the subspecies

level, but the biological information in a narrow selection

of genes will rarely be sufficient to clearly distinguish

between closely related strains such as several isolates of

the same serotype [4-6]. Thus, more of the genome con-

tent should be considered rather than just one or a few

genes [4].

The price and time for whole genome sequencing will

soon be in the same range as the traditional typing meth-

ods mentioned above. Genome sequencing can be a

powerful method in epidemiological and evolutionary

investigations [7-9]. Although, to date, this has only been

used in more limited epidemiological investigations

where isolates suspected to be part of the same outbreak

have been compared to a reference genome. In the
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future, it is likely that WGS will become a routine tool

for identification and characterization of bacterial iso-

lates, as hinted at in the first ‘real-time’ sequencing of the

E. coli O104 outbreak in Germany in the summer of

2011 [10] and the Vibrio cholerae outbreak in Haiti in

October 2010 [11]. This requires standard procedures for

identifying variation and for analyzing similarities and

differences.

Conserved genes are present across bacterial genomes

of the same species (or genus). A fraction of these genes–

those conserved in all (or most) of the genomes of a

given bacterial taxonomic group–is called the ‘core-gen-

ome’ of that group. The core-genome can be identified

either within a genus or species [3] and can be used to

identify the variable genes in a given genome [12]. In

addition, the conserved genes in general appear to evolve

more slowly, and can be used for determining relation-

ships among bacterial isolates [13].

Currently there are more than a hundred bacterial

species for which sufficient genomic data are available

to estimate the species core-genome (that is, there are

at least three genomes sequenced from the same spe-

cies) [14]. Among these, Salmonella enterica is a good

candidate species for conserved gene identification

because the genomes are quite similar [15]. Moreover,

S. enterica is one of the most important food-borne

pathogens and is responsible for global outbreaks [16]

which makes international standard typing procedures

of major importance in order to allow for global com-

parisons [17]. The Salmonella genus has only two spe-

cies with sequenced genomes: Salmonella bongori and

Salmonella enterica. In turn, S. enterica is divided into 6

sub-species: enterica, salamae, arizonae, diarizone, hou-

tenae and indica. Presently, S. enterica is classified into

more than 2,500 serotypes [18].

In order to investigate an outbreak caused by Salmo-

nella, characterization of Salmonella isolates from genome

data is a crucial step. Salmonella genomes are highly simi-

lar, particularly within subspecies enterica, where little var-

iance exists in the genomes [15]. This high similarity

presents a challenge for typing and classification.

In their pioneering work Tettelin et al. [1] defined the

core genes of a species by being those genes found present

in (nearly) all known members of the species. Since then

others have studied core and pan genomes at the genus

level or even at the kingdom level [19], but for our pur-

poses the original definition at the species level is suitable.

In this work we identify the core genes within S. enterica

genomes and determine variation between the different

available genomes, both in terms of sequence and pre-

sence/absence of non-core genes; in the latter case using a

method originally published by Snipen & Ussery [20]. We

evaluate the value of different approaches for classification

of isolates in epidemiological settings and compare our

findings to currently used sequencing methods, both in

long term trend analysis and outbreak investigations.

Results and discussion

The 73 Salmonella genomes used in this study are sum-

marized in Additional file 1: Table S1. The set comprises

21 completed genomes and 52 nearly completed genomes.

Of these, 35 genomes are closely-related S. Montevideo

strains pertaining to an outbreak of salmonellosis from Ita-

lian-style spiced meat [21]. All genomes were retrived

from GenBank [22] except S. Typhimurium str. DT104,

which was received from the Sanger Institute’s bacterial

genome database. All Salmonella genomes are from sub-

species enterica with the exception of the single S. enterica

subsp. Arizonae.

Evaluation of traditional bacterial sequence-based typing

The ribosomal genes are essential for the survival of all

cells, and their structure cannot change much because of

their involvement in protein synthesis [23]. Thus, 16S

rRNA genes are highly conserved among isolates belong-

ing to the same bacterial species [4]. Exceptions may be

N. meningitidis [24] and Mycoplasma [25]. However, due

to limited variation within a given species, the 16S sequen-

cing is often not useful for epidemiological studies, where

the classification of highly similar strains is needed. Jacob-

sen et al. shows a phylogenetic tree based on 16S rRNA

genes, extracted from 26 Salmonella enterica genomes,

using RNAmmer [15,26]. As expected, there is not suffi-

cient resolution to distinguish among the Salmonella

subspecies enterica.

Genes such as rpoB or sodA have been suggested as

substitutes for 16S rRNA and have shown improved effi-

cacy in species identification [27], although it remains

unlikely that a single gene can always reflect the subtle

differences between genomes of the same species.

The limitations of using a single gene may be improved

by the simultaneous analysis of multiple genes. Multi

Locus Sequence Typing (MLST) has found wide applica-

tions, especially in phylogenetic studies and is most com-

monly based on seven housekeeping genes - each bacterial

species having its own set. For Salmonella these are: aroC,

dnaN, hemD, hisD, purE, sucA and thrA http://www.mlst.

net. A MLST tree, based on an in silico analysis of the

73 available Salmonella enterica genomes in Genbank, is

shown in Figure 1. Strains of the same serovar generally

cluster into distinct groups, although exceptions exist; for

example the S. Weltevreden str. HI_N05-537 is mixed

with S. Montivideo. Futhermore, recent work on 61

sequenced E. coli genomes [4], found that the 16S rRNA

tree cannot resolve well within the genus level and also

that MLST cannot differentiate pathogenic strains from

non- pathogenic strains. Still, MLST has proven useful for

long-term analysis of population structures, but often fails
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Figure 1 In silico MLST tree. Seven housekeeping genes were extracted from Salmonella genomes. Concatenated sequences were aligned by

MUSCLE. The phylogenetic trees were generated by MEGA5 using bootstrap maximum likelihood method. Each color represents a different

serogroup (O antigen). The confidence value is the bootstrap value calculated by sampling with replacement from the multiple sequence alignment.
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to detect differences between closely related strains [28].

Indeed, improved MLST schemes that include more than

7 genes have been suggested [4].

For Salmonella, sequencing specific short repeats and

virulence genes have recently been suggested as an alter-

native and improved method for typing of S. Enteritidis

[29]. The usefulness of this approach in epidemiological

studies and typing is currently unknown, although the

choice of repeats must be tailored for the specific bacterial

species studies.

Identification of core genes

Determining gene conservation across multiple genomes is

not overly difficult, but certain choices must be made

which will affect the final outcome. Using a previously

published method [20,30,31] which employs single-linkage

clustering on top of BLASTp alignments, sets of pan- and

core-genomes were estimated, based on all 73 Salmonella

genomes. The progression of the pan- and core-genomes

is shown in Figure 2A. The number of novel gene clusters

in the pan-genome gradually increases when more gen-

omes are considered, while the number of conserved gene

clusters constituting the core genome decreases slightly.

When all Salmonella genomes have been considered,

there are 10,581 pan gene clusters and 2,882 core gene

clusters (Additional file 2) in species enterica. In the step

going from S. Typhimurium to S. Typhi, the number

of core genes drops suddenly, most likely because the

S. Typhi genome has undergone considerable pseudogene

formation resulting in gene loss [32]. The number of core

genes drops again when adding a genome of the sub-

species arizonae which is associated with cold-blooded

animals. This technique has previously been applied suc-

cessfully in finding core genomes for Proteobacteria gen-

era Burkholderia [33], Escherichia coli [4], Vibrionaceae

[34] and Campylobacter jenuni [30], as well as Bacteroides

[35] and Lactic acid bacteria [36].

Genomic variation within the core genes

The core genes as calculated above were used for con-

structing a gene variation plot by performing all-against-

all BLAST alignments between 2,882 core gene clusters

and all 73 Salmonella enterica genomes. The resulting

average identities within each core gene cluster is dis-

played in Figure 2B. From this figure, the average percent

identity was very high (> 98%) in most of the core genes,

but dropped sharply for around 5% of the core genes.

From this plot, the identified core genes can be divided

into two categories: a small group of highly variable genes

and the majority of genes which show little variation.

For the highly variable core genes, the variation in amino

acid sequences (Figure 2B, green dots) was higher than for

the nucleotide sequences (Figure 2B, red dots), whereas

the opposite was the case for the more conserved core

genes. This indicates that for core genes with low variation

there is a selection against mutations leading to amino

acid changes, whereas for the highly variable genes, posi-

tive selection for amino acid changes seems to be the case.

In order to confirm these hypothesis, the approximation

of dN/dS has been performed by dividing the number of

non-synonymous changes per non-synonymous sites with

the number of synnonymous changes per synonymous

sites [37] using S. Typhimurium str. LT2 as a reference

genome. The median dN/dS ratio for conserved and

highly variable core genes are 1.0 and 1.25 respectively.

Therefore, the amino acid changes in highly variable core

genes might be due to an increase in positive selection at

some sites. Nonetheless, the importance of this needs to

be confirmed by additional analysis, although one could

imagine, for example, a selective pressure to vary the

surface proteins to avoid immune response.

The seven genes used for MLST are marked in the

Figure 2B, and are scattered throughout the highly con-

served part of the core genes (Figure 2B, black dots) and,

as expected, little variation exists in these genes. Including

core genes from both the highly conserved and variable

regions might be beneficial in evolution studies. On the

one hand, the more slowly evolving genes are useful in dis-

tinguishing between divergent and convergent evolution,

while faster evolving genes can help in strain identification.

Functional analysis of conserved genes

In order to determine the functional profile of core genes,

the core gene clusters were aligned against UniProt [30].

Functional profiles were determined based on Gene

Ontology (GO) terms and visualized in Figure 3. Though

the difference is generally small, some terms common in

conserved core genes tend to be less frequent in highly

variable core genes; for example, electron carrier activity,

structural molecule activity and metallochaperone activity.

These functions are essential for living cells and are there-

fore enriched in conserved core genes. On the other hand,

highly variable core genes encode many proteins that are

associated with the extracellular region. In general, genes

located outside the cell are known to be more variable

[38].

Consensus tree based on core gene clusters

Figure 4 shows a phylogenetic tree generated from the

sequence of all 2,882 Salmonella core gene clusters. The

tree generally divides the serotypes up well, but the boot-

strap value in several branches is very low. This uncer-

tainty could be due to the large number of core gene

trees being analyzed individually; the low bootstrap

values near the root reflect a lack of consensus at the

higher levels. In contrast, the low bootstrap values found

in S. Montevideo strains likely reflect uncertainty due to

the high similarity of gene sequence of the clonal
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Figure 2 Pan- core-genome plot and variation plot. (A) Pan- and core-genome plot of 73 Salmonella enterica. The plot shows an increase of

the pan-genome (blue line) and a decrease of the core-genome (red line) as more genomes are added. The last points show the total number

of gene clusters in the pan-genome and the core-genome. (B) Variation plot. This plot shows the variation within core gene clusters in amino

acid levels (green dots) and nucleotide levels (red dots). Black dots show the distribution of housekeeping genes in the core genes. The Y- and

X-axes represent average percent identity and numerical core gene cluster name respectively.
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outbreak. All S. Montevideo strains sequenced were from

a single outbreak [21] and as expected this analysis con-

firmed the almost complete identity of these isolates.

A previous study described that there are 69 genes

unique to Salmonella [39]. Instead of using all core genes,

we generated a consensus tree based on these 69 Salmo-

nella-specific genes (Additional file 3: Figure S1). We also

constructed an additional four consensus trees based on

sets of 69 core genes randomly picked from different areas

in the variation plot (Figure 2B): from a mixture of high,

medium and low variable core genes (Additional file 4:

Figure S2), from medium variable core genes (Additional

file 5: Figure S3), from highly variable core genes (Addi-

tional file 6: Figure S4) and from the area where the curve

decreases in the variation plot (Additional file 7: Figure

S5). The appearance of these 5 consensus trees was similar

to the tree from Figure 4, with two exceptions: the trees

based on the 69 specific genes (Additional file 3: Figure

S1) and the highly variable core genes (Additional file 6:

Figure S4). In the former, S. arizonae, which is not part of

the subspecies enterica, was still mixed in with other enter-

ica, while for the latter, S. Agona str. SL483 clustered away

from the other subspecies enterica. Thus, based on these

results, it appears that using only Salmonella unique genes

or highly variable genes does not provide phylogenetically

useful information and should probably not be used for

future WGS studies. Comparisons using more genomes in

more species can further test this.

Figure 3 Gene Ontology term summary of core genes. Gene Ontology terms for conserved core genes (blue bars) and highly variable core

genes (red bars) are shown in 3 categories (from top to bottom): biological processes (green labels), cellular component (pink labels) and

molecular function (black labels). GO are assigned from blast all-against-all between core genes and protein sequences from Uniprot based on

50/50 rule. All conclusions drawn about the variable set are relative to the fraction of like sequences in the conserved set, and not in any way

absolute.
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Pan-genome tree

In principle, genome similarity is not only measurable by

shared genes, but also by the absence of genes. Figure 5

is another tree, based on gene presence/absence across

all the Salmonella genomes [20]. This tree bears a strik-

ing resemblance to the consensus tree based on core

genes (Figure 4), although the bootstrap values are higher

in many of the branches, especially near the root. Of all

methods investigated in this study, the pan-genome tree

presents itself as the best solution for a tree that can

resolve strain differences in a biologically meaningful

way, even if it would be expected to correlate more with

phenotype than phylogeny. It is, however, important to

note that creating pan-genome trees requires higher

quality sequencing data and assemblies than what are

typically obtained using short reads from second-genera-

tion sequencing methodologies. Even so, we have found

that pan-genome trees with good correspondence to

known bacterial types can be constructed from Solexa

data (100 bp reads), if care is taken to ensure good

assembly and gene finding (data not shown).

The power to discriminate between variants differs

between the methods used. The phylogenetic analysis for

the MLST tree is based on the identified informative sites

among the seven housekeeping genes, for the pan-genome

tree on presence and absence of genes and for the consen-

sus tree based on the informative sites of core gene clus-

ters from alignments of all core genes trees. The number

of infomative sites for in silico MLST tree, pan-genome

tree and consensus tree based on core gene clusters were

Figure 4 Consensus tree based on 2,882 core gene clusters. Phylogenetic trees were constructed from all core genes using PAUP. All trees

were combined and the consensus trees were generated using the Phylip software package. The percentage of branches present in all trees is

shown. The colors represent different serogroups, as in Figure 1.

Leekitcharoenphon et al. BMC Genomics 2012, 13:88

http://www.biomedcentral.com/1471-2164/13/88

Page 7 of 11



877 bp (10,008 total base-pairs in the seven genes), 7,699

genes (10,581 total genes) and 880,832 bp (2,868,821 bp in

all core genes), respectively. The pan genome and core

gene analysis were based on much more variation than the

MLST analysis and have a much stronger power to discri-

minate closely related strains.

Conclusions

Bacterial typing should provide meaningful information

for both epidemiological and evolutionary studies. For

epidemiology, the ability to differentiate unrelated iso-

lates (discriminatory power) and the ability to cluster

related isolates are crucial. 16S rRNA and the MLST

genes rarely provide separation between closely related

strains. The performance of the pan-genome tree, how-

ever, is valid for epidemiological investigation in both

discriminatory and clustering abilities. One caveat is

that this method depends on good quality genomic data.

Comparative genomics can determine the conserved

genes (core-genome) among bacterial genomes at either

$"%) $"%$ $"$) $"$$

>KPGWNYK QGRMGWWGR JNVWGRIK

 ?"GUN¥SRGK VKUSYGU *&.¥(!¥&'.   VWU" >?8&-,$ ?":SRWKYNJKS VWU" :0%%$&$- $$)) ?":SRWKYNJKS VWU" <5F&$$-$+&*+) ?":SRWKYNJKS VWU" ))*%)& ?":SRWKYNJKS VWU" :0%$&%$- $$(+ ?":SRWKYNJKS VWU" 6/F&$%$$$,&,( ?":SRWKYNJKS VWU" ;1F:0%%$&$- $$)( ?":SRWKYNJKS VWU" 6/F&$%$$$,&,' ?":SRWKYNJKS VWU" '**,*+ ?":SRWKYNJKS VWU" ))*%)$ % ?":SRWKYNJKS VWU" :0%$%)$- $$++ ?":SRWKYNJKS VWU" 6/F&$%$$$,&,& ?":SRWKYNJKS VWU" (-)&-+ % ?":SRWKYNJKS VWU" ((**$$ ?":SRWKYNJKS VWU" (%'%,$ ?":SRWKYNJKS VWU" %-; ?":SRWKYNJKS VWU" *$-(*$ ?":SRWKYNJKS VWU" 6/F&$%$$$,&,+ ?":SRWKYNJKS VWU" 6/F&$$-%)-%-- ?":SRWKYNJKS VWU" 1/?1F$-?1=5%)-*) ?":SRWKYNJKS VWU" ,%$', $% ?":SRWKYNJKS VWU" *$-(), % ?":SRWKYNJKS VWU" :0%%%*$- $$)& ?":SRWKYNJKS VWU" &$$-$,)&), ?":SRWKYNJKS VWU" :2F:2/$-&(-)$+ ?":SRWKYNJKS VWU" )%)-&$ & ?":SRWKYNJKS VWU" '%)--*)+& ?":SRWKYNJKS VWU" )%)-&$ % ?":SRWKYNJKS VWU" '%)+'%%)* ?":SRWKYNJKS VWU" 6/F&$%$$$,&,) ?":SRWKYNJKS VWU" &$$-$,''%& ?":SRWKYNJKS VWU" (-)&-+ ' ?":SRWKYNJKS VWU" )$+(($ &$ ?":SRWKYNJKS VWU" (%(,++ ?":SRWKYNJKS VWU" (-)&-+ ( ?"7GYNGRG VWU" 4/F::$($(&('' ?":SRWKYNJKS VWU" )'%-)( ?"?IMZGU¥KRLUXRJ VWU" 1B:%-*'' ?"?IMZGU¥

%$$

',
'%

*$

'$

%$$

$

*
$

%%

)
$
$
$
$

'*

$
$
$

%$$

,)

$
$
$
$
*

%$$

,
+
(

%$$

,

,)

,
%%
%(
%%
,
&&
)'

,*

*'

(-

&-

%$$

%$$

%$$

'+

%$$

-,

-+

)&',

%$$

,&

,,

)-

%$$

(*

%$$

&,

)*

''

++

($

')

*%

+(

*,

-(

+(

%$$

Figure 5 Pan-genome tree. This tree does not produce a sequence-based alignment tree but it is generated from the presence or absence of

gene clusters across all Salmonella genomes [31]. The bootstrap values are shown in red.
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genus or species level. Genomic variation within the

core-genome can then be used to reveal highly variable

genes (fast evolving genes) and conserved genes (slow

evolving genes). These core genes are useful for investi-

gating molecular evolution and remain useful as candi-

date genes for bacterial genome typing–even if they

cannot be expected to differentiate highly similar isolates

from e.g. outbreak cases, such is not always desirable.

Even in cases where a deeper distinction of isolates is of

interest, e.g. in mapping outbreaks, core genes might still

be useful as a reference fragment for SNPs calling instead

of using whole genome analysis. However, in term of

computational costs, the consensus tree based on core

genes requires more computational time than the other

methods.

In the near future, global real-time surveillance of

Salmonella and other pathogens giving simultaneous

information on population structure and evolution, as

well as outbreak detection, may well be possible.

Methods

Salmonella genome data and gene annotation

From public genome databases (NCBI and Sanger Insti-

tute’s bacterial genome databases), 83 Salmonella enter-

ica genomes available at the time (April, 2011) were

downloaded. These genomes consisted of 21 completed

genomes and 62 draft genomes. Due to the large number

of contigs in some genomes, only 73 genomes were

selected for this study (Additional file 1: Table 1). The

gene finder Prodigal was used on DNA sequences of all

genomes to eliminate biases in annotation quality and to

standardize the genes found in all genomes [15]. Gene

clusters were then inferred according to [15,20,30]

In silico MLST trees

The in silico MLST tree was constructed from seven

housekeeping genes: aroC, dnaN, hemD, hisD, purE, sucA

and thrA http://www.mlst.net. These genes were extracted

from Salmonella genomes and concatenated. The concate-

nated sequences were aligned using MUSCLE [40]. Phylo-

genetic trees were generated by MEGA5 using the

maximum likelihood method [41]. The confidence value

is, in this case, the same as the bootstrap value, calculated

by sampling with replacement from the multiple sequence

alignments [42]. Thus, the in silico MLST differs from tra-

ditional MLST in that complete genes are used and not

just the MLST alleles. However, since the alleles typically

cover the majority of the genes, the difference is small.

Consensus trees

All core gene clusters from 73 Salmonella genomes were

used for generating a consensus tree. Multiple alignments

for each core gene cluster from all strains were

performed using MUSCLE [40]. A phylogenetic tree for

each core gene was generated using PAUP [43]. The Phy-

lip package was used to construct the consensus tree

from all the trees [44]. The bootstrap values are shown in

the consensus tree.

GO annotation

The core gene clusters were compared in an all-against-

all BLAST with protein sequences from UniProt based

on the ‘50/50 rule’ [30]. Functional profiles were sum-

marized from BLAST results by mapping UniProt IDs

to Gene Ontology (GO) terms. Mapping GO parental

terms were performed using publicly available GO-PERL

modules for searching through a graph structure of

ontology data [45,46]

Pan-genome trees

The Pan-genome matrix consists of gene clusters (rows)

and genomes (columns). The absence and presence of

genes across genomes are represented by 0’s and 1’s

respectively. The relative Manhattan distance between

genomes was calculated and used for hierarchical clus-

tering. The bootstrap values are calculated in order to

represent the confidence of branches [20].

Additional material

Additional file 1: Table S1 List of Salmonella genomes used in this

study.

Additional file 2: Core gene clusters. This file contains 2,882 Salmonella

core genes in FASTA format.

Additional file 3: Figure S1 Consensus tree based on 69 specific

Salmonella genes.

Additional file 4: Figure S2 Consensus tree based on 69 Salmonella

core genes randomly picked up from high, medium and low variable

core genes.

Additional file 5: Figure S3 Consensus tree based on 69 Salmonella

core genes randomly picked up from medium variable core genes.

Additional file 6: Figure S4 Consensus tree based on 69 Salmonella

core genes randomly picked up from highly variable core genes.

Additional file 7: Figure S5 Consensus tree based on 69 Salmonella

core genes randomly picked up from decreasing curve in the variation

plot.
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5.3 TaxonomyFinder web-server

The pan-genome of a given taxonomic group of genomes (phylum, genus,
species) consists of a set of conserved proteins, proteins that are present in
some, but not all genomes, or specific for certain strains. Taxonomy is usually
predicted using evolutionary conserved genes, such 16S rRNA, a set of seven
‘housekeeping‘ genes in MLST, or the ribosomal proteins for rMLST. However,
taxa group-specific proteins can be also used to infer taxonomic identification.
To address this assumption, a new approach, TaxonomyFinder, is introduced
in this PhD thesis. Taxonomy group-specific proteins are extracted using Pan-
FunPro tool, described earlier. Briefly, homologous proteins from all the anal-
ysed genomes are grouped into protein families, based on functional profiles
(combinations of functional profiles). Later, taxa group-specific profiles are
predicted. Profile is considered to be specific, if it is 100% conserved within
set of query genomes, and is absent in the rest of analysed genomes. However,
it may be not possible if the number of members in taxonomic group is large,
such as Proteobacteria, Firmicutes phyla, or Escherichia genus. In this case,
the threshold is lowered, meaning that profiles are still specific to that taxo-
nomic group, but can be absent in several genomes within the group.

TaxonomyFinder method is publically available as a web-based tool (http:
//cge.cbs.dtu.dk/services/TaxonomyFinder/). Taxonomy can be predicted
on phylum and species level. The database includes 33 phylum-specific and
1242 species-specific profile sets. Brief instructions are shown on Figure 5.1.
The first step is to upload the genome of interest. An input file can be uploaded
in three formats: Genbank format, assembled genome, or already predicted pro-
tein sequences. After the taxonomy level is specified, the job can be submitted.

The prediction output is shown both as on-screen results and download-
able files. An example is shown in Figure 5.2. The �on-screen results� output
depend on whether prediction of phylum or species was performed. Species
prediction output will also include phylum information. Prediction score is the
fraction of matched profiles to the total taxa group-specific profiles and ranges
between 0 and 100%. A prediction score between 0 and 10 is considered very
poor and is coloured in red, while grey to green gradient colour intensity indi-
cates prediction score between 10 and 100%, where 100 % is the best prediction.
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CHAPTER 5. MICROBIAL IDENTIFICATION USING WHOLE GENOME
SEQUENCES

1. Click “Browse”

2. Select file and click “OK”

3. Select the taxonomy level

4. Select input file type

5. Click “Submit”

Figure 5.1: Submission of isolate to the TaxonomyFinder server

Downloadable files include the table with all the predictions, sorted by the best
score; and input genome annotation, performed by PanFunPro approach. In
case of species level, whether phylum prediction is not predicted poorly, species
search is narrowed to the species of the predicted phylum.
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Benchmarking of Methods for Genomic
Taxonomy.

Mette Voldby Larsen∗1, Salvatore Cosentino1, Oksana Lukjancenko1, Dhany Saputra1, Simon
Rasmussen1, Henrik Hasman2, Thomas Sicheritz Pontén1, Frank M. Aarestrup2, David Wayne

Ussery1,3 and Ole Lund1

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of
Denmark, 2800 Kongens Lyngby, Denmark

2National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
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Tennessee 37831, USA

Abstract
One of the first questions that emerge when encountering a prokaryotic organism of
interest is what it is that is which species it is. The 16S rRNA gene formed the basis
of the first method for sequence-based taxonomy and has had a tremendous impact on
the field of microbiology. Nevertheless, the method has been found to have a number
of shortcomings.
In the current study we trained and benchmarked five methods for whole genome
sequence based prokaryotic species identification on a common dataset of complete
genomes; 1) SpeciesFinder, which is based on the complete 16S rRNA gene, 2) Reads2Type
that searches for species-specific 50-mers in either the 16S rRNA gene, the GyrB gene
(for the Enterobacteraceae family) or the ITS gene (for the Mycobacterium genus),
3) The rMLST method that samples up to 53 ribosomal genes, 4) TaxonomyFinder,
which is based on species-specific functional protein domain profiles, and finally 5)
KmerFinder, which examines the number of co-occuring k-mers. The performances of
the methods were subsequently evaluated on three datasets of short sequence reads or
draft genomes from public databases. In total, the evaluation sets constituted more
than 11,000 isolates covering 159 genera and 243 species. Our results indicate that
methods that only sample chromosomal, core genes have difficulties in distinguishing
closely related strains, which only recently diverged. The KmerFinder method had the
overall highest accuracy and identified from 93%-97% of the isolates in the evaluations
sets correctly to the species level.
Importance: The 16S rRNA locus has served as the backbone of prokaryotic taxonomy
for more than 30 years, but has been recognized to be less than optimal for a number
of species. The current advent of whole genome sequencing provides the opportunity
to surpass 16S rRNA typing by including a larger fraction of the genome. Meanwhile,
the amble amounts of WGS data in public databases enable us to perform educated
proposals on how to optimally use this type of data.

INTRODUCTION
Rapid identification of isolated bacterial species is essential for surveillance for human and
animal health and for choosing the optimal treatment and control measures. Since the be-

∗Corresponding author, e-mail: mette@cbs.dtu.dk
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ginning of microbiology more than a century ago, this has to a large extent been based on
morphology and biochemical testing. However, for more than 30 years, 16S rRNA sequence
data has served as the backbone for the classification of prokaryotes (1) and tremendous
amounts of 16S rRNA sequences are available in public repositories (2; 3; 4). However,
due to the conserved nature of the 16S rRNA gene, the resolution is often too low to ad-
equately resolve different species and sometimes not even adequate for genus delineation
(5; 6). Furthermore, many prokaryotic genomes contain several copies of the 16S rRNA gene
with substantial inter-gene variation (7; 8). It is also considered problematic that this gene
represents only a tiny fraction, roughly about 0.1% or less, of the coding part of a microbial
genome (9).

Second- and third generation sequencing techniques have the potential to revolutionize
the classification and characterization of prokaryotes. However, so far no consensus on how to
utilize the vast amount of information in Whole Genome Sequence (WGS) data has emerged.
Nevertheless, a number of different methods have been proposed. Roughly, they can be di-
vided into those that require annotation of genes in the data and those that employ the
nucleotide sequences directly.

One of the first attempts to employ WGS data for taxonomic purposes was carried out
in 1999 (10). At the time, 13 completely sequenced genomes of unicellular organisms were
available and distance-based phylogeny was constructed on the basis of presence and absence
of suspected orthologous (direct common ancestry) gene pairs. Later it was recognized that
methods that take into account gene content can be greatly influenced by Horizontal Gene
Transfer (HGT) and alternative methods were developed that used homologous groups (gene
family content) (11) or protein domains (12).
Functional protein domains also form the basis of a recent approach developed by our group
(13). Here, the protein domains are combined into functional profiles of which some are
species-specific and can thus be used for inferring taxonomy.

As an extension of 16S rRNA analysis, which focuses on a single locus, Super Multilocus
Sequence Typing (SuperMLST) has been proposed (14). It relies on the selection of a set of
genes that are highly conserved and hence can be used with any organism. In a publication
from 2012, Jolley et al. suggested that 53 genes encoding ribosomal proteins are used for
bacterial classification in an approach called ribosomal MLST (rMLST) (15). Not all 53
genes were found in all bacterial genomes, but due to the relatively high number of sampled
loci, this is not considered as problematic. The rMLST method forms the basis of a pro-
posed reclassification of Neisseria species (16) and has also been used for analyzing human
Campylobacter isolates (17).

It is also possible to employ the sequence data directly without pre-annotation of genes.
This can, for instance, be done by looking at k-mers (substrings of k nucleotides in DNA se-
quence data) that are sufficiently long to avoid co-occurrence in two random genomes. As an
example, there are more than 4 billion different possible 16-mers, making their co-occurrence
in two unrelated bacterial genomes unlikely. The number of co-occurring k-mers in two bac-
terial genomes can thus be considered a measure of evolutionary relatedness, and used to
construct a phylogeny. Using this approach, all regions of the genome are considered, not
only core genes. Furthermore, a gene segment will score highly despite the transposition of
a gene segment within the genome, since only the flanking regions will be mismatched.

In the current study we have trained five different methods for species identification on a
common dataset of complete prokaryotic genomes. 1) SpeciesFinder serves as the baseline,
as it is based solely upon the 16S rRNA gene. 2) Reads2Type is a variant hereof, search-
ing for species-specific 50-mers, predominantly within the 16S rRNA gene, with the help of
non-species-specific 50-mers to quickly narrow down the search. 3) rMLST, which predicts
species by examining 53 ribosomal genes. 4) TaxonomyFinder, which is based on species-
specific functional protein domain profiles, and finally 5) KmerFinder, which predicts species

2



by examining the number of overlapping 16-mers.
The public available databases contain ample amounts of WGS data from prokaryotes,

enabling us to conducting a large-scale benchmark study of the proposed methods. Hence,
the process of reaching a consensus on how the WGS data should optimally be used for
prokaryotic taxonomy is initiated.

MATERIALS & METHODS

Dataset

Training Data

In August 2011 a total of 1,647 complete genomes originating from Bacteria (1,535) and
Archaea (112) were downloaded from the National Center for Biotechnology Information
(NCBI, http://www.ncbi.nlm.nih.gov/genome). For each genome, the annotated taxon-
omy according to GenBank was compared to the taxonomy according to Entrez, which
was retrieved using the taxonomy module of BioPerl. Discrepancies were checked and
corrected manually. For each genome, it was also examined if the annotated name was
in accordance to the List of Prokaryotic names with Standing in Nomenclature (http:
//www.bacterio.cict.fr/allnames.html). When possible, names that were not in accor-
dance were corrected to valid ones. In this way, 1,426 genomes were assigned to 847 approved
genus and species names. The remaining 221 genomes, which were either only assigned to a
genus, e.g., Vibrio spp., or assigned to species with informal names, e.g., Synechoccus islandi-
cus, were left in the training data under the assumption that they will influence the different
methods for species identification equally. An overview of the training data is available in
Supplementary Table 1.

Evaluation Data

Three datasets were generated for the purpose of evaluating the methods. The first con-
sisted of assembled complete of draft genomes with assigned species, which were downloaded
from NCBI in September 2012 and not already part of the training data. Only genomes as-
signed to species that were also present in the training data were included. The set is called
NCBIdrafts and consists of genomes from 695 isolates covering 81 genera and 149 species. The
set includes three Archaea; two Methanobrevibacter smithii and one Sulfolobus solfataricus.
An overview of the data can be seen in Supplementary Table 2.

Furthermore, In January 2012, 11,768 sets of Illumina raw reads were downloaded from
the NCBI Sequence Reads Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) with as-
signed species (18). 10,517 of them had been sequenced by the Illumina Genome Analyzer
II sequencer, while the remaining 1,251 had been sequenced by the Illumina HiSeq 2000 se-
quencer. Reads that could not be assembled to a draft genome were removed as were reads
from species that were not present in the training. The final SRAreads dataset consists of
8,798 sets of paired-end reads and 1,609 sets of single reads, 10,407 sets in total.

The short reads of the SRAreads set were de novo assembled using velvet 1.1.04 (19).
For of the draft assemblies the optimal k-mer length was estimated and used as described
previously (20). The resulting set of draft genomes constitutes the SRAdrafts evaluation
set. To measure the qualities of the draft assemblies, the N50 values were calculated (21).
The draft assemblies had an average N50 of 77,018, ranging from 101 to 779,945 (see Sup-
plementary Figure 1), an average number of scaffolds of 697, and an average size of 3,301
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kilobases. The SRAreads and SRAdrafts sets both cover 167 different species from 120
genera with more than 5,000 strains from the Streptococcus, Staphylococcus and Salmonella
genera. There are no species from Archeae. An overview of the SRAreads and SRAdrafts sets
is available in Supplementary Table 3.

Methods for species identification

SpeciesFinder

SpeciesFinder predicts the prokaryotic species based on the 16S rRNA gene. A 16S database
was built from the genomes of the common training data using RNAmmer (22). The species
predictions were performed differently depending on the input type. If the input was short
reads, the prediction was done as follows:

I The reads were mapped against the 16S database using the Burrows-Wheeler aligner
(BWA)(23).

II The BWA output was assembled using Trinity (24) to obtain the 16S rRNA sequences.

III The BLAST algorithm (25) was used to search the output from Trinity against the 16S
database.

IV The best BLAST hit (see below) was chosen and the species associated with the best
hit was given as the final prediction.

When the input sequence was a draft or complete genome, the prediction was performed as
follows:

I The 16S rRNA gene was predicted from the input sequences using RNAmmer.

II Using the BLAST algorithm, the predicted sequence was aligned against the 16S database.

III The best BLAST hit (see below) was chosen and the species associated with it given as
the final prediction.

The best BLAST hit was chosen by ranking the output from the BLAST alignment by a
combination of coverage, percent identity, bitscore, number of mismatches, and number of
gaps. The highest ranked hit was chosen for the prediction.
SpeciesFinder is available at http://cge.cbs.dtu.dk/services/SpeciesFinder/.

rMLST

The rMLST method predicts bacterial species based on 53 ribosomal genes originally defined
by Jolley et al. (15). The set of genes can either be used in an approach similar to Multilocus
Sequence Typing (MLST), where each locus in the query genome is considered identical or
non-identical to alleles of the corresponding locus in the reference database, and an allelic
profile based on random numbers assigned to each of the alleles in the database is generated
accordingly. Since the strains that we compare are more diverse than the ones compared in
MLST, it is likely that many loci would have no identical matches in the database, making a
simple cluster analysis based on allelic profiles problematic. To improve the resolution of the
method, in our implementation of rMLST, the nucleotide sequence of each locus is aligned
to the alleles in the reference database and a measure of the similarity of the locus and the
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best matching allele is used subsequently, as described below.
Briefly, for each of the genomes in the training data, the 53 ribosomal genes were pro-

vided by Keith Jolley, Department of Zoology, University of Oxford, UK. In this way, for
each genome, a gene collection of up to 53 ribosomal genes was assigned. To predict the
species of a query genome, the query genome was first aligned to each gene collection using
BLAT (26). Only hits with at least 95% identity and 95% coverage were considered as a
potential match. If there were several potential matches, the best match was selected based
on the best cumulative rank of coverage, percent identity, bitscore, number of mistmatches,
and number of gaps in the alignments. The final prediction was given as the organism with
the highest number of best hits across all genes. Our implementation of rMLST performs
predictions for draft or complete genomes, but not short reads.

TaxonomyFinder

The TaxonomyFinder method is based on taxonomy group-specific protein profiles (ref). It
performs predictions for draft or complete genomes, but not for short reads. The common
training data was used to create the taxonomy-specific profile database. Briefly, for each
genome functional profiles were assigned based on three collections of Hidden Markov Mod-
els (HMMs) databases: PfamA (27), TIGRFAM (28), and Superfamily (29). Genes that did
not match any entry in the HMM databases were clustered using CD-HIT (30). Further,
genomes were grouped according to the taxonomy level, either phylum or species, and profiles
that were specific to each taxonomic group were extracted. Profiles were considered specific
to a taxonomic group, if they were conserved in most of the genomes within a phylum/species
group and absent in all genomes outside of the group. The workflow of the TaxonomyFinder
method is a four-step process, which includes:

I Open-reading frame prediction using Prodigal (31).

II Construction of functional profiles from protein-coding sequences.

III Assignment of functional profiles.

IV Functional profile comparison to the taxonomy-specific profile database. The number of
architectures, matched to each of the taxonomy groups, is recorded, and the fraction of
taxa-specific genes (score) is calculated. The best-matching taxonomy group is selected
based on a consensus of the best score and highest number of matched architectures.

TaxonomyFinder is available at http://cge.cbs.dtu.dk/services/TaxonomyFinder/.

KmerFinder

The KmerFinder method predicts prokaryotic species based on the number of overlapping
(co-occuring) k-mers, i.e. 16-mers between the query genome and genomes in a reference
database. Initially, all genomes in the common training data were split into overlapping
16-mers with step-size one, meaning that if the first 16-mer is initiated at position N and
ends at position N+15, the next 16-mer is initiated at position N+1 and ends at posi-
tion N+16, and so on. To reduce the size of the final 16-mer database only 16-mers with
the prefix ATGAC were kept. These 16-mers were stored in a hash table with links to
the original genomes. When performing the prediction, the species of the query genome
is predicted to be identical to the species of the genome in the training data with which
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it has the highest number of 16-mers in common regardless of position. The input for
KmerFinder can be draft or complete genomes as well as short reads. KmerFinder is avail-
able at http://www.cbs.dtu.dk/services/KmerFinder/.

Reads2Type

Reads2Type identified the prokaryotic species based on a database of 50-mer probes gen-
erated from chosen marker genes (Saputra D., Rasmussen S., Larsen M.V., Haddad N.,
Aarestrup F.M., Lund O., and Sicheritz-Pontén T., submitted for publication). The version
of Reads2Type evaluated in this study requires short reads as input. For bacterial species not
belonging to the Enterobacteriaceae family or the Mycobacterium genus, the 50-mer database
relies on the 16S rRNA locus, while for Enterobacteriaceae, the gyrB locus is used, and for
Mycobacterium the ITS locus. Briefly, the following steps were applied for building the 50-
mer probe database:

I 16S rRNA sequences of the complete bacterial genomes of the common training set were
predicted using RNammer (22).

II For species belonging to the Enterobacteriaceae family or the Mycobacterium genus,
gyrB sequences and ITS sequences, respectively, were downloaded from NCBI.

III The above sequences were pooled and all possible 50-bp fragments were generated from
that pool.

IV 16S rRNA probes unique for Enterobacteriaceae and Mycobacteria were removed from
the pool of 50-mers.

V All 50-mer duplicates associated to the conserved regions of different strains but the
same species were removed.

VI To further reduce the size of the final 50-mers database, 25 consecutive 50-mers previ-
ously fragmented from one 50 bp stretch of 16s rRNA belonging to the same list of
organism were removed.

The resulting 50-mers probe database consists of a number of sequences found uniquely in
one species, as well as other sequences shared between several species. Subsequently, each
read was compressed into a suffix tree, which is a data structure for fast string matching.
The compressed short reads were aligned to the 50-mer probe database using a "narrow-down
approach" strategy, i.e. when a compressed read matched a probe belonging to a group of
species, a much smaller probe database excluding other species was created on the fly, caus-
ing the read progress to be faster and the species to be identified much faster.

The Reads2Type method is available as a web server (http://cge.cbs.dtu.dk/services/
Reads2Type/) and as a console. The web-based Reads2Type is unique in not requiring the
short read file to be uploaded to the server. Instead, the 4.6 MB 50-mers probe database
is automatically transferred into the client computers memory before initiating the species
identification. All computations needed for the species identification is fully performed on
the clients computer, minimizing the data transfer and avoiding the network bottleneck on
the server.
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Testing the speed

The speed of the methods was evaluated on non-published internal data from up to 450
strains covering eight species (Enterococcus faecalis, Enterococcus faecium, Eschericia coli,
Escherichia fergusonii, Klebsiella pneumoniaea, Salmonella enterica, Staphylococcus aureus,
and Vibrio cholera) that had been sequenced by the Illumina sequencing method. Draft
genomes were de novo assembled as described above for the SRAdrafts set. The speed was
tested on a Cluster with x86_64 architecture, 128 nodes, 4 tasks per node, 30 or 7G per node.

RESULTS

Performances on NCBI draft genomes
The SpeciesFinder, rMLST, TaxonomyFinder, and KmerFinder methods are able to perform
species predictions on draft or completed prokaryotic genomes. Their performances were
evaluated on the NCBIdrafts set of 695 draft genomes covering 149 species. Supplementary
File 1 lists all predictions, while Figure 1A summarizes the results. Overall, SpeciesFinder,
which is based on the 16S rRNA gene, had the poorest performance, only correctly identi-
fying 76% of the isolates down to species level. KmerFinder, which is based on co-occurring
16-mers, had the highest performance and correctly identified 93% of the isolates. For only
three isolates (0.43%), KmerFinder did not even get the genus correct. These three isolates
were two Escherichia coli predicted as Shigella sonnei and one Providencia alcalifaciens pre-
dicted as Yersinia pestis.

The NCBIdrafts set contains three Archaeal isolates; two M. smithii and one S. solfatar-
icus. SpeciesFinder, TaxonomyFinder, and KmerFinder predicted the species of all three
isolates correctly, while rMLST, which was only intended for characterization of Bacteria
(15) predicted the M. smithii correctly, but was unable to make a prediction for the S. sol-
fataricus.

The overlap in predictions of the four methods was examined and illustrated in Figure 2A.
All four methods correctly identified 428 out of 695 isolates (62%), and all methods misiden-
tified the same six isolates. Table 1 lists these six isolates. Since all four methods agreed
on these predictions, the isolates are likely to be wrongly annotated. Alternatively, the an-
notations of the isolates in the training data that the predictions were based on are incorrect.

As seen in Figure 2A, isolate predictions agreed upon by several methods are more ac-
curate that predictions unique to a particular method. However, the KmerFinder method
made unique predictions for 36 isolates of which 20 were in concordance with the annotation.

Predictions for the most common species in the dataset were examined more closely and
illustrated in Figure 3 and in Supplementary Figure 2-5. In general, the wrong predictions
by SpeciesFinder (that is, the ones that were in disagreement with the NCBI annotation)
were typically scattered, often consisting of a few wrong predictions of each type. The
rMLST method was, on the other hand, more consistent in its incorrect predictions. As an
example, the rMLST method wrongly annotated all 14 Bacillus anthracis isolates as Bacil-
lus thuringiensis, all 8 Brucella abortus as Brucella suis, and all 6 Burkholderia mallei as
Burkholderia pseudomallei. In general, all four methods had difficulties identifying species
within the Bacillus genus, such as isolates annotated as B. thuringiensis, but predicted to
be Bacillus cereus or vice versa. Another mistake common to all methods was Streptococcus
miltis being predicted as Streptococcus oralis or Streptococcus pneumoniae. Also, none of
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Figure	  1:	  Performance	  of	  the	  five	  methods	  for	  species	  iden3fica3on	  on	  A:	  NCBIdra8s	  B:	  SRAdra8s	  C:	  SRAreads	  .	  The	  rMLST	  and	  TaxonomyFinder	  
methods	  only	  take	  dra8	  or	  complete	  genomes	  as	  input,	  while	  Reads2Type	  only	  works	  for	  short	  reads.	  “Correct	  (genus	  and	  species)”:	  
Predicted	  genus	  and	  species	  are	  in	  accordance	  with	  the	  annota3on.	  “Only	  genus	  correct”:	  The	  predicted	  genus	  is	  in	  accordance	  with	  the	  
annota3on,	  but	  the	  species	  is	  not.	  “Not	  even	  genus	  correct”:	  Neither	  predicted	  genus	  nor	  species	  is	  in	  accordance	  with	  the	  annota3on.	  

Figure 1: Performance of the five methods for species identification on A: NCBdrafts B: SRAdrafts

C: SRAreads. The rMLST and TaxonomyFinder methods only take draft or complete genomes as
input, while Reads2Type only works for short reads. "Correct (genus and species)": Predicted genus
and species are in accordance with the annotation. "Only genus correct": The predicted genus is in
accordance with the annotation, but the species is not. "Not even genus correct": Neither predicted
genus nor species is in accordance with the annotation.

the methods were able to correctly identify all annotated E. coli isolates, but identified at
least some of them as Shigella spp. SpeciesFinder and TaxonomyFinder both had problems
identifying the Borrelia burgorferi isolates, while SpeciesFinder and rMLST had problems
distinguishing Yersinia pestis from Yersinia pseudotuberculosis. SpeciesFinder was the only
method that had difficulties identifying Mycobacterium tuberculosis isolates, often predicting
them to be Mycobacterium bovis.

Performances on SRA draft genomes
The SpeciesFinder, rMLST, TaxonomyFinder, and KmerFinder methods were next evaluated
on the SRAdrafts set of 10,407 draft genomes covering 167 species. The performances on the
draft genomes, for which the methods were able to make a prediction, are depicted in Figure
1B, while the overlap in predictions is illustrated in Figure 2B. Again, SpeciesFinder had the
lowest performance with only 84% correct predictions. The rMLST, TaxonomyFinder, and
KmerFinder methods had almost equal performances of 94%, 95%, and 95%, respectively.
There was, however, a difference in the percentage of draft genomes for which each of the
methods failed to make any prediction. SpeciesFinder and KmerFinder were the most robust
methods, failing to make predictions for only 0.2% and 0.4% of the draft genomes, respec-
tively. TaxonomyFinder was not able to make a prediction for 1.8% of the draft genomes,
and rMLST not for 3.5%. That rMLST was the least robust method was at least partly
due to our implementation of the method, where only hits with at least 95% identity and
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Figure	  2:	  Overlap	  in	  predic-ons	  by	  the	  five	  methods	  for	  species	  iden-fica-on.	  Numbers	  wri;en	  in	  regular	  
font	  indicate	  the	  number	  of	  isolates	  for	  which	  the	  predicted	  species	  corresponds	  to	  the	  annotated	  species.	  
Numbers	  wri;en	  in	  italics	  indicate	  the	  number	  of	  isolates	  for	  which	  the	  predicted	  and	  annotated	  species	  
differ.	  A:	  The	  16S,	  rMLST,	  KmerFinder	  and	  TaxonomyFinder	  methods	  evaluated	  on	  the	  NCBIdraKs	  set.	  B:	  The	  
16S,	  rMLST,	  and	  KmerFinder	  methods	  evaluated	  on	  the	  SRAdraKs	  set.	  C:	  The	  16S,	  KmerFinder,	  and	  
Reads2Type	  methods	  evaluated	  on	  the	  SRAreads	  	  set.	  	  	  

Figure 2: Overlap in predictions by the five methods for species identification. Numbers written
in regular font indicate the number of isolates for which the predicted species corresponds to the
annotated species. Numbers written in italics indicate the number of isolates for which the predicted
and annotated species differ. A: The 16S, rMLST, KmerFinder and TaxonomyFinder methods
evaluated on the NCBIdrafts set. B: The 16S, rMLST, and KmerFinder methods evaluated on the
SRAdrafts set. C: The 16S, KmerFinder, and Reads2Type methods evaluated on the SRAreads set.

95% coverage were considered a potential match. On the other hand, the N50 values for the
draft genomes that SpeciesFinder and KmerFinder could not make a prediction for, were ap-
proximately half the size of the corresponding values for rMLST and TaxonomyFinder (data
not shown), meaning that the quality of the draft genomes had to be higher for rMLST and
TaxonomyFinder to be able to make a prediction. This is in accordance with these methods
relying on the presence of many complete genes in the draft genomes.

Predictions for the most common species in the dataset are shown in Figure 4 and in Sup-
plementary Figure 6-9. As seen previously when evaluating on the NCBIdrafts set, the rMLST
method was more consistent in its predictions for a given species than the other methods.
For instance, rMLST predicted all 15 Mycobacterium bovis isolates to be M. tuberculosis. As
also seen when evaluating on the NCBIdrafts set, it is evident that all methods had difficulties
distinguishing E. coli from species within the Shigella genus. Furthermore, species within
the Brucella genus were often wrongly identified. In particular, it was only TaxonomyFinder
that was able to correctly identify most Brucella abortus isolates. Some of the common
problems that were obvious when evaluating on the NCBIdrafts set, were not obvious when
evaluating on the SRAdrafts set, since the problematic species were too scarcely represented
here. For instance, there are only five species from the Bacillus genus and only one S. mitis
in SRAdrafts. The difference in species distribution between the NCBIdrafts and SRAdrafts set
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Figure 3: Predictions for the most common species of the NCBIdrafts set. For each method, the
results for a given species is only shown if the method made a prediction for five or more isolates
annotated as this species (e.g., if there are five isolates annotated as species A in the dataset, but
the method was not able to make a prediction for one of the isolates, the species is not shown), or
two or more isolates are predicted as this species (e.g., there are no isolates annotated as species
B in the dataset, but two isolates annotated as species C are predicted to be species B, then
species B is shown). A: Predictions by SpeciesFinder. B: Predictions by rMLST. C: Predictions by
TaxonomyFinder. D: Predictions by KmerFinder.
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also explain why SpeciesFinder, TaxonomyFinder and rMLST all have increased performance
on the SRAdrafts set: While more than half of the isolates in the SRAdrafts set belong to the
Salmonella, Staphylococcus or Streptococcus genera, which none of the methods have partic-
ular problems identifying, these genera constitute less than 20% of NCBIdrafts. Conversely,
the NCBIdrafts set contains a high proportion of the problematic species E. coli (8.8%) and
the genus Bacillus (10%). The corresponding proportions for SRAdrafts are 3.5% E. coli and
0.05% isolates of the Bacillus genus. Furthermore, the NCBIdrafts set is proportionally more
diverse consisting of 149 species, while the almost 15 times larger SRAdrafts set consists of
only 168 different species.

Performances on short reads from SRA
Only three of the methods were able to perform species predictions directly on short reads,
without first assembling the reads. These methods were SpeciesFinder, KmerFinder, and
Reads2Type. Their performances on the SRAreads set of 10,407 sets of short reads represent-
ing 168 species are shown in Figure 1C.

Again, the SpeciesFinder method had the poorest performance with 86% of the isolates
being correctly predicted. Reads2Type performed a bit better (87%), while KmerFinder
achieved 97% correct.

Figure 2C illustrates the overlap in predictions between the three methods, while predic-
tions for the most common species are shown in Supplementary Figure 10. In general, the
results correspond to those observed for the SRAdrafts set.

Speed
The speed of the methods was evaluated on a subset of draft genomes and short reads as
described in the Material and Methods. Since the actual speed experienced by the user will
depend on a number of factors, for instance, the network bandwidth capacity of the client
computer and the number of jobs queued at the server, the relative speed of the different
methods in comparison to each other is more relevant than the absolute speed.

Table 2: Speed of the tested methods.

Method Speed on draft genomes Speed on short reads
SpeciesFinder 00:13 3:14
Reads2Type NA 1:20
rMLST 00:45 NA
TaxonomyFinder 11:33 NA
KmerFinder 00:09 03:10

DISCUSSION
In the present study we trained five different methods for prokaryotic species identification
on a common dataset and evaluated their performances on three datasets of draft genomes

12
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Figure 4: Predictions for the most common species in the SRAdrafts dataset. For each method,
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Predictions by SpeciesFinder. B: Predictions by rMLST. C: Predictions by TaxonomyFinder.
D: Predictions by KmerFinder.
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or short sequence reads.
The SpeciesFinder method is based on the 16S rRNA gene, which has served as the back-

bone of prokaryotic systematics since 1977 (1). Accordingly, sequencing of the 16S rRNA
gene is a well-established method for identification of prokaryotes and has in all likelihood
been used for annotating some of the isolates in the training and evaluation sets. In the
light of this potential advantage of the SpeciesFinder method over the other methods, it is
noteworthy that it had the lowest performance on all evaluation sets. Previous studies have,
however, also pointed to the many limitations of the 16S rRNA gene for taxonomic purposes.
Examples, which are also observed in this study, include its inadequacy for the delineation of
species within the Borrelia burgdorferi sensu lato complex and the Mycobacterium tuberculo-
sis complex (32). Similarly, in silico studies of the applicability of the 16S rRNA gene for the
identification of medically important bacteria led to the authors concluding that although
the method is useful for identification to the genus level, it is only able to identify 62% of
anaerobic bacteria (33) and less than 30% of aerobic bacteria (34) confidently to the species
level.

The performance of SpeciesFinder was surpassed only marginally by
Reads2Type. This is not surprising, since the two methods are conceptionally very similar:
SpeciesFinder utilizes the entire 16S rRNA gene of approximately 1,540 nucleotides, while
for most species, Reads2Type looks for species-specific 50-mers in the same gene. In terms of
its future usability, Reads2Type has, however, one advantage over the other methods: Like
most of the other methods it is available as a web-server, but uniquely it does not require the
read data to be uploaded to the server. Instead, a small 50-mer database is transferred to
the user‘s computer and all computations performed here. As a result, bottleneck problems
on the server are avoided and the data transfer is minimized, which may be particularly
advantageous for users with limited Internet access.

While SpeciesFinder and Reads2Type only sample one locus, the rMLST method samples
up to 53 loci – all ribosomal genes located to the chromosome of the bacteria. Evaluating on
the dataset of SRA draft genomes, rMLST, TaxonomyFinder, and KmerFinder performed
equally well. However, on the more diverse and difficult set of NCBI draft genomes, the
rMLST method performed only marginally better than SpeciesFinder and significantly worse
than TaxonomyFinder and KmerFinder. In particular, the rMLST method consistently made
incorrect identifications of a number of closely related species, e.g., Y. pestis versus Y. pseu-
dotuberculosis (35) and M. tuberculosis versus M. bovis (36). Also, rMLST consistently
predicted the human pathogen B. anthracis to be B. thuringiensis. The later is used ex-
tensively as a biological pesticide and is generally not considered harmful for humans. B.
anthracis and B. thuringiensis are both members of the B. cereus group and genetically very
similar, with most of the disease and host specificity being attributable to their content of
plasmids (37; 38). It has even been suggested that all members of the B. cereus group should
be considered to be B. cereus and only subsequently be differentiated by their plasmids (39).
Hence, in concordance with rMLST sampling only chromosomal, core genes, it is not sur-
prising that the method fails to distinguish these isolates. A similar example is given by
the rMLST method identifying all E. coli isolates as Shigella sonnei. Although Shigella spp.
isolates have been rewarded their own genus, its separation from Escherichia spp. is mainly
historical (40; 41; 42). To be sure, some of the mistakes commonly made by rMLST as well
as the other methods highlight taxonomic taxa that are intrinsically difficult to distinguish
due to a sub-optimal initial classification: Although Shigella spp. has for several years been
considered a sub-strain of E. coli, the practical implications of renaming it is considered
insurmountable.

The TaxonomyFinder method was the second most accurate method on the set of NCBI
draft genomes and performed in the top for the SRAdrafts set. In contrary to the other
methods it does not work directly on the nucleotide sequence of the isolates, but rather on
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the proteome, utilizing functional protein domain profiles for the species prediction. It was
the slowest of the tested methods, but in return for the extra time, the user is rewarded with
an annotated genome.

The KmerFinder method performs its predictions on the basis of co-occurring k-mers,
regardless of their location in the chromosome. It had the overall highest accuracy, works
on complete or draft genomes as well as short reads, was found to be very robust as well as
fast. Furthermore, the KmerFinder method holds promise for future improvements, as the
implementation used for this study was very simple: Only the raw number of co-occuring
k-mers between the query and reference genome was considered, although a parallel analysis
indicates that the performance could be improved even further if more sophisticated measures
were used, also taking into account the total number of k-mers in the query and reference
genome.

It has previously been noted that some of the isolates present in public databases, and
hence used in this study, are wrongly annotated (16; 43; 44). Based on the current study, it
is likely that at least the six isolates from the NCBIdrafts set that all methods identified as
something different than the annotated species, are wrongly annotated. In agreement with
this, one of the isolates has indeed been re-annotated, since we initially downloaded the data.
Of the remaining five isolates, two B. cerues isolates were found to be most closely related
to the B. weihenstephanensis strain KBAB4 of the common training set. This strain is the
single representative of the species in the public database and not the type strain. Hence
there is no guarantee that the sequenced strain represents the named taxon (45). The same
is the case for the C. botulinum strain C Eklund, which is predicted to be a Clostridium
novyi based on its close resemblance to C. novyi strain NT of the training set. Clostridium
novyi strain NT is the only representative of this species in the database and not the type
strain.

While some taxonomists consider the goal of bacterial taxonomy to mirror the order of
nature and describe the evolutionary order back to the origin of life (5; 46), a more pragmatic
and applied view is likely to be advantageous for epidemiological purposes, where most out-
breaks last less than six months. The number of prokaryotic genomes in public databases is
currently sufficiently high to substitute theoretical views of which loci to sample for optimal
species identification by actual testing how different approaches perform. One locus (the
16S rRNA gene) was initially used for sequenced-based examination of relationships between
bacteria, and when the approach was found to have limitations, more loci were added in
MLST and MLSA (47; 48). The addition of still more loci has been suggested for improving
MLSA even further (32; 15). This study suggests that an optimal approach should not be
limited to a finite number of genes, but rather look at the entire genome.

CONCLUSION
The 16S rRNA gene has served prokaryotic taxonomy well for more than 30 years, but the
emergence of second- and third generation sequencing technologies enables the use of WGS
data with the potential of higher resolution and more phylogenetically accurate classifica-
tions. Methods that sample the entire genome, not just core genes located to the chromosome,
seems particularly well suited for taking up the baton.
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Chapter 6

Conclusions and Future
prospects

With the development of sequencing technologies, thousands of microbial se-
quences have become accessible in the past 20 years. Availability of multiple
strains from the same genera and species provide possibility to explore micro-
bial environmental adaptation and to determine the size and content of pan-
genome. Sequence similarity search is the important step in the pan-genome
analysis and comparative genomics in general. In this PhD thesis, applications
of two homology search algorithms are demonstrated. BLAST-based approach
is widely used pairwise comparison algorithm, which provides a good overview
of the differences and similarities between closely related organisms. How-
ever, comparison results of the diverse set of genomes are less accurate. A
novel, profile HMM-based approach for sequence similarity search was intro-
duced. Similar to BLAST-based methods, this method finds applications in
pan-genome analysis and microbial identifications. However HMM-based ap-
proach is more sensitive and performs better in comparison between diverse
organisms.

The PanFunPro method was applied to determine the number of shared
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proteins within a set of 2110 complete genomes; to investigate differences and
similarities between two chromosomes of Vibrio species, as well as genomic
content comparison of newly sequenced MAP genome to the publicly available
strains of the same genus. Furthermore, PanFunPro approach was employed to
predict specific functional profiles for more than 1000 species; which were used
to establish the novel method for microbial identification. Comparison of the
TaxonomyFinder approach to the standard microbial identification methods
demonstrated good approach performance and showed that proteins, repre-
senting accessory genome can also be used as targets for taxonomy prediction.
Additionally, TaxonomyFinder provides in silico functional annotation for the
unknown isolates in a short amount of time, which can be helpful in epidemi-
ological characterization and outbreak investigation.

In the future, these species-specific sequences can be used in microarray or
primer design. Moreover, the idea of both PanFunPro and TaxonomyFinder
can be extended to the metagenomics area. Combinations of species-specific
functional profiles can be used in metagenomic sample characterization. Pan-
genome analysis of the large set of genomes can be performed to investigate
the stable pan-genome for different taxonomic groups.
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Supplementary Material

Supplementary Material is available online via http://www.cbs.dtu.dk/~oksana/
PhD_Thesis/Supplementary_Material/. It contains supplementary figures
for each manuscript, included in this thesis. Additionally, figures, demon-
strated in the main part of the article are accessible in high resolution.
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