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Summary (English)

All electronic communication relies on communication protocols. It is therefore
very important that protocols are correct and that protocol implementations are
reliable. Coloured Petri Nets (CPNs) have been widely used to model, analyse
and verify communication protocols. However, relatively limited work has been
done on transforming CPN model to protocol implementations. The goal of the
thesis is to be able to automatically generate high-quality implementations of
communication protocols based on CPN models.

In this thesis, we develop a methodology for generating implementations of
protocols using a sub-class of CPNs, called Pragmatics Annotated CPNs (PA-
CPNs). PA-CPNs give structure to the protocol models and allows the models
to be annotated with code generation pragmatics. These pragmatics are used
by our code generation approach to identify and execute the appropriate code
generation templates. The templates hold the information needed to transform
the model to a fully working protocol implementation for a target platform.
The code generation approach coupled with PA-CPNs provide a flexible way
to perform code generation for communication protocols. The code generation
approach has been implemented in a prototype tool called PetriCode.

We defined several criteria for our code generation approach, the approach
should be scalable so that is can be used to generate code for industrial sized
protocols. The models should be verifiable and it should be possible to perform
efficient verification on the models. The approach and the models that are em-
ployed for code generation should be platform independent in the sense that it
should be possible to generate code for a wide range of platforms based on the
same model. The generated code should be integrable meaning that it should
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be able to use different third party libraries and the code should be easily usable
by third party code. Finally, the code should be readable by developers with
expertise on the considered platforms.

In this thesis, we show that our code generation approach is able to generate code
for a wide range of platforms without altering the PA-CPN model that describe
the protocol design. The generated code is also shown to be readable and we
demonstrate that a generated implementation can be easily integrated with
third party software. We also show that our approach scales to industrial sized
protocols by applying our approach to generate code for the WebSocket protocol.
The WebSocket protocol creates a message-based two-way channel that can be
used by web applications. This allows web applications to communicate with
the server much more efficiently than using the traditional request-response
pattern for certain application types such as games and rich web applications.
Finally, we conclude the evaluation of the criteria of our approach by using
the WebSocket PA-CPN model to show that we are able to verify fairly large
protocols.



Summary (Danish)

Alt elektronisk kommunikation bygger på kommunikasjonsprotokoller. Det er
derfor viktigt at protokoller er korrekte og at implementationer af protokoller er
pålidelige. Farvede Petri Nets (CPNs) har været bredt anvendt til modellering,
analyse og verifikation af kommunikationsprotokoller, men der eksisterer relativt
begrænsede forskningsresultater for at transformere CPN modeller til protokol
implementationer. Målet med denne afhandling er at gøre det muligt automatisk
at generere høj-kvalitets imlementationer af kommunikationsprotokoller baseret
på CPN modeller.

I denne afhandling utvikles en metode for at generere implementationer af pro-
tokoller baseret på en underklasse av CPNmodeller kaldet Pragmatic-Annoterede
CPN (PA-CPN) modeller. PA-CPN modeller giver struktur til protokolmodel-
ler og tillader modellerne at blive annoteret med kodegenereringspragmatikker.
Pragmatikkerne bliver brukt til at identificere og utføre kodegenereringsskabelo-
ner. Skabelonerne inndeholder den information som skal til for at transformere
en model til en komplet kørende implementation for en given platform. Tilgan-
gen til kode generering koblet med PA-CPN modeller udgør en fleksibel måde
at generere kode for kommunikationsprotokoller. Kodegenereringsmetoden er
implementeret i en prototype værktøj kaldet PetriCode.

Vi opstiller flere kriterier for tilgangen til kodegenerering. Den skal være ska-
lerbar for at den kan brukes til at generere kode for protokoller af industriel
størrelse. Modellerne skal være verificerbare og det skal være muligt at utføre
verifikationen på modellerne effektivt. Tilgangen og de modeller som anvendes
til kodegenerering skal være platform uafhængige hvilket betyder at det skal
være muligt at gererere kode for et bred spektrum af platforme baseret på den
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samme model. Den genererede kode skal være integrerbar så den kan bruges
af trejdeparts biblioteker og koden skal let kunne brukes af tredjeparts kode.
Endelig skal den genererede kode være læsbar af utviklere med ekspertise på de
platforme som der genereres kode til.

I afhandlingen viser vi hvordan vores tilgang til kode generering kan generere
kode for et bredt spektrum af platforme uden at ændre i den PA-CPN mo-
del som beskriver protokol designet. Vi viser at den genererede kode er læsbar
og at den let kan integreres i trejdeparts software. Vi viser også at vores til-
gang skalerer til protokoller af industriel størrelse ved at anvende den til at
generere kode for WebSocket protokollen. WebSocket protokollen giver en be-
skedorienteret tovejskanal som kan bruges av web-applikationer. Dette tillader
web-applikationer at kommunikere med en server mere effektivt end ved at bru-
ge det traditionelle request-respons mønster for applikationer som eksempelvis
spil og klient-tunge web applikationer. Vi afslutter evalueringen af kriterier for
metoden ved at bruge PA-CPN modellen af WebSocket protokollen til at de-
monstrere at vi kan verificere komplekse protokoller.
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The thesis deals with automatically generating implementations of communica-
tion protocols. This fills a gap in the ecosystem around the Coloured Petri Nets
modelling language that is supported by the CPN Tools modelling tool.
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but one of the papers have been published at peer reviewed conferences and
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Chapter 1

Introduction

In this thesis we present an approach for automatically generating implementa-
tions of communication protocols based on formal models.

1.1 Model Driven Software Engineering

Model-driven software engineering (MDSE) [BCW12] is a paradigm of software
development where models are regarded as first-class entities of the develop-
ment process. Models are often used to automatically generate (parts of) soft-
ware systems by means of model-to-model (M2M) [JABK08] and model-to-text
(M2T) [Obj08] transformations. This is in contrast to traditional software devel-
opment methods where source code is the primary artefact of the development
process while models, if they are used, are mainly used for design and documen-
tation purposes. Throughout this thesis, we use the term MDSE to describe
acts of creating software using models in a broad sense.

Models are used to describe complex systems in simple terms. Models, par-
ticularly the models that are used in MDSE, often abstract away details of a
system under consideration to make the model easier to comprehend. In this
thesis we present models for networking protocols that we then translate into
implementations of the protocols under consideration. We will mainly deal with
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graphical models although models, in general, do not need a graphical repre-
sentation. Restricting the models to graphical representations may force the
models to be abstract since graphical models tend to be more verbose in terms
of screen real-estate than corresponding textual models.

In MDSE, models are often used to model either structural or behavioural as-
pects of a software system. Structural, which are the most common model
type [Pet13], describe the static structure of a system. The most common of
these types of models are UML [Grob] class diagrams. Behavioural models de-
scribe the behaviour and dynamic aspects of a system. UML state charts and
Petri Nets [Pet62, Rei85] are popular languages for behavioural models. In this
thesis, we use the behavioural modelling language Coloured Petri Nets (CPNs).
However, we use it to also model certain structural features.

1.2 Code Generation

Code generation [BCW12] is an integral part of MDSE approaches. Code gener-
ation has been used in software engineering since the first compilers were created
for generating machine code from high-level programming languages.

Model-to-Text transformations (M2T) differ in that the starting point are mod-
els, like UML class diagrams [Grob], and the produced artefacts are textual
programs in some high-level programming language, such as Java [GJSB05].
The text can then be compiled and run as a program written in a classical
high-level programming language.

Model-to-Text (M2T) transformations are usually facilitated by some form of
templates. There exists many template technologies designed for M2T trans-
formations such as Java Emitter Templates (JET) [C+03, Pow04]. However,
generic template languages can also be used.

Two categories of code generation are partial and full code generation. Partial
code generation means that parts of the code are generated, but more code must
be added in order to obtain a complete implementation. Partial code generation
is commonly used together with structural models where static parts of the code
can be generated, but the model does not contain sufficient information about
the behaviour of the modelled system. Full code generation means that all code
is generated and there is no need to manually alter the code. This approach is
used when models contain both structural and behavioural information or the
behavioural aspects are standardised to create, for example, editors. The code
generation approach that is presented in this thesis is a full code generation
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approach which means that we generate fully working software.

1.3 Communication Protocols

We have chosen to focus on code generation for the domain of communication
protocols since it plays an important role in most IT systems. A prominent
example is the vast amount of web applications that are in use today for, e.g.,
on-line banking, shopping, government administration, and entertainment. The
services provided by these applications all rely on the protocols governing the
operation of the Internet such as the Internet Protocol (IP) [DH98], the Trans-
mission Control Protocol (TCP) [Pos81] and the Hypertext Transfer Protocol
(HTTP) [FGM+99]. In addition to being an important domain, another reason
to chose the communication protocol domain is that there exists extensive works
on modelling and analysing protocols in the literature. This allows us to build
upon previous works with regards to modelling and analysis.

The IETF WebSocket (WS) protocol [FM11] creates a bi-directional message-
based channel based on the HTTP protocol. The WS protocol allows web
applications to efficiently communicate with a server. WS is popular with web
applications that require low latency efficient communication such as games and
other rich web applications.

Other examples of protocols are telecommunication systems, logistic systems
with sensors and actuators, and control systems in vehicles. All these sys-
tems rely heavily on communication and synchronisation between concurrently
executing software components and subsystems. As protocols are required to
support complex services that are critical to both the operation of companies
and the everyday life of citizens, it is important that they are working correctly
already from the initial deployment.

The specification of the protocol service and the protocol design is, in many
cases, based on natural language descriptions. One example of this is the Re-
quest for Comments (RFC) [Cro69] documents published by the Internet En-
gineering Task Force (IETF) [I]. Natural language specifications of protocols
often have many issues that need to be resolved before a properly working im-
plementation can be obtained. One class of issues originates from the fact that
such specifications are inherently ambiguous making it difficult to achieve inter-
operability between independent implementations. Another source of issues to
resolve is that the specifications are often incomplete in that the behaviour of
the protocol is not described for all cases. This motivates the use of formal
modelling in order to remove ambiguities of natural language descriptions and
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to provide a basis for automatically generated implementations.

1.4 Coloured Petri Nets

Petri Net [Pet62, Rei85] is a mathematical modelling language that is often
used to model distributed systems and communication protocols in particular.
Traditional, low level, Petri Nets such as Place/Transition nets have four types
of elements: places, transitions, arcs and tokens.

In Petri Nets, transitions can fire by removing a token from an incoming place
(or places) and creating a token on an outgoing place (or places). Petri Nets are
inherently concurrent which means that several independent transitions firings
can be seen as firing in parallel. Furthermore, Petri Nets have non-deterministic
properties which means that all orderings of events can be tested by exploring
all possibilities of non-deterministic choices. The concurrency capabilities of
Petri Nets makes them well suited for modelling protocols where concurrency
and non-determinism are inherent to the domain. Concurrency is inherent to
the protocol domain since protocols consists of agents running on different hosts
communicating over channels. The channels are non-deterministic in that net-
work channels are often not reliable in terms of guaranteed delivery and the
order or the time it takes for a message to reach its destination.

Coloured Petri Nets (CPNs) belong to the family of High-level Petri Nets and
combine Petri Nets with the Standard ML (SML) programming language [Ull98].
Petri Nets provide the foundation of the graphical notation and the seman-
tic foundation for modelling concurrency, synchronisation, and communication.
The functional programming language SML provides primitives for representing
sequential aspects of protocols (such as data manipulation and data types) and
for creating compact and parameterisable models. Formal modelling and valida-
tion with CPNs is supported by CPN Tools [RWL+03] which provides support
for construction, simulation, functional and simulation-based performance anal-
ysis of CPN models. The addition of data types and a high-level programming
language offered by CPN (in contrast to ordinary Petri nets) is highly important
when constructing Petri net models of protocols.

The advantage of CPNs (and formal description techniques in general) is that
they are based on the construction of executable models that make it possible
to observe and experiment with the protocol design prior to implementation
and deployment e.g., using simulations. This typically leads to more complete
protocol specifications since the model will not be fully operational until all
parts of the protocol have been (at least abstractly) specified. Furthermore,
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the construction of a formal and executable model helps to identify and resolve
ambiguities that may be present in a natural language specification. Another
advantage is the support for model abstractions that makes it possible to specify
the operation of the protocol without being concerned with implementation
details such as message layout. A model also makes it possible to explore larger
usage scenarios of a protocol system than what is in many cases practically
possible without models.

Although CPNs have been widely used to model, analyse and verify communi-
cation protocols, relatively limited work has been done on transforming CPN
model to protocol implementations. In this thesis we present an approach to au-
tomatically generate high-quality implementations of communication protocols
based on CPN models.

1.4.1 State Spaces and Verification

Verification of behavioural properties of protocols with CPNs [Kri10] is sup-
ported by explicit state space exploration [BK08a]. In its simplest form this
approach involves computing a directed graph where the nodes corresponds to
the set of reachable states of the CPN model and the arcs represent occur-
rences of transitions causing state changes. State spaces can be constructed
fully automatically by the state space tool in CPN Tools and guarantees com-
plete coverage of all executions. Model checking by state space exploration hence
provides a highly systematic error-detection technique that make it possible to
automatically (i.e., algorithmically) check whether a protocol has a formally
stated desired property. In addition, state space methods have the advantage
that counter examples (error-traces) can be automatically synthesised if the
protocol does not satisfy a given property.

The main disadvantage of state space exploration is the inherent state explosion
problem [Val98], and a multitude of advanced state space methods have been de-
veloped aimed at alleviating the inherent state explosion problem. Early work
on addressing state explosion in the context of CPNs concentrated on com-
puter tool support for, and initial experiments with, the equivalence [Jen94],
symmetry [CEFJ96], and the stubborn set methods [Val91]. The symmetry
and equivalence methods rely on constructing a condensed state space where
each node represents an equivalence class of states and each arc represents an
equivalence class of events. The symmetry method has, e.g., been applied on
a mutual exclusion protocol [JK99] and an embedded systems protocol [LK00]
which shows that is has practical applicability while the equivalence method
has only been used on a small stop-and-wait protocol [JK03] due to the obli-
gation of providing a manual soundness proof for the user-provided equivalence
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relation. The stubborn set method relies on analysing enabling and disabling
dependencies between transitions and use this to explore only a subset of the
events in each state encountered during state space exploration. The rich SML-
based inscription language which is a fundamental building block of the CPN
modelling language, however, poses problems for the analysis of transition de-
pendencies in the context of CPNs [KV98] – unless relying on an unfolding of
the CPN model to the equivalent Place/Transition net. Hence, restrictions on
the modelling language are required to apply the stubborn set method without
relying on unfolding. The stubborn set method supports verification of a wide
array of properties depending on the sets. Another widely used verification ap-
proach in the context of CPNs is based on the methodology of [BGH04a]. A
central component of this approach is an explicit modelling of both the protocol
and its service, and the use of finite-state automata language comparison as a
criterion for checking that the protocol conforms to the specified service. Work
on addressing the state explosion problem in the context of CPNs has generally
concentrated on making more economical use of memory resources when explor-
ing the state space. Memory is (in many cases) the limiting factor in state space
exploration of CPN models due to the large state vectors. Recent work in this
area resulted in the development of the sweep-line method [CKM01, JKM12].
The sweep-line suite of methods is aimed at on-the-fly verification, as opposed
to first generating the complete state space and subsequently querying it, and
exploits a notion of progress found in many distributed systems. Exploiting
progress allows for the deletion of states from memory during a progress-first
traversal of the state space. This in turn reduces peak memory usage. The
sweep-line method has been used [GKB02, VABG08, GOBK04, GHB05] for the
verification of several industrial-sized protocols specified using the CPN mod-
elling language.

1.5 Goals and Contributions of this Thesis

This thesis presents an approach for automatically generating implementations
of communication protocols based on formal models. The approach consists of a
modelling methodology and a code generation technique with an accompanying
tool to transform models into working implementations through code generation.

We have aimed to develop our code generation approach in an extensible and
flexible manner in order to ensure that it is applicable to a large part of the
protocol domain. In order to ensure that our approach would generate high
quality code, we initially formulated a set of goals for our approach stated
below. We also use these goals to evaluate our approach.
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• Readability. The generated code should be readable in order to facil-
itate inspection. In particular, this will facilitate maintainability of the
generated code and resources used for code generation by inspection of
the generated code. Inspection of the generated code may also increase
confidence in the correctness of the generated code.

• Platform Independence. It should be possible to use our approach to
generate implementations on many platforms from a single model.

• Integrability. It should be possible to create software that uses the gener-
ated code (upwards integrability) and also possible for generated software
to use a broad spectrum of software libraries (downwards integrability).

• Verifiability. Models are widely used to verify the correctness of commu-
nication protocols. Our modelling methodology should result in verifiable
models. This will allow us to gain confidence that our models are correct
and also verify the protocols under consideration.

• Scalability. Our approach should be applicable to protocols ranging from
simple examples to large industrial protocols. This allows our code gener-
ation approach to be used in realistic projects.

The main body of work for this thesis has been presented in seven papers [KS13,
SK12, SKK13a, SKK14, Sim14b, SK14b, Sim14a]. Six of the papers have been
presented at peer-reviewed international workshops and conferences and one
paper [SKK14] is planned to be published at a later time. In the following, we
briefly present the main contributions of each paper.

In [KS13] we provide an overview of how the Coloured Petri Nets (CPNs) mod-
elling language has been used to model and verify protocols prior to this project.
The paper surveys, in detail, four projects where CPNs were used for modelling
and verifying protocols. Furthermore, the paper briefly presents several other
projects where CPNs have been applied to protocols. We used the insights
gained through this survey to develop our modelling approach and methodol-
ogy. This survey was also helpful in developing the concept of descriptive models
that we proposed in [SK12].

In [SK12] we propose a modelling approach that creates descriptive models, i.e.,
models that are primarily used for describing a protocol but can also be used as
a basis for creating models for code generation and verification. This paper also
presents a model and verification of the WebSocket protocol which, to the best
of our knowledge, had not been done before. The descriptive WebSocket model
described in [SK12] is an early effort to create a modelling methodology for code
generation which is refined and formally defined in later papers. We also use
the WebSocket protocol to evaluate our code generation approach in [SK14b].
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In [SKK13a] we present our code generation approach. First, this paper in-
troduces a class of CPNs that is inspired by the descriptive models presented
in [SK12]. This class of CPNs, that we call Pragmatics Annotated CPNs
(PA-CPNs), can be used for code generation while preserving verifiability and
descriptiveness. PA-CPNs were developed based on our experiences gained
through the survey described in [KS13], and the descriptive WebSocket model
described in [SK12]. After presenting PA-CPNs, the paper introduces the tech-
niques used to generate code based on a PA-CPN model.

In [SKK14] we formally define PA-CPNs. Furthermore, in this paper, we show
how PA-CPNs can be used for space-efficient verification using the sweep-line
method for state space exploration. The formal definition of PA-CPNs provides
an unambiguous description of PA-CPNs which allows others to create models
that conform to the PA-CPN definition.

In [Sim14b] we present the PetriCode tool that implements the approach we
introduced in [SKK13a]. The paper also shows how the tool can be applied
to generate an implementation of a simple framing protocol. The PetriCode
tool uses PA-CPN models as input and emits implementations of the modelled
protocols. We use PetriCode to evaluate our approach in [SK14b] and [Sim14a]
with respect to the requirements listed above.

In [SK14b] we evaluate scalability and verifiability by using our approach and
the PetriCode tool to generate an implementation of the WebSocket protocol
based on a PA-CPN model. We also show that this PA-CPN model is amenable
to verification by verifying some simple termination properties through state
space exploration.

In [Sim14a], we present an evaluation of platform independence, integrability
and code readability by evaluating the code generated by PetriCode. In this
paper, we evaluate our code generation approach by creating a PA-CPN model
of a simple framing protocol and testing the capabilities of the PetriCode tool
and the generated code.

1.6 Outline of the Dissertation

Part II of this thesis consists of the papers [KS13, SK12, SKK13a, SKK14,
Sim14b, SK14b, Sim14a] that make up the main body of work in this thesis.
The rest of Part I contains an overview of the papers in Part II and a coherent
discussion of related works. The overview in Part I is organised as follows.
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Chapter 2 discusses the use of CPNs in modelling and verification of com-
munication protocols. The chapter presents a descriptive CPN model of the
WebSocket protocol and summarises several related protocol modelling efforts.
The chapter summarises the papers Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs [KS13] and Towards a CPN-based
Modelling Approach for Reconciling Verification and Implementation of Proto-
col Models [SK12].

Chapter 3 describes the code generation approach developed in this project
including the concept of pragmatics and the PA-CPN net class we have devel-
oped to make it possible to perform code generation from CPNs. Furthermore,
we discuss related code generation techniques based on Petri Nets and related
modelling languages. The chapter provides an overview of the paper Code Gen-
eration From Pragmatics Annotated Coloured Petri Nets [SKK13a]. This chap-
ter also summarises part of the paper A Formal Definition of Pragmatic An-
notated Coloured Petri Nets for Automated Protocol Software Generation and
Verification [SKK14] which gives a formal definition of the PA-CPN net class.

Chapter 4 describes the code generation tool, PetriCode, that implements
the code generation approach described in chapter 3 of this thesis. This chap-
ter also discusses technologies related to the implementation of PetriCode. This
chapter summarises the paper PetriCode: A Tool for Template-based Code Gen-
eration from CPN Models [Sim14b].

Chapter 5 discusses the evaluation of the code generation approach and the
PetriCode tool. The chapter gives an overview of the papers An Evaluation
of Automated Code Generation with the PetriCode Approach [Sim14a] and Im-
plementing the Web Socket Protocol based on Formal Modelling and Automated
Code Generation [SK14b].

Chapter 6 presents the conclusions of this thesis and outlines directions for
future work.

The reader is assumed to have a working knowledge of general software engi-
neering and basic familiarity with modelling and Petri Nets. Part I of this thesis
is intended to be read in the order it is written. However, readers with knowl-
edge of CPNs and how they are used to model protocols can skip Chap. 2 as
it mainly deals with CPNs and protocol modelling. Readers that are mainly
interested in the conceptual aspects of this thesis could also skip Chap. 4 and
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Chap. 5 as they mainly deal with the PetriCode tool and the evaluation of our
approach.

In the course of the work done for this thesis project some other papers, technical
reports and extended abstracts that are not included in this thesis have been
published. These publications are listed below.

• [SMR10] K.I.F. Simonsen, A. Mantz, F. Rossini, and A. Rutle. Groovy and
Grails meets Eclipse Modelling Framework. Norsk informatikkonferanse
(NIK), pages 34–43, 2010.

• [Sim11] K.I.F. Simonsen. On the use of Pragmatics for Model-based Devel-
opment of Protocol Software. In Proc of PNSE ’11, volume 723 of CEUR
Workshop Proceedings, pages 179–190. CEUR-WS.org, 2011.

• [SKK12] K.I.F. Simonsen, L.M. Kristensen, and E. Kindler. Code Gen-
eration for Protocols from CPN models Annotated with Pragmatics –
Extended Abstract. In Proc of 24th Nordic Workshop on Programming
Theory. NWPT, November 2012.

• [SKK13b] K.I.F Simonsen, L.M. Kristensen, and E. Kindler. Code Gener-
ation for Protocol Software from CPN models Annotated with Pragmat-
ics. Technical Report IMM-Technical Reports-2013-01, Technical Univer-
sity of Denmark, DTU Informatics, January 2013. Available via http:
//bit.ly/WwH2hf.

• [KS14] S.A. Kumar and K.I.F. Simonsen. Towards a Model-Based De-
velopment Approach for Wireless Sensor-Actuator Network Protocols. In
Proc. of the 4th ACM SIGBED International Workshop on Design, Model-
ing, and Evaluation of Cyber-Physical Systems, pages 35–39. ACM, 2014.

• [SK14a] K.I.F. Simonsen and L.M. Kristensen. A Pragmatic Approach
for Transforming Coloured Petri Net Models Into Code: A Case Study of
the IETF WebSocket Protocol. In Abstracts of the 1st International Joint
Symposium on Program and Model Transformations, 2014.

The PetriCode tool along with examples is available from the http://www.
petricode.org.

http://bit.ly/WwH2hf
http://bit.ly/WwH2hf
http://www.petricode.org
http://www.petricode.org


Chapter 2

Coloured Petri Nets for
Modelling and Verification

of Protocols

This chapter introduces CPNs and shows how they can be used for modelling and
verifying in a protocol engineering context. First, CPNs are introduced using the
WebSocket (WS) protocol as an example. Next, this chapter discusses related
work in terms of other significant uses of CPNs for modelling and verification
of protocols.

This chapter is based on the following papers:

• [SK12] K.I.F. Simonsen and L.M. Kristensen. Towards a CPN-based Mod-
elling Approach for Reconciling Verification and Implementation of Pro-
tocol Models. In Proc. of MOMPES’12, volume 7706 of LNCS, pages
106–125. Springer, 2012.

• [KS13] L.M. Kristensen and K.I.F. Simonsen. Applications of Coloured
Petri Nets for Functional Validation of Protocol Designs. In ToPNoc VII,
volume 7480 of LNCS, pages 56–115. Springer, 2013.
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2.1 CPN Modelling of the WebSocket Protocol

This section introduces CPNs using a descriptive specification model of the WS
protocol. A descriptive model is a model that has, as its primary purpose, to de-
scribe the system under consideration to the reader. This example demonstrates
the most relevant CPN concepts for the code generation approach presented in
subsequent chapters of this thesis as well as the WS protocol that will also be
used as an example throughout Part I of this thesis. We do not present the
entire model here and refer the reader to [SK12] for further details.

The WS protocol [FM11], which is developed by the IETF, provides a message-
oriented connection between a client and a server on top of the Transmission
Control Protocol (TCP). The WS protocol targets web applications and uses the
Hypertext Transfer Protocol (HTTP) to open connections. For data transfer,
the WS protocol relies directly on bi-directional TCP streams in order to avoid
the request-response (polling) pattern of HTTP, and to eliminate the overhead
induced by the verbose HTTP headers. Data framing is used on top of the TCP
streams to make the WS connections message-oriented.

Figure 2.1 shows the top-level module of the CPN model which describes the
overall architecture of the WS protocol. The WS protocol has two principal
actors: one client and one server which are represented by the substitution
transitions Client and Server, respectively. Substitution transitions represent
underlying modules and are drawn as rectangles with double-lined borders. The
name of the sub-module the substitution transition is connected to is shown in
a smaller rectangular tag below the substitution transition and will be discussed
later.

The two principal actors are connected by places, drawn as ellipses, representing
channels from ClientToServer and from ServerToClient. Below the places the
colour set of each of the places are written. The colour set (type) defines the

Connection

ClientToServer

Connection

Server

ServerServer

Client

ClientClient

ServerToClient

Figure 2.1: The top-level module of the descriptive specification model
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colset Channel = with TCP;
colset Content = list Data;
colset Connection = product Channel * Content;

Figure 2.2: Colour set definition for channels and connections

colours, or data values, of the tokens that can be present at the place. Colour
sets are defined using the type system of SML. Both places have the colour set
Connection that is being used to model the TCP connection on top of which
the WS connection is being established. The colour set Connection determines
the kind of tokens that can reside on the two places modelling communication
channels and are defined in Fig. 2.2. The Connection colour set is a product
type where the first component (Channel) specifies the type of the channel to
be used for communication, and the second component (Content) is used to
model the data currently in transmission on the channel. The Channel type is
defined to contain a single element: TCP. The Data type is defined as a union
of all the types that are sent over the channel and is left out of Fig. 2.2 in order
to promote the readability of this section. In general, the state of the CPN
model (called a marking) consists of the distribution of tokens on the places of
the CPN model.

Figure 2.3 shows the sub-module of the Client substitution transition from
Fig. 2.1 The main states of the client principal in the WS protocol is mod-
elled as places. In the initial state, READY, the client has not yet had any
interaction with the server. The client is in the READY state when there is a
token on the place READY. Once the WS connection has been established (the
module in the substitution transitions EstablishWebSocketConnection has been
completed), the principals enter the OPEN state by adding a token to the OPEN
place and removing it from READY. In the OPEN state, data transfer (substitu-
tion transition DataTransfer) can take place, until either of principals chooses to
close the connection (substitution transition CloseWebSocketConnection). After
the WS connection has been closed, the principals enter a CLOSED state, and
no further communication is possible.
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READY

URI

({scheme = ws,host=host,port = port,path=path,query = querynone} : URI)

OPEN

UNIT

CLOSED

UNIT

ServerToClient

I/O
Connection

I/O

ClientToServer

I/O
Connection

I/O

Establish WebSocket
Connection

ClientEstablishWebSocketConnection

Close WebSocket 
Connection

ClientCloseWebSocketConnectionClientCloseWebSocketConnection

Data Transfer

ClientDataTransferClientDataTransfer

ClientEstablishWebSocketConnection

Figure 2.3: The top level module of the client principal

2.1.1 Opening the WebSocket Connection

The establishment of a WS connection is referred to as an open handshake. The
client side of the open handshake module is shown in Fig. 2.4 and is associated
with the substitution transition EstablishWebSocketConnection in Fig. 2.3. The
first step is to open a TCP connection. The TCP connection is modelled as
being open when there is a token present on the channel place. Opening the
TCP connection (in the client to server direction) is modelled by the OpenTCP-
Connection transition by placing a token on the channel place ServerToClient.
The ServerToClient place is a port place, which means that it is connected to a
socket place in an upper layer module. In this case, the place is connected to
the socket place ServerToClient in Fig. 2.3 which is again a port place and is
associated with the socket place ServerToClient in Fig 2.1.

A transition is said to be enabled when it is possible to compute a binding, a
mapping of all variables needed by a transition to values based on the current
marking, that fulfils all requirements imposed by arc inscriptions and the tran-
sition guard (if present). The OpenTCPConnection transition is enabled when
there is one or more tokens on the READY place since the variable uri expects a
token of the URI colour set and there are no further arc inscriptions or guards
that must be fulfilled for this transition. When the OpenTCPConnection occurs
(fires) the token at the READY place is removed and a copy is placed at the
OPENING place. In addition, a token representing an open channel is placed
at the ServerToClient place. Since the READY place has one token in the ini-
tial marking and no incoming arcs on any module level (see also Fig. 2.3), the
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OpenTCPConnection will not become enabled again later in the execution of the
model.

Figure 2.4 shows the ClientEstablishWebSocketConnection module that opens a
WebSocket connection for the client. When the TCP connection is opened in the
OpenTCPConnection transition, the client sends a HTTP upgrade request in the
SendOpeningHandshake transition. The request is created by the function which
creates a HTTP request shown in Fig. 2.5 called ClientOpenHandshake.
The method field of a HTTPREQ message specifies that an HTTP GET op-
eration is to be performed and the uri is used to identify the endpoint of
the WS connection in the host and resource fields. The upgrade and
connection fields indicate that this is an upgrade request for a WS connec-
tion. The secwebsocketkey field contains a base-64 encoded 16-byte nonce,
but this type is in the model abstracted to a unit ( () ) value belonging to
the colour set UNIT which contains a single value () denoted unit. The unit
type in CPNs are similar to the black tokens of low-level Petri Nets. The
secwebsocketversion indicates the version of the web socket protocol to be
used.

After the client receives and validates the response from the server (modelled
by the ValidateOpeningHandshake transition in Fig. 2.4), the client enters
the OPEN state. At this point both the client and the server are ready to send
and receive frames and the open handshake is finished.

2.1.2 Data Transfer

Once both the client and server are in the OPEN state they may transmit data
until they send or receive a close frame. In addition, they may send ping and
pong frames (to check that the connection is still alive). The module mod-
elling the data transfer phase is shown in Fig. 2.6. Since the WS connection
is bidirectional, the sending and receiving of data are independent operations.
This is reflected by modelling sending and receiving as separate sub-modules
as represented by the ClientSendMessage and ClientReceiveMessage substitution
transitions of the data transfer module. The ClientPingPong substitution tran-
sition contains the modules for sending and receiving ping and pong messages.

The sending process for a message is shown in Fig. 2.7. When the client wishes
to send a message, this is done by sending a sequence of frames. The transition
SendNextDataFrame sends each non-final fragment by concatenating a fragment
to a list of fragments that is a part of the token, of colour Connection, on
the ClientToServer place. When the final frame has been sent, by firing the
SendFinalDataFrame transition, the client is Ready to send the next message.
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Figure 2.4: The WebSocket open handshake - client side

2.1.3 Closing the WebSocket Connection

In the OPEN state, either principal may initiate the closing of the WS connection
by sending a close frame. The closing process of the client side is modelled by
the module shown in Fig. 2.8 in the case where the server initiates closing.
Upon receiving a close frame, the client removes the token from the OPEN place
indicating that the protocol is now in the CLOSING state. In the closing state,
the client sends a close frame to the server and enters the CLOSED state. When
both the server and the client are in the CLOSED state, the WS protocol is said
to be completed and the underlying TCP connection is closed.
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fun ClientOpenHandshake (uri:URI) =
HTTPREQ {

method = GET, resource = #path uri,
version = HTTP_VERSION, host = #host uri,
upgrade = UPGRADE, connection = CONNECTION,
secwebsocketkey = (),
secwebsocketversion = WEBSOCKETVERSION

};

Figure 2.5: Client open handshake function
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Figure 2.6: The data transfer phase - client side

2.2 Verification of the WebSocket Model

The purpose of the model presented in Sect. 2.1 is to serve as a description
and executable specification of the WS protocol. This section shows how the
descriptive model can be modified to be used for verification based on explicit
state space exploration as supported by CPN Tools.

State space exploration [BK08b] is a technique for verification of behavioural
properties of protocols with CPNs [Kri10]. This approach involves computing a
directed graph where the nodes corresponds to the set of reachable states of the
CPN model and the arcs represent occurrences of transitions bindings causing
state changes. The construction of the state space guarantees complete coverage
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of all executions and provides a highly systematic error-detection technique that
make it possible to automatically (i.e., algorithmically) check whether a protocol
has a formally stated desired behavioural property including properties in LTL
and CTL. In addition, state space methods have the advantage that counter
examples (error-traces) can be automatically synthesised if the protocol does not
satisfy a given property. The main disadvantage is the inherent state explosion
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problem [Val98] as the number of states quickly can become large or infinite.

The first aspect to consider in order to verify the WS model is that the WS
protocol model has an infinite state space. This is because there is no bound
on the number of frames that can be in transmission. In order to perform state
space exploration, the descriptive model has to be modified so that there is an
upper bound on the number of frames that can be simultaneously in transmission
on a TCP connection.

A second element to be incorporated in the verification model is to make it
possible to limit the scope of the verification. This is needed in order to make the
verification process incremental, i.e., initiate the verification by considering the
smallest possible configuration of the WS protocol and then gradually include
more and more of the functionality. For this purpose guards were added to
the model that made it possible to enable and disable the parts of the model
concerned with e.g., sending data frames, ping frames and pong frames.

The third element was to introduce additional abstractions in the model in order
to reduce the size of the state space. One example is that the descriptive model
specifies that a message being sent can be of two types: binary or text. This
contributes to making the state space larger, but is not necessary for analysis.
Therefore, this was abstracted to a single value representing a data frame.

An initial verification of the WS protocol concentrated on termination properties
of the protocol, i.e., that the connection is properly closed. The WS connection
is properly closed when both the client and server are in a closed state and the
TCP connection has been closed in both directions. The verification process
started by considering only the open and close handshake while disabling the
sending of data, ping, and pong frames. In this case, the verification model
has a single terminal state representing a state where the connection is properly
closed. The next configuration considered added the transmission of data. The
resulting state space had a number of terminal states some of which represented
states where either the server or the client went into the closing handshake
before a message currently under transmission had been completely sent. This
highlighted an issue where the WS protocol may be under-specified; a principal
needs to clean up the message buffers before entering the closing handshake or
prevent sending of partial messages in some other way.

Finally, the sending of ping and pong frames were included in the verification.
This highlighted a second issue with the protocol specification where it is not
specified how ping and pong frames should be processed during the closing
handshake. This issue manifested itself by the presence of terminal states where
there were frames in the TCP connection that could not be received. The model
was therefore modified so that data, ping, and pong frames can be received
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during the closing handshake. With this modification, it was possible to verify
(for the complete verification model) that the WS connection can always be
properly closed.

In addition to the two issues related to the WS specification presented above,
the verification process also helped to identify a number of smaller modelling
errors and thereby increasing the confidence in the correctness of the protocol
model. The state spaces of all the configurations considered of the WS model
had state spaces with less than 3,000 states demonstrating that explicit state
space exploration can be a feasible approach also for industrial-sized protocols
with the proper abstractions applied.

2.3 Related Work on CPN Protocol Modelling

CPNs have been widely used to model and verify protocols in the past. In this
section we present some of the previous efforts to model and analyse protocols
with CPNs. First we briefly present the results of four cases that are discussed
in detail in [KS13]. Then, we discuss related work in terms of further examples
of protocol modelling with CPNs .

2.3.1 The DYMO Protocol

The Dynamic On-Demand Routing Protocol for Mobile Ad-hoc Networks (DYMO)
[CP07a] is a routing protocol for mobile ad-hoc networks being developed by
the MANET working group of the IETF. A CPN model of the DYMO proto-
col was constructed in a project on modelling and validating DYMO [EKK08].
In the process of constructing the CPN model and simulating it, several issues
and ambiguities in the specification were discovered. The most important issues
were submitted to the IETF MANET Working Group mailing list and several
of them were acknowledged by the DYMO developers and taken into account in
the subsequent version DYMO specification [CP07b] (version 11).

The modelling of the DYMO protocol illustrated that the construction of a
formal and executable model provides a systematic and comprehensive way of
reviewing a protocol design document (such as the DYMO Internet draft) and
how it can contribute to increasing the quality of a protocol design specification.
Similar conclusions can also be drawn from other case studies where CPN mod-
elling has been applied to protocols developed in the context of IETF. A CPN
model of the DYMO protocol has also been developed in [BY09] where a con-
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siderably more compact CPN model of the DYMO protocol directly targeting
state space exploration was developed. Several additional issues related to the
functionality of the DYMO protocol were reported in [BY09]. A main difference
between the DYMO and WS models is in descriptiveness. The DYMO protocol
is modelled as a compact encoding of a state machine and is not designed to be
used to describe the protocol, but rather to verify the protocol.

Akin to the WebSocket model presented in this chapter, the DYMO model
is a hierarchical CPN model. The main difference is that the DYMO CPN
model is a so-called folded model. This means that a single module models all
the protocol actors. This is appropriate since all actors in DYMO are peers
and have the same behaviour. For client-server protocols like the WebSocket
protocol this is not the case, even though there are similarities between the
actors in WebSocket as well. Another difference is that the network channel is
modelled with a separate module in the DYMO model. This is sensible in many
situations and was adopted for our modelling approach for code generation that
is presented Chap. 4.

2.3.2 Generic Access Network Architecture

The GAN protocol architecture [3GP07] is developed by the 3rd Generation
Partnership Project (3GPP) for accessing telephone services via Internet Pro-
tocol (IP) networks. In the project [FK09] CPN modelling and state space
exploration were used at TietoEnator Denmark in early phases of developing an
implementation corresponding to a particular instantiation [Gri06] of the generic
GAN architecture [3GP07] aimed at integrating IP and telephone services.

As part of the construction of the GAN model, the support for interactive
simulation in CPN Tools was used to perform detailed checks to ensure that the
model behaviour was as desired. Even though the use of interactive simulations
(and simulation in general) cannot be used to prove correct behaviour, it proved
to be very useful in identifying situations related to improper manipulations of
the entries in the routing tables and security policy database - or when additional
detail not present in the GAN specification had to be worked out and specified.
Furthermore, interactive simulation was helpful in identifying issues that led
the GAN connection establishment procedure to terminate prematurely, e.g.,
because a certain phase of the connection establishment was missing in the
CPN model.

The interactive simulation was in later phases replaced with automatic simula-
tion where a number of random executions of the CPN model were performed
with the purpose of checking whether the execution of the CPN model resulted
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in a state in which the GAN connection was properly established. Eventually
state space exploration of the CPN model was conducted which succeeded in
establishing the key property that a GAN connection will eventually be estab-
lished provided that the GAN controller does not keep rejecting the connection
request. The verification also illustrated the general observation that, in many
cases, the use of basic state space exploration and the state space report (i.e.,
investigating standard behavioural properties of Petri nets) are sufficient in es-
tablishing key properties of a protocol design. In this case, the state space was
small and could be generated in a few seconds without the use of advanced state
space exploration techniques.

The GAN model is also a hierarchical CPN model. The top-level module is also
set up to show the actors and channels, but also shows the network architecture
which we have not adopted in our modelling approach. Like the WebSocket
protocol, the GAN protocol model is not folded, meaning that the protocol
agents are explicitly shown in the structure.

2.3.3 CPN Model of the RIP Protocol

The RIP protocol, developed at Ericsson Telebit A/S, enables routing of IP
packets between core IP networks and mobile ad-hoc networks. The RIP case
study [KWN05] used application-specific behavioural visualisation on top of CPN
models to obtain a first executable prototype of the protocol design allowing for
early experiments and for presentation to customers and management with the
aim of soliciting protocol design requirements.

In the routing interoperability project, the BRITNeY Suite animation frame-
work [WL06] was used to create an animation GUI on top of the CPN model.
The animation GUI allows a user to observe the execution of the constructed
CPN model using a graphical representation of the network architecture. The
graphics is updated by the underlying CPN model according to the execution
of the formally specified protocol, and the CPN model is also able to react to
stimuli provided by the user via the animation GUI.

The CPN model combined with the animation GUI that was developed in the
RIP project served as an early model-based executable prototype. The domain
specific graphical user interface (the animation GUI) made it possible to explore
and demonstrate the design of the interoperability protocol with the underlying
formal model being transparent for the observer and the demonstrator. In par-
ticular, it made it possible for persons without knowledge of the CPN modelling
language to experiment with the proposed design. The use of an animation GUI
on top of the CPN model has the advantage that the behaviour observed by the
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user is as defined by the underlying model that formally specifies the design.
The alternative would have been to implement a separate visualisation appli-
cation totally detached from the CPN model. This would have led to double
representation of the dynamics of the interoperability protocol which could in
turn lead to inconsistencies between the two representation of the design.

Another advantage offered by the development of a model-based prototype is
easier to control than a physical prototype, in particular in the case of mobile
nodes and wireless communication where scenarios can be very difficult to con-
trol and reproduce. The use of a model means that there is no need to invest in
physical equipment and there is no need to set up the actual physical equipment
early in the project. The use of a model also makes it possible to investigate
larger scenarios, e.g., scenarios that may not be feasible to investigate with the
available physical equipment. An additional general advantage of the approach
taken in the RIP project is that at an early stage of development, the implemen-
tation details can be abstracted away and only the key part of the design have
to be specified in detail. As an example, the CPN model of the interoperability
protocol abstracted away the routing mechanisms in the core and ad-hoc net-
works, and the mechanism used for distribution of advertisements. Instead, the
service assumed from these components for the interoperability protocol to work
was modelled. The possibility of making abstraction means that it is possible to
obtain an executable prototype without implementing all the components and
thereby making validation and verification feasible.

The RIP protocol model is developed as a model-based prototype. In our Web-
Socket model the focus has been on describing the operation of the protocol and
its principal actors. This means that we have not made more high-level views
on the WebSocket protocol such as was done for RIP. Instead, the focus has
been on creating the model in a descriptive manner so that the model itself can
be used to convey the operation of the protocol.

2.3.4 The Edge Router Discovery Protocol

The Edge Router Discovery Protocol (ERDP) was modelled in a design project
conducted at Ericsson Telebit A/S [KJ04]. ERDP is an IPv6-based protocol
allowing edge routers to configure gateways in mobile ad-hoc networks with
IP address prefixes. The ERDP case study used CPN modelling, state space
exploration, and behavioural visualisation to identify and resolve design issues
and errors during ERDP development.

The ERDP project highlighted the benefits of formal modelling and validation.
Furthermore, the project emphasised the benefits of the model construction
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phase which is often underestimated (or not reported) in literature on protocol
validation. In the ERDP project, the modelling phase itself lead to significant
insight into the protocol design, and contributed to a simpler and more com-
plete protocol design. The construction of a CPN model and subsequent state
space exploration can be seen as a very thorough and systematic way of re-
viewing the ERDP design specification. The project showed that the process of
constructing a CPN model based on the ERDP specification provided valuable
input to the ERDP design, and the use of simulation added further insight into
the operation of the protocol. State space exploration, starting with the sim-
plest possible configuration of the protocol, identified additional errors in the
protocol. The results from state space exploration also demonstrate that errors
are often present in the smallest configurations of a protocol system.

Overall, the application of CPNs in the development of ERDP was considered
a success for three main reasons. Firstly, it was demonstrated that the CPN
modelling language and supporting computer tools were powerful enough to
specify and verify a real-world protocol being developed in an industrial project,
and that integration into the conventional protocol development process is not
difficult. Secondly, the act of constructing the CPN model, executing it, and
discussing it led to the identification of several non-trivial design errors and
issues that, under normal circumstances, would not have been discovered until,
at best, the implementation phase. Finally, the effort of constructing the CPN
model and conducting state space exploration was represented by approximately
100 person-hours. This is a relatively small investment compared to the many
issues that were identified and resolved early as a consequence of constructing
and analysing the CPN model.

The ERDP protocol model is somewhat similar to the WebSocket model in that
it is hierarchical model where the protocol agents are explicitly modelled. As
with the WebSocket model, the ERDP model also underwent analysis through
state-space exploration. The ability to perform state-space exploration on code
generation models is an important goal of our approach in order to support
verifiability.

2.3.5 Further Examples of CPN Protocol Modelling

The Datagram Congestion Control Protocol (DCCP) developed by the IETF
has been investigated in [BVA08]. DCCP is intended to provide an unreliable
transport service with congestion control mechanisms. The work in [BVA08]
was done in parallel with the development of the emerging DCCP standard,
and concentrated on modelling and verification of the connection establishment
and synchronisation procedures of DCCP. It resulted in the identification of
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several functional errors in the protocol design, including discovery of deadlocks,
non-progress behaviour (chatter), and problems with connection establishment
in relation to sequence number wraps. The formal validation resulted in the
IETF working group making small (but important) changes to the connection
establishment and synchronisation procedures of DCCP. The work in [BVA08]
presents two CPN models of DCCP. One is a mixture of state and event-based
models. The other model is a model based on the procedures of the protocol, and
is, in that respect more similar to our readable model. The paper concludes that
the procedure based model, while being less compact, is more readable. Thus,
the procedure based CPN model is better as a descriptive model. We have
also been inspired by the procedural style while creating the PA-CPN net class
for code generation in order to preserve readability and descriptiveness. The
work in [BVA08] also included the development of a formal service specification
for DCCP [GBVAK07] and application of the sweep-line method [VABG08]
for on-the-fly checking of the protocol conformance to the developed service
specification.

The classical Transmission Control Protocol (TCP) has also been modelled and
verified using CPNs [BH07]. Similar to the work on DCCP, this work concen-
trated on the connection establishment procedures. It resulted in verifying the
absence of deadlocks and live-locks in connection establishment, and a detailed
specification of the circumstances under which TCP connection establishment
may not be successful. Another example of transport layer protocol modelling
and validation can be found in [VA08] which considers the Stream Transmission
Control Protocol (SCTP).

The Internet Open Trading Protocol (IOTP) designed to provide an interoper-
ability framework for Internet commerce was formally modelled and validated
using CPNs in [OKB02b, OKB02a, OB04]. IOTP is designed to handle common
trading procedures and encompass trading roles such as consumer, merchant,
payment handler, and delivery handler. IOTP is organised around a collection
of eight baseline transactions consisting of Purchase, Refund, Value exchange,
Authentication, Withdrawal, Deposit, Inquiry, and Ping. These transactions
comprise a minimal set of transactions for an Internet commerce protocol. A
formal specification of the service provided by IOTP was developed using CPN
in [OKB02b]. The service was specified in the form of a finite-state automaton
labelled with service primitives. The automaton was extracted from the state
space of the CPN model by identifying the transition bindings corresponding
to service primitives of the protocol. A CPN model of the IOTP protocol it-
self was presented in [OKB02a, OB04]. State space exploration focused on
the termination properties and absence of live-locks in the IOTP transactions.
The use of state space exploration revealed deficiencies of the IOTP related to
termination of transactions. A verification of the IOTP protocol CPN model
[OKB02a, OB04] against the formal service specification from [OKB02b] was
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presented in [OB03]. Finite-state automata language comparison was used as
the criterion for conformance following the methodology of [BGH04a]. Applica-
tion of an advanced state space verification technique, the sweep-line method,
on IOTP was investigated in [GOBK04] exploiting an inherent progression from
the start of an IOTP transaction to termination of the transaction.

TheWireless Application Protocol (WAP) has been considered in [GB00, GKB02].
WAP is designed to provide Internet services to a wide range of hand-held de-
vices. The work of [GB00, GKB02] concentrates on the Wireless Transaction
Protocol (WTP) which is an important element of the WAP architecture and
protocol suite. The work in [GB00] presents a formal modelling of the WTP ser-
vice and a formal modelling of the WTP protocol. Checking the conformance of
the WTP protocol against the WTP service was done using finite-state automata
language comparison. This approach succeeded in detecting several inconsisten-
cies between the protocol and the service which was provided as input to the
WAP forum responsible for the development of WAP. In [GKB02], the sweep-
line method was used to alleviate the state explosion problem and allow for the
verification of larger configurations of WTP. The application of the sweep-line
method allowed configurations with parameter settings of re-transmission coun-
ters corresponding to the recommended setting for GSM and IP network to be
verified. The CPN model for WTP consist of several non-hierarchical modules.
This makes the WPT less descriptive since it only contains a single level of
abstraction. This is in contrast to our descriptive model where we have several
levels in order to allow the reader to read the model at several abstraction levels.

The Session Initiation Protocol (SIP) is a widely used protocol for the establish-
ment of Internet multimedia session, and has been subject to formal modelling
and validation in [Liu09, DL08]. The INVITE transactions have been formally
analysed using state space exploration in [Liu09, DL08] leading to identification
of undesired terminating states of the protocol when operating over an unreli-
able communication medium. Security aspects of SIP have been investigated in
[Liu10]. The work of [GH06] focuses on the formal modelling of a SIP-based
protocol for multi-channel service oriented architectures. A formalisation of SIP
with the purpose of providing a framework model for present architectures in
mobile computing is presented in [GH07]. Another multimedia control protocol,
the Capability Exchange Signalling (CES) protocol, has been formally modelled
using CPNs and verified using state space exploration in [LB07]. The work on
the CES protocol led to the identification of protocol errors in presence of se-
quence number wrap. Suggested changes were incorporated in a revised CPN
model, and it was formally verified showing that the discovered errors have been
eliminated.

The NEO protocol which is part of the distributed transactional object database
management system NEOPPOD was investigated using high-level Petri Nets in
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[CDE+10]. The Coloane environment was used for the construction of the mod-
els, and verification was performed using the CPN-AMI and Helena tools that
uses models that are similar to CPNs. The NEO protocol is used to coordi-
nate data storage and retrieval in a decentralised and distributed system where
data can be stored on a number of data nodes and data is accessed through
the primary master node. The focus of [CDE+10] was on the protocol used for
the election of the primary master node. The model of the election part of the
NEO protocol consisted of eighteen modules. Since there existed no specifica-
tion document for the protocol, the Petri net model was reverse-engineered from
a prototype implementation. The validation process which relied on the use of
state spaces discovered two flaws in the implementation of the protocol. The
first flaw was discoverable through simulation. The problem arises when the
network link between two nodes goes down. Then they may both elect them-
selves as the primary master which violates a requirement that there only exists
a single primary master. The second flaw was that there exists a possibility
that protocol would never terminate. This was, however, not a problem in the
implementation where the problem was avoided by a side effect of programming
language that is not described in more detail in [CDE+10]. Details on the flaws
were provided to the software engineers responsible for the implementation of
the NEO protocol.

The model used in studying the NEO protocol is another type of high-level Petri
nets known as symmetric Petri nets. These models share many qualities with
the CPNs but they use different languages to define colours, inscriptions and
guards which is created with SML in CPN Tools but is created using a custom
language in CPN-AMI models. The NEO model was constructed by reverse-
engineering the prototype implementation of the NEO protocol. The purpose
of the model was analysis rather than being used as a descriptive model.

The Resource Reservation Protocol (RSVP) was formally modelled and verified
in [VB03b, VB03a]. The modelling and verification concentrates on verifying
the absence of deadlocks and live-locks in relation to the set-up, maintenance
and path release procedures of RSVP. In addition, a number of RSVP specific
behavioural properties were investigated which considered in detail the internal
state of the sender, router, and receiver protocol entities of the protocol. The
main contribution of the work was the development of a formal specification
of the RSVP path procedures. Another example on the modelling of routing
protocols can be found in [Lak09] which uses Mobile Petri Nets to construct
a formal model of the Mobile IP protocol. Mobile IP allows transport layer
connections to be preserved when mobile nodes change their point of attachment
to the Internet.

CPNs have also been used for the verification of security protocols. Privacy
enhancing protocols were considered in [SOSF09], and [Gor08] addresses the
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modelling and validation of PANA Authentication and Authorisation Protocol.
Examples of protocols for which parametric verification has been pursued in the
context of CPNs can be found in [GB06, GB05].

2.4 Summary and Contributions of Papers

The contribution of [KS13] is to provide an overview of how CPNs have been
applied for modelling and validation of protocol designs. This was accomplished
by presenting selected parts of CPN models and associated results from projects
that had been conducted in an industrial context and with industrial sized
protocols.

The paper surveys four major projects where CPNs have been used to model
protocol elements and improve protocol specifications, verify models and proto-
col properties through state space exploration, and rapidly construct a prototype
of the protocol design through behavioural visualisation combined with a CPN
model. The paper also briefly presented further projects where CPNs had been
used for protocol modelling and validation.

Another main reason for carrying out the survey was to gain knowledge about
significant cases where CPN models had been used to model and verify protocols.
This was useful in creating a code generation approach where we could build
upon previous works to make it suited for generating implementations of real
protocols while preserving important aspects of the models such as readability,
descriptiveness and verifiability.

A main contribution of [SK12] is to describe a modelling approach based on
the concept of a descriptive specification model which can serve as a common
origin model for deriving verification and code generation models. A descriptive
model, in this context, is a model that has as its main purpose to convey the
operation of a protocol clearly and precisely. By abstractions and restrictions
of the scope of the model, the paper shows how a descriptive model can be
transformed into a model suited for verification. The descriptive model can also
be transformed into a model suited for implementation via the addition of code
generation pragmatics and by means of refinement.

A hierarchical CPN model, such as the descriptive WebSocket model, is able
to show the operation of a protocol at different levels of abstraction from the
protocol architecture through the major components down to the specific com-
ponent behaviour. This is important both for understanding the protocol as
a whole as well as allowing different stake-holders to focus on the appropriate
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levels of abstraction. An important feature of a descriptive model is a high level
of readability. This means that it should be easy for human readers to read and
understand the model and, with the help of the model, understand the protocol.
A descriptive model should also include all the important parts of the protocol
as well as all the major states the protocol may be in. This is important to
ensure that the model can be used as a basis for deriving implementation and
verification models and also such that the descriptive specification model can
be used to understand and communicate the operation of all the major parts of
the protocol.

Another important contribution of [SK12] was to subject the WS protocol to
formal modelling and verification which, to the best of our knowledge, had not
been done before. The initial verification of the WS protocol identified some
minor omissions in the protocol specification related to the closing of connections
during message transfer and unspecified receptions of data, ping, and pong
frames during the closing handshake. However, with proper modifications to
the verification model, we were able to verify that the protocol ensures correct
termination of connections.

In summary, the work presented and discussed in this chapter allowed us to have
both a starting point and a goal for our code generation approach. The starting
point was a descriptive WS protocol CPN model and the ultimate criteria for
success of the project would be to generate code for the WebSocket protocol.
Furthermore, we use the experiences gained though the survey of significant uses
of CPNs for modelling and verifying protocols and by creating the descriptive
WebSocket model when we define our own modelling methodology be creating
a new class of CPNs in Chap. 3.
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Chapter 3

Pragmatics Annotated
Coloured Petri Nets and

Code Generation

This chapter describes our approach to generate code for communication pro-
tocol software based on CPN models. In particular, this chapter introduces
Pragmatics Annotated Coloured Petri Nets (PA-CPNs), which is a sub-class
of CPNs that we have developed as a part of our approach to facilitate code
generation.

This chapter is based on the following papers:

• [SKK13a] K.I.F. Simonsen, L. M. Kristensen, and E. Kindler. Generating
Protocol Software from CPN Models Annotated with Pragmatics. In For-
mal Methods: Foundations and Applications, volume 8195 of LNCS, pages
227–242. Springer, 2013.

• [SKK14] K.I.F. Simonsen, L.M. Kristensen, and E. Kindler. Pragmatics
Annotated Coloured Petri Nets for Protocol Software Generation and Ver-
ification. DTU Compute-Technical Report-2014. Technical University of
Denmark, 2014.



34 Pragmatics Annotated Coloured Petri Nets and Code Generation

In this chapter PA-CPNs are introduced using the WebSocket protocol rather
than the simple framing protocol that was used in the paper [SKK13a]. In [SKK14]
a formal definition of PA-CPNs is presented. However, in this chapter we only
introduce PA-CPNs informally. The reader is referred to the paper [SKK14] for
the details on the formalisation of PA-CPNs.

3.1 Pragmatics Annotated Coloured Petri Nets

Pragmatics Annotated Coloured Petri Nets (PA-CPNs) are a class of CPNs
that combine an overall model structure with code generation pragmatics. The
class is created to allow for code generation without sacrificing verifiability or
descriptiveness of the model. PA-CPNs are hierarchical models with three lev-
els. The top level is called the protocol systems level and describes the overall
architecture of the protocol, at a high level of abstraction. The principal level
shows what services each principal provides as well as the life-cycle related to
the invocation of the services. Finally, the service level specify the operation of
each of the services.

The need for a new CPN class arises from the difficulty of translating general
CPNs to the control-flow style of most programming languages. With PA-CPNs
it is possible to create protocol models in a structured way so that they concisely
describe the principals, services and operation of each service at prescribed hi-
erarchical levels. The predefined hierarchical structure of these models also aids
in making them descriptive by showing the various elements at different levels
of abstraction. The models are also amenable to verification due to the inherent
progress in PA-CPNs. Finally, with the help of code generation pragmatics, we
are able to use these models for code generation. The CPN modules presented
in this section have been selected to give an introduction of the key concepts of
PA-CPN models.

3.1.1 Pragmatics

Pragmatics are syntactical annotations that are associated with CPN model
elements (e.g., places and transitions). The primary purpose of the pragmatics
is to add enough details to the model for generating code from them. In models
we write pragmatics inside 〈〈〉〉. This is similar to the notation used for UML
stereotypes [Grob], which are annotations on UML elements and an inspiration
for pragmatics. The name, pragmatics, reflects that they describe effects of
the attached model elements that they are attached to and convey domain
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Figure 3.1: The protocol system level

specific, but not implementation specific, details about how the element should
be interpreted by a code generator. The name also links to what C.A. Petri
called the pragmatic context and pragmatics [Pet77] of the model elements.

The pragmatics fall into three categories: structural, control-flow, and oper-
ation pragmatics. Structural pragmatics are used to identify the structure of
the PA-CPN model. These are pragmatics that specify the principal actors of
the protocol, the channels, and the services provided by the principal actors.
Control-flow pragmatics indicate the control-flow of principals and services by
specifying when services may be invoked and the control-flow inside each ser-
vice. Finally, operational pragmatics are used in service level modules to specify
operations, such as sending or receiving a message, that should be carried out
at certain points in the control flow.

Our approach is extensible in that it allows the modeller to add new pragmatics
if required by the specific protocol or protocol sub-domain under consideration.
Since pragmatics are syntactical, they have no semantic effect on the behaviour
of the model.

3.1.2 Protocol System Level

Figure 3.1 shows the top-level module of the PA-CPN model of the WebSocket
protocol which constitutes the protocol system level . The purpose of the protocol
system level is to specify the protocol principals and the channels connecting
them. Figure 3.1 has three substitution transitions named Client, Channel, and
Server. Client and Server represent the two principals of the protocol. Channel
represents a channel between them. We use the structural 〈〈principal〉〉 pragmatic
to specify which substitution transitions represent protocol principals, and the
structural 〈〈channel〉〉 pragmatic to specify substitution transitions representing
channels. The places connecting the principals to the Channel are implicitly
considered channel places. Messages (tokens) that are added to and removed
from these places are considered to be sent and received.
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In our modelling methodology, we require that there is exactly one protocol
system module and that this module consists of one or more substitution tran-
sitions representing principals. A socket place at the protocol system level can be
connected to one principal substitution transition and one channel substitution
transition. This requirement is needed since we use the socket places connect-
ing principals and channels to identify which channel or principal a message is
intended for.

The protocol system level module is similar to the top level of the descriptive
protocol model in Fig. 2.1. The main difference is the introduction of the explicit
channel module. This has been done for purposes of verification and simula-
tion of the CPN model. The channel module can be used to model different
network service types provided by underlying communication channels. In the
case of the WebSocket protocol, which is specified to run on top of the TCP
protocol, the channel is modelled without packet loss or reordering, which is
guaranteed by TCP. The channel is also modelled as preserving data integrity,
which is somewhat stronger than what TCP can achieve, but is, to some degree
achievable in practice by using a secure channel such as TLS.

3.1.3 Principal Level

The sub-modules of principal substitution transitions in the protocol system
module constitute the principal level modules. Each principal level module
specifies the services that are provided by the corresponding principal and the
life-cycle of the principal. The life-cycle is modelled by specifying constraints
on the order of service uses, and the state to be maintained across invocation
of the services. The explicit modelling of the services constitute the API of a
principal. Explicit modelling of services is also required in our method in order
to generate code that can be integrated into different code contexts.

Here, we concentrate on the client principal as a representative example. Fig-
ure 3.2 shows the principal level module for the client. This module is the sub-
module of the Client substitution transition in Fig. 3.1. All substitution transi-
tions on the principal level are annotated with either 〈〈service〉〉 or 〈〈internal〉〉
pragmatics.

The module has eight substitution transitions, six of which are annotated with
a 〈〈service〉〉 pragmatic, and two with an 〈〈internal〉〉 pragmatic. Substitution
transitions annotated with a 〈〈service〉〉 pragmatic model services that are meant
to be called from software using the protocol. The substitution transitions
annotated with an 〈〈internal〉〉 pragmatic represent services that are internal to
the protocol and not meant to be called from external code. We distinguish
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between external and internal services in order to make it clear for users of the
protocol what services are there for them and what services are there for the
protocol implementation and to make the API of principals explicit in order to
allow the principals to be integrated with, or called by, external code.

Some of the 〈〈service〉〉 pragmatics in Fig. 3.2 are appended with parenthesis
containing parameters for the pragmatics. For services the parameters give the
names of the arguments that the service expects when it is translated into code.
Other pragmatics, however, may use parameters for other purposes.

Figure 3.2 has three 〈〈LCV〉〉 places, Ready, Open and Closed. The 〈〈LCV〉〉
annotated places are used to determine when in the life-cycle of the protocol the
services may be invoked. In the initial state, where the Ready place is the only
〈〈LCV〉〉 annotated place containing a token, only the OpenConnection service
can be invoked. After the OpenConnection service has successfully finished, the
protocol enters the OPEN state by placing a token at the OPEN place. The
principal stays in the OPEN state until the WebSocket connection is closed and
enters the CLOSED state. While in the OPEN state, all the other services can be
invoked. In this state, the Client can send and receive messages. The getMessage
service is always enabled and its function depends on the message buffer, which
is modelled by the inBuffer place and controls whether the service returns a
message or not. The getMessage service is not bound to the OPEN state so that
it can be called to get messages that have been received but may not have been
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processed before the connection is closed. The places annotated by a 〈〈state〉〉
pragmatic hold data that is relevant to the operation of the principal across
services. In this example, state places are used as to hold incoming messages.
The messages are received via the MessageBroker internal service which will be
discussed in the next subsection.

3.1.4 Service Level

The sub-modules of the substitution transitions annotated with 〈〈service〉〉 on
the principal level specify the detailed behaviour of the services provided by the
principal. The detailed behaviour is modelled in a control-flow oriented manner
using 〈〈Id〉〉 pragmatics on places to make the control flow explicit. Modelling
the services in a control flow oriented manner serves two main purposes. The
first purpose is to provide for comprehensible models in that the explicit con-
trol flow aides in reading and understanding the model of the service. This
is in contrast to a pure event-oriented approach to modelling [BGH04b]) from
which no control flow is explicit. The second purpose of modelling in a control
flow oriented manner is to automatically generate code with a structure that
resembles what a human programmer would implement. This makes it easier
to inspect and maintain automatically generated code, and provides code with
better performance since it reflects the intended use of the constructs provided
by a conventional target programming language.

As a representative example of a service level module, we consider the Message-
Broker service which is shown in Fig. 3.3. At this level, the 〈〈service〉〉 pragmatic
annotates ordinary (non-substitution) transitions to indicate the single entry
point for the corresponding service primitive. Hence, it is possible to have only
one transition annotated with 〈〈service〉〉. The message to be sent is represented
by the parameter msg of the 〈〈service〉〉 pragmatic. Transitions representing
the termination of the service are annotated with the 〈〈return〉〉 pragmatic. We
require that there is exactly one transition in a service level module that is an-
notated with 〈〈return〉〉 and exactly one transition that is annotated with either
〈〈service〉〉 or 〈〈internal〉〉.

Places modelling the control-flow in the MessageBroker module are annotated
with an 〈〈Id〉〉 pragmatic. From a control flow perspective, the MessageBroker
has an overall sequence (starting at transition ReceiveDataFrame and ending at
the place terminated). Inside this square there is a repeat-until loop (starting
at place waitreceive and ending in place end). Inside the loop there is a branch
starting at the place dispatch and merging again at place continue. The branch
has four cases which distributes the messages to the right buffers based on the
message type. In addition, model elements in the service level module contain
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Figure 3.3: The MessageBroker Service

a number of operational pragmatics that are not discussed in detail here.

3.2 Code Generation Approach

This section outlines the code generation approach that is a central contribution
of this thesis as well as the concepts behind the approach. The code generation
approach is implemented in the PetriCode tool (see chapter 4) and has been
evaluated as presented in Chap. 5.

The generation of code from a PA-CPN model proceeds in three phases depicted
in Fig. 3.4. The first phase is to add pragmatics that can be derived from the
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Figure 3.4: The phases of our code generation approach

PA-CPN structure to the model. This is done to provide additional pragmatics
for subsequent code generation phases and to reduce the amount of annotations
that modellers must add manually. This phase requires a PA-CPN model and
descriptions of the available pragmatics and produces a PA-CPN with derived
pragmatics added. The second phase is the construction of an Abstract Tem-
plate Tree (ATT) which serves as an intermediate representation in the code
generation process. The second phase binds code generation templates to the
nodes of the ATT corresponding to the target platform under consideration.
This phase requires a PA-CPN model with all relevant pragmatics added and
produces an ATT. The third phase is to traverse the ATT and invoke the code
generation templates in order to emit code. This phase requires an ATT as well
as template bindings and all the relevant templates where all platform specific
information is kept. Below, we illustrate the three code generation phases using
the annotated messageBroker service module shown in Fig. 3.3 as an example.

In the pragmatics derivation phase we automatically compute a set of derived
pragmatics that identify common control flow structures and operations, such
as sending and receiving packets, or manipulating states represented in the PA-
CPN model. Pragmatics are derived based on structural patterns that match
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«startloop» «sequence» «endloop»

Figure 3.5: ATT of the Client and Message Broker

elements based on pragmatics and outgoing and incoming arcs and the attached
elements. As an example, in Fig. 3.3, the place wait receive has been automati-
cally annotated with a 〈〈startloop〉〉 pragmatic based on the number of incoming
and outgoing arcs and the concept of progress on the control-flow path. The
ability to derive pragmatics allows the PA-CPN models to be less verbose and
more descriptive by not requiring the modeller to restate information that is
apparent from the model structure. Furthermore, it would be possible to make
derived pragmatics not visible in the model to further preserve readability.

An ATT is an ordered tree of nodes and resembles abstract syntax trees. An
excerpt of the ATT of the WebSocket protocol is shown in Fig. 3.5. The two
major types of nodes in the ATT are leaf (operation) nodes and container
nodes. A leaf node does not have children and contains pragmatics for one or
more sequential operations such as sending on a channel or accessing a state
variable. A container node has in addition to associated pragmatics, an ordered
list of child nodes. The root node of the ATT represents the entire protocol
system. In Fig. 3.5, the root node has two children Client and Server, which
represent the principal agents of the protocol. In Fig. 3.5, the Client node has the
MessageBroker node which contains an 〈〈internal〉〉 pragmatic and also several
other 〈〈service〉〉 and 〈〈internal〉〉 annotated nodes that are not shown in the
figure. Each service module contains exactly one transition with the 〈〈service〉〉
pragmatic, which is the starting point for the method modelled by the sub-
module. The subsequent set of nodes is constructed according to the control-
flow of the service. These nodes are added as sub-nodes to the corresponding
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service node. The next level show the entry and exit nodes that are annotated
with the 〈〈internal〉〉 and 〈〈return〉〉 pragmatics, as well as a 〈〈sequence〉〉 node
which contains the body of the internal service. The body of the MessageBroker
contains an atomic block (leaf node), a loop block, and another atomic block.
The loop, which corresponds to the loop that starts at the wait receive place
and ends at the end place in Fig. 3.3, contains a startloop and endloop node
surrounding a sequence.

The ATT is generated by a structural traversal of the CPN model. This traversal
starts at the protocol system module and, for each 〈〈principal〉〉 pragmatic, it
generates a corresponding node in the ATT. On the next level, the generator
looks for modules annotated with a 〈〈service〉〉 or 〈〈internal〉〉 pragmatic and
adds corresponding nodes. At the service level, the PA-CPN model is traversed
from the single 〈〈service〉〉 or 〈〈internal〉〉 following the control-flow of the module
and generating nodes based on a block decomposition of the module. The
block decomposition of a service module creates blocks such as atomic blocks,
that contain a single transition, loops, and choice blocks. Atomic blocks are
leaf-nodes in the ATT and loops and choice block nodes contain the blocks
that are decomposed from the sub-nets inside the loops and choice structures
(see [SKK13a] and [SKK14] for further details on the block decomposition).

When the ATT has been generated, and in order to generate code for a particular
platform, the pragmatics represented by the nodes of the ATT are bound to code
generation templates. This is done by means of template bindings. Template
bindings serves as a configuration by selecting the appropriate templates for
each pragmatic. Generating the protocol software consists of traversing the
ATT and invoking the associated templates for each node as described by the
template bindings. When a pragmatic is transformed to code, its template is
run through a template engine together with parameters given by the pragmatic
definition and the PA-CPN structure. Finally, the code generated for each of the
nodes in the ATT are combined to the full code of each of the principals. The
technical aspects of how template bindings, described by template descriptors,
and pragmatics descriptors have been realised are discussed in detail in Chap. 4

3.3 Code Generation from Petri Net Formalisms

In this section we discuss briefly other uses of Petri Nets for code generation.
Several of the earlier code generation approaches from Petri Net models are
surveyed in [EKK03] which enumerate sixteen approaches. All the surveyed ap-
proaches are simulation based which means that they, in some sense, execute the
Petri Nets directly with some additional functionality added. The approaches
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are also platform dependent only working with one or two programming lan-
guages.

In [Phi06], possible methods for code generation from high-level Petri Nets
(HLPNs), such as CPNs, are discussed. Furthermore, the paper presents a new
hybrid approach for code generation. The general methods for code generation
from HLPNs are, according to [Phi06], structural analysis, simulation-based
and reachability graph based. Code generation based on structural analysis
is based on identifying regular patterns in a Petri Net that can be translated
into programming language concepts. Simulation based approaches are based
on running Petri Nets directly rather than generating some representations of
the models in code. Reachability graph based methods computes all possible
states of a Petri Net and executes an automaton based on the Petri Net states.
The method proposed in the paper [Phi06] is a hybrid of simulation based and
structural analysis methods. Here structural analysis is used to generate Java
classes with empty methods based on class diagrams and a simulation based
approach is used to fill the methods. In our approach, we do structural analysis
(cf. derived pragmatics) but not simulation or reachability graph generation.
Simulation based approaches often have performance issues while approached
that are based on computing reachability graphs may require large amounts of
memory to store reachability graphs.

Renew [K+04] is a tool that allows creation and execution of object-oriented
Petri Nets. The Renew tool supports several modelling formalisms based on
various forms of Petri Nets. Renew supports Reference nets which can be anno-
tated with Java code and can be executed using a built-in simulator engine. The
simulator can execute the nets incorporating the Java annotations in a head-
less mode so that no visualisation will occur. This means that the simulations
can be used as stand-alone programs. The simulation approach is in contrast
to our code generation approach where code is generated and can be inspected
and compiled as computer programs created with traditional programming lan-
guages.

The approach in [LT07] is similar to our approach in several respects. The iter-
ative modelling approach mandated by Coloured Control Flow Nets (CCFNs)
in [LT07] is reminiscent of the control flow paths at the service level of PA-
CPNs. Also, the component types in AJWNs, which is used as an interme-
diary representation, are similar to the blocks on our service level. Our ap-
proach differs from the approach in [LT07] in that the target domain for [LT07]
is reactive systems while our target domain is protocols. Also, the approach
of [LT07] is targeted exclusively to the Java platform while our template-based
approach is flexible when it comes to target platforms. Also, our approach uses
the same CPN class through all stages of the modelling while CCFNs need to
be transformed to AJWNs before executable code is generated. Furthermore,
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our pragmatics differ from the annotations of AJWNs in that our annotations
are platform independent. The authors of [LT07] and we have similar require-
ments to the generated code. However, although we have more or less equivalent
definitions of what constitutes readable code, the end results look quite differ-
ently. For example, where our approach will in-line the generated code for each
pragmatic on a transition the approach of [LT07] will generate a method for
each transition. This may be due to the different domains or the fact that it is
difficult to pinpoint what makes code readable.

In [Mor00] the author describes a code generation approach of generating code
from CPNs for an access control system. The generation takes advantage of the
fact that the CPNs uses the SML programming language for all inscriptions.
This means that it is fairly simple to extract the model in the form of SML code
and combine it with the simulator from CPN Tools. And by using external
libraries, the CPN can interact with other devices through a specialised proto-
col for access control systems. The paper also presents a case study of where
the techniques discussed are used to generate an access control system for an
industrial actor.

The approach in [Mor00] has the advantage that it can generate code from
arbitrary CPNs. However, it does limit the code to where SML compilers are
available. Compared to our approach this gives the modeller more freedom at
the cost of being able to only generate code for a single programming language
and some platform dependence. Furthermore, the approach of [Mor00] may be
difficult to integrate with external code since it does not have a clearly defined
API as we have in our approach. A somewhat similar approach is also taken
in [KMZ+08] where the core of a tool for scheduling courses of actions is created
based on a CPN model. The model is extracted from the modelling tool and
executed as an SML program.

Process-Partitioned CPNs (PP-CPNs) [KW10] have been used to automatically
generate code for several purposes including protocol software. PP-CPNs are a
restricted sub-class of CPNs. Code is generated from PP-PCNs by first trans-
lating the PP-CPN into a control flow graph (CFG). The CFG is translated into
another intermediary representation which is dependent on the target platform,
and from this representation code is generated. In [KW10], PP-CPNs are used
to model and obtain an implementation for the DYMO routing protocol using
the Erlang programming language and platform.

Both PP-CPNs and our modelling language are sub-classes of CPNs. However,
where we rely on pragmatics to control code generations, PP-CPNs rely on
restricted colour sets and CPN structure to allow the generator to deduce the
needed information. Our approach also models the environment of the services
while PP-CPNs are geared more to just modelling the services themselves. This
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allows us to represent the protocol at higher levels of abstraction on the protocol
and principal levels as well as on the service level. It also allows us to define
how the services should be called in a structured way by using places annotated
with 〈〈LCV〉〉 pragmatics in principal level modules.

In [vdAJL05], an approach for generating code from CPNs for the banking sector
is presented. A CPN model is translated manually into a Coloured Workflow
Net (CWF). The CWF is further translated to the actual target language the
Business Process Execution Language (BPEL), using a semi-automatic approach
based on patterns and structural analysis.

The code generation approach we have outlined in this chapter, in contrast to the
surveyed approaches, explicitly models the API of the principals at the principal
level of the CPN model1. This is important for the integrability of the generated
software. By employing a template-based approach to code generation, we also
provide a larger degree of platform independence which is further contributed to
by the control-flow structure of the service level. Finally, the PA-CPN structure
allows models to be simultaneously descriptive, verifiable and amenable to code
generation. This is not the case for all the approaches discussed in this section.

3.4 Related Protocol Modelling Languages

Many other formalisms for modelling protocol software exist. In this section
we discuss some of these formalisms and relate them to our modelling and code
generation approach.

There are several tools for modelling and generating protocol software based
on the Specification and Description Language (SDL) [IT99, BD02]. SDL is
created for the purpose of modelling protocols, and is extensively used in the
telecommunications industry. The IBM Rational SDL Suite (previously Tau
SDL Suite and SDT) is among the most well known proprietary tools for SDL.
The Rational SDL Suite supports code generation for SDL models to C and
C++ code and also supports verification through model checking. Another
SDL tool is Jade [PdSD+00] that supports editing and analysis/verification of
SDL models. Code generation for JADE is still in development. The SDL In-
tegrated Tool Environment (SITE) supports editing of SDL models and code
generation to Java and C++ code. SITE also supports some analysis of SDL
models. SDL is a graphical language based on Finite State Machines (FSMs).
This allows verification of protocols using model checking techniques. A major
difference between CPNs, and by extension PA-CPNs, is that SDL uses different

1In [Phi06] the API is modelled using UML class diagrams.
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images symbolising each operation. This makes SDL a more complex modelling
language where the modeller and the readers must be familiar with the com-
paratively large graphical syntax of SDL rather than the few model elements
of CPNs. Furthermore, the code generation offered by the Rational SDL Suite
and SITE are both limited in terms of the supported platforms as opposed to
our platform independent approach.

The most popular modelling language for computer systems is UML [Grob].
There has also been several efforts to employ UML to model and verify pro-
tocols. In [ALPT05], a method for creating protocol software and hardware
using techniques influenced by the Model Driven Architecture (MDA) [OMG]
is described. The method involves using UML [Grob] by extracting application
requirements in the form of a UML Use Case Diagrams. Use Case Diagrams are
then used via a number of refinements and transformations to generate a Data
Flow Diagram (DFD) and a Class diagram. The DFD and the class diagrams are
combined with a platform model in order to generate specific implementations.
The platform model describes how different operations are implemented on a
specific platform and is realised using a UML class diagram. Details are, how-
ever, not provided on how actual program code is generated using this platform
model. The approach presented allows for some limited verification based on
model queries, such as verifying naming conventions and supported OO-features.
The approach described in [ALPT05] uses several modelling notations to model
the system at different levels. This is in contrast to our approach where only
one modelling notation is used to describe both the structure and behaviour
of protocols. Although the approach allows for verification of some details, it
does not support the same level of verification of behavioural properties that is
supported by CPN models and which can easily be derived from the descriptive
models that is the basis for our approach.

UML and a custom language is used in [PvKHT00] to model and generate code
for protocol software. A UML profile called the Graphical Protocol Description
Language is created. The UML profile relies on UML stereotypes and various
UML diagram types to model static and behavioural aspects of network proto-
cols. The models are organised into four main diagrams: the Protocol System
Structure Diagram, the Protocol Interface Diagram and the Protocol Entity Di-
agram, and the Behaviour Description Diagram. The Protocol System Structure
Diagrams, which are reminiscent of protocol system level modules of PA-CPN
models, contain system elements and associations between them. The Protocol
Interface Diagrams contain the messages that can be sent and received by the
various protocol elements. The Protocol Entity Diagrams, which are reminis-
cent of the principle level modules of PA-CPNs, shows the internal structure
of a protocol entity. The Protocol Behaviour Diagrams, which are similar to
the service level modules of PA-CPNs, describes the behaviour of each protocol
entity. In [PvKHT00] these diagrams together with a custom textual language
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named GAEL are used to obtain an implementation in SDL, however, the au-
thors conjecture, it can be used to generate implementations for any platform.
Unlike our approach, the approach described in [PvKHT00] uses several diagram
types are used whereas in our approach only is PA-CPNs to model protocols.
This may make our approach somewhat simpler. Although the stereotypes used
in [PvKHT00] can be compared to our stereotypes our approach adds flexibility
by allowing the developer to add custom stereotypes. This allows the developer
to incorporate concepts useful for the protocol at hand instead of relying on
textual language to describe these concepts in the model itself.

Kukkala et. al. presents an article [KHHH04] describing a way to use UML 2.0
to model and implement the TUTMAC protocol, a media access protocol for
wireless networks. The implementation is realised by creating a UML 2.0 model
consisting of class diagrams, architectural diagrams, and state charts. Using the
Tau G2 tool, the model is transformed into C/C++ code and a prototype is
created and tested using a simple configuration. This approach also uses several
diagram types for modelling protocols in contrast to PA-CPNs where all the
model layers are CPN modules. Furthermore, the approach only support code
generation for C/C++ code and may not be as platform independent as out
approach.

The UML approaches tend to require several diagram types for modelling the
same system. This is in contrast to our approach where we use a single mod-
elling notation for all layers of abstraction considered. This simplifies modelling
and presentation by reducing the number of diagrams types that must be cre-
ated and, more importantly, studied to understand the model. These various
UML diagram types are amenable to verification in varying degree. State dia-
grams are perhaps the most commonly used UML notation for the verification
of behavioural properties since they are based on Harel state-charts [Har87].
There have also been made efforts to translate UML models into other formal
languages to perform verification [BBSCdlF05, LP99, PvKHT00].

An overview of code generation for state machines is given in [DPRZ12]. The
paper presents a systematic literature review of methods of automatically ob-
taining implementations from state machine models. The methods are divided
into two types of code generation techniques: pattern based techniques and non-
pattern based techniques. The pattern based techniques use various software
design patterns [GHJV95] as a basis for their code generation. The techniques
that are not based on design patterns uses techniques such as nested switch
statements, linked lists of transitions or encoding states in Java Enums.

State machines have some similarities with CPNs, however, where the state
of a state machine is given by the current state, the state of a CPN is given
by the token colours present at the places in the model. Also, the modelling
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languages differ in how they handle concurrency where state charts use explicit
concurrent sections while CPNs are implicitly concurrent until they are explicitly
synchronised. This makes CPNs arguably more convenient when modelling
concurrent systems like protocols where several actors act concurrently, although
there are, of course, mechanisms to support concurrency in various state machine
specification formalisms as well. While PA-CPNs do put some restrictions on
concurrency compared to CPNs, concurrent operation between principal agents
is still supported.

Several formalisms have been used for the verification of protocols. The Promela
language [Hol91] and the Spin model checker [Hol97] have been widely used to
model and verify protocols. Promela, being a textual language, does not offer
the same degree of readability at multiple levels of abstraction as PA-CPNs do
in our modelling approach. Also, being a textual language makes Promela less
appropriate as a basis for code generation using annotations since annotations
in a textual language will hamper the readability of the model.

The Language of Temporal Ordering Specification (LOTOS) [ISO89, 15401,
BB87] was developed as part of International Standardisation Organisation
(ISO) efforts and linked to the development of the Open Systems Interconnection
(OSI) reference model. LOTOS is founded on the Calculus of Communicating
(CCS) [Mil89] and adds a data type component to CCS based on algebraic spec-
ification. LOTOS, just as Promela, is a textual language, which makes it a less
than ideal candidate for code generation based on syntactical annotations.

The Extended State Transition Language (Estelle) [ISO] also originated from
OSI standardisation efforts and is based on extended finite state machines
[Boc78] combined with extensions to the PASCAL programming language. Work
has also been done to define a formal semantics for Estelle by translating to Petri
Nets [Cou87]. Estelle is a graphical language with several similarities to CPNs
and could probably be extended with pragmatics. However, Estelle uses more
types of model elements than CPNs which only used Petri Nets together with
SML. This makes CPNs a more lightweight modelling language.

3.5 Summary and Contributions of Papers

The contribution of the paper Code Generation From Pragmatics Annotated
Coloured Petri Nets [SKK13a] was to describe the code generation approach
that has been developed in this thesis and to informally define pragmatics and
PA-CPNs. The paper [SKK13a] describes PA-CPNs and how PA-CPN mod-
els can be used for code generation by first automatically deriving additional
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pragmatics based on the PA-CPN structure. Then ATTs and the process of
generating them is described. And finally, the paper [SKK13a] describes how
pragmatics stored at ATT nodes can be used for code generation and how the
code generated for each ATT node can be combined to form the code for an
executable program implementing the protocol under consideration. The paper
used a simple framing protocol as an example. In this chapter, for the sake
of consistency within the overview part of this thesis, we used the WebSocket
protocol as an example.

PA-CPNs are inspired by the descriptive WebSocket model described in Chap. 2
and the other CPN models surveyed in Chap. 2. We have chosen to use a
hierarchical structure of PA-CPN models, however, in contrast to the descriptive
WebSocket model, PA-CPNs require a set number of hierarchical levels. The
service level in PA-CPNs is inspired by the procedural style found in [BVA08].

The contribution of A Formal Definition of Pragmatic Annotated Coloured Petri
Nets for Automated Protocol Software Generation and Verification [SKK14] is
to provide a formal definition of PA-CPNs and parts of the code generation
approach. The paper also discusses the use of advanced verification techniques
on PA-CPNs where we show that we can exploit properties of PA-CPNs to make
verification more efficient. The verification aspect of this paper is discussed in
Chap. 5.
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Chapter 4

PetriCode: Tool Support
for Code Generation

This chapter introduces the PetriCode tool. PetriCode is an implementation
of the code generation approach that was presented in Chap. 3 and has been
used to perform the evaluation of our code generation approach as presented in
Chap. 5.

This chapter is based on the following paper:

• [Sim14b] K.I.F. Simonsen. PetriCode: a tool for template-based code gen-
eration from CPN models. In Software Engineering and Formal Methods,
pages 151–163. Springer, 2014.

The discussion in this chapter is mainly concerned with the architecture and
technical design choices of PetriCode since the code generation approach has
already been discussed in Chap. 3.
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4.1 Architecture and Design of PetriCode

PetriCode is an implementation of the code generation approach described in
Chap. 3 which is based on the following key concepts:

• Pragmatics which are annotations used to guide the code generation and
specify operations.

• PA-CPNs which is the CPN class we have defined to serve as the basis
for code generation.

• Pragmatics Descriptors which describe the available pragmatics.

• ATTs which are intermediary representations created based on PA-CPNs
and used to generate the final code.

• Template Bindings which are used to bind pragmatics to code gener-
ation templates. We are able to generate code for different platforms by
replacing the template bindings to bind pragmatics to templates written
for a different platform.

• Code Generation Templates which are applied to pragmatics based
on the template bindings.

A number of design choices was made in order to make PetriCode fulfil the
requirements for our code generation approach and being a flexible tool for its
users and maintainable for developers. When designing and implementing Petri-
Code, there were a number of key requirements that needed to be addressed and
which affected the choice of software technologies used for the implementation.

An important requirement is the ability to read, parse and write CPN models
stored in the format used by CPN Tools [JKW07]. The Access/CPN [WK09]
library provides this capability for the Java platform. Therefore, in order to
use Access/CPN it is necessary to choose a platform with good integration with
Java libraries. Furthermore, in order to accommodate pragmatics it is required
to be able to add pragmatics to Access/CPN meta models. Another impor-
tant requirement was to easily be able to create Domain Specific Languages
(DSLs) for defining pragmatics descriptors and template bindings. Finally, in
order to make sufficient progress given the assigned time-frame for this project,
development speed was also a priority in our design choices.

Given that we wished to utilise Access/CPN, the available programming lan-
guages were limited to languages that run on the JVM. The Groovy program-
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Figure 4.1: PetriCode Architecture

ming language [Groa] was chosen as the main programming language and plat-
form for PetriCode. Groovy, which runs on the Java Virtual Machine (JVM),
was chosen because it has seamless integration with all Java libraries including
Access/CPN. The Groovy programming language also has a simple mechanism
(not available in Java) to manipulate classes at runtime, making it a simple mat-
ter to add pragmatics support to Access/CPN, and also supports many types
of DSLs. Groovy also has additional useful features such as a command-line
interface options builder and a powerful template engine that can be used for
code generation purposes. Another important reason for choosing Groovy was
that we had experience using Groovy in previous projects [SMR10].

Two other popular languages that run on the JVM are Java [GJSB05] and
Scala [O+08]. Neither Java nor Scala were chosen even though it would be pos-
sible to use either of these languages to develop PetriCode. However, neither
of these languages provide facilities for meta-programming so it would be more
cumbersome to extend Access/CPN with pragmatics than it was using Groovy.
In addition, Java, does not have features that help to create DSLs in a simple
manner. Scala, however, does have good support for DSLs. Meta-programming
for the JVM comes at some cost in terms of the speed of programs. In this
project we judged that ease of development was more important than the speed
of code generation. Another alternative, JRuby [NES+11] which is an imple-
mentation of Ruby for the JVM, does have meta-programming facilities and
good supports for DSLs. However, interaction with Java libraries such as Ac-
cess/CPN is not as simple as in Groovy because of differences between the class
and object structure of Ruby [MI02] and Java.

Figure 4.1 provides an architectural overview of PetriCode. PetriCode is con-
trolled by its main class PetriCode which makes up the Command Line Interface
module of the application and controls the code generation process. PetriCode
parses the command-line arguments and calls the modules shown directly below
the Command Line Interface in Fig. 4.1 as appropriate. All the modules de-
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pend on Access/CPN for reading and manipulating CPN models. As explained
above, PetriCode is implemented using the Groovy language and builds upon
the Groovy and Java platforms. All modules are dependent on the data model
for pragmatics. The ATT and Generation modules also share a data model for
ATTs.

The overall program flow of PetriCode is shown in Fig. 4.2. Each column of the
flow chart represents a module of PetriCode. The left column is the pragmatics
module, the middle column is the ATT module, and the right column is the
generation module. Code generation begins with reading and parsing a CPN
model and the pragmatics. The next step in the code generation process is
to derive pragmatics that do not have to be added manually, but instead they
can be automatically derived from the structure of the model. After all the
derived pragmatics have been added to the PA-CPN model, the generation
process, optionally, checks the pragmatics with regards to given constraints.
This is optional because checking that all pragmatics are defined in pragmatics
descriptors may slow down development in early stages of a project. After
checking the pragmatics, the code generation process enters the ATT module
where the first step is to generate the ATT. Then, the ATT can optionally
be output in either an XML format or as a picture. Based on the command-
line arguments given, the process optionally terminates after generating and
outputting the ATT. If the generation process is to continue, the code generator
will generate code appropriate for each node of the ATT. Then, the generated
code fragments are combined in a bottom-up fashion until the code for each
principal has been completely generated. Finally, the code is written to files
and the process is terminated.

4.2 Pragmatics Descriptors and Template Bind-
ings

In order to specify the available pragmatics and bind them to templates Pet-
riCode uses DSLs. The use of DSLs was a design choice that allows a high
degree of flexibility for protocol designers to easily extend PetriCode with new
pragmatics and templates. Furthermore, the DSLs make it simple to extend
PetriCode by adding new functionality to the DSLs. By DSL we mean, in this
thesis, any programming language that is designed for a specific problem domain
regardless of how the DSL is implemented.

The pragmatics description language is a DSL that describes the available prag-
matics. A core set of pragmatics (see the examples in Fig. 4.3 and Fig. 4.4) is
provided by PetriCode while others may be provided by the user using the prag-
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Figure 4.2: Control flow of PetriCode

matics description language. The language consists of descriptors that describe
a pragmatic. Each descriptor consists of the name of the pragmatic followed by a
pair of parenthesis. Inside the parenthesis, the parameters of the pragmatics def-
inition are given in the form of key-value pairs. The parameters for a pragmatics
descriptor are origin, constraints and derivationRules. The origin
parameter indicates whether the pragmatic is explicitly given by the modeller
or should be automatically derived. The first pragmatic descriptor in Fig. 4.3
describes the 〈〈principal〉〉 pragmatic. The origin field of 〈〈principal〉〉 indicates
that this is an explicit pragmatic meaning that it will not be derived automat-
ically. The derivationRules parameter gives the patterns that should be
used to find the elements of a CPN model where a derived pragmatic should be
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principal(origin: ’explicit’, constraints: [levels: ’protocol’,
connectedTypes: ’SubstitutionTransition’])

channel(origin: ’explicit’)

id(origin: ’explicit’, controlFlow: true, constraints:
[levels: ’service’, connectedTypes: ’Place’])

lcv(origin: ’explicit’)

service(origin: ’explicit’, constraints:
[[levels: ’principal’, connectedTypes:
’SubstitutionTransition’],[levels: ’service’,
connectedTypes:’Transition’]])

state(origin: ’explicit’, constraints: [levels:
[’principal’,’service’], connectedTypes:’Place’])

return(origin: ’explicit’, constraints:
[levels: ’service’,connectedTypes:’Transition’] )

Figure 4.3: The explicit core pragmatics for PetriCode

added. The last pragmatic descriptor in Fig. 4.4 is the 〈〈endLoop〉〉 pragmatic.
The 〈〈endLoop〉〉 pragmatic has derivation rules that states that it should be
added to nodes already annotated with 〈〈Id〉〉 , with at least two outgoing edges
and exactly one back-link (a connection to somewhere earlier in the control flow
path). In addition, both the 〈〈principal〉〉 and 〈〈endLoop〉〉 pragmatics have some
constraints indicated by the constraints field. This means that the prag-
matics should only reside on places where the constraint is fulfilled. In the case
of the 〈〈principal〉〉 pragmatic this means that it should only be used to annotate
nodes on the protocol system level which are substitution transitions.

Template bindings are also specified in a domain specific language (DSL). An
extract of the template descriptor for generating Groovy code covering three of
the pragmatics from Fig. 3.5 can be seen in Fig. 4.5. Each line of the template
descriptor consists of a name followed by a left-parenthesis followed by key value
pairs where the keys are pragmatic which contains the name of the pragmatic,
and template, which contains the path to the template, isContainer which
indicates whether this pragmatic denotes a container, or isMultiContainer.
The multi-container flag is primarily an implementation detail that is used in-
ternally in Petricode to indicate whether the container is of type loop or choice.

Generating the protocol software consists of traversing the ATT and invoking
the associated templates for each node as described by the template binding.
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branch(origin: ’derived’, derviationRules:
[’new PNPattern(pragmatics: [\’Id\’], minOutEdges: 2,
backLinks: 0, forwardLinks: 0)’],block:
[type: "branch", ends: "merge"],
constraints: [levels: ’service’, connectedTypes: ’Place’])

merge(origin: ’derived’, derviationRules:
[’new PNPattern(pragmatics: [\’Id\’], minInEdges: 2,
backLinks: 0, forwardLinks: 0)’],
constraints: [levels: ’service’, connectedTypes: ’Place’])

startLoop(origin: ’derived’, derviationRules:
[’new PNPattern(pragmatics: [\’Id\’],
minInEdges: 2, forwardLinks: 1)’],
block: [type: "Loop", ends: "endLoop"],
constraints: [levels: ’service’, connectedTypes:’Place’])

endLoop(origin: ’derived’, derviationRules:
[’new PNPattern(pragmatics: [\’Id\’],
minOutEdges: 2, backLinks: 1)’],
constraints: [levels: ’service’, connectedTypes:’Place’])

Figure 4.4: The derived core pragmatics for PetriCode

internal(pragmatic: ’internal’,
template: ’.../plattforms/groovy/externalMethod.tmpl’)

startLoop(pragmatic: ’startLoop’, template: ’groovy/loop.tmpl’,
isContainer: true, isMultiContainer: true)

Figure 4.5: Extract of binding descriptor for the Groovy platform
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%%VARS:__LOOP_VAR__%% ${params[0]} << message
__LOOP_VAR__ = true %%VARS: ${params[0]}%%
while(__LOOP_VAR__){

%%yield%% }

Figure 4.6: Examples of templates for loops (left) and dist (right)

When the pragmatics attached to a node in the ATT are transformed to code,
the corresponding templates are run through the template engine together with
a number of parameters given by the pragmatic definitions and the PA-CPN
structure. The templates are combined by replacing a special tag in the con-
tainer templates, %%yield%%, with the text of the generated for the children of
the ATT node with the container template.

As an example of a template, the template for the loop pragmatic for the Groovy
language is given in Fig. 4.6 (left). The template creates a while-loop which
continues while the __LOOP_VAR__ variable is true. The body of the loop is
populated by replacing the %%yield%% directive with the code generated by the
templates of the sub-nodes in the ATT. __LOOP_VAR__ is updated at the end
of the loop by the 〈〈endLoop〉〉 pragmatic. The %%VARS:__LOOP_VAR%% is used
to tell the code generator that the __LOOP_VAR__ is used in this template and
should, depending on the platform and programming language, be declared.
The 〈〈dist〉〉 pragmatic which is present on several transitions in Fig. 3.3 is an
example of an operation pragmatic. The 〈〈dist〉〉 pragmatic is used distribute
a message to the appropriate buffer. Figure 4.6 (right) shows the template for
the 〈〈dist〉〉 pragmatic which requires a parameter which replaces $params[0]
and is the buffer the message should be distributed to. The second line declares
that the value of $params[0] should be available as a variable.

As an example of the generated code, the loop in the MessageBroker internal
service in the Client principal is shown in Fig. 4.7. The loop is started by defining
a variable, __LOOP_VAR__. After the __LOOP_VAR__ is defined, the loop is
entered. Finally, the template associated with the 〈〈endLoop〉〉 pragmatics has
generated the code for updating __LOOP_VAR__ according to the conditional
expression given as a parameter to the 〈〈endLoop〉〉 pragmatic.

4.3 Related Implementation Technologies

PetriCode is implemented as a standalone application. However, it would have
been possible to create PetriCode using another architecture. The Eclipse Mod-
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class Client {
...
def MessageBroker(){

...
__LOOP_VAR__ = true
while(__LOOP_VAR__){
/*vars: [message:, opCode:, data:, ping:,
pong:, pingpong:, close:, nonFinal:]*/
inBuffer << message

...
__LOOP_VAR__ = ( OPEN == true )

}
...

}
...

Figure 4.7: The generated code for the loop of the sender send service

elling Framework (EMF) [Bud04, Ecl] is a prominent technology that is often
used to implement modelling software. The main advantage of EMF is that
EMF provides a facility to create model editors. ePNK [Kin11] is a plug-in to
EMF that allows developers to generate editors for Petri Net models. Using
ePNK or EMF directly could allow us to add pragmatics as a separate label
type rather than using the 〈〈〉〉-notation. However, this would complicate using
CPN Tools since care would have to be taken to ensure compatibility. Also, by
implementing PetriCode as a standalone application it is possible to later create
plug-ins for several development environments at a later stage.

The DSLs for pragmatics descriptors and template bindings are implemented
by exploiting built-in features of the Groovy language. An alternative way of
defining DSLs is to override the BuilderSupport class in the Groovy API.
This approach requires implementing several abstract methods to build nodes in
a user defined data-structure. While this can be a more flexible approach, based
on previous experience with both approaches, it would have added unnecessary
complexity to the DSLs and was not chosen for PetriCode. Using full-fledged
parsers such as YACC [Joh75] and ANTLR [Par07] would have given much more
flexibility in creating the syntax of the DSLs. However, this would have come
with the cost of having to define the parser by hand.

We have chosen the Groovy SimpleTemplateEngine as the template engine
and language for PetriCode. This is a powerful template language which is
similar to Groovy Server Pages (GSP) [Gra]. SimpleTemplateEngine is
also simple to integrate in PetriCode since PetriCode is implemented in the
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Groovy language. In order to limit the number of dependencies of PetriCode we
did not want to use template engines based on other programming languages
such as PHP [AS04] or any of the large number of template engines for other
programming languages. Some prominent template engines for code generation
are JET [C+03] and Xpand [C+b]. These two template languages are part
of the Eclipse Modelling Framework [Bud04, Ecl] (EMF). As part of EMF,
both languages have requirements to the Eclipse platform and are best suited
to generate code from Ecore models. Therefore, since ATTs are not created
as Ecore models, these template engines were not suited for PetriCode. The
same is true for implementations of the MOFM2T language [Obj08] such as
Acceleo [C+a] which is designed to use models based on MOF as source models.

It would also have been possible to use model transformation approaches such
as ATL [JABK08] to perform code generation. A major drawback with this ap-
proach is that Ecore, or similar, models must be created for each target language.
Creating these models would likely be significantly more difficult than creating
templates. Also, templates would still have to be created to generate textual
code from the transformed models. Furthermore, using a model transformation
approach, would require creating fairly complex transformation rules.

4.4 Summary and Contributions of Papers

The contribution of the paper PetriCode: A Tool for Template-based Code Gen-
eration from CPN Models [Sim14b] is to present the PetriCode tool. The Petri-
Code tool implements our code generation approach and is designed to be both
flexible and extensible by using DSLs to specify the available pragmatics and the
bindings of templates to pragmatics. PetriCode follows our approach by first
parsing PA-CPNs including pragmatics and automatically deriving pragmatics.
Then an ATT is constructed and, finally, the code is generated by applying the
templates bound to each pragmatic of each node in the ATT and combining the
generated code fragments and outputting source code files.

PetriCode complements CPN Tools by providing tool support for automatic
code generation from a subclass of CPN models. Even though there exists work
describing code generation based on CPN models, the CPN ecosystem has thus
far lacked a tool for code generation that supports generation. PetriCode is our
proposal for such a tool in the domain of protocols.

We have applied PetriCode to implement a simple framing protocol based on
a PA-CPN model in [Sim14b]. In Chap. 5, we will see that PetriCode is also
applicable to industrial sized protocols.
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In this chapter we have concentrated the discussions on related work on imple-
mentation technologies that could have been used to implement a code genera-
tion tool. Related code generation approaches and their supporting tools have
been discussed as part of Chap. 3.
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Chapter 5

Evaluation of the PetriCode
Code Generation Approach

In this chapter we summarize the results from evaluating our code generation
approach as it is implemented in the PetriCode tool. We have evaluated our
approach with regards to the requirements from presented in Chap. 1: platform
independence, integrability, readability, scalability, and verifiability.

In this chapter we start by presenting the PA-CPN model of a simple framing
protocol that has been used in the evaluation of several of the requirements.
Then we present the evaluation of each requirement and, finally, provide a sum-
mary and discuss the contributions of the considered papers.

This chapter is based on the following papers:

• [SK14b] K.I.F. Simonsen and L.M. Kristensen. Implementing the Web-
Socket Protocol Based on Formal Modelling and Automated Code Gener-
ation. In Distributed Applications and Interoperable Systems, volume 8460
of LNCS, pages 104–118. Springer, 2014.

• [Sim14a] K.I.F. Simonsen. An Evaluation of Automated Code Generation
with the PetriCode Approach. In In Proc. of PNSE ’14, volume 1160 of
CEUR Workshop Proceedings, pages 295–312. CEUR-WS.org, 2014.
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• [SKK14] K.I.F. Simonsen, L.M. Kristensen, and E. Kindler. Pragmatics
Annotated Coloured Petri Nets for Protocol Software Generation and Ver-
ification. DTU Compute-Technical Report-2014. Technical University of
Denmark, 2014.

5.1 Example: Framing Protocol

For the evaluation of platform independence, integrability and readability we
used a simple framing protocol as an example. In this section, we will briefly
describe the PA-CPN model of that protocol. We used PetriCode (see Chap. 4)
to generate code based on the PA-CPN model.

The framing protocol is tolerant to packet loss, reordering and allows a limited
number of retransmissions. The top level of the CPN model is shown in Fig. 5.1.
The model consists of three sub-modules. Sender and Receiver represent each of
the principal actors of the protocol, and Channel connects the two principals.

The protocol uses sequence numbers and a flag to indicate the last frame of a
message. After a frame has been sent, the receiver, if it receives the frame, sends
an acknowledgement consisting of the sequence number of the frame expected
next. If the acknowledgement is not received, the sender will retransmit the
frame until an acknowledgement is received or the protocol fails sending the
frame.
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In the Sender module, shown in Fig.5.2, there are two sub-modules. The send
sub-module is annotated with a 〈〈service〉〉 pragmatic and represents a service
provided by this principal for sending a message. The other substitution transi-
tion receiveAck, annotated with an 〈〈internal〉〉 pragmatic, represents an internal
service which is to be invoked by another service of the principal. In this exam-
ple, the receiveAck service is invoked from the send service.

The Sender module also contains two places, runAck and nextSend, annotated
with a 〈〈state〉〉 pragmatic which contains shared data between the two services.
The ready place, annotated with a 〈〈LCV〉〉 pragmatic, is used to model the life-
cycle of the Sender principal and makes sure that only a single message is sent
at a time.

The send service, shown in Fig. 5.3, starts at the transition startSend which
opens the channel, initialises the content of the message to be sent and the
sequence number. Also, at this transition, the receiveAck internal service is
started by placing a token with the colour true at the 〈〈state〉〉 place runAck.
The service continues from startSend to enter a loop at the start place. Inside the
loop, the sendFrame transition retrieves the next frame to be sent based on the
sequence number of the frame which is matched against the sequence number
incoming from the place start. The limit place is updated with the sequence
number of the current frame, and the number of times the frame has been
retransmitted. Then, the current frame is sent. Due to the 〈〈wait〉〉 pragmatic
at the sendFrame transition, the system waits for some amount of time in order
to allow acknowledgements to be received. The loop ends at place frameSent. If
a token is present on the place frameSent the loop will either continue with the
transition nextFrame firing or end by firing the return transition. At the return
transition, state places and the channel are cleared and the service terminates.

5.2 Platform Independence

Platform independence means, in the context of our code generation approach,
the ability to generate code for different platforms and programming languages.
In order to demonstrate the platform independence of our approach, we showed
that, from the same model, code for four different platforms could be generated:
Java, Clojure, Python, and Groovy.

The code generated for each of the platforms demonstrate that our approach
allows us to generate code for several platforms by providing a selection of
templates for each platform. The platforms considered, spanning several popular
programming paradigms, gives us confidence that our approach and tool can
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Figure 5.3: The Send service module

also be applied to generate code for many other platforms. Furthermore, we are
able to generate the code for each of the platforms using the same model with
the same annotations and the same code generator while only varying the code
generation templates and the mappings between the pragmatics and the code
generation templates.

The Groovy templates were created first and the templates for the other pro-
gramming languages were based, in a varying degree, on the Groovy templates.
Because of some features of the Groovy language such as optional types and
native language support for lists, the templates were simple to create. For ex-
ample, since Groovy is optionally typed, the Groovy templates did not have to
explicitly declare the types of variables, fields and return values.

Adapting the Groovy templates to Java was, for the most part, simple since
the two languages are similar in several respects. However, whereas Groovy
is optionally typed, Java is statically typed and requires all variables to be
typed or to be cast to specific types when accessing methods. Fulfilling Java’s
requirements for explicit types required functionality from PetriCode so that
the templates are aware of the type of variables (see [Sim14a] for the details).

Clojure is a functional language with a different control flow from languages
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such as Java. The main issue, in comparison with Groovy and Java, was related
to using immutable data-structures. In Clojure all data types are, in principle,
immutable. However, there is an Atom type in which values may be swapped.
This was challenging because Atom values must be treated differently from pure
values and lead to somewhat more verbose code than what could otherwise have
been generated. Also, Clojure allows the use of Java data structures, which are
mutable and thus easier to work with in this case.

Python, as Groovy, is a multi-paradigm language combining the features of
several programming paradigms [Lut13]. Creating the templates for the Python
code generation was, although being the only language in this survey not based
on the JVM, no more difficult than for the other languages. The main challenge
was to handle the significant white-spaces of the Python syntax. To support
this, PetriCode contains functionality to keep track of the current indentation
level (see [Sim14a] for the details).

Table 5.1 shows the sizes of the Sender and Receiver principal code (measured
in code lines) for each of the platforms considered. As can be seen, the code for
Python is much smaller than the others. This is due to the efficient libraries
in Python and that the Python code, for technical reasons, has much fewer
blank lines which is also reflected in the templates. Table 5.2 shows the sizes,
in lines, for selected templates and all the templates for each platform. The
sizes reported are the sizes of the actual code in the templates and generated
implementations and may not correspond to the templates shown in paper, since
they have been formatted in this paper for better readability. In this example,
there was the same number of templates for each platform, but this is not always
the case. As can be seen in Table 5.2, there is not a perfect correlation between
the size of templates and the size of the generated code. This is due to, in
part, some templates being more complex for some languages than others and
template reuse being possible for some languages. An example is the Clojure
templates, where the templates for the 〈〈setField〉〉 and 〈〈setValue〉〉 pragmatics
are the same, but since the 〈〈setValue〉〉 template has more functionality than
the 〈〈setField〉〉 template for all platforms, this results in a higher total number
of template lines for Clojure.

To the best of our knowledge, there are no previous works where the platform
independence of code generation approaches from CPNs have been evaluated.
PP-CPNs [KW10] are only used to generate code for the Erlang platform while
the simulation based approaches [K+04, Mor00], run on platforms where the
simulation infrastructure is available.
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5.3 Integrability

A requirement for our approach is that code generated by our approach can be
integrated with existing software. We evaluate two types of integration: down-
wards integration and upwards integration. Downwards integration means that
generated code can use different third-party libraries, and can be exemplified by
having our generated code use another library for sending and receiving data
from the network. Upwards integration means that applications can use ser-
vices provided by the generated code. Upwards integration can be exemplified
by creating a program that employs the generated protocol implementation for
sending a message to a server. We have evaluated integrability in both direc-
tions using the code generated for the Java platform. However, the results are
applicable to other platforms as well.

Downwards Integration. Our approach can be used to generate code for
different platforms by using different templates as discussed in the previous
section. The same technique was used to employ various libraries on the same
platform to perform the same task. In order to change the templates that are
used, we create new template bindings (see Chap. 3). The template bindings are
mappings that map pragmatics to code generation templates. By varying the
template bindings, developers can vary the underlying libraries used. This also
means that developers must take care to use compatible template bindings to
take care that templates work together since the templates can vary the types
of data contained in variables.

We demonstrated downwards integrability by swapping the network library from
the standard java.net library to Netty [Theb]. This example was chosen
because networking is an important function of the network protocol domain
that we consider, and because Netty is substantially different from java.net

Principal / Language Groovy Java Clojure Python
Sender 131 132 119 66
Receiver 81 78 68 38
Total 212 210 187 104

Table 5.1: Sizes of the generated code.
Pragmatic / Language Groovy Java Clojure Python
service 19 28 15 15
runInternal 4 10 4 3
send 9 9 8 2
All templates 154 219 251 112

Table 5.2: Size of code generation templates.
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as it is an event driven library. Netty extensively uses the NIO [Hit02] IO
library which leads to improved performance. This can be a very efficient way
of improving the performance of protocols if needed.

Three out of twenty-one templates had to be altered to accommodate Netty as
the network library. The changes were restricted to the templates that generate
code for sending and receiving data from the network as well as opening the
network channel. This shows that it is possible to use other, radically different,
libraries than the ones originally used with reasonable effort. Thus, our code
generation approach can support downwards integration even though it may be
possible to create templates that makes this difficult. Furthermore, we conjec-
ture that the template-based structure compartmentalises software fragments so
that changing libraries will often result in only local changes in a small number of
templates. This is because many libraries provide services for specific functions
that are required to implement only a small number of pragmatics. Changing
system libraries such as the java.* libraries will, of course, require changes in a
larger number of templates. However, it is relatively rare to change the entire
system library of a programming language in comparison to more specialised
libraries.

Upwards Integration. The ability for external software to invoke the gener-
ated code is necessary for the generated code to be useful. Our approach allows
this by explicitly modelling the API in the PA-CPN model in the form of prin-
cipals and services which define the class and method names. To demonstrate
upwards integration, we have created runners for the generated implementations
for each of the platforms considered. This demonstrated that it is possible to
use the generated services from third party software. It is worth noting that the
explicit modelling of services in the PA-CPN model makes it simple to invoke
the generated code. This result was also replicated for the WebSocket proto-
col in [SK14b], where we created runners to validate the generated WebSocket
implementation.

To the best of our knowledge there does not exist any work evaluating the
integrability of CPN based code generation approaches. It seems reasonable that
approaches that do not rely on code generation templates such as simulation-
based approaches, need to change the simulators or code generator in order
to change the software with which it interacts. For upwards integrability it is
important that there is a clearly defined interface. In [Phi06], which used a
hybrid code generation approach, this is achieved by modelling the interface
using UML class diagrams.
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5.4 Readability

Readability of the generated code means that is can be easily read by experts in
the language and platform the code is generated for. Readability is desirable for
several reasons: Reviewing the generated code is facilitated by having readable
code and gives confidence that the generated code behaves as expected. Fur-
thermore, it allows developers to become confident that the templates generate
the correct code individually and when they are combined. Reviewing the code
can also be used to debug any code generation template that outputs flawed
code. Readability also helps the integrability of the code by allowing developers
using the generated code to inspect the generated code as well as the model and
thereby getting an even clearer picture of the function of the code. This may
give a more detailed understanding of how the generated code works.

We evaluated the readability of code generated by PetriCode in two ways. We
applied a code readability metric, the Buse-Weimer metric [BW08], to selected
snippets of the generated classes. Furthermore, we have conducted a field study
where software engineers were asked to evaluate the readability of the generated
code.

In order to evaluate the readability of generated code we randomly selected code
snippets from the two example protocols described in Sect. 5.1 and [SKK13a].
We used code for the Java platform because the subjects of our experiments
were skilled in the Java language. Also, there exist several Open Source projects
from which to obtain snippets for our experiments. In addition to the generated
snippets, we selected, as control group, snippets from three Open Source projects
in the network protocol domain. These were the Apache FtpServer, HttpCore
and Commons Net [Thea]. All three are part of the Apache project, and we
consider them to be high quality projects within the network protocol domain.

We used the Buse-Weimer metric as a code readability metric. This metric was
constructed by Buse and Weimer based on an experiment asking students to
evaluate short code snippets with regards to readability on a scale of one to
five. The experiment was used to construct the metric using machine learning
methods. The mean and median score of the code snippets generated by our
approach were above 0.5, indicating that the code is fairly readable. Also, the
mean and median of the generated code was higher than the non-generated
protocol-code. However, the generated snippets scored either very high or very
low. This may indicate that further study would be advisable.

We also conducted a field study asking professional software engineers to eval-
uate code readability. The experiment was conducted at the JavaZone software
developer conference in Oslo, Norway in September 2013. The experiment was
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organised into two parts. One part evaluated the Buse-Weimer metric and an-
other part evaluated the readability of the generated code in comparison to
non-generated code. Both experiments were conducted by asking software de-
velopers to evaluate twenty small code snippets with regards to readability by
assigning values, on a scale from one to five, to each code snippet. The exper-
imental set-up was created to mimic the experiment conducted by Buse and
Weimer [BW08]. The main advantage of our experiment is that the dominat-
ing majority of the participants were professional software developers instead of
students. The experiment that evaluated the metric had 33 participants while
the experiment evaluating the readability of generated code had 30 participants.

We believe that the empirical results are more trustworthy than the metric.
While the metric evaluation showed that the generated code was more read-
able than the non-generated code, the empirical evaluation of the readability
of the generated code indicated that the generated code is less readable than
non-generated code, but still within one standard deviation. Therefore, we con-
clude that our generated code is less readable than hand-written code but still
readable.

The importance of readability in generated code was also noted in [WH99] and
several metrics, in addition to the Buse-Weimer metric, have been proposed.
In [Baj11] the authors propose a code readability metric based on the layout of
code. The metric is evaluated by showing that a badly formatted version of a
small program scores worse than a nicely formatted version of the same program.
In [PHD11] the results from the experiment performed by Buse and Weimer
were used to create a simpler metric based on size and entropy that performs
better than the Buse-Weimer metric in predicting human annotators. We used
the Buse-Weimer metric for the evaluation of the readability of generated code
because it was the only metric we were able to find an implementation of. We
are unaware of any similar studies being carried out on code generated through
an MDSE approach in the past.

While evaluating the readability of generated code, we were able to show us-
ing an experiment and an automated metric that code generated through our
code generation approach is readable, although less readable than hand-written
code. As with any empirical evaluation, this evaluation have threats to its va-
lidity. One such threat is that the chosen code, either the generated or the
non-generated, is not representative for code in the protocol domain. Further
threats to validity include small sample sizes and the representability of the
participants (see [Sim14a] for details).
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5.5 Scalability

In order to evaluate the scalability of our code generation approach we have
applied our approach to the industrial sized WebSocket protocol described in
Chap. 3. The complete PA-CPN model consists of 19 modules. Each of the
two principals have eight sub-modules which all correspond to the external and
internal services in the protocol. In total, the model consists of 136 places and
84 transitions. This reflects the complexity of the protocol, but also the high-
level nature of the model which has been important in keeping the number of
elements manageable. The WebSocket implementation consists of two classes
containing the Client and the Server. The Client contains 839 lines and the
Server 745 lines (not counting empty lines). We reused 10 templates from the
library of templates provided by PetriCode. In addition, 22 new templates were
added, including two templates that override existing templates (see [SK14b]
and [Sim14a] for examples of templates). New templates were needed because
the WebSocket protocol has many features we have not encountered with earlier
examples, such as receiving and interpreting binary messages, and validating
handshakes and frames.

We validated the generated WebSocket implementation in two ways. First, we
created test drivers for the generated WebSocket implementation to connect
to the example chat server and client [Gup] that comes with the GlassFish
Application Server [Ora]. Figure 5.4 shows the chat client (upper right) and
server (lower right) running together with the web-based chat client from [Gup].
The web-based client has only been modified to connect to the server using the
generated API by changing a hard-coded server address. We also tested that the
chat client is able to connect and communicate with a chat-server from [Gup].

The second way we validated the generated WebSocket implementation was by
using the Autobahn Testsuite [Tav] version 0.5.5. The Autobahn WebSocket
test-suite provides comprehensive validation of server and client implementa-
tions of the WebSocket protocol. The test-suite has been used by several high-
profile projects to develop and validate WebSocket implementations including
the Firefox and Jetty projects. When running the Autobahn test-suite several
problems with the implementation were discovered. Most of the problems were
simple oversights in the code generation templates that were easily fixed once
they were identified. An example of the trivial problems that were not evident
when running the chat application was that the HTTP header lines were termi-
nated with LF instead of the mandated CRLF. However, one change to the CPN
model was necessary. This was related to fragmented messages where we added
a buffer for temporarily storing frames of unfinished messages and a transition
to distributing non-final frames. That we were able to easily change the model
to accommodate fragmented messages shows that our approach can be agile in
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Figure 5.4: Chat server and client using the generated API (right) and a web-
based chat client connected to the same server (left)

the sense of supporting incremental changes to gradually improve the model
and generated implementation (see [Sim14a] for the details). The change to the
model did not have any impact on the verification of the WebSocket protocol,
as the verification was done after the model was validated. Both verification of
models and validation of the generated code are needed to gain confidence in
the correctness of a protocol implementation generated by our approach. This
means that verification of models and validation of generated code may need to
be re-run several times as models evolve over time either through errors being
found either by validation or verification or through other means or by changes
to the requirements of the protocol.

A summary of the result for the final Autobahn tests can be seen in Table 5.3.
The Autobahn test suite contains 301 tests cases for the client and server. For
the client, 10 test cases fail and for the server, 4 test cases fail. The extra
test cases that fail on the client concern performance with large messages. We
hypothesise that this has to do with differences with the handling of time-outs
for the server and client testers. The test cases that fail for both the server
and client are UTF-8 parser errors. This is because the Java implementation of
UTF-8 parsers is more lenient than the Autobahn test-suite expects. Still, since
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Table 5.3: Results for the Autobahn tests

Tests Server Passed Client Passed
1. Framing (text and binary messages) 16/16 16/16
2. Pings/Pongs 11/11 11/11
3. Reserved bits 7/7 7/7
4. Opcodes 10/10 10/10
5. Fragmentation 20/20 20/20
6. UTF-8 handling 137/141 137/141
7. Close handling 38/38 38/38
9. Limits/Performance 54/54 48/54
10. Auto-Fragmentation 1/1 1/1

the vast majority of the tests passed we conclude that we were able to create
a correct implementation of the WebSocket protocol using our code generation
approach.

5.5.1 Performance of PetriCode

We have evaluated the performance of PetriCode by using it to generate Groovy
code for the three models we have used as examples in this thesis. These are
two fairly simple protocols and the WebSocket protocol. Any performance dif-
ferences between the two simple protocols and the WebSocket protocol should
be informative as to how PetriCode scales with larger protocols. It should be
noted that speed has not been a primary design goal of PetriCode, so it is
possible to optimise the tool significantly with respect to speed. For this eval-
uation, PetriCode was changed to output timing information for each module
(see Fig. 4.1).

The model of the simple framing protocol (SimpleProtocol) model was used as
an example and described in [SKK13a]. This model consists of ten modules
and has 45 places and 26 transitions. The model of the stop and wait protocol
(SWProtocol) was used as an example and described in [SKK14]. This model
consist of seven modules and has 35 places and 21 transitions. Both the Sim-
pleProtocol and SWProtocol describe simple framing protocols. SWProtocol is
slightly more complicated than the SimpleProtocol because it allows retrans-
missions. The WebSocket model consist of 19 modules and has 136 places and
84 transitions.

Table 5.4 shows the time spent in each of the modules in PetriCode and the
total runtime of the application when generating code for the models. The total
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Table 5.4: Run-time for code generation for PA-CPN models using PetriCode

Protocol SimpleProtocol [SKK13a] SWProtocol [SKK14] WebSocket
Start-up 0.52s 0.51s 0.53s
Pragmatics
module

6.59s 6.07s 18.20s

ATT
Module

0.14s 0.12s 0.18s

Code
gener-
ation
module

1.77s 1.72s 3.68s

Total 9.02s 8.43s 22.59s

runtime is longer than the sum of the modules. This is because the total time
includes start-up and showdown of the environment including the JVM and
loading core classes in the Groovy and Java APIs. The experiment was run on
an HP laptop computer with 8GB ram, an Intel i5-3210M CPU, and an SSD
hard-drive.

As one could expect, the time increases with the size of the model. However,
with 3.1-3.9 times the number of elements (places + transitions), the generation
of the WebSocket protocol only took 2.5-2.6 times as long to run. This indicates
that the approach scales fairly well although the run-time for small models is
quite large. It is also notable that most of the time is used in the pragmatics
module. This is because the CPN model is read and parsed in this module,
which is an I/O intensive operation and the CPN model files are fairly verbose
XML files. This could be improved by using more efficient methods of reading
and parsing the CPN model, however, some overhead in reading and parsing
large files will always be expected. Furthermore, the run-time is still acceptable
for all the examples including, the industrial sized WebSocket protocol.

5.6 Verifiability

CPNs have a formal semantics which makes it possible to conduct model sim-
ulation and verification through model checking prior to code generation. This
is a major advantage of an approach based on a formal modelling language as
this can be used to eliminate design errors prior to code generation and testing
of the generated protocol implementation. CPN Tools supports model checking
of behavioural properties by means of explicit state space exploration. The ba-
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sic idea of state space exploration is to explore all the reachable states of the
model to determine whether a model satisfies a given property or not. This
means that state space exploration will exhaustively explore (test) all the pos-
sible executions of the PA-CPN model. As the PA-CPN model specifies the
behaviour of both the client and the server, the state space exploration exer-
cises the client against all the possible behaviours of the server and visa versa
given the configured initial state of the PA-CPN model.

We applied state space exploration of the PA-CPN model as a first test to
eliminate possible errors in the model and the specification of the WebSocket
protocol. For this, we adopted a lightweight approach where we considered the
following behavioural properties P0, P1 and P2 of the CPN model:

P0 From the initial state it is possible to reach a state in which the WebSocket
connection has been opened (i.e., both the client and the server are in the
open state).

P1 All terminal states (i.e., states without enabled transitions) correspond to
states in which the WebSocket connection has been properly closed (i.e.,
both the client and the server are in the closed state).

P2 From any reachable state, it is always possible to reach a state in which
the WebSocket connection has been properly closed. This means that
independently of how messages are exchanged, it is always possible to
properly close the WebSocket connection.

Table 5.5 summarises the results from the verification. We have considered three
possible configurations of the model. One where the client sends a message to the
server; one where the server sends a message to the client; and one where both
the client and the server sends one message each. The table lists the number
of Nodes and Arcs in the state space, the amount of Time used to generate
the state space, and the number of Terminal States. For all configurations, we
were able to establish the properties P0, P1 and P2 which provides confidence
in the correctness of the model. During the verification process, several minor
modelling errors were identified and fixed.

Table 5.5: Results of verification of the WebSocket CPN model

Client Sends
Message

Server Sends
Message

Nodes Arcs Time (secs) Terminal States

yes no 2747 9,544 1 2
no yes 2867 9,956 2 2
yes yes 39189 177,238 246 4
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The major drawback with state space exploration techniques is the state explo-
sion problem which means that the state space in many cases grows too large
to be handled with the available computing power or available memory. It is
interesting to observe that the size of the state space for the model is relatively
small for the configurations considered. This shows how our modelling approach
makes it possible to construct models at a high-level of abstraction so that it is
feasible to fully verify even industrial-sized protocols.

In [SKK14] we show that we can use the sweep-line method in order to reduce
the memory consumption of the verification and thereby alleviate the state
explosion problem. The basic idea of the sweep-line method is to exploit a
notion of progress exhibited by many systems. Exploiting progress makes it
possible to explore all reachable states while storing only small subsets of the
state space in memory at a time. This way, much larger state spaces can be
investigated since never all states need to be stored at the same time. The
additional structure imposed on CPNs by PA-CPNs means that PA-CPNmodels
have several potential sources of progress that can be exploited by the sweep-line
method. The control-flow in the service modules is source of progress as there
is progression from the entry point of the service towards the exit point of the
service. The life-cycle of a principal is another potential source of progress as
there will often be an overall intended order in which the services provided by
a principal is to be invoked, and this will be reflected in the life-cycle variables
of the principal.

Another source of progress are what we call service testers. A service tester is a
module that guides the verification process. These plug into PA-CPN models in
order to simulate the behaviour a user of the services provided by the protocol.
A service tester is attached to a PA-CPN model through fusion sets that bind
together places of the service tester and places in the service level of PA-CPN
models. These places are used to control the flow of the application by invoking
services and by receiving notification of the termination of services. The service
tester modules are created in such a way that they inherently progress from the
start of the test towards the end of the test. The sweep-line method typically re-
quires the users to create their own progress measures for each model. However,
by exploiting the structure of PA-CPNs it is possible to automatically generate
such progress measures for PA-CPN models.

5.7 Summary and Contributions of Papers

The contribution An Evaluation of Automated Code Generation with the Pet-
riCode Approach [Sim14a] is to evaluate our code generation approach and the
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PetriCode tool. The evaluation considered the criteria of platform indepen-
dence, integrability and readability of the generated code. Each of the criteria
were found to be met to an acceptable degree. Another contribution of this pa-
per was to provide evidence that the experimental results from the experiment
carried out by Buse and Weimer [BW08] are relevant to professional software
developers in addition to students. However, based on the discrepancy between
the experimental evaluation and the metric, it seems that the metric they pro-
pose may not be applicable to code in the network protocol domain. To the
best of our knowledge, there is no previous work evaluating integrability and
readability of automatically generated software.

The contributions of Implementing the WebSocket Protocol based on Formal
Modelling and Automated Code Generation [SK14b] is to evaluate our code
generation approach and PetriCode with regards to scalability and verifiability.
This was achieved by successfully using PetriCode to generate an implementa-
tion of the WebSocket protocol and validating the implementation. A second
contribution of this paper lies in the formal analysis of the PA-CPN model of
the WebSocket protocol.

The paper A Formal Definition of Pragmatic Annotated Coloured Petri Nets for
Automated Protocol Software Generation and Verification [SKK14] discusses
how we can exploit progress in PA-CPNs to make verification more efficient
through the use of the sweep-line method. This paper also gives experimental
results on the efficiency of various progress measures.

Platform independence, integrability and readability are evaluated using an ex-
ample of a simple framing protocol. However, we argue that the results are rel-
evant for larger protocols as well. For platform independence, larger protocols
just means that more templates need to be written for each language, but the
generality of the model is not affected. A similar argument can be made for inte-
grability where the mechanisms involved, explicit API modelling at the principal
level and code generation templates, are valid for large protocols. Readability
is evaluated by an empirical study based on short code snippets. Therefore, the
readability results should also be relevant for larger protocols. Verifiability and
scalability have been evaluated using the WebSocket PA-CPN model which is
an example of a large and complex protocol.



Chapter 6

Conclusions and
Future Work

In this chapter we summarise the contributions and conclusions that resulted
from the work done for this thesis. We also outline and discuss possible direc-
tions for future work.

6.1 Summary

In this thesis, we have presented a code generation approach where protocols
implementations are automatically generated from CPN models. The approach
has been implemented in the PetriCode tool and adds code generation capabil-
ities to the CPN ecosystem for the protocol domain.

Our code generation approach relies on a new class of CPNs called Pragmat-
ics Annotated Coloured Petri Nets (PA-CPNs). PA-CPNs are designed to be
descriptive while also facilitating code generation. This was realised by enforc-
ing a hierarchical structure where the first level defines the principal agents of
the protocol, the second level, defines the available services, and the third level
defines the detailed behaviour of each service.
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In PA-CPNs, the model elements are annotated by code generation pragmatics.
The pragmatics allow us to give additional information to the code generator.
PA-CPNs and pragmatics are independent of the target platforms. Platform
specific information are added by code generation templates. Pragmatics are
bound to templates by template bindings. To allow flexibility of the protocols
that can be generated and the target platforms, PetriCode allows users to define
pragmatics and template bindings using DSLs. All information about the target
platform are contained in code generation templates. Thus, platforms are chosen
by specifying a set of template bindings.

Our code generation approach consist of three steps. The first step is to parse
a PA-CPN model and deriving pragmatics. The next step is to generate an
Abstract Template Tree (ATT). Finally, the ATT is transformed to code by
executing the templates associated with each pragmatic on each node of the
ATT and combine the code fragments which contain all the platform specific
information.

Our code generation approach is implemented by the PetriCode tool. PetriCode
is designed to be extensible by using DSLs to allow the users to easily change
and expand the available pragmatics and template bindings through template
and binding descriptors.

We have evaluated our code generation approach based on the criteria we de-
scribed in Chap. 1:

• Readability. We evaluated the readability of generated code using an
automatic metric and an empirical study. In both the metric and ex-
perimental evaluations we used randomly selected snippets of generated
code and compared them to randomly selected snippets from high-quality
projects in the protocol domain. The metric based evaluation showed that
the generated code was somewhat more readable than non-generated code
while the empirical study showed that the generated was less readable but
within a standard deviation of the non-generated code.

• Platform Independence. Platform independence was evaluated by us-
ing PetriCode to generate implementations of a protocol for four different
platforms based on the same PA-CPN model annotated with the same
pragmatics. This evaluation also demonstrated that PA-CPN model are
general and sufficiently complete to generate code for several platforms
without modification.

• Integrability. We demonstrated integrability of code generated by Petri-
Code by showing how our approach allows generated code to use different
underlying libraries. We also used an example program to demonstrate
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that third party applications can use our applications through the inter-
face defined in the principal layer of PA-CPN models. This part of the
evaluation of integrability was also repeated with the generated WebSocket
implementation.

• Scalability. We evaluated scalability by using PetriCode to automatically
generate an implementation of the WebSocket protocol based on a PA-
CPN model. The WebSocket protocols is an industrial sized protocol and
generating code for it shows that our approach is able to scale to industrial
sized protocols. The generated WebSocket implementation was validated
using an example chat application and by applying a comprehensive test
suite.

• Verifiability. Verifiability was evaluated by verifying connection estab-
lishment and termination properties of the WebSocket PA-CPN model
using state space exploration. The verification showed that PA-CPNs,
while being descriptive and code generation models, are also verifiable.
Furthermore, we have described how we can exploit the structure of PA-
CPNs with the sweep-line method to allow for space efficient verification
of PA-CPN models.

6.2 Conclusions

PA-CPNs are inspired by the survey of the use of CPNs for the modelling and
verification of protocols discussed in Chap. 2. We argue that PA-CPNs are
descriptive since PA-CPNs have a fairly simple but still strict structure. Fur-
thermore, the service level modules have an imperative structure with a clearly
marked control-flow via the use of 〈〈Id〉〉 pragmatics. We have also shown that
PA-CPNs are verifiable and scalable while allowing code generation by being
able to model and verify the WebSocket protocol using PA-CPNs. Since PA-
CPN models are usable as descriptive, verification and code generation models,
this removes the need to keep different models synchronised, which otherwise
would be challenging.

We have constructed a code generation method that translates PA-CPN models
to code for various platforms. We have also developed a prototype tool that fol-
lows this approach. Our approach is flexible with respect to the pragmatics and
templates that are available. In the PetriCode tool, pragmatics and template
bindings can be defined using DSLs. This allows us to extend the code genera-
tion approach and tool to fit the needs of the user in different circumstances.

We have been able to evaluate all the key requirement we set out to achieve
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with our code generation approach. All the evaluations have been positive, in
that they indicate that our requirements are met. We have shown by example
that our approach is scales to industrial sized protocol such as the WebSocket
protocol. Furthermore, there is no reason to believe that we could not generate
code for protocols that are significantly larger than the WebSocket protocols as
well.

We evaluated verifiability of PA-CPNs and the scalability of our approach based
on a study by generating code for the WebSocket protocol. This study showed
that, even though the PA-CPN model of the WebSocket protocol is fairly large,
the state space remains manageable. This, together with the results showing
that PA-CPNs are amenable to the sweep-line method for state space exploration
shows that PA-CPNs are verifiable to a reasonable degree. The code generation
of the WebSocket protocol also showed that our approach is able to generate
code for industrial sized protocols and that it can be done within a short time.

We showed that platform independence is supported by our approach. We
showed this by generating code for several languages using the same PA-CPN
model. The breadth of the platforms we had chosen gives us confidence that the
platform independence is extendable to other platforms. However, we have only
evaluated one programming language that does not run on the JVM platform.

Integrability was evaluated by showing that we are able to use the generated code
for several platforms by writing programs that use the services of the generated
protocol. We were also able to show that our approach allowed us to change
underlying libraries. We demonstrated this by changing the network library and
showing that even this, fairly extensive change, only required changes local to a
few templates that had to do with networking. Even though this evaluation is
somewhat crude, the ease of developing the runner programs and the fact that
the network API is a central part of protocol implementation gives us confidence
that our result evaluating integrability has merit.

Readability was evaluated by using an automated metric and an empirical study.
The metric indicated that the generated code was, on average slightly more
readable than the generated code, with a large amount of variability in the
scores. In the empirical study we asked developers to evaluate the readability of
generated and handwritten code. In this study the generated code was evaluated
to be somewhat less readable than generated code, but within the standard
deviation.

The main finding of this thesis is that have been able to create a code generation
approach that generates high quality code for communication protocols based
on CPN models. The PA-CPN models that we use as a basis for code generation
are also descriptive and amenable to verification. Furthermore, we have showed
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that our approach scales to industrial sized protocols, is platform independent
and that the generated code is integrable and readable.

Table 6.1 summarises the extent to which related code generation approaches
meet the requirements we have evaluated for PetriCode. The approach presented
in [Phi06] is a hybrid of simulation based and structural analysis approaches
to code generation for HLPNs. The paper argues that the hybrid approach
produces more readable code than a naive simulation approach because fewer
checks are needed in the code. The approach, as described in [Phi06] only
produces code for the Java platform, however, it is possible that the approach
could be adapted for other platforms. The paper does not comment on the
verifiability of the models. However, it seems plausible that the Petri Nets
models in the approach are verifiable. We consider this approach to produce
interoperable code because the API of the generated code is defined by UML
class diagrams. The paper gives little evidence that the approach scales to large
applications.

In [LT07] the authors claim to generate readable by creating code with con-
structs that are similar to what human programmers would have created. The
approach is tailored to the Java programming language and no evidence is given
that the approach is transferable to other platforms. WF-nets, which are similar
to the models that are used as an intermediary step in the code generation, are
known to be verifiable [Aal97]. The paper does not argue that the code gener-
ated is integrable or that the approach scales well to larger systems although the
paper mentions that there exists efficient algorithms for translating the models
to code.

In [K+04] the authors make no mention on the readability or the platform
independence of the generated code. Moreover, the paper clearly states that
RENEW is based on the Java platform. Although the paper does not discuss
the verifiability of the models used, the reference net models that are used
RENEW are known to be verifiable [MWW10]. The paper does not mention
whether the generated code is integrable at the code level with third-party code.
However, the paper says that reasonably large applications, around 100 classes,
can be created using this approach which indicates that it is scalable.

The approach presented in [Mor00] is a simulation based approach. The paper
does not make any claims about the readability of the code. It is also dependent
on the SML platform. Since the approach extracts SML code from the model,
it is possible to use verifiable models. The paper also does not make any claims
about the integrability of the generated code. The paper mentions that the
generated code becomes very large even for moderately sized models, so the
approach is likely not scalable in the form presented in [Mor00].
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Approach Readable Platform
indepen-
dence

Verifiable Integrable Scalable

PetriCode X X X X X
[Phi06] X 7 X X 7

[LT07] X 7 X 7 7

Renew
[K+04]

7 7 X 7 X

[Mor00] 7 7 X 7 7

[KMZ+08] 7 7 X 7 X
PP-CPNs
[KW10]

7 7 X 7 7

[vdAJL05] 7 7 7 7 7

Table 6.1: Properties of related Petri net based code generation approaches.

The approach presented in [KMZ+08] is similar to the approach in [Mor00]. The
paper does not make any claims about the readability of the code and is also
based on the SML platform. The paper discusses state space exploration and
concludes that this is feasible. The paper makes no claims about the integrability
of the generated code. The paper also does not mention the scalability of the
approach, however, the size of the example is large, so we assume that it is
scalable.

In [KW10] PP-CPNs are used as the basis for code generation targeting the
Erlang language. The papers makes no claims about the readability of the
generated code. Furthermore, the approach is tailored to the Erlang platform
and may not be easily adapted for to other platforms even though PP-CPNs and
the intermediary representation CFGs are independent of the target language.
PP-CPN models are verifiable using state space exploration. However, the paper
make no claims about the integrability or the scalability of the approach.

In [vdAJL05], code for BPEL is generated. The approach is targeted at BPEL
and does not create code for other languages. The papers also makes no claims
on the verifiability, integrability, readability, or scalability of the approach.

We based our evaluation of the related approaches on best effort reading of the
relevant papers. This was due to the fact that, in many cases, the support-
ing computer tools are not publicly available. As can be seen from the table,
PetriCode is the only one that meets all the requirements we have set for our
approach.
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6.3 Future Work

We have identified several directions for future work based on the work in this
thesis that will allow our approach and tool to mature further and increase in
scope.

In this thesis we have applied our approach to two simple protocols and one
industrial sized protocol. In order to further evaluate the applicability of our
approach, studies of further use cases in the protocol and adjacent domains
would be needed.

Possible future improvements to the PetriCode tool include support for automat-
ically generating progress measures for verification purposes. This would make
it easier for users to employ the sweep-line method for verifying larger proto-
cols using PA-CPNs. It would also be interesting to investigate how suitable
PA-CPNs are to be used with various other advanced verification techniques.

We have evaluated the readability of the generated code, however, it is also
important that PA-CPN models are readable. Model readability could be eval-
uated by an experiment similar to the experiment we used to evaluate code
readability. Some challenges with evaluating the readability of PA-CPNs is that
experts on CPN models are more scarce than experts in the Java language.
Furthermore, the availability of descriptive CPN models to use as comparison
models is also scarce since most work with CPN until now has been more focused
on verifiability than descriptiveness. This makes such an evaluation challenging.
However, one possible approach would be to conduct interviews with protocol
and CPN experts to evaluate the readability of PA-CPNs.

In order to further improve the readability of code generated by our PetriCode,
PetriCode could be extended to allow the results from certain templates to be
factored out into methods or functions. Another improvement would be to sup-
port for easily combining templates so that users can make complex templates
by combining several simple and easy to inspect templates. Being able to hide
and display pragmatics and verification artefacts such as test-drivers in a CPN
editor could also promote the descriptiveness of the model. However, this is
currently out of the scope of PetriCode.

Another possible direction for future work is to add support for validation of
code generation templates. One idea for doing this would be to use automated
testing of the templates. This could be done either by statically checking the
text or by checking that the produced code runs as expected by using unit testing
and similar techniques. It would also be interesting to investigate the possibility
of using the PA-CPN models and state spaces to automatically generate test-



86 Conclusions and Future Work

cases for the protocol implementation. Finally, formal verification of the code
generation process and the generated code would be ideal, although it might be
difficult to achieve in practice.

While we have provided a preliminary evaluation of the speed of code generation,
evaluating the speed of generated code has been left for future work. It is
possible that the structure imposed by PetriCode may introduce some overhead
in the generated code. However, our hypothesis is that it is possible, through
careful design of pragmatics and templates, to generate protocols with good
performance characteristics for most platforms using PetriCode.

Evaluating the quality of automatically generated code in terms of the correct-
ness and the amount of flaws in generated code compared to non-generated code
is left for future work. Such qualities are usually evaluated based on produc-
tion code. Since PetriCode has not been used to generate production software
yet, we have not been able to evaluate these qualities. However, in [Tol04] the
authors argue that template based approaches can yield better quality code
since the templates can be written by experts and thoroughly checked, while
the models are validated and therefore also has a high degree of correctness and
few flaws. We agree with this argument although we acknowledge that, to the
best of our knowledge, there is not yet much strong empirical evidence support-
ing this argument. Evaluating maintainability, is another potential avenue of
further evaluation.

A final direction for future work is to explore the use of our code generation
approach for other domains than communication protocols. We have started this
by using PetriCode for generating code for the embedded domain [KS14]. This
work can be expanded by using our approach to generate code for Web services
and Web applications. These domains are good candidates for our approach
since they are close to the protocol domain even though several approaches
are able to generate code for these domains already. Furthermore, this could
allow us to combine PetriCode with existing code generation approaches for web
applications.

In this thesis we have described our code generation approach and the PetriCode
tool. Furthermore, we have shown that the PetriCode tool is able to generate
quality code for the network protocol domain. We believe that this approach
and even the PetriCode tool, with suitable modifications, can be generalised to
be usable for most programming domains.
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Abstract. Communication protocols constitute central building blocks
in most modern IT systems as they define components, rules, and lan-
guages that make data communication possible. The development of cor-
rect protocols is a challenging engineering discipline, making modelling
and validation of protocol design an important application domain for
Coloured Petri Nets (CPNs). We illustrate the practical application of
CPNs for protocol validation by focusing on selected aspects of four re-
cent projects involving industrial-sized protocols. These projects demon-
strate how CPNs can be used to model protocol elements and improve
protocol specifications, how state space exploration can be used to verify
protocol properties, and how behavioural visualisation in combination
with a CPN model provides an effective way of rapidly constructing an
executable prototype of a protocol design.

1 Introduction

Communication protocols play an important role in most IT systems. A promi-
nent example is the vast amount of web applications that are in use today for,
e.g., online banking, shopping, government administration, and entertainment.
The services provided by these applications all rely on the protocols governing
the operation of the Internet. Other examples are telecommunication systems,
logistic systems with sensors and actuators, and control systems in vehicles.
All these systems rely heavily on communication and synchronisation between
concurrently executing software components and subsystems. As protocols are
to support still more complex services that are critical to both the operation of
companies and the everyday life of citizens, it is important that they are working
correctly already from the initial deployment.

Protocol engineering [80] typically involves a specification of the service that
the protocol is to provide. Through a synthesis or design step, a protocol design
is developed with the aim of providing the desired service. For protocol de-
sign, functional and performance validation can be conducted to investigate and
reason about the properties of the design. Functional validation focuses on the

⋆ Work supported by the Research Council of Norway project 194521 (FORMGRID)
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logical correctness of the protocol such as the absence of deadlocks and livelocks,
that a request is always followed by a response, or whether the proposed protocol
design provides the desired services. Performance validation is concerned with
quantitative properties such as delays, throughput, and response time. Even-
tually, the protocol design is implemented and may then be subject to further
testing.

Protocol design is in many cases a challenging task. One reason for this is
that the execution of a protocol can proceed in different ways, e.g., depending on
which messages are lost in transmission, the scheduling of the protocol entities,
the time at which events are received from the environment of the protocol,
and the execution path taken by the protocol entities. Another reason is that a
protocol by nature involves independently scheduled entities which makes testing
and reproduction of executions difficult. All this means that protocols often have
a very large number of possible executions. In this process, it is easy for a protocol
engineer to overlook important interaction patterns which may in turn lead to
gaps or malfunction of the protocol.

The specification of the protocol service and the protocol design is, in many
cases, based on natural language descriptions. One example of this is the Request
for Comments (RFC) documents published by the Internet Engineering Task
Force (IETF) [47]. Natural language specifications of protocols often have many
issues that needs to be resolved before a properly working implementation can
be obtained. One class of issues originates from the fact that such specifications
are inherently ambiguous making it difficult to achieve inter-operability between
independent implementations. Another source of issues to resolve is that the
specifications are often incomplete in that the behaviour of the protocol is not
described for all cases.

The challenges outlined above have made protocols a prominent application
domain for formal description techniques [46], including Petri Nets [93, 97]. In
this paper we concentrate on the use of Coloured Petri Nets (CPNs) [56, 61, 59]
for modelling and functional validation of protocol designs. Our purpose is to
provide an introduction to, and an overview of, how CPNs have been applied for
practical validation of protocol designs. We approach this by presenting selected
parts of CPN models and associated results originating from projects conducted
in an industrial context with industrial-sized protocols. More specifically, we
present in the core of this paper the application of the CPN modelling language,
tools, and techniques for functional validation of the following protocols:

The DYMO Routing Protocol. The Dynamic On-Demand Routing Protocol
for Mobile Ad-hoc Networks (DYMO) [15] is a routing protocol for mobile ad-
hoc networks being developed by the MANET working group of the IETF. The
DYMO case study is used to illustrate protocol modelling with CPNs and to
introduce the basic constructs of the CPN modelling language. Our presentation
is based on the CPN model constructed in a project on modelling and validating
DYMO [25].

The Generic Access Networks (GAN) Architecture. The GAN protocol
architecture [2] is developed by the 3rd Generation Partnership Project (3GPP)
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for accessing telephone services via Internet Protocol (IP) networks. The GAN
case study is used to introduce the basics of explicit state space exploration and
show how it can be used in a fully automatic manner as a first step in the
verification of a protocol design. The presentation is based on the project [30]
conducted at TietoEnator A/S to specify the detailed usage of protocol software
and services via specialisation of the GAN protocol architecture.

The Routing Interoperability Protocol (RIP). The RIP protocol devel-
oped at Ericsson Telebit A/S enables routing of IP packets between core IP
networks and mobile ad-hoc networks. The RIP case study is used to illustrate
how application-specific behavioural visualisation can be applied on top of CPN
models. In particular, how it can be used to obtain a first executable prototype
of the protocol design allowing for early experiments and for presentation to
customers and management with the aim of soliciting protocol design require-
ments. Our presentation is based on the project [74] conducted in cooperation
with Ericsson where CPN modelling was used to specify the operation of the
RIP protocol.

The Edge Router Discovery Protocol (ERDP). The ERDP protocol is
an IPv6-based protocol allowing edge routers to configure gateways in mobile
ad-hoc networks with IP address prefixes. The ERDP case study is used to il-
lustrate how the combined use of CPN modelling, state space exploration, and
behavioural visualisation all contributed to identify and resolve design issues and
errors during ERDP development. Our presentation is based on the project [67]
conducted at Ericsson Telebit A/S on the design of the ERDP protocol.

The rest of this paper is organised as follows. Section 2 provides a high-
level overview of CPNs and related techniques used for functional validation
of protocol designs. Sections 3-6 then present the application of CPNs on the
four protocols introduced above. In Sect. 7 we survey related work where CPNs
have been used for protocol validation. Finally, Sect. 8 contains conclusions and
outlines directions for future work. The reader is assumed to be familiar with
the basic ideas of Petri nets [97] and TCP/IP communication protocols [21]. The
reader is referred to [59] for a comprehensive introduction to CPNs, state space
exploration, and behavioural visualisation of CPN models.

2 Background: CPNs and Functional Protocol Validation

The CPN modelling language belongs to the family of High-level Petri Nets and
combine Petri Nets with the Standard ML (SML) programming language [100].
Petri Nets provide the foundation of the graphical notation and the semanti-
cal foundation for modelling concurrency, synchronisation, and communication.
The functional programming language SML provides primitives for representing
sequential aspects of protocols (such as data manipulation) and for creating com-
pact and parameterisable models. Formal modelling and validation with CPNs
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is supported by CPN Tools [95] which provides support for construction, sim-
ulation, functional and simulation-based performance analysis of CPN models.
The addition of data types and a high-level programming language offered by
CPN (in contrast to ordinary Petri nets) is highly important when constructing
Petri net models of protocols. As an example, with ordinary Petri nets each mes-
sage type exchanged between protocol entities need to be present with multiple
places, and data manipulation (e.g., comparison of data packet content such as
sequence numbers) needs to be modelled relying only on net structure resulting
in models that are difficult to comprehend.

The advantage of CPNs (and formal description techniques in general) is that
they are based on the construction of executable models that make it possible to
observe and experiment with the protocol design prior to implementation and
deployment using, e.g., simulation. This typically leads to more complete pro-
tocol specifications since the model will not be fully operational until all parts
of the protocol have been (at least abstractly) specified. Furthermore, the con-
struction of a formal and executable model helps identify and resolve ambiguities
that may be present in a natural language specification. Another advantage is
the support for model abstractions that makes it possible to specify the opera-
tion of the protocol without being concerned with implementation details such
as message layout. A model also makes it possible to explore larger scenarios of a
protocol system than what is in many cases practically possible in a laboratory.

2.1 Simulation and Behavioural Visualisation

During a protocol model construction phase it is common to use interactive sim-

ulation of the CPN protocol model to investigate the operation of the protocol
in detail. An interactive simulation is similar to single-step debugging and the
execution of the CPN model is viewed directly on its graphical representation
and provides a simple way of validating that the model operates as intended. In
an interactive simulation, the modeller is in charge and determines the next step
by selecting between the enabled events in the current state. Interactive simula-
tion is typically combined with the use of automatic simulation which is similar
to program execution and the purpose is to execute the CPN model without
detailed interaction and inspection. Automatic simulation is typically used for
testing purposes, and the modeller typically sets up appropriate breakpoints and
stop criteria.

Even though the CPN modelling language supports abstraction and hierar-
chical modules there can still be a significant amount of detail being presented
with this approach, and observing every single step either in an interactive sim-
ulation or in a log file based on an automatic simulation is often too detailed a
level of observation when investigating the behaviour of a model. Furthermore,
even if the CPN model is executable, it still lacks the application- and domain-
specific appeal of a conventional software prototype. CPN Tools can use the
BRITNeY Suite animation framework [111] to create behavioural visualisation
[112] and interaction graphics on top of CPN models. The animation frame-
work is a stand-alone application, and CPN Tools invokes the primitives of the
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animation framework using remote procedure calls. The animation framework
supports a wide range of diagram types via a plug-in architecture that makes
it possible to visualise the execution of protocols using both standard diagrams
(e.g., message sequence charts) in addition to tailored, application-specific dia-
grams. In this way it is possible to investigate the behaviour of a protocol design
while overcoming the limitations of interactive and automatic simulations. In
this paper we give some examples of both standard and application-specific di-
agrams. The reader is referred to [111] for a comprehensive introduction to the
animation framework.

2.2 State Spaces and Verification

Verification of behavioural properties of protocols with CPNs [66] is supported
by explicit state space exploration [6]. In its simplest form this approach involves
computing a directed graph where the nodes corresponds to the set of reachable
states of the CPN model and the arcs represent occurrences of events causing
state changes. State spaces can be constructed fully automatically by the state
space tool in CPN Tools and guarantees complete coverage of all executions.
State space hence provides a highly systematic error-detection technique that
make it possible to automatically (i.e., algorithmically) check whether a protocol
has a formally stated desired property. In addition, state space methods have the
advantage that counter examples (error-traces) can be automatically synthesised
if the protocol does not satisfy a given property.

The main disadvantage of state space exploration is the inherent state explo-
sion problem [103], and a multitude of advanced state space methods have been
developed aimed at alleviating the inherent state explosion problem. Early work
on addressing state explosion in the context of CPNs concentrated on computer
tool support for, and initial experiments with, the equivalence [57], symmetry
[20, 24, 48, 58], and the stubborn set methods [102]. The symmetry and equiv-
alence methods rely on constructing a condensed state space where each node
represents an equivalence class of states and each arc represents an equivalence
class of events. The symmetry method has, e.g., been applied on a mutual ex-
clusion protocol [62] and an embedded systems protocol [81]. The equivalence
method has only been used on a small stop-and-wait protocol [63] due to the
obligation of providing a manual soundness proof for the user-provided equiva-
lence relation. The stubborn set method [101, 103] relies on analysing enabling
and disabling dependencies between events and use this to explore only a sub-
set of the events in each state encountered during state space exploration. The
rich SML-based inscription language which is fundamental building block of the
CPN modelling language, however, poses problems for the analysis of transition
dependencies in the context of CPNs [72] – unless relying on an unfolding of
the CPN model to the equivalent Place/Transition net. Hence, restrictions on
the modelling language are required to apply the stubborn set method without
relying on unfolding. Another widely used verification approach in the context
of CPNs is based is the methodology of [9]. A central component of this ap-
proach is an explicit modelling of both the protocol and its service, and the use
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of finite-state automata language comparison as a criteria for checking that the
protocol conforms to the specified service. Recent work on addressing the state
explosion problem in the context of CPNs has concentrated on making more
economical use of memory resources when exploring the state space. Memory is
(in many cases) the limiting factor in state space exploration of CPN models due
to the large state vectors. This work resulted in the development of the sweep-
line method [19, 60] and the comback method [110, 27]. The sweep-line suite of
methods [19, 69, 68, 8, 83] is aimed at on-the-fly verification and exploits a no-
tion of progress found in many concurrent systems. Exploiting progress allows
for the deletion of states from memory during a progress-first traversal of the
state space. This in turn reduces peak memory usage. The sweep-line method
has been used [41, 105, 34, 35] for the verification of several industrial-sized pro-
tocols specified using the CPN modelling language. The comback method can be
viewed as an exploration-order independent storage mechanism based on hash
compaction [98, 113]. It allows the usually large state vectors of CPN models to
be stored in compact form, and the full state vector of a state is reconstructed
when needed for comparison with newly generated states. Unlike the classical
hash compaction method, the comback method guarantees full coverage of the
state space. The ASAP model checking platform [109] has support for a number
of these advanced state space methods – including methods developed outside
the context of CPNs.

2.3 Formal Specification Techniques for Protocols

CPNs and Petri Nets represents one approach to the formal specification and
verification of protocols. Historically, several non-Petri nets based languages tar-
geting protocol specification have been developed, in particular in relation to
telecommunication standardisation efforts [75, 94]. The Language of Temporal
Ordering Specification (LOTOS) [50, 1, 14] was developed as part of Interna-
tional Standardisation Organisation (ISO) efforts and linked to the development
of the Open Systems Interconnection (OSI) reference model. LOTOS is founded
on the Calculus of Communicating (CCS) [86] and add a data type compo-
nent to CCS based on algebraic specification. The Extended State Transition
Language (Estelle) [49] also originated from OSI standardisation efforts and is
based on extended finite state machines [13] combined with extensions to the
PASCAL programming language. The Specification and Description Language
(SDL) [55] has evolved in several generations since 1980 within the Interna-
tional Telecommunication Union - Telecommunication Sector (ITU-T). SDL is
based on communicating extended state machines and has in later versions been
equipped with a formal semantics [55] making it amendable for formal verifica-
tion. A Unified Modelling Language (UML) Profile [52] linking SDL and UML
also exists. A comparison of these classical specification languages can be found
in [5]. Estelle, SDL, and CPNs are all equipped with a language for modelling
data manipulation, but have a different theoretical foundations (extended state
machines versus Petri Nets). Another difference is that CPNs have very few (but
still powerful) modelling constructs in contrast to languages such as Estelle and
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SDL which have a large and complex set of language constructs to describe the
behaviour of protocol entities and their interaction. From this perspective, CPNs
provide a simpler and more lightweight approach to protocol modelling which
at the same time less implementation specific than, e.g., typical SDL protocol
specifications. In that respect, CPNs are close to languages like LOTOS that
focus more on abstract and implementation independent protocol specification.
Within ITU-T languages has also been developed related to protocol data rep-
resentation. The Abstract Syntax Notation One (ASN.1) [53] is a notation of
describing data structures carried in messages exchanges between protocol en-
tities. The Encoding Control Notation (ECN) [54] is a language for specifying
ASN.1 encoding rules. In terms of specification of data structures, the SML data
types for defining colour sets in CPNs provide similar capabilities as ASN.1. The
Testing and Test Control Notation 3 (TTCN-3) [26] is a language for writing
protocol test specification.

The Process Meta Language (Promela) language [46] providing the modelling
foundation of the SPIN tool [45] has been widely used for protocol design and
verification. Promela is based on Communication Sequential Processes (CSP)
[44] and is in contrast to CPNs, a textual modelling language with a different
theoretical foundation. In a UML context, state diagrams (charts) [43] are used
for modelling protocol modules (e.g., [84]), and message sequence charts (MSCs)
[51] (sequence diagrams in UML) are being used in particular for specifying pro-
tocols requirements that can later be used in protocol verification [38, 4]. MSCs
have also been used for protocol specification using higher-level control flow con-
structs. In contrast to MSCs which are action-oriented, then state charts and
CPNs are both state and action-oriented modelling formalisms. Timed automata
[7] as supported, e.g., by the UppAAl tool has also been used for the specifica-
tion and verification of protocols (e.g., [96, 29]). The UppAal models consists of
a network of network of communicating timed automata, and are specifically
suited for modelling and verifying protocol where continuous timing constraints
are essential. In comparison, the timed concepts provided by CPNs is a discrete
time concept of time. An example on the use of CPNs to model protocols with
time constraints can be found in [71].

3 The DYMO Protocol

Modelling a protocol involves developing a representation of the messages (or
packets) exchanged between the protocol entities , the procedure rules and in-

ternal state of the protocol entities guarding the processing of messages, and
developing a model of the environment in which the protocol is being executed.
The environment model typically encompass an abstract representation of the
communication medium (or channel) over which the protocol operates. The pri-
mary purpose of this section is to illustrate how these protocol elements can
be represented in the CPN modelling language using the Dynamic On-demand
Routing Protocol (DYMO) [15] for mobile ad-hoc networks as an example. This
section additionally shows how to construct compact parameterised CPN mod-
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els where the number of protocol entities can easily be configured, and how
communication networks with a dynamic topology can be modelled.

3.1 MANETs and Operation of the DYMO Protocol

A mobile ad-hoc network (MANET) comprises a collection of mobile nodes, such
as laptops, personal digital assistants, and mobile phones, capable of establishing
a communication infrastructure for their common use. Ad-hoc networking differs
from conventional networks in that the nodes operate in a fully self-configuring,
autonomous and distributed manner, without any preexisting communication
infrastructure such as base stations and routers. Network layer and routing pro-
tocols for ad-hoc networking (including the DYMO protocol) are currently under
development by the IETF MANET working group.

The operation of the DYMO protocol consists of two parts: route discov-

ery and route maintenance. Route discovery is used to establish routes be-
tween nodes and begins with an originator node multi-casting a Route Request
(RREQ) message to all nodes in its immediate range. A RREQ message has a
sequence number to enable other nodes in the network to judge the freshness
of the route request. The ad-hoc network is then flooded with RREQs until the
request reaches the target node (provided that there exists a path from the orig-
inating node to the target node). The target node replies with a Route Reply
(RREP) message unicasted hop-by-hop back to the originator node. The route
discovery procedure is requested by the Internet Protocol (IP) layer on a node
when it receives an IP packet for transmission and does not have a route in its
routing table to the target node.

Figure 1(left) depicts the topology of a MANET consisting of six nodes num-
bered 1–6. An edge between two nodes indicates that the nodes are within direct
transmission range. In this case, we assume that all communication links are
symmetric. Figure 1(right) (to be discussed below) lists for each node the rout-

ing table entries created as a result of executing a routing discovery procedure
with node 1 as the originator node and node 6 as the target node. The routing
table entries in Fig. 1(right) are specified as a pair (target ,nexthop). The second
column specifies the entries that are created as a result of a node receiving the
RREQ. The third column lists the entries created as a result of receiving the
corresponding RREP. When explaining the operation of the DYMO CPN model
below, we will use the scenario in Fig. 1 as a running example.

The message sequence chart (MSC) in Fig. 2 depicts one possible exchange
of messages in the DYMO protocol when the originating node 1 establishes
a route to target node 6 in the topology in Fig 1(left). Solid arcs represent
multi-cast transmission and dashed arcs represent unicast transmission. In the
MSC, node 1 multi-casts a RREQ which is received by nodes 2 and 3. When
receiving the RREQ from node 1, nodes 2 and 3 create an entry in their routing
table specifying a route back to the originator node 1. Since nodes 2 and 3 are
not the target of the RREQ they both multi-cast the received RREQ to their
neighbours (nodes 1, 4 and 5, and nodes 1 and 6, respectively). Node 1 discards
these messages as it was the originator of the RREQ. When nodes 4 and 5 receive
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the RREQ they add an entry to their routing table specifying that the originator
node 1 can be reached via node 2. When node 6 receives the RREQ from node 3,
it discovers that it is the target node of the RREQ, adds an entry to its routing
table specifying that node 1 can be reached via node 3, and unicasts a RREP
back to node 3. When node 3 receives the RREP it adds an entry to its routing
table stating that node 6 is within direct range, and use its entry in the routing
table that was created when the RREQ was received to unicast the RREP to
node 1. Upon receiving the RREP from node 3, node 1 adds an entry to its
routing table specifying that node 6 can be reached using node 3 as the next
hop. The RREQ is also multi-casted by node 4, but when node 2 receives it
again, it will be discarded by node 2 because it has already processed the RREQ
message once. Node 5 also multi-casts the RREQ, but nodes 2 and 6 also discard
the RREQ message as it has already been received once. From Fig. 1(right) it can
be seen that upon completion of the route discovery procedure, a bidirectional
route has been discovered and established between node 1 and node 6 using node
3 as an intermediate hop.

The topology of a MANET changes over time because of the mobility of
the nodes. DYMO nodes therefore perform route maintenance where each node
monitors the links to the nodes it is directly connected to. The DYMO protocol
has a mechanism to notify nodes about routes that become broken due to nodes
moving out of range of each other. This is done by sending Route Error (RERR)
messages which have the effect of informing nodes using the broken route that
a new route discovery is needed in order to reestablish a communication path.

3.2 CPN Model Overview and Message Modelling

The DYMO CPN model is a hierarchical model organised in 14modules . Figure 3
shows the module hierarchy of the CPN model. Each node in Fig. 3 corresponds
to amodule with System representing the top-level module of the CPN model. An
arc leading from one module to another indicates that the latter is a submodule

of the former. The model is organised into two main parts. The DYMOProtocol
module and its nine submodules model the DYMO protocol entities including the
internal state of the protocol entities and the procedure rules for receiving mes-
sages, internal processing, and sending of messages. The MobileWirelessNetwork

3 6

2 5

1

4 Node RREQ RREP

1 (6,3)
2 (1,1)
3 (1,1) (6,6)
4 (1,2)
5 (1,2)
6 (1,3)

Fig. 1. Example MANET topology (left) and routing table entries (right).
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Fig. 2. Message exchange scenario showing DYMO route discovery procedure.

module and its two submodules model the environment for the DYMO protocol.
This includes the modelling of how messages are transmitted over a wireless link
and the modelling of how the mobility of the nodes affects the current topology
of the network. The division of the model into submodules reflects the structure
of the DYMO specification [16] and hence maintains a close structural relation-
ship between the natural language specification and the formal CPN model. The
CPN model does not capture the transmission of payload from the application
layer as the focus of the model is on the route establishment and maintenance
of the DYMO protocol.

System

DYMO Protocol Mobile Wireless Network

Wireless Packet Transmission

Mobility

Initiate Route Discovery

Receive Error Messages

Process Incoming Messages

Active Link Monitoring

Process RREQ

Process RERR

Process RREP

Receive Routing Messages 

Route Table Timeouts

Fig. 3. Module hierarchy for the DYMO CPN model.

The top-level module System is shown in Fig. 4 and is used to connect the
two main parts of the model. It corresponds to the System node in Fig. 3. The
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Fig. 4. Top-level System module of the DYMO CPN model.

module has two substitution transitions drawn as rectangles with double-line
borders. Each of the substitution transitions have an associated tag positioned
next to it specifying the name of the associated submodule. The DYMOProtocol
substitution transition has the DYMOProtocol module as its associated sub-
module, and the MobileWirelessNetwork substitution transition has the module
MobileWirelessNetwork as its associated submodule. In this model, the substitu-
tion transition has the same name as its associated submodule (but this is not
generally required).

The two socket places DYMOToNetwork and NetworkToDYMO connected to
the substitution transition DYMOProtocol are used to model the interaction
between the DYMO protocol and the MANET environment as represented by
the submodules of the MobileWirelessNetwork substitution transition. The socket
place LinkState is used to model the active link monitoring that nodes perform
to check which neighbour nodes are still reachable. When the DYMO protocol
module sends a message, it will appear as a token representing a network packet
on the socket place DYMOToNetwork. Similarly, a network packet to be received
by the DYMO protocol module will appear as a token on the NetworkToDYMO
socket place. Each of the socket places in Fig. 4 (places connected to a substitu-
tion transition) is associated with a port place in the submodule associated with
the substitution transition that the socket place is connected to. The association
between a socket and a port place has the effect that the port and the socket
places will always have identical markings (tokens). An arc leading to a socket
place from a substitution transition means that transitions on the submodule
associated with the substitution transitions will add tokens on this place. Anal-
ogously, an arc leading from a socket place to a substitution transition means
that transitions on the submodule will remove tokens from this place.
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The colour set (data types) of each place determining the kind of tokens that
can reside on the place is written below each place. The colour set declarations
used in Fig. 4 is provided in Fig. 5. A record colour set is used for representing
the packets transmitted over the wireless links. A NetworkPacket consists of
a source (field src), a destination (field dest), and some data (payload). The
DYMO messages are designed to be carried in User Datagram Protocol (UDP)
datagrams. This means that the network packets are abstract representations
of IP/UDP datagrams. The model abstracts from all fields in the IP and UDP
datagrams (except source and destination fields) as only these impact the DYMO
protocol logic. The source and destination of a network packet are modelled
by the IPAddr colour set. There are two kinds of IP addresses in the model:
UNICAST addresses and the LL MANET ROUTERSmulti-cast address. The multi-cast
address is used, e.g., in route discovery when a node is sending a RREQ to all
its neighbouring nodes. Unicast addresses are used as source of network packets
and, e.g., as destinations in RREP messages. A unicast address is represented
as an integer from the colour set Node. Hence, the model abstracts from real IP
addresses and identify nodes (communication interfaces) using integers in the
interval [1;N ] where N is a model parameter specifying the number of nodes in
the MANET.

(* --- Nodes and abstract IP/UDP messages --- *)

colset Node = int with 0 .. N;

colset IPAddr = union UNICAST : Node + LL_MANET_ROUTERS;

colset NetworkPacket = record src : IPAddr * dest : IPAddr *

data : DYMOMessage;

(* --- DYMO service --- *)

colset RouteRequest = record originator : Node * target : Node;

colset DYMORequest = union ROUTEREQUEST : RouteRequest;

colset RouteResponse = record originator : Node * target : Node *

status : BOOL;

colset DYMOResponse = union ROUTERESPONSE : RouteResponse;

Fig. 5. Colour set declarations for nodes, network packets, and DYMO service.

The two places DYMORequest and DYMOResponse in Fig. 4 are used to
interact with the service provided by the DYMO protocol. A route discovery for
a specific destination is requested by putting a token on the DYMORequest place
and a DYMO response to a route discovery request is then provided by DYMO
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as a token via the DYMOResponse place. The colour sets DYMORequest (see
Fig. 5) specifies the identity of the originator node requesting the route and
the identity of the target node to which a route is to be discovered. Similarly, a
DYMOResponse message contains a specification of the originator, the target,
and a boolean status specifying whether the route discovery was successful.
The colour sets DYMORequest and DYMOResponse are defined as union types to
make it easy to later extend the model with additional requests and responses.
By setting the initial marking of the place DYMORequest, it can be controlled
which route discovery requests are to be made.

The small circles and associated boxes in Fig. 4 show the current marking of
the CPNmodel. The small circle positioned inside a place indicates the number of
tokens on the place in the current marking. In Fig. 4, there is a single token on the
place DYMORequest with colour ROUTEREQUEST({originator=1,target=6}) as
specified in the box positioned next to the small circle. This marking corresponds
to the DYMO protocol being requested to establish a route from node 1 to node
6 as considered in the scenario in Fig. 1.

3.3 Modelling the DYMO Protocol Entities

The top-level module for the DYMO protocol part of the CPN model is the
DYMOProtocol module shown in Fig. 6. The module has five substitution tran-
sitions modelling initiating route requests (substitution transition InitiateRoute-
Discovery), reception of RREQ and RREP messages (substitution transition
ReceiveRoutingMessages), the reception of RERRs (substitution transition Re-
ceiveErrorMessages), processing of incoming messages (substitution transition
ProcessIncomingMessages), and timer management associated with the routing
table entries (substitution transition RouteTableEntryTimeouts). The places DY-
MORequest, LinkState, and NetworkToDYMO are input port places of the module
as indicated by the In tag positioned next to them. Each of these places are asso-
ciated with the accordingly named socket places in Fig. 4. Similarly, the places
DYMOToNetwork and DYMOResponse are output port places as indicated by the
Out tag positioned next to them, and they are associated to the accordingly
named socket places in Fig. 4

All submodules of the substitution transitions in Fig. 6 create and manipulate
DYMO messages which are represented by the colour sets defined in Fig. 7. The
definition of the colour sets used for modelling the DYMO messages is based on
a direct translation of the description of DYMO messages as found in the DYMO
specification [16]. In particular, the same names of message fields as in [16] have
been used. The model abstracts from the compact packet layout defined for the
DYMO protocol. This is done to ease the readability of the CPN model, and
since the packet layout is not important when considering only the functional
operation of the DYMO protocol.

The place RoutingTable and the place OwnSeqNum are used to model the
routing table and the sequence number of nodes, respectively, that are main-
tained as part of the internal state of each mobile node. In the marking depicted
in Fig. 6 both of these places contain a multi-set containing six tokens. Within
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Fig. 6. The DYMOProtocol module.

the boxes specifying the colours of the individual tokens, ++ (pronounced and)
is used to denote union of multi-sets and ‘ (pronounced of) is used to specify
the coefficients (i.e., the number of occurrences of tokens with a given colour).
The colour set SeqNum used to represent the sequence number of a node was
defined above, and the colour set RouteTable is defined in Fig. 8. To allow each
node to have its own sequence number, we use the colour set NodexSeqNum. The
marking in Fig. 6 corresponds to a MANET with six mobile nodes. The first
component of each token on the place OwnSeqNum specifies the identity of a
node and the second component specifies the sequence number of the node. Ini-
tially, the sequence number of all nodes is set to one. Similarly, it can be seen
that the routing table of each mobile node is empty as represented by the empty
list ([]) specified for each node in the marking of RoutingTable.

The submodules of the DYMOProtocol module all need to access the routing
table and the sequence number maintained by each node. To reduce the num-
ber of arcs in the modules, the routing table and the sequence numbers have
been modelled using fusion sets . A fusion set allows a set of places in different
modules to be linked together into one compound place across the hierarchical
structure of the model. In this case, we have a fusion set OwnSeqNum (for linking
together places modelling the sequence number of each node) and a fusion set
RoutingTable (for linking the places modelling the routing table of each node).
The name of the fusion set which a place belongs to (if any) is written in a tag
positioned next to the place.
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colset SeqNum = int with 0 .. 65535;

colset NodexSeqNum = product Node * SeqNum;

colset NodexSeqNumList = list NodexSeqNum;

colset RERRMessage = record HopLimit : INT *

UnreachableNodes : NodexSeqNumList;

colset RoutingMessage = record TargetAddr : Node * OrigAddr : Nodes *

OrigSeqNum : SeqNum * HopLimit : INT *

Dist : INT;

colset DYMOMessage = union RREQ : RoutingMessage + RREP : RoutingMessage +

RERR : RERRMessage;

Fig. 7. Colour set declarations for DYMO messages.

colset RouteTableEntry = record

Address : IPAddr * SeqNum : SeqNum *

NextHopAddress : IPAddr * Broken : BOOL *

Dist : INT;

colset RouteTable = list RouteTableEntry;

colset NodexRouteTable = product Node * RouteTable;

Fig. 8. Colour set declarations for routing table entries.

Initiate Route Discovery Module. We consider the InitiateRouteDiscovery
module shown in Fig. 9 as a representative example of a submodule at the
most detailed level of the CPN model. This module specifies how the route
discovery procedure is initiated when a request for a route discovery arrives via
the DYMORequest input port. The rectangles in Fig. 9 are ordinary transitions
(i.e., non substitution transitions) which means that they can become enabled

and occur . In the marking shown in Fig. 9, a token corresponding to a request
for a route discovery originating at node 1 and targeting node 6 is present on
the DYMORequest place. In this marking, the transition ProcessRouteRequest is
enabled in the following binding :

〈rreq={originator=1,target=1}〉

which binds the variable rreq of colour set RouteRequest to the value in the
ROUTERREQUEST. Evaluating the input arc expression on the arc from DYMORe-
quest to ProcessRouteRequest results in a multi-set consisting of the single token
present on place DYMORequest. The effect of an occurrence of ProcessRequest
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Fig. 9. The Initiate Route Discovery module - initial marking.

with the binding above in the marking in Fig. 9 is that the token on DYMORe-
quest is removed and a token is added to place Processing. The colour of the
token added to Processing is obtained by evaluating the arc expression on the
arc from ProcessRouteRequest to Processing in the binding from above:

(#originator rreq,0,rreq)

The SML operator #originator extracts the originator field in the value bound
to rreq. The marking resulting from the occurrence of ProcessRouteRequest is
shown in Fig. 10. A route request being processed is represented by a token on
Processing over the colour set NodexRCxRouteRequest which is a product type.
The first component of the token on Processing specifies the node processing the
route request (i.e., the originator), the second component specifies how many
times the RREQ has been retransmitted, and the third component specifies the
route request.

In the marking shown shown in Fig. 10, the transition CreateRREQ is enabled
with the binding:

〈rc=[],rreq={originator=1,target=1},rc=0,n=1,seqnum=1〉

The expression in square brackets positioned next to the CreateRREQ transi-
tion is a guard specifying an additional boolean conditions (beyond the presence
of required tokens on input places) for the CreateRREQ transition to be enabled.
In this case, the guard specifies that for the transition to be enabled, a route
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Fig. 10. The Initiate Route Discovery module - after ProcessRouteRequest occurrence.

must not already exist in the route table rt to the target node #target, and
the number of times rc the current route request has been retransmitted must
be less than the retransmission limit RREQ TRIES for RREQs. The SML function
hasRoute used in the guard is implemented as follows:

fun hasRoute (target, rt:RouteTable) =

List.exists (fn {Address, ...} => UNICAST(target) = Address) rt

and uses the predefined SML function List.exists to check whether an entry
in the route table rt leading to the target node already exists. This is a typical
example of how SML is used to represent (sequential) data manipulation.

The marking resulting from the occurrence of CreateRREQ is shown in Fig. 11.
When sending a RREQ, the sequence number of node 1 sending the request is
incremented by 1 and so is the counter specifying how many times the RREQ
has been transmitted. Furthermore, a token corresponding to a network packet
containing a RREQ message is produced on place DYMOToNetwork. The des-
tination of the packet is set to LL MANET ROUTERS since it must be sent to all
nodes within reach of node 1.

If a route becomes established (i.e., the originator receives a RREP for the
RREQ), the RouteEstablished transition becomes enabled and a token can be
put on place DYMOResponse indicating that the requested route has been suc-
cessfully established. If the retransmission limit for RREQs is reached (before a
RREP is received), the RREQ TRIES Reached transition becomes enabled and a
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Fig. 11. The Initiate Route Discovery module - after CreateRREQ occurrence.

token can be put on place DYMOResponse indicating that the requested route
could not be established.

3.4 Modelling the DYMO Protocol Environment

The MobileWirelessNetwork module shown in Fig. 12 captures the mobile wireless
network that DYMO is designed to operate over. It consists of two parts: one part
modelling the transmission of network packets represented by the substitution
transition WirelessPacketTransmission, and one part representing the mobility of
the nodes represented by the Mobility substitution transition. The places DY-
MOToNetwork, NetworkToDYMO, and LinkState are associated to the similarly
named socket places in Fig. 4. The transmission of network packets is done rel-
ative to the current topology of the MANET which is explicitly represented via
the current marking of the Topology place. The topology is represented using
the colour set Topology defined in Fig. 13.

The idea is that each node has an adjacency list of nodes that it can reach in
one hop, i.e., its neighbouring nodes. The marking of place Topology in Fig. 12
corresponds to the topology in Fig. 1(left). This adjacency list is then consulted
when a network packet is being transmitted from a node to determine the set
of nodes that can receive the network packet. In this way, the dynamic topology
is modelled by the addition and removal of nodes from the adjacency lists. The
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Fig. 12. The Mobile Wireless Network.

place LinkState models that a node can be informed about the reachability of its
neighbouring nodes which is used in active link monitoring.

colset NodeList = list Node;

colset Topology = product Node * NodeList;

Fig. 13. Colour set declarations for topology modelling.

The WirelessPacketTransmission module models the actual transmission of
packets and is shown in Fig. 14. The module captures how network packets
are transmitted via the physical network from one node to the next. Packets
are transmitted over the network according to the function transmit on the arc
from the transition Transmit to the place NetworkToDYMO. When the Transmit
transition occurs in a binding where the boolean variable success is set to
true, then all nodes within reach of the sending node will receive the packet.
Otherwise, no nodes will receive the packet. The transition Transmit is enabled in
the marking shown in Fig. 14 (left) and the marking resulting from a successful
transmission of the packet on DYMOToNetwork is shown in Fig. 14 (right). In
this case two tokens are added to place NetworkToDYMO corresponding to nodes
2 and 3 receiving the packet being multi-casted from node 1.

In a real network, a transmission could be received by any subset of the
neighbouring nodes (e.g., because of signal interference). Here it is only modelled
that either all of the neighbouring nodes receive the packet or none of the nodes
receive it. This is sufficient because the modelling of the dynamic topology means
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Fig. 14. Transmission of packets - before (left) and after (right) transmission.

that a node can move out of reach of the transmitting node immediately before
the transmission occurs which has exactly the same effect as a signal interference
in that the node does not receive the packet. Hence, signal interference and
similar phenomena imply that a node does not receive a packet is in the model
equivalent to the node moving out of reach of the transmitting node.

3.5 Lessons Learned and Perspectives

The development of the DYMO CPN model was based on the natural language
specification provided in the Internet draft [15] specifying the DYMO protocol.
The modelling work was done when version 10 [15] was the most recent DYMO
specification. In the process of constructing the CPN model and simulating it,
several issues and ambiguities in the specification were discovered. The most
important ones are summarised in Table 1. These issues were submitted to the
IETF MANET Working Group mailing list [82] and issue 1 and 3-7 were ac-
knowledged by the DYMO developers and taken into account in the subsequent
version DYMO specification [16] (version 11). Issue 2 was not considered critical
as it causes route discovery to fail in scenarios which according to the experience
of the DYMO developers would seldom occur in practise.

The modelling conducted with the DYMO protocol illustrates that the con-
struction of a formal and executable model provides a very systematic and com-
prehensive way of reviewing a protocol design document (such as the DYMO
Internet draft) and how it can contribute to increasing the quality of a proto-
col design specification. Similar conclusions can also be drawn from other case
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Table 1. DYMO CPN modelling [25]: issues identified in the modelling phase.

Issue Description

1

When processing a routing message, a DYMO router may respond with a
RREQ flood, i.e., a RREQ addressed to the node itself, when it is target
for a RREQ message (cf. [15], Sect. 5.3.4). It was not clear from the specifi-
cation which information to put in the RREQ message, i.e., the originator
address, hop limit, and sequence number of the RREQ.

2

When judging the usefulness of routing information, the target node is not
considered. This means that a new request with a higher sequence num-
ber can make an older request for another node stale since the sequence
number in the old message is smaller than the sequence number found in
the routing table.

3

When creating a RREQ message the distance field in the message is set
to zero. This means that for a given node n an entry in the routing table
of a node n

′ connected directly to n may have a distance to n which is 0.
Distance is a metric indicating the distance traversed before reaching n,
and the distance between two directly connected nodes should be one.

4
In the description of the data structure route table entry (cf. [15], Sect. 4.1)
it is suggested that the address field can contain more than one node. It
was not clear why this was the case.

5
When processing RERR messages (cf. [15], Sect. 5.5.4) it is not specified
whether the hop limit shall be decremented.

6
When retransmitting a RREQ message (cf. [15], Sect. 5.4), it was not
explicitly stated whether the node sequence number should be increased.

7

Version 10 of DYMO introduced the concept of distance instead of hop
count. Distance is a more general metric, but in the routing message pro-
cessing (cf. [16], Sect. 5.3.4) it is incremented by one. We believe it should
be up to the implementers how much distance is incremented depending
on the metric used.

studies where CPN modelling has been applied to protocols developed in the
context of IETF. A CPN model of the DYMO protocol has also been developed
in [12] where a considerably more compact CPN model of the DYMO protocol
directly targeting state space exploration was developed. A number of other is-
sues related to the functionality of the DYMO protocol were reported in [12].
In comparison to the CPN model in this section, the CPN model developed in
[12] provides a more abstract modelling approach that does not use an explicit
representation of MANET topology.
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4 The GAN Protocol Architecture

This section focuses on how standard behavioural properties of CPNs in combi-
nation with explicit state space exploration can be used to verify basic properties
of protocols. Furthermore, this section gives an example of how CPNs can be
used to model a system spanning multiple protocols and protocol layers. The
presentation is based on a project [30] in which CPN modelling and state space
exploration was used at TietoEnator Denmark in early phases of developing an
implementation corresponding to a particular instantiation [42] of the generic
GAN architecture [2] aimed at integrating IP and telephone services.

4.1 GAN Secure Connection Establishment

The Generic Access Network (GAN) [2] architecture specified by the 3rd Genera-
tion Partnership Project (3GPP) [3] allows access to common telephone services
such as SMS and voice-calls via IP networks. A central part of the GAN ar-
chitecture is the establishment of a secure connection between a mobile station

(e.g., a mobile phone) and a GAN controller through a security gateway . The
GAN architecture relies on standardised protocols such as Dynamic Host Con-
figuration Protocol (DHCP) for IP address configuration, IP Security (IPsec)
[65] for encryption and authentication, and Internet Key Exchange v2 (IKEv2)
protocol [64] for negotiation of IPsec parameters.

The purpose of the CPN model constructed in the project was two-fold.
Firstly, to define the scope of the protocol software to be developed by TietoE-
nator. More specifically, the aim was to determine which parts of the generic
GAN specification were to be included in the implementation to be developed
by TietoEnator. Secondly, to specify the detailed design and usage of the in-
volved protocol software components. The focus of the CPN model is on the
establishment of a secure tunnel and the initial GAN message exchanges since
this is where important details were not provided in the full GAN specification.
In particular, the full GAN specification [2] contained no clear specification of
the IKEv2 message exchange and the states that the protocol entities should
be in when establishing a GAN connection (at the time of the project in 2007).
Furthermore, the GAN specification only states that IKEv2 and IPSec are to be
used, and in which operating modes.

4.2 CPN Model of the GAN Protocol Architecture

The CPN model of the secure connection establishment consists of 31 modules
organised into four hierarchical levels. In the following, we present four selected
modules from the CPN model. Our purpose is to illustrate how the phases that
the protocol entities enter when establishing a GAN connection have been mod-
elled, and provide sufficient detail on the CPN model in order for the reader to
interpret the verification results presented later. A more in-depth presentation
of the CPN model can be found in [30].
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Fig. 15. Top-level module of the GAN model.

Figure 15 shows the top-level module which is organised so that it mimics
the GAN network architecture. The substitution transition MobileStation repre-
sents the mobile station which is connecting to the telephone network via an IP
network. The place Wireless Network connected to MobileStation represents the
wireless network which connects the mobile station to a wireless router repre-
sented by the substitution transition WirelessRouter. The wireless router is an
arbitrary access point with routing functionality, and is connected to the Pro-
visioning Security Gateway, through NetworkB. As part of establishing a GAN
connection, an encrypted tunnel is established between the mobile station and
the security gateway. The encrypted tunnel is provided by the Encapsulating
Security Payload (ESP) mode of the IP security layer (IPSec) [65]. To provide
such an encrypted tunnel, both ends have to authenticate each other, and agree
on both an encryption algorithm and keys. This is achieved using the Internet
Key Exchange v2 (IKEv2) protocol [64]. The provisioning security gateway is
connected to the Provisioning GAN Controller via NetworkC. The GAN controllers
are connected to the telephone network and perform the relay of traffic to/from
the IP networks (NetworkC and the WirelessNetwork). This in turn allows mobile
stations to access the services on the telephone network. The places with thin
lines connected to the substitution transitions Provisioning Security Gateway and
Provisioning GAN Controller are used to provide configuration information to the
corresponding network nodes. The CPN model does not include modelling of
the telephone network as the scope of the CPN model covers the components
involved in establishing the connection with the GAN controller. Furthermore,
as the purpose of the model was to represent the protocol entities present on
each of the nodes in the network architecture, it sufficed that the model encom-
passed one mobile node, one wireless router, one provisioning security gateway,
and one provisioning GAN controller.

The basic exchange of messages in establishing a GAN connection to the
provisioning GAN controller involves three steps. The first step is for the mobile
station to acquire an IP address on the wireless network using DHCP. The
second phase is to create a secure tunnel to the provisioning security gateway.
Having established the secure tunnel, the third phase is for the mobile station
to open a secure connection to the GAN controller and register itself. Figure 16
(left) shows the IKEInitiator module of the mobile station and Fig. 16 (right)
shows the IKEResponder module of the security gateway. These two peer modules
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model the second step of the GAN connection establishment concerned with
creating the secure tunnel. Incoming IP packets for the module arrive via the
ReceiveBuffer input port places. Outgoing IP packets are put in the SendBuffer
places. The states (phases) that the protocol entities goes through during the
IKE message exchange when establishing the secure tunnel are represented by
the places connecting the substitution transitions.

The state changes are represented by substitution transitions. The submod-
ules of the substitution transitions specify the processing rules for messages
during the individual phases. Figure 17 shows the Send IKE SA INIT Packet and
Handle SA INIT Request modules which are the submodules of the two top-most
substitution transitions in Fig 16. The Send IKE SA INIT Packet transition in
Fig. 17 (left) takes the IKE Initiator from the state Ready to Await IKE SA INIT
and sends an IKE message to the security gateway initialising the communica-
tion. The IP address of the security gateway is retrieved from the Ready place.
Figure 17 (right) shows how the IKE SA INIT packet is handled by the IKE
Responder. The guard of the HandleSA INIT Request transition ensures that
the transition is only enabled if the incoming packet (token) on IncomingIK-
ERequest represents a IKE SA INIT packet. In that case, it sends an IKE packet
back to the initiator as specified by the arc expression on the arc from Han-
dle SA INITRequest and the responder enters the Wait for EAP Auth state. The
submodules of the other substitution transitions in Fig. 16 are similar.

The establishment of a GAN connection involves multiple layers of the IP
network stack. DHCP (used to configure the mobile station) and GAN are ap-
plication layer protocols, IKE is a transport layer protocol, and IPSec belongs
to the network layer. As a consequence, the CPN model of GAN connection
spans multiple protocol layers. Furthermore, the protocol entities also access
and manipulate the routing table and a security policy database (SPD) which
is maintained at the IP network layer. The establishment of a GAN connection
accesses the routing table of a node in order to ensures that packets are put
into the secure tunnel, and extracted again at the other end. The SPD describes
what packets are allowed to be sent and received by the IP protocol stack, and is
also responsible for identifying which packets are to be tunnelled at the mobile
station and the security gateway. Each entry in the SPD contains the source and
destination addresses to use for matching packets, and an action to perform.
Modelled actions are bypass (which means allow packet to pass without tun-
nelling) and tunnel (the matched packet is to be sent through an ESP tunnel).
As we will see later, the content of the routing table and the SPD play an im-
portant role in validating the correctness of the GAN connection establishment.
It was therefore required to explicitly represent them in the CPN model.

4.3 Verification of the GAN CPN Model

The goal of applying state space exploration was to verify the completeness
of the design. This included verifying that all phases, steps, and messages in-
volved in establishing a secure GAN connection were covered by the design, and
the correctness of the connection establishment,i.e., that a GAN connection is
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eventually established with the mobile station and the GAN controller being
properly synchronised. Verification of the key properties of the design for se-
cure connection establishment was done by state space exploration. The basic
idea underlying state space exploration is to compute all reachable states and
state changes of the CPN model and represent these as a directed graph, where
nodes represent markings and arcs represent occurring binding elements. State
spaces can be constructed fully automatically by the state space tool in CPN
Tools. Verification of the GAN scenario modelling by means of state spaces re-
lied on the use of the state space report that can be generated by CPN Tools.
The generation of a state space report for the smallest possible configuration
of a considered protocol is typically the first step performed when conducting
verification of a CPN model.

The state space report is divided into several sections. In the following we
present excepts from the individual sections and explain how they can be used
for the verification. Figure 18 shows the first part of the state space report for
the CPN model. This part provides some state space statistics specifying how
large the state space is. It can be seen that the state space consists of 3, 854 nodes
and 9, 225 arcs. The construction of the state space took 4 seconds. Statistics for
the strongly connected component graph (SCC-graph) are also specified. It has
3, 514 nodes and 8, 881 arcs, and was calculated in 2 seconds. The fact that there
are fewer nodes in the SCC-graph than in the state space implies that there are
non-trivial strongly connected components (SCCs), i.e., SCCs consisting of more
than a single state space node. This means that infinite executions exist and that
the GAN connection establishment may not terminate. We will investigate the
reasons for this at the end of this subsection.

The boundedness properties section of the state space report specifies how
many and which tokens a place may hold – when considering all reachable states
(markings). Figure 19 lists the best upper and best lower integer bounds for
selected places in the mobile station module. It can be seen that the first four
places modelling the states of the mobile station contain at most one token and
may contain zero tokens. Similarly, it can be seen that there is at most one token
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in the send, received, and network buffers. The place RoutingTable has a lower
integer bound of 0 and an upper integer bound of 1. The lower integer bound is
0 since in the initial marking there are no tokens on this place. During the start-
up procedure of the mobile station, a token representing a list of routing table
entries is put on this place. The place SecurityPolicyDatabase has a best upper
and a best lower integer bound of 1. This means that there is always exactly
one token present on this place. This is because the security policy database
is modelled as a single token being a list containing the current entries in the
security policy database.

The best upper multi-set bound of a place specifies for each colour in the colour
set of the place the maximal number of tokens that is present on this place with
the given colour in any reachable marking. This is specified as a multi-set, where
the coefficient of each value is the maximal number of tokens with the given
value. If the coefficient is zero, then the colour is omitted in the specification.
Figure 20 shows part of the state space report providing the upper multi-set
bounds for the security policy databases of the mobile station, wireless router,
security gateway, and the GAN controller. The upper multi-set bounds specify
the possible tokens that can reside on these places and by carefully inspecting
these bounds it was possible to validate that the possible entries in the security
policy database were all as desired. Altogether, an inspection of the boundedness
properties helped significantly in increasing confidence in the correctness of the
design in terms of proper settings of the routing table and the security policy
database.

Figure 21 shows the part of the state space report specifying the home and

liveness properties . The home properties show that there exists a single home

marking , which is state number 3854. A home marking is a state which can be
reached from any reachable state. For the GAN scenario model this means that it
is impossible to have an execution sequence starting from the initial state (initial
marking) which cannot be extended to reach state 3854. The liveness properties
tell us that there is a single dead marking which is also state number 3854. A
dead marking is a state in which no transitions are enabled. This means that
the marking corresponding to node 3854 is both a home and a dead marking.

To obtain information about the marking corresponding to node number
3854, the node number was transferred into the simulator of CPN Tools and
displayed graphically on the CPN model. It was then checked (by inspecting

State Space Scc Graph

Nodes: 3,854 Nodes: 3,514

Arcs: 9,225 Arcs: 8,881

Secs: 4 Secs: 2

Fig. 18. State space report – statistics.
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Best Integer Bounds Upper Lower

Down 1 0

Ready 1 0

VIF open to Prov. SG 1 0

VIF Closed 1 0

Send Buffer 1 0

Receive Buffer 1 0

Network Buffer 1 0

Routing Table 1 0

Security Policy Database 1 1

Fig. 19. State space report – integer bounds.

the markings of the individual places) that the marking corresponded to the
desired terminating state of the GAN connection establishment procedure, i.e.,
the state where the mobile station has obtained an IP address, has successfully
communicated with the provisioning GAN controller, all protocol modules are in
a state corresponding to the GAN connection having been established, and the
routing tables and security databases contain the correct entries. The fact that
state 3854 is the only dead marking tells us that the protocol as specified by the
CPN model is partially correct, i.e., if execution terminates we have the correct
result. Furthermore, because node 3854 is also a home marking it is always
possible to terminate the GAN connection establishment with the correct result.

The analysis above showed that it is always possible to terminate the GAN
connection establishment procedure correctly, but there is no guarantee that it
will eventually happen. The section of the state space report providing informa-
tion about fairness properties showed that the two transitions RejectDiscoveryRe-
quest and HandleGARCReject which are part of the GAN controller module were
impartial . This means that these two transitions occur infinitely often in any
infinite occurrence sequence. The two transition occurs if the GAN controller
decides to reject an incoming connection from a mobile station. Hence, if the
connection establishment procedure does not terminate in the single home and
dead marking identified, then it is because the GAN controller keeps rejecting
the connection.

4.4 Lessons Learned and Perspectives

The validation of secure connection establishment in the considered GAN sce-
nario is representative for how validation of protocols is typically performed
with CPN Tools – as it in practise involves a combination of both simulation
and state space exploration. As part of the construction of the GAN model, the
support for interactive simulation in CPN Tools was used to perform detailed
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nl_info=AnyNextLayer,policy=SpdBypass}]

Fig. 20. State space report – best upper multi-set bounds.

checks to ensure that the model behaviour was as desired. Even though the use
of interactive simulations (and simulation in general) cannot be used to prove
correct behaviour, it proved to be very useful in identifying situations related to
improper manipulations of the entries in the routing tables and security policy
database - or when additional detail not present in the GAN specification had
to be worked out and specified. Furthermore, interactive simulation was helpful
in identifying issues that led the GAN connection establishment procedure to
terminate prematurely, e.g., because a certain phase of the connection estab-
lishment was missing in the CPN model. These issues manifested themselves in
markings where the GAN connection had not yet been established, but where

Home Properties Liveness Properties

Home Markings: [3854] Dead Markings: [3854]

Fig. 21. State space report – home and liveness properties.
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no transitions were enabled. This was in particular effective in making explicit
where further specification of the message exchanges were required.

The interactive simulation was in later phases replaced with automatic simu-
lation where a number of random executions of the CPN model were performed
with the purpose of checking whether the execution of the CPN model resulted
in a state in which the GAN connection was properly established. Eventually
state space exploration of the CPN model was conducted which succeeded in
establishing the key property that a GAN connection will eventually be estab-
lished provided that the GAN controller does not keep rejecting the connection
request. The verification conducted also illustrated the general observation that
in many cases, the use of basic state space exploration and the state space report
(i.e., investigating standard behavioural properties of Petri nets) are sufficient
in establishing key properties of a protocol design. In this case the state space
was small in size and could be generated in a few seconds without the use of
advanced state space exploration techniques.

5 The Routing Interoperability Protocol

The section show how a CPN model can be augmented with application-specific
behavioural visualisation reflecting the execution of the CPN model. This sec-
tion is based on a project conducted at Ericsson Telebit A/S addressing the
specification of the Routing Interoperability Protocol (RIP)3 for routing pack-
ets between IP core networks and mobile ad-hoc networks. The CPN model of
RIP augmented with behavioural visualisation was used as an early model-based
prototype of RIP. It allowed the protocol design to be discussed among protocol
engineers unfamiliar with CPNs, and it also enabled the protocol design to be
presented to customers with the purpose of soliciting requirements of the services
to be provided by the protocol.

5.1 CPN Model of the RIP Protocol

The main purpose of the routing interoperability protocol is to ensure that a
packet flow between a host in the core network and a mobile node in an ad-hoc
network is always relayed via one of the closest gateways that connect the core
network and the mobile ad-hoc network. Figure 22 shows the top level module
of the CPN model which reflects the network architecture that the RIP protocol
is designed to operate in. The network architecture consists of three parts: an
IPv6 core network represented by the CoreNetwork substitution transition (left)
and its submodules, a mobile ad-hoc network represented by the AdHocNetwork
substitution transition (right) and its submodules, and two gateways represented
by the substitution transitions Gateway1 and Gateway2. The basic idea in the
interoperability protocol is that the mobile nodes register the IPv6 address in

3 RIP as discussed in this section should not be confused with the Routing Information
Protocol[85]
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Fig. 22. The System module – top-level module of the CPN model.

the Domain Name Server (DNS) server in the core network that corresponds to
an IPv6 address prefix announced by the closest (preferred) gateway. Updates
to the DNS database managed by the DNS server rely on the Dynamic Domain
Name System Protocol [108].

The places CoreNetwork and AdHocNetwork are used for modelling the packets
in transit on the core network and ad-hoc network, respectively. Figure 22 depicts
a state in which there is one token on place CoreNetwork and two tokens on place
AdHocNetwork. As an example, place CoreNetwork contains one token with the
colour:

(RECEIVE("3ffe:100:3:401::1"), {src="3ffe:100:3:401::2",

dest="3ffe:100:3:401::1",cont=DNSREQ("AHN(3)")})

representing a DNS request (DNSREQ) in transit on the core network from a host
with source IPv6 address 3ffe:100:3:401::2 to a DNS server with destination
IPv6 address 3ffe:100:3:401::1. IPv6 addresses are 128-bit and by conven-
tion written in hexadecimal notation in groups of 16-bits separated by a colon
(:). Leading zeros are skipped within each group and a double colon (::) is a
shorthand for a sequence of zeros. Addresses consist of an address prefix and an
interface identifier .

The place AdHocNetwork contains two tokens representing gateway adver-
tisements in transit to nodes in the ad-hoc network. The gateways periodically
announce their presence to nodes in the mobile ad-hoc network by sending gate-

way advertisements containing an IPv6 address prefix . The two Config places
contain a token representing the configuration of the corresponding gateway. It
consists of the IPv6 address of the gateway interface connected to the core net-
work, the IPv6 address of the gateway interface connected to the ad-hoc network,
and the address prefix announced by the gateway. Address prefixes are written
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in the form x/y where x is an IPv6 address and y is the length of the pre-
fix. The mobile nodes in the ad-hoc network configure IPv6 addresses based on
the received gateway advertisements. In the marking depicted in Fig. 22, Gate-
way1 is announcing the 64-bit address prefix 3ffe:100:3:405::/64 and Gateway2
is announcing the prefix 3ffe:100:4:406::/64. Each of the gateways has config-
ured an address on the interface to the ad-hoc network based on the prefix they
are announcing to the ad-hoc network. Gateway1 has configured the address
3ffe:100:3:405::1 and Gateway2 has configured the address 3ffe:100:3:406::1. The
gateways have also configured addresses on the interface to the core network
based on the 3ffe:100:3:401::/64 prefix of the core network.

Figure 23 lists the definitions of the colour sets used in the System module.
IP addresses, prefixes, and symbolic IP addresses are represented by colour sets
IPAdr, Prefix, and Symname all defined as the set of strings. The colour set
PacketCont and Packet are used for modelling the IP packets. The five different
kinds of packets used in RIP are modelled by the PacketCont colour set:

DNS REQ modelling a DNS request packet. It contains the symbolic IP address
to be resolved to a (numerical) IP address by a DNS server.

DNS REP modelling a DNS reply. It contains the symbolic IP address and the
resolved IP address.

DNS UPD modelling a DNS update. It contains the symbolic IP address to be
updated and the new IP address to be bound to the symbolic address.

GW ADV modelling the advertisements disseminated from the gateways. An ad-
vertisement contains the IP address of the gateway and the announced prefix.

PACKET modelling generic payload packets belonging to packet flows between
hosts and the mobile nodes.

The colour set Packet models the packets as a record containing the source,
destination, and content. The actual payload (content) and layout of packets
are not essential for modelling the interoperability protocol and has therefore
been abstracted away. The colour set Cmd is used to control the operation of
the various modules in the CPN model. The colour set GWConfig models the
configuration information of the gateway.

The Core Network. Figure 24 shows the CoreNetwork module modelling the
core network. This module is the immediate submodule of the substitution tran-
sition CoreNetwork of the System module shown in Fig. 22. The port place
CoreNetwork is assigned to the CoreNetwork socket place in the System module
(see Fig. 22). The substitution transition Routing represents the routing mech-
anism in the core network. The substitution transition Host represents the host
on the core network, and the substitution transition DNS Server represents the
DNS server that maintains the DNS database.

The Mobile Ad-hoc Network. Figure 25 depicts the AdHocNetwork module
modelling the mobile ad-hoc network. The place Nodes is used to represent the
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colset Prefix = string; (* address prefixes *)

colset IPAdr = string; (* IP addresses *)

colset SymName = string; (* symbolic names *)

colset SymNamexIPAdr = product SymName * IPAdr;

colset IPAdrxPrefix = product IPAdr * Prefix;

colset PacketCont = union DNS_REQ : SymName + (* DNS Request *)

DNS_REP : SymNamexIPAdr + (* DNS Reply *)

DNS_UPD : SymNamexIPAdr + (* DNS Update *)

GW_ADV : IPAdrxPrefix + (* Advertisments *)

PACKET; (* Generic payload *)

colset Packet = record src : IPAdr * dest : IPAdr * cont : PacketCont;

colset Cmd = union ROUTING + RECEIVE : IPAdr +

FLOODING : IPAdr + GWAHNROUTING : IPAdr +

AHNGWROUTING : IPAdr;

colset CmdxPacket = product Cmd * Packet;

colset GWConfig = product IPAdr * IPAdr * Prefix;

Fig. 23. Colour set definitions used in the System module.

nodes in the mobile ad-hoc network. The place RoutingInformation is used to
represent the routing information in the ad-hoc network which is assumed to be
available via some routing protocol executed in the ad-hoc network. This routing
information enables among other things the nodes to determine the distance to
the reachable gateways. Detailed information about the colour of the token on
place RoutingInformation has been omitted.

Figure 26 lists the definition of the colour sets used in the AdHocNetwork
module. The colour set AHNConfig is used to model the configuration information
for the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on place

Core
Network

CmdxPacket

I/O

Host

Host

DNS
Server

DNSServer

Routing

CNRouting

Fig. 24. Core Network module – modelling the core network.
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DistanceInformationif animated then 1`(create_routing [3,4,5])
else 1`[(AHN(3),"3ffe:100:3:405::3","3ffe:100:3:405::1",REACH(3)),
   (AHN(3),"","3ffe:100:3:406::1",REACH(3)),
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   (AHN(5),"3ffe:100:3:405::5","3ffe:100:3:405::1",REACH(3)),
   (AHN(5),"","3ffe:100:3:406::1",REACH(3))]
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Mobility

Mobility
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Fig. 25. AdHocNetwork module – modelling the ad-hoc network.

Nodes and the colour of the tokens specifies the name of the node and a list of
configured IP addresses. Each configuration specifies the IP address configured,
and the IP address and prefix of the corresponding gateway. It is possible for
a mobile ad-hoc node to configure an IP address for multiple gateways. The
mobile node must ensure that the DNS database always contains the IP address
corresponding to the preferred gateway . In the marking shown in Fig. 25, it
can be seen from the labels below the mobile nodes that Ad-hoc Node 3 and
Ad-hoc Node 4 have configured IP addresses based on the prefix announced by
Gateway1, whereas Ad-Hoc Node 5 has configured an IP address based on the
prefix announced by Gateway2. For an example, Ad-hoc Node 3 has configured
the address 3ffe:100:3:405::3.

(* --- ad-hoc nodes --- *)

color AHId = int with 1..5;

color AHNode = union AHN : AHId;

(* --- configuration information for ad-hoc nodes --- *)

color AHNIPConfig = product IPAdr * IPAdr * Prefix;

color AHNIPConfigs = list AHNIPConfig;

color AHNConfig = product AHNode * AHNIPConfigs;

Fig. 26. Colour definitions used in the AdHocNetwork module.

There are four substitution transitions in the AdHocNetwork module corre-
sponding to the components of the ad-hoc network. The substitution transition
AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.
The substitution transition Mobility models the mobility of nodes in the ad-hoc
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network, i.e., that the nodes may move closer or further away from the gateways.
The substitution transition Routing represents the routing protocol executed in
the ad-hoc network. The purpose of the routing protocol in the context of the
RIP protocol is to provide the nodes with information about distances to the
gateways. The routing is abstractly modelled in a similar way as the routing
mechanism in the core network and will not be discussed further in this paper.
The substitution transition Flooding models the dissemination of advertisements
from the gateways. A detailed presentation of this part of the model has been
omitted here. The complete CPN model of the RIP protocol is hierarchically
structured into 18 modules. A detailed presentation of the CPN model can be
found in [74].

5.2 Behavioural Visualisation of the RIP Protocol

In the routing interoperability project, the BRITNeY Suite animation framework
[111] was used to create an animation GUI on top of the CPN model. The
animation GUI allows a user to observe the execution of the constructed CPN
model using a graphical representation of the network architecture. The graphics
is updated by the underlying CPN model according to the execution of the
formally specified protocol, and the CPN model is also able to react to stimuli
provided by the user via the animation GUI.

Figure 27 shows a representative snapshot of the application-specific graphics
during the execution of the CPN model. The IP addresses configured by the
individual nodes are shown as labels below the nodes. For an example, Ad-hoc
Node 3 has configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3.
The convention is that the preferred IP address is the topmost address in the
list below the node. The entries in the DNS database are shown in the upper left
corner. It shows the entries for each of the three ad-hoc nodes. The two numbers
written at the top of each node are counters that provide information about
the number of packets on the incoming (left) and outgoing (right) interfaces
of the nodes. Transmissions of advertisements from the gateways are visualised
by green dots. Fig. 27 shows an example where Gateway2 is transmitting an
advertisement. Transmission of payload packets is visualised using red dots, and
DNS packets are visualised using blue dots.

In addition to observing feedback on the execution of the CPN model in the
animation GUI, it is also possible to provide input to the CPN model directly
via the animation GUI. The user can move the nodes in the ad-hoc network
thereby changing the distances to the two gateways. It is also possible to define
a packet flow from the host in the core network to one of the nodes in the mobile
ad-hoc network by clicking on the red square positioned next to each of the
ad-hoc nodes. The square will change its colour to green once the CPN model
has registered the flow. The flow can be stopped again by clicking on the (now
green) square next to the mobile ad-hoc node. Finally, it is possible to force the
transmission of an advertisement from a gateway by clicking on the gateway.

A more generic form of high-level graphical feedback in the form of MSCs was
also used in this project. Figure 28 shows an example of an MSC diagram based
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Fig. 27. Snapshot of the interaction graphics.

Fig. 28. Message sequence chart generated by the animation GUI.
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on a simulation of the CPN model. The MSC shows a scenario where Ad-hoc
Node 3 makes a Move and discovers that Gateway 2 is now the closest gateway.
This causes it to send a DNS update to the DNS server. The last part of the
MSC shows the host initiating a packet flow to Ad-hoc Node 3. One benefit of
using MSCs is that they provide an event-based view that records the execution
history. This is in contrast to the state-based view on the CPN model that one
obtains during an interactive simulation. The two forms of feedback therefore
complement each other and MSCs have been widely used in projects where CPNs
were applied to protocol design.

Graphical feedback from the execution of the CPN model is achieved by
attaching code segments to the transitions in the CPN model. These code seg-
ments are sequential pieces of code that are executed whenever the corresponding
transition occurs in the simulation/execution of the CPN model. As an exam-
ple consider the CNRouting module in Fig. 29. The transition Route models the
routing of the packet on the core network. It uses the routing information on
place RoutingInformation to direct the packet to the proper gateway. The SML
function FindNextHop in the guard expression of the transition computes the IP
address of the next hop gateway using the routing information and destination
IP address of the packet. The Route transition has an attached code segment
which is executed whenever the transition occurs. The code segment invokes the
primitives in the animation package for animating the transmission of packets
in the core network.

routinginformation
RoutingInformation

RoutingInformation

Core
Network

I/O

CmdxPacket

I/O

Route

(ROUTING,
  { src = srcipadr,
    dest = destipadr, 
cont = content})

(RECEIVE nhipadr,
{src = srcipadr,
  dest=destipadr,
cont=content})

(* --- Route transition code segment -- *) 
input (srcipadr, nhipadr, content);
output (); 
action 
   if String.substring (srcipadr, 13, 1) = "1"
   then show_flow(srcipadr, nhipadr, content)
   else show_flow((String.substring (srcipadr, 0, 16)) ^ "1",  nhipadr, content)

[nhipadr = FindNextHop routinginformation destipadr]
[("3ffe:100:3:405::","3ffe:100:3:401::3"),
 ("3ffe:100:3:406::","3ffe:100:3:401::4")]

Fig. 29. The CNRouting module – Routing in the core network.

The CPN model receives input from the animation GUI by polling the an-
imation GUI for events. An event queue has been implemented between the
animation GUI and the CPN model. The code segment of transition Produce in
the Poll module shown in Fig. 30 polls the animation GUI for events at regular
intervals during the execution of the CPN model. Events are put into a list-token
representing an event queue on the place Events. The parts of the CPN model
that are to react on events from the animation GUI are linked via place fusion
to the Event place and are able to consume events from the event queue. The
occurrence of the transition Produce corresponds to a poll to the animation GUI
for events.
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events

if (event = "none" andalso n<>0)
then events
else events^^[event]

Produce Events

Events

[]

EVENTS
Events

[animated]

input ();
output event;
action
if telebit.hasMoreEvents()
then case telebit.peekNextEvent() of
            "done" => "none"
          | _ => telebit.getNextEvent()
else "none" 1 1`[]

Fig. 30. The Poll module – Polling the animation GUI for events.

5.3 Lessons Learned and Perspectives

The CPN model combined with the animation GUI that was developed in the
RIP project served as an early model-based executable prototype. The domain
specific graphical user interface (the animation GUI) made it possible to explore
and demonstrate the design of the interoperability protocol with the underlying
formal model being transparent for the observer and the demonstrator. In par-
ticular, it made it possible for persons without knowledge of the CPN modelling
language to experiment with the proposed design. The use of an animation GUI
on top of the CPN model has the advantage that the behaviour observed by the
user is as defined by the underlying model that formally specifies the design. The
alternative would have been to implement a separate visualisation application
totally detached from the CPN model. This would have led to double represen-
tation of the dynamics of the interoperability protocol which could in turn lead
to inconsistencies between the two representation of the design.

Another advantage offered by the development of a model-based prototype
is ease of control compared to a physical prototype, in particular in the case of
mobile nodes and wireless communication where scenarios can be very difficult
to control and reproduce. The use of a model means that there is no need to
invest in physical equipment and there is no need to setup the actual physical
equipment early in the project. The use of a model also makes it possible to
investigate larger scenarios, e.g., scenarios that may not be feasible to investigate
with the available physical equipment. An additional general advantage of the
approach taken in the RIP project is that at an early stage of development,
the implementation details can be abstracted away and only the key part of
the design have to be specified in detail. As an example, the CPN model of the
interoperability protocol abstracted away the routing mechanisms in the core and
ad-hoc networks, and the mechanism used for distribution of advertisements.
Instead, the service assumed from these components for the interoperability
protocol to work was modelled. The possibility of making abstraction means
that it is possible to obtain an executable prototype without implementing all
the components.
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6 The Edge Router Discovery Protocol

The previous sections have demonstrated how modelling, simulation, state space
exploration, and behavioural visualisation can be applied for validating the func-
tional design of protocols. This section summarises a project [67] conducted with
Ericsson Telebit A/S where a combination of the techniques introduced in the
previous sections were applied for the design of an Edge Router Discovery Pro-
tocol (ERDP). The CPN model of ERDP was developed in close cooperation
with the protocol engineers at Ericsson Telebit A/S based on a natural-language
specification that would normally have served as a basis for the implementation
of the protocol. Simulation and MSCs were used in initial investigations of the
ERDP protocol behaviour. Then state space exploration was used to conduct a
formal verification of the key behavioural properties of ERDP. The aim of this
section is to show how modelling, simulation, visualisation, and state space ex-
ploration all can help to identify omissions and behavioural errors in a design,
and how they are typically used in conjunction in a protocol design process.

6.1 CPN Model of the ERDP Protocol

ERDP is based on the IPv6 Neighbour Discovery Protocol (NDP) [88] and sup-
ports edge routers residing on the boundary of an IP core network in configuring
gateways with an IPv6 address prefix. This address prefix can in turn be used by
mobile nodes in ad-hoc networks to configure global IPv6 unicast addresses and
obtain Internet access via the core network. Figure 31 shows the ERDP module
which is the top-level module of the CPN model. The substitution transition
Gateway represents the gateway, and the substitution transition EdgeRouter rep-
resents the edge router. The wireless communication link between the edge router
and the gateway is represented by the substitution transition GW ER Link. The
four socket places GWIn, GWOut, ERIn, and EROut model packet buffers between
the link layer and the gateway and edge router. Both the gateway (GW) and
the edge router (ER) have an incoming and an outgoing packet buffer.

All four places in Fig. 31 have the colour set IPv6Packet, used to model the
IPv6 packets exchanged between the edge routers and gateways. Since ERDP
is based on the IPv6 Neighbour Discovery Protocol, the packets are carried
as Internet Control Message Protocol (ICMP) packets. The definitions of the
colour sets for NDP, ICMP, and IPv6 packets were derived directly from RFC
2460 [22] by using record type constructors for representing fields within packets
and union type constructors for representing the different kinds of packets (see
[67] for detail). It was considered important by the protocol engineers for later
implementation that the definition of the packets followed closely the structure
of IPv6 packets instead of a more abstract representation.

Figure 32 shows the EdgeRouter module. The port places ERIn and EROut are
related to the accordingly named socket places in the ERDPmodule (see Fig. 31).
The place Config models the configuration information associated with the edge
router, and the place PrefixCount models the number of prefixes still available in
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the edge router for distribution to gateways. The place PrefixAssigned is used to
keep track of which prefixes are assigned to which gateways.

Figure 33 shows the declarations of the colour sets for the three places in
Fig. 32. The configuration information for the edge router (modelled by the
colour set ERConfig) is a record consisting of the IPv6 link-local address and
the link-layer address of the edge router. A list of pairs (colour set ERPrefixAs-
signed) consisting of a link-local address and a prefix is used to keep track of
which prefixes are assigned to which gateways. A counter modelled by the place
PrefixCount with the colour set PrefixCount is used to keep track of the number
of prefixes still available. When this counter reaches 0, the edge router has no
further prefixes available for distribution. The number of available prefixes can
be modified by changing the initial marking of the place PrefixCount, which is
set to 1 by default.

The substitution transition SendUnsolicitedRA (in Fig. 32) corresponds to
the multicasting of periodic unsolicited router advertisements (RAs) by the edge
router such that gateways can discover the presence of the edge router. When a
gateway receives an unsolicited RA, it responds with a unicast router solicitation
(RS). The substitution transition ProcessRS models the reception at the edge
router of unicasted RSs from gateways, and the sending of a unicast RA to the
gateway in response. The substitution transition ERDiscardPrefixes models the
expiration of prefixes on the edge router side.

The marking shown in Fig. 32 has a single token on each of the three places
used to model the internal state of the edge router protocol entity. In the marking
shown, the token on the place PrefixAssigned with the colour [] corresponds to
the edge router not having assigned any prefixes to the gateways. The token on
the place PrefixCount with colour 1 indicates that the edge router has a single
prefix available for distribution. Finally, the colour of the token on the place
Config specifies the link-local and link addresses of the edge router. In this case

GW_ER_Link GW_ER_Link

EdgeRouter

EdgeRouter

Gateway

Gateway

EROut

IPv6Packet

ERIn

IPv6Packet

GWOut

IPv6Packet

GWIn

IPv6Packet

Gateway EdgeRouter

GW_ER_Link

Fig. 31. Top-level module of the ERDP CPN model.
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Fig. 32. The EdgeRouter module.

colset LinkAddr = string;

colset ERConfig = record ll_er : IPv6Addr * (* link-local address *)

er_l2 : LinkAddr; (* link-addr (layer 2) *)

colset ERPrefixEntry = product IPv6Addr * IPv6Prefix;

colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

Fig. 33. Colour set definitions for edge routers.

the edge router has the symbolic link-local address ER link-local address, and the
symbolic link-address ER link-addr.

Figure 34 depicts the SendUnsolicitedRA module which is the submodule of
the substitution transition SendUnsolicitedRA in Fig. 32. The transition SendUn-
solicitedRA models the sending of the periodic unsolicited router advertisements.
The variable erconfig is of type ERConfig, and the variable prefixleft is of type
PrefixCount. The transition SendUnsolicitedRA is enabled only if the edge router
has prefixes available for distribution, i.e., prefixleft is greater than 0. This is
ensured by the function SendUnsolicitedRA in the guard of the transition.

Figure 35 depicts the marking of the SendUnsolicitedRA module after the oc-
currence of the transition SendUnsolicitedRA in the marking shown in Fig. 34.
An unsolicited router advertisement has been put in the outgoing buffer of
the edge router. It can be seen that the DestinationAddress is the address
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Fig. 34. Initial marking of the SendUnsolicitedRA module.

all-nodes-multicast, the SourceAddress is ER link-local address, and
the LinkLayerAddress (in the options part) is ER link-addr.

Figure 36 shows the part of the GW ER Link module that models transmis-
sion of packets from the edge router to the gateway across the wireless link.
Transmission of packets from the gateway to the edge router is modelled simi-
larly. The port places GWIn and EROut are linked to the similarly named socket
places in Fig. 31. The transition ERtoGW models the successful transmission
of packets, whereas the transition LossERtoGW models the loss of packets. The
variable ipv6packet is of type IPv6Packet. A successful transmission of a packet
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1`{header={Version=6,TrafficClass=
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RetransTimer=0,Options=[RA_SrcLink
Addr({Type=1,Length=notmod,LinkLa
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Fig. 35. Module SendUnsolicitedRA, after occurrence of SendUnsolicitedRA.
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from the edge router to the gateway corresponds to moving the token modelling
the packet from the place EROut to GWIn. If the packet is lost, the token will
only be removed from the place EROut.

ipv6packet

ipv6packet ipv6packet

LossERtoGW

ERtoGWGWInOut

IPv6Packet

EROut In

IPv6Packet

Fig. 36. Part of the GW ER Link module.

Wireless links, in general, have a lower bandwidth and higher error rate
than wired links. These characteristics have been abstracted away in the CPN
model since the purpose is to reason not about the performance of ERDP but
rather its logical correctness. Duplication and reordering of messages are not
possible on typical one-hop wireless links, since the detection of duplicates and
the preservation of order are handled by the data-link layer. The modelling
of the wireless links does allow overtaking of packets, but this overtaking was
eliminated in the state space exploration phase where bounds were imposed on
the capacity of the input and output packet buffers.

The CPN model was developed as an integrated part of the development
of ERDP. The creation of the CPN model was done in cooperation with the
protocol engineers at Ericsson in parallel with the development of the ERDP
specification. Altogether 70 person-hours were spent on CPN modelling. Prior
to the development of the CPN model, the protocol engineers at Ericsson were
given a 6 hour course on CPNs that made them capable of reading CPN models.
This means that CPN models could be used actively in discussion related to the
design of the ERDP protocol. MSCs (to be illustrated shortly), integrated with
simulation were used in both review steps to investigate the behaviour of ERDP
in detail. The use of MSCs in the project was of particular relevance since it
presented the operation of the protocol in a form well known to the protocol
engineers. Altogether 24 design issues were identified during three iterations
on the CPN model. Table 2 categorises and enumerates the issues encountered
during two review phases (Review 1 and Review 2) of the protocol design. The
issues were identified in the process of constructing the CPN model, performing
single-step executions of the CPN model, and engaging in discussions of the CPN
model with the protocol engineers at Ericsson.
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Table 2. ERDP project [67] – design issues identified in the modelling phase.

Category Review 1 Review 2 Total

Errors in protocol specification/operation 2 7 9 issues
Incompleteness and ambiguity in specification 3 6 9 issues
Simplifications of protocol operation 2 0 2 issues
Additions to the protocol operation 4 0 4 issues

Total 11 13 24 issues

6.2 Verification of the ERDP CPN Model

State space exploration was conducted after the three iterations of modelling
as discussed in the previous section. The purpose of the state space exploration
was to conduct a more thorough investigation of the operation of ERDP, includ-
ing verification of its key properties. The key behavioural property of ERDP is
proper configuration of the gateway with prefixes. This means that for a given
prefix and state where the gateway has not yet been configured with that prefix,
the protocol must be able to configure the gateway with that prefix. Further-
more, when the gateway has been configured with the prefix, the edge router
and the gateway should be consistently configured , i.e., the assignment of the
prefix must be recorded both in the gateway and in the edge router protocol
entity. Whether a marking represents a consistently configured state for a given
prefix can be checked by inspecting the marking of the place PrefixAssigned in
the edge router and the marking of the place Prefixes in the gateway.

Obtaining a finite state space. The first step towards state space exploration of
the CPN model was to obtain a finite state space. The CPN model as presented
above has an infinite state space, since an arbitrary number of tokens (packets)
can be put on the places modelling the packet buffers. As an example, the edge
router may initially send an arbitrary number of unsolicited router advertise-
ments. To obtain a finite state space, an upper integer bound of 1 was imposed
on each of the places GWIn, GWOut, ERIn, and EROut (see Fig. 31) which model
the packet buffers. This also prevents overtaking among the packets transmit-
ted across the wireless link. Furthermore, the number of packets simultaneously
present in the four input/output buffers was limited to 2. Technically, this was
done by using the branching options available in the CPN state space tool to pre-
vent the processing of enabled transitions whose occurrence in a given marking
would violate the imposed bounds on the buffer places.

No packet loss and prefix expire. The second step was to consider the simplest
possible configurations of ERDP, starting with a single prefix and assuming that
there is no packet loss on the wireless link and that prefixes do not expire. The
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full state space for this configuration had 46 nodes and 65 arcs. Inspection of
the state space report showed that there was a single dead marking represented
by node 36. Inspection of this node showed that it represented a state where all
of the packet buffers were empty. However, the edge router and gateway were
inconsistently configured in this state in that the edge router had assigned the
prefix P1 (the single prefix), while the gateway was not configured with that pre-
fix. This was an error in the protocol. To locate the source of the problem, query
functions in the state space tool were used to obtain a counter example leading
from the node representing the initial marking to node 36. Figure 37 shows the
resulting error trace, visualised by means of an MSC. This MSC was generated
automatically from the extracted counter example. The column labelled GW-
Buffer represents the packet buffer between the gateway protocol entity and the
underlying protocol layers. Similarly, the ERBuffer column represents the packet
buffer in the edge router. The problem is that the edge router sends two unso-
licited RAs. The first one gets through and the gateway is configured with the
prefix, which can be seen from the event marked with *A* in the lower part of
the MSC. However, when the second RS, without any prefixes, is received by
the edge router (the event marked with *B*), the corresponding solicited RA
will not contain any prefixes. Because of the way the protocol was specified, the
gateway will therefore update its list of prefixes to the empty list (the event
marked with *C*), and the gateway is no longer configured with a prefix.

To fix the error, the protocol was modified so that the edge router always
replies with the list of all prefixes that it has currently assigned to the gateway.
The state space for the modified protocol consisted of 34 nodes and 49 arcs,
and there were no dead markings in the state space. The state space report
specified that there were 11 home markings. Inspection of these 11 markings
showed that they all represented consistently configured states for the prefix
P1. The markings were contained in the single terminal SCC of the state space.
A terminal SCC is an SCC of the state space where all successors of states in
the SCC belong to the SCC itself. This shows that, from the initial marking
it is always possible to reach a consistently configured state for the prefix, and
that when such a marking has been reached, the protocol entities will remain
in a consistently configured state. To verify that a consistently configured state
would eventually be reached, it was checked that the single terminal SCC was
the only non-trivial SCC. A trivial SCC is a SCC consisting of just a single
state. This showed that all cycles in the state space (which correspond to non-
terminating executions of the protocol) were contained in the single terminal
SCC, which (from above) contained only consistently configured states. The
reason why the protocol is not supposed to terminate in a consistently configured
state represented by a dead marking is that the gateway may, at any time, when
it is configured, send a router solicitation back to the edge router to have its
prefixes refreshed.

Increasing the number of prefixes. When the correctness of the protocol had been
established for a single prefix, the number of prefixes was increased. When there
is more than one prefix available it no longer holds that a marking will eventually
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Fig. 37. MSC showing an execution leading to an undesired terminal state.
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be reached where all prefixes are consistently configured. The reason is that with
more than one prefix, the edge router may at any time decide not to configure
the gateway with additional prefixes. Hence, a state where all prefixes have been
consistently configured might not eventually be reached. Instead, firstly, it was
verified that there was a single terminal SCC, all markings of which represent
states where all prefixes have been consistently configured. This shows that it is
always possible to reach such a marking, and when the protocol has consistently
configured all prefixes, the protocol entities will remain consistently configured.
Secondly, it was checked that all markings in each non-trivial SCC represented
markings where the protocol entities were consistently configured with a subset
of the prefixes available in the edge router. The properties above was checked
using a number of user-defined queries in the state space tool of CPN Tools.

Adding packet loss. The third step was to allow packet loss on the wireless link
between the edge router and the gateway. First, the case was considered in which
there is only a single prefix for distribution. The state space for this configuration
had 40 nodes and 81 arcs. Inspection of the state space report showed that there
was a single dead marking. This marking represented an undesired terminal
state where the prefix had been assigned by the edge router, but the gateway
was not configured with the prefix. The source of the problem was located by
extracting a counter example and visualising it in a similar manner as shown in
Fig. 37. The problem was fixed by ensuring that the edge router would resend
an unsolicited RA to the gateway as long as it had prefixes assigned to the
gateway. The state space of the revised CPN model had 68 nodes and 160 arcs.
Inspection of the state space report showed that there were no dead markings
and no home markings. Investigation of the terminal SCCs showed that there
were two terminal SCCs, each containing 20 markings. The nodes in one of
them all represented states where the edge router and gateway were consistently
configured with the single prefix P1, whereas the nodes in the other terminal
SCC all represented states where the protocol entities were not consistently
configured. The markings in the undesired terminal SCC represent a livelock
in the protocol, i.e., if one of the markings in the undesired terminal SCC is
reached, it is no longer possible to reach a state where the protocol entities are
consistently configured with the prefix. The source of the livelock was related
to the control fields used in the router advertisements for refreshing prefixes
and their interpretation on the gateway. This was identified by obtaining the
MSC for a path leading from the initial marking to one of the markings in the
undesired terminal SCC. As a result, the processing of router advertisements in
the gateway was modified. The state space for the protocol with the modified
processing of router advertisements also had 68 nodes and 160 arcs. The state
space had a single terminal SCC containing 20 nodes, which all represented
states where the protocol entities were consistently configured with the single
prefix.

When packet loss is present, it is not immediately possible to verify that
the two protocol entities will eventually be consistently configured. The reason
is that any number of packets can be lost on the wireless link. Each of the
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non-trivial SCCs was inspected using a user-defined query to investigate the
circumstances under which the protocol entities would not eventually be con-
sistently configured. This query checked that either all nodes in the non-trivial
SCC represented consistently configured states or none of the nodes in the SCC
represented a consistently configured state. For those non-trivial SCCs where no
node represented a consistently configured state, it was checked that all cycles
contained the occurrence of a transition corresponding to loss of a packet. Since
this was the case, it can be concluded that any failure to reach a consistently
configured states will be due to packet loss only. Hence, if finitely many pack-
ets are lost, a consistently configured state for some prefix will eventually be
reached.

Adding prefix expire. The fourth and final step in the analysis was to allow
prefixes to expire. The analysis was conducted first for a configuration where
the edge router had only a single prefix to distribute. The state space for this
configuration had 173 nodes and 513 arcs. The state space had a single dead
marking, and inspection of this dead marking showed that it represented a state
where the edge router has no further prefixes to distribute, it has no prefixes
recorded for the gateway, and the gateway is not configured with any prefix.
This marking is a desired terminating state of the protocol, as we expect pre-
fixes to eventually expire. Since the edge router has only finitely many prefixes to
distribute, the protocol should eventually terminate in such a state. The single
dead marking was also a home marking, meaning that the protocol can always
enter the expected terminal state. When prefixes can expire, it is possible that
the two protocol entities may never enter a consistently configured state. The
reason is that a prefix may expire in the edge router (although this is unlikely)
before the gateway has been successfully configured with that prefix. Hence, we
are only able to prove that for any marking where a prefix is still available in the
edge router, it is possible to reach a marking where the gateway and the edge
router are consistently configured with that prefix.

Table 3 lists statistics for the size of the state space in the three verification
steps for different numbers of prefixes. The column ‘|P|’ specifies the number
of prefixes. The columns ‘Nodes’ and ‘Arcs’ give the numbers of nodes and
arcs, respectively, in the state space. For the state spaces obtained in the first
verification step, it can be seen that 38 markings and 72 arcs are added for each
additional prefix. The reason for this is that ERDP proceeds in phases where
the edge router assigns prefixes to the gateway one at a time. Configuring the
gateway with an additional prefix follows exactly the same procedure as that
for the assignment of the first prefix. Once the state space had been generated,
the verification of properties could be done in a few seconds. It is also worth
observing that as the assumptions are relaxed, i.e., we move from one verification
step to the next, the sizes of the state spaces grow. This, combined with the
identification of errors in the protocol even in the simplest configuration, without
packet loss and without expiration of prefixes, shows the benefit of starting
state space exploration from the simplest configuration and gradually lifting
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assumptions. Furthermore, the state explosion problem was not encountered
during the verification of ERDP, and the key properties of ERDP were verified
for the number of prefixes that were envisioned to appear in practise.

Table 3. State space statistics for the three verification steps.

No loss/No expire Loss/No Expire Loss/Expire
|P| Nodes Arcs Nodes Arcs Nodes Arcs

1 34 49 68 160 173 531
2 72 121 172 425 714 2 404
3 110 193 337 851 2 147 7 562
4 148 265 582 1 489 5 390 19 516
5 186 337 926 2 390 11 907 43 976

6 224 409 1 388 3 605 23 905 89 654
7 262 481 1 987 5 185 44 550 169 169
8 300 553 2 742 7 181 78 211 300 072
9 338 625 3 672 9 644 130 732 505 992

10 376 697 4 796 12 625 209 732 817 903

6.3 Lessons Learned and Perspectives

The project at Ericsson highlights the benefits of a formal modelling and vali-
dation approach. Furthermore, the project emphasised the benefits of the model
construction phase which is often underestimated (or not reported) in literature
on protocol validation. As illustrated by the ERDP project, the modelling phase
itself lead to significant insight into the protocol design, and contributed to a
simpler and more complete protocol design. The construction of a CPN model
and subsequent state space exploration can be seen as a very thorough and sys-
tematic way of reviewing the ERDP design specification. The project showed
that the process of constructing a CPN model based on the ERDP specification
provided valuable input to the ERDP design, and the use of simulation added
further insight into the operation of the protocol. State space exploration, start-
ing with the simplest possible configuration of the protocol, identified additional
errors in the protocol. The results from state space exploration also demonstrate
that errors are often present in the smallest configurations of a protocol system.

Using an iterative process where both a conventional natural-language spec-
ification and a CPN model were developed (as in this project) turned out to be
an effective way of integrating CPN modelling and validation into the develop-
ment of a protocol. In general, the combination of an executable formal model
(such as a CPN model) and a natural-language specification seems to be provide
a useful way to develop a protocol. One reason why both are required is that the
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software engineers that are eventually going to implement the protocol (which
may be different from those that design the protocol) in many cases will not be
familiar with the CPN modelling language. Secondly, in many cases there are
important implementation elements of the protocol specification that are not
reflected in the CPN model, such as the layout of packets.

It can be argued whether or not the issues and errors discovered in the process
of modelling and conducting state space exploration would have been identified if
additional conventional reviews of the ERDP specification had been conducted.
Some of them probably would have been, but more subtle problems such as
the inconsistent configurations discovered during state space exploration would
probably not have been discovered until the first implementation of ERDP was
operational. The reason for this is that discovering these problems requires one
to consider subtle execution sequences of the protocol.

Overall, the application of CPNs in the development of ERDP was considered
a success for three main reasons. Firstly, it was demonstrated that the CPN
modelling language and supporting computer tools were powerful enough to
specify and verify a real-world protocol being developed in an industrial project,
and that integration into the conventional protocol development process is not
difficult. Secondly, the act of constructing the CPN model, executing it, and
discussing it led to the identification of several non-trivial design errors and
issues that, under normal circumstances, would not have been discovered until,
at best, the implementation phase. Finally, the effort of constructing the CPN
model and conducting state space exploration was represented by approximately
100 person-hours. This is a relatively small investment compared with the many
issues that were identified and resolved early as a consequence of constructing
and analysing the CPN model.

7 Related Work on CPN Protocol Validation

The four protocol examples presented in this paper constitute only a small subset
of the examples that have been published in the literature on the use of CPNs for
specification and validation of protocols - in particular in relation to protocols
developed in the context of IETF and other protocol standardisation bodies.

The Datagram Congestion Control Protocol (DCCP) developed by the IETF
has been investigated in [11]. DCCP is intended to provide an unreliable trans-
port service with congestion control mechanisms. The work in [11] was done in
parallel with the development of the emerging DCCP standard, and concentrated
on modelling and verification of the connection establishment and synchronisa-
tion procedures of DCCP. It resulted in the identification of several functional
errors in the protocol design, including discovery of deadlocks, non-progress be-
haviour (chatter), and problems with connection establishment in relation to
sequence number wraps. The formal validation resulted in the IETF working
group making small (but important) changes to the connection establishment
and synchronisation procedures of DCCP. The work also included the devel-
opment of a formal service specification for DCCP [33] and application of the
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sweep-line method [105] for on-the-fly checking of the protocol conformance to
the developed service specification.

The classical Transmission Control Protocol (TCP) has also been modelled
and verified using CPNs [10]. Similar to the work on DCCP, this work concen-
trated on the connection establishment procedures. It resulted in verifying the
absence of deadlocks and livelocks in connection establishment, and a detailed
specification of the circumstances under which TCP connection establishment
may not be successful. Another example of transport layer protocol modelling
and validation can be found in [104] which considers the Stream Transmission
Control Protocol (SCTP).

The Internet Open Trading Protocol (IOTP) designed to provide an inter-
operability framework for Internet commerce was formally modelled and vali-
dated using CPNs in [92, 91, 90]. IOTP is designed to handle common trading
procedures and encompass trading roles such as consumer, merchant, payment
handler, and delivery handler. IOTP is organised around a collection of eight
baseline transactions consisting of Purchase, Refund, Value exchange, Authenti-
cation, Withdrawal, Deposit, Inquiry, and Ping. These transactions comprise a
minimal set of transactions for an Internet commerce protocol. A formal speci-
fication of the service provided by IOTP was developed using CPN in [92]. The
service was specified in the form of a finite-state automaton labelled with service
primitives. The automaton was extracted from the state space of the CPN model
by identifying the binding elements corresponding to service primitives of the
protocol. A CPN model of the IOTP protocol itself was presented in [91, 90].
State space exploration focused on the termination properties and absence of
livelocks in the IOTP transactions. The use of state space exploration revealed
deficiencies related to termination of transactions. A verification of the IOTP
protocol CPN model [91, 90] against the formal service specification from [92]
was presented in [89]. Finite-state automata language comparison was used as
the criterion for conformance following the methodology of [9]. Application of
the sweep-line state space method on IOTP was investigated in [34] exploiting
an inherent progression from the start of an IOTP transaction to termination of
the transaction.

The Wireless Application Protocol (WAP) has been considered in [40, 41].
WAP is designed to provide Internet services to a wide range of hand-held de-
vices. The work of [40, 41] concentrates on the Wireless Transaction Protocol
(WTP) which is an important element of the WAP architecture and protocol
suite. The work in [40] presents a formal modelling of the WTP service and a
formal modelling of the WTP protocol. Checking the conformance of the WTP
protocol against the WTP service was done using finite-state automata lan-
guage comparison. This approach succeeded in detecting several inconsistencies
between the protocol and the service which was provided as input to the WAP
forum responsible for the development of WAP. The sweep-line method was used
in [41] to alleviate the state explosion problem and allow for the verification of
larger configurations of WTP. The application of the sweep-line method allowed
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configurations with parameter settings of retransmission counters corresponding
to the recommended setting for GSM and IP network to be verified.

The Session Initiation Protocol (SIP) is a widely used protocol for the estab-
lishment of Internet multimedia session, and has been subject to formal mod-
elling and validation in [77, 23]. The INVITE transactions have been formally
analysed using state space exploration in [77, 23] leading to identification of un-
desired terminating states of the protocol when operating over an unreliable com-
munication medium. Security aspects of SIP have been investigated in [78]. The
work of [37] focuses on the formal modelling of a SIP-based protocol for multi-
channel service oriented architectures. A formalisation of SIP with the purpose
of providing a framework model for present architectures in mobile computing is
presented in [36]. Another multimedia control protocol, the Capability Exchange
Signalling (CES) protocol, has been formally modelled using CPNs and verified
using state space exploration in [79]. The work on the CES protocol led to the
identification of protocol errors in presence of sequence number wrap. Suggested
changes were incorporated in a revised CPN model, and it was formally verified
showing that the discovered errors have been eliminated.

The NEO protocol which is part of the distributed transactional object
database management system NEOPPOD was investigated using high-level Petri
Nets in [17]. The Coloane environment was used for the construction of the mod-
els, and verification was performed using the CPN-AMI and Helena tools. The
NEO protocol is used to coordinate data storage and retrieval in a decentralised
and distributed system where data can be stored on a number of data nodes
and data is accessed through the primary master node. The focus of [17] was
on the protocol used for the election of the primary master node. The model
of the election part of the NEO protocol consisted of eighteen modules. Since
there existed no specification document for the protocol, the Petri net model
was reverse-engineered from a prototype implementation. The validation process
which relied on the use of state spaces discovered two flaws in the implementa-
tion of the protocol. These were subsequently provided to the software engineers
responsible for the implementation of the protocol component.

The Resource Reservation Protocol (RSVP) was formally modelled and ver-
ified in [107, 106]. The modelling and verification concentrates on verifying the
absence of deadlocks and livelocks in relation to the setup, maintenance and path
release procedures of RSVP. In addition, a number of RSVP specific behavioural
properties were investigated which considered in detail the internal state of the
sender, router, and receiver protocol entities of the protocol. The main contribu-
tion of the work was the development of a formal specification of the RSVP path
procedures. Another example on the modelling of routing protocols can be found
in [76] which uses Mobile Petri Nets to construct a formal model of the Mobile
IP protocol. Mobile IP allows transport layer connections to be preserved when
mobile nodes change their point of attachment to the Internet. CPNs have also
recently been used for the verification of security protocols. Privacy enhancing
protocols were considered in [99], and [39] addresses the modelling and validation
of PANA Authentication and Authorisation Protocol. Examples of protocols for
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which parametric verification has been pursued in the context of CPNs can be
found in [32, 31].

8 Conclusions and Outlook

Functional validation of protocol designs is one of the main application areas
of CPNs and supporting computer tools [28]. In this paper, we have surveyed a
selection of recent projects on modelling and functional validation of industry
relevant protocols. The examples demonstrate how the elements of protocols can
be modelled using CPNs, and they illustrate how a combination of simulation,
application-specific behavioural visualisation, and state space exploration is typ-
ically applied in protocol validation with CPNs. From a modelling perspective,
the protocol examples have ranged from models representing two (or few) peer
protocol entities (e.g., GAN, EDRP, and RIP) having an explicit representation
in the net structure, to parameterised models capable of modelling an arbitrary
number of peer protocol entities by setting a model parameter (e.g., DYMO).
The latter was based on constructing a folded model where the identity of the
protocol entities is encoded explicitly as part of the token colours. The CPN
models have also illustrated modelling at different protocols layer ranging from
models operating at a single protocol layer (e.g., DYMO and ERDP) to protocol
system design involving multiple protocol layers and protocols (e.g., GAN and
RIP). An important aspect of the examples is that the process of modelling and
conducting single step simulation is an important (but often underestimated)
activity in the validation of a protocol design.

The main technique available for functional verification of CPN models is
that of explicit state space exploration. The examples presented in this paper
show how basic state space exploration combined with the generation of a state
space report relying on a number of standard behavioural properties of Petri
Nets, provides a light-weight approach which in many cases is an important step
in verifying key properties of a protocol design. The main reason for the wide
spread application of state space exploration has been the presence of mature
computer tool support combined with the main advantages of state space ex-
ploration in terms of being a highly systematic approach, being able to provide
counter examples, and allowing for a high degree of automation. The compact
modelling of protocols enabled by CPNs has, in many cases, had the effect that
the full state space can be explored for at least the smallest configuration of the
considered protocol. The GAN and ERDP examples presented in this paper are
concrete examples illustrating this. Practise have shown that the primary capa-
bility offered by the advanced state space methods is the possibility of verifying
larger configurations of the protocol - and in some cases [71] the configurations
of the system that are expected to occur in practise. The ERDP example con-
sidered in this paper is another example of this. Hence, despite the fact that
explicit state space exploration methods requires one to conduct verification rel-
ative to a particular configuration of the protocol, the current suite of availably
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state space methods combined with the power of modern computing platforms in
many situations allows for the practical validation of industrial-sized protocols.

While CPNs have been successfully applied to modelling and validating pro-
tocol designs, there has been relatively few attempts at using the constructed
CPN models in an automated or semi-automated manner as a basis for the ac-
tual implementation of protocols. Some simulation-based approaches were used
in [87] and [70] for generating server-side implementations. Here, the simulation
code for the CPN model generated by CPN Tools was extracted, and after un-
dergoing automatic modifications (e.g., linking the code to external libraries),
the generated simulation code is used as the system implementation. A limita-
tion of this approach is that the execution speed is affected because each step in
the execution of the program involves the computation and execution of enabled
transitions (as done by a CPN simulator) in order to determine the next state.
Secondly, the approach ties the target platform to that of the CPN Tools simula-
tor which may make the approach impractical for many application domains due
to resource consumption of the CPN simulator. The SML/NJ compiler used for
the simulator in CPN Tools has a large memory footprint making it ill-suited,
e.g., for the domain of embedded systems. Some initial work on a translation-
based approach can be found in [73]. Here a restricted form of CPNs was used
for obtaining an Erlang implementation of the DYMO routing protocol. The
approach in [73] relies on the use of Process-Partitioned CPNs which enforces a
detailed modelling of the protocol design which is very close to an implementa-
tion level model. An area that will be important as part of efforts in developing
capabilities for automated code generation is the development of CPN protocol
modelling methodology on which only limited research has been undertaken [18].
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Abstract Formal modelling of protocols is often aimed at one specific
purpose such as verification or automatically generating an implementa-
tion. This leads to models that are useful for one purpose, but not for
others. Being able to derive models for verification and implementation
from a single model is beneficial both in terms of reduced total modelling
effort and confidence that the verification results are valid also for the im-
plementation model. In this paper we introduce the concept of a descrip-
tive specification model and an approach based on refining a descriptive
model to target both verification and implementation. Our approach has
been developed in the context of the Coloured Petri Nets (CPNs) mod-
elling language. We illustrate our approach by presenting a descriptive
specification model of the Websocket protocol which is currently under
development by the Internet Engineering Task Force (IETF), and we
show how this model can be refined to target both verification and im-
plementation.

Keywords: Protocol software for pervavise computing, model-based
protocol development, protocol verification, Coloured Petri Nets.

1 Introduction

Common uses of protocol modelling are to describe, to specify, to verify, and
to generate implementations of protocol software. These uses are typically not
supported by a single model, although all of these objectives can be achieved
using a single modelling language. For example, in order to conduct state space-
based verification of a Petri Net model of a protocol, it is a requirement that the
state-space of the model is of a size that can be represented given the available
computing resources. However, to be able to automatically generate executable
code, a model needs to include many details that significantly increase the size
of the state space (or even make it infinite). In order to describe a protocol, the
model should be at a level of abstraction that provides enough detail to under-
stand the concepts and operation of the protocol, but should not include the
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abstractions that arise from the need of limiting the state space nor the details
needed to generate an implementation of the protocol for a specific platform.

Coloured Petri Nets (CPNs) [12] have been widely used to verify protocols
(e.g., [6,14,16]) and associated verification methodologies [2] has been developed.
Examples also exists (e.g., [15]) where CPN models have been developed with
the purpose of obtaining implementations. Limited work [4] exists on methodolo-
gies for CPN modelling of protocol software, and earlier work has not attempted
to identify and make explicit the differences and commonalities between verifi-
cation and implementation models. Also, there are comparatively few examples
in the literature where a CPN model has been constructed with the purpose
of describing a protocol. One contribution of this paper is to present a mod-
elling approach based on the concept of a descriptive specification model which
serves as a common origin model for deriving verification and implementation

models. By abstractions and restrictions of the scope of the model, a descriptive
model can be transformed into a model suited for verification. The descriptive
model can also be transformed into a model suited for implementation via the
addition of code generation pragmatics and by means of refinement. To illus-
trate our modelling approach, we present a descriptive specification model of
the Websocket (WS) protocol [8] currently under development by IETF. The
Websocket protocol provides a message-oriented full-duplex connection and re-
lies on the Transmission Control Protocol (TCP) and the Hypertext Transfer
Protocol (HTTP). The WS protocol targets web applications and uses HTTP to
open a connection. For the data transfer, the WS protocol relies directly on bi-
directional TCP streams in order to avoid the request-response (polling) pattern
of HTTP, and to eliminate the overhead that would be induced by the verbose
HTTP headers. Data framing is used on top of the TCP streams to make the WS
connections message-oriented. Based on the descriptive model of the WS pro-
tocol, we derive and present verification and implementation models. The WS
protocol has (to the best of our knowledge) not been subject to formal modelling
and verification which constitute the second contribution of this paper.

CPNs have several useful features that makes it a good choice as a modelling
language for our approach. The concurrency model inherent in CPNs makes it
easy to make realistic models of protocol systems where several principals are
executing concurrently. Also, since CPNs are executable, simulation makes it
easy to visualise the flow of the modelled system. In addition, the hierarchical
structure of CPNs is highly amenable to structuring an entire protocol system
from the principals and channels at the highest level through the service declara-
tions to the specific operations of a service. A main difference between CPNs and
other modelling language for protocol systems like the the Extended State Tran-
sition Language (Estelle) [9] and the Specification and Description Language
(SDL) [11] is that CPNs have very few (but still powerful) modelling constructs.
Estelle and SDL have a large and complex set of language constructs to describe
the behaviour of protocol principals and their interaction. From this perspective,
CPNs provide a simpler and more lightweight approach to protocol modelling
which at the same time is less implementation specific than, e.g., typical SDL
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protocol specifications. In that respect, CPNs are close to languages like the Lan-
guage of Temporal Ordering Specification (LOTOS) [1] that focus on abstract
and implementation independent protocol specification. In a UML context, state
diagrams (charts) [7] have been used widely for modelling protocol modules and
message sequence charts (MSCs) [10] (sequence diagrams in UML) are being
used in particular for specifying protocols requirements that can later be used
in protocol verification [5]. MSCs have also been used for protocol specification
using higher-level control flow constructs. In contrast to MSCs which are action-
oriented, state charts and CPNs are both state and action-oriented modelling
formalisms. The above observations combined with our existing expertise and
experience made us choose CPNs as the underlying modelling language in our
approach. With the basis of our approach established, it is likely that future
work will include the creation of a domain specific language on top of CPNs to
model protocols.

The rest of this paper is organised as follows: Section 2 presents the charac-
teristics of descriptive specification models and the descriptive CPN model of the
WS protocol. Section 3 discusses how a verification model can be derived from a
descriptive model, and presents an initial verification of the WS protocol using
the obtained verification model. Section 4 shows how the descriptive WS model
can be transformed into an implementation model. Finally, Sect. 5 contains the
conclusions and a discussion of future work. The reader is assumed to be familiar
with the basic concepts of Petri Nets and explicit state model checking. Due to
space limitations, we give only a very limited presentation of CPN concepts. The
reader is referred to [12,13] for an introduction to the CPN modelling language.

2 A Specification Model of the Websocket Protocol

A descriptive specification model, in our modelling approach, is a model that
has as its primary purpose to facilitate description and communication of how a
protocol works, and to serve as an executable protocol specification that provides
a basis for verification and implementation models. The descriptive aspect of
models tends to receive less focus in the academic modelling literature even
though understanding and communicating how software works are considered
by developers to be important reasons to create models and sketches [3]. The
descriptive CPN model for the WS protocol presented in this section has been
created based on the WS RFC specification document [8] using CPN Tools [20].
The focus of the descriptive model is on the logical operation of the protocol
which implies that the model does not encompass quantitative properties such
as timing constraints and resource usage. It is possible to add such aspect in a
refined model using the time concept provided by CPNs. In the following, we
describe selected parts of the constructed CPN model. The complete model can
be found via [17].

One specific feature of a descriptive model is to be able to show the operation
of the protocol at different levels of abstraction from the protocol architecture
through the major components down to the specific component behaviour. This
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is important both for understanding the protocol as a whole as well as allowing
different stake-holders to focus on the appropriate levels of abstraction. Another
important feature of a descriptive model is a high level of readability. This means
that it should be easy for human readers to read and understand the model
and, with the help of the model, understand the protocol. What makes a model
readable and whether the example presented in this paper fits this descriptions
will be the subject of further investigations. A descriptive model should also
include all the important parts of the protocol as well as all the major states the
protocol may be in. This is important to ensure that the model can be used as
a basis for deriving implementation and verification models and also such that
the descriptive specification model can be used to understand and communicate
the operation of all the major parts of the protocol.

To create the descriptive model of the WS protocol, the first step is to create
sub-modules for each of the principals (protocol entities) and the communica-

tion channels between them on the top module of the model. This is useful for
explaining the overall architecture of the protocol. After the high-level architec-
ture has been modelled the next level includes the main components and states
of each principal. The states and main components are identified by using the
protocol specification document. This level is used to give a general overview
of each of the principals. The subsequent levels should describe the components
of each principal focusing on keeping as close to the protocol specification doc-
ument as possible. With CPNs this is achieved by using a hierarchical model.
Figure 1 shows the top-level module of the CPN model which reflects the overall
architecture of the WS protocol. The WS protocol involves two principal actors:
one client and one server which are represented by the substitution transitions

Client and Server, respectively.

The two principals are connected by places representing channels from Client-

ToServer and from ServerToClient. Both places have the colour set Connection
that is being used to model the TCP connection on top of which the WS con-
nection is being established. The colour set Connection determining the kind
of tokens that can reside on the two channel places (places in the CPN model
that model communication channels) are defined in Fig. 2.

Connection

ClientToServer

Connection
Server

ServerServer

Client

ClientClient

ServerToClient

Figure 1. The top-level module of the descriptive specification model
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colset Channel = with TCP;

colset Content = list Data;

colset Connection = product Channel * Content;

Figure 2. Colour set definition for channels and connections

The Connection colour set is a product type where the first component
(Channel) specifies the type of the channel to be used for communication, and the
second component (Content) is used to model the data currently in transmission
on the channel. We discuss the Data colour set later.

In the descriptive model, the TCP connection is assumed to be a perfect
stream connection. This means that all data that are sent from one endpoint will
be received at the other endpoint, in the correct order and without alterations. It
is also assumed that all data received from one endpoint are sent from the other
endpoint and not injected into the channel through some other means. Finally,
it is assumed that the channel is not closed abruptly. These assumptions are
stronger than what TCP can guarantee, but are in accordance with the implicit
assumptions on TCP made in the WS specification document [8]. Furthermore,
the assumptions allow us to focus on the core behaviour of the protocol without
considering all the possible errors that might originate from the platform that
the protocol will eventually be executed on.

A major goal of our approach is to create a model with a one-to-one re-
lationship between the concepts in the model and the specification document.
When the model and the specification fails to have a one-to-one relationship, the
reason for the discrepancy should be explained and documented. Discrepancies
should only be tolerated when following the one-to-one correspondence would
have a significant negative impact on the readability of the model and when
breaking it does not significantly change the function of the protocol. Using the
WS protocol over the Transport Layer Security (TLS) is left out of the scope of
the WS descriptive model, and the same applies to error handling. These ele-
ments could be added to the model and would contribute to making the model
more complete, but they would not provide insight in terms of illustrating our
modelling approach. In addition, we have also left out optional extensions of the
protocol in the modelling. When developing a model with a close relationship to
the specification document using the method outlined above, it is our contention
that the end result will be a model that is suitable for describing the protocol.

The main states that the principals participating in the WS protocol can be
in are shown in Fig. 3 and Fig. 4 which depict the server and client submodules
of the CPN model describing the WS protocol. In the initial state, READY, the
client (and server) has not had any interaction. Once the WS connection has
been established (substitution transitions EstablishWebSocketConnection), the
principals enter the OPEN state. In the OPEN state, data transfer (substitution
transition DataTransfer) can take place, until either of principals chooses to close
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READY

URI

({scheme = ws,host=host,port = port,path=path,query = querynone} : URI)

OPEN

UNIT

CLOSED

UNIT

ServerToClient

I/O
Connection

I/O

ClientToServer

I/O
Connection

I/O

Establish WebSocket
Connection

ClientEstablishWebSocketConnection

Close WebSocket 
Connection

ClientCloseWebSocketConnectionClientCloseWebSocketConnection

Data Transfer

ClientDataTransferClientDataTransfer

ClientEstablishWebSocketConnection

Figure 3. The top level module of the client principal

the connection (substitution transitions CloseWebSocketConnection). After the
websocket connection has been closed, the principals enter a CLOSED state,
and no further communications is possible.

The WS protocol relies on the use of HTTP messages for establishing the
WS connection, and frames specifically designed for the WS protocol in order
to provide a message-oriented channel on top of TCP streams. A central ab-

READY

UNIT

()

OPEN

UNIT

CLOSED

UNIT

ClientToServer

I/O
Connection

I/O

ServerToClient

I/O
Connection

I/O

ServerEstablish WebSocket
Connection

ServerEstablishWebSocketConnection

ServerClose 
WebSocketConnection

ServerCloseWebSocketConnection

Server Data Transfer

ServerDataTransferServerDataTransfer

ServerCloseWebSocketConnection

ServerEstablishWebSocketConnection

Figure 4. The top level module of the server principal
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straction in the descriptive model is that we model the individual fields in the
messages and frames, but abstract from the byte layout. Figure 5 lists the def-
initions of the colour sets (data types) that model the data exchanged between
the principals. A number of the fields of frames and messages have been mod-
elled using the UNIT colour set containing just the single value () (unit). The
UNIT colour set is used in the cases where we have abstracted from the specific
values of the fields while still modelling that the fields has to be represented
in the corresponding message/frame. In particular, it can be seen that we have
abstracted from the specific payload (and payload length) of frames as this does
not affect the operation of the protocol, but only the users of the WS protocol.
The opcode field of Frame is used to specify whether the frame is a data (text,
binary or continuation), a ping, a pong or a close frame.

colset Data = union WSFRAME : Frame + HTTPREQ : HTTPRequest +

HTTPRESP : HTTPResponse;

colset Frame = record FIN : BIT * Opcode : INT *

MASK : BIT * PayloadLen : UNIT *

Maskingkey : UNIT * PayloadData : UNIT;

colset HTTPRequest = record method : HTTPMethod *

resource : Resource *

version : STRING *

host : Host *

upgrade : STRING *

connection : STRING *

secwebsocketkey : UNIT *

secwebsocketversion : STRING;

colset HTTPResponse = record version : STRING * status : INT *

statusdescription : STRING *

upgrade : STRING *

connection : STRING *

secwebsocketaccept : UNIT;

Figure 5. Colour set definition of HTTP messages and frames

2.1 Opening the Websocket Connection

The establishment of a WS connection is referred to as the open handshake

and is modelled by the modules shown in Fig. 6 (client side) and Fig. 7 (server
side). The first step is to open a TCP connection. In the descriptive model, we
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()
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(TCP,[])

()

()

uri
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Validate Opening 
Handshake

Receive Opening
Handshake

Send Opening
Handshake

Open TCP Connection

WAITING
VALIDATE

UNIT

WAITING

UNIT

OPENING

URI

OPENOut

UNIT

READY

In
URI

In

Out

ServerToClientOutOut

(TCP,
HTTPRESP
 httpresp::content)

(TCP,
content)

Connection

ClientToServerI/OI/O

(TCP,
content)

(TCP,
content^^
[ClientOpenHandshake(uri)])

Connection

(TCP,ClientOpenHandShake(uri)::content)

Figure 6. The Websocket open handshake - client side

have not explicitly modelled TCP. Instead, the TCP connection is modelled as
being open when there is a token present on the channel place. The opening
of the TCP connection (in the client to server direction) is modelled by the
OpenTCPConnection transition in Fig. 6. In response to the client opening the
TCP connection, the server opens the TCP connection in the server to client
direction as modelled by the AcceptTCPConnection transition in Fig. 7.

When both sides have opened the TCP connection, the client sends its HTTP
upgrade request. The request is created by the function shown in Fig. 8. The
method field of a HTTPREQ message specifies that a GET operation is to be
performed and the uri is used to identify the endpoint of the WS connec-
tion. The host field contains the hostname of the server. The upgrade and
connection fields indicate that this is an upgrade request for a WS connec-
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Figure 7. The Websocket open handshake - server side

tion. The secwebsocketkey field contains a base-64 encoded 16-byte nonce, but
this type is in the model abstracted to a unit value. The secwebsocketversion

indicates the version of the web socket protocol to be used.

Figure 9 shows the function used to create the HTTP response on the server
side of the open handshake. The first field of the response is in the form of a sta-
tus line in an HTTP response, which should include the status 101 Switching

Protocols. The rest of the response header fields follows the standard format for
HTTP header fields. As with the Websocket upgrade request, the upgrade and
connection fields indicate that the connection will be upgraded to a WS con-
nection. The secwebsocketaccept header field contains the transformed value
of the secwebsocketkey from the upgrade request.

After the client receives and validates the response from the server (modelled
by the ValidateOpeningHandshake transition in Fig. 6), the client enters the
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fun ClientOpenHandshake (uri:URI) =

HTTPREQ {

method = GET, resource = #path uri,

version = HTTP_VERSION, host = #host uri,

upgrade = UPGRADE, connection = CONNECTION,

secwebsocketkey = (),

secwebsocketversion = WEBSOCKETVERSION

};

Figure 8. Client open handshake function

OPEN state. At this point both the client and the server are ready to send and
receive frames and the open handshake is finished.

The websocket key in the model which is used to verify the handshake, and
is included in the handshake messages as a unit value. Furthermore, the trans-
formation and validation of this key is not included in the model, other than as
a transition on both the client and server side named ValidateOpenHandshake

that is always successful.

fun ClientOpenHandshake (uri:URI) =

HTTPREQ {

method = GET, resource = #path uri,

version = HTTP_VERSION, host = #host uri,

upgrade = UPGRADE, connection = CONNECTION,

secwebsocketkey = (),

secwebsocketversion = WEBSOCKETVERSION

};

Figure 9. Server open handshake function

2.2 Data Transfer

Once both the client and server are in the OPEN state they may transmit data
until they send or receive a close frame. In addition they may send ping and
pong frames (to check that the connection is still alive). The module modelling
the data transfer phase is shown in Fig. 10. The corresponding module for the
server is symmetrical to the client data transfer model. Since the WS connection
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Figure 10. The data transfer phase - client side

is bidirectional, the sending and receiving of data are independent operations.
This is reflected by modelling sending and receiving as separate sub-modules of
the data transfer module. The sending and receiving of frames are symmetrical
for the client and server. Therefore we only discuss the client in the following.

The sending process for a message is shown in Fig. 11. When the client wishes
to send a message, this is done by sending a sequence of frames. When the final
frame has been sent, the client is Ready to send the next message.
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Figure 11. Client side sending of data frames
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2.3 Ping and Pong

Ping and pong frames have a rather complex behaviour, as described in the
specification document, and is modelled by the module shown in Fig. 12. The
complexity lies in the fact that, while a ping frame should be responded to by a
pong frame, this may be preempted if the receiver receives another ping frame
before responding to the first one. However, if the principal chooses to do so,
it can reply to both ping frames. To add to the complexity, pong frames may
also be sent unsolicited. The model, however, only specifies that ping and pong
frames may be sent and received arbitrarily. This choice has been made to keep
the model simple while still covering the behaviour of the protocol.

Send
PingPong

ClientSendPingPong

Recieve
PingPong

ClientRecievePingPong

ClientToServer

I/O
Connection

ServerToClient

I/O
Connection

OPEN

I/O

UNIT

I/O I/O

I/O

ClientSendPingPongClientRecievePingPong

Figure 12. Client side of ping and pong frame processing

Sending ping and pong messages consists of constructing the ping or pong
frame and putting it into the TCP channel. Figure 13 shows the sending of
ping and pong frames. A function is used on the outgoing arcs of each of the
SendPongFrame and SendRecieveFrame transitions that constructs the respec-
tive frames.

()
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 content)

()
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content)
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ClientToServer

I/OI/O

I/O
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ClientSendPongFrame()
])

Connection

(TCP,content^^[
ClientSendPingFrame()
])

Figure 13. Client side sending of ping and pong frames

The reception of ping and pong frames, shown in Fig. 14, consists of identi-
fying the frame as a ping or a pong frame by its opcode. Upon receiving a ping
frame, the principal should send a response as a pong frame as soon as possible
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including the same data as the ping frame. Since the protocol model does not
contain data and pong frames may be sent unsolicited, the reception of ping
frames is not modelled to have any special behaviour.
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I/O
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Figure 14. Client side reception of ping and pong frames

2.4 Closing the Websocket Connection

When in the OPEN state, either principal may initiate the closing of the WS
connection by sending a close frame. The closing process is illustrated in Fig. 15,
which shows the client side of the protocol when the server initiates closing.
Upon receiving a close frame the client removes the token from the OPEN place
indicating that the protocol is now in the CLOSING state. In the closing state,
the client sends a close frame to the server and enters the CLOSED state. When
both the server and the client are in the CLOSED state, the WS protocol is said
to be completed and the underlying TCP connection is closed.

3 Verification Model and Initial Results

The purpose of the model presented in Sect. 2 is to serve as a description and
executable specification of the WS protocol. This section shows how the descrip-
tive model can be modified to be suited for verification based on explicit state
space exploration as supported by CPN Tools. The use of state space exploration
caters for model checking of both branching time properties (expressed using,
e.g., CTL) and linear-time properties (expressed using, e.g., LTL).

3.1 Finite state space

A first aspect to consider is that the descriptive model of the WS protocol has
an infinite state space since there is no bound on the number of frames that
can be in transmission over the TCP connection. As an example, a principal
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Figure 15. The client side of a server initiated closing handshake

may continuously send a data frame while never reading any data frame. This
does not make the descriptive model invalid according to the specification since
buffers and congestion control is taken care of by TCP and not in the scope of
the WS protocol itself. The descriptive model is therefore modified such that
there is an upper bound on the number of frames that can be simultaneously
in transmission on a TCP connection. Technically, this bound is enforced by
associating a guard to each transition that models sending of frames to a TCP
connection (e.g., transition SendPongFrame in Fig. 13) such that it is required
that sending the data does not violate the imposed bound.

3.2 Verification Scope Control

A second element to be incorporated in the verification model is to make it
possible to limit the scope of the verification by considering only a subset of
the operation of the protocol at a time. This is needed in order to make the
verification process incremental, i.e., initiate the verification by considering the
smallest possible configuration of the websocket protocol and then gradually
include more and more of the functionality until the complete websocket protocol
is considered. For this purpose configuration guards were added to the model that
made it possible in a flexible manner to enable and disable the parts of the model
concerned with sending data frames, ping frames and pong frames.

3.3 Abstraction

The third element was to introduce additional abstractions in the model in order
to reduce the size of the state space. One example of an abstraction is that the
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descriptive models specifies that a message being sent can be of two types: binary
or text. This contributes to making the state space larger, but since there are no
choices made in the model depending on whether a data frame is carrying binary
of textual data it is safe to abstract from this and ignore the type of payload in
data frames.

3.4 Verification

An initial verification of the WS protocol concentrated on termination properties
of the protocol, i.e., that it is always possible to properly close the WS connec-
tion. The WS connection is properly closed when both the client and server is in
a closed state and the TCP connection has been closed in both directions. The
verification process started by considering only the open and close handshake
while disabling the sending of data, ping, and pong frames using the verification
scope control described above. In this case the verification model has a single
terminal state representing a state where the connection is properly closed. The
next configuration considered added the transmission of data. The resulting state
space had a number of terminal states some of which represented states where
either the server or the client went into the closing handshake before a full mes-
sage currently under transmission had been sent. This highlights an issue where
the WS protocol specification is incomplete; a principal needs to clean up the
message buffers before entering the closing handshake or that alternatively an
additional TRANSFER state need to be introduced in the WS protocol to prevent
situations where only a partial messages has been sent.

Finally, the sending of ping and pong frames were included in the verification.
This highlighted a second issue of unspecified receptions with the protocol in that
it is also required for the principals to be able to process ping and pong frames
in the closing handshake. This error manifested itself by the presence of terminal
states where there were frames in the TCP connection that could not be received.
The model was therefore modified such that data, ping, and pong frames can
also be received also in the closing handshake. With this modification, it was
possible to verify (for the complete verification model) that the WS connection
can always be properly closed.

In addition to the two issues related to the design of the WS protocol pre-
sented above, the verification process also helped in identifying a number of
smaller modelling errors and thereby increasing the confidence in the correct-
ness of the protocol. The state spaces of the WS model configurations considered
all had state spaces with less than 3,000 states demonstrating that explicit state
space exploration can be a feasible approach also for industrial-sized protocols
with the proper abstractions.

4 Implementation Model

Obtaining an implementation of a protocol is another common use of proto-
col models. A descriptive model can be extended so that implementations can
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be automatically generated. This has several advantages. Implementations can
be generated for many platforms. Since implementations for different platforms
are derived from the same model, all the implementations will have the same
behaviour. Thus if the implementation for one platform is correct it gives us
confidence that it will be correct for other platforms as well. The implemen-
tation is also close to both the descriptive and the verification models. This
provides a high degree of assurance that the generated implementations follow
the specification and has the properties established using the verification model.

Our approach to adding the information necessary to obtain an implemen-
tation is by annotating the CPN model elements in a way that enables a code
generator to recognise the annotation and choose an appropriate code template.
This is the approach taken in [18] where a CPN model is annotated with pragmat-

ics. Pragmatics are annotations that assign specific meaning to model elements.
Such meaning can be details about the interface, operations that should be per-
formed or denoting the principals of the protocol. The descriptive protocol model
together with the pragmatics is then used to generate an implementation of a
protocol by associating pragmatics to code templates. The pragmatics do not
add any new semantic meaning to the model and are not used in the verification.

In order to obtain an implementation model based on the descriptive model
from Sect. 2, annotations needs to be added to several model elements. On the
top module of the model, the substitution transitions labelled Client and Server

needs to be annotated to indicate that these substitution transitions represent
principals in the protocol. Furthermore, the places ClientToServer and ServerTo-

Client should be annotated to indicate that these places represent the channels.
Figure 16 shows the top module of the implementation model. The Client and
Server are annotated with <<principal>> indicating that these substitution
transitions are principals in the protocol. Also the places ClientToServer and
ServerToClient are annotated with <<channel>> which means that the places
represent communication channels in the protocol.

A further refinement is to define the interfaces that other applications use
to access the protocol. In the client, the interface includes methods for opening
and closing the WS connection as well as sending and receiving messages and
ping and pong frames. Information about the interfaces is added to new model
elements for each of the methods. Also, the scope for each of the methods should
be limited so that, for example, a method for opening the WS protocol returns a

ServerToClient
<<channel>>

Connection

ClientToServer
<<channel>>

Connection
Server

ServerServer

Client

ClientClient

<<principal>> <<principal>>

Figure 16. The top level module of the implementation model.
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connection handle when WS the handshake is complete, rather than proceeding
to send data. This is done by annotating the outgoing arc from the handshake
sub-module and adding an annotated element that returns from the method.

Finally, the specifics of the protocol must be annotated with suitable prag-
matics. This includes operations that are common to all protocols such as send-
ing and receiving on an underlying channel, and operations that are specific to
the considered protocol such as validating the WS keys in the open handshake.
Some operations that are not in the descriptive model also need to be added
and annotated. An example of this is masking, which is only represented in the
model by the mask field in the Frame colour set. According to the WS protocol
specification all data that is sent from the client to the server must be masked.
This can be added to the implementation model by a transition in the data
sending process annotated with a pragmatic that indicates that the data in the
frame should be masked. In the message receiving process on the server, adding
support for masking entails adding a transition annotated such that the code
generator will recognise that the data should be unmasked.

Many operations are deduced from the structure of the CPN model. Opera-
tions like sending and receiving data from the network channels are inferred to
exist on transitions that are connected to channel places. For the general flow
of the protocol an approach that combines structural analysis and pragmatics
is needed. The approach is to identify internal states of the protocol with prag-
matics and use these pragmatics together with structural analysis to determine
the control flow path of the program. The set of pragmatics is unlikely ever to
be complete in the sense that any protocol can be generated using predefined
pragmatics. We therefore propose to rely on a package system that provides
pragmatics for several domains as well as packages useful in general. In addi-
tion, we intend to make it easy to extend the set of pragmatics and adjoining
templates for protocol specific operations.

In order to define the possible annotations and their meaning, we rely on an
ontology to define the available annotations. The ontology can also be used to
restrict the annotated CPN models. For example, one such restriction is that
annotations denoting a principal can only be put on a substitution transition,
and that this substitution transitions must reside on the top-level module of the
model. In order to generate code from an annotated CPN model it is necessary
to bind pieces of code to the annotations. This is achieved by using the ontology
to relate annotations to code templates. The ontology is currently implemented
using a full fledged ontology language, however this approach has shown to be
too heavyweight. Hence, further work the ontology describing the pragmatics
and their relationships will be created as a simple list of pragmatics with their
associated restrictions represented as patterns of the allowed places expressed in
a domain specific language.
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5 Conclusions and Future Work

In this paper we have introduced a modelling approach for protocol software
based on the concepts of descriptive models, verification models, and imple-
mentation models. The primary purposes of the descriptive model is to aid in
understanding how a protocol works, and to serve as an executable specification
based on which models targeting verification and implementation can be derived.
We have illustrated our modelling approach by constructing a descriptive model
of the IETF Websocket protocol using the CPN modelling language. This model
has been used to describe the Websocket protocol and shows, by example, how
a descriptive model can be useful for communicating the concepts and operation
of a protocol. The model is hierarchical and consists of several modules at var-
ious levels of abstraction. By following the suggested modelling approach, it is
intended that the descriptive model closely follows the protocol document spec-
ification. This in turn gives confidence that the model is describing the protocol.
Using a descriptive model that is close to the protocol specification document
also provides confidence in models that are based upon the descriptive model
and extended for verification and implementation purposes.

The process of getting from a descriptive model to a verification model in-
volves refinements in order to obtain a finite state space, the introduction of
additional abstractions, and addition of configuration scope mechanisms in or-
der to control the size of the state space and conduct the verification in an
incremental manner. For the web socket protocol, we demonstrated that this
resulted in small state spaces. Our initial verification of the web socket proto-
col additionally identified omissions in the protocol specification related to the
close of connections during message transfer and unspecified receptions of data,
ping, and pong frames during the closing handshake. With proper modifications
to the verification model, we were able to verify the protocol ensures correct
termination of connections.

The process of getting from the descriptive model to the implementation
models involves annotations using pragmatics following the approach of [18].
The pragmatic are used to specify, e.g., principals and interfaces, and is used
to map the model elements to code templates and the underlying execution
platform. The implementation model presented in this paper is of a form where
it can be used as a basis for code generation following the approach presented
earlier in [18].

Maintaining consistency between the descriptive, the verification and the im-
plementation models is an important issue in our approach. One way to do this
is to use tool support to force the models to evolve in parallel. In this scenario,
structural changes can only be done on the descriptive specification model, while
arc inscriptions can be changed in the verification and implementation models.
This way the specialised models could add annotations and details needed to
limit the state space and make code generation possible while still being struc-
turally identical to each other and the descriptive specification model. A draw-
back with this approach is that conflicts concerning the level of detail in the
model structure may arise. Another approach is to allow differences between the
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models, but make it part of the methodology that the differences should only
include simple additions in the implementation model. These additions should
only be added when it is absolutely necessary. Also the effects of such additions
should be thoroughly investigated. A drawback of this method is that it requires
a large amount of modelling discipline. A hybrid between the two approaches
where tools give stern warnings whenever structural equivalence is violated is
also an option. This way the differences between the models will amount to
little more than different views on the descriptive model preserving its seman-
tics while still being flexible enough to accommodate necessary modifications for
verification and implementation. For the example of the WS protocol, the only
modifications that are needed for code generation are the additions of pragmat-
ics that do not change the semantics of the model. And the only modifications
for verification is instrumentation that allows for limiting the scope of the veri-
fication and limiting the number of packets that is sent.

As part of future work, we also plan to use the verification model presented
here to verify additional connection management properties of the Websocket
protocol. Furthermore, we plan to add proxies to the model so we can verify
the Websocket protocol with proxy servers which is an area where the operation
of the Websocket protocol is highly complex and where we expect to be able
to identify number of non-trivial design issues. In parallel with verification, we
also plan to use the implementation model derived from the descriptive model
to generate an implementation of the Websocket protocol using the approach in
[18]. Here, we plan to validate the derived implementation using test-suites [19]
that are created to validate implementations of the Websocket protocol.
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Abstract. Model-driven software engineering (MDSE) provides a foun-
dation for automatically generating software based on models that focus
on the problem domain while abstracting from the details of underlying
implementation platforms. Coloured Petri Nets (CPNs) have been widely
used to formally model and verify protocol software, but limited work
exists on using CPN models of protocols as a basis for automated code
generation. The contribution of this paper is a method for generating
protocol software from a class of CPN models annotated with code gen-
eration pragmatics. Our code generation method consists of three main
steps: automatically adding so-called derived pragmatics to the CPN
model, computing an abstract template tree, which associates pragmat-
ics with code templates, and applying the templates to generate code
which can then be compiled. We illustrate our method using a unidirec-
tional data framing protocol.

1 Introduction

Model-driven software engineering (MDSE) [4] provides a foundation for highly
automated generation of software based on models. The use of models allows
software designers to focus on the problem domain and abstract from the details
of underlying implementation platforms. If the MDSE process uses modelling
languages with a formal semantics, we gain the additional advantage that the
models can be verified, e. g. by model checking [2]. The combination of formally
verified models from which code is generated automatically increases the confi-
dence in the resulting implementation being correct with respect to the formally
specified properties.

Coloured Petri Nets (CPNs) [9, 10] have been widely used for formal mod-
elling and verification of protocol designs [14, 3], but limited work has been done
on developing methods that support the use of CPN models as a basis for auto-
mated code generation of protocol software [13, 16]. CPNs extend ordinary Petri
nets with a programming language for defining data types and using inscriptions
for modelling data and data manipulation. In addition, CPNs provide a module
concept that allows large CPN models to be structured as a hierarchically related
set of modules. CPN uses Standard ML (SML) as programming language.
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The contribution of this paper is a method for automated code generation
from CPN models based on a modelling methodology for constructing descrip-

tive models of protocols and on adding code generation pragmatics to the CPN
models. The notion of descriptive models is firstly intended as a means for creat-
ing models that are helpful in understanding and conveying the operation of the
considered protocol. Secondly, a descriptive model is close to a verifiable version
of the same model and sufficiently detailed to serve as a basis for automated
code generation when annotated with code generation pragmatics. The relation-
ship between descriptive models and verification models was discussed in [12].
In this paper, we concentrate on the pragmatics, the modelling methodology for
constructing descriptive models, and on the steps of the code generation.

The pragmatics that we integrate into the CPN language are syntactical an-
notations that are associated with CPN model elements. The primary purpose
of the pragmatics is to add enough details for generating code without cluttering
the model and making it verbose which would ultimately render it unreadable
and too complex for verification purposes. It should be noted that pragmatics
are purely syntactical annotations for code generation purposes, and hence our
method does not affect the formal semantics of CPNs. The pragmatics fall into
three types: structural, control flow, and operation pragmatics. Our method de-
fines a set of core pragmatics that are applicable to all protocols. In addition,
our method is extensible in that it allows the modeller to easily add new prag-
matics if required by a specific protocol or a specific protocol domain under
consideration.

The code generation consists of three main steps, starting from a CPN model
that the modeller has annotated with a set of pragmatics that makes the pro-
tocol structure and the control flow explicit. The first step is to automatically
compute for the CPN model, a set of derived pragmatics that identify common
control flow structures and operations, such as sending and receiving packets,
or manipulating states. In the second step, an abstract template tree (ATT) is
constructed providing an association between pragmatics and code generation
templates. Essentially, every node of the ATT will be associated with a code tem-
plate. In the third step, the ATT is traversed and code is emitted by invoking the
code templates associated with each node of the ATT rather than translating
SML. A key feature of our method is that the generated code resembles what
a human programmer would have developed. This is advantageous with respect
to code inspection, maintainability, and performance.

This paper is organised as follows. Section 2 presents our modelling method-
ology and the explicit pragmatics. In Sect. 3, we introduce automatically derived
control flow and operation pragmatics. In Sect. 4, we cover ATTs and their use
in code generation. In Sect. 5, we discuss related work, and, in Sect. 6, we sum
up conclusions and outline directions for future work. Due to space limitations,
we cannot present our method in full detail here. These can be found in the
technical report [22]. A very early and preliminary version of these ideas was
presented as an extended abstract [21]. A prototype of a tool supporting the
approach presented in this paper is available: PetriCode. For more information

189



on the tool, we refer to the tool’s home page [18]. We assume that the reader
is familiar with the basic concepts of Petri nets (places, transitions, tokens, en-
abling, and firing rule), and we introduce CPN specific concepts only briefly as
we proceed. A comprehensive introduction to CPNs is given in a textbook [10].

2 Modelling Methodology and Explicit Pragmatics

To present our modelling methodology we use, as a running example, a unidi-
rectional framing protocol. The overall service provided by this protocol is to
send messages of arbitrary length from a sender to a receiver by splitting up the
message into smaller packets sent across a unidirectional channel. The channel
is assumed to be reliable and to preserve the order of the transmitted packets.
The protocol uses a final bit in each transmitted packet indicating whether the
payload of the packet is the final (last) part of the larger message. As we proceed
with presenting the CPN model, we introduce the basic set of explicit pragmat-
ics that are central to our method and which the modeller uses as part of the
construction of the CPN model. Pragmatics are by convention written in 〈〈 〉〉 to
distinguish them from, e.g., place and transition names and SML inscriptions.

2.1 Protocol System Level

Figure 1 shows the top-level module of the CPN model which constitutes the pro-
tocol system level . The purpose of the protocol system level is to specify the pro-
tocol principals and the channels connecting them. This module has three CPN
substitution transitions (transitions with double lined borders) named Sender,
Channel, and Receiver. Substitution transitions constitute the basic structuring
mechanism of CPNs and each substitution transition has an associated submod-
ule modelling the details of the compound behaviour represented by the substi-
tution transition. The two substitution transitions Sender and Receiver represent
the two principals of the protocol, and the substitution transition Channel rep-
resents a channel between them. We use the 〈〈principal〉〉 pragmatic to specify
which substitution transitions represent protocol principals, and the 〈〈channel〉〉
pragmatic to specify substitution transitions representing channels. The channel
pragmatic has three associated properties specifying that the channel is unidirec-
tional, reliable (i. e., the channel does not loose packets), and that it preserves the
order of packets. Our modelling methodology includes a set of channel modules
for common channel types and the specific module to be used in the model is
selected based on the properties specified for the channel pragmatic. The two
socket places (places connected to a substitution transition) SenderChannel and
ReceiverChannel connecting the principal substitution transition to the Channel

are implicitly considered channel places which means that messages (tokens)
added and removed from these places are considered to be sent and received,
respectively. In CPNs, a socket place can be associated with a port place in
the submodule of the substitution transition. This has the effect that the two
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Endpoint
Sender ReceiverChannel

Fig. 1. The protocol system level

places, conceptually, become the same place; this way, sockets provide the means
by which modules in CPNs exchange tokens.

We require in our modelling methodology that the protocol system module
consists of one or more substitution transitions representing principals. A socket
place at the protocol system level can be connected to at most one principal
substitution transition and at most one channel substitution transition. This
requirement is needed since we use the socket places connecting principals and
channels to identify which channel or principal a message is intended for.

The concept of a channel represents a means for communication between
endpoints as determined by the colour set (data type) Endpoint which consists
of a name identifying the endpoint and an input and an output buffer for packets
transmitted on the channel. In CPNs, the data type of a place is by convention
written below the place and determines the kind of tokens that may reside on
the place. The protocol system level and the modelling of channels are param-
eterised by colour sets (data types) used to identify channels and the specific
packets transmitted. This means that we assume only the existence of these two
types and do not make any assumptions on how they are realised. The concrete
implementation of the Packet colour set in a protocol model depends on the
protocol data units exchanged among the principals in the protocol under consid-
eration. For code generation purposes, the implementation of the EndpointId
colour set depends on the concrete channel used to realise the communication
between the principals. If for instance, the channel is realised using the transport
layer of the TCP/IP protocol stack, then the Endpoint colour set will consist of
a host (IP address) and a port (a process). Hence, in a TCP/IP context, an
endpoint can be implemented as a TCP/IP socket. The colour sets also have
an associated class of functions that play a central role in being able to recog-
nize common structural patterns in the CPN models, which are captured by the
operation pragmatics to be presented in Sect. 3.

2.2 Principal Level

The submodules of principal substitution transitions in the protocol system mod-
ule constitute the principal level modules . Each principal level module specifies
the services that are provided by the corresponding principal and the life-cycle
of the principal. In addition to specifying constraints on the order of service uses,
the principal level modules may also model the state to be maintained across
invocation of the services. The explicit modelling of the methods that consti-
tute the service is required in our method in order to generate code that can be
integrated into different code contexts.
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Fig. 2. The Sender module

Here, we concentrate on the sender principal as a representative example.
Figure 2 shows the principal level CPN module for the sender. This module is
the submodule of the Sender substitution transition in Fig. 1. The module has
three substitution transitions annotated with the 〈〈service〉〉 pragmatic to indi-
cate that they represent services that are to be exposed by the implementation,
i. e., be externally visible. In this case, the sender has three services: Open (for
opening the communication with the receiver), Send (for sending a message), and
Close (for closing the communication with the receiver). The parameters of the
〈〈service〉〉 pragmatic specify the parameter and return types, and properties of
the services. In this case, all three services provided by the sender principal are
synchronous services as specified by the synchronous property of the 〈〈service〉〉
pragmatics. Our method also supports asynchronous services which, however,
are not discussed here (see [22] for details).

The principal can be in two different states as modelled by the places Idle

and Open with the colour set UNIT containing just a single value () (called unit
and representing a black token). When there is a unit token on Idle, this means
that no communication is initialised, and when there is a unit token on Open this
means that messages can be transmitted to the receiver. A third implicit state
is also possible when neither the Idle nor Open places have a token. This state is
reached when the client is busy opening, sending or closing. A place modelling
a principal life-cycle state is annotated with the 〈〈LCV〉〉 pragmatic (Life Cycle
Variable). The open service can be invoked only when the principal is in Idle

and, once Open, messages can be sent, and the communication can be closed.
In the latter case, the sender returns to the Idle state. The sender maintains
another state variable Receiver, which represents the endpoint created by Open,
and is used by Send in order to send messages. State variables are indicated using
the 〈〈state〉〉 pragmatic. The port place Sender (bottom) is associated with the
SenderChannel socket place in Fig. 1 and hence any token added (removed) to
Sender will be added (removed) to SenderChannel and vice versa. In the sender
module, the place Sender has been annotated with the 〈〈channel〉〉 pragmatic
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which is derived from the fact that the associated socket place at the protocol
system level is connected to a channel substitution transition (see Fig. 1).

The principal level modules do not specify how a wrong use of the services
should be handled, e. g. when the send service is invoked in a state where the
sender is not Open. The associated error handling is platform dependent.

2.3 Service Level

The submodules of the substitution transitions annotated with 〈〈service〉〉 on
the principal level specify the detailed behaviour of the principals for each of
the principal’s services. The detailed behaviour is modelled in a control flow
oriented manner using 〈〈ID〉〉 pragmatics on places to make the control flow
explicit. Modelling the services in a control flow oriented manner serves two main
purposes. The first purpose is to provide for comprehensible models in that the
explicit control flow provides a reading path to the model of the service. This
is in contrast to a pure event-oriented approach to modelling (as discussed in
[3] for example) from which no control flow is explicit and which consists of
modelling a protocol principal using a single place to represent its state and a
set of transitions connected to this place which changes the state of the principal
depending on packets sent and received. The second purpose of modelling in a
control flow oriented manner is to automatically generate code with a structure
that resembles what a human programmer would implement. This makes it easier
to inspect and maintain automatically generated code, and provides code with
better performance since it reflects the intended use of the constructs provided
by the target programming language.

As a representative example of a service level module, we consider the send
service of the sender principal which is shown in Fig. 3 (left). At this level,
the 〈〈service〉〉 pragmatic is used on ordinary (non-substitution) transitions to
indicate the single entry point for the corresponding service primitive. Hence, it
is possible to have only one transition annotated with 〈〈service〉〉. The message
to be sent is represented by the parameter msg of the 〈〈service〉〉 pragmatic.
Transitions representing the termination/completion of the service are annotated
with the 〈〈return〉〉 pragmatic. We assume that there is exactly one transition in
a service level module that is annotated with 〈〈return〉〉. In general, the 〈〈return〉〉
pragmatic may take parameters representing return values. The parameters for
the open service specifies the endpoint of the receiver principal. These parameters
are stored in the Receiver state variable and also an endpoint is created on the
Sender channel place which the sender will use for sending packets.

Places modelling the control flow in the send primitive are annotated with
an 〈〈ID〉〉 pragmatic. From a control flow perspective, the send operation has
an overall sequence (starting at transition Send and ending at transition Com-

pleted), and a repeat-until loop (starting at place Start and ending in place Pack-
etSent). The operation of the send primitive is to first partition the message to
be sent into a sequence of smaller sub-messages which is placed on Outgoing. In
CPNs, the expression associated with arcs specifies the tokens to be removed and
added when transitions occur. The expressions may contain free variables which
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Fig. 3. The SenderSend module with explicit pragmatics (left) and derived pragmatics
added (right). The derived pragmatics are discussed in Sect. 3

determines possible modes in which a transition may occur. As an example, the
Partition transition in Fig. 3 (top) has a variable m of type Message which in an
occurrence of Partition will be bound to the value of a token present on placeMes-

sage. When the transition occurs, it will remove the corresponding token from
Message, and add tokens to the outgoing places Start and Outgoing obtained by
evaluating the expressions on the corresponding arcs. The partition function
takes a message as argument, and constructs a list of submessages that is added
as a token on place Outgoing. Also, a unit token will be added to place Start.
The sender then executes a loop in which a packet is sent for each sub-message.

The modelling of the sender includes some intermediate states (e. g., Send-
Completed) which makes the model more verbose, but is used in our method
for recognising control flow constructs. It is worth noting that, in the model of
the send service, the token is removed from Open while the send operation is in
progress; this prevents any further sending or invocation of close while a send
operation is executed (the protocol is not designed for concurrent sends).
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3 Derived Code Generation Pragmatics

Before we discuss how the actual code generation works, we discuss some addi-
tional pragmatics which are used by the code generator. Since these pragmatics
can be automatically derived from the net (model) structure and the arc inscrip-
tions, these pragmatics are called derived pragmatics.

The first kind of pragmatics concerns the control flow, which indicate how
the net structure of a service module is decomposed into control flow blocks
that constitute the ATT (see Sect. 4 for more details). Therefore, this kind is
called control flow pragmatics. The second kind of pragmatics, called operation

pragmatics, helps generating the code for the actual operations that are to be
executed. We explain these pragmatics by the help of the SenderSend module
example, which was shown in Fig. 3.

3.1 Block Structure and Control Flow Constructs

Fig. 4. Blocks: Atomic and loop

CPNs (and Petri nets in general) do not en-
force any particular structure with respect to
the modelling of the control flow of the ser-
vice primitives. In order to be able to gen-
erate code that uses the control flow con-
structs of typical programming languages, we
assume that the net structure induced by
places of the service level modules that are
marked with 〈〈ID〉〉 can be decomposed into
control flow blocks. For the Send primitive in
Fig. 3(left), the part corresponding to control
flow blocks has been graphically indicated in bold. Formally, the block structure
decomposition is defined by having different types of blocks, which inductively
define the block structure of a net. Due to space limitations, we cannot go into
the details of this definition here (see [22] for the technical and formal details).
There are four types of blocks: atomic, choice, loop, and sequence, and two of
these patterns are sketched in Fig. 4. The pattern in Fig. 4(left) captures that
an atomic block consists of a start place (top), a single transition, and an end
place (bottom). The pattern in Fig. 4(right) specifies that a loop block has a
single start place (top), a body (indicated by ...) and an end place (bottom) and
a single transition (right) capturing the iteration by connecting the end place
and the start place. For the SenderSend module in Fig. 3 the control flow can
be decomposed into a block, which is a sequence, where the first element of
that sequence is an atomic block, the second is a loop, which again consists of a
sequence of two atomic blocks.

For code generation purposes we, systematically decompose each service level
module into blocks where the containment of the blocks defines the structure of
the ATT. For the actual code generation, it is sufficient to identify the start
and end of loops and choices – actually the places where they start and end
– with some additional pragmatics: 〈〈startLoop〉〉, 〈〈endLoop〉〉, 〈〈branch〉〉, and
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〈〈merge〉〉. For the SenderSend module, these additional pragmatics are shown
on the right-hand side of Fig. 3. Note that the 〈〈endLoop〉〉 has a parameter,
which represents the exit condition of the loop. The 〈〈branch〉〉 pragmatic for
a choice has a condition parameter too, but we do not have a choice in this
example. Our technology comes with a simple syntax for formulating these con-
ditions, which resembles the syntax of Lisp. In our example, the expression
(eq 1 __TOKEN__[0]) checks whether the first component (referred to by in-
dex 0) of the control flow token (referred to by __TOKEN__) is equal to 1, which
reflects the inscription of the arc leaving the loop. We use this condition param-
eter and the specific syntax for conditions in order to be independent of SML.
By adding the condition as a parameter of the 〈〈endLoop〉〉 pragmatic, we do
not need to restrict the annotations of CPN models – at the price of, sometimes,
being forced to add the condition of the 〈〈branch〉〉 and 〈〈endLoop〉〉 pragmatics
manually.

3.2 Operation Pragmatics

The operation pragmatic is associated with transitions and describes an opera-
tion associated with the execution of the transition in a programming language
independent way.

The right-hand side of Fig. 3 shows three examples of these pragmatics.
The 〈〈send〉〉 pragmatic is an example of a protocol independent pragmatic. It
represents sending a message to another principal, which is represented by the
pattern for this transition. The parameters of the 〈〈send〉〉 pragmatic define the
target of the send (here identified by the end point on place Receiver) and the
actual message to be sent (here, the message is contained in the current token).

The other two operation pragmatics are more specific to this particular pro-
tocol: 〈〈partition〉〉 splits a message into the sequence of chunks that are supposed
to be sent – actually a list of these chunks. The 〈〈pop〉〉 operation, obtains and
removes one chunk from the list.

As mentioned above, some of the operation pragmatics are part of the general
method, and for these there will be direct code generation support available
defined by so-called template bindings. These bindings are discussed in Sect. 4.
In addition, a protocol developer can add own protocol specific pragmatics; in
that case, the developer must provide the corresponding templates and bindings
at some point in order to generate the code.

4 Abstract Template Trees and Code Generation

The actual generation of code from a CPN model annotated with explicit and
derived pragmatics proceeds in three phases: The first phase is the construction
of an ATT which serves as an intermediate representation in the code generation.
The second phase binds code generation templates to the nodes of the ATT
corresponding to the target platform under consideration. The third phase is
to traverse the ATT and invoke the code generation templates in order to emit
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code. Below, we illustrate the three code generation phases using the annotated
send service module shown in Fig. 3 (right) as an example. The target platform
considered in our example is the Groovy programming language. Groovy is a
multi-paradigm language that runs on the Java Virtual Machine. It was chosen as
a target because it is an optionally typed multi-paradigm language with features
that makes it fairly easy to generate code for while still being a realistic platform
for industrial applications.

An ATT is an ordered tree of nodes and resembles abstract syntax trees. The
two major types of nodes in the ATT are leaf (operation) nodes and container

nodes. A leaf node does not have children and contains pragmatics for one or
more sequential operations such as sending on a channel or accessing a state
variable. A container node has in addition to associated pragmatics, an ordered
list of child nodes. The types of container nodes at the service level corresponds
to the different types of blocks introduced in Sect. 3. The root node of the ATT
represents the entire protocol system. The generation of the ATT is implemented
by a guided walk through the CPN model. This walk starts at the protocol sys-
tem module and, for each 〈〈principal〉〉 pragmatic, it generates a corresponding
node in the ATT. On the next level, the generator looks for modules annotated
with a 〈〈service〉〉 pragmatic and adds corresponding nodes. Each service module
contains exactly one transition with the 〈〈service〉〉 pragmatic, which is the start-
ing point for the method modelled by the sub-module. The subsequent set of
nodes is constructed according to the block structure rules described in Sect. 3.

         Send

  <<service>>

      Partition

 <<partition>>

         Start

<<startLoop>>

     Completed

   <<return>>

 Next Message

   <<pop>> 
<<SetToken>>

   Send Packet

    <<send>>

   Packet Sent

 <<endLoop>>

Fig. 5. Sub-ATT for sender send service

The sub-ATT corresponding to
the sender send service is shown in
Fig. 5. The node at the top repre-
sents the sender send service. The
child nodes of the Send node corre-
spond to the overall sequence per-
formed by the send service: parti-
tioning the message, executing the
loop where submessages are sent,
and then completing the service.
The child nodes of the Start node correspond to the body of the loop.

When the ATT has been generated, in order to generate code for a particular
platform, the pragmatics represented by the nodes of the ATT must be bound
to code generation templates. This is done by means of a template descriptor . A
template descriptor contains a line for each pragmatic that need to be translated
into code for a specific platform. The template binding for a pragmatic contained
in an ATT node is determined by the line for the pragmatic contained in the
template descriptor.

The template descriptor is specified in a simple domain specific language
(DSL). An extract of the binding descriptor for generating Groovy code covering
three of the pragmatics from Fig. 5 can be seen in Listing 1. Each line of the
template descriptor consists of a name followed by a left-parenthesis followed by
key value pairs where the keys can be pragmatic which contains the name of
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the pragmatic, template which corresponding value is the path to the template,
isContainer which indicates whether this pragmatic denotes a container or a
isMultiContainer. The multi-container flag is primarily an implementation
detail in our tool used to indicate whether or not the container is of type loop
or choice.

Listing 1. Extract of binding descriptor for the Groovy platform

partition(pragmatic: ’partition’, template: ’groovy/partition.tmpl’,

isContainer: false, isMultiContainer: false)

send(pragmatic: ’send’, template: ’groovy/send.tmpl’,

isContainer: false, isMultiContainer: false)

startLoop(pragmatic: ’startLoop’, template: ’groovy/loop.tmpl’,

isContainer: true, isMultiContainer: true)

Generating the protocol software consists of traversing the ATT and invok-
ing the associated templates for each node as described by the template bind-
ing. When a pragmatic is transformed to code, its template is run through the
template engine together with a number of parameters given by the pragmatic
definition and the CPN structure. The templates are sown together by replac-
ing a special tag in the container templates, %%yield%%, with the text of the
underlying templates in order.

As an example of a container template, the template for the loop pragmatic
for the Groovy language is given in Listing 2 (left). The template creates a while-
loop which continues while the __LOOP_VAR__ variable is true. The body of the
loop is populated by replacing the %%yield%% directive with the code generated
by the templates of the sub-nodes in the ATT. The __LOOP_VAR__ is updated
at the end of the loop by the 〈〈endLoop〉〉 pragmatic which is always present
as the last child element of a loop. The 〈〈send〉〉 is an example of an operation
pragmatic. Listing 2 (right) shows the template for the 〈〈send〉〉 pragmatic which
requires two parameters: one is the name of the socket that the message should
be sent on, and the other is the variable that holds the message to be sent.

Listing 2. Examples of templates for loops (left) and send (right)

%%VARS:__LOOP_VAR__%% ${params[0]}.getOutputStream()

__LOOP_VAR__ = true .newObjectOutputStream()

while(__LOOP_VAR__){ .writeObject(${params[1]})

%%yield%% } %%VARS:${params[1]}%%

As an example of the generated code, the loop in the sender service in the
Sender principal is shown in Listing 3. The loop is started by defining a variable,
__LOOP_VAR__. After the __LOOP_VAR__ is defined, the loop is entered. Inside
the loop, the next fragment is code from the template bound to the 〈〈pop〉〉
pragmatic. This code removes the first element from OutgoingMessage and
assigns it to variable m. Then, the code for the 〈〈setToken〉〉 pragmatic on the arc
between the transition NextMessage and the place Created is generated. This code
sets the __TOKEN__ variable in the code according to the conditional statement
in the pragmatic: if OutgoingMessage is empty then the message is prefixed
by 1, otherwise it is prefixed by zero. The next pragmatic that is found on the
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control flow path is the 〈〈send〉〉 pragmatic on the transition Send Packet. The
socket Receiver is used to send the value of the __TOKEN__ variable. Finally,
the template associated with the 〈〈endLoop〉〉 pragmatics has generated the code
for updating __LOOP_VAR__ according to the conditional expression given as a
parameter to the 〈〈endLoop〉〉 pragmatic.

Listing 3. The generated code for the loop of the sender send service

__LOOP_VAR__ = true

while(__LOOP_VAR__){

def m = OutgoingMessage.remove(0)

if(OutgoingMessage.size() == 0){

__TOKEN__ = [1,m]

} else {

__TOKEN__ = [0,m]

}

Receiver.getOutputStream().newObjectOutputStream().

writeObject(__TOKEN__)

__TOKEN__

__LOOP_VAR__ = 1 == __TOKEN__[0]

}

5 Related Work

The goal of our code generation method is to generate code from models close to
descriptive models that are amenable to verification with little or no modifica-
tion. Also, the code that is generated should be readable, portable and maintain-
able. Furthermore, we would like to be able to easily integrate our code into third
party software and have a great deal of flexibility in the way code is produced.

There are many methods for modelling and analysing protocol software us-
ing languages such as High Level Petri Nets [7], temporal Petri Nets [23], ES-
TELLE [5] and LOTOS [15]. Some methods support automatic code generation
such as state charts [24], SPI [20], SDL [8] and UML [1]. Due to space limita-
tions, we focus our discussion on approaches that use general purpose languages
(UML and CPNs) equipped with additional information for a specific domain.
In the rest of this section, we discuss several related works and finally, at the
end, contrast and sum up the key differences between each of the related work
items and our approach.

In [19], possible methods for code generation from high level Petri Nets
(HLPNs), such as CPNs, are discussed and a new hybrid of the discussed ap-
proaches is presented. The general methods for code generation from HLPNs are,
according to [19]: structural analysis, simulation based, and reachability graph
based. The method proposed in the paper is a hybrid of simulation based and
structural analysis methods.

In [16], the author describes an approach for generating code from CPNs for
an access control system. The generation takes advantage of the fact that CPNs
use the SML programming language for all inscriptions. This means that it is
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fairly simple to generate SML code that simulates the CPN in SML code. And
by using external libraries, the CPN can interact with other devices through a
specialized protocol for access control systems. The paper also presents a case
study where the techniques discussed are used to generate an access control
system for an industrial actor. A somewhat similar approach is also taken in [11]
where the core of a tool for scheduling courses of actions is created based on a
CPN model. The model is extracted from the modelling tool and executed as an
SML program.

Process-Partitioned CPNs (PP-CPNs) [13] have been used to automatically
generate code for several purposes including protocols. Code is generated from
PP-CPNs by first translating the PP-CPN into a control flow graph (CFG), then
translating the CFG into an abstract syntax tree (ASTs), first of an intermediary
language then to an AST that is dependent on the target platform. From the
platform dependent AST, code is generated. In [13], PP-CPNs are used to model
and obtain an implementation for the DYMO routing protocol using the Erlang
programming language and platform.

In [17], a UML profile named Graphical Protocol Description Language
(GPDL) is used together with a textual language called GAEL to model and
generate code for protocols. The approach uses stereotypes to annotate UML di-
agrams with information used for code generation. The stereotypes and GAEL
annotations are used though a series of transformations to generate code. In [17],
the authors produce SDL code, but are able to produce code for any platform.

In the terminology of [19], our code generation method is based on structural
analysis, but it is also based on user input in the form of explicit pragmatics.
The pragmatics coupled with templates makes it possible to be platform in-
dependent and create readable and maintainable code which has an interface
based on the services described on the principal level. The template approach
also gives the modellers flexibility, by modifying the templates, to create code in
their own style. The methods presented in [19, 16, 11] are all based on simulating
the models. The simulation methods conflicts with our goals of readable code as
the purpose of the code can easily be lost in the details of the operations of the
simulator. Also the code generated by the simulation methods is not likely to
be efficient in particular due to the complex enabling computation that needs to
be performed in each step of the execution. The method presented in [13] con-
strains the models more than our method since we have the possibility to add
more pragmatics to expand the range of functionality. Also, [13] does not model
how services can be used, so it does not allow the modeller to control how third
party applications could be integrated with the generated code. In contrast to
our approach, the approach in [13] is also bound to the Erlang platform where
our approach, through templates is platform independent. Also, our approach
provides more flexibility in the operations that can be modelled by allowing users
to define additional pragmatics. The approach in [17], despite being based on
UML, has several similarities with our approach such as annotating the models
with stereotypes which are similar to our pragmatics. However, the stereotypes
are predefined in a UML profile and does not offer the same flexibility in mod-
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elling as our templates that may be user defined. Also the GPDL models use a
separate language, GAEL, to provide additional information in addition to the
platform information which in our case is contained in templates and template
bindings.

6 Conclusions and Future Work

In this paper, we have presented a method for automatically generating code for
protocol software from CPN models. The method was discussed by a simple, but
complete example of a communication protocol. The code generation approach
has been realized in a tool that was used to generate the code examples in this
paper. The tool can be accessed from the project website [18].

The main objective of our method is that code can be generated from what we
call descriptive models. Descriptive models are typically used for understanding
and explaining how a protocol works on a high level of abstraction. Descriptive
models focus on concepts and not on technical details and, in many cases, these
models can be used – with some tweaking – also for analysing and verifying
protocols. Today, it is typical practise to use models for analysing a protocol
and its specification and for verification of the protocol. Then, the protocol
software is implemented manually based on these models. Our method makes it
possible to use the same descriptive model for analysis and verification as well
as for code generation – in both cases, the models are moderately extended.

In our method, we chose to use Coloured Petri Nets (CPNs) [9] as modelling
language for descriptive models since they have successfully been used for mod-
elling, analysing, and verifying various kinds of systems [10] for a long time now.
Over the time, specific modelling styles, principles, and disciplines have devel-
oped for using CPN for that purpose. These styles and principles are mostly used
informally – sometimes not even mentioned at all. In our method, we needed to
make them into more rigorous rules.

Since descriptive models are conceptual in nature and on a high level of ab-
straction, they often do not capture some technical aspects and implementation
details. Examples of such information not contained in descriptive models are
the API and the interface for calling the services or operations of a protocol. Our
method caters for that by pragmatics that can be added to different elements of
the model. This way, it is possible to attach additional information without com-
promising the overall structure of the original model. And our example shows,
that all relevant technical information can easily be added to the model in this
way. We argue that adding pragmatics will not add significantly to the modelling
effort. One reason for this is that explicit pragmatics, to a large extent, repre-
sent concepts the modeller would be aware of while modelling, so adding them
should add little more time than looking up and adding the pragmatics. Also,
derived pragmatics are added automatically and therefore require no additional
action from the modeller. Adding new pragmatics is relatively simple since all
that is required is to add templates and describe the pragmatic and template
bindings in simple specialized languages. Our approach also provides the mod-
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eller with a modelling framework through the required model levels. This could
also add structure and thereby perhaps even reduce the modelling effort. Our
method comes with some predefined pragmatics which are of general use. But,
our method is open for adding more pragmatics if need should be. Moreover,
pragmatics can be used for adding more technical information which could be
derived automatically. This way, it is possible to gradually extend the degree of
automation of our method without changing the method itself.

Another objective of our method is the generation of code for different target
languages and platforms. To this end, ATTs and template bindings were intro-
duced; by replacing the templates and template binding, code for a different
platform can be generated. In a way, a set of templates along with a template
binding can be considered as a characterization of a target platform. And the
code generator can be customized for different platforms by modifying templates.
The concepts of principals and services in our approach, lend themselves nicely
to the object oriented paradigm where principals can be realized as classes, and
services can be realized as methods. The control-flow block structure fits well
with imperative paradigm with loops and conditional statements. Therefore, it
seems likely that it would be simple to create templates for languages and plat-
forms with roots in these paradigms such as Java, Python and C. For functional
languages and platforms, which do not have control flow structure such as loops
and conditionals, this could be a little more difficult. A last objective of our
method is the readability of the generated code. This might be a bit subjective,
although some metrics exists [6]. With control blocks, ATTs, and templates re-
flecting these constructs in the target language, we try to emulate code written
by human programmers. A detailed evaluation, however, is future work.

We have shown that our method works for a simple example and for one
target platform. An evaluation for larger examples and other target platforms
is future work. Likewise, we still need to show that the same CPN models can
be used for verification as well as code generation. Though verification is not
the main focus, future work will, at least, demonstrate that verification from the
model is possible in principle. A first step towards verification was taken in [12].
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Abstract

This paper presents the formal definition of Pragmatics Annotated
Coloured Petri Nets (PA-CPNs). PA-CPNs represent a class of Coloured
Petri Nets (CPNs) that are designed to support automated code genera-
tion of protocol software. PA-CPNs restrict the structure of CPN models
and allow Petri net elements to be annotated with so-called pragmatics,
which are exploited for code generation. The approach and tool for gen-
erating code is called PetriCode and has been discussed and evaluated in
earlier work already. The contribution of this paper is to give a formal def-
inition for PA-CPNs; in addition, we show how the structural restrictions
of PA-CPNs can be exploited for making the verification of the modelled
protocols more efficient. This is done by automatically deriving progress
measures for the sweep-line method, and by introducing so-called service
testers, that can be used to control the part of the state space that is to
be explored for verification purposes.

1 Introduction

Although Coloured Petri Nets (CPNs) [2] have been widely used for modelling
and verifying network protocols, rather limited research has been conducted
into approaches that allow us to automatically generate the implementation of
the protocols from the CPN models. And (to the best of our knowledge) there
do not exist approaches that at the same time can be used for verification and
code generation of network protocol software based on CPN models. In earlier
work [5], we have presented an approach and a tool called PetriCode, which
allowed us to automatically generate the protocol software from a restricted class
of CPNs. One of the objectives of PetriCode was to be able to generate code
for different platforms. Another main objective was that the used CPN models
could still be applied for verifying the correctness of the network protocols.

The PetriCode approach uses a class of CPNs with a slightly restricted struc-
ture. On the one hand, these restrictions help making explicit the structure of
the protocol, its principals, channels, and services. On the other hand, these re-
strictions make it possible to automatically generate code, the protocol software,
from the CPNs modelling the protocol. One feature of this class of CPNs are so-
called pragmatics, which are annotations to certain elements of the CPNs, which
indicate the purpose of the respective modelling element and are exploited by
the code generator. This way, models from which code can be generated are not
cluttered with all kinds of technical information so that the same CPN models
can be used for verification and code generation.

The PetriCode approach and tool have been presented, discussed and eval-
uated in earlier work already [5, 6]. In this paper, we formally define this re-
stricted class of CPNs, which we call Pragmatic Annotated CPNs (PA-CPNs).
In addition, we show that PA-CPNs are still amenable to verification, and that
the structural restrictions on that class can actually make the verification more
efficient: First, the structure of PA-CPNs allows us to automatically add so-
called service testers to the model of the protocol, which reduce the state space
of the model and, therefore, reduce the computation effort needed for verifica-
tion. Second, the structural restrictions of PA-CPNs induce a natural progress
measure that can be exploited by a verification technique that is called sweep-

line method [1, 3], which again makes verification more efficient by reducing the
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number of states that need to be stored at the same time in the verification tool.
The formal definitions of PA-CPNs are illustrated by a running example, which
is a simple framing protocol. By using this example, we also illustrate how the
structure of PA-CPNs can exploited for verifying the protocol in a more efficient
way.

For the rest of this paper, we assume that the reader is familiar with the
basic concepts of Petri nets and high-level Petri nets in general. In Sect. 2,
we introduce CPNs by an example and rephrase the standard definitions of
CPNs [2]. The example used to explain CPNs in Sect. 2 is already a PA-CPN,
but the specific structure mandated by PA-CPNs will first be discussed and
formalized in Sect. 3 and Sect. 4: Section 3 covers the definitions concerning the
specific pragmatics and restrictions of the different types of PA-CPN modules,
and Sect. 4 formalizes one specific aspect, which makes sure that services can
be represented by typical constructs for control flow. In Sect. 5, we discuss and
formalize the extension of PA-CPNs with so-called service testers, which can
be used for more efficiently verifying the model of the protocols. The actual
verification by using the sweep-line method is discussed in Sect. 6. At last, in
Sect. 7, we sum up the general findings and briefly discuss related work.

2 Protocol Example and Coloured Petri Nets

The definition of PA-CPNs relies on the definition of hierarchical CPNs given in
[2]. Below we introduce the basic definitions and notations for hierarchical CPNs
and the protocol CPN model that we will use as a running example throughout
this paper. We present only the syntactical definition of hierarchical CPNs as
PA-CPNs have the same semantics as ordinary hierarchical CPNs for simulation
and verification purposes.

2.1 Protocol Example

The CPN model to be used as a running example models a protocol consisting
of a sender and a receiver operating over an unreliable channel which may both
re-order and loose messages. The sender sends messages tagged with sequence
numbers to the receiver and waits for an acknowledgement for each message
to be returned from the receiver before sending the next message. Hence, the
protocol operates according to the stop-and-wait principle.

The CPN model of the protocol consists of eight hierarchically organised
modules . Below we present selected modules of the CPN model used to illus-
trate the definition and verification techniques in this paper1. Figure 1 shows the
top-level module consisting of three substitution transitions (drawn as double-
bordered rectangles) and representing the Sender, the Receiver, and the Channel
connecting them. The two places SenderChannel and ReceiverChannel model
buffering communication endpoints connecting the sender and the receiver to
the communication channel. The definition of the colour set (type) Endpoint
determining the kind of tokens that can reside on these two places is provided in
Fig. 2. Each of the three substitution transitions has an associated submodule

indicated by the rectangular tag positioned next to the substitution transition.

1The complete CPN model is available via www.petricode.org/examples/

SWProtocol+driver.cpn

2
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Sender
Channel

Endpoint

Receiver
Channel

Endpoint

Sender
<<principal>>

Sender

Channel
<<channel(unreliable, noorder, bidirectional)>>

Channel

Receiver
<<principal>>

ReceiverSender Receiver

Channel

Figure 1: The top-level (prime) CPN module of the protocol model

colset Packet = union DATA : Data + ACK : Ack;

colset EndpointId = INT;

colset ChannelPacket =

record src : EndpointId * dest : EndpointId

* packet : Packet;

colset ChannelPackets = list ChannelPacket;

colset Endpoint = record name : EndpointId *
inb : ChannelPackets *
outb : ChannelPackets;

Figure 2: Colour set (type) declarations used in Fig. 1

The annotations written in 〈〈 〉〉 are the pragmatics annotations that we for-
mally introduce in the next section when defining PA-CPNs; they can be ignored
for now.

Figure 3 shows the Sender module, which is the submodule associated with
the Sender substitution transition in Fig 1 and defines the protocol for the
Sender principal. The module has two substitution transitions modelling the
main operations of the sender which is the sending of messages (substitution
transition send) and the reception of acknowledgements (substitution transition
receiveAck). The places ready, runAck, and nextSend are used to model the
internal state of the sender. The place ready has an initial marking consisting
of a token with the colour () (unit) which is the single value contained in the
predefined colour set UNIT. This indicates that initially the sender is ready
to perform a send operation. For a place with colour set UNIT, we omit (by
convention) the specification of the colour set in the graphical representation.
The place runAck, which has a boolean colour set, initially contains a token
with the value false indicating that the sender is not initially in a state where
it can receive acknowledgements. The place nextSend is used to keep track of
the sequence of the message that the sender is currently sending. The place
SenderChannel is a port place (indicated by the double border) and is used by
the module to exchange tokens with its upper level module, which was shown

3

210
Pragmatics Annotated Coloured Petri Nets for Protocol Software

Generation and Verification



Sender
Channel

In/Out

Endpoint

In/Out

nextSend
<<state(INT)>>

INT

ready
<<LCV>>

()

runAck
<<state>>

BOOL

false

send
<<service(msg, server)>>

Send

receiveAck
<<internal(senderChannel)>>

RecieveAckSend RecieveAck

Figure 3: The sender CPN module

in Fig. 1. In this case, SenderChannel is an input-output port place as specified
by the In/Out tag positioned next to the place. The place is associated with
the SenderChannel socket place in Fig. 1 which means that any tokens removed
(added) from (to) this place in the Sender module will also be reflected in the
Protocol module.

Figure 4 shows the Send module which is the submodule of the send sub-
stitution transition in Fig. 3. This submodule models the sending of a list of
messages from the sender to the receiver. The port places ready, SenderChannel,
nextSend, and runAck are associated with the accordingly named socket places
in the module shown in Fig. 3. The list of messages to be sent is provided via
the place message (top) annotated with the driver pragmatic. This place is
a fusion place as indicated by the rectangular tag positioned next to the place.
The name inside the tag specifies the fusion set that the place belongs to. A
fusion set is a set of places with the property that when tokens are removed
(added) to one place in the set, then the token will be removed (added) to all
members. Conceptually, all the places of a fusion set are merged into a single
compound place. The place end (at the bottom) annotated with a driver

pragmatic is also a member of a fusion set. These fusion sets are used to con-
nect PA-CPNs to test driver modules to be introduced later; these places are,
formally, not part of the service level module or the complete protocol. The
places annotated by the driver pragmatic are used by the test driver module
to control the order and the parameters of the invocation of the services of the
protocol during the verification of the protocol (see Sect. 5 and Sect. 6). The
code generator ignores these places since, in the actual protocol software, the
services of the protocol are invoked externally; the order of invocation of the
services and the parameters are determined by the protocol’s environment.

The sending of a list of messages starts with the occurrence of the transitions
send, which places the list of messages to be sent on place message, puts a
token on the place nextSend corresponding to the first sequence number, and a
token on place runAck to indicate that acknowledgements can now be received.
The place limit is used to put an upper bound on the number of attempts
to retransmit a message when the transmission fails. After an occurrence of
transition send, transition sendMsg may occur sending a message by putting it
in the output buffer modelled by the place SenderChannel. The guard used on
the transition sendMsg (by convention written in square brackets next to the
transition) ensures that the data being sent matches the sequence number of the
message currently being sent. If the retransmission limit is reached, the sender
will stop as modelled by the transition return putting a token on place end. If
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Sender
Channel

In/Out

Endpoint

In/Out

message
<<state>>

DataList

startSending
<<Id>>

INT

nextSend
<<state(INT)>>

In/Out
INT

In/Out

next
<<Id>>

Data

ready
<<LCV>>

In/Out

()

In/Out

limit
<<state>>

LimitMap

end
<<driver>>

Fusion 4Fusion 4

runAck
<<state>>

In/Out
BOOL

In/Out

messgae
<<driver>>

Fusion 1

DataList

Fusion 1

send
<<service>>

loop

[(e = 0 andalso 
(c < maxResend  
orelse n > i))
orelse (e = 1 
andalso n <= i 
andalso c < 
maxResend)]

return
<<return>>

[(e = 1 andalso n > i )orelse 
(i <= j andalso c >= maxResend
andalso i >= n)
andalso #inb ep = [] ]

sendMsg

[data = 
List.nth(dataList, i-1)]

1

1

(i,e,str)

n

(i,e,str)

{name= senderId,
inb = [],
outb = []}

n

n

(j,c)

(j,c)

ep

true

true

false

false

dataList

(0,0)

i

data

{name=senderId,
inb = inb,
outb = outb}

{name=senderId,
inb = inb,
outb = outb^^[{
src=senderId,
dest=receiverId,
packet= DATA data}]}

if i > j
then (i,0)
else (i, c +1)

(j,c)

dataList

dataList dataList

Figure 4: The Send module

colset LimitMap = product INT * INT;

colset Data = product INT * INT * STRING;

colset DataList = list Data;

val maxResend = 2;

var i, j, k, l, c, e, n :INT;

var data : Data;

var dataList : DataList;

var str : STRING;

Figure 5: Colour set (type) declarations used in Fig. 4

the retransmission limit is not reached for the current message, the transition
loop will put a token back on startSending such that the next message can be
sent. The colour set definitions and variables used in the inscriptions of Fig. 4
are provided in Fig. 5.

Above, we have presented the example CPN model that will be used as a
running example throughout this paper, and we have informally introduced the
hierarchical constructs of CPNs in the form of modules, substitution transitions,
port and socket places, and fusion places.

2.2 Formal Definitions of Hierarchical CPNs

In this subsection, we formally define hierarchical CPNs as the later formal
definition of PA-CPNs will be based on the formal definition of hierarchical
CPNs. Definition 2.1 provides the formal definition of CPN modules. In the
definition, we use Type[v] to denote the type of a variable v, and we use EXPRV
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to denote the set of expressions with free variables contained in a set of variables
V . For an expression e containing a set of free variables V , we denote by e〈b〉
the result of evaluating e in a binding b that assigns a value to each variable in
V . We use Type[e] for an expression e (an arc expression, a guard, or an initial
marking) to denote the the type of e. For a non-empty set S, we use SMS to
denote the type corresponding to the set of all multi-sets over S.

Definition 2.1. A Coloured Petri Net Module (Def. 6.1 in [2]) is a tuple
CPNM = (CPN, Tsub, Pport, PT ), such that:

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a Coloured Petri Net (Def. Y in [2])
where:

(a) P is a finite set of places and T is a finite set of transitions T such
that P ∩ T = ∅.

(b) A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.

(c) Σ is a finite set of non-empty colour sets and V is a finite set of
typed variables such that Type[v] ∈ Σ for all variables v ∈ V .

(d) C : P → Σ is a colour set function that assigns a colour set to
each place.

(e) E : A → EXPRV is an arc expression function that assigns an
arc expression to each arc a such that Type[E(a)] = C(p)MS , where
p is the place connected to the arc a.

(f) G : T → EXPRV is a guard function that assigns a guard to each
transition t such that Type[G(t)] = Bool .

(g) I : P → EXPR∅ is an initialisation function that assigns an ini-
tialisation expression to each place p such that Type[I(p)] = C(p)MS .

2. Tsub ⊆ T is a set of substitution transitions.

3. Pport ⊆ P is a set of port places.

4. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a
port type to each port place.

Socket places are not defined explicitly as part of a module because they
are implicitly given via the arcs connected to the substitution transition. For a
substitution transition t, we denote by ST (t) a mapping that maps each socket
place p into its type, i.e., ST (t)(p) = IN if p is an input socket, ST (t)(p) = OUT
if p is an output socket, and ST (t)(p) = I/O if p is an input/output socket.

The definition of a hierarchical CPN is provided below. A hierarchical CPN
consists of a set of disjoint CPN modules, a submodule function assigning a
(sub)module to each substitution transition, and a port-socket relation that
associates port places in a submodule to the socket places of its upper layer
module. The set of socket places for a substitution transition t are the place
connected to the substitution transition and is denoted by Psock(t). The defini-
tion requires that the module hierarchy (to be defined in Def. 2.3) is acyclic in
order to ensure that there are only a finite number of instances of each module.
Furthermore, port and socket places can only be associated with each other, if
they have the same colour set and the same initial marking.
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Definition 2.2. A hierarchical Coloured Petri Net (Def. 6.2 in [2]) is a
four-tuple CPNH = (S,SM ,PS ,FS ) where:

1. S is a finite set of modules. Each module is a Coloured Petri Net

Module s = ((P s, T s, As,Σs, V s, Cs, Gs, Es, Is), T s

sub, P
s
port, PT

s). It is

required that (P s1 ∪T s1)∩ (P s2 ∪T s2) = ∅ for all s1, s2 ∈ S with s1 6= s2.

2. SM : Tsub → S is a submodule function that assigns a submodule to
each substitution transition. It is required that the module hierarchy (see
Definition 2.3) is acyclic.

3. PS is a port–socket relation function that assigns a port–socket

relation PS (t) ⊆ Psock(t) × P
SM (t)

port to each substitution transition t. It

is required that ST (t)(p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉
for all (p, p′) ∈ PS (t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty and disjoint fusion sets such that C(p) =
C(p′) and I(p)〈〉 = I(p′)〈〉 for all p, p′ ∈ fs and all fs ∈ FS .

The module hierarchy of a hierarchical CPN model is a directed graph with
a node for each module and an arc leading from one module to another module
if the latter module is a submodule of one of the substitution transitions of
the former module. In the definition, Tsub denotes the union of all substitution
transitions of the hierarchical CPN, and T s

sub denotes all substitution transitions
in a module s.

Definition 2.3. The module hierarchy for a hierarchical Coloured Petri Net
CPNH = (S,SM ,PS ,FS ) is a directed graph MH = (NMH , AMH ), where

1. NMH = S is the set of nodes.

2. AMH = {(s1, t, s2) ∈ NMH × Tsub ×NMH | t ∈ T s1

sub
∧ s2 = SM (t)} is the

set of arcs.

The roots of MH are called prime modules, and the set of all prime modules
is denoted SPM.

3 Pragmatic Annotated CPNs

PA-CPNs mandates a particular structure of the CPN models and enables the
CPN elements to be annotated with pragmatics used to direct the automated
code generation. In a PA-CPN, the modules of the CPNmodel are required to be
organised into three levels referred to as the protocol system level , the principal

level , and the service level . In a PA-CPN, it is required that there exists exactly
one prime module. This prime module represents the protocol system level.
The Protocol module shown in Fig. 1 comprises the protocol system level of
the PA-CPN model of the framing protocol; it specifies the protocol principals
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in the system and the channels connecting them. The substitution transitions
representing principals are specified using the principal pragmatic, and the
substitution transitions representing channels are specified using the channel
pragmatic. In the CPN model, pragmatics are shown by annotations enclosed
in guillemets. On the principal level, there is one module for each principal of
the protocol as defined on the protocol system level. The framing protocol has
two modules at the principal level corresponding to the sender and the receiver.
Figure 3 shows the principal level module for the sender. A principal level
module is required to model the services that the principal is providing, and
the internal states and life-cycle of the principal. For the sender, there are two
services, which are indicated by the service pragmatics: send and receiveAck.
Substitution transition representing services that can be externally invoked are
specified using the service pragmatic, whereas services that are to be invoked
only internally are specified using the internal pragmatic. The service level
modules model the behaviour of the individual services. The module in Fig. 4 is
an example of a module at the service level modelling the send service provided
by the sender principal.

We formally define PA-CPNs as a tuple consisting of a hierarchical CPN, a
protocol system module (PSM), a set of principal level modules (PLMs), a set of
service level modules (SLMs), a set of channel modules (CHMs), and a structural
pragmatics mapping (SP) that maps substitution transitions into structural
pragmatics and capturing the annotation of the substitution transitions. It
should be noted that since channel modules do not play a role in the code
generation but are only a CPN model artifact used to connect the principals for
simulation purposes, we do not impose any specific requirements to the internal
structure of channel level modules.

Definition 3.1. A Pragmatics Annotated Coloured Petri Net (PA-CPN)
is a tuple CPN PA = (CPNH ,PSM ,PLM ,SLM ,CHM ,SP), where:

1. CPNH = (S, SM,PS, FS) is a hierarchical CPN.

2. PSM ∈ S is a protocol system module (see Def. 3.2) and the only
prime module of CPNH .

3. PLM ⊆ S is a set of principal level modules (see Def. 3.3).

4. SLM ⊆ S is a set of service level modules (see Def. 3.4).

5. CHM ⊆ S is a set of channel modules.

6. PSM ,PLM ,SLM ,CHM constitute a partition of S.

7. SP : Tsub → {principal,service,internal,channel} is a struc-

tural pragmatics mapping such that:

(a) Substitution transitions annotated with a principal pragmatic
have an associated principal level module:
∀t ∈ Tsub : SP(t) = principal ⇒ SM (t) ∈ PLM

(b) Substitution transitions annotated with a service or internal
pragmatic are associated with a service level module:
∀t ∈ Tsub : SP(t) = service ∧ SP(t) = internal ⇒ SM (t) ∈
SLM
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(c) Substitution transitions annotated with a channel pragmatic are
associated with a channel module:
∀t ∈ Tsub : SP(t) = channel ⇒ SM (t) ∈ CHM

The protocol system module (PSM) models the principals of the protocol
and the channels that connects them. The PSM module is defined as a tuple
consisting of a CPN module and a pragmatic mapping PM that associates a
pragmatic to each substitution transition. The requirement to the module is
that all substitution transitions must be substitution transitions and annotated
with either a principal or a channel pragmatic. Furthermore, two substi-
tution transitions representing principals cannot be connected only by a place,
there must be a substitution transition representing a channel in between. This
reflects the fact that it is possible for principals to communicate via channels
only2.

Definition 3.2. A Protocol System Module of a PA-CPN with a structural
pragmatics mapping SPPA is a tuple CPNPSM = (CPNPSM ,PM ), where:

1. CPNPSM =
((PPSM , TPLM , APSM ,ΣPSM , V PSM , CPSM , GPSM , EPSM , IPSM ),
TPSM
sub , PPSM

port ,PT
PSM ) is a CPN module (see Def. 2.1).

2. All transitions are substitution transitions TPSM = TPSM
sub .

3. PM : TPSM
sub → {principal,channel} is a pragmatics mapping sat-

isfying:

(a) All substitution transitions are annotated with either principal or
channel pragmatic: ∀t ∈ TPSM

sub : PM (t) ∈ {principal,channel}.

(b) The pragmatics mapping must coincide with the structural pragmatic
mapping of PA-CPN: ∀t ∈ TPSM

sub : PM (t) = SP(t).

(c) All places are connected to at most one substitution transition an-
notated with principal and at most one annotated with channel:
∀p ∈ PPSM : ∀t1, t2 ∈ X(p) : PM (t1) = PM (t2) ⇒ t1 = t2.

A principal level module specifies the services provided by a principal and
is defined as a tuple consisting of a CPN module and a principal level prag-
matic mapping PLP . Each service is represented by a substitution transition
which can be annotated with either a service or internal pragmatic depending
on whether the service is visible externally or not. The non-port places of a
principal level model can be annotated with either a state or an LCV prag-
matic. Places annotated with a state pragmatic represent internal states of
the principal, whereas places annotated with an LCV pragmatic represent the
life-cycle of the principal by putting restrictions on the order in which services
can be invoked. As an example, the place ready in Fig. 3 ensures that only one
message at a time is sent using the send service.

2In the definition, we use X(p) to denote the set of transitions connected to a place p.
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Definition 3.3. A Principal Level Module of a PA-CPN with a structural
pragmatics mapping SPPA is a tuple
CPNPLM = (CPNPLM , T

PLM
sub , PPLM

port ,PT
PLM ,PLP) where:

1. CPNPLM = (PPLM , TPLM , APLM ,ΣPLM , V PLM , CPLM , GPLM , EPLM ,

IPLM ) is a CPN module (see Def. 2.1).

2. All transitions are substitution transitions: TPLM = TPLM
sub

3. PLP : TPSM
sub ∪ PPLM \ PPLM

port → {service,internal,state,LCV} is
a principal level pragmatics mapping satisfying:

(a) All non-port places are annotated with either a state or a LCV

pragmatic: ∀p ∈ PPLM \ PPLM
port ⇒ PLP(p) ∈ {state,LCV}

(b) All substitution transitions are annotated with a service or internal
pragmatic: ∀t ∈ TPSM

sub : PLP(t) ∈ {service,internal}.

It should be noted that we do not associate any pragmatics with the port
place of the module as it follows from the definition of the protocol system
module that a port place in a principal level module can only be associated
with a socket place connected to a channel substitution transition.

The service level modules specify the detailed behaviour of the individual
services and constitute the lowest level modules in a PA-CPN model. In par-
ticular, there are no substitution transitions in modules at this level. The Send
module in Fig. 4 is an example of a module at the service level. It models the be-
haviour of the send service in a control-flow oriented manner. The control-flow
path, which defines the control flow of the service, is made explicit via the use
of the Id pragmatics. The entry point of the service is indicated by annotating
a single transition with a service pragmatic, and the exit (termination) point
of the service is indicated by annotating a single transition with a return prag-
matic. In addition, a non-port place can be annotated with a state pragmatic to
indicate that this place models a local state of the service. The driver is used
by service tester modules to facilitate verification by reducing the state space
of the protocol model. The places annotated with an Id pragmatic determine
a subset of the module, which we call the underlying control-flow net ; and it
is required that this net is block decomposable (which will be defined later in
Sect. 4) in order to support a natural translation into programming language
control flow structures. In Fig. 4, the underlying control flow net is highlighted
via the places, transitions, and arcs having a thick border. A service level mod-
ule is defined as consisting of a CPN module without substitution transitions
and with a service level pragmatic mapping that associates pragmatics to the
model elements as described above.

In the definition below we use the notation ∃!x ∈ X : p(x) to denote that
there exists exactly one element x in a set X satisfying a predicate p – i. e. the
element x is uniquely characterized by property p(x).

Definition 3.4. A Service Level Module is a tuple CPN SLM = (CPN SLM ,

T SLM
sub , P SLM

port ,PT
SLM ,SLP ,SLT ) where:
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1. CPN SLM = (PSLM , TSLM , ASLM ,ΣSLM , V SLM , CSLM , GSLM , ESLM , ISLM )
is a CPN module (see Def. 2.1)

2. There are no substitution transitions: T SLM
sub = ∅.

3. SLP : TPLM∪PPLM\PPLM
port → {Id,state,service,return,driver}

is a service level pragmatic mapping satisfying:

(a) Each place is either annotated with Id, state, driver or is a port
place : ∀p ∈ PSLM \ PSLM

port : SLP (p) = Id ∨ SLP (p) = state ∨
SLP (p) = driver

(b) There exits exactly one transition annotated with service:
∃!t ∈ TSLM : SLP (t) = service

(c) There exits exactly one transition annotated with return:
∃!t ∈ TSLM : SLP (t) = return

4. For all t ∈ TSLM and p ∈ PSLM we have:

(a) Transitions consume one token from input places annotated with an
Id pragmatic: (p, t) ∈ ASLM ∧ SLP (p) = Id ⇒ |E(p, t)〈b〉| = 1 for
all bindings b of t.

(b) Transitions produce one token on output places annotated with an
Id pragmatic: (t, p) ∈ ASLM ∧ SLP (p) = Id ⇒ |E(t, p)〈b〉| = 1 for
all bindings b of t.

(c) Only transitions annotated with a service pragmatic can have in-
put places annotated with a driver pragmatic:
(p, t) ∈ ASLM ∧ SLP (p) = driver ⇒ SLP (t) = service

(d) Only transitions annotated with a return pragmatic can have out-
put places annotated with a driver pragmatic:
(t, p) ∈ ASLM ∧ SLP (p) = driver ⇒ SLP (t) = return

5. The underlying control flow block of CPN SLM (Def. 4.2) is tree decom-
posable (Def. 4.4).

4 Block Decomposition of Control Flow Nets

In this section, we define formally when the control flow of a service level module
is decomposable into blocks. Figure 6 shows the underlying control flow net of
the service level module for the send operation of the sender from Fig. 4, which
is a loop construct, basically.

In order to formally define the block decomposition, we need to define blocks
first: these are Petri nets with a fixed entry and exit place. Then, we define the
underlying control flow net of a service module. At last, we define when a block
is decomposable into blocks, which represent the control flow constructs.

Figure 7 shows a graphical representation of a block in general, where the
start and end place of the block are graphically represented by arcs from resp.
to the border of the block.
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Figure 6: Decomposition of the control flow net of module SenderSend

Figure 7: Graphical representation of a block.

Definition 4.1 (Block, atomic non-returning block).
Let N = (P, T,A) be a Petri net and s, e ∈ P . Then B = (P, T,A, s, e) is called
a block with entry s and exit e.

The block is atomic, if P = {s, e}, s 6= e, |T | = 1 and for t ∈ T , we have
•t = {s} and t• = {e}.

The block has a safe entry, if s 6= e and •s = ∅ (i. e. the block will not return
a token to the start place itself). The block has a safe exit, if s 6= e and e• = ∅
(i. e. the block does not use a token from the end place itself).

An atomic block consists of a single transition, as shown in Fig. 10 later.
For visualizing blocks with safe entry and safe exit, we introduce an additional
graphical notation, which is shown in Fig. 8. The crossed out arc from within
the block to the start place indicates that the block itself does not return a
token to the entry place (safe entry); the crossed out arc from the end place to
the interior of the block indicates that the block itself does not remove a token
from its exit place (safe exit).

Figure 8: Graphical representation of safe entry and safe exit.

For easing the following definitions, we introduce an additional notation:
For a block Bi, we refer to its constituents by Bi = (Pi, Ti, Au, si, ei) without
explicitly naming them every time.
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The block that is underlying a service level model is basically obtained by
all the places that are annotated with the Id pragmatics and the transitions in
their pre- and postsets. The unique transition with the service pragmatics
defines the entry place, and the unique transition with the return defines the
exit place of this block; note that for technical reasons, these two transitions are
not part of the block. Therefore, these transitions are shown by dashed lines in
Fig. 6

Definition 4.2. [Underlying control flow net of SLM] Let CPN SLM be a service
level module as defined in Def. 3.4. Let P = {p ∈ PSLM \PSLM

port |SLP (p) = Id},

let T = TSLM ∩• P ∩P •, and let A = ASLM ∩ ((T ×P )∪ (P × T ))}; moreover,
let s ∈ P be the unique place such that there exists a transition t ∈ T = TSLM

with (t, s) ∈ ASLM and SLP (t) = service, and let e ∈ P be the unique place
e such that there exists a transition t ∈ T = TSLM with (e, t) ∈ ASLM and
SLP (t) = return.

Then, we call N = (P, T,A, s, e) the underlying control flow net of
CPN SLM .

The control flow of the generated code will be obtained by decomposing
the underlying control flow net of a service level module into sub-blocks, which
represent the control flow constructs. Note that we define the decomposition
in a very general way at first, which does not yet restrict the possible control
constructs. The decomposition into blocks, just makes sure that all parts of the
block are covered by sub-blocks and that they overlap on entry and exit places
only. In a second step, the decomposition is restricted in such a way that the
decomposition captures certain control flow constructs (Def. 4.4).

Definition 4.3 (Decomposition of a block).
Let B = (N, s, e) be a block with net N = (P, T, F ).

A set of blocks B1, . . . , Bn is called a decomposition of block B, if the fol-
lowing conditions are met:

1. The sub-blocks contain only elements from B, i. e. for each i ∈ {1, . . . , n},
we have Pi ⊆ P , Ti ⊆ T , and Fi ⊆ F ∩ ((Pi × Ti) ∪ (Ti × Pi)).

2. The sub-blocks contain all elements of B, i. e. P =
⋃n

i=1 Pi, T =
⋃n

i=1 Ti,
and F =

⋃n
i=1 Fi

3. The inner structure of all sub-blocks are disjoint, i. e. for each i, j ∈
{1, . . . , n} with i 6= j, we have Ti∩Tj = ∅ and Pi∩Pj = {si, ei}∩{sj , ej}.

Note that, in some cases, two consecutive blocks should be safe, which means
that either the exit of the preceding block is safe, or the entry of the succeeding
block is safe or both. We represent this graphically as shown in Fig. 9.

Figure 9: Safe join of two consecutive blocks
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At last, we define when a decomposition of a block reflects some control
flow construct. Note that this definition does not only define decomposability
into control constructs; it also defines a tree structure which reflects the control
structure of the block. The formal definition is illustrated in Fig. 10.

Definition 4.4 (Tree decompositions of a block).

The block trees associated with a block are inductively defined:

• If B is an atomic block, then the tree with the single node B : atomic is
a block tree associated with B.

• If B is a block and B1 and B2 is a decomposition of B, and for some X,
B1 : X is a block tree associated with B1, and B2 : atomic is a block tree
associated with B2, and if B1 has a safe entry and a safe exit and s1 = s,
e1 = e, s2 = e, and e2 = s, then the tree with top node B : loop and the
sequence of sub-trees B1 : X and B2 : atomic is a block tree associated
with B.

• If B is a block and for some n with n ≥ 2 the set of blocks B1, . . . , Bn

is a decomposition of B, and have a safe entry and a safe exit, and
B1 : X1, . . . , Bn : Xn for some X1, . . . , Xn are block trees associated with
B1, . . . , Bn, and if for every i ∈ {1, . . . , n} we have si = s and ei = e, then
the tree with top node B : choice with the sequence of sub-trees Bi : Xi

is a block tree associated with B.

• If B is a block and for some n with n ≥ 2 the set of blocks B1, . . . , Bn is a
decomposition of B, and, for some X1, . . . , Xn, the trees B1 : X1, . . . , Bn :
Xn are block trees associated with B1, . . . , Bn, and if there exist different
places p0, . . . , pn ∈ P such that s = p0, e = pn, and for each i ∈ {0, . . . , n−
1} we have si = pi, ei = pi+1, and Bi has a safe exist or Bi+1 has a safe
entry, then the tree with top node B : sequence and the sequence of
sub-trees Bi : Xi is a block tree associated with B.

Note that the tree decomposition of a block is not necessarily unique. For
example a longer sequence of atomic blocks could be decomposed into different
junks. The reason is that sequences can have arbitrary length according to our
definition, which makes the definitions much more elegant and allows us to have
long sequences in a single sequence construct. The tool actually resolves this
ambiguity by making blocks with a sequence as large as possible.

Fig. 4 is an example of an SLM. Its underlying control flow net was shown in
Fig. 6. This block is decomposed in a loop, which in turn consists of an atomic
block. The service transition itself as well as the return transition are actually
not part of the underlying control flow net.

5 Service Testers

The service level modules constitute the active part of a PA-CPN model, and
the execution of the individual service provided by a principal starts at the
transition annotated with a service pragmatic. The transitions annotated
with a service pragmatic typically has a number of parameters which need to be
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Figure 10: Inductive definition of block trees
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Figure 11: The Service tester

bound to values in order for the transition to occur. An example of this is the
Send service transition in Fig. 4 which has dataList is a parameter. This means
that there are often an infinite number of bindings for a service transition.
To control the execution of a PA-CPN model when conducting validation by
means of simulation and verification by means of state space exploration, we
introduce the concept of service tester modules which can be used to guide the
validation and verification process and represent a user of the service provided
by the principal modules. An added advantage of service testers is that they can
further contribute to reducing the state space during verification and progress
measures can be automatically computed and used in conjunction with the
sweep-line method for state-space exploration as will be explained in Sect. 6.

The service tester modules will be connected to the rest of the PA-CPN
model through fusion places, and the service tester modules invokes the service
provided by the principal by putting tokens on these places. Similarly, the
service tester also receives any results from the invoked services via tokens on
these fusion places. The fusion places used to connect service level modules
and service tester modules are the only way fusion places are used on top of
the concepts of PA-CPNs. In addition to the fusion places, a service tester
module has an explicit control flow path similar to service level modules and Id
pragmatics are used to make this explicit.

Figure 11 shows a server tester module for the PA-CPN model introduced in
Sect. 3. The service tester drives the execution of a CPN model through fusion
places. A service tester module is allowed to have only a single Id place that
initially contains a token. In the case of Fig. 11, this is the place d0. The test
driver first invokes the send service in Fig. 4 by putting a token in the fusion
place message. Next, the service tester invokes the receive service in the receiver
principal.

Below we formalise the control flow part of a service tester. In the definition,
we use I(p)〈〉 to denote the result of evaluating the initial marking expression
I(p) of a place p.
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Definition 5.1. A Service Tester Module is a tuple CPN STM = (CPN STM ,

T STM
sub , P SLM

port ,PT
SLM ,TPM ) where:

1. CPN SLM = (PSLM , TSLM , ASLM ,ΣSLM , V SLM , CSLM , GSLM , ESLM , ISLM )
is a CPN module (see Def. 2.1)

2. There are no substitution transitions: T STM
sub = ∅.

3. TPM : PSTM → {Id,driver,LCV} is a service tester pragmatic

mapping.

4. ∃!p ∈ I such that |ISTM (p)〈〉| = 1.

5. For all t ∈ TSLM and p ∈ PSLM we have:

(a) Transitions consume one token from input places annotated with an
Id pragmatic: (p, t) ∈ ASLM ∧ TPM(p) = Id ⇒ |E(p, t)〈b〉| = 1 for
all bindings b of t.

(b) Transitions produce one token on output places annotated with an
Id pragmatic: (t, p) ∈ ASLM ∧ TPM(p) = Id ⇒ |E(t, p)〈b〉| = 1 for
all bindings b of t.

6. Transitions and places annotated with a LCV pragmatic must be connected
with a double arc:
∀p ∈ PSTM , t ∈ TSLM : TPM(p) = LCV ⇒ ((t, p) ∈ A⇔ (p, t) ∈ A)

7. The underlying control flow block of CPN STM (Def. 4.2) is tree decom-
posable (Def. 4.4)

As explained above, the idea is that a set of service tester modules can
be connected to a PA-CPN by means of fusion places in order to control the
execution of the services. Formally, we therefore define a PA-CPN equipped with
service tester modules as a hierarchical CPN consisting of a set of modules that
constitute a PA-CPN according to Def. 3.1 and a set of service tester modules
which all constitute prime modules. Furthermore, we require that fusion places
are connecting the service level modules and the service tester module so that
they correspond to the invocation of services and collecting of a results from an
executed service.

Definition 5.2. A Pragmatics Annotated Coloured Petri Net with Ser-

vice Testers is tuple CPN PAT = (CPNH ,PSM ,PLM ,SLM ,CHM ,SP ,STM ),
where:

1. CPNH = (S, SM,PS, FS) is a hierarchical CPN.

2. CPN PAT = (CPNH ,PSM ,PLM ,SLM ,CHM ,SP) is a PA-CPN

3. STM ∈ S is a set of service tester modules all of which are prime modules.

4. The following conditions hold for all fusion sets fs ∈ FS:
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(a) Places in a fusion set are either all annotated with a driver prag-
matic or all annotated with a LCV pragmatic.

(b) A fusion set containing places with driver pragmatics can only
contain places from a single service layer module and a single service
tester module.

(c) A fusion set containing places with LCV pragmatics can only contain
places related via a port-socket relationship or places belonging to
service tester modules.

(d) If p ∈ fs belongs to a service level module and has an output arc
to a transition with a service pragmatic, then all places pt ∈ fs

belonging to a service tester module STM have only input arcs from
transitions in STM .

(e) If p ∈ fs belongs to a service level module and has an input arc
to a transition with a return pragmatic, then all places pt ∈ fs

belonging to a service tester module STM can have output arcs to
transitions in STM only.

6 Verification

State space exploration is the main verification method for CPNs and is based
on the idea of explicitly enumerating the set of reachable states of the CPN
model. Generally, this approach is limited by the available memory since the
states need to be stored while the state space is generated. A large collection
of techniques have been developed in order to alleviate this inherent complexity
problem. In this section, we show how the sweep-line method [1, 3] can be
used to alleviate the state explosion problem when conducting verification of
PA-CPNs with service testers.

6.1 The Sweep-Line Method

The basic idea of the sweep-line method is to exploit a notion of progress ex-
hibited by many systems. Exploiting progress makes it possible to explore all
reachable states while storing only small subsets of the state space in memory
at a time. This way, much larger state spaces can be investigated since never
all states need to be stored at the same time. The additional structure imposed
on CPNs by PA-CPNs and services testers means that PA-CPN models have
several potential sources of progress that can be exploited by the sweep-line
method. The control-flow in the service modules is one source of progress as
there is a natural progression from the entry point of the service towards the
exit point of the service. The life-cycle of a principal is another potential source
of progress as there will often be an overall intended order in which the services
provided by a principal is to be invoked, and this will be reflected in the life-
cycle variables of the principal. Finally, the service testers are also a source of
progress as a service tester will inherently progress from the start of the test
towards the end of the test.
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The subsets of states stored are determined via a progress value assigned to
each state, and the method explores the states in a least-progress-first order.
The sweep-line method explores states with a given progress value before pro-
gressing to the states with a higher progress value. When the method proceeds
to consider states with a higher progress value, it deletes the states with a lower
progress value from memory. The basic idea is to optimistically assume that the
system does not regress , and hence states with a lower progress value will not
be visited again and do not need to be kept in memory. If it turns out that the
system regresses, then the method will mark states at the end of regress edges

as persistent (i. e., store them permanently in memory) in order to ensure ter-
mination. In the presence of regression, the sweep-line method may visit some
states multiple times. The fact that the sweep-line method deletes states means
that verification of properties needs to be conducted on-the-fly during the state
space exploration.

To apply the sweep-line method a progress measure must be provided for
the model as formalised below where S denotes the set of all states (markings)
and →∗ the reachability relation of the CPN model:

Definition 6.1 (Progress Measure). A progress measure is a tuple P =
(O,⊑, ψ) such that O is a set of progress values, ⊑ is a total order on O, and
ψ : S → O is a progress mapping. P is monotonic if ∀s, s′ ∈ R(ι) : s →∗

s′ ⇒ ψ(s) ⊑ ψ(s′). Otherwise, P is non-monotonic.

The sweep-line method does not mandate any origin of the progress measure
and in many cases the progress measure is provided by the modeller based upon
knowledge about the modelled systems. For PA-CPNs, however, a reasonable
progress measure can be derived from the model automatically as we will show
in the next section.

6.2 Progress Measures for Sweep-line Verification Meth-

ods

For our example protocol above, the progress measure could be a vector of
measures using the number of tokens on some of its places (omitting the parts
of the model that we did not show in this paper):

(|d0|, |d1|, |d2|, |d3|, |startSending| + |next|, |end|, . . .)

The order on two such vectors would be compared lexicographically, meaning
the order of the different entries represents their significance.

The first four entries represent the progress in the service tester (Fig. 11).
The next two entries represent the progress within the send service (Fig.4); note
that since the places startSending and next are on a loop, tokens can flow back
from place next to place startSending. The end place is actually the respective
driver place from the tester, which propagates the progress between the service
and tester. Therefore, the tokens on both places within this loop are counted
the same (added up in the same entry of the vector).

An alternative progress measure is shown below (omitting the parts of the
model that we did not show in this paper):

(|d0|, |d1|, |d2|, |d3|, |startSending|, |next|, |end|, . . .)
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The difference between the two are based on how loops are handled. In this
progress the places on loops are append to the vector as if the loop was not
there. In the present example this is shown by havin replaced the + operator
between startSending and next with a comma.

We used the service tester as the first and, therefore, most significant mea-
sures since these are indicating the progress within the test. Then we measure
the progress within the service. In some cases, it might make sense to take
life-cycle variables into account for measuring the progress. But, this depends
very much on the protocol and whether the life-cycle variables monotonically
increase in the course of the protocol. In our example, the life-cycle variable
ready of the sender module does not indicate any progress; therefore, it is not
part of the progress measure that we have shown above.

Generally, coming up with a good progress measure requires some experience
and a good understanding of the protocol. For the test drivers and the services
modules, however, some reasonable progress measures can be derived automati-
cally by exploiting the block structure of the respective modules (a sequence for
the tester and a loop for the service, in our example). We formalize this below,
basically generalizing the idea from the above example.

The progress measure is defined on top of the tree decomposition of the
blocks underlying the corresponding service tester model or the service module.
Technically, the tree decomposition of the blocks was formally defined for service
level modules only. It is straight forward to adjust this definition to service tester
modules, but we do not formalize that here. In the following, we assume that
we have the tree decomposition of the respective module. Then we define a
simple progress measure and a complex one. The simple one, would just add
up the number of all tokens in loops, not looking into their detailed structure;
the complex one would also take the progress within loops into account.

Definition 6.2 (Progress measures). LetBT be a block tree for a CPN module.
The sequence of simple progress measures entries for BT is defined induc-

tively over the block tree BT of the CPN module:

• If BT is B : atomic, then simple progress sequence consist of |s|, |e| where
s is the entry place of the block B and e is the exit place.

• If BT is B : sequence with sub blocks B1, . . . Bn, and e
1
i , . . . , e

ki

i are the
simple progress sequences for Bi, then
e11, . . . , e

k1−1
1 , e12, . . . , e

k2−1
2 , . . . , e1n, . . . , e

kn

n is the simple progress sequence
for BT .

• If BT is B : choice with sub blocks B1, . . . Bn, and e1i , . . . , e
ki

1 are the
simple progress sequence for each block Bi, then the sequence
e11, . . . , e

k1−1
1 , e22, . . . , e

k2−1
2 , . . . , e2n, . . . , e

kn

n is the simple progress sequence
for BT

• If BT is B : loop with places p1, . . . pn, then either the single entry |p1|+
. . .+ |pn| is the simple progress sequence for BT .

The sequence of complex progress measures entries is defined inductively over
the block tree BT of the CPN module:

• If BT is B : atomic, then complex progress sequence consist of |s|, |e|
where s is the entry place of the block B and e is the exit place.
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• If BT is B : sequence with sub blocks B1, . . . Bn, and e
1
i , . . . , e

ki

i are the
complex progress sequences for Bi, then
e11, . . . , e

k1−1
1 , e12, . . . , e

k2−1
2 , . . . , e1n, . . . , e

kn

n is the simple sequence for BT .

• If BT is B : choice with sub blocks B1, . . . Bn, and e1i , . . . , e
ki

1 are the
complex progress sequence for each block Bi, then the sequence
e11, . . . , e

k1−1
1 , e22, . . . , e

k2−1
2 , . . . , e2n, . . . , e

kn

n is the complex progress sequence
for BT

• If BT is B : loop with places with sub block B1 and B2 with the complex
progress sequence e1, . . . , en for B1, then e1, . . . , en is also the complex
progress sequence for BT .

Now, the progress measures for the complete system can be built from the
progress sequences (either the simple or the complex ones) for the tester and
service modules by concatenating the sequences: The concatenation would first
choose the sequences for the service testers and then the sequences for all the
service level modules. Note that if there is a driver place of a service tester
attached to the service, this driver place would also be added to the progress
measure sequence of the service level module at the end (as for the end place
for the send service in our example).

Note that for each single service either the simple or the complex measure
could be chosen. It very much depends on the nature and the depth of the loop
which of these choices help reducing the effort for exploring the state space. The
choice for each service level module would be left to the modeller. In principle,
it is even possible to combine the complex measure and the simple measure
within a single service level module – starting with the complex measure for the
outer loop constructs and then switching to the simple measure at some nesting
level. But, defining these combined measures for a single service level module
would result in a very technical definition. Therefore, we do not formally define
combined complex and simple measures for a single service here.

Anyway, as for all heuristics, these measures serve as a good guess only; it
might still be possible to be improved by choosing the simple or the complex
progress measures for the different modules or by by adding some entries con-
cerning the the live-cycle variables. Such manual manipulations would also be
left to the modeller.

6.3 Verification Results

In order to demonstrate the feasibility of verification using the sweep-line method
and the progress measures defined above, we present the verification of a sim-
ple end state property assuring that the protocol will terminate in a consistent
state. The property checks that all the modules are ended in all final states.
This was checked manually and by automatically checking all end states with
the simple predicate P1 shown below. The predicate says that the four places
d3, endFinalAtomic,endRecAck and endRec are all marked with a unit token.
This means that the service tester and all the services are terminated.

• P1: d3 = [()] andalso endFinalAtomic = [()] andalso endRecAck = [()]
andalso endRec = [()]
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Configuration Visited states Peak stored Num unique end states P1 time

1 msg, non-
lossy

156 77 2 yes 0.034905s

1 msg, lossy 186 99 2 yes 0.029867s
3 msg, non-
lossy

2222 2014 4 yes 0.399659s

3 msg, lossy 2928 2700 4 yes 0.643134s
7 msg, non-
lossy

117584 115373 8 yes 216.197694s

7 msg, lossy 160620 158388 8 yes 532.674399s

Table 1: Verification results using the simple progress measure
Configuration Visited states Peak stored Num unique end states P1 time
1 msg, non-
lossy

165 63 2 yes 0.029353s

1 msg, lossy 196 78 2 yes 0.035034s
3 msg, non-
lossy

2790 1582 4 yes 0.489735s

3 msg, lossy 4037 2187 4 yes 0.855804s
7 msg, non-
lossy

143531 86636 8 yes 32.384360s

7 msg, lossy 263608 124661 8 yes 80.835973s

Table 2: Verification results using the complex progress measure

We ran the verification using two different progress measures. The results
of the verification are shown in Table 1 using the simple progress measure and
Table 2 using the complex progress measure. We used two configuration param-
eters, the number of messages to be sent and whether the channel is lossy. We
see that the predicate holds for all configurations. Also, we see that the number
of states grows fairly fast with the number of messages. We see that the verifica-
tion using the simple progress measure consistently visits fewer states (counting
duplicate encounters twice) than the complex progress measure. This is because
the states surrounding and inside loops are added, which means they count as a
single progress measure point by the simple progress measure, while they are all
included as if the loop was a sequence using the complex progress measure. The
peak number of states stored at the same time, however, is consistently lower for
the complex progress measure. This means that the peak memory consumption,
is lower using this metric. Furthermore, for the larger state spaces, the time
the verification takes is also significantly lower using the complex progress mea-
sure. This means that the complex measure is probably preferable with large
state spaces when the model includes loops. It is likely that a tailored progress
measure would out-perform both the complex and simple progress measure.

7 Conclusion and Related Work

In this paper we have presented a formal definition of Pragmatics Annotated
Coloured Petri Nets (PA-CPNs), the net class that forms the basis for our code
generation technique. Furthermore we have shown that the structure of PA-
CPNs can be exploited to automatically derive some suitable progress measures
for the sweep-line method.

PA-CPNs are not the first formally defined sub-class of CPNs for code gener-
ation: also Process-Partitioned CPNs (PP-CPNs) [4, 7] were defined for making
code generation possible. One important advantage of PA-CPNs over PP-CPNs
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is that they clearly display the available services of a principal in the PLMs.
With PA-CPNs, we are also able to use the PLMs to reduce the number of
states in memory at any one time during state-space generation by taking into
account the LCV places, even though we could not exploit that in the example
discussed in this paper.

PA-CPNs have been introduced mainly with code generation in mind (with
different objectives as discussed in [5]). In this paper, we have formally defined
PA-CPNs, and it turned out that the objective of code generation does not spoil
the possibility of verifying the respective models; on the contrary, the additional
structure can even be exploited for improving verification in combination with
the sweep-line method.
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Abstract. Code generation is an important part of model driven method-
ologies. In this paper, we present PetriCode, a software tool for gener-
ating protocol software from a subclass of Coloured Petri Nets (CPNs).
The CPN subclass is comprised of hierarchical CPN models describing
a protocol system at different levels of abstraction. The elements of the
models are annotated with code generation pragmatics enabling Petri-
Code to use a template-based approach to generate code while keeping
the models uncluttered from implementation artefacts. PetriCode is the
realization of our code generation approach which has been described in
previous works.
Keywords: Model-driven development, Implementation of platforms
and tools, Formal methods for software engineering, Coloured Petri Nets.

1 Introduction

Coloured Petri Nets (CPNs) [5] is a graphical modelling language combining
Petri Nets and the programming language Standard ML. CPNs have been widely
used for modelling and validation of concurrent systems. CPN Tools [6] provides
tool support for construction, simulation and analysis of CPN models but does
not provide tool support for automatic code generation from CPN models. The
contribution of this paper is to present PetriCode which complements CPN Tools
by providing tool support for automatic code generation from CPN models.
PetriCode implements the approach presented in [19].

In contrast to previous works [16, 18, 19], this paper focuses on the technical
software realization of our approach whereas earlier work has focused on the con-
ceptual and theoretical aspects of our modelling and code generation methods.
The intended use of PetriCode is to generate software for network protocols in a
flexible way based on annotated and descriptive protocol CPN models [18] and
for different target languages and platforms.

PetriCode takes a template-based approach to code generation based on CPN
models annotated with pragmatics. Pragmatics are syntactic annotations on
CPN model elements that are used to direct the code generation procedure.
Pragmatics are associated with code templates that are invoked for code gener-
ation. Our code generation approach [19] consists of three main steps. The first
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step is to parse the CPN model and automatically derive additional pragmatics
for the CPN model. The derived pragmatics are used to provide the code gen-
erator with additional information of what is represented by the various CPN
structures. The second step is to construct an Abstract Template Tree (ATT)
which is used as an intermediary structure for code generation. The ATT pro-
vides a platform independent data structure that simplifies the final step of the
code generation. The third and final step is the actual code generation where
the ATT, using a series of visitors and templates, is transformed into code by
invoking the templates associated with pragmatics.

The rest of this paper is organized as follows. Section 2 shows, by an exam-
ple, how PetriCode can be used to generate code for a simple framing protocol.
Section 3 provides an overview of the software architecture and design of Petri-
Code. Section 4 describes the pragmatics module which is responsible for parsing
and deriving pragmatics. Section 5 describes the ATT module which is respon-
sible for generating the ATTs. Section 6 describes the code generation module
which is responsible for generating code based on ATTs and templates. Section 7
contains a discussion of related work. Concluding remarks and future work are
presented in Sect. 8.

We assume that the reader is familiar with the basic concepts of Petri Nets
(places, transitions, enabling and occurrence/firing). Due to space limitations
we only provide a high-level introduction to CPNs. The reader is referred to [5]
for a detailed introduction to CPNs.

Details on how to download and operate PetriCode are available at the Petri-
Code project website [15]. Due to space limitations we cannot present all details
of PetriCode in this paper. For a more detailed presentation, we refer the reader
to the technical report [17].

2 Example Model and Usage

In order to present the workings of PetriCode, we use a simple framing proto-
col as a running example. The protocol is described in detail in the technical
report [19]. The model is divided into three hierarchical layers: the protocol sys-
tem, principal, and service layers. The protocol system layer, depicted in Fig. 1,
shows the principal agents of the protocol system as well as the connections
between them. In the example, those are the Sender, Receiver and the Chan-
nel connecting them. In Fig. 1, the substitution transitions Sender and Receiver

(rectangles with double-lined borders) are both annotated with a 〈〈principal〉〉
pragmatic. This conveys to the code generator that the sub-modules represented
by each of these substitution transitions represent principal agents of the system.
The third substitution transition in the protocol system module, Channel, is an-
notated with the pragmatic 〈〈channel〉〉 specifying that the underlying module
defines the channel. The 〈〈channel〉〉 pragmatic, in addition, has some attributes
describing the service provided by the channel. In the rest of this paper, we focus
on the Sender principal of the protocol. Figure 2 shows the principal level of the
sender which is the sub-module of the substitution transition Sender in Fig. 1.
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Channel
<<channel

(reliable,order,unidirectional)>>

Channel

Receiver
<<principal>>

Receiver

Sender
<<principal>>

Sender

Receiver
Channel

Endpoint

Sender
Channel

Endpoint
Sender ReceiverChannel

Fig. 1. The protocol system level

Close
<<service 

(synchronous)>>

SenderClose

Send
<<service 

(msg : Message,synchronous)>>

SenderSend

Open
<<service 

(repid: EndPointId, synchronous)>>

SenderOpen

Open
<<LCV>>

UNIT

()

UNIT

Receiver
<<state>>

EndpointId

Endpoint

SenderOpen

SenderSend

SenderClose

Idle
<<LCV>>

Sender
<<channel>>

I/OI/O

Fig. 2. Example of a principal level module: The Sender module

The principal level contains the services provided by each principal as well as
life cycle variables which control when the various services can be called and
places which hold global data for the principal. The Open and Close services
(represented by substitution transitions with a 〈〈service〉〉 pragmatic) opens and,
respectively, closes the channel to the Receiver while the Send service sends a
message over the channel. To illustrate the models of the services, we provide
details on the Send service. The Send service, shown in Fig. 3(left), contains the
sending part of the protocol. The Send service divides a message into smaller
fragments called frames. Each frame is sent together with a bit (flag) that is set
if the current frame is the last frame of the message, and unset otherwise. In the
model, the message, which is a parameter to the Send service, is broken up into
frames by the transition Partition. Then the fragments are sent one by one in a
loop (from the Start place to the PacketSent place) until all the fragments have
been sent. The 〈〈service〉〉 pragmatic is used on transition Send (top) to indicate
the entry point of the service. At the bottom of Fig. 3, the pragmatic 〈〈return〉〉
on the Completed transition indicates the termination of the service.

Usage Example. In order to generate code from the CPN model, PetriCode is
invoked with appropriate arguments. An example of such an invocation is shown
in Listing 1. The first step of the program is to parse the model and automat-
ically add derived pragmatics . It is also possible, as part of the command-line
arguments, to give further pragmatics and rules for deriving them as will be
discussed in Sect. 4. The second step is to generate the ATT which is discussed
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empty

if mss = []
then (1,m)
else (0,m)
(*<< setToken(cond: ' (isEmpty
OutgoingMessage)',
[1_m], [0_m], ) >>*)

() mss

()

()

()

partition m

p

()

(1,m)

m

p

msg

(0,m)

()

Completed
<<return()>>

Allsent

Partition
<<partition(msg, OutgoingMessage)>>

Send
<<service(msg)>>

end
<<Id>>

UNIT

Send
Completed
<<Id>>

UNIT

UNIT

Packet

Created
<<Id>>

Packet

Start
<<Id>>

UNIT

Message
<<Id>>

Message

NextMessage
<<pop(OutgoingMessage, m)>>

mss

m::mss

Packet Sent
<<Id(cond: '(eq 0 __TOKEN__[0])' )>>

Next

Receiver

I /OI /O

EndpointName

()

Open
<<LCV>>

I/OI /O

Endpoint

Channel

I /OI /O

ep

Outgoing
Messages

Messages

Send
Packet

(host,
port)

SP(p,ep,
host,port)

1
2 de f Send (msg){
3 i f ( ! Open)
4 throw new Exception (
5 ’ u n f u l f i l l e d ’+
6 ’ p r e cond i t i on : Open ’ )
7 Open = f a l se

8
9

10 de f TOKEN
11 de f OutgoingMessage
12 de f LOOP VAR
13
14 OutgoingMessage = msg
15 . getChars ( ) . t oL i s t ( )
16 . c o l l a t e ( 5 ) . c o l l e c t {
17 new St r ing ( i t . toArray (
18 new char [ 0 ] ) )
19 }
20
21 LOOP VAR = true

22 while ( LOOP VAR ){
23 /∗ vars : [m] ∗/
24 de f m
25 m = OutgoingMessage
26 . remove (0)
27 i f ( OutgoingMessage . s i z e ( )
28 == 0){
29 TOKEN = [1 ,m]
30 } else {
31 TOKEN = [0 ,m]
32 }
33 Rece iver
34 . getOutputStream ( )
35 . newObjectOutputStream ( )
36 . wr i teObject ( TOKEN )
37 LOOP VAR =
38 ( 0 == TOKEN [ 0 ] )
39 }
40 Open = true

41 return

42 }

Fig. 3. The Sender Send module(left) and generated code (right)

further in Sect. 5. The third and final phase is the code generation where the -o

option provides the output directory where the generated code is placed and the
-b option takes a binding descriptor file as an argument. The binding descriptor
file provides a set of bindings of pragmatics to code generation templates for the
specific platform under consideration. These bindings (known as template bind-

ings) are described in further detail in Sect. 6. In this case binding descriptors
for the Groovy platform are used. One thing that is not visible in the listing is
a reference to pragmatics descriptors which describes the available pragmatics.
This is because a core set of pragmatics, which contains most of the pragmatics
used in this particular example, are defined in the tool and available by default.

Listing 1. Command to run PetriCode for the simple framing protocol example.

petriCode -o . -b ./groovy.bindings ./FramingProtocol.cpn
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After running the command shown in Listing 1, two files will be generated in
the output directory. Each of these files contain a single Groovy class, one for the
Sender principal and one for the Receiver principal. For the Sender class there
will be exactly three methods, one for each of the services that the principal
provides (see Fig. 2). The generated code for the Send service is shown in Fig. 3
(right).

3 Architecture and Design of PetriCode

PetriCode is divided into three functional modules corresponding to the three
main steps in our code generation approach. These are the Pragmatics, ATT,
and Code generation modules.

When designing and implementing PetriCode, there was a number of key re-
quirements that needed to be addressed and which affected the choice of software
technologies used for the implementation. An important feature of PetriCode is
the ability to read, parse and write CPN models stored in the format of CPN
Tools [6] which is one of the most widely used tools for construction and analysis
of high-level Petri Nets. The Java library Access/CPN [21] provides this capabil-
ity for the Java platform. Therefore, in order to use Access/CPN it is necessary
to choose a platform with good integration with Java. Furthermore, in order
to accommodate pragmatics it is required to be able to refine the meta-model
underlying Access/CPN without introducing a complicated translation layer.
Another important requirement was to easily be able to create Domain Spe-
cific Languages (DSLs) for defining pragmatics descriptors and template bind-
ings. The Groovy programming language [3], which runs on the Java Virtual
Machine, was chosen since it has a seamless integration with all Java libraries
including Access/CPN. Groovy also has a simple mechanism (not available to
Java) to manipulate classes at runtime and also has good support for many types
of DSLs. Finally, Groovy has additional useful features such as a command-line
interface options builder and a powerful template engine that can be used for
code generation purposes.

Overall Architecture. Figure 4 provides an architectural overview of PetriCode.
PetriCode is controlled by its main class PetriCode which makes up the Command

Line Interface of the application. PetriCode parses the command-line arguments
and calls the modules shown directly below the Command Line Interface in Fig. 4
as appropriate. PetriCode uses the CliBuilder included in Groovy to parse com-
mand line arguments. All the modules depend on Access/CPN for reading and
manipulating CPN models. As explained above, PetriCode is implemented using
the Groovy language and builds upon the Groovy and Java platforms. All mod-
ules are dependent on the data model for Pragmatics. The ATT and Generation
modules also share a data model for ATTs.
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Fig. 4. PetriCode Architecture Fig. 5. Data model for the Pragmatics module

4 Pragmatics Module

The Pragmaticsmodule has three main responsibilities: reading and parsing CPN
models, parsing pragmatics descriptors , and computing derived pragmatics for
CPN models. The pragmatics derivation process is driven by a DSL which is
used to parse the pragmatics descriptor files containing information about the
pragmatics used in a model. A class diagram showing the meta-model for prag-
matics is provided in Fig. 5. In the diagram, pragmatics are separated via two
categorizations. One categorization is whether the pragmatic is explicit or de-
rived, where explicit pragmatics must be added to the CPN model by the mod-
eller, and derived pragmatics are computed automatically based on structural
patterns. This categorization is represented in Fig. 5 by the Derived class. The
second categorization is whether the pragmatic is supplied by the user (a cus-
tom pragmatic) or is part of the built-in core pragmatics of PetriCode. This is
represented by the CustomPragmatics class.

The pragmatics description language is a builder language that describes the
available pragmatics. Listing 2 gives an example of a pragmatic descriptor for
an explicit pragmatic (〈〈principal〉〉) and a derived pragmatic (〈〈endLoop〉〉). A
core set of pragmatics is provided by PetriCode while others can be provided
by the user using the pragmatics description language. The language consists of
descriptors that each describe a pragmatic. Each descriptor consists of a name
(which is the name of the pragmatic) followed by a pair of parenthesis. Inside the
parenthesis, the parameters of the pragmatics definition are given in the form of
key-value pairs. The possible parameters for a pragmatics descriptor are origin
and derivationRules. The origin parameter indicates whether the prag-
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matic is explicitly given by the modeller or should be automatically derived. The
origin field of 〈〈Principal〉〉 indicates that this is an explicit pragmatic meaning
that it will not be generated automatically. The derivationRules parame-
ter gives structural patterns that is used to find the elements of a CPN model
where a derived pragmatic should be added. In addition, both 〈〈Principal〉〉 and
〈〈endLoop〉〉 have some constraints on where they may reside in the model which
is supplied via the constraints field.

Listing 2. Examples of the core pragmatics for PetriCode

principal(origin: ’explicit’, constraints: [levels: ’protocol’,

connectedTypes: ’SubstitutionTransition’])

endLoop(origin: ’derived’, derviationRules:

[’new PNPattern(pragmatics: [\’Id\’],

minOutEdges: 2, backLinks: 1)’],

constraints: [levels: ’service’, connectedTypes:’Place’])

Pragmatics Derivation. The method for deriving pragmatics is based on travers-
ing each service module and checking each node (i.e, place or transition) against
structural patterns described by the pragmatic descriptors. The last pragmatic
descriptor in Listing 2 is the 〈〈endLoop〉〉 pragmatic. 〈〈endLoop〉〉 is a derived
pragmatic with a structural pattern on the field derivationRules . An impor-
tant concept for pragmatics derivation and indeed the entire code generation
approach is the control flow path. The control flow path consists of all the nodes
annotated with the 〈〈Id〉〉 pragmatic where the first node would be the node of
a service annotated with 〈〈service〉〉 pragmatic and the last is annotated with
〈〈return〉〉 (see Fig. 3). Each of the 〈〈Id〉〉, 〈〈service〉〉 and 〈〈return〉〉 pragmatics
are explicit and must be added by the modeller. For derived pragmatics, a list of
patterns are supplied. Each pattern, will be matched against each node on the
control-flow path. If a pattern matches, the corresponding pragmatic is added
to the node.

5 ATT Construction Module

The ATT module is responsible for generating ATTs and the main classes that
make up the ATTs are shown in Figure 6. An ATT is an internal temporary data
structure of PetriCode. Its purpose is to simplify the code generation process
and make it more flexible by organizing so-called control flow blocks at the
service modules in an ordered tree. When this tree has been constructed, code
generation is performed by traversing the tree. The tree is built up according
to the hierarchical structure of the considered subclass of CPN models down to
the service level. At the service level, the control flow structure of the service is
reflected in the structure of the ATT.

The ATT generation is done by the ATTFactory class which produces an in-
stance of the class AbstractTemplateTree. The AbstractTemplateTree has as its
descendants instances of the classes Atomic, Conditional, Loop, Principal and Ser-

vice corresponding to the different kinds of control flow blocks. The Principal and
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Service classes each have a link going to the Instance class of the Access/CPN
model which represents substitution transitions. The Block class has two outgo-
ing associations with Place nodes from Access/CPN. The Atomic block has an
association with transitions.

An ATT is implemented as an ordered tree. Each non-leaf element in the
tree has a list of children. The root element of an ATT is an instance of the
AbstractTemplateTree class. Each child of the root element is expected to be of
the class Principal. The Principal class has as its children the services of the
principal. The Service class represents a service, its children are the control flow
blocks of the service according to the block structure introduced in [19].

The ATT of the Sender side of the example in Sect. 2 is shown in Fig. 7.
The tree has a single root representing the entire protocol system. At the next
level, the principals are represented. For brevity, only the principal Sender of
the protocol is shown. The children of the principal nodes are the services, and
their children represent the control flow block structure of the services. Looking
specifically at the Send service of the Sender principal, we see that the service has
three direct descendants. These descendants represent the loop in the service and
one atomic block on each side of the loop. The first of the nodes is the partition
atomic block which contains the partition pragmatic which is where the message
sent by the framing protocol is divided into smaller fragments. The second node
is the loop, and the final node is the atomic block after the loop which does not
have any pragmatics and as such does not produce any code.

6 Code Generation Module

The generation module is responsible for generating code from ATTs. In order
to generate code from CPNs annotated with pragmatics, the pragmatics must
be connected to code generation templates. This is done using the Binding class
which is connected to Pragmatics (see Fig. 5). The bindings are produced by
another DSL which parses user provided template bindings and returns an object
structure for the template bindings. The code generation phase can be divided
into two separate sub-phases. The first sub-phase is the code generation for each
element in the ATT. A visitor visits each element in the ATT in no particular
order. The second sub-phase in the code generation phase is to stitch together the
generated code for each ATT node. This is done by a depth-first traversal of the
ATT. For each node, when all the sub-nodes have been visited, the %%yield%%
tag in the code generated for the node is replaced by the concatenation of the
text field of all the immediate descendants of the node. When this has been done
for each principal in the protocol, the code generation is complete and the code
is written to the output directory.

Template bindings. In order to select the proper code template for each prag-
matic, the user supplies PetriCode with template bindings. These bindings are
supplied using a DSL. The DSL allows the user to specify the template and other
necessary information about a template and how it should be applied.
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Fig. 6. Classes of the ATT Fig. 7. Example ATT

Listing 3 shows two examples of template bindings. The first binding is a
binding for the 〈〈Principal〉〉 pragmatic, which is used on the Sender and Re-

ceiver substitution transitions in Fig. 1. This is a container, which means that
the generator should add the code generated to the principals children in the
ATT to it. The other fields are pragmatic (which names the pragmatic) and
template (which contains the file-name of the template). The second template
binding binds 〈〈endLoop〉〉, which is placed on the Completed place (see Fig. 3)
after pragmatics derivation. In addition, it is possible to add the field parameter-

Strategy to template bindings. This field determines how the parameters of the
template should be constructed.

Listing 3. Two examples of template bindings.

classTemplate(pragmatic: ’Principal’,

template: ’./groovy/mainClass.tmpl’, isContainer: true)

endLoop(pragmatic: ’endLoop’,

template: ’./groovy/endLoop.tmpl’)
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7 Related Work

Many tools exist for generating software from models. Most of the tools, however,
support only the generation of static parts of the code and, partly, standard
behaviour [7]. This does less than it could to help create robust software since
the non-trivial parts are still written manually. However, some tools allow for
generating more than structural parts of software. In the discussion on related
work below, we consider only tools and approaches that do full code generation
where no manual coding is necessary.

Process-Partitioned CPNs (PP-CPNs) [9] have been used to automatically
generate code for several purposes including protocol software. PP-CPNs are a
restricted sub-class of CPNs. Code is generated from PP-CPNs by first trans-
lating the PP-CPN into a control flow graph (CFG), then translating the CFG
into an abstract syntax tree for an intermediate language. The CFG is trans-
lated into another intermediary representation which is dependent on the target
platform, and from this representation code is generated. In [9], PP-CPNs are
used to model and obtain an implementation for the DYMO routing protocol
using the Erlang programming language and platform. Both PP-CPNs and our
modelling language are subclasses of CPNs. However, where we rely on prag-
matics to control code generations, PP-CPNs rely on restricted colour sets and
CPN structure to allow the generator to deduce the needed information. Our ap-
proach also models the environment of the services while PP-CPNs are geared
to modelling only the intents of the services. This allows us to represent the
protocol at higher levels of abstraction on the protocol and principal levels as
well as on the service level. It also allows us to define how the services should
be called in a structured way by third-party software.

There are several tools for modelling and generating protocol software based
on the Specification and Description Language (SDL) [2, 4]. SDL is created for
the purpose of modelling protocols, and is extensively used in the telecommuni-
cations industry. The IBM Rational SDL Suite (previously Tau SDL Suite and
SDT) is among the most well known proprietary tools for SDL. The Rational
SDL Suite supports code generation for SDL models to C and C++ code and
also supports verification through model checking. Another SDL tool is Jade [14]
that supports editing and analysis/verification of SDL models. Code generation
for JADE is still in development. SDL Integrated Tool Environment (SITE) sup-
ports editing of SDL models and code generation to Java and C++ code. SITE
also supports some analysis of SDL models. SDL is a graphical language based on
Finite State Machines (FSMs). This allows verification of protocols using model
checking techniques. Compared to our approach, SDL is not as easily extensible
as our approach.

Renew [12] is a tool that allows creation and execution of object-oriented
Petri Nets. Renew supports several modelling formalisms based on various forms
of Petri Nets. Renew supports Reference nets which can be annotated with
Java code and can be executed using a built-in simulator engine. The simulator
can execute the nets incorporating the Java annotations in a headless mode so
that no visualization will occur. This means that the simulations can be used
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as stand-alone programs. The simulation approach is in contrast to our code
generation approach where code is generated and can be inspected and compiled
as computer programs created with traditional programming languages.

The Unified Modelling Language, and in particular state charts and sequence
diagrams, has been used to model and generate code for protocols in several ap-
proaches [1, 10, 11, 13, 20]. Several tools exists for UML which support analysis
and code generation in various ways. Since our approach is based on CPNs,
verification is directly supported using CPN Tools [8]. This may be more chal-
lenging with UML-based approaches. Also, our pragmatics- and template-based
approach allows us to give the user a great deal of flexibility by supporting the
definition of custom pragmatics and templates.

8 Conclusions and Future Work

In this paper we have described a tool that can generate code from CPNs anno-
tated with pragmatics. We have shown how this tool works by using the example
of a simple communication protocol. The goal of our tool is to be able to generate
code that is complete in the sense that no further coding should be required to
use the services our code provides. Another important goal has been to generate
code that is readable and analysable for human programmers.

The input of the tool is an instance of a specific class of CPN models. A main
goal of the tool, and of our approach in general, is that these models should be
descriptive in the sense that they can be used to convey the operation of the
modelled protocol at several levels of abstraction.

In the future, we will use the tool to evaluate our approach using a larger and
more realistic examples, and expand the range of available templates to other
languages and platforms. Another future work item we are currently working on
is to make our approach more flexible by allowing the users to easily add custom
pragmatic patterns and placement conditions. Finally, we aim at integrating
PetriCode with other popular software development tools such as Eclipse and
IntelliJ IDEA.
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Abstract. Automated code generation is an important element of model
driven development methodologies. We have previously proposed an ap-
proach for code generation based on Coloured Petri Net models anno-
tated with textual pragmatics for the network protocol domain. In this
paper, we present and evaluate three important properties of our ap-
proach: platform independence, code integratability, and code readabil-
ity. The evaluation shows that our approach can generate code for a wide
range of platforms which is integratable and readable.

1 Introduction

Coloured Petri Nets (CPNs) [5] is a general purpose formal modelling language
for concurrent systems based on Petri Nets and the Standard ML programming
language. CPNs and CPN Tools have been widely used to model and validate
network protocol models [6]. In previous works [14], we have proposed an ap-
proach to automatically generate network protocol implementations based on a
subclass of CPN models. We have implemented the approach in the PetriCode
tool [13]. In this approach, CPN models are annotated with syntactical annota-
tions called pragmatics that guide the code generation process and have no other
impact on the CPN model. Code is then generated based on the pragmatics and
code generation templates that are bound to each pragmatic through template
bindings. This paper presents an evaluation of the PetriCode code generation
approach and tool.

The four main objectives of our approach are: platform independence, code
integratability, code readability, and verifiability of the CPN models. The con-
tribution of this paper is an evaluation of the first three of these objectives.
In this study, we used the PetriCode [13] tool to evaluate our code generation
approach. Platform independence, i.e., the ability to generate code for several
platforms, is an important feature of our approach. For the purposes of this
study, a platform is a programming language and adjoining APIs. Being able to
generate protocol implementations for several platforms allows us to automati-
cally obtain implementations for many platforms based on the same underlying
CPN model. Platform independence also contributes to making sure that imple-
mentations for different platforms are interoperable. Another aspect is to have
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models that are independent of platform specific details. Integrateability, i.e., the
ability to integrate generated code with third-party code, is important since the
protocols must be used by other software components written for the platform
under consideration (upwards integratability). It is also important to be able to
support different underlying libraries so that the generated code can be referred
to by other components (downwards integrateability). Readability is important
in order to gain confidence that the implementation of a protocol is as expected.
While being able to verify the formal protocol models also contribute to this,
inspecting and reviewing the final code further strengthens confidence in the
correctness of the implementations. The ability to manually inspect the gener-
ated code is useful since, in our approach, we only verify the model which is not
sufficient to remove local errors in the code.

The rest of this paper is organized as follows. Section 2 describes the ex-
ample protocol used throughout this paper, and illustrates the code generation
process for the Groovy platform. Section 3 evaluates platform independence by
considering the Java, Clojure, and Python platforms. Section 4 evaluates inte-
grateability, and Section 5 evaluates readability of the code generated by our
approach. Section 6 presents related work, sums up conclusions and discusses
directions for future work. Due to space limitation we provide little on CPNs
and Petri Nets. The reader is referred to [5] for details on CPNs and Petri Nets.
The PetriCode tool as well as the model, template and bindings used in this
paper are available at [10].

2 Example and Code Generation

In this section, we present an example CPN model which is an extension of the
protocol model we have used in previous work [14]. The example allows us to
introduce the concepts and foundations of our approach and the PetriCode tool
as well PA-CPNs [14], the CPN sub-class that has been defined for this approach.
The example is a well established and used in the literature to describe CPNs [5].
It is also a natural extension of the example we have been using in previous
works [14].

This example is a simple framing protocol which is tolerant to packet loss,
reordering and allows a limited number of retransmissions. The top level of the
CPN model is shown in Fig. 1. The model consists of three sub-modules. Sender
and Receiver represents each of the principal actors of the protocol, and Channel
connects the two principals.

The protocol uses sequence numbers and a flag to indicate the last message of
a frame. After a frame has been sent, the receiver, if it receives the frame, sends
an acknowledgement consisting of the sequence number of the frame expected
next. If the acknowledgement is not received, the sender will retransmit the frame
until an acknowledgement is received or the protocol fails sending the message.

In the Sender module, shown in Fig.2, there are two sub-modules. The send
sub-module is annotated with a 〈〈service〉〉1 pragmatic and represents a service
1 Pragmatics in the model and in the text are by convention written inside 〈〈〉〉.
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Fig. 1: The protocol system level
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Fig. 2: The Sender principal module

provided by this principal for sending a message. The other substitution transi-
tion receiveAck, annotated with an 〈〈internal〉〉 pragmatic, represents an internal
service which is to be invoked by another service of the principal. In this example,
the receiveAck service is invoked from the send service.

The Sender module also contains two places, runAck and nextSend, annotated
with a 〈〈state〉〉 pragmatic which contains shared data between the two services.
The ready place, annotated with a 〈〈LCV〉〉 pragmatic, is used to model the life-
cycle of the Sender principal and makes sure that only a single message is sent
at a time.

The send service, shown in Fig. 3, starts at the transition send which opens the
channel, initializes the content of the message to be sent and the sequence num-
ber. Also, at this transition, the receiveAck internal service is started by placing
a token with the colour true at the 〈〈state〉〉 place runAck. The service continues
from send to enter a loop at the start place. Inside the loop, the sendFrame tran-
sition retrieves the next frame to be sent based on the sequence number of the
frame which is matched against the sequence number incoming from the place
start. The limit place is updated with the sequence number of the current frame,
and the number of times the frame has been retransmitted. Then, the current
frame is sent. Due to the 〈〈wait〉〉 pragmatic at the sendFrame transition, the
system waits in order to allow acknowledgements to be received. The loop ends
at place frameSent. If a token is present on the place frameSent the loop will
either continue with the transition nextFrame firing or end by firing the return
transition. At the return transition, state places and the channel are cleared and
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the service terminates. In the model, we have not shown the pragmatics that
can be automatically derived from the CPN model structure, see [14] for details.

The code generation approach is template-based and uses pragmatics to guide
the code generation in two ways. The first way is by having structural pragmat-
ics define the principals, services, and control-flow path within each service. The
〈〈principal〉〉, 〈〈service〉〉, and 〈〈Id〉〉 pragmatics in Figs. 1-3. The second way is to
define the operations that should occur at each transition. The pragmatics are
described in a domain specific language (DSL) and can often be derived from the
CPN model structure. Structural pragmatics are used to generate the Abstract
Template Tree (ATT), an intermediary representation of the pragmatics anno-
tated CPN model. Each node in the ATT has pragmatics attached. Pragmatics
are bound to code generation templates by template bindings. The generation
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Listing 1: The Groovy template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).

1 def ${name}(${binding.getVariables()
2 .containsKey("params")
3 ?params.join(", "):""}){
4 <%if(binding.variables
5 .containsKey(’pre_conds’)){
6 for(pre_cond in pre_conds){
7 %>if(!$pre_cond) throw new
8 Exception(’...’)
9 <% if(!pre_sets.contains("$pre_cond"))
10 {%>$pre_cond = false<%}
11 } }%>
12 %%yield_declarations%%
13 %%yield%%
14 <%if(binding.variables
15 .containsKey(’post_sets’)){
16 for(post_set in post_sets){
17 %>$post_set = true<%
18 }}%>}

def bos = new ByteArrayOutputStream()
def oos = new ObjectOutputStream(bos)
oos.writeObject(${params[1]})
_msg_ = bos.toByteArray()
DatagramPacket pack =

new DatagramPacket(_msg_, _msg_.length,
InetAddress.getByName(${params[2]}.host),
${params[2]}.port)

${params[0]}.send pack
%%VARS:_msg_%%

uses these bindings to generate code for each pragmatic at each ATT node.
Finally, the code is stitched together using special tags in the templates.

In order to give an overview of the code generation process, we use two tem-
plates as examples. The templates are the template for the 〈〈service〉〉 pragmatic
(Listing 1 (left)) and the 〈〈send〉〉 pragmatic (Listing 1 (right)).

The service template for the Groovy platform is shown in Listing 1 (left). The
first line of the template creates the signature of a method what will implement
the service. Lines 4 to 10 iterates over preconditions to the 〈〈service〉〉. Each
precondition is checked to make sure that the service may execute. In lines
11-12 two special tags %%yield%% and %%yield_declarations%% indicates the
places where the method body and the declarations will be inserted from nodes
coming from the sub-nodes in the ATT.

The template for 〈〈send〉〉 is shown in Listing 1 (right). The template first
creates a byte array from the data to be sent and then creates an appropriate
data packet and, finally, sends the datagram packet. The template uses UDP
as the underlying transport protocol, which is why the packet is created in the
form of a DatagramPacket.

The Groovy code shown here provides a baseline implementation for the
protocol. In the next section we show ho we can generate code from the same
model for three other platforms.

3 Evaluating Platform Independence

In order to demonstrate the platform independence of our approach, we have
generated code for the Java, Clojure and Python platforms in addition to the
Groovy platform. The platforms have been chosen in order to cover three main
programming languages and paradigms. Java is an imperative and object ori-
ented programming language. Clojure is a Lisp dialect for the Java Virtual Ma-
chine (JVM). It is a functional language, however it is able to utilize Java objects
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and the Java API. Python is a multi-paradigm language and, as the only lan-
guage in this survey, does not rely on the JVM. Python also uses significant
white-spaces which makes Python unique in this evaluation in both respects.
For each of the platforms, we show selected templates corresponding to the ones
shown for the Groovy platform in Sect. 2. In addition, we show an exerpt of the
generated code for the Java platform since this was used as part of the evaluation
of readability presented in Sect. 5

Listing 2: The Java template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).

public Object ${name}(<%
def paramsVal = ""
def params2 = []
if(binding.getVariables()

.containsKey("params")){
params.each{

if(it.trim() != "")
params2 << "Object $it"

}
paramsVal = params2.join(", ")

}%>$paramsVal) throws Exception {
<%if(binding.variables

.containsKey(’pre_conds’)){
for(pre_cond in pre_conds){
%>if(!$pre_cond)
throw new RuntimeException("...");
<%if(!pre_sets

.contains("$pre_cond"))
{%>$pre_cond=false;<%}

}}%>
%%yield_declarations%%
%%yield%% }

1 ByteArrayOutputStream bos = new
2 ByteArrayOutputStream();
3 ObjectOutputStream oos = new
4 ObjectOutputStream(bos);
5 oos.writeObject(${params[1]});
6 byte[] _msg_ = bos.toByteArray();
7 DatagramPacket pack = new
8 DatagramPacket(_msg_, _msg_.length,
9 InetAddress.getByName((String)
10 ((Map)${params[2]}).get("host")),
11 (Integer) ((Map)${params[2]})
12 .get("port"));
13 ((DatagramSocket)${params[0]})
14 .send(pack);

The Java Platform. The 〈〈service〉〉 template for the Java platform is shown in
Listing 2 (left). The main difference from the Groovy service template is that,
in the first line, the return type and visibility protection is explicit.

The 〈〈send〉〉 template (see Listing 2 (right)) is similar to the Groovy 〈〈send〉〉
template. The differences are mainly caused by the fact that Java is explicitly
typed and, at times, requires explicit casts.

Excerpts of the Java code for the Sender principal is shown in Listing 3. The
first part is generated from the service template. Lines 1-5 are generated by
the 〈〈service〉〉 template (Listing 2 (left)) and lines 10-17 are generated by the
〈〈send〉〉 template (Listing 2 (right)).

The Clojure Platform. The Clojure 〈〈service〉〉 template is shown in Listing 4
(left). It begins by defining a function with the name set to the name parameter.
Then it creates a vector which holds incoming variables. Finally, it yields for
declarations and the body of the function.

The networking templates for Clojure uses the Java networking API and the
〈〈send〉〉 template (see Listing 4 (right)) and is therefore reminiscent of Groovy
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Listing 3: The Java code for the send service.
1 public Object send(Object msg, Object server) throws
2 Exception { /*[msg, server]*/ /*[Object msg, Object server]*/
3 if(!ready) throw new RuntimeException(
4 "unfulfilled precondition: ready");
5 ready = false;
6 ...
7 __LOOP_VAR__ = true;
8 do{
9 ...
10 ByteArrayOutputStream bos = new ByteArrayOutputStream();
11 ObjectOutputStream oos = new ObjectOutputStream(bos);
12 oos.writeObject(__TOKEN__);
13 byte[] _msg_ = bos.toByteArray();
14 DatagramPacket pack = new DatagramPacket(_msg_, _msg_.length,
15 InetAddress.getByName((String)((Map)
16 server).get("host")),(Integer) ((Map)server).get("port"));
17 ((DatagramSocket)senderChannel).send(pack);
18 ...
19 }while(__LOOP_VAR__);
20 ...
21 }

Listing 4: The Clojure template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).

(defn ${name} <%
def paramsVal = ""
def params2 = []
if(binding.getVariables().
containsKey("params")){
params.each{

if(it.trim() != "") params2 << "$it"
}
paramsVal = params2.join(", ")
%>[$paramsVal]<%}%>
(%%yield_declarations%%
%%yield%%))

(def bos (ByteArrayOutputStream.))
(.writeObject
(ObjectOutputStream. bos)
@${params[1]})

(def _msg_ (.toByteArray bos))
(.send ${params[0]}

(DatagramPacket.
_msg_ (alength _msg_)
(InetAddress/getByName
(.get ${params[2]} "host") )
(.get ${params[2]} "port"))

)

and Java templates. First, the message is converted into a byte array using
java.io streams. Then a data packet is constructed and sent using the socket
given as a parameter.

The Python Platform. The Python 〈〈service〉〉 template is shown in Listing 5
(left). The template defines the method in line 2 and adds parameters, given
by the template variable paramsVal in line 10. Finally, the template yields for
declarations and the method body in lines 12-13.

The Python template for 〈〈send〉〉 is shown in Listing 5(right). The data using
Python is a simple call to the sendto function of a socket given as params[0] with
the serialized data given in params[1] and the host and port from params[2] in a
tuple.

Discussion. The examples above demonstrate that our approach allows us to
generate code for several platforms by providing a selection of templates for
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each platform. The platforms considered, spanning several popular paradigms,
gives us confidence that our approach and tool can also be applied to generate
code for many other platforms. Furthermore, we are able to generate the code
for each of the platforms using the same model with the same annotations and
the same code generator while only varying the code generation templates and
the mappings between the pragmatics and mappings between pragmatics and
code templates.

Adapting the Groovy templates to Java was, for the most part simple since
the two languages are similar in several respects. However, whereas Groovy is op-
tionally typed, Java is statically typed and requires all variables to be typed or to
be cast to specific types when accessing methods. Fulfilling Java’s requirements
for explicit types requires functionality from PetriCode so that the templates
are aware of the type of variables.

Clojure is a functional language with a different control flow from languages
such as Java. The main issue, compared with Groovy and Java, was related
to using immutable data-structures. In Clojure all data types are, in principle,
immutable. However, there is an Atom type in which values may be swapped.
This was challenging because Atom values must be treated differently from pure
values and lead to somewhat more verbose code than what could otherwise have
been written. Also, Clojure allows the use of Java data structures, which are
mutable and thus easier to work with in this case.

Python, as Groovy, is a multi-paradigm language combining the features of
object oriented and functional paradigms. Creating the templates of the Python
code was, although being the only language in this survey not based on the
JVM, no more difficult than for the other languages. The main challenge was
to handle the significant white-spaces of the Python syntax. To support this,
PetriCode contains functionality to keep track of the current indentation level.
This required no special treatment and was not strictly necessary, but allowed
for much cleaner templates.

Table 1 shows the sizes of the Sender and Receiver principal code (measured
in code lines) for each of the platforms considered. As can be seen, the code for

Listing 5: The Python template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).

1 <%import static org.k1s.petriCode.
2 generation.CodeGenerator.indent
3 %>${indent(indentLevel)}def ${name}(self,<%
4 def paramsVal = ""
5 def params2 = []
6 if(binding.getVariables()
7 .containsKey("params")){
8 params.each{
9 if(it.trim() != "") params2 << "$it"
10 }
11 paramsVal = params2.join(", ")
12 %>$paramsVal<%}%>):
13 %%yield_declarations%%
14 %%yield%%

<%import static org.k1s.petriCode.
generation.CodeGenerator.indent

%>${indent(indentLevel)}
${params[0]}.sendto(
pickle.dumps(${params[1]}),
(${params[2]}["host"],
${params[2]}["port"]))
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Python is much smaller than the others. This is due to the efficient libraries in
Python and that the Python code, for technical reasons, have much fewer blank
lines which is also reflected in the templates. Table 2 shows the sizes, in lines, for
selected templates and all the templates for each platform. The sizes reported
are the sizes in the actual code and may not correspond to the templates as
they are formatted in this paper. In this example, there was the same number
of templates for each platform, but this is not necessarily always the case. As
can be seen in Table 2, there is not a perfect correlation between the size of
templates and the size of the generated code. This is due to, in part, some
templates being more complex for some languages than others and template
reuse being possible for some languages. An example is the Clojure templates,
where the templates for the 〈〈setField〉〉 and 〈〈setValue〉〉 pragmatics are the same,
but since the 〈〈setValue〉〉 template has more functionality than the 〈〈setField〉〉
template for all platforms, this results in a higher total number of template lines
for Clojure. For each of the languages eleven new templates were constructed
while ten templates were already provided as part of the PetriCode tool. The
new templates were templates that are specific to the pragmatics applied for the
protocol considered.

4 Evaluating Intergrateability

It should be possible to integrate code generated by our approach with existing
software. We evaluate two types of integration with other software. The first type
can be exemplified by having our generated cod use another library for sending
and recieving data from the network. We call this type of integration downwards
integration (i.e, generated code can use different third-party libraries). The other
type can be exemplified by creating a runner program that employs the generated
protocol for sending a message to a server. This type is called upwards integration
(i.e, applications can use services provided by the generated code). We have
evaluated integratability using the code generated for the Java platform based
on the example in Sect. 2. However, the results are applicable for other platforms
as well.

Downwards Integration. We have already shown that by changing templates,
our approach can be used to generated code for different platforms. The same
technique can be used to employ various libraries on the same platform to per-
form the same task. We illustrate this by changing the network library from
the standard java.net library to Netty [16]. This example was chosen because

Language Groovy Java Clojure Python
Sender 131 132 119 66

Receiver 81 78 68 38
Total 212 210 187 104

Table 1: Sizes of the generated code.

Language Groovy Java Clojure Python
service 19 28 15 15
runInternal 4 10 4 3
send 9 9 8 2
All templates 154 219 251 112

Table 2: Size of code generation templates.
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Listing 6: The Java template for 〈〈send〉〉 with Netty (left) and the runner for
the generated Java code (right).

1 ByteArrayOutputStream bos =
2 new ByteArrayOutputStream();
3 ObjectOutputStream oos =
4 new ObjectOutputStream(bos);
5 oos.writeObject(${params[1]});
6 byte[] _msg_ = bos.toByteArray();
7 ((io.netty.channel.Channel)
8 ${params[0]}[0]).writeAndFlush(
9 new io.netty.channel.socket
10 .DatagramPacket(
11 io.netty.buffer.Unpooled
12 .copiedBuffer(_msg_),
13 new InetSocketAddress(InetAddress
14 .getByName((String)((Map)
15 ${params[2]}).get("host"))
16 ,(Integer)((Map)${params[2]})
17 .get("port")))).sync();

1 def sender = new Sender.Sender()
2 def reciever =
3 new Receiver.Receiver()
4 t = new Thread().start {
5 def ret = reciever.receive(31339)
6 println "Recieved: ${ret}"
7 }
8 def msg = [
9 [1,0,’Col’],[2,0,’our’],[3,0,’ed ’],

10 [4,0,’Pet’],[5,0,’ri ’],[6,0,’Net’],
11 [7,1,’s’]
12 ]
13 sender.send(
14 msg,[host:"localhost", port:31339])

networking is an important function of the network protocol domain that we
consider, and because Netty is substantially different from java.net as it is an
event driven library.

Three out of twenty-one templates had to be altered to accommodate Netty
as the network library for the sender principal. These were the templates that
generate code for sending and receiving data from the network. We show the
Netty variant of the send template from Listing 2 (right) in Listing 6 (left). The
main differences is the call to the socket (or channel in the terminology of Netty)
to send the message (lines 6-12).

Upwards Integration. The ability to call the generated code is necessary for
the code to be useful in many instances. Our approach allows this by explicitly
modelling the API in the CPN protocol model in the form of services which
defines the class and method names. To demonstrate upwards integration, we
have created runners for the generated implementations for each of the platforms
considered. The runner for the Java platform can be seen in Listing 6 (right).
This demonstrates that it is possible to use the generated services from third
party software. It is worth noticing that the explicit modelling of services in the
CPN model implies that it is simple to invoke the generated code.

5 Evaluating Readability

We have evaluated the readability of code generated by PetriCode in two ways.
One way is that we applied a code readability metric [2] to selected snippets of
the generated classes from the example described in Sect. 2, and the example
described in previous works [14]. Furthermore, we have conducted a field study
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The Buse-Weimer experiment (BWE) The experiment conducted by Buse and Weimer to create
the BWM. The snippets were selected from open source
experiments.

The metric experiment (ME) Our experiment to validate the results from BWE for pro-
fessional developers. This experiment evaluated the twenty
first snippets evaluated in the BWE.

The code generation experiment (CGE) Our experiment to evaluate readability of generated code
compared to non-generated code. Eight snippets were ran-
domly selected from generated code and twelve from the
open source projects in the network protocol domain.

Table 3: Overview of the experiments conducted and discussed in this section

where software engineers were asked to evaluate the readability of the generated
code. This study was also used to evaluate the code readability metric.

We use the Buse-Weimer metric [2] (BWM) as a code readability metric.
This metric was constructed by Buse and Weimer based on an experiment (the
Buse-Weimer experiment (BWE), see Table 3) asking students at the University
of Virginia to evaluate short code snippets with regards to readability on a scale
of one to five. The experiment was used to construct the metric using machine
learning methods to compute weights on various factors that have an impact on
code readability. The final metric scores code snippets on a scale from zero to
one where values close to zero indicates low readability and values close to one
indicates a high degree of readability.

Our field study with software engineers took place at the JavaZone software
developer conference in Oslo, Norway in September 2013. The experiment was
organized into two parts. One part (the metric experiment (ME), see Table 3)
evaluated the BWM. The other part (the code generation experiment (CGE),
see Table 3) evaluated the readability of the generated code compared to non-
generated code. Both experiments were conducted by asking software developers
to evaluate twenty small code snippets with regards to readability by assigning
values, on a scale from one to five, to each code snippet. The experimental set-
up was created to mimic the BWE. The main advantage of our experiment over
the BWE is that the dominating majority of the participants were professional
software developers instead of students. The ME had 33 participants while the
CGE had 30 participants.

For the CGE, we randomly selected code snippets from code generated for
the Java platform based on the example described in Section 2, and the example
described in [14]. We use code for the Java platform because it was used in the
BWE, and the subjects of our experiments knew Java. Also, there exist several
Open Source projects from which to obtain snippets for our experiments. In
addition to the generated snippets, we selected, as controls, snippets from three
Open Source projects in the network protocol domain. These were the Apache
FtpServer, HttpCore and Commons Net [15]. All three are part of the Apache
project, and we consider them to be high quality projects within the network
protocol domain.

In the ME, we used the first twenty snippets from the BWE. Since we did
our experiment at a conference, we could not redo the experiment with all the
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Snippet 1 2 3 4 5 6 7 8 Mean Median
Score 0,14 0,03 0,19 0,28 1,00 1,00 1,00 0,99 0,58 0,63
Table 4: The results for the BWM on generated code

Snippet 1 2 3 4 5 6 7 8 9 10 11 12 Mean Median
Score 0,54 0,95 0,15 0,79 0,01 0,40 0,26 0,04 0,00 0,01 0,96 0,65 0,40 0,33

Table 5: The results for the BWM on selected hand-written protocol software snippets

one hundred snippets from the BWE and still expect enough software engineers
to participate.

Applying the Buse-Weimer Metric. The BWM is based on the scores of hundred
small code snippets. Even though the size of the snippets are not scored directly,
some of the factors are highly correlated with the snippet size [11]. This makes
it inappropriate to measure entire applications. Therefore, we applied the metric
to the snippets selected for the CGE.

Table 4 shows the results of running the BWM tool on each of the generated
code snippets. The mean and median score is above 0.5, indicating that the code
is fairly readable. Also the mean and median of the generated code is higher
than for the non-generated protocol-code as can be seen in Table 5.

Although the scores of the BWM on the generated code are highly encourag-
ing, the scores are either very high or very low. This motivates an independent
evaluation of the readability of the generated code (see below), as we have done
with the CGE, and to validate the BWM, as we have done with the ME (see
below).

The Metric Experiment: Validating the Buse-Weimer Metric. The ME was con-
ducted to validate the BWM and the BWE. This experiment measured twenty
of the code snippets that were measured in the BWE in a similar manner. The
goal was to determine whether the results of the BWE holds for professional
software developers.

Figure 4 shows the means of the BWE (blue/solid) and our repeat (red/-
dashed) for the selected snippets. The figure suggests significant covariance even
if the students in the BWE tended to judge snippets higher than the software
developers in our ME. We computed three statistical tests on the correlation
between the means of the two experiments (see Table 6). The correlation tests
show that there is strong to medium correlations between the means and that the
correlation is statistically significant(p<0.05).The correlation tests were carried

Method Corrolation P-value
Pearson cor = 0,82 9,28 · 10−06

Spearman rho = 0,79 2,94 · 10−05

Kendall tau = 0,61 1,65 · 10−04

Table 6: Correlations between the means of the ME and the BWE
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Fig. 4: The values of the selected snippets for the BWE and the ME.

out using the R [12] tool and the standard correlation test call, corr.test(),
with all the methods available for the call. These results indicate that the BWE
is relevant to professional software developers.

Mean values for the original BWE and for the ME are shown in Table 7. As
can be seen, the ME resulted in somewhat lower scores than that of the BWE,
in fact it is lower in 17 out of 20 instances. In order to determine the significance
of this observation we conducted a T-test. The results of the T-test does not
allow us to rule out that the means are not equal (p=0,21), although it does not
give us statistically significant results on the repeat always being higher either
(p=0,10), although that may be more likely.

The ME showed that there is a significant correlation between the results
of the BWE (conducted with students) and the ME (conducted with software
development professionals). This can be interpreted as evidence that the results
from BWE also has validity for professional developers, although the metric
based on it might be in need of some minor adjustments.

Snippet 1 2 3 4 5 6 7 8 9 10
Metric Experiment 2,15 3,30 2,33 3,15 3,97 1,64 3,39 2,21 3,91 3,33

Buse-Weimer Experiment 3,02 3,78 2,72 4,07 4,23 2,21 3,66 2,88 4,17 3,38
11 12 13 14 15 16 17 18 19 20

3,12 3,45 2,82 3,70 2,12 2,85 3,42 2,79 2,82 3,97
3,68 3,57 3,07 4,08 1,85 2,93 3,77 2,49 3,58 3,29

Table 7: Snippet means for the metric and BWE.
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The Code Generation Experiment: Comparing Generated and Handwritten Code.
We expected that the generated code would not do quite as well as the hand-
written high-quality code used as control. Therefore, our hypothesis was that
the generated code would be within the standard deviation of the hand-written
written code. The mean score for each of the snippets in the CGE are shown in
Table 8. Snippets one to eight are generated code while snippets eight to twenty
are hand-written. To check our hypothesis, we ran Welch’s T-test on the results
which is useful for determining the difference between the two samples. The
first hypothesis we checked was whether the generated snippets are less readable
than the hand-written ones. The results of a Welch’s Two Sample t-test showed
that the generated code-snippets scored below that of the hand-written code
(p=4,81 · 10−05).

Then we checked the hypothesis when reducing the score of the measurements
from the Apache projects by the standard deviation of those measurements. The
Welch’s Two Sample t-test indicates that the generated code scores better than
one standard deviation below the hand-written code (p=0,03). This indicates
that our goal of being readable within a standard deviation of non-generated
code is met both by measuring via the BWM and experimentally.

Table 9 shows normalized means for each snippet from the CGE and the
results of running the BWM on the corresponding snippets. As can be seen,
the correlation is less than strong as confirmed by running correlation tests (see
Table 10). Even though the results of the ME indicates that the BWE, which the
BWM is based on, is valid even for professional software developers, we content
that the results of the CGE are more reliable than the BWM. This is because the
BWM is derived from software from different domains and that it is sensitive to
snippet length. This indicates that the BWM is not relevant to code for network
protocols.

Assessment of Validity of Our Results. As with most experimental approaches,
this evaluation has some threats to the validity of the results. These are issues
we have identified that might skew our results. One such threat to validity for
the original BWE was that they used student as subjects who may or may not
disagree with professional software developers on the readability of code. We
have tried to alleviate this threat in the ME by repeating part of the BWE
with professional developers. Further threats to validity to the experiments and
results described in this section are discussed in the following.

Small sample size and limited number of participants may skew the results.
Since we conducted this experiment at a software developer conference where
people tended to be on their way to some lecture, we had to limit the number

Snippet 1 2 3 4 5 6 7 8 9 10
Mean 2,40 2,10 3,83 3,23 2,67 3,13 2,97 2,73 3,90 3,97

11 12 13 14 15 16 17 18 19 20
2,67 3,13 2,73 3,43 3,67 3,07 3,83 2,00 3,20 3,93

Table 8: Means of results for generated code (1-8) and Apache projects code (9-20).
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Snippet 1 2 3 4 5 6 7 8 9 10
Experiment Score 0,48 0,42 0,77 0,65 0,53 0,63 0,59 0,55 0,78 0,79

Metric Score 0,14 0,03 0,19 0,28 1,00 1,00 1,00 0,99 0,54 0,95
11 12 13 14 15 16 171 18 19 20
0,53 0,63 0,55 0,69 0,73 0,61 0,77 0,40 0,64 0,79
0,15 0,79 0,01 0,40 0,26 0,04 0,00 0,01 0,96 0,65

Table 9: Normalized means from the CGE and results from applying the BWM

Method Corrolation P-value
Pearson cor = 0,21 0,37
Spearman rho = 0,20 0,40
Kendall tau = 0,14 0,40

Table 10: Correlation between normalized experimental scores and the BWM applied
to the same snippets

of snippets we asked each participant to evaluate. Also, because professional
software developers are harder to recruit than students, the number of partic-
ipants was limited. Furthermore, it is possible, albeit unlikely, that the people
participating in the experiment are not representative for software developers as
a whole. These threats can be alleviated by conducting broader studies on larger
groups of developers and using interviews.

In our experiments, we used small randomly selected code snippets as proxies
for code readability. We do this both for practical and conceptual reasons. The
practical reasons revolve around what we realistically could expect participants
to score. If they had to read entire classes or software projects in order to score
the code, this would have taken to much time and could have resulted in getting
too few participants in our experiments. Furthermore, we wanted to evaluate the
BWM since it is the only implemented metric we could find in the literature.
The more conceptual reason is that if each snippet is readable, then the whole
code is likely to be readable as well. In our approach, high-level understanding is
based more on the CPN models of the protocols than on the implementation, so
it makes sense for us to concentrate on low level, snippet-sized readability, since
readability in the large is intended to be considered at the level of the model.

6 Conclusions and Related Work

In this paper, we have evaluated our code generation approach and support-
ing software, with respect to platform independence, the integratability of the
generated code as well as the readability of the generated code.

Platform independence was evaluated by generating code for a protocol for
three platforms in addition to the Groovy platform from a single CPN model.
The number of and differences between the platforms gives us confidence that
our approach and the PetriCode tool can be used to generate protocol implemen-
tations for many target platforms. All the platforms considered have automatic
memory management in the form of garbage collection. This is convenient, but
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we intend to support platforms without automatic memory management in the
future.

Platform independence is especially important for network protocols since
they are used to communicate between two or more hosts that often run on
different underlying platforms. Although there exists many tools that allow gen-
erating code from models claiming to be platform independent, few studies seem
to have been made actually generating code for several platforms.

MDA [8] and associated tools rely on different platform specific models (PSM)
to be derived for platforms before generating code for each platform. This adds an
extra modelling step compared to our approach and may require somewhat differ-
ent PSMs for different platforms. The Eclipse Model To Text (M2T) [3] project
provides several template languages for code generation from Ecore models. In
general, M2T languages can generate code for several platforms. However, to
go beyond pure structural features and standard behaviour, the developer must
create customized code generators. In [9] code is for protocol is generated using
UML stereotypes and various UML diagram types. The UML diagrams, anno-
tated with stereotypes according to a custom made UML profile, combined with
a textual language named GAEL are used to obtain protocol specification in the
Specification and Description Language (SDL) [1, 4]. The authors also conjec-
ture that the approach can be used to generate code for any platform. The use
of stereotypes in the approach presented in [9] is similar to the pragmatics that
our approach uses. However, a difference is that several diagram types are used
in the UML based approach in contrast to our approach where we use CPNs to
describe both structure and behaviour.

MetaEdit+ [17] allows code generation of visual Domain Specific Modelling
Languages (DSMLs). MetaEdit+ and the DSML approach is similar to the Pet-
riCode approach since CPNs and pragmatics constitute a DSML. A main dif-
ference is that MetaEdit+ allows users to generate custom graphical languages
while PetriCode uses CPN, but extends CPNs using pragmatics. This allows us
to use the properties of CPNs for verification and validation, and also to use a
single syntax for different domains.

The Renew [7] tool uses a simulation-based approach where annotated Petri
Nets can be run as stand-alone applications. The simulation-based approach is
fundamentally different from our approach where the generated code can be
inspected and compiled in the same way as computer programs created with
traditional programming languages. A detailed comparison between these two
approaches would be an interesting avenue for future work.

We evaluated the integratability of the generated code in two directions: up-
wards and downwards integratability. Upwards integratability was evaluated by
showing that the generated protocol software can be called by programs running
the protocols. Downwards integratability was evaluated by showing how we can
change the network API for the Java platform by binding different templates to
some of the pragmatics.

Readability of the generated code was evaluated by an automatic metric and
an experiment. According to the BWM, the generated code is as, or possibly
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even more, readable than the samples of high quality code in the same domain
that we used for comparison. Based on our experiment with software developers,
however, the generated code is somewhat less readable but within a standard
deviation of the non-generated code. A contribution of this paper is also to
provide evidence that the experimental results from the BWE are relevant to
professional software developers in addition to the students. However, based on
the discrepancy between the experimental evaluation, it seems that the BWM
may not be applicable to code in the network protocol domain. To the best
of our knowledge, there are no previous work evaluating intergrateability and
readability of automatically generated software.

In the future we will evaluate the verifiability of the models used in our ap-
proach by applying verification techniques to example protocols. We also intend
to develop a set of template libraries that can be used for code generation as well
as procedures for testing code generation templates. Another possible direction
for future work is to apply our code generation approach to other domain.
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Abstract. Model-based software engineering offers several attractive
benefits for the implementation of protocols, including automated code
generation for different platforms from design-level models. In earlier
work, we have proposed a template-based approach using Coloured Petri
Net formal models with pragmatic annotations for automated code gen-
eration of protocol software. The contribution of this paper is an ap-
plication of the approach as implemented in the PetriCode tool to ob-
tain protocol software implementing the IETF WebSocket protocol. This
demonstrates the scalability of our approach to real protocols. Further-
more, we perform formal verification of the CPN model prior to code
generation, and test the implementation for interoperability against the
Autobahn WebSocket test-suite resulting in 97% and 99% success rate
for the client and server implementation, respectively. The tests show
that the cause of test failures were mostly due to local and trivial er-
rors in newly written code-generation templates, and not related to the
overall logical operation of the protocol as specified by the CPN model.

1 Introduction

The vast majority of software systems today can be characterised as concur-
rent and distributed systems as their operation inherently relies on protocols
executed between independently scheduled software components and applica-
tions. The engineering of correct protocols can be a challenging task due to their
complex behaviour which may result in subtle errors if not carefully designed.
Furthermore, ensuring interoperability between independently made implemen-
tations is also challenging due to ambiguous protocol specifications. The use of
formal modelling in combination with verification and model checking provides
a prominent approach to the development of reliable protocol implementations.

Coloured Petri Nets (CPNs) [8] is formal language combining Petri Nets
with a programming language to obtain a modelling language that scales to
large systems. In CPNs, Petri Nets provide the primitives for modelling con-
currency and synchronisation while the Standard ML programming language
provides the primitives for modelling data and data manipulation. CPNs have
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been successfully applied for the modelling and verification of many protocols,
including Internet protocols such as the TCP, DCCP, and DYMO protocols [2,
11]. Formal modelling and verification have been useful in gaining insight into
the operation of the protocols considered and have resulted in improved protocol
specifications. However, earlier work has not fully leveraged the investment in
modelling by also taking the step to automated code generation as a way to
obtain an implementation of the protocol under consideration.

In earlier work [15], we have proposed the PetriCode approach and developed
a supporting software tool [17] for automatically generating protocol implemen-
tations based on CPN models. The basic idea of the approach is to enforce par-
ticular modelling patterns and annotate the CPN models with code generation
pragmatics . The pragmatics are bound to code generation templates and used to
direct the model-to-text transformation that generates the protocol implemen-
tation. As part of earlier work, we have demonstrated the use of the PetriCode
approach on small protocols. In addition, we have shown that our approach sup-
ports code generation for multiple platforms, and that it leads to code that is
readable and also upwards and downwards compatible with other software [16].

The main contribution of this paper is to demonstrate that our approach and
tool scale to support an industrial-sized protocol by automatically generating
code for the WebSocket [5] protocol for the Groovy [7] platform. The WebSocket
protocol is a relatively new protocol currently under development by the IETF.
The WebSocket protocol makes it possible to upgrade an HTTP connection
to an efficient message-based full-duplex connection. The WebSocket protocol
address the performance problems of the HTTP protocol caused by the request-
response interaction model and verbose headers. This is done by allowing HTTP
to upgrade to a WebSocket connection in which a session is kept alive and
messages may be transmitted in both directions freely with much lower overhead
than with HTTP. WebSocket has already become a popular protocol for several
web-based applications where bi-directional communication with low latency is
needed such as games and media streaming services. The contributions of this
paper include showing how we have been able to model the WebSocket protocol
following the PetriCode modelling conventions, and to verify the model through
state space exploration. Furthermore, we demonstrate in this paper that the
generated code is interoperable with other WebSocket implementations, and we
test the our implementation using the Autobahn WebSocket test-suite [18].

Outline. Section 2 presents the CPN model of the WebSocket protocol. In Sect. 3
we show how state space exploration was used to verify the operation of the
model focusing on the proper establishment and termination of WebSocket con-
nections. Section 4 describes the procedure to generate an implementation of the
WebSocket protocol from the CPN model using the PetriCode tool. In Sect. 5,
we present the results from testing the generated code by showing that it is
interoperable with other WebSocket implementations and by employing the Au-
tobahn WebSocket test-suite. Finally, in Sect. 6 we provide a discussion of related
work, and sum up the conclusions and directions for future work. Due to space
limitations, we refer to [8] for a detailed introduction to CPN concepts.
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2 The CPN WebSocket Code Generation Model

The CPN model of the WebSocket protocol follows the structure imposed by
our code generation approach, and consists of a set of modules hierarchically
organised into three levels: the protocol systems level, the principal level, and
the service level. In the following, we present representative parts of the CPN
model which was constructed using CPN Tools [4].

Figure 1 shows the top-level module of the CPN model constituting the pro-
tocol system level. The protocol system consists of a Client and a Server principal
as modelled by the two accordingly named substitution transitions drawn as rect-
angles with a double-lined border. These two substitution transitions are anno-
tated with the 〈〈principal〉〉 code generation pragmatic to denote that they repre-
sent protocol principals. The Channel substitution transition annotated with the
〈〈channel〉〉 pragmatic represents the channel connecting the two principals. The
two substitution transitions are connected by places (drawn as ellipses) modelling
send and receive buffers for the client and server. The rectangular tags attached
to the substitution transitions specify the name of the submodule which refines
the compound behaviour represented by the substitution transition.

The Client principal level module is depicted in Fig. 2. It is the submodule
associated with the Client substitution transition in Fig. 1. The principal level
makes explicit the services offered by the principal by means of the 〈〈service〉〉
and 〈〈internal〉〉 pragmatics attached to substitution transitions. The 〈〈service〉〉
pragmatic is used to denote substitution transitions where the attached submod-
ule represents a service that is intended to be used by the application employing
the protocol. Substitution transitions annotated with 〈〈internal〉〉 represent ser-
vices that are used internally in the protocol principal. It can be seen that the
client has six external and two internal services. A principal level module also
models the internal state of the principal via places annotated with the 〈〈state〉〉
pragmatic, and captures the life-cycle of the principal via places annotated with
the 〈〈LCV〉〉 pragmatic. The life-cycle determines the possible orders in which
the services can be invoked. Initially, the only 〈〈LCV〉〉-annotated place that
contains a token is the READY place (top) which enables the OpenConnection

service. After the OpenConnection service has completed, there will be a token
on the OPEN place, and all the external services (except OpenConnection) will be
enabled allowing the employing application to send and receive messages, send

ClientToServer
Send

EndPoint

ServerToClient
Receive

EndPoint

ClientToServer
Receive

EndPoint

ServerToClient
Send

EndPoint

Server
<<principal>>

Server

Channel
<<channel>>

Channel

Client
<<principal>>

Client Channel ServerClient

Fig. 1. The top level of the WebSocket protocol model
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Fig. 2. The Client principal module

and receive ping and pong messages, and close the connection. The exchange of
ping and pong messages provides a keep-alive mechanism in the protocol.

The MessageBroker module which is the submodule of the MessageBroker

substitution transition is shown in Fig. 3. The MessageBroker is an example of
an internal service. It is responsible for dispatching the incoming messages into
the appropriate buffer represented in the module by places annotated with the
〈〈state〉〉 pragmatics. There is one such buffer for each of the message types:
the inBuffer keeps text and binary messages, the pingpongBuffer keeps ping and
pong messages, the closeBuffer keeps the closing messages while the fragments

place keeps frames of messages that have not yet been completely received. The
messages are dispatched by inspecting the type of the messages. The Message-

Broker internal service is enabled when the WebSocket connection is in an OPEN

state and the module captures the control flow in dispatching received messages
as indicated by the places annotated with an 〈〈Id〉〉 pragmatic. The execution
of the service starts at the transition ReceiveDataFrame. Then it enters a loop
starting at place wait receive. At the transition receive a new frame is received.
This is modelled as a single operation to keep the model at a high level of ab-
straction. This means that the details of actually receiving a message must be
encoded in the code generation template associated with the 〈〈receive〉〉 prag-
matic. If the frame is the last frame of a fragmented message, the entire message
is reconstructed. Next, there is a branch in the model based on the Fin and Op-
Code fields in the frame. The message is dispatched to either the inBuffer (data),
PingPongBuffer, closeBuffer, or nonFinal. After the message or frame has been
dispatched, the branches merge before the next iteration.

The getMessage service shown in Fig. 4 returns the next message in the buffer.
This service will be used to illustrate code generation in Sect. 4.
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This is an example of a service with only
a single transition. The transition is anno-
tated with the 〈〈service〉〉, 〈〈getMessage〉〉 and
〈〈return〉〉 pragmatics. This models that the ser-
vice is first entered, then the 〈〈getMessage〉〉 op-
eration is performed, and the service terminates.
The transition getMessage is only enabled when
there is at least one message in the message
buffer as modelled by the place inBuffer.

The complete CPNmodel consists of 19 mod-
ules. Each of the two principals have eight sub-modules which all correspond to
the external and internal services in the protocol. In total, the model consists of
136 places and 84 transitions. This reflects the complexity of the protocol, but
also the high-level nature of the model which has been important in keeping the
number of elements manageable.
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3 CPN WebSocket Model Verification

CPNs have a formal semantics which makes it possible to conduct model sim-
ulation and model checking (verification) prior to code generation. This is a
major advantage of an approach based on a formal modelling language as this
can be used to eliminate design errors prior to code generation and testing of
the generated protocol implementation. CPN Tools used for construction of the
WebSocket CPN model supports model checking of behavioural properties by
means of state space exploration. The basic idea of state space exploration is
to explore all the reachable states of the model to determine whether a model
satisfies a given property or not. This means that state space exploration will
exhaustively explore (test) all the possible executions of the CPN model. As the
CPN model specifies the behaviour of both the client and the server, the state
space exploration exercises the client against all the possible behaviours of the
server and visa versa.

Our aim has been to apply state space exploration of the CPN model as a
first test to eliminate possible errors in the logical specification of the WebSocket
protocol. For this, we adopted a lightweight approach where we consider the
following behavioural properties P0, P1 and P2 of the CPN model:

P0 From the initial state it is possible to reach states in which the WebSocket
connection has been opened (i.e., both the client and the server are in the
open state). In the model this means that the places names OPEN in the
Client and the Server modules each have one token and none of the other
places other places modelling the life-cycle of the principals have a token.
It should be noted that we cannot establish that the WebSocket connection
will eventually be opened since the server side may initiate a close before
the client side is in the open state.

P1 All terminal states (i.e., states without enabled transitions) correspond to
states in which the WebSocket connection has been properly closed (i.e.,
both the client and the server are in the closed state). In the model this
means that the places named CLOSED in the Client and Server modules each
have one token and that none of the other places modelling the life-cycle of
the principals have a token.

P2 From any reachable state, it is always possible to reach a state in which the
WebSocket connection has been properly closed. This means that indepen-
dently of how messages are exchanged, it is always possible to properly close
the WebSocket connection.

In order to check that in all terminal states both the client and the server are
in the closed state, we wrote a simple query in the Standard ML language using
functions that are built into CPN Tools. The query can be seen in Listing 1.1.

The functions server open and client open are predicates for the client
and server that take a state as argument and return true if and only if the
principal is in an open state, i.e., the place OPEN has one token, and all the other
LCV places have no tokens. The functions server close and client close
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Listing 1.1. The queries used to verify properties P0-P2.
fun client_open (n) = (State.Client’CLOSED 1 n) = [] andalso

(State.Client’OPEN 1 n) = [()] andalso (State.Client’READY 1 n) = [];

fun server_open (n) =

(State.Server’CLOSED 1 n) = [] andalso (State.Server’OPEN 1 n) = [()] andalso

(State.Server’Idle 1 n) = [] andalso (State.Server’READY 1 n) = [];

fun client_closed (n) = (State.Client’CLOSED 1 n) = [()]

andalso (State.Client’OPEN 1 n) = [] andalso (State.Client’READY 1 n) = [];

fun server_pred (n) =

(State.Server’CLOSED 1 n) = [()] andalso (State.Server’OPEN 1 n) = [] andalso

(State.Server’Idle 1 n) = [] andalso (State.Server’READY 1 n) = [];

fun IsProperOpen(n) = server_open(n) andalso client_open(n);

fun IsProperClosed(n) = server_closed(n) andalso client_closed(n);

PredAllNodes(IsProperOpen) <> [] (* property P0 *)

List.all IsProperClosed (ListTerminalStates()); (* property P1 *)

HomeSpace(ListTerminalStates()); (* property P2 *)

Table 1. Results of verification of the WebSocket CPN model

Client Messages Server messages Nodes Arcs Time (secs) Terminal states
yes no 2747 9,544 1 2
no yes 2867 9,956 2 2
yes yes 39189 177,238 246 4

are similar for the case of closed. The predicates are used to obtain the predicates
isProperOpen and isProperClosed that characterises properly open and
closed states, respectively. The property P0 is checked using the query function
PredAllNodes which returns all states satisfying a given predicate (in this
case IsProperOpen). It is then checked whether the resulting list of states is
non-empty. For establishing P1, we check that all terminal states in the state
space which are returned by the built-in query function ListTerminalStates
satisfies the IsProperClosed predicate. Finally, P2 is checked using the query
function HomeSpace which checks if the list of nodes provided constitute a home

space, i.e, constitute a set of states where at least one of the states can always
be reached.

Table 1 summarises the results from the verification. We have considered
three possible configurations of the model. One where the client sends data to
the server; one where the server sends data to the client; and one where both the
client and the server sends data. The table lists the number of Nodes and Arcs

in the state space, the amount of Time used to generate the state space, and
the number of Terminal States. For all configurations, we were able to establish
the properties P0, P1 and P2 which provides confidence in the correctness of
the model. During the verification process, several minor modelling errors were
identified and fixed. For example, this lead to the inclusion of the clearBuffers

transition (see Fig. 2) which was added to properly clean up message buffers and
reduce the number of terminal states.

272
Implementing the Web Socket Protocol based on Formal Modelling and

Automated Code Generation



The major drawback with state space exploration techniques is the state
explosion problem which means that the state space in many cases grows too
large to be handled with the available computing power. It is interesting to
observe that the size of the state space for the model described in Sect. 2 is
relatively small for the configurations considered. This shows how our modelling
approach makes it possible to construct models at a high-level of abstraction so
that it is feasible to fully verify even industrial-sized protocols.

4 Automated Code Generation

In this section we describe the code generation process for the WebSocket proto-
col targeting the Groovy platform and illustrate it with examples of code gener-
ation templates and code snippets. Groovy is also the implementation language
of the PetriCode tool [17] and has been chosen because it has several features
that makes it easy to implement and debug templates including dynamic typing,
closures and iterators.

The automatic code generation process, as implemented in the PetriCode
tool, starts with a CPN model annotated with pragmatics. The model is first
transformed into an intermediary representation in the form of an abstract tem-

plate tree (ATT). The ATT reflects the hierarchical structure of the CPN model
down to the service level. On the service level, the ATT contains blocks that are
derived from the control flow path specified by the 〈〈Id〉〉 pragmatics of the ser-
vice level modules. The next step in the code generation process is to traverse the
ATT and emit code for each node by applying code generation templates bound
to the pragmatics of a node. Pragmatics are bound to templates using template

bindings which are defined in a domain specific language (DSL). When this is
done, the code is stitched together using special markers in the generated code.
The details are described in [15, 17]. Our approach makes it possible to produce
code for several platforms and programming languages. This is achieved by using
different sets of code generating templates and binding them as appropriate to
code generation pragmatics through the use of the DSL.

When the code generator, on its traversal through the ATT, encounters a
node annotated with a 〈〈principal〉〉 pragmatic it executes the associated tem-
plates which, in the Groovy platform, defines a class. Then the traversal contin-
ues to the child nodes of the principal. When the generation traverses child nodes
of a principal and encounters a node containing a 〈〈service〉〉 or 〈〈internal〉〉 prag-
matic it executes the service template. The code generation for the principal is
completed by replacing a special tag, %%yield%% with the result for the service
template for all underlying services. The generated code of the client with decla-
ration and method bodies omitted is shown in Listing 1.2. As can be seen when
comparing with Fig 2, there is one method defined for each external and internal
service. This comprises the API for the WebSocket client implementation with
all the callable methods and their signature.

The template for the 〈〈service〉〉 pragmatic is shown in Listing 1.3. Lines 1-2
define a new method and its signature. The lines 3-12 set up preconditions (if
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Listing 1.2. The generated code for the services in the client.
1 class Client {

2 ...

3 def MessageBroker(){ ... }

4 def ServerClose(){ ... }

5 def OpenConnection(uri){ ... }

6 def ClientSendMessage(msg){ ... }

7 def ReceivePingPong(){ ... }

8 def SendPingPong(ping){ ... }

9 def ClientClose(){ ... }

10 def getMessage(){ ... }

11 }

Listing 1.3. The template bound to the 〈〈service〉〉 pragmatic
1 def ${name}(${binding.getVariables()

2 .containsKey("params") ? params.join(", ") : ""}){

3 <%

4 if(binding.variables.containsKey(’pre_conds’)){

5 for(pre_cond in pre_conds){

6 %>if(!$pre_cond) throw

7 new Exception(’unfulfilled precondition: $pre_cond’)

8 <%

9 if(!pre_sets.contains("$pre_cond")){%>$pre_cond = false<%}

10 }

11 }

12 %>

13 %%yield_declarations%%

14 %%yield%%

15 <%if(binding.variables.containsKey(’post_sets’)){

16 for(post_set in post_sets){

17 %>$post_set = true<%

18 }

19 }%>

20 }

applicable) based on the manipulation of places at the service level that are
annotated with the 〈〈LCV〉〉 pragmatic. The next two lines are place-holder tags
that show where declarations and the method body will be inserted respectively.
Finally, post-conditions are set and the method body ends in line 20.

Listing 1.4 shows the template for the 〈〈getMessage〉〉 pragmatic used on the
transition in Fig. 4. The template takes two parameters. The name of variable
to set the next message to, and the name of the buffer to retrieve the next
message from. First, the template checks to see if the buffer is not empty. If it
is not empty, the first message is retrieved from the buffer. Then the payload is
translated into a String or a byte array depending on the message type and
the variable given in the first parameter to the pragmatic is set to the payload
of the message. If the buffer is empty the variable given in the first parameter
to the pragmatic is set to null.

The generated code for the getMessage service is shown in 1.5. Lines 1-4 and
21 are generated by the service template. The rest of the code, except from the
return line, follows the template for 〈〈getMessage〉〉 where the first and second
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Listing 1.4. The template for the 〈〈getMessage〉〉 pragmatic.
1 if(${params[1]} != null && ${params[1]}.size() > 0){

2 ${params[0]} = ${params[1]}.remove(0)

3 byte[] bArr = new byte[${params[0]}.payLoad.size()]

4 for(int i = 0; i < bArr.length; i++){

5 bArr[i] = ${params[0]}.payLoad.get(i)

6 }

7 if(${params[0]}.opCode == 1){

8 ${params[0]} = new String(bArr)

9 }else if(${params[0]}.opCode == 2) {

10 ${params[0]} = bArr

11 }

12 }else{

13 ${params[0]} = null

14 }

15 %%VARS: ${params[0]}, ${params[1]}%%

Listing 1.5. The generated code for the getMessage service in the client.
1 def getMessage(){

2 /*vars: [__TOKEN__:, message:]*/

3 def __TOKEN__

4 def message

5 //getMessage

6 if(inBuffer != null && inBuffer.size() > 0){

7 message = inBuffer.remove(0)

8 byte[] bArr = new byte[message.payLoad.size()]

9 for(int i = 0; i < bArr.length; i++){

10 bArr[i] = message.payLoad.get(i)

11 }

12 if(message.opCode == 1){

13 message = new String(bArr)

14 }else if(message.opCode == 2) {

15 message = bArr

16 }

17 }else{

18 message = null

19 }

20 return message

21 }

parameters have been replaced with inBuffer and message respectively since those
are the two parameters given to the pragmatic in Fig. 4.

In order to generate code for the WebSocket protocol, we reused 10 templates
from the library of templates provided by PetriCode. In addition, 22 new tem-
plates were needed, including two templates that override existing templates.
New templates were needed because the WebSocket protocol has many features
we have not encountered with earlier examples, such as receiving and interpret-
ing binary messages, and validating handshakes and frames.

5 Testing the Generated WebSocket Implementation

We validated the operation and interoperability of the generated code in two
ways. First, we created test drivers for the generated WebSocket implementation
to connect to the example chat server and client [1] that comes with the GlassFish
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Listing 1.6. The code for the client runner.
1 def client = new Client()

2 client.OpenConnection(new URI("ws://localhost:31337/chat/websocket"))

3 def t = Thread.start {

4 while(true){

5 def msg = client.getMessage()

6 if(msg) println "RECEIVED: $msg"

7 Thread.sleep(1000)

8 }}

9 client.ClientSendMessage("${args[0]} joined")

10 BufferedReader br = new BufferedReader(new InputStreamReader(System.in))

11 while(true){

12 print "#: "

13 def msg = br.readLine()

14 if(msg == "#quit"){

15 client.ClientClose()

16 try{ Thread.wait(1000) }

17 catch(Exception ex){ }

18 System.exit(0)

19 } else if(msg == "#close"){

20 client.ClientClose()

21 }else{

22 client.ClientSendMessage("${args[0]}: $msg")

23 }

24 }

Application Server [14]. Secondly, we submitted the generated implementation
to the Autobahn Testsuite [18] version 0.5.51.

Chat Application. The code for the chat client using the generated API (cf.
Listing 1.2) is shown in Listing 1.6. The chat client uses the generatedWebSocket
protocol as an API given the signatures of the principal level. The client begins
by creating a Client object from the generated code and opens a WebSocket
connection to the server. Then, a thread is started to receive messages which
polls the client object for new messages and prints any received messages to the
console. After the message receiving thread is started, the client sends a message
notifying the server that the client has joined the chat. Finally, the client enters
an infinite loop that listens to the console for messages and sends any messages
to the server. The server is implemented in a similar way using the generated
Server class as the server-side WebSocket API.

Listing 1.6 demonstrates that our approach is upwards compatible, i.e., that
the services of the generated code can easily be used by third party software. A
key feature that provides this is that we include the API in the model as the
services at the principal level of the CPN model.

Figure 5 shows the chat client (upper right) and server (lower right) running
together with the web-based chat client from [1]. The web-based client has only
been modified to connect to the server using the generated API by changing a
hard-coded server address. We also tested that the chat client is able to connect
and communicate with a chat-server from [1].

1 The test results can be seen at http://t.k1s.org/wsreport
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Fig. 5. Chat server and client using the generated API (right) and a web-based chat
client connected to the same server (left)

Autobahn Test-suite. The Autobahn WebSocket test-suite provides compre-
hensive validation of server and client implementations of the WebSocket proto-
col. The test-suite has been used by several high-profile projects to develop and
validate WebSocket implementations including the Firefox and Jetty projects.
When running the Autobahn test-suite several problems with the implementa-
tion were discovered. Most of the problems were simple oversights in the code
generation templates that were easily fixed once they were identified. An example
of the trivial problems that were not evident when running the chat application
was that the HTTP header lines were terminated with LF instead of the man-
dated CRLF. However, one change to the CPN model was necessary. This was
related to fragmented messages where we added a buffer for temporarily storing
frames of unfinished messages and a transition to distributing non-final frames.
This was necessary because a WebSocket endpoint should be able to handle con-
trol messages intermingled with fragmented messages. The new elements, which
can be seen in Fig. 3, are the place fragments, the transition nonFinal, and the
arcs connected to those two elements.

A summary of the result for the final Autobahn tests can be seen in Table 2.
The Autobahn test suite contains 301 tests cases for the client and server. For the
client, 10 test cases fail and for the server, 4 test cases fail. The extra test cases
that fail on the client concern performance with large messages. The test cases
that fail for both the server and client are UTF-8 parser errors. This is because
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the Java implementation of UTF-8 parsers is more lenient than the Autobahn
test-suite expects. Therefore, we had to create our UTF-8 validator which fails
to identify some UTF-8 errors.

Table 2. Results for the Autobahn tests

Tests Server Passed Client Passed
1. Framing (text and binary messages) 16/16 16/16
2. Pings/Pongs 11/11 11/11
3. Reserved bits 7/7 7/7
4. Opcodes 10/10 10/10
5. Fragmentation 20/20 20/20
6. UTF-8 handling 137/141 137/141
7. Close handling 38/38 38/38
9. Limits/Performance 54/54 48/54
10. Auto-Fragmentation 1/1 1/1

6 Conclusions and Related Work

In this paper we have shown that the PetriCode code generation approach can be
applied to industrial sized protocols as exemplified by the WebSocket protocol.
Obtaining the implementation was achieved with limited effort even though quite
a few new templates were created. We have found that the template provides an
effective way to force the code to be modular. This means that the templates can
be developed in a certain degree of isolation, giving the developer the opportunity
to concentrate on getting a single template right at a time. Therefore, even
though many templates are created for only a single protocol, this is an efficient
way to prototype protocols based on a CPN model.

Compared to previous examples, the WebSocket model had many more ser-
vices. This makes the principal level somewhat harder to read and suggests that
some kind of mechanism of grouping the services in several layers might be ad-
vantageous. At the service level, the models are approximately the same size as
in previous examples. The readability of the service level modules can also be
controlled by offloading behaviour to pragmatics such as we do for the 〈〈receive〉〉
pragmatic in the message broker. All in all, the WebSocket model shows that we
can make code generation models for real protocols without necessarily losing
descriptiveness.

We have also showed that the code generation model can be verified by state
space exploration. This highlights a major advantage of using CPN models which
are directly executable. This allows us to perform analysis on high-level models
and thereby keep the state spaces small. Although the verification presented only
considers basic connection establishment and termination properties, other more
elaborate properties including liveness properties can be checked using similar
techniques. We are also working on using the sweep-line method, and advanced
state space exploration method, to alleviate the state space explosion problem.

278
Implementing the Web Socket Protocol based on Formal Modelling and

Automated Code Generation



Finally, we have validated the automatically generatedWebSocket implemen-
tation both by applying it to a well-known example in the form of the example
chat application which is distributed with the GlassFish Application server and
also by using the Autobahn test-suite which thoroughly tests most aspects of
WebSocket protocol implementations.

To the best of our knowledge there does not exist any examples of using
model-based techniques for generating an implementation of the WebSocket
protocol in the literature. However, there exists a few examples for other in-
dustrial sized protocols. In [12] PP-CPNs, another class of Petri Nets, was used
to generate code for the DYMO routing protocol for the Erlang platform. In our
approach, we have a more flexible code generation approach through pragmat-
ics that allows us to create new custom templates for new situations. Another
approach to code generation is exemplified by the RENEW tool [13]. RENEW
uses a simulation based approach where the implementation is a simulation of
the underlying Petri Net. The direct use of simulation code makes it harder to
meaningfully inspect the generated programs.

Other formalisms such the Specification and Description Language (SDL)
has also been used as a starting point for code generation. For example, an early
warning system for earthquake was developed using SDL in combination with
UML [6, 3]. Both simulation and prototype code were generated using C++ as
the target language. Our approach differs from the above mentioned approaches
by the flexibility in abstraction level because of our pragmatics, by being plat-
form independent by simply substituting templates and by the fact that we
model the API explicitly at the service level and thereby easy interoperability
with third-party software. Our approach also allows us to model the service inter-
face, which is not available to the same degree in PP-CPNs and Renew. Another
approach to generating software for reactive systems from UML models is the
SPACE method [10] and its tool Arctis. This approach employs collaborations to
compose services. The collaborations are then transformed into state machines
that are executed together with Java snippets which are bound to actions of the
collaborations. This approach relies on the state machines to either be trans-
lated to code or executed directly by some other tool. This is in contrast to our
approach where we generate code directly instead of going through other for-
malisms and tools. MACE [9] is a textual state-transition language that is used
to create distributes systems. It uses a compiler to compile the textual state-
transition language into C++ code. This means that MACE is not as platform
independent as our template-based approach is. In MetaEdit+ [19], models are
mapped to some underlying formalism on which analysis is then performed. This
tends to produce larger state space sizes compared with our approaches where
the model is executable and allows verification at a high level of abstraction.

In the future we will apply more advanced state-space techniques, such as
the sweep-line method, in order to do a more through verification of the model
with larger and more complex configurations. Furthermore, we will investigate
how errors in code generated by PetriCode can be traced back to the relevant
pragmatics and model elements.
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