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Summary

Biomedicine is a field that has great influence on the majority of mankind.
The constant development has considerably changed our way of life during the
last centuries. This has been achieved through the dedication of biomedical
researchers along with the tremendous resources that over time have been allo-
cated this field. It is utterly important to utilize these resources responsibly and
efficiently by constantly striving to ensure high-quality biomedical studies. This
involves the use of a sound statistical methodology regarding both the design
and analysis of biomedical studies. The focus of this project is on statistical
aspects that arise within the field of biomedicine.

Two types of errors are frequently accentuated within the framework of statis-
tics, namely type I and type II errors. Type I errors occur when a null hypoth-
esis erroneously is rejected. An acceptable type I error rate is specified prior
to conducting the statistical analysis. However, all statistical models make as-
sumptions and if violated the actual type I error rate may deviate from the
pre-specified type I error rate. Type II errors occur when we fail to reject a
false null hypothesis. On contrary to the type I error rate, the type II error
rate is not explicitly specified during the statistical analysis and this entails
that assessment of the type II error rate in practice is at risk of being neglected
altogether. Concerns regarding type I errors, type II errors and adherence (or
lack thereof) to model assumptions for biomedical studies are a recurring theme
in this thesis.

Data collected in some biomedical studies are positively skewed; hence methods
relying on the normal distribution are not directly applicable. We investigated
how data from one of these studies are suitably analyzed. We extracted 23
different summary statistics from data gathered from eleven studies. The degree
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of adherence to the model assumptions evaluated for each of these summary
statistics form basis for our conclusions.

Hierarchically structured data are frequently encountered in biomedical studies.
For one type of studies entailing such data we have conducted a literature study
strongly indicating that this structure commonly is neglected in the statistical
analysis. Based on this closed-form expressions for the approximate type I error
rate are formulated. The type I error rates are assessed for a number of factor
combinations as they appear in practice and in all cases the type I error rates
are demonstrated to be severely inflated.

Prior to conducting a study it is important to perform power and sample size
determinations to ensure that reliable conclusions can be drawn from the sta-
tistical analysis. We have formulated closed-form expressions for the statistical
power of studies with a hierarchical structure to guide biomedical researchers
designing future studies of this type.

Upon model fitting it is important to examine if the model assumptions are
met to avoid that spurious conclusions are drawn. While the range of diagnostic
methods is extensive for models assuming a normal response it is generally more
limited for non-normal models. An R package providing diagnostic tools suitable
for examining the validity of binomial regression models have been developed.
The binomTools package is publicly available at the CRAN repository.



Resumé

Biomedicin er et omr̊ade der har stor indflydelse p̊a størstedelen af menneskehe-
den. Den vedvarende udvikling har gennem de sidste århundreder ændret vores
levevis væsentligt. Dette er opn̊aet gennem biomedicinske forskeres dedikerede
indsats og de enorme ressourcer som gennem tiden er afsat til dette omr̊ade.
Det er vigtigt at udnytte disse ressourcer ansvarligt og effektivt ved konstant at
bestræbe sig p̊a at sikre biomedicinske studier af høj kvalitet. Dette indebærer
at passende statistiske metoder anvendes b̊ade i forhold til design og analyse
af biomedicinske studier. Dette projekt har fokus p̊a statistiske aspekter der
opst̊ar indenfor biomedicin.

To typer af fejl fremhæves indenfor statistik, hvilket er type I og type II fejl.
Type I fejl optræder n̊ar nulhypotesen fejlagtigt forkastes. En acceptabel type
I fejlrate specificeres før den statistiske analyse udføres. Alle statistiske mo-
deller bygger dog p̊a antagelser og den faktiske type I fejlrate kan afvige fra den
præspecificerede type I fejlrate, hvis modellens antagelser ikke er opfyldt. Type
II fejl optræder n̊ar vi undlader at forkaste en falsk nulhypotese. I modsæt-
ning til type I fejlraten bliver type II fejlraten ikke eksplicit specificeret i den
statistiske analyse, hvilket medfører risiko for at type II fejlraten ikke tages i
betragtning. Overvejelser omkring type I fejl, type II fejl og opfyldelse (eller
mangel p̊a samme) af modelantagelser i relation til biomedicinske studier er et
gennemg̊aende tema i denne afhandling.

I nogle biomedicinske studier er de indsamlede data positivt skævt fordelt, og
metoder der beror p̊a normalfordelingen kan derfor ikke anvendes direkte. For et
af disse studier har vi undersøgt hvordan data kan analyseres. Vi har uddraget
23 forskellige nøgletal fra data samlet fra elleve studier. Vores konklusioner
baserer sig p̊a graden af modelantagelsernes opfyldelse.
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Data med en hierarkisk struktur optræder hyppigt i biomedicinske studier. For
et af disse studier har vi udført et litteraturstudie der stærkt indikerer at denne
struktur ofte negligeres i den statistiske analyse. Baseret herp̊a har vi formuleret
et lukket udtryk for den approksimative type I fejlrate. Type I fejlraten for
forskellige faktorkombinationer som de optræder i praksis er i alle tilfælde p̊avist
at være stærkt forøget.

Før et studie udføres er det vigtigt at beregne styrke og stikprøvestørrelse for at
sikre at p̊alidelige konklusioner senere kan drages p̊a baggrund af den statistiske
analyse. Vi har formuleret et lukket udtryk for den statistiske styrke af studier
med hierarkisk struktur med det form̊al at guide biomedicinske forskere n̊ar
fremtidige studier af denne type skal designes.

N̊ar en model er opstillet er det vigtigt at undersøge om modelantagelserne
er opfyldt for at undg̊a at fejlagtige konklusioner drages. Omfanget af diagnos-
tiske metoder for modeller baseret p̊a normalfordelingsantagelsen er omfattende,
hvorimod udvalget for andre typer af modeller generelt er mere begrænset. En
R pakke med diagnostiske redskaber til at undersøge modelvaliditet af binomiale
regressionsmodeller er udviklet. Pakken binomTools er offentligt tilgængeligt p̊a
CRAN repositoriet.



Preface

This thesis was prepared at the Technical University of Denmark (DTU), De-
partment of Applied Mathematics and Computer Science (DTU Compute), Sec-
tion of Statistics and Data Analysis in partial fulfillment of the requirements for
acquiring the Ph.D. degree in Applied Mathematical Statistics. The project was
funded by the Technical University of Denmark and was supervised by Murat
Kulahci who took over from Klaus Kaae Andersen.

The thesis deals with different statistical aspects of the design and analysis of
biomedical studies. More specifically, the work herein relates to issues that
are encountered in biological, medical and pharmaceutical studies. These issues
however are not limited to these types of studies and are of pertinence in various
fields.

The thesis consists of four research papers, one technical report and one R
package that is documented by its reference manual. An introductory part
provides an overview of the thesis, background information and a summary of
the results.

Lyngby, July 2014

Merete Kjær Hansen
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Chapter 1

Introduction

Biomedicine is an eminent field that relates to the majority of mankind. It
does so directly when e.g. individual tests are run to clarify the condition of a
patient and indirectly when e.g. treatment of specific conditions can be com-
mended based on knowledge gathered through biomedical research. Usually,
the achievements of biomedical research are not pertinent in peoples mind, yet
it is an area that has an impact on everyone. In the extreme it makes the dif-
ference between life and dead, such as when a child is affected by pneumonia.
Through the accomplishments of biomedicine it is nowadays generally possible
to diagnose and successfully treat such a patient as opposed to a century ago.

One great biomedical victory is the discovery of penicillin by Alexander Fleming
in 1928. This attainment is truly peculiar as one of the key elements was in fact
untidiness. After spending a few weeks on vacation, Fleming returned to his
lab where he was met by quite a disagreeable smell. In the clean-up process he
found some forgotten petri dishes with Staphylococcus aureus that accidentally
had been contaminated with the fungus Penicillium notatum. He noticed that
no bacterial colonies appeared close to the fungus, which led him to speculate
whether it could be associated with some sort of antibacterial activity. Further
research to elucidate this theory was initiated, but it was not until 1944 that
a mass production of penicillin was possible. The popularity was however im-
mediate and penicillin have been suggested to change the course of World War
II in favor of the allies due to the recovery of innumerable soldiers. Fleming
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was smiled on by fortune but that alone does not explain his success. Also
vigilance and dedication were crucial qualities that Fleming possessed. In gen-
eral, considerable knowledge has in the course of centuries been attained from
biomedical studies through dedication, creativity, discipline, luck, innovation
and enormous resources.

Considering the significance of biomedical studies and the massive resources
they are allocated, it is important to ensure a high quality and to use these
resources in an efficient and responsible manner. Upon collection of data a
continual challenge is to judge whether the observations reflect a true effect
of interest or stem from pure randomness. Statistics is useful in mitigating
these concerns. This is increasingly recognized by research communities across
a variety of fields and some sort of statistical treatment is often a prerequisite
for publications to be accepted. On the other hand, a persistent characteristic
of applied statistics is its lack of self-sufficiency. Applied statistics is in gen-
eral applied to data that naturally associates with and are collected within the
framework of other research areas. Collaboration between statistical practice
and empirical biomedical sciences can thus be mutually beneficial, which seems
to be increasingly recognized.

However, design of experiments and the statistical analysis of data from em-
pirical studies are still not always conducted in collaboration with a statisti-
cian, data analyst or the like. There may be many reasons for this, including
common practice, lack of resources, time constraints, unawareness of a flawed
methodology, difficulties in the communication between biomedical researchers
and statisticians etc. This is unproblematic whenever the complexity level of
the statistical issues does not surpass the statistical qualifications of the relevant
researchers. In some cases, though, inappropriate methods are inadvertently ap-
plied, which may lead to inefficient designs and analyses and even that flawed
inferences are made.

The misuse of statistics in medical studies has been addressed repeatedly by
several authors (Yates and Healy, 1964; Altman, 1981; Festing et al., 2002; Gar-
denier and Resnik, 2002; Baccaglini et al., 2010). According to Strasak et al.
(2007): ”Standards in the use of statistics in medical research are generally
low. A growing body of literature points to persistent statistical errors, flaws
and deficiencies in most medical journals”. They state this in a comprehensive
review summarizing 45 papers that nearly all are concerned with the inappro-
priate use of statistically related aspects that too often occur within biomedical
research. The review classify the statistical misuse into different stages of a
scientific study, which include the design, data analysis, documentation, pre-
sentation and the interpretation of the results. To ensure a sufficient quality of
biomedical studies the statistical practice in all of these stages is rather essen-
tial, although it seems to be infringed too often. The problem may in reality be
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Table 1.1: The four possible outcomes of a hypothesis test. The probability of the
outcomes are seen in parentheses

reject H0 fail to reject H0

H0 is true type I error (α) correct failure of rejection

H0 is false correct rejection (power) type II error (β)

even greater as some kind of misuses are not evident based on the description
of the statistical methods.

Within a statistical framework a null hypothesis (H0) is usually defined. Based
on the collected data we either reject or fail to reject this hypothesis. Conse-
quently, there are basically two types or errors1 that can be committed: a type
I error, where the null hypothesis erroneously is rejected and a type II error,
where the null hypothesis incorrectly is not rejected (see Table 1.1). Depending
on the context one type of these errors may be considered more serious than
the other. In many fields the type I error is most often considered the more
serious and this type of error is therefore more strictly controlled than the type
II error. In practice, this is done by fixing the type I error rate (denoted α) at
a prespecified level; often at 0.05 or 0.01. Secondarily, the type II error rate
(denoted β) is sought minimized by choosing the uniformly most powerful test
(if it exists), adjusting the sample size etc.

An example of committing a type I error is when a drug is deemed to be effective
when it in fact is not. Within biomedical research it is possible that follow-up
studies will be conducted on grounds of a significant finding and type I errors are
therefore problematic from an ethical and financial perspective. The occurrence
of type I errors are impossible to avoid but it is crucial to carefully control the
error rate and ensure that they do not surpass the appointed acceptance level.

A type II error can be seen as the opposite of a type I error rate, that is, when
e.g. a drug is concluded to be ineffective although it is not. In many fields it is
common to aim for the type II error rate to be lower than 10% or 20% (i.e. the
statistical power is above 80% or 90%). However, in practice it is often not con-
sidered and the magnitude of the type II error rate are in these cases unknown.
This can be very problematic in different settings. For instance, biomedical
studies conducted on humans or animals are associated with great ethical con-
cerns and the workload and expenses are often considerable. Therefore, it is
important to utilize all resources fully; using too many subjects is obviously a
waste but it may be of an even greater concern to use too few subjects as the

1Additional types of errors (type III and type 0) have been defined but are not considered
in this thesis
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risk of committing a type II error in that case becomes intolerable.

When a study suffers from an inappropriate statistical methodology it likely
affects the type I and/or the type II error rate. Depending on the specific type
of misuse the error types can be severely inflated. To avoid these repercussions it
is thus crucial to be aware of the assumptions underlying the statistical method.
This applies both to the choice of method as to how the results are interpreted.

Another important concern relates to the documentation of the statistical me-
thodology that in some research papers is very limited and inaccurate. One
example is when a method is briefly stated such as ANOVA without men-
tioning which variables are included and without any explicitly defined model.
Since ANOVA is the term for a collection of statistical methods it is technically
impossible to deduce exactly how exactly the analysis is performed. This is
problematic as the interpretation of the results is closely linked to the method
that is used. In addition to this, the documentation in some research papers
within certain biomedical research fields can be surprisingly verbatim. This
could indicate that some authors are highly inspired by the wording in other
publications, which again may imply that the authors do not have a deep insight
into the field of statistics. While this is completely understandable, it however
entails the pitfall that the documentation and the statistical practice are not in
full agreement. This also interferes severely with a proper interpretation of the
results.

1.1 Aim of the thesis

Biomedicine is a broad field not unanimously defined. In this thesis we consider
studies related to health care and public health, encompassing studies that
are within the fields of biology, medicine, genetics, pharmacology and related
areas. In particular, this thesis deals with the statistical design and analysis of
biomedical studies.

There is no doubt that great effort continuously is made by biomedical and
statistical researchers in order to conduct biomedical studies soundly and sci-
entifically. Still, there seems to be a need for further work and research in the
area that constitutes the interface between statistics and biomedicine.

The aim of this thesis is to contribute to bridging the gap between biomedi-
cal sciences and statistical practice. This has been approached by addressing
specific issues that appear in the literature. The focus includes communicating
statistical principles and the current research findings to biomedical researchers.
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Therefore, derivations are provided when it is considered relevant, while at other
times the results are provided in terms of figures, tables and discussions in line
with common practice within the specific research area that constitutes the
target audience.

1.2 Thesis outline

This thesis consists of seven chapters that provide an introduction to the ap-
pended papers and the R package. A summary of the papers are included in
the relevant chapters. The papers and a reference manual for the R package are
listed in Appendix A-F.

A considerable part of this work concerns data from Comet assay studies and
an introduction to these types of studies and the resulting data is given in
Chapter 2. Chapter 3 concerns the implications when a hierarchical structure
in data is disregarded in the statistical analysis. This is a violation of the critical
assumption of independence, which impose severe inflation of the type I error
rate. In Chapter 4 the type II error rate and closely related statistical power
are studied for hierarchical models and Comet assay studies in particular. As a
part of this it is examined how to suitable analyze Comet assay data to comply
with relevant model assumptions. Chapter 5 deals with the statistical analysis of
agreement data. Much confusion shrouds the analysis of this type of data due to
the concurrent popularity and criticism of the kappa statistic that in some fields
has become the de facto standard in the analysis of agreement data. Chapter
6 gives a presentation of the R package binomTools. This software contains an
implementation of a range of diagnostic methods for binomial regression models.
Concluding remarks are given in Chapter 7.
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Chapter 2

Comet assay studies

Damage to our DNA occurs continuously due to both endogenous (e.g. metabolic
processes) and exogenous (e.g. environmental agents) factors. DNA repair
mechanisms are effective and constantly active, but some damages are irrepara-
ble. Accumulation of damages to our DNA may eventually become hazardous,
as it among other things may lead to unregulated cell division and tumors may
evolve.

The damages materialize in different ways, and some of them appear as breaks
in the DNA strands. The Comet (or Single Cell Gel Electrophoresis) assay is
a powerful technique for examining this type of damage in individual cells by
quantifying the DNA strand breaks (Lovell and Omori, 2008). The applications
of the Comet assay are versatile (Collins et al., 1997; Collins, 2004) and include
assessment of the safety of potential new drugs and of possible genotoxicity
induced by contaminants. A considerable part of this thesis deals with aspects
regarding the design and analysis of Comet assay studies and an introduction
to these types of studies are given in the current chapter.

The general principle of the Comet Assay is as follows: a sample of cells is
embedded in agarose gel on a slide. The cells are lysed (disrupting the cell
membrane resulting in release of the cell content), such that the main remains
are the DNA, which naturally are in a supercoiled state (the shape of the DNA
caused by winding of the DNA strands). The slide is subjected to electrophoresis
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Figure 2.1: Comet assay micrographs of untreated cells to the left and cells that
are treated with a DNA damaging agent to the right. Although the formal name of
the assay is Single Cell Gel Electrophoresis, it is more commonly referred to as the
Comet assay due to the comet-like appearance of damaged cells. Reprinted with kind
permission from Cell Biolabs.

thereby exposing the negatively charged DNA to an electric field. The result-
ing structure observed by fluorescent microscopy often resembles a comet as
illustrated in Figure 2.1 (Collins, 2004; Kumaravel and Jha, 2006).

The hypothesized underlying mechanism of the comet-shaped formation is that
breaks in the DNA strands implicate a relaxation of the DNA supercoil structure
and that damaged DNA are more free to migrate than undamaged DNA. The
shape of the comet is thus interpreted as a measure of the number of DNA
strand breaks (Collins, 2004; Olive and Banáth, 2006).

2.1 Comet assay data

Several measures seeking to quantify the shape of the obtained comet and
thereby the degree of DNA damage have been suggested. The most commonly
used are the % tail DNA (also called the tail intensity, TI), the tail length and
the Olive tail moment (tail length ˆ % tail DNA). The % tail DNA has gradu-
ally become recognized as the most suitable end point. Among other things this
is due to its comparability across studies and that it, up to a certain thresh-
old, has been shown to be linearly related to break frequency (Collins et al.,
1996; Collins, 2004; Kumaravel and Jha, 2006; Lovell and Omori, 2008). In the
present study all data are quantified according to the % tail DNA end point.

In most studies 50 or 100 cells are scored on each slide and the shape of the
individual electrophoresed cells are fairly distinct. As illustrated in Figure 2.2
the % tail DNA distribution is strongly positively skewed and roughly takes
values between 0 and 80%. When cells are exposed to a genotoxic agent causing
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Figure 2.2: Example of data emerging from a Comet assay study. To the left is a %
tail DNA distribution summarizing the cells scored on one slide belonging to a vehicle
group. To the right is the % tail DNA distribution appertaining to a slide from a
positive control group. The animals in the positive control group have been exposed
to a DNA damaging agent known to induce DNA strand breaks, which usually inflicts
additional skewness to the % tail DNA distribution.

DNA strand breaks, the response level is in general expected to increase due
to the relaxation of the DNA supercoil structure. This will in turn impose
additional skewness to the observed distribution of the % tail DNA.

The Comet assay experiments generating the present data are conducted as
follows: animals are randomly assigned to one of four different treatment groups,
i.e. one vehicle group and three groups administered increasing doses of the
compound of interest. There are five animals in each group. One or more sample
of cells are collected from each animal, put on slides and processed as described
above yielding a response of % tail DNA for each cell. This setup imposes a
hierarchical structure of data, that is, slide is nested within animal that in turn
is nested within treatment. This structure is illustrated in Figure 2.3. Often
the interest lies in the assessment of the genotoxic effect potentially induced by
the specific doses of the compound that is tested. The specific animals used in
the study are not of particular interest but merely act as representatives of the
general population of that species.

2.2 Statistical analysis of Comet assay data

There are various approaches regarding the statistical analysis of Comet assay
data. Due to the skewed nature it has been suggested to model this type of
data by means of the Weibull distribution (Ejchart and Sadlej-Sosnowska, 2003;
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1 2 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Treatment

Animal

Slide

Figure 2.3: Outline of the design commonly used in Comet assay studies. This
example shows three treatment groups, four animals per treatment and two slides per
animal. For each slide a number of cells are scored, usually in the range of 50-100
cells.

Verde et al., 2006), however it seems that only statistical methods relying on the
normal distribution are used in practice (see e.g. the literature study in Paper
B for further details). As Comet assay data are hierarchically structured it is
crucial to reflect this in the statistical analysis. This can be attained by appro-
priately summarizing data or by accommodating the structure in the model.
In the following, three related statistical models valid for fitting Comet assay
data are presented, serving as a reference for the current and the succeeding two
chapters. When data are balanced and normally distributed all three methods
are equivalent. Due to the assumption of normally distributed data it may be
requisite to transform data prior to the statistical modeling.

2.2.1 Using raw cell scores as the response

When the raw cell scores are used as the response the hierarchical structure
of data and the randomly selected animals should be properly accounted for.
This can be done by employing a linear mixed-effects model with treatment as
a fixed effect and animal and slide as random effects. Animal is nested within
treatment and slide is nested within animal:

Yijkl “ µ` τi ` βpiqj ` γpijqk ` εpijkql (2.1)

where

i “ 1, ..., a, j “ 1, ..., b, k “ 1, ..., c, l “ 1, ..., n,

βpiqj „ Np0, σ2
βq, γpijqk „ Np0, σ2

γq, εpijkql „ Np0, σ2q.

Yijkl is the ijklth observation (one score for each cell) and µ and τi are the fixed
effects for the intercept and treatment, respectively. βpiqj is the random effect
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of the jth animal nested within the ith treatment, γpijqk is the random effect
of the kth slide nested within the ith treatment and jth animal and εpijkql is
the within-group error. The parentheses in the subscripts indicate the nesting
structure with the parent level(s) given inside the parentheses. See Montgomery
(2005) for a more elaborate exposition of the linear mixed-effects model with
nested effects.

2.2.2 Summarizing the response for each slide

Another way to analyze data is to summarize the % tail DNA distribution for
each slide into a single summary statistic and use this measure in the subsequent
analysis. Due to the hierarchical structure of data and the randomly selected
animals a suitable analysis of the summarized data is a linear mixed-effects
model with treatment as a fixed effect and animal as a random effect and with
animal nested within treatment:

Yijk “ µ` τi ` βpiqj ` εpijqk (2.2)

where

i “ 1, ..., a, j “ 1, ..., b, k “ 1, ..., n,

βpiqj „ Np0, σ2
βq, εpijqk „ Np0, σ2q.

Yijk is the summary statistic of interest calculated for each slide and µ and τi
are the fixed effects for the intercept and treatment, respectively. βpiqj is the
random effect of the jth animal nested within the ith treatment and εpijqk is
the within-group error.

2.2.3 Summarizing the response for each animal

A third option is to calculate a summary statistic for each animal and use this
as the response. A suitable model is the fixed-effects model with treatment as
a fixed effect:

Yij “ µ` τi ` εij (2.3)

where

i “ 1, ..., a, j “ 1, ..., n,

εij „ Np0, σ2q.
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Yij is the summary statistic of interest calculated for each animal, µ and τi
are fixed effects for the intercept and treatment, respectively, and εij is the
within-group error.

Model (2.3) is often referred to as a one-way ANOVA. As will be discussed
in Chapter 3 it appears that rather than fitting this model to the cell scores
summarized for each animal, it is sometimes applied to the raw cell scores or
the statistics summarized for each slide. In case of the latter model (2.3) rather
should be formulated as

Yij1 “ µ` τi ` εij1 (2.4)

where

i “ 1, ..., a, j1 “ 1, ..., bn,

εij1 „ Np0, σ12q.

Yij1 is the summary statistic for each slide, µ and τi are fixed effects for the
intercept and treatment, respectively, and εij1 is the assumed within-group error.

2.2.4 Model choice for Comet assay data

Whenever the normality assumption is met, possibly by transformation, model
(2.1)-(2.3) are all valid approaches. Yet, (2.2) has throughout this thesis served
as the model of choice both in regard to the analysis of Comet assay data and
the power and sample size determinations that are provided in Paper D. Given
the hierarchical structure of data it is natural to fit a model that reflects this
structure. A hierarchical model suitably handles missing observations and infor-
mation about the animal-to-animal variation compared to the residual variation
is readily available. Conversely, the cells are often scored by imaging software
and in some versions, if not all, it is possible to extract a summary statistic
such as the mean or median directly without having to deal with the raw cell
scores. This simplifies the data handling considerably and it is not uncommon
practice to make use of summary statistics in the analysis of Comet assay data
(see e.g. Paper B). Also, the use of summary statistics in the statistical analysis
to some extend stabilizes the distribution of data thereby alleviating assump-
tional concerns. Altogether, we find model (2.2) to conveniently balance these
different concerns.
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2.3 Which summary statistic?

A natural question that arises is which summary statistic to employ. Different
summary statistics have been proposed, including the mean (Lovell et al., 1999;
Wiklund and Agurell, 2003; Bright et al., 2011), median (Lovell et al., 1999;
Wiklund and Agurell, 2003; Duez et al., 2003; Bright et al., 2011), 75th per-
centile (Lovell et al., 1999; Duez et al., 2003) and the 90th percentile (Wiklund
and Agurell, 2003; Duez et al., 2003). Also, to comply with the skewness of
the within-sample distributions it has been suggested to log-transform the raw
data prior to the summary calculations (Lovell and Omori, 2008). Although
a few studies specifically address this issue (Wiklund and Agurell, 2003; Duez
et al., 2003), they are concerned with different end points than the % tail DNA,
and in practice there is no consensus as to which statistic most appropriately
summarizes data.

One aim of Paper D is to identify the statistic that most suitably summarizes
the % tail DNA distribution for each slide. This assessment is based on data
gathered from 11 separate Comet assay studies. Details about these studies are
found in Paper D.

The eligibility of a range of summary statistics is assessed: the mean, median
(50th), 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th and 95th percentile of both
the raw data as well as data subjected to the natural logarithm are calculated.
Also, the log-transformed mean of the raw data is calculated and will be referred
to as log(mean). In total, 23 candidate summary statistics are extracted.

Given the importance of model assumptions, the criteria for selecting a summary
statistic are founded herein. As the data are fitted a linear mixed-effects model
as defined in (2.2), the criteria are accordingly established in decreasing order
of significance: 1) variance homogeneity, 2) normality and 3) uncertainty of
estimates. The first two criteria are directly derived from the assumptions
underlying the linear mixed-effects model (Pinheiro and Bates, 2000). The
variance homogeneity assumption may be violated in two distinct ways; 1a) the
variance does not remain constant over the range of estimated mean values and
1b) the variance does not remain constant across dose groups. Accordingly, the
assessment of the variance homogeneity assumption is two-fold.

For each study and summary statistic, model (2.2) is fitted and the standardized
residuals are calculated. To assess criterion 1a) a linear model is fitted regressing
the square root of the absolute value of the standardized residuals on the fitted
values from model (2.2) and the p-values of the slopes are extracted. Criterion
1b) is assessed by applying Brown-Forsythe’s test (also known as the modified
Levenes test) (Brown and Forsythe, 1974), which is robust to possible departures



14 Comet assay studies

from an underlying normal distribution, to the standardized residuals and the
p-values are calculated. The normality assumption addressed in criterion 2) is
evaluated by means of Shapiro-Wilk’s test (Shapiro and Wilk, 1965), which is
applied to the standardized residuals and the p-values are obtained. It should be
stressed that while p-values often serve as a mean to decide whether a hypothesis
should be rejected or not, the p-values in this setting are solely intended as a
measure of the relative performance among the different candidates.

Criterion 4) concerns the uncertainty of the estimates. The within-slide dis-
tributions are positively skewed and bear some resemblance with a log-normal
distribution. The asymptotic variance of the percentiles of a given distribution
is found as

Varpπpq “
pp1´ pq

npfpF´1ppqqq2
, (2.5)

where πp is the pth percentile, f is the relevant probability density function
and F´1ppq is the corresponding quantile function (Mosteller, 1946; Cox and
Hinkley, 1974). The variance of the mean of the log-normal distribution is

VarpEpY qq “
e2µ`σ2

peσ
2

´ 1q

n
(2.6)

(Kotz et al., 2000), where Y „ lnN pµ, σ2q. For the normal distribution the
variance of the mean is given as

Varpµq “
σ2

n
(2.7)

(Kotz et al., 2000). The asymptotic variances are calculated for the log-normal
distribution (resembling the raw within-slide distribution) and the normal dis-
tribution (resembling the log-transformed within-slide distribution) with pa-
rameter values µ “ 2, σ2 “ 2 and n “ 100. The variance of log(mean) is not
provided since it does not readily compare to the variance of the remaining
summary statistics.

The p-values extracted according to criteria 1 and 2 are shown in Figure 2.4.
The p-values related to criterion 1a), namely whether the variance remains
constant over the range of estimated mean values are shown in Figure 2.4a.
Figure 2.4b depicts the p-values regarding criterion 1b), that is if the variance
remains constant across dose groups. The p-values in Figure 2.4c concerns
the normality assumption considered in criterion 2). In all cases high p-values
support the validity of the assumption of variance homogeneity or normality
whereas low p-values may indicate a violation. The variances of the summary
statistics are given in Table 2.1. The variances are comparable within each
column.
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Figure 2.4: Assessment of the variance homogeneity and the normality assumption.
The depicted p-values are concerned with (a) variance homogeneity over the range of
estimated mean values, (b) variance homogeneity across dose groups and (c) normality.
The median p-values are given by the grey lines and the two vertical lines separate
the summary statistics of the raw data, the log(mean) and the summary statistics of
the log-transformed data. The ’pth (raw data)’ and ’pth (log data)’ are short for the
pth percentile of the raw data and of the log-transformed data, respectively.
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Table 2.1: The variance of each summary statistic under the assumption that the
within-sample distributions for each gel are log-normally distributed with µ “ 2,
σ2
“ 2 and n “ 100. The variances are multiplied by a factor of 50 for readability.

Summary statistic Variance assuming a Variance assuming a
log-normal distribution normal distribution
(resembling raw data) (resembling log(data))

mean 64.2 1.0
median 4.3 1.6
55th perc. 6.1 1.6
60th perc. 9.0 1.6
65th perc. 13.4 1.7
70th perc. 20.8 1.7
75th perc. 34.0 1.9
80th perc. 60.0 2.0
85th perc. 119.6 2.3
90th perc. 298.0 2.9
95th perc. 1272.5 4.7

In general, it is desirable to settle on a summary statistic that is associated with
high p-values in Figure 2.4 and a low variance in Table 2.1. Furthermore, sum-
mary statistics having a meaningful interpretation are endeavored. The results
in Figure 2.4 and Table 2.1 show that the summary statistic that most consis-
tently accommodates these concerns is the median of the log-transformed data.
Secondarily, the mean of the raw data seems to provide a suitable alternative.
The remaining summary statistics either fall through in terms of the extracted
p-values, the variance of the summary statistics or with respect to the ease
of interpretation. Altogether, we conclude that median of the log-transformed
data most suitably summarizes the % tail DNA distribution obtained from each
slide.

2.4 Interpretation of the estimates when data
are log-transformed

Whenever log-normally distributed data are encountered it can be advanta-
geous to log-transform data in order to meet the assumptions of a range of
standard analysis methods. However, this approach entails the challenge that
the estimates from a statistical analysis are at a different scale than the original
values, and this changes the interpretation. As the logarithmic transformation
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is monotonic, the order of the data is preserved after transformation, hence

medianplogpdataqq “ logpmedianpdataqq (2.8)

and the median of the log-transformed data can thus be viewed as a log-
transformation of the median values. In the following we will outline how the
estimates, as they often are obtained when a linear model is fitted in a statistical
software package, can be interpreted on the original log-normal scale.

2.4.1 Moments of the log-normal distribution

A moment generating function (m.g.f.) is not defined for the log-normal dis-
tribution. Yet, the moments of the log-normal distribution can be obtained by
means of the m.g.f. of the normal distribution.

Let U „ N pµ,Σq and Y “ eU so that Y „ lnN pµ,Σq. The joint moment of
Y is

µ1rpY q “ EpY r11 ¨ ¨ ¨Y rkk q.

Substituting Y with eU gives

µ1rpY q “ Eper1U1er2U2 ¨ ¨ ¨ erkUkq “ Eper
JU q,

however this is also the exact definition of the m.g.f. Since U is a normal
random variable then

m.g.f. “ er
Jµ` 1

2r
JΣr

and thus

µ1rpY q “ er
Jµ` 1

2r
JΣr. (2.9)

(Kotz et al., 2000). From (2.9) the expected value (the first raw moment) is
found as

EpYiq “ eµi`
1
2 Σii , (2.10)

and the covariance (the second bivariate mixed central moment) as

CovpYi, Yjq “ eµi`µj`
1
2 pΣii`ΣjjqpeΣij ´ 1q

“ EpYiqEpYjqpe
Σij ´ 1q, (2.11)

which for i “ j reduces to the variance (the second central moment)

VarpYiq “ e2µi`ΣiipeΣii ´ 1q
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From (2.11) we can obtain the elements of Σ as

Σij “ ln

ˆ

1`
CovpYi, Yjq

EpYiqEpYjq

˙

,

whereas (2.10) provides

µi “ lnpEpYiqq ´
1

2
Σii

“ lnpEpYiqq ´
1

2
ln

ˆ

1`
VarpYiq

EpYiq2

˙

2.4.2 Relation between expected values of normal and log-
normal random variables

Using the results about the moments of the log-normal distribution we can
now establish the relation between estimates as they often are obtained when a
linear model is fitted and the expected values on the original log-normal scale.
Consider the ratio EpYiq{EpYjq. From (2.10) then

EpYiq

EpYjq
“
eµi`

1
2 Σii

eµj`
1
2 Σjj

“ eµi`
1
2 Σii´µj´

1
2 Σjj

Taking the natural log of the ratio gives

ln

ˆ

EpYiq

EpYjq

˙

“ µi `
1

2
Σii ´ µj ´

1

2
Σjj

so that

µi ´ µj “ ln

ˆ

EpYiq

EpYjq

˙

´
1

2
Σii `

1

2
Σjj (2.12)

Often the variances Σii and Σjj are assumed to be equal and (2.12) is reduced
to

µi ´ µj “ ln

ˆ

EpYiq

EpYjq

˙

(2.13)

In many statistical software packages, including R and SAS, the estimates are
by default parameterized as the difference between the average responses for
each group compared to a reference group. The result in (2.13) is thus relevant
whenever data are log-transformed prior to the analysis. It means that if we
for instance obtain an estimate that is µi ´ µj “ 0.69, then on the original
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scale (log-normally distributed data prior to the transformation) the ratio of
the means is

EpYiq

EpYjq
“ e0.69 “ 2,

that is, the response in group i is twice the size of the response in group j.
It is important to keep in mind that the result given in (2.13) only is valid
when the variances Σii and Σjj are assumed to be equal. This assumption may
not hold when e.g. a given compound is known to affect the variance, thereby
inducing different variances in the groups receiving the compound compared to
the vehicle group.

The result in (2.13) is quite convenient for at least two reasons. First, although
the interpretation of the estimates deviates from the usual interpretation, it is
still relatively straightforward to interpret the results. Second, since the esti-
mates are translated to a ratio on the original scale it means that the estimates
are invariant to the reference level, which for Comet assay studies is the vehicle
group. It can be quite convenient and the ratio of expected values, phrased as
fold change, is sometimes used to communicate the results from Comet assay
studies (see e.g. Smith et al., 2008; Lovell and Omori, 2008; Guérard et al.,
2014). The invariance can be seen as a fortunate property for log-normally
distributed data that does not apply to normally distributed data.
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Chapter 3

Type I errors

Statistical tests often concern whether a specified hypothesis is to be rejected
or not. However, when inference is made on the grounds of observed data
its validity cannot be absolutely guaranteed. Unavoidably, there is a risk of
committing an error when conclusions are drawn and mainly two types of errors
are accentuated. A type I error is a false rejection of the hypothesis in question,
whereas a type II error occurs when we incorrectly fail to reject the hypothesis.
Many statistical tests involve that a bearable type I error rate is specified, which
also is known as the nominal α. The current chapter deals with this type I error
rate, while Chapter 4 concerns the type II error rate both in a general setting
and within the framework of Comet assay studies.

In practice, the actual type I error rate can deviate from the nominal α, which
is a concern that recurrently has been addressed in the literature. A frequent
source is the lack of correction when multiple hypotheses are tested, which also
is the main concern in the perpetration of data dredging (Strasak et al., 2007;
Nuzzo, 2014). When model assumptions are violated it likewise affect the type
I error rate, and the severity depends on the type of assumption and the degree
to which it is violated.

As described in Section 2.1 data from in vivo Comet assay studies usually are
hierarchically structured. During our work with in vivo Comet assay data we
realized that this hierarchical structure does not seem to be consistently reflected
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in the statistical models as they are reported in the Comet assay literature.
Consequently the assumption regarding independence among observations is
violated. This assumption is rather crucial and the implications when it is
violated are severe.

This chapter addresses the implications when the hierarchical structure is ig-
nored. This issue has been addressed previously (e.g. Kenny and Judd, 1986;
Kromrey and Dickinson, 1996; Baldwin et al., 2005; Musca et al., 2011) but ap-
pears to continue to prevail. Our aim with this study is to participate in raising
awareness on this serious matter and to examine in which way the implications
arise. Paper A and B deal with the implications specifically in the framework
of Comet assay studies. The hierarchical design considered here is by no means
limited to Comet assay studies though and commonly occurs in a variety of
fields. Accordingly Paper C presents this issue in a general framework.

3.1 Statistical analysis of Comet assay studies:
A literature study

To assess to which extent the hierarchical structure of Comet assay studies is
disregarded a literature study was conducted. More details are provided in
Paper B.

Papers were retrieved from the search engine Web of Science with title: in vivo
and topic: Comet assay from January 2012 until December 2013, which resulted
in 95 papers. Of these, 47 papers conducted in vivo Comet assay studies with
an experimental setup as in Figure 2.3 and accordingly were included in the
literature study.

It was in general not easy to determine how the statistical analysis was con-
ducted as the description of the statistical methodology often was brief and
imprecise. Most papers used a one-way ANOVA (45%), ANOVA (21%) or
Kruskal-Wallis test (15%), i.e. methods that assume independence. 18 papers
(38%) stated ”Results are expressed as mean ˘ SD” (or mean ˘ SE). However,
it was not clear how it was calculated (i.e. for each slide, for each animal etc.) or
if the statement applies to the data representation in tables or in the statistical
analysis. 23 papers (49%) calculated a summary statistic prior to the statistical
analysis, but of these it was only clear how it was done in 15 papers (65%).
Overall, in 24 papers (51%) it seemed as no summary statistic was calculated
prior to the statistical analysis. The 24 papers were published in 20 different
biomedical journals.
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We find this result problematic for two reasons. First, the brief and imprecise
description of the statistical methodology impedes reproducibility as well as a
proper interpretation of the results. Second, the lack of a calculated summary
statistic combined with the reported statistical methods strongly indicate that
the hierarchical structure in some cases is not suitably reflected in the statistical
analysis.

3.2 The type I error rate disregarding the hier-
archical structure of data

The following section addresses the implications when the hierarchical structure
of data is disregarded. First, approximate closed-form expressions for the type
I error rate are derived. Next, the validity of the approximate type I error
rates are validated by a simulation study. A more elaborate exposition of all
derivations and results are provided in Paper B and C.

3.2.1 Sampling distributions

When hierarchical data structured as in Figure 2.3 is fitted a one-way ANOVA
as defined in (2.4) an F -statistic is calculated as

Fanova “

bn
a
ř

i“1

`

Y i¨¨ ´ Y ¨¨¨
˘2
{ pa´ 1q

a
ř

i“1

b
ř

j“1

n
ř

k“1

`

Yijk ´ Y i¨¨
˘2
{ papbn´ 1qq

(3.1)

The sum of squares in the numerator is distributed as

bn
a
ÿ

i“1

`

Y i¨¨ ´ Y ¨¨¨
˘2
„
`

nσ2
β ` σ

2
˘

χ2 pa´ 1, λq ,

where

λ “

bn
a
ř

i“1

τ2
i

nσ2
β ` σ

2
.

Since Yijk are not independent the sum of squares in the denominator of (3.1)
does not follow a usual χ2-distribution (see Box (1954) for details) but is rather
a linear combination of independent χ2-distributed random variables. An ap-
proximate distribution can be obtained by means of the Welch-Satterthwaite
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approximation (Welch, 1938; Satterthwaite, 1941; Box, 1954) in that the sum
of squares are approximated by a scaled χ2-distribution

a
ÿ

i“1

b
ÿ

j“1

n
ÿ

k“1

`

Yijk ´ Y i¨¨
˘2
„̈̈ cχ2pνq

Matching the first two moments leads to

c “
pb´ 1qpnσ2

β ` σ
2q2 ` bpn´ 1qpσ2q2

pb´ 1qpnσ2
β ` σ

2q ` bpn´ 1qσ2

and

ν “
appb´ 1qpnσ2

β ` σ
2q ` bpn´ 1qσ2q2

pb´ 1qpnσ2
β ` σ

2q2 ` bpn´ 1qpσ2q2
,

where ν is known as the effective degrees of freedom (Satterthwaite, 1941). The
ratio of χ2-distributed random variables each divided by their degrees of freedom
follows an F -distribution. However, to assess the sampling distribution of the
test statistic in (3.1) we need to adjust for the incorrect degrees of freedom
in the denominator and also that the numerator and denominator are scaled
differently. This leads to

Fanova „̈̈ ξ F pa´ 1, ν, λq, (3.2)

where

ξ “
pbn´ 1qpnσ2

β ` σ
2q

pb´ 1qpnσ2
β ` σ

2q ` bpn´ 1qσ2
.

Accordingly, the expected value becomes

EpFanovaq « ξ
ν

pa´ 1qpν ´ 2q

˜

a´ 1`

bn
a
ř

i“1

τ2
i

nσ2
β ` σ

2

¸

(3.3)

(Johnson et al., 1995). When σ2
β “ 0 then ξ “ 1 and under H0 and for suf-

ficiently large ν then EpFanovaq « 1. For σ2
β ą 0 then ξ ą 1 implying that

EpFanovaq ą 1.

The observed Fanova-statistic is improperly compared to a critical value from
an unscaled F -distribution and the type I error rate is thus found as

Type I error rate « 1´GspFα;a´1,apbn´1q; a´ 1, νq,

where Gs refers to the scaled cumulative distribution function of Fanova. Equiv-
alently, the type I error rate can be found based on a non-scaled cumulative
distribution

Type I error rate « 1´G
`

ξ´1 Fα;a´1,apbn´1q; a´ 1, ν
˘

(3.4)
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and the type I error rate can be obtained by means of a non-scaled F -distribution,
which is readily available in most statistical software.

The type I error rate can also be formulated in terms of the ratio of the animal
and error variance component

σ2
ratio “

σ2
β

σ2

The effective degrees of freedom and the inverse scaling factor then become

ν “
appb´ 1qpnσ2

ratio ` 1q ` bpn´ 1qq2

pb´ 1qpnσ2
ratio ` 1q2 ` bpn´ 1q

and

ξ “
pbn´ 1qpnσ2

ratio ` 1q

pb´ 1qpnσ2
ratio ` 1q ` bpn´ 1q

.

3.2.2 Simulation study

A simulation study was carried out to verify the results from the closed-form
expressions given in the previous section. Also, the impact on the type I er-
ror rate when the hierarchical structure is disregarded is provided for different
sample sizes and variance ratios.

The particular hierarchical data structure considered her occurs within a wide
range of scientific disciplines. The levels of the parameters are selected to com-
prise the diversity as they naturally appear in these different fields. This section
recapitulates some of the results of Paper C, while type I error rates reflecting
parameter values specifically relevant for Comet assay studies are given in Pa-
per A and B. Due to the more general setting of Paper C the variables animals
and slides are below referred to as groups and observations, respectively.

Table 3.1 outlines the type I error rates for different combinations of treatments,
groups per treatment, observations per group and ratios of the variance com-
ponents. The approximate type I error rates are calculated from (3.4), whereas
the simulated type I error rates are obtained by simulating data from model
(2.2) with 10000 simulations conducted for each combination. The type I error
rate in general increases with increasing number of treatments, number of ob-
servations per group and the variance ratio, σ2

ratio “ σ2
β{σ

2. Surprisingly, the
number of groups per treatment do not noticeably affect the type I error. For all
cases the type I error rate was greater than the nominal α at 0.05. Most combi-
nations gave type I error rates greater than 0.10 and more than half resulted in
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Table 3.1: Type I error rates for different combinations of number of treatments (a), groups per
treatment (b), observations per group (n) and variance ratio σ2

ratio “ σ2
β{σ

2. The approximate type I
error rates were found from (3.2), and the simulated type I error rates were based on 10000 simulations
for each combination (each cell). In all cases the nominal α was 0.05.

Treatm. Groups Observ. σ2
ratio

0.25 0.50 1.00 2.00

Appr. Sim. Appr. Sim. Appr. Sim. Appr. Sim.

2 2 2 0.076 0.074 0.099 0.095 0.134 0.127 0.177* 0.161
10 0.259 0.255 0.363 0.366 0.465 0.462 0.548 0.547
100 0.683 0.682 0.760 0.765 0.813 0.816 0.849 0.847

50 2 0.074 0.074 0.090 0.087 0.110 0.108 0.130 0.131
10 0.242 0.240 0.328 0.332 0.406 0.405 0.462 0.457
100 0.668 0.663 0.738 0.737 0.784 0.783 0.812 0.813

6 2 2 0.107 0.107 0.160 0.161 0.242 0.235 0.335 0.336
10 0.594 0.590 0.788 0.794 0.899 0.901 0.948 0.948
100 0.993 0.992 0.998 0.998 0.999 1.000 1.000 1.000

50 2 0.101 0.102 0.141 0.140 0.195 0.196 0.251 0.249
10 0.558 0.565 0.738 0.734 0.849 0.851 0.905 0.901
100 0.991 0.990 0.997 0.998 0.999 0.999 0.999 1.000

* Approximate type I error rates not covered by the 95% confidence intervals of the simulated type I
error rates.
Type I error rates greater than 0.20 are marked in bold.
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Figure 3.1: The F -distributions in case of six treatments, two groups per treatment,
ten observations per group and σ2

ratio “ 0.25. The assumed F -distribution refers to the
distribution from which the critical value is obtained. The approximate F -distribution
is the distribution of Fanova as defined in (3.2). The approximate F -distribution has
a heavier right tail implying that the type I error rate is greater than the nominal α
at 0.05.

type I error rates greater than 0.50. To assess the validity of the approximate
type I error rates they were informally compared to the Wilson 95% confidence
intervals (CI) (Wilson, 1927; Agresti and Coull, 1998) of the simulated type I
error rates. In all but one case the approximate type I error rates were covered
by the CI for the simulated type I error rates. This is what is expected given
the number of comparisons and the confidence level. The one case not covered
by the appertaining CI is marked with an asterisk in Table 3.1.

Figure 3.1 illustrates the inflation of the type I error rate. Here the sampling
distributions are shown for six treatments, two groups per treatment, ten ob-
servations per group and a variance ratio of σ2

ratio “ 0.25. The dashed line is
the assumed sampling distribution of Fanova when the hierarchical structure is
ignored, and the distribution from which the critical value is determined. The
solid line outlines the approximate scaled F -distribution given in (3.2). It is
seen that additional skewness is imposed on the approximate F -distribution
implying a heavier right tail. For the combinations shown in Table 3.1 the
expectations EpFanovaq given in (3.3) are between 1.21 and 134.56.
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Figure 3.2: The type I error rate versus the nominal α (black line) in case of six
treatments, two groups per treatment, ten observations per group and σ2

ratio “ 0.25.
The grey solid reference line corresponds to equality between the type I error rate and
the nominal α. Both axes are on a logarithmic scale.

Proceeding with the same example Figure 3.2 shows the type I error rate as a
function of the nominal α (black line) on the logarithmic scale. The grey solid
line outlines equality between the type I error rate and the nominal α. For all
values of the nominal α the type I error rate is seen to be considerably inflated
when the hierarchical structure is ignored. For the example considered here a
nominal α of 0.001 corresponds to a type I error rate of 0.220 while a nominal α
of 0.01 corresponds to a type I error rate of 0.406. That means that even when
significance is demonstrated at a level of 0.001, which often is considered fairly
strong evidence against H0, it does not guarantee that the actual type I error
rate is anywhere near the conventional level at 0.05 if a hierarchical structure
has been disregarded.



Chapter 4

Type II errors

The previous chapter concerned type I errors, which take place when the null
hypothesis incorrectly is rejected. There is another type of error that is closely
related to the type I error, namely the type II error that occurs when we fail to
reject a null hypothesis when it in fact does not hold.

Committing type I error is often considered more serious than committing a type
II error. Statistical tests in general control the type I error rate by means of the
significance level, α, which explicitly must be specified by the data analyst. In
contrast, it is possible to conduct a statistical test without considering the type
II error rate by any means. This may partly explain the lack of consideration
toward controlling the type II error rate that characterize too many biomedical
studies (e.g. Carp, 2012; Button et al., 2013; Gaskin and Happell, 2013; Koletsi
et al., 2014).

This chapter will be dealing with type II error rates and related quantities in
general and for in vivo Comet assay studies in particular. In vivo Comet assay
studies are conducted using living animals, usually mice or rats, and accord-
ingly they belong to a significant area of biomedical studies, namely animal
experiments. The diverse and far-reaching impact of animal experiments is
emphasized by Hau and Schapiro (2014, p. vii):

”Most of our present knowledge concerning human physiology, mi-
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crobiology, immunology, pharmacology, pathology, and related disci-
plines has been gained from studies involving animals [. . . ] Biomed-
ical research involving animals remain absolutely essential for the
advancement of the medical, veterinary, agricultural and biological
sciences. All drugs prescribed for use in humans and animals have
been developed and tested in laboratory animals as models. Nonin-
vasive imaging techniques are optimized in animal models. New sur-
gical techniques and materials are evaluated in animals before they
are applied in cases that involve humans or domestic animals. The
dramatic developments in genetics – the sequencing of the human
genome and the genomes of many of the most important laboratory
animal species, translational research, and personalized medicines –
all rely on access to high-quality laboratory animals as models for
humans.”

Nevertheless, animal testing is a matter of quite some controversy. While some
consider it an indispensable tool toward biomedical advances other see it as
plain unjustifiable animal cruelty. Emotions and passion are found on both
sides of this ongoing dispute. The discrepancies are not easily accommodated
and existing legislation reflect a compromise that strives to comply with both
sides. One principle that has become widely accepted is the The Three Rs (3Rs)
(Russell and Burch, 1959; Hau and Schapiro, 2014), which is short for Replace-
ment, Reduction and Refinement. This means that animal testing should only
be carried out when no other options are available (Replacement), the number
of animals used should be reduced as much as possible (Reduction) and the
experiments should be refined in order to reduce the discomfort of the animals
(Refinement). The 3R principle has since 2010 been covered by the EU legisla-
tion (European Parliament, 2010) and a 3R-Center has been appointed by the
Ministry of Food, Agriculture and Fisheries of Denmark1.

One factor that affects the type II error rate is the sample size as will be out-
lined in Section 4.2. This is addressed by the second R, that is, Reduction.
The sample size in many cases directly impacts the resources that need to be
allocated a given study; hence the sample size is not uncommonly a concern in
many research areas. However, it is a rare exception that such an experimental
design issue is of a concern to as different parties as private individuals, orga-
nizations and supreme authorities. The attention is a natural reflection of the
major ethical dilemmas that animal experiments are entangled in. These very
ethical concerns are the reason that the sample size must be pondered upon
carefully.

1see e.g. http://fvm.dk/landbrug/indsatsomraader/dyrevelfaerd-og-transport/3r/

3r-center/ (in danish) and http://www.foedevarestyrelsen.dk/english/Animal/Pages/

The-Danish-3R-Center.aspx (in english)

http://fvm.dk/landbrug/indsatsomraader/dyrevelfaerd-og-transport/3r/3r-center/
http://fvm.dk/landbrug/indsatsomraader/dyrevelfaerd-og-transport/3r/3r-center/
http://www.foedevarestyrelsen.dk/english/Animal/Pages/The-Danish-3R-Center.aspx
http://www.foedevarestyrelsen.dk/english/Animal/Pages/The-Danish-3R-Center.aspx
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It is possible that the immense focus on reducing the number of animals have
been implemented a little too well within some biomedical research areas. Al-
though it has not led to that statistical power in general are determined prior to
the animal studies (Hawkins et al., 2013), it instead seems that numerous ani-
mal experiments make use of small sample sizes without providing any explicit
justification, leading to that statistical power for these studies are insufferably
low (see e.g. Jennions and Møller, 2003; Hofmeister et al., 2007; Sena et al.,
2010; Smith et al., 2011; Giuffrida, 2014). While an excessive use of animals
clearly is a waste of animal lives, it may not be so obvious that the opposite can
be of even greater waste. The type II error rates are affected by the sample size
and such incidences erroneously indicate2 no effect of the treatment in question.
Studies relying on small sample sizes may thus not only be uninformative but
even prove misleading.

Due to the ongoing emotional dispute it may not be easy to encourage compli-
ance toward the use of larger sample sizes when reasonable. Statistical power
provides a sensible reasoning for choosing a proper sample size, be it greater or
smaller, rather than using what sometimes appears to be an arbitrary number
of animals. Given the importance of animal studies, the ethical concerns and
the massive resources allocated these, we find it paramount to draw attention
to power and sample size determinations in general and for animal studies in
particular.

4.1 Type II errors and statistical power

The concept of statistical power dates back to the late 1920s. Statistical power
is closely related to the type II error rate (β), in that

Power “ 1´ β, (4.1)

that is, statistical power is the probability of correctly rejecting the null hy-
pothesis. It naturally emerges within the framework of hypothesis testing as
it was formulated by Jerzy Neyman and Egon Pearson (Neyman and Pearson,
1928a,b). The hypothesis tests (or the related concept of significance tests in
words of Fisher) as they often are presented nowadays is an ungainly mixture
of ideas presented by Ronald Fisher on one side and Neyman and Pearson on
the other side (Hubbard and Bayarri, 2003; Nuzzo, 2014). While Fisher refused
to contemplate any hypotheses but the null, Neyman and Pearson suggested
the explicit definition of two competing hypotheses; the null hypothesis and the

2although the null hypothesis has not been proved when we fail to reject it, in practice it
is sometimes perceived as such (Altman and Bland, 1995).
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alternative. Type I error rates can be found solely on grounds of the null hy-
pothesis, whereas type II error rates and statistical power requires the explicit
formulation of an alternative hypothesis. The idea of statistical power did not
immediately gain currency. Its revival in the early 1960s is mainly attributable
to the significant work by Jacob Cohen (Descôteaux, 2007). Cohen published
several papers and books on this topic, of which several became highly cited
classics especially in the field of behavioral science (Cohen, 1988, 1992, 2005).
Although Cohen succeeded in raising awareness on statistical power, his ideas
on standardized small, medium and large effect sizes have been subjected to
criticism (Lenth, 2001).

Nowadays, a brief introduction to the concept of statistical power forms part of
the curriculum in many introductory statistics courses and power calculations
are in general recommended whenever a study is to be conducted. However,
as mentioned above disparity seems to exist between this recommendation and
common practice within the biomedical field. This inconsistency may result
from several factors. First, it is possible that researchers are inspired by the
work of others. If relevant literature does not report the use of power calcula-
tions, they may less likely be used prospectively. Second, assumptions about the
effect size of interest and variability of data must be made as part of the power
determinations, i.e. before the study is carried out, which inherently is diffi-
cult. Third, power calculations add considerable to the statistical complexity.
Whereas hypothesis testing only requires the comparison of a test statistic to
a null distribution, power determinations further include the formulation of an
alternative distribution, which almost always imply non-central distributions.
Fourth, the literature on statistical power is sparingly scattered, making this
topic easy to neglect.

Owing to the wide range of statistical software available it is possible to apply
statistical methods without understanding the underlying theory in depth. Nu-
merous options are also available for assessing statistical power. Functions for
determining statistical power are implemented in all major software packages
such as SAS, R, SPSS, Minitab, Stata etc. Unfortunately, some packages provide
the power software in add-on packages that must be purchased separately and is
thus not available to all researchers. Also, the terminology is not always consis-
tent and can be difficult to decode. Our own experience is primarily with R that
provides power calculations in several different packages (e.g. Halvorsen, 2013;
Fan, 2013; Anderson, 2014; Rizopoulos and Tsonaka, 2009; Millard, 2013; Ball,
2012; Labes, 2014). Some of them overlap in the power functions they provide
and the input arguments happen to differ from package to package, e.g. power
for a t-test using power.t.test from the stats package (R Core Team, 2014)
requires the specification of an unstandardized effect size (difference in means),
while the equivalent pwr.t.test from the pwr package (Champely, 2012) ex-
pects the standardized effect size (which is the unstandardised effect size di-
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vided by the standard deviation). Such subtle though crucial differences that
are ubiquitous in the literature, available online power calculators and commer-
cial software add to the confusion over statistical power. It is beyond doubt
that power software developers are seeking to promote the feasibility of power
calculations and that it merely seems impossible not to contribute to the confu-
sion due to the lack of a consistent terminology that permeates this framework.
Two software packages that stand out though are Java Applets for Power and
Sample Size3 (Lenth, 2009) and G*Power4 (Buchner et al., 2014). The authors
have developed software that is versatile and are supplied with manuals and
papers (Lenth, 2001, 2007; Faul et al., 2007; Mayr et al., 2007; Faul et al., 2009;
The G*Power Team, 2014). This combination enables a consistent terminology
within the material provided by each developer group. Statistical power can
also be assessed by means of simulation, which is an obvious choice for many
statisticians and data analysts due to the simplicity and versatility. However,
this approach requires knowledge on the statistical model in question and about
stochastic simulation in general. For biomedical researchers to pursue this path
there still is a need for an introduction to the general idea underlying statistical
power. An excellent introduction on this matter is provided by Bolker (2008).

Considering the importance of power calculations there is not much literature
covering this area compared to the wealth of expositions that continuously are
published on a range of hypothesis tests. Some papers address this topic by
reviewing how power calculations are used (or rather not used) in publications
(e.g. Hofmeister et al., 2007; Smith et al., 2011; Giuffrida, 2014) thereby rais-
ing awareness on this topic. Others provide closed-form expressions or power
curves for standard tests, such as the t-test or a one-way ANOVA (e.g. Chow
et al., 2002; Algina and Olejnik, 2003; Livingston and Cassidy, 2005); among
these Julious (2004) provides a remarkably comprehensive tutorial. While they
all genuinely contribute to an improvement concerning the use of power cal-
culations in biomedical studies, we still find it inherently difficult to learn the
basic concept of statistical power based on the current literature. We have not
yet seen any papers or textbooks expositing the theory of statistical power by
illustrating the null and the alternative distribution comprising an introduction
to non-central distributions. We consider this a natural path of dissemination
as statistical power is directly derived from these two distributions. As part of
this PhD project a tutorial paper on statistical power was therefore initiated.
As it is not yet ready for submission it is not attached in the Appendix, but
selected parts are included in the following section. The intended audience is
researchers, including biomedical researchers, that not are statisticians but who
have a well-founded basic knowledge in statistics, i.e. a thorough understanding
of sampling distributions and p-values.

3available at http://homepage.stat.uiowa.edu/ rlenth/Power/ (online or stand-alone)
4available at http://www.gpower.hhu.de/ (stand-alone)
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4.2 Summary of a tutorial paper on statistical
power

4.2.1 Introduction

When performing a hypothesis test, we either reject the null hypothesis or fail
to reject it. The decision is based on the significance level, α, which is fixed
prior to the conduction of the hypothesis test. There are four possible outcomes
when conducting the hypothesis test: 1) correctly rejecting the null hypothesis,
2) correctly failing to reject the null hypothesis, 3) incorrectly rejecting the null
hypothesis (type I error) or 4) incorrectly failing to reject the null hypothesis
(type II error). The probability of committing a type I error is called α, whereas
the probability of committing a type II error is β. Statistical power is closely
related to β in that

power “ 1´ β

Statistical power is thus the probability of correctly rejecting the null hypothesis
(Johnson et al., 2010).

reject H0 fail to reject H0

H0 is true type I error (α) correct failure of rejection

H0 is false correct rejection (power) type II error (β)

Table 4.1: The four possible outcomes of a hypothesis test. The probability of the
outcomes are seen in parentheses

The type I error, α, is familiar to most people applying statistical hypothesis
tests, since this figure often serves as criteria for the rejection or failure of
rejection of the null hypothesis. The type II error, β, is also important to
control, since incidences of these erroneously may be perceived to indicate no
effect of the treatment in question. Poorly designed studies with a high rate of
type II errors may thus not only be uninformative but even prove misleading.
Nevertheless, considerations toward this issue often seems to be disregarded
indicating a low or absent awareness of the possibility of committing this type
of error. Accordingly, power seems to be equally unappreciated and too often
not considered in the experimental design phase (Button et al., 2013).



4.2 Summary of a tutorial paper on statistical power 35

4.2.2 The concept of power

In order to comprehend the concept of power, it may be useful to start with
the simplest possible case. This section will consider the hypothesis test of a
single sample mean in the normal case with known variance. Throughout this
exposition HA refers to a general alternative hypothesis, and Hi, i P Ną0 refer
to specific alternative hypotheses.

Suppose a random sample, Xi, i “ 1, ..., n is drawn from a normal population
with mean µ and known variance σ2. The sample mean X is then assumed to
be a random variable following a normal distribution with mean µ and variance
σ2{n.

We now wish to test the null hypothesis H0 : µ “ µ0 versus the alternative
hypothesis HA: µ ą µ0. In Figure 4.1 the distribution of X under H0 and a
specific alternative distribution with µ “ µ1 is shown. The vertical black line
indicates the critical value that is obtained from the null distribution. α is the
area to the right of the critical value under H0 (the probability of incorrectly
rejecting H0), β is the area to the left of the critical value under H1 (the
probability of incorrectly failing to reject the null hypothesis) and power is the
area to the right of the critical under H1 (the probability of correctly rejecting
H0).

This plot illustrates why a number of assumptions must be addressed in order
to estimate power:

Distance: The distance between the true mean µ and the hypothesized mean
µ0 corresponds to the unstandardized effect size as described by Cohen
(1988). Increasing the distance entails a better separation of the distri-
butions of X under H0 and H1, respectively, thus increasing power as
illustrated in the first row of Figure 4.1.

Variability: Since the variance of X is σ2{n, the distributions of X under H0

and H1 become more narrow as the variability in data decreases, hence
providing better power. Lowering the variability in data can be obtained
through e.g. employment of a proper experimental design.

Sample size: The variance of X is diminished by increasing the sample size
in turn increasing power, cf. previous item. The role of variability and
sample size on power is seen in the middle row of Figure 4.1.

Level of significance: The critical value is determined based on the specified
significance level (α), which in turn affects power. As seen in last row of
Figure 4.1, lowering α decreases the power and vice versa.
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Figure 4.1: The sampling distributions under H0 and H1 with the areas of α, β and
power outlined on the graphs. The black vertical line indicates the critical value. The
upper row illustrates how a change in the distance |µ1 ´ µ0| affects power. Here it is
seen how an increased distance leads to increased power. The middle row shows how
the width of the sampling distributions change when the variability or the sample size
are altered. This example shows how decreased variability or an increased sample size
lead to increased power. The last row shows how power changes when the significance
level, α, is changed. Here it is shown how a decreased significance level leads to a
reduction of power.
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Others: In less simplified cases (many real-life cases) further assumptions must
be made, e.g. about the correlation of repeated measurements etc.

The listed quantities in bold are related so that any of them can be determined
based on the others. Perhaps the most common way of conducting power analy-
sis is to provide reasonable estimates of requisite quantities, and then determine
the sample size necessary to obtain the appropriate power.

Note that Figure 4.1 illustrates just one out of (infinitely many) alternative
hypotheses and is valid only in the specific case where the true mean equals
µ1. Hence, a power analysis is conducted for one specific hypothesized distance
between µ0 and µ1 (while holding the other factors listed above fixed).

Calculating power

To calculate power we determine the critical value(s) obtained from the distribu-
tion under H0, and use it/them to obtain the critical region(s) of the alternative
distribution (the number of critical values/regions correspond to the number of
sides in the hypothesis test). This can be done directly using the distributions
of the raw sample means, but in order to generalize the formulas the random
variable X is standardized.

Under H0 the standardized random variable

Z “
X ´ µ0

σ{
?
n
„ Np0, 1q (4.2)

whereas under H1

Z „ N

ˆ

µ1 ´ µ0

σ{
?
n
, 1

˙

(4.3)

The power for a one-sided test is then obtained as

power “ 1´ β “ 1´ Φ

ˆ

zα ´
|µ1 ´ µ0|
σ{
?
n

˙

(4.4)

Note that (4.4) always returns the area of the critical region corresponding to
the direction of the hypothesis test thus covering both the alternatives greater
and less.

For a two-sided hypothesis test

power “ 1´ Φ

ˆ

zα{2 ´
µ1 ´ µ0

σ{
?
n

˙

` Φ

ˆ

´zα{2 ´
µ1 ´ µ0

σ{
?
n

˙
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Approximate power for a two-sided hypothesis test is obtained by ignoring a
small value ď α{2

power „ 1´ Φ

ˆ

zα{2 ´
|µ1 ´ µ0|
σ{
?
n

˙

4.2.3 Non-central distributions

Non-central distributions arise in power and sample size calculations apart from
a few exceptions. Non-central distributions are generalizations of the appertain-
ing (central) distributions. An example is the non-central t-distribution, which
is a generalization of the central t-distribution. Often the term ’central’ is omit-
ted and the central t-distribution is simply referred to as the t-distribution.

Non-central χ2-, t- and F -distributions appear in power calculations for some
of the most widely used models, such as the t-test and ANOVA.

Non-central χ2-distribution

Assume that U1, U2, ..., Uν are independent variables each following a standard
normal distribution and δ1, δ2, ..., δν are constants. Then

V “
ν
ÿ

i“1

pUi ` δiq
2

follows a non-central χ2 distribution with ν degrees of freedom and non-centrality
parameter λ “

řν
i“1 δ

2
i , denoted χ2pν, λq. The central χ2-distribution is a spe-

cial case of the non-central χ2-distribution where λ “ 0 (Johnson et al., 1994,
chapter 29).

Non-central t-distribution

Assume that Z and V are independent random variables following a normal
distribution with mean λ and variance 1 and a central χ2-distribution with ν
degrees of freedom, respectively. Then

T “
Z

a

V {ν
(4.5)
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follows a non-central t-distribution with ν degrees of freedom and non-centrality
parameter λ, denoted tpν, λq. When λ “ 0 the non-central t-distribution be-
comes the central t-distribution (Johnson et al., 1994, chapter 31).

Non-central F -distribution

Consider the independent random variables, V1 and V2, each following a non-
central χ2-distribution with ν1 and ν2 degrees of freedom and non-centrality
parameters λ1 and λ2, respectively. Then

W “
V1{ν1

V2{ν2

follows a doubly non-central F -distribution with ν1, ν2 degrees of freedom and
non-centrality parameters λ1 and λ2, denoted F pν1, ν2, λ1, λ2q.

If V1 follows a non-central χ2-distribution with non-centrality parameter λ and
V2 follows a central χ2-distribution, then W follows a singly non-central F -
distribution with ν1, ν2 degrees of freedom and non-centrality parameter λ,
denoted F pν1, ν2, λq. Often, this distribution is merely referred to as a non-
central F -distribution thus leaving out the term ’singly’, and this terminology
also applies here.

When both V1 and V2 follow a central χ2-distribution, then W follows a central
F -distribution (Johnson et al., 1994, chapter 30).

4.2.4 Power and sample size calculations

We will now turn to the actual power calculations for some standard models
often encountered. The first subsection will continue the example from the
previous section treating a single sample with known variance, whereas more
complex models are introduced gradually in later subsections.

[...subsection left out...]

One-sample t-test (unknown variance)

Suppose a random sample, Xi, i “ 1, ..., n is drawn from a normal population
with mean µ and unknown variance σ2. The sample mean X is a random
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Figure 4.2: The test statistic, T , follows a central t-distribution under H0 and a
non-central t-distribution under H1.

variable assumed to follow a normal distribution with mean µ and variance
σ2{n. In section 4.2.2 power for the test of a one-sample mean with known
variance was considered. In many real-life applications the assumption of a
known population variance is unrealistic though, and it must be estimated from
prior studies, e.g. a pilot study.

The sample variance is a random variable following a scaled χ2-distribution with
n´ 1 degrees of freedom. More specifically,

V “ pn´ 1q
s2

σ2
„ χ2pn´ 1q (4.6)

The random variables defined in (4.2)/(4.3) and a rearrangement of (4.6) is now
substituted into the numerator and denominator of (4.5), respectively, which
gives

T “
X ´ µ0

s{
?
n

(4.7)

Recall that under H0 the standardized sample mean Z „ Np0, 1q (cf. (4.2)) and
accordingly T follows a central t-distribution with n ´ 1 degrees of freedom.

Under H1, Z „ N
´

µ1´µ0

σ{
?
n
, 1
¯

(cf. (4.3)) and according to (4.5) then T follows

a non-central t-distribution with non-centrality parameter

λ “
µ1 ´ µ0

σ{
?
n

(4.8)

The distributions of T under H0 and H1 are seen in Figure 4.2.
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Note that for calculating (4.7) we do not need to know the true variance since
it enters both into the numerator and denominator and cancels out. With the
price of heavier tails, the t-distribution incorporates the uncertainty about the
true variance when the sample variance is used as an estimate. This makes
the t-distribution very useful in small sample cases with unknown variance. As
nÑ8 the t-distribution approaches the standard normal distribution and the
exposition in section 4.2.2 is thus applicable.

From Figure 4.2 it is clear that the power for a one-sided test with significance
level α can be obtained by

power “ 1´ β “ 1´ Tn´1

ˆ

tα,n´1

ˇ

ˇ

ˇ

ˇ

|µ1 ´ µ0|
σ{
?
n

˙

where Tn´1p¨|λq is the cumulative distribution function of the non-central t-
distribution with n´ 1 degrees of freedom, tα,n´1 is the critical value obtained
from the distribution of T under H0 and λ is the non-centrality parameter given
in (4.8).

Power for at two-sided test with significance level α is obtained by

power “ 1´ Tn´1

ˆ

tα{2,n´1

ˇ

ˇ

ˇ

ˇ

pµ1 ´ µ0q

σ{
?
n

˙

` Tn´1

ˆ

´tα{2,n´1

ˇ

ˇ

ˇ

ˇ

pµ1 ´ µ0q

σ{
?
n

˙

(4.9)

and by ignoring a small value ă α{2 approximate power for a two-sided hypoth-
esis test is

power “ 1´ Tn´1

ˆ

tα{2,n´1

ˇ

ˇ

ˇ

ˇ

|µ1 ´ µ0|

σ{
?
n

˙

(4.10)

[...subsections left out...]

4.2.5 Further continuation of tutorial paper

A natural continuation of the tutorial paper includes power calculations for the
most widely used hypothesis tests, comprising two-sample t-tests, paired t-tests
and a few variants of ANOVA. The hypothesis tests are in the current draft
accompanied by R code, where statistical power are computed both manually
in line with the closed-form expressions and by use of relevant R packages. It is
also a possibility to cover the use of simulation providing examples illustrating
the versatility and simplicity of this approach.
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4.3 Statistical power for hierarchical models

The following section deals with statistical power for hierarchical data struc-
tured as in vivo Comet assay data. First, closed-form expressions for statistical
power are derived. Next, the second part of Paper D providing power curves
for in vivo Comet assay studies on testicular cells is summarized.

The closed-form expressions presented below are valid for balanced data. It is
not a limitation in this setting as Comet assay data commonly are balanced,
and which not is unusual for designed studies in general. Furthermore, data are
assumed to be normally distributed, which based on the examined data seems
reasonable when the within-sample distributions are summarized by the median
of the log-transformed data (see Section 2.3 on page 13).

4.3.1 Closed-form expressions

The structure of the summarized Comet assay data are outlined in Figure 2.3.
A suitable model for this data is a linear mixed-effects model as defined in (2.2)
on page 11. The hypothesis of interest is concerning equality of the different
treatment groups

H0: τ1 “ τ2 “ ¨ ¨ ¨ “ τa “ 0

HA: at least one τi ‰ 0

and closed-form expressions for the statistical power are derived for this specific
test.

When a hypothesis test is performed within this framework, we calculate the
test statistic as

F “

bn
a
ř

i“1

pY i¨¨ ´ Y ¨¨¨q
2{pa´ 1q

n
a
ř

i“1

b
ř

j“1

pY ij¨ ´ Y i¨¨q2{papb´ 1qq

, (4.11)

(Montgomery, 2005) and compare it to a central F -distribution with a ´ 1,
apb´ 1q degrees of freedom to obtain a p-value, i.e. the probability of observing
this value or something more extreme given the null hypothesis. To calculate
power we also need information on the alternative distribution, which will be
assessed in the following.

First, let yij. “
n
ř

k“1

yijk, yi.. “
b
ř

j“1

n
ř

k“1

yijk, y... “
a
ř

i“1

b
ř

j“1

n
ř

k“1

yijk and let
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yij. “
1
nyij., yi.. “

1
bnyi.., y... “

1
abny.... The observations yijk and the group

averages yij¨, yi¨¨ and y¨¨¨ are realizations of the random variables Yijk, Y ij¨, Y i¨¨
and Y ¨¨¨, respectively. They are distributed as

Yijk „ N
`

µ` τi, σ
2
β ` σ

2
˘

Y ij¨ „ N

˜

µ` τi,
nσ2

β ` σ
2

n

¸

Y i¨¨ „ N

˜

µ` τi,
nσ2

β ` σ
2

bn

¸

Y ¨¨¨ „ N

˜

µ,
nσ2

β ` σ
2

abn

¸

(4.12)

Further details are given in Appendix A in Paper B. Furthermore,

a
ÿ

i“1

b
ÿ

j“1

n
ÿ

k“1

pYijk ´ Y ij¨q
2 „ σ2χ2 pabpn´ 1qq (4.13)

n
a
ÿ

i“1

b
ÿ

j“1

pY ij¨ ´ Y i¨¨q
2 „ pσ2

β ` σ
2qχ2 papb´ 1qq (4.14)

bn
a
ÿ

i“1

pY i¨¨ ´ Y ¨¨¨q
2 „ pσ2

β ` σ
2qχ2 pa´ 1, λq (4.15)

where

λ “

bn
a
ř

i“1

τi

nσ2
β ` σ

2

See Appendix B in Paper B for details.

Consider the sum of squares related to the treatment effect. As Y i¨¨ is a normal
random variable then

a
ř

i“1

pY i¨¨ ´ Y ¨¨¨q
2

VarpY i¨¨q
„ χ2pa´ 1, λq,

where

λ “

a
ř

i“1

pEpY i¨¨q ´ EpY ¨¨¨qq
2

VarpY i¨¨q

(Johnson et al., 1995). Inserting from (4.12) and (4.15) yields

bn
a
ř

i“1

pY i¨¨ ´ Y ¨¨¨q

nσ2
β ` σ

2
„ χ2pa´ 1, λq, (4.16)
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where

λ “

bn
a
ř

i“1

τ2
i

nσ2
β ` σ

2
.

Now, consider the sum of squared due to animals. As above, since Y ij¨ is
normally distributed then

a
ř

i“1

b
ř

j“1

pY ij¨ ´ Y i¨¨q
2

VarpY ij¨q
„ χ2papb´ 1q, λq,

where

λ “

a
ř

i“1

pEpY ij¨q ´ EpY i¨¨qq
2

VarpY ij¨q
.

According to (4.12) and (4.14) then

n
a
ř

i“1

b
ř

j“1

pY ij¨ ´ Y i¨¨q
2

nσ2
β ` σ

2
„ χ2papb´ 1qq, (4.17)

since

λ “

a
ř

i“1

ppµ` τiq ´ pµ` τiqq
2

VarpY ij¨q
“ 0.

The ratio of two independent χ2-distributed random variables, V1 „ χ2pν1, λ1q

and V2 „ χ2pν2, λ2q, each divided by their corresponding degrees of freedom
follows an F -distribution, in that

V1{ν1

V2{ν2
„ F pν1, ν2, λ1, λ2q

(Johnson et al., 1995). It can be shown using Fisher-Cochran’s Theorem (Rao,
1973) that (4.16) and (4.17) are independent, and we then have information
on the distribution of their ratio when they each is divided by their degrees of
freedom

F “

bn
a
ř

i“1

`

Y i¨¨ ´ Y ¨¨¨
˘2
{ pa´ 1q

n
a
ř

i“1

b
ř

j“1

`

Y ij¨ ´ Y i¨¨
˘2
{ papb´ 1qq

„ F pa´ 1, apb´ 1q, λq , (4.18)
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where

λ “

bn
a
ř

i“1

τ2
i

nσ2
β ` σ

2
. (4.19)

The ratio in (4.18) is in fact the sample statistic that is defined in (4.11). Along
with information on its distribution it forms the basis for the inference to be
made.

The cumulative distribution function of F is denoted Gp ¨ ; ν1, ν2, λq, and the
critical value, Fα;ν1,ν2 is the p1 ´ αqth quantile of the null distribution, such
that GpFα;ν1,ν2 ; ν1, ν2q “ 1 ´ α. Under the null hypotheses we have that τi “
0, i “ 1, ..., a so that λ “ 0, i.e. the F -statistic in (4.18) follows a central
F -distribution.

The statistical power is the probability of correctly rejecting the null hypothesis
when it indeed is false, and can thus be formulated as

Power “ 1´GpFα;a´1,apb´1q; a´ 1; apb´ 1q, λq, (4.20)

where λ is given in (4.19).

When assessing statistical power prior to carrying out the actual study, it is
often difficult to specify values for all τi. One way to overcome this is to specify
the difference in treatment means of the groups with the lowest and highest
response, D (Montgomery, 2005). The price we pay is that all remaining groups
are assumed to have an average response, implying that τi1 “ 0, i1 “ 1, ..., a´ 2,
and these groups do not add anything to the non-centrality parameter. The
power calculations will thus give the minimum statistical power for the specified
value of D, in which case the non-centrality parameter is given as

λ “

bn
2
ř

i“1

p 1
2Dq

2

nσ2
β ` σ

2
“

bnD2

2pnσ2
β ` σ

2q
(4.21)

4.3.2 Power and sample size for Comet assay studies

The results given in this section summarizes the second part of Paper D. It
builds on the results outlined in Section 2.3 on page 13, where it was concluded
that an appropriate summary statistic for in vivo Comet assay data on testicular
cells is the median of the log-transformed data.

The summarized data that were collected in this study were fitted model (2.2)
defined on page 11. According to the Comet assay literature it is common prac-
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tice to score 50 or 100 cells per slide and we provided power curves accordingly.
When 50 cells were scored per slide the estimated variance components were

σ̂2
β “ 0.09, σ̂2 “ 0.11.

When 100 cells were scored per slide then

σ̂2
β “ 0.08, σ̂2 “ 0.09.

These variance components form the basis of the power curves that are seen
in Figure 4.3. The first column outlines the power curves when 50 cells are
sampled per slide, while the second column is valid when 100 cells are sampled
per slide. Due to the log-transformation the effect sizes are given as fold changes
rather than differences. The fold change corresponds to the difference, D, as
described above, so that the fold change is specified for the maximum response
mean relative to the minimum response mean.

It is not uncommon to use between 3 and 8 animals in each group in Comet
assay studies. It is seen from the power curves that a fairly large fold change
is actually required to obtain power at the conventional level at 80% with a
sample size in that range.

The power curves are intended to be used by biomedical researchers in the
design of prospective Comet assay studies. Further reflections on the power
curves that are relevant for this audience are given in Paper D.
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Figure 4.3: Power curves outlining the number of animals per group and gels per
animal required to detect certain fold changes with a power of 80% (dotted line) when
50 cells (first column) and 100 cells (second column) are scored per gel, respectively.
The power calculations apply when the summary statistic is the median of the log-
transformed data.
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Chapter 5

Agreement studies

The objective of some biomedical studies is to evaluate the degree of agreement
between different assessors. These assessors can range from competing medical
instruments and assays, over doctors and technicians, to everyday consumers.
Such studies are called agreement studies and can have several aims. They can
include the validation of a new diagnostic assay against a gold standard or they
may concern how well doctors agree in diagnosing patients. Whereas agreement
studies can involve humans both on the assessor and the subject level they can
also include non-humans such as assays, samples and animals at both of these
levels.

Agreement studies are quite crucial in the validation of the quality of data
emerging from biomedical studies. While Chapter 3 and 4 of this thesis have
been dealing with issues related to the statistical models, the current chapter
is concerned with the appraisal of the quality of collected data. First, general
aspects regarding agreement studies are presented. Next, Paper E dealing with
evaluation of a national drug related problems database is summarized.

5.1 Background

Barnhart et al. (2007) describes agreement as a measure of ”closeness” between
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readings. Moreover, the US Food and Drug Administration (FDA) defines
accuracy as ”the degree of closeness of the determined value to the nominal or
known true value under prescribed conditions” and precision as ”the closeness
of agreement (degree of scatter) between a series of measurements obtained
from multiple sampling of the same homogenous sample under the prescribed
conditions” (Food and Drug Administration (FDA), 2001). Barnhart et al.
(2007) and Lin (2007) assert that agreement encompasses both accuracy and
precision. Accuracy and precision are concepts that are related to the terms
bias and variance, respectively, that in some fields are more commonly used. In
case of disagreement it is useful to examine whether it is caused by inaccuracy
(bias) or stems from random variation. The former is often attributed to a
calibration problem and is easier to fix than the latter (Lin, 2007).

In agreement studies there are multiple recordings on the same subject, that
is, a number of subjects are each rated by a number of assessors. This can be
handled by a number of statistical models, yet agreement studies are treated
somewhat separately in the literature. This may be attributable to that the
main interest often lies in making inference on a measure quantifying the de-
gree of agreement between the different assessors (Nawarathna and Choudhary,
2013). This measure can be estimated directly or it can be a function of pa-
rameters of a fitted model.

A number of different factors impact how data from agreement studies are
properly summarized, analyzed and interpreted. Most importantly, the response
variable can be classified according to its measurement scale, which includes a
nominal, ordinal or continuous scale. Also, a ”gold standard” (the best test
available (Versi, 1992)) can be present or absent and validity studies often aim
to compare new methods or raters to a gold standard. Furthermore, the number
of assessors is of importance with the most significant difference between two
and multiple assessors. In case of a nominal response variable the number of
categories are of importance with the main difference being between two and
multiple categories. The next section is concerned with cases where the response
is on a nominal scale.

5.1.1 Nominal endpoint

In many fields the kappa statistic is a very popular measure for summarizing
agreement data on a nominal scale. The first kappa-like statistic was introduced
in 1892 by Galton (Galton, 1892; Smeeton, 1985). Another related statistic is
Scott’s pi, which was presented in 1955 (Scott, 1955). Cohen proposed the kappa
statistic in 1960 (Cohen, 1960) that has become very popular and still is widely
used in many research areas. A number of modified related statistics were later
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suggested (see e.g. Cohen, 1968; Conger, 1980; Krippendorff, 1980; Brennan and
Prediger, 1981; Schuster, 2005; Gwet, 2008); one of these is Fleiss’ kappa (Fleiss,
1971). Cohen’s kappa measures the agreement between two assessors and Fleiss
intended to generalize Cohen’s kappa to accommodate three or more assessors.
However, for two assessors Fleiss’ kappa does not reduce to Cohen’s kappa but
to Scott’s pi (Conger, 1980).

In some fields Fleiss’ kappa is the summary measure of choice when there are
more than two assessors. It seems to be a common misperception that Fleiss’
kappa is a generalization of Cohen’s kappa (which in part may be due to that
Fleiss named his statistic kappa and not pi) and this may explain the common
use. Contrary to Cohen’s kappa, Fleiss’ kappa allows different assessors to rate
different subjects (Fleiss, 1971).

Fleiss’ kappa is given as

κ “
P ´ P e

1´ P e
(5.1)

where P is the overall proportion of observed agreement and P e is the proportion
of agreement that would be expected if the ratings were assigned purely by
chance (Fleiss, 1971). Fleiss’ kappa is thus the ratio of observed agreement
that exceeds agreement by chance to the agreement that is attainable beyond
chance. More specifically, let N be the total number of subjects, let n be the
number of ratings per subject, let k be the number of categories that can be
assigned to the subjects and let nij be the number of raters who categorized
the ith subject to the jth category, where i “ 1, ..., N and j “ 1, ..., k. The
proportion of agreeing pairs of raters out of all possible pairs of raters is

Pi “
1

npn´ 1q

k
ÿ

j“1

nijpnij ´ 1q

“
1

npn´ 1q

˜

k
ÿ

j“1

n2
ij ´ n

¸

(5.2)

The overall proportion of observed agreement is the average of the Pi’s

P “
1

N

N
ÿ

i“1

Pi

“
1

Nnpn´ 1q

˜

N
ÿ

i“1

k
ÿ

j“1

n2
ij ´Nn

¸

(5.3)

The proportion of all assignments to the jth category is

pj “
1

Nn

N
ÿ

i“1

nij (5.4)
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and the expected agreement purely by chance is given as

P e “
k
ÿ

j“1

p2
j (5.5)

The reasoning behind the calculation of the expected agreement, P e, was not
made explicit by Fleiss.

Despite the popularity of the different kappa indices they are surrounded by
quite some controversy and they have repeatedly been objects of debate (see
e.g. Feinstein and Cicchetti, 1990; Sim and Wright, 2005; de Mast, 2007). A
thorough introduction to these issues is also provided by John Uebersax1. One
concern is that the same observed proportion of agreement can be associated
with fairly different kappa values depending on the marginal distributions and
this seems to be the main point of criticism associated with the kappa statis-
tic. Suggested premises concerning the expected agreement, P e, are given by
de Mast (2007). If these premises hold, then for each rater the probability
distribution of chance ratings is assumed to be equal to the observed marginal
distribution. Accordingly, with an uneven distribution of the marginal totals,
agreement by chance will happen more frequent (due to the categories with a
high prevalence), hence P e increases in turn implying that κ decreases. It has
been suggested to assume a uniform distribution of the chance ratings, which
resolves some of the issues associated with Fleiss’ kappa (Brennan and Prediger,
1981; de Mast, 2007).

A number of alternative statistical approaches which are based on explicit model
formulations have been suggested for agreement data. One approach is latent
structure analysis or latent variable analysis which covers different methods
including latent class analysis and latent trait analysis. Latent structure mod-
els assume that the observed rating depend on latent (unobserved) variables.
Latent class models are useful for discrete latent variables, whereas latent trait
models assume a continuous latent variable (Uebersax, 1992). Other related ap-
proaches are log-linear models, association models and quasi-symmetry models
(Uebersax, 1992; Agresti, 2013). One advantage is that possible structures and
covariates can be identified and appropriately included in the models. However,
it seems as these model-based approaches have not gained footing in many scien-
tific areas and the kappa-like indices still prevail. This may be due to a common
practice that has evolved within some research fields. Also, the kappa indices
are fairly easy to grasp, calculate and interpret (or at least they seem to be;
c.f. the concerns mentioned earlier) compared to the model-based approaches.

1http://www.john-uebersax.com/stat/agree.htm
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5.2 Evaluation of a drug related problems data-
base

The topic of paper E is the evaluation of a database containing registrations of
drug related problems (DRPs) at hospitals in Denmark. Suboptimal medication
treatment can lead to increased morbidity, mortality and costs and one approach
to improving the medication treatment is to let pharmacists conduct medication
reviews to identify drug related problems (DRPs). Changes to the medication
treatment are then recommended based on the reported DRPs. To document
and standardize DRPs identified by clinical pharmacists at the hospitals in
Denmark a DRP database was developed and it was implemented July 1, 2010.
Three years after the implementation around 125,000 registrations were made
and the comprehensive DRP database provides a possibility to conduct national
analyses. With this in view the aim of this study was to evaluate use in practice,
reliability and reproducibility of the Danish DRP database.

The DRPs are assigned to one of the following 14 categories: dose, dosing time
and interval, side effect, interaction, drug form and strength, compatibility,
non-adherence to guidelines, therapeutic duplication, drug allergies, length of
treatment, supplement to treatment, electronic patient chart related, inappro-
priate drug or no DRP. In practice, the categories compatibility and no DRP
are rarely used and are not considered further.

A project group consisting of 7 clinical pharmacists designed and supervised
the study. It contains three substudies, of which I was involved in the last two;
hence these two substudies will be outlined in the following sections.

The aims of this study are to assess the reliability (substudy two) and the repro-
ducibility (substudy three) of the DRP database. In both cases the objectives
are quantified by assessing the agreement between different assessors. As men-
tioned above there are different approaches to evaluate such agreement. While
the various versions of the kappa statistics are associated with some concerns
they have become the de facto standard in agreement studies within various
different fields. The large number of categories (12 categories) in the current
study combined with the observed marginal distributions gives rise to an ex-
pected agreement of an inconsiderable magnitude implying that Fleiss’ kappa
and the observed proportion agreement in all cases in the current study are sim-
ilar. The main issues of Fleiss’ kappa are thus resolved in this particular case.
Because of this we find it sensible to follow common practice within the target
research field and to quantify the results by means of Fleiss’ kappa. It is accom-
panied by other relevant measures such as observed proportions of agreement
and marginal distributions as these also convey valuable information.
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Table 5.1: Examples of DRPs and recommendations categorized by the project group and the respondents

Description of DRP Recommendation Categorization according to
the project group

Number of
respondents
with similar
categorization

The patient is treated with IV
cefuroxime and IV metronidazole.
The patient has been treated with
IV metronidazole for 1 day and
night

The bioavailability for oral metron-
idazole is almost 100%, hence it
is recommended to consider substi-
tute IV to oral treatment

Drug form and strength 34 (100%)

P-potassium is 3.1 mmol/L (refer-
ence interval: 3.5-4.6 mmol/L)

Recommendation of potassium sup-
plement

Supplement to treatment 34 (100%)

A patient of 83 years is treated
with clopidogrel, aspirin and
ibuprophene

Recommendation of ceasing NSAID
due to old age and other factors,
which increase the risk of GI bleed-
ing

Inappropriate drug 21 (62%)

The patient has an active prescrip-
tion initiated four years ago of To-
bradex eyedrops, susp. 1+3 mg/ml,
1 drop x 3 daily in the right eye

Please consider whether the pre-
scription of Tobradex should be ac-
tive. If the patient has no current
need for the prescription, please
consider ceasing it

Length of treatment 10 (29%)
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5.2.1 Substudy two: inter-rater reliability study

The second substudy of Paper E concerns inter-rater reliability. The project
group identified 24 cases of DRPs and recommendations that were recategorized
by 34 regular users of the DRP database. In addition, gold standards (GS) for
the ratings of these cases were appointed by the project group. Some examples
are listed in Table 5.1.

The inter-rater agreement was quantified with observed proportion of agree-
ment, p̂o and Fleiss’ kappa, κ̂. Also, the proportion of agreement with the gold
standard, p̂GS , was calculated. The observed agreement and Fleiss’ kappa are
measures of the agreement among the raters (not including the GS) whereas
p̂GS is a measure of the agreement of the raters with GS. Bootstrap confidence
intervals (CI) for all three measures were obtained using the bias-corrected ac-
celerated (BCA) method (Efron, 1987; Hall, 1988) based on 10,000 bootstrap
replicates.

The overall agreement of the 34 clinical pharmacists was p̂o “ 0.81 with 95%
CI (0.72; 0.89) and Fleiss kappa was κ̂ “ 0.79 with 95% CI (0.70; 0.88). Com-
paring each rater to GS gave kappa values all greater than 0.6 and half of them
exceeded 0.8. The agreement between the raters and the GS are depicted in
Figure 5.1. For 7 of the 12 categories the proportion of agreement of the 34
clinical pharmacists with GS exceeded 0.90 whereas for 2 additional categories
the agreement was above 0.80. The overall agreement of each rating with GS
was p̂GS “ 0.81 with 95% CI (0.68; 0.88). The categories with the lowest degree
of agreement with GS were ”side effects”, ”length of treatment” and ”inappro-
priate drug”.

5.2.2 Substudy three: reproducibility study

Two members of the project group re-categorized a random sample of existing
records from the DRP database. The project group members re-categorized 379
records based on the text field, and they were blinded to the initial categoriza-
tion.

The observed agreement and Fleiss’ kappa was calculated both overall and spe-
cific to each category. In addition, the observed agreement and Fleiss’ kappa was
calculated for the DRP database and the two project group members. Bootstrap
confidence intervals (CI) for all measures were obtained with the bias-corrected
accelerated (BCA) method based on 10,000 bootstrap replicates.
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Figure 5.1: Categorization of 24 cases by the individual raters and the project group
(gold standard). The x-axis specifies the categories made by the clinical pharmacists
and the y-axis is the gold standard, i.e. the categorization made by the project group.
Each square represents the proportion agreement of the clinical pharmacists with the
gold standard (calculated for each category of the gold standard), implying that the
sizes of the squares sum to 1 horizontally.

The overall observed agreement was p̂o “ 0.83 with 95% CI (0.80; 0.86) and
Fleiss’ kappa was κ̂ “ 0.81 with 95% CI (0.78; 0.85). The pairwise agreement
between the categories documented in the DRP database and the categoriza-
tions by the project group members (PGM) were

• DRP database and PGM1
p̂o “ 0.83 with 95% CI (0.78; 0.86) and κ̂ “ 0.81 with 95% CI (0.76; 0.85)

• DRP database and PGM2
p̂o “ 0.85 with 95% CI (0.81; 0.88) and κ̂ “ 0.81 with 95% CI (0.79; 0.87)

• PGM1 and PGM2
p̂o “ 0.82 with 95% CI (0.78; 0.86) and κ̂ “ 0.80 with 95% CI (0.76; 0.84)



5.2 Evaluation of a drug related problems database 57

Category-specific agreement measures and marginal distributions are given in
Table 5.2. The categories are associated with varying degree of agreement al-
though the majority of the categories are consistently categorized by the DRP
and the two project group members, PGM1 and PGM2. The kappa values for
7 out of 12 categories are above 0.80 and all kappa values are greater than 0.60.
For the cases where the assessors disagreed there were no consistent alternative
categorizations for any of the categories.

5.2.3 Concluding remarks

Two aims of the current study were to evaluate the inter-rater reliability and the
reproducibility of a national DRP database. Due to the number of categories
and the observed marginal distributions we considered it sensible to use Fleiss’
kappa in line with common practice of the target research field.

All results show a high degree of agreement between the different assessors.
This indicates that the entries in the DRP database are of sufficient quality to
conduct ensuing national analyses.
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Table 5.2: Marginal distributions (distribution of rated categories for each of DRP and the two project group members, PGM1
and PGM2) and category-specific agreement measures with 95% confidence intervals (CI). For the category ”Drug allergies” all
raters agreed and no bootstrap confidence intervals could be obtained.

Marginal distributions Observed agreement Fleiss’ kappa

Rated category DRP PGM1 PGM2 Estimate CI Estimate CI

Dose 0.16 0.16 0.18 0.86 (0.80; 0.91) 0.83 (0.76; 0.89)
Dosing time and interval 0.11 0.08 0.09 0.84 (0.75; 0.90) 0.82 (0.73; 0.89)
Side effect 0.03 0.04 0.02 0.61 (0.40; 0.79) 0.60 (0.38; 0.79)
Interaction 0.05 0.06 0.05 0.80 (0.65; 0.89) 0.79 (0.63; 0.88)
Drug form and strength 0.03 0.02 0.03 0.87 (0.69; 0.97) 0.87 (0.68; 0.97)
Non-adherence to guidelines 0.15 0.17 0.16 0.92 (0.87; 0.95) 0.90 (0.84; 0.94)
Therapeutic duplication 0.05 0.05 0.06 0.89 (0.77; 0.96) 0.88 (0.76; 0.95)
Drug allergies 0.03 0.03 0.03 1.00 - 1.00 -
Length of treatment 0.03 0.05 0.03 0.70 (0.52; 0.85) 0.69 (0.50; 0.84)
Supplement to treatment 0.14 0.13 0.14 0.88 (0.82; 0.93) 0.87 (0.79; 0.92)
Electronic patient chart related 0.08 0.09 0.08 0.77 (0.66; 0.85) 0.75 (0.63; 0.84)
Inappropriate drug 0.13 0.12 0.13 0.72 (0.63; 0.80) 0.68 (0.58; 0.76)



Chapter 6

Diagnostics on binomial
regression models

Observations from some biomedical studies each take one of two possible forms,
e.g. the response are categorized as dead or alive, yes or no, agree or disagree or,
by convention, as success or failure. Such data are said to be binary. In some
cases the observations can be grouped according to some factors, i.e. when a
number of subjects have been exposed to the same dose of a compound. In
such cases the response can be summarized as the proportion of successes out
of the total number of subjects in that particular group. Grouped binary data
are called binomial data.

Logistic regression is a popular approach for analyzing binary and binomial
data and is widespread in many research areas, in particular biomedicine. Lo-
gistic regression models belong to a class of models known as generalized linear
models, which accommodate response variables having distributions that are
members of the exponential family; two of these are the normal and the bino-
mial distribution. The idea of the generalized linear model is that the response
variable is linearly related to the explanatory variables via a specified link func-
tion. For logistic regression the link function is the logit link; other common link
functions are the probit and the complementary log-log link function. We will
refer to binomial regression models as generalized linear models with a binary
or binomial response variable and appropriate link function.
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All statistical models make assumptions and prior to making inference it is im-
portant to assess if the model assumptions are satisfied. Numerous approaches
for classical linear models assuming normality have been developed and are im-
plemented in common statistical software packages. For non-normal models we
however find the range of diagnostic tools to be somewhat more limited. Some
functions relevant for performing diagnostics on binomial regression models are
available in the statistical software package R; some of these are provided in
base R while others are implemented in packages such as car (Fox and Weis-
berg, 2011) and rms (Harrell Jr, 2014). However, a number of tools that we find
useful for evaluating model validity were yet to be implemented. This served
as a motivation to develop the R package binomTools that provides diagnostic
tools for binomial regression models. The package is publicly available at the
CRAN repository.

6.1 The binomTools package

The R package binomTools provides the following functionalities:

Data sets: The data sets beetles and serum are supplied to illustrate the use
of the functionality available in binomTools.

Residuals: Exact deletion residuals are implemented in exact.deletion. A
wrapper function Residuals seeks to add clarity on which residual type
that is returned.

Graphical diagnostic tools: A half normal plot is implemented in halfnorm.
Profile likelihoods for the parameters in the binomial regression model are
obtained with profile. The R2 measure coefficient of discrimination as
proposed by Tjur (2009) is implemented in Rsq:.

Goodness-of-fit tests: The HLtest: and X2GOFtest: are implementations of
the Hosmer-Lemeshow and Pearson’s χ2 goodness-of-fit tests, respectively.

Convenience functions: The empirical logit transform can be calculated with
empLogit:. The observations can be grouped according to the covariate
structure with group:.

The package documentation is given in Appendix F. Functions marked with :
was implemented by a co-author and are not considered further in this thesis.
The remaining functions are outlined in the following.
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6.1.1 Residuals

Upon model fitting the residuals can be calculated in various ways. Different
residual types can each add insight into the validity of the model and several
definitions therefore exist. Unfortunately, the residual terminology seems to be
somewhat confused. Some residuals go by different names and the same term
can refer to different residual types. Even for the classical linear model this
is an issue and one example concerns the Studentized residuals. This term is
commonly used, and some authors distinguish between internal Studentization
and external Studentization (Margolin, 1977; Cook and Weisberg, 1982; Gray
and Woodall, 1994). However, Cook (1977) and Cook and Weisberg (1982) re-
fer to the internal Studentized residuals as Studentized residuals while they by
many others are called standardized residuals (Hoaglin and Welsch, 1978; Bels-
ley et al., 1980; Atkinson, 1985; Fox and Weisberg, 2011). External Studentized
residuals are also sometimes called Studentized residuals (Hoaglin and Welsch,
1978; Belsley et al., 1980) as well as cross-validatory or jack-knife (Atkinson,
1981), deletion (Atkinson, 1985) and Studentized deleted (Dupuis and Hamil-
ton, 2000) residuals.

In the non-normal case the residuals may be extended in different ways and
this adds to the confusion. Examples of residuals defined for generalized linear
models are raw residuals, response residuals, working residuals, partial residu-
als, Pearson residuals, standardized Pearson residuals, deviance residuals, stan-
dardized deviance residuals, adjusted deviance residuals, likelihood residuals,
score residuals, Anscombe residuals, standardized Studentized residuals, modi-
fied standardized Pearson residuals, Cox-Snell residuals etc. (Fox, 2002; Collett,
2003; Hardin and Hilbe, 2007). The number of residual types combined with
the confused terminology may hinder the perspective. Many authors seem to
be aware of the problem and carefully define the residuals that they refer to.
However, we do not find the documentation on the different residual functions
in R very explicit, and we believe that it considerably impedes the exact under-
standing of which residuals that are assessed with the functions available in R.
This may in particular hold true for novel users.

In binomTools we implemented the function Residuals that seeks to add clar-
ity on the residual types that are returned from relevant functions in R. The
Residuals function is thus a wrapper function that calls appropriate functions
given an argument specified by the user. We sought to provide a thorough doc-
umentation that adds clarity on this matter. All residual types are defined in
the documentation given in Appendix F.

In addition to the residuals available in base R we implemented exact.deletion

that provides exact deletion residuals. The ith deletion residual is calculated
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by subtracting the deviances when a binomial regression model is fitted the full
set of n observations and the same model is fitted to a set of n´ 1 observations
excluding the ith observation, i “ 1, ..., n. These residuals are also known
as likelihood residuals, Studentized residuals, externally Studentized residuals,
deleted Studentized residuals and jack-knife residuals.

6.1.2 Half normal plot

Suitable residuals of a binomial regression model, such as the standardized de-
viance residuals or likelihood residuals, can be reasonably approximated by a
normal distribution given that the fitted model is valid and the binomial de-
nominators are reasonably sized. Still, the residuals may deviate from an exact
straight line in a normal plot, especially when the binomial denominators are
small. A half normal plot with simulated envelopes (Atkinson, 1981) may there-
fore prove useful, in particular for detecting model inadequacy and outliers. We
implemented the half normal plot for binomial regression models as exposited
in Collett (2003). A half-normal plot uses the absolute residual values but is
otherwise equivalent to a normal plot. The simulated envelopes are constructed
such that, for each of the n observations, additional observations are simulated
from the model and the minimum, average and maximum values are outlined
on the half-normal plot. The envelopes thus indicate the boundaries where the
residuals are likely to fall given that the model is correct. The half normal plot
is optionally interactive so that a number of residuals can be identified by click-
ing the points in the plot. An example of the half normal plot with simulated
envelopes is seen in Figure 6.1.

6.1.3 Profile likelihoods

Upon model fitting it may be valuable to examine the profile likelihood for
the parameters that enter the binomial regression model. The MASS package
(Venables and Ripley, 2002) provides profile likelihoods for parameters of a
generalized linear model and the appertaining plot function provides plots of
the profile likelihood root for each of these parameters. We provided a new
plot method in binomTools, which extends the plot functionality of the profile
likelihoods. Some of the most important extensions are the option to plot the
profile likelihood on a relative or absolute scale instead of the profile likelihood
root and to add a quadratic approximation to assess the regularity of the profile
likelihoods.

An example of a profile likelihood plot is given in Figure 6.2. In this case
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the 95% Wald CI for the second parameter (dose0.045) shown to the right is
p´7.8;´3.4q while the corresponding profile likelihood CI is p´8.6;´3.8q. This
is consistent with the profile likelihood and the quadratic approximation that
are shown in Figure 6.2.
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Figure 6.1: An example of a half normal plot with simulated envelopes produced by
binomTools.
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Figure 6.2: The profile likelihood for two parameters of a binomial regression model.
From this plot the regularity of the profile likelihoods can be examined.



Chapter 7

Concluding remarks

Innumerable biomedical studies are continuously conducted, through which re-
sults that are of pertinence to most people are accomplished. This thesis is
dealing with the design and analysis of biomedical studies. In this chapter the
main conclusions from the thesis are highlighted and briefly discussed.

Statistical analysis of in vivo Comet assay data. In Paper D we identify
the median of the log-transformed data as the most suitable statistic to summa-
rize in vivo Comet assay testicular data out of 23 candidate summary statistics.
We propose that the summarized data are analyzed with a linear mixed-effects
model. Our conclusions are based on how well the summarized data comply
with the model assumptions.

As Comet assay data are positively skewed, statistical methods assuming nor-
mality cannot be applied directly. The question of how to analyze Comet assay
data has previously been raised. Different end points are in use though and
existing studies on this topic concern other end points than the % tail DNA.
Moreover, the proposed summary statistics are in these studies evaluated ac-
cording to other criteria, e.g. to maximize power (Duez et al., 2003; Wiklund
and Agurell, 2003). However, we find it crucial to seek fulfillment of the model
assumptions and we consider other criteria, such as increased power, to be of
secondary importance.
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Type I errors. A literature study presented in Paper B reveals that the hi-
erarchical structure of in vivo Comet assay data too often are neglected in the
statistical analysis. We formulated closed-form expressions for the approximate
type I error rate and assessed the type I error rates for different factor combi-
nations as they appear in practice. The type I error rates are severely inflated
in all cases. Papers A and B address these concerns within the framework of in
vivo Comet assay studies whereas Paper C is directed at a broader audience.
Our literature study moreover revealed that the statistical methodology is not
thoroughly documented in the examined papers thus leaving doubt about how
to properly interpret the reported results.

Our finding in the literature study is supported by other papers (e.g. Strasak
et al., 2007; Baccaglini et al., 2010) that report this type of misuse to occur
in biomedical studies. We initiated this study to emphasize the gravity in case
of this assumptional violation. We find the inflated type I error rate to be
problematic for several reasons. First, we consider it likely that researchers are
inspired by the statistical methodology and wording in publications within their
field and future publications may thus suffer from the same flaws. Second, new
studies may be initiated based on a significant finding. When the type I error
rate is inflated it may thus lead to waste of resources. For ethical reasons this
is especially problematic in case of animal experiments, which includes in vivo
Comet assay studies. Third, as studies demonstrating a significant effect are
more likely to be published, we are concerned that studies that fail to account
for the hierarchical structure are over-represented in the literature leading to
that evidence for a given compound erroneously accumulates.

Type II errors. Many publications within the biomedical field do not report
the use of power calculations prior to conducting the study. Power curves for
in vivo Comet assay studies on testicular cells are provided in Paper D to guide
researchers in the design of future studies. From these power curves the number
of animals and the number of slides per animal to use can be obtained.

Sample size recommendations have been provided by Smith et al. (2008) for sam-
ples of rat liver, blood, bone marrow and stomach samples. To our knowledge
no recommendations for testicular cell samples have been published previously.
We find the literature covering power and sample size calculations to be limited,
which may impede the understanding of the general concept in turn hindering
the recognition of its importance. We hope that our paper on this topic can
motivate biomedical researchers to reflect on the sample size when future in
vivo Comet assay studies are designed.

Diagnostics on binomial regression models. After model fitting it is im-
portant to assess if the model assumptions are fulfilled as spurious conclusions
otherwise may be drawn. We implemented a range of diagnostic tools for bi-
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nomial regression models in the R package binomTools. The package documen-
tation is given in Appendix F. The package is publicly available at the CRAN
repository.
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Assessment of the type I error rate when ignoring the hierarchical
structure of in vivo Comet assay data

Merete K. Hansen and Murat Kulahci
DTU Compute, Technical University of Denmark

Abstract Damages to our DNA in terms of DNA strand breaks can be assessed with a
technique known as the Comet assay. The experimental design of Comet assay studies
are often hierarchically structured, however it does not seem to be commonly accounted
for in the statistical analysis. Disregarding the hierarchical structure inflates the type I
error rate considerably. Different combinations of the factors as they appear in a litera-
ture study result in type I error rates up to 0.51 and for all combinations the type I error
rate is greater than the nominal α at 0.05. Closed-form expressions based on scaled
F-distributions using the Welch-Satterthwaite approximation are derived to examine in
which way the type I error rate is affected. These results are intended to motivate re-
searchers to reconsider the analysis of hierarchical data when needed.

Introduction

Damage to our DNA occurs continuously due to both endogenous (e.g. metabolic pro-
cesses) and exogenous (e.g. environmental agents) factors. DNA repair mechanisms
are effective and constantly active, but some damages are irreparable. Accumulation of
damages to the DNA may eventually become hazardous, as it may lead to unregulated
cell division and tumors may evolve. The Comet assay is a rapid and sensitive tech-
nique for measuring DNA strand breaks within mammalian cells. The name of the assay
originates from the images of comet-like structures that emerge due to DNA migration
during electrophoresis of treated cells.

A common design of the in vivo Comet assay entails hierarchically structured data.
However, this does not seem to be accounted for in the statistical analysis. This led
us to investigate the implications in terms of the type I error rate when the hierarchical
structure of the data is disregarded. The aim of this study was to to provide closed-
form expressions for the type I error rate and to investigate whether the type I error rate
considerably exceeded the nominal α . It is our hope that the results of this study can
be used to motivate researchers to reconsider the statistical analysis when relevant. As
similarly structured data appear in various research areas the results of this study may
be equally relevant in other fields.
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Figure 1: Outline of the design commonly used in Comet assay studies. This example shows
three treatment groups, four animals per treatment and two samples per animal. For each sample
a number of cells are scored, usually in the range of 50-100 cells.

Experimental design

A common design of in vivo Comet assay studies is illustrated in Figure 1. Animals
are randomly assigned to one of a number of different treatment groups. These treat-
ment groups often include one negative control group, one positive control group and
dose groups where increasing doses of the compound of interest are administered to the
animals. From each animal one or more samples are collected and from each sample a
number of cells are scored.

Due to this setup the data have a hierarchical structure, that is, the sample of cells is
nested within animal that in turn is nested within treatment. Often the interest lies in the
assessment of the genotoxic effect potentially induced by the specific doses of the tested
compound. The animals used in the study is not of particular interest but merely act as
representatives of the general population of that species.

Literature study

To investigate how data are analyzed in practice a literature study was carried out. Papers
were retrieved from the search engine Web of Science with title: in vivo and topic: Comet
assay. Journal papers from January 2012 until October 2013 were considered. Papers
conducting in vivo Comet assay studies with a experimental setup similar to Figure 1
were included.

Throughout the papers the execution of the experiment was well-described. This ap-
ply in particular to non-statistical aspects but also information about the number of treat-
ment groups, number of animals in each group, number of samples and number of cells
per sample were often clearly stated. Regarding the statistical analysis of the Comet as-
say data it was in general not easy to determine how it was conducted. Most often it was
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briefly stated that data were analyzed with one-way ANOVA (46 %), ANOVA (31 %) or
Kruskal-Wallis test (19 %). From the brief description provided in the papers we were
not able to understand exactly how the analyses were performed. None of the papers
defined a statistical model and no test statistics, degrees of freedom or other pointers
were given. Some papers (65 %) indicated calculation of a summary measure such as
the mean or median prior to the statistical analysis, but in most cases it was not clear
how it was done, i.e. if the summary measure was calculated for each sample, for each
animal etc. None of the papers mentioned mixed models, repeated measures ANOVA,
random effects, nested effects or the like.

Modeling Comet assay data

One way to analyze data is to summarize the % tail DNA distribution for each sample
into a single summary statistic and use this measure in a subsequent analysis. Due to the
hierarchical structure of data and the randomly selected animals, a suitable analysis of
the summarized data is a linear mixed-effects model with treatment as a fixed effect and
animal as a random effect and with animal nested within treatment:

yi jk = µ + τi +β(i) j + ε(i j)k (1)

where
i = 1, ...,a, j = 1, ...,b, k = 1, ...,n,

β(i) j ∼ N(0,σ2
β ), ε(i j)k ∼ N(0,σ2).

yi jk is the summary statistic of interest calculated for each sample and µ and τi are the
fixed effects for the intercept and treatment, respectively. β(i) j is the random effect of
the jth animal nested within the ith treatment and ε(i j)k is the within-group error. The
parentheses in the subscripts indicate the nesting structure with the parent level(s) given
inside the parentheses (Montgomery, 2005).

The literature study did not indicate that this model is commonly employed. Rather, it
seems that data often are analyzed by means of a one-way ANOVA or the non-parametric
equivalent Kruskal-Wallis test. In general, it was not clear if the raw scores (one for each
cell), a summary measure calculated for each sample or a summary measure calculated
for each animal was used in the analysis. In this study we will investigate the implica-
tions if data summarized for each sample are analyzed by means of a one-way ANOVA.
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Notation

Let Yi j. =
n
∑

k=1
yi jk, Yi.. =

b
∑
j=1

n
∑

k=1
yi jk, Y... =

a
∑

i=1

b
∑
j=1

n
∑

k=1
yi jk and let Y i j. =

1
nYi j., Y i.. =

1
bnYi.., Y ...=

1
abnY.... If V ∼ cχ2(ν ,λ ) then V follows a scaled non-central χ2-distribution

with ν degrees of freedom, scaling parameter c and non-centrality parameter λ . If
c = 1 and λ = 0 then we say that V follows a non-scaled central χ2-distribution. If
W ∼ cF(ν1,ν2,λ ) then W has a scaled non-central F-distribution with ν1 and ν2 de-
grees of freedom, scaling parameter c and non-centrality parameter λ . The cumulative
distribution function of W evaluated at w is denoted G(w;ν1,ν2,λ ) when W follows a
non-scaled distribution or Gs(w;ν1,ν2,λ ) if the distribution is scaled. If W ∼ F(ν1,ν2)

then W has a non-scaled central F-distribution with the critical value Fα;ν1,ν2 being the
(1−α)th quantile such that G(Fα;ν1,ν2;ν1,ν2) = 1−α .

Disregarding the hierarchical data structure

In Comet assay studies it is our impression that rather than model (1) the fixed-effects
model is employed

yi j∗ = µ + τi + εi j∗ (2)

where i = 1, ...,a, j∗ = 1, ...,bn and εi j∗ ∼ N(0,σ∗2). This model typically underlies
what is referred to as a one-way ANOVA. The F-statistic is calculated as

Fanova =

bn
a
∑

i=1

(
Y i·−Y ··

)2
/(a−1)

a
∑

i=1

bn
∑

j∗=1

(
Yi j∗ −Y i·

)2
/(a(bn−1))

(3)

which is expressed within the framework of model (1) as

Fanova =

bn
a
∑

i=1

(
Y i··−Y ···

)2
/(a−1)

a
∑

i=1

b
∑
j=1

n
∑

k=1

(
Yi jk −Y i··

)2
/(a(bn−1))

(4)

The denominator of (4) can be rewritten as
{

n
a

∑
i=1

b

∑
j=1

(
Y i j·−Y i··

)2
+

a

∑
i=1

b

∑
j=1

n

∑
k=1

(
Yi jk −Y i j·

)2

}
/(a(b−1)+ab(n−1)) (5)

implying that sum of squares and the degrees of freedom in the denominator is at-
tributable both to the animal and the error part.
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A nice feature of fitting data with model (1) is that the sum of squares in the nu-
merator and denominator of the relevant F-statistic both follow χ2-distributions that are
scaled by nσ2

β +σ2, that is, they cancel out and the ratio follows a central non-scaled
F-distribution. This is not the case for the Fanova-statistic in (4) as the sum of squares
follow χ2-distributions that are scaled differently. The sum of squares in the numerator
is distributed as

bn
a

∑
i=1

(
Y i··−Y ···

)2 ∼
(

nσ2
β +σ2

)
χ2 (a−1,λ ) , (6)

where

λ =

bn
a
∑

i=1
τ2

i

nσ2
β +σ2 . (7)

Since Yi jk are not independent the sum of squares in the denominator of (4) does not fol-
low the usual χ2-distribution (see Box (1954) for details). However, looking separately
at the two terms in the numerator of (5) gives

n
a

∑
i=1

b

∑
j=1

(
Y i j·−Y i··

)2 ∼
(

nσ2
β +σ2

)
χ2(a(b−1)), (8)

and
a

∑
i=1

b

∑
j=1

n

∑
k=1

(
Yi jk −Y i j·

)2 ∼ σ2χ2(ab(n−1)), (9)

that is,
a
∑

i=1

b
∑
j=1

n
∑

k=1

(
Yi jk −Y i··

)2 is a linear combination of independent χ2-distributed ran-

dom variables. An approximate distribution is obtained using the rationale of the Welch-
Satterthwaite approximation (Welch, 1938; Satterthwaite, 1941; Box, 1954). The sum
of squares is approximated by a scaled χ2-distribution

a

∑
i=1

b

∑
j=1

n

∑
k=1

(
Yi jk −Y i··

)2 ·∼· cχ2(ν) (10)

and c and ν are found by matching the first two moments, so that

c =
(b−1)(nσ2

β +σ2)2 +b(n−1)(σ2)2

(b−1)(nσ2
β +σ2)+b(n−1)σ2 (11)

and

ν =
a((b−1)(nσ2

β +σ2)+b(n−1)σ2)2

(b−1)(nσ2
β +σ2)2 +b(n−1)(σ2)2 , (12)

where ν is known as the effective degrees of freedom (Satterthwaite, 1941). A ratio of
χ2-distributed random variables each divided by its degrees of freedom is F-distributed.
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However, the sum of squares in the denominator of (4) is not divided by its effective
degrees of freedom ν but by a(bn−1), so that

Fanova =

bn
a
∑

i=1

(
Y i··−Y ···

)2
/(a−1)

a
∑

i=1

b
∑
j=1

n
∑

k=1

(
Yi jk −Y i··

)2
/ν

· a(bn−1)
ν

(13)

In addition, adjusting for the different scaling of the distributions of the numerator
(scaled by nσ2

β +σ2) and denominator (scaled by c) gives an approximate distribution
of Fanova

Fanova
·∼·

a(bn−1)
ν

nσ2
β +σ2

c
F(a−1,ν ,λ ), (14)

and inserting ν and c gives

Fanova
·∼· ξ F(a−1,ν ,λ ), (15)

where

ξ =
(bn−1)(nσ2

β +σ2)

(b−1)(nσ2
β +σ2)+b(n−1)σ2 . (16)

Since the expected value of an F random variable with ν1 and ν2 degrees of freedom is
E(F) = ν2(ν1+λ )

ν1(ν2−2) (Johnson et al., 1995), then

E(Fanova)≈ ξ
ν

(a−1)(ν −2)

(
a−1+

bn
a
∑

i=1
τ2

i

nσ2
β +σ2

)
(17)

and for sufficiently large ν

E(Fanova)≈ ξ

(
1+

bn
a
∑

i=1
τ2

i

(a−1)(nσ2
β +σ2)

)
(18)

which under H0 reduces to
E(Fanova)≈ ξ . (19)

When σ2
β = 0 then ξ = 1 and under H0 then E(Fanova) ≈ 1. For σ2

β > 0 then ξ > 1
implying that E(Fanova)> 1.

In practice, when data are analyzed with a one-way ANOVA the observed Fanova-
statistic is (incorrectly) compared to a critical value obtained from an unscaled F-distribution,
Fα;a−1,a(bn−1). The approximate type I error rate is found as

Type I error rate ≈ 1−Gs(Fα;a−1,a(bn−1);a−1,ν), (20)
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where Gs refers to the scaled cumulative distribution function of Fanova given in (15) with
λ = 0, since the type I error rate is defined under H0.

Multiplying the scaled F-distribution by ξ−1 is a monotonic transformation, hence
the type I error rate can also be calculated as

Type I error rate ≈ 1−G
(
ξ−1 Fα;a−1,a(bn−1);a−1,ν

)
(21)

and the type I error rate can be obtained by means of a non-scaled F-distribution, which
is readily available in most statistical software.

The type I error rate can also be expressed in terms of the ratio of the variance com-
ponents

σ2
ratio =

σ2
β

σ2 (22)

The effective degrees of freedom and the inverse scaling factor is then found as

ν =
a((b−1)(nσ2

ratio +1)+b(n−1))2

(b−1)(nσ2
ratio +1)2 +b(n−1)

(23)

and

ξ =
(bn−1)(nσ2

ratio +1)
(b−1)(nσ2

ratio +1)+b(n−1)
(24)

implying that the distribution of the Fanova-statistic and hence the type I error rate is
influenced by the relative magnitudes of σ2

β and σ2.
In the special case where n = 1 (one sample per animal) then ν = a(b−1) and ξ = 1.

In the case of σ2
β = 0 then ν = a(bn− 1) and ξ = 1. In both cases the approximate

distribution in (15) becomes the usual (appropriate) F-distribution and the type I error
rate in (21) becomes α .

Results

Table 1 summarizes the type I error rate for different combinations of treatment groups,
animals per treatment, samples per animal and ratios of the variance components. The
levels of the first three factors, i.e. treatment groups, animals and samples were selected
among actual levels identified in the literature study, although not every combination of
the three factors occurred. From an earlier study (Hansen et al., 2013) σ̂ratio = 0.9 ≈ 1
and the levels of the ratio were selected as 0.5, 1 and 2 times this approximate estimate.

The assumed denominator degrees of freedom was calculated as a(bn− 1) as this
is used when data are fitted model (2). The effective degrees of freedom ν , the scaling
factor ξ and the approximate E(F) was calculated from (23), (24) and (17), respectively.
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Table 1: Type I error rate for different combinations of number of treatment groups (a), animals per treatment groups (b), samples per animal (n)

and variance ratio σ2
ratio =

σ2
β

σ2 . The effective denominator degrees of freedom ν , the scaling parameter ξ and the approximate E(F) was calculated
from (23), (24) and (17), respectively. The simulated type I error rate was based on 10000 simulations for each combination (each row) and the
approximate type I error rate was found from (21). All approximate type I error rates were covered by the 95% confidence intervals for the simulated
type I error rates except for two cases marked by asterisks. Type I error rates greater then 0.20 are marked in bold.

Treatment Animals Samples σ2
ratio Den DF Den DF ξ Approximate Simulated Approximate

groups per treatment per animal a(bn−1) ν E(F) type I error rate type I error rate

2 4 2 0.5 14 12.50 1.40 1.67 0.094 0.094
2 4 2 1.0 14 10.90 1.61 1.98 0.118 0.120
2 4 2 2.0 14 9.14 1.84 2.36 0.150 0.148
2 4 3 0.5 22 17.96 1.77 2.00 0.139 0.137
2 4 3 1.0 22 14.29 2.20 2.56 0.186 0.183
2 4 3 2.0 22 10.85 2.65 3.25 0.227 0.230
2 8 2 0.5 30 26.89 1.36 1.47 0.090 0.092
2 8 2 1.0 30 23.69 1.55 1.70 0.120 0.114
2 8 2 2.0 30 20.21 1.74 1.94 0.140 0.138
2 8 3 0.5 46 37.56 1.72 1.81 0.131 0.133
2 8 3 1.0 46 30.25 2.09 2.24 0.178 0.174
2 8 3 2.0 46 23.54 2.48 2.71 0.223 0.213*
6 4 2 0.5 42 37.50 1.40 1.48 0.147 0.149
6 4 2 1.0 42 32.71 1.61 1.72 0.212 0.214
6 4 2 2.0 42 27.42 1.84 1.99 0.283 0.284
6 4 3 0.5 66 53.89 1.77 1.84 0.268 0.267
6 4 3 1.0 66 42.86 2.20 2.31 0.386 0.390
6 4 3 2.0 66 32.55 2.65 2.83 0.509 0.501
6 8 2 0.5 90 80.67 1.36 1.40 0.149 0.144
6 8 2 1.0 90 71.07 1.55 1.60 0.194 0.203*
6 8 2 2.0 90 60.62 1.74 1.80 0.271 0.265
6 8 3 0.5 138 112.69 1.72 1.75 0.256 0.257
6 8 3 1.0 138 90.75 2.09 2.14 0.374 0.371
6 8 3 2.0 138 70.61 2.48 2.55 0.477 0.473 8
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Figure 2: The F-distributions in case of 6 treatment groups, 4 animals per treatment, 3 samples
per animal and σ2

ratio = 1. The assumed F-distribution refers to the distribution from which the
critical value is obtained. The approximate F-distribution is the distribution of Fanova as defined
in (15). The approximate F-distribution has a heavier right tail implying that the type I error rate
is greater than the nominal α at 0.05.

The simulated type I error rate was obtained by simulating data structured as in Figure
1, and for each combination (each row in Table 1) 10000 simulations were conducted.
The approximate type I error rates were calculated from (21). Throughout the nominal
α was 0.05.

In all cases the assumed denominator degrees of freedom were greater than the effec-
tive denominator degrees of freedom, ν , and furthermore ξ > 1. This imposes additional
skewness to the F-distribution implying a heavier right tail as seen in Figure 2, which
illustrates the F-distributions for 6 treatment groups, 4 animals, 3 samples and σ2

ratio = 1.
Increasing the number of treatment groups enhanced the type I error rate considerably.

The same was in evidence when the number of samples per animal were increased.
Interestingly, the number of animals per treatment group did not affect the type I error
rate noticeably. Increasing σ2

ratio (increasing σ2
β relative to σ2) in general increased the

type I error rate. All cases resulted in a type I error rate greater than the nominal α
at 0.05. Most combinations gave type I error rates greater than 0.10 and almost half
resulted in type I error rates greater than 0.20.

The validity of the approximate type I error rates was assessed by making an informal
comparison to the simulated type I error rates. To quantify the simulation uncertainty
the standard errors were calculated as se(p̂) =

√
p̂(1− p̂)/n and Wald based 95% con-

fidence intervals (CI) were obtained (not shown). The simulated type I error rates were
between 0.090 and 0.509, hence the standard errors were between 0.003 and 0.005. In
all but two cases the approximate type I error rates were covered by the CI for the simu-
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lated type I error rates. This agrees with the expectation of 1 to 2 values falling outside
the CI given the number of comparisons and the confidence level. The two cases not
covered by the CI are marked with asterisks in Table 1. A 99% CI for the simulated type
I error rates covered all the approximate type I error rates.

Discussion

This study aimed at addressing potential issues concerning the analysis of Comet assay
data. First, from the literature study it was not possible to deduce exactly how data
were analyzed, which impedes reproducibility and blurs the interpretation of the reported
results. Even if some researchers analyze data properly, we find it likely that others
(e.g. new researchers in the field) may be inspired by the insufficient description of the
statistical modeling in the papers and thereby may fail to allow properly for the nested
structure. Second, as we suspect that the nested structure in data is not accounted for
in the statistical model we investigated the implications in terms of the type I error rate.
Approximate formulas were derived to examine in which way the type I error rate was
affected. Type I error rates for different combinations of the factors as they appeared in
the literature study demonstrated that the inflation is in fact non-trivial and resulted in
type I error rates up to 0.51.

Our objective was to illustrate the implications in a simple manner with the hope of
motivating researchers within the field to reconsider the statistical modeling. As the
design considered here is widespread across various scientific areas we believe that the
results may be equally relevant to researchers in other fields.
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Abstract

The Comet assay is a sensitive technique for detection of DNA strand breaks. The
experimental design of in vivo Comet assay studies are often hierarchically struc-
tured, which should be reWected in the statistical analysis. However, the hierar-
chical structure sometimes seems to be disregarded, and this imposes considerable
impact on the type I error rate. This study aims to demonstrate the implications
that result from disregarding the hierarchical structure. DiUerent combinations
of the factor levels as they appear in a literature study give type I error rates up to
0.51 and for all combinations the type I error rate is greater than the nominal α at
0.05. Closed-form expressions based on scaled F -distributions using the Welch-
Satterthwaite approximation are provided to show how the type I error rate is
aUected. With this study we hope to motivate researchers to be more precise re-
garding the exposition of the statistical methodology and to suitably account for
the hierarchical structure of Comet assay data whenever present.
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1 Introduction

Damage to our DNA occurs continuously due to both endogenous (e.g. metabolic
processes) and exogenous (e.g. environmental agents) factors. DNA repair mech-
anisms are eUective and constantly active, but some damages are irreparable.
Accumulation of damages to the DNA may eventually become hazardous, as it
may lead to unregulated cell division and tumors may evolve (Jeggo and Löbrich,
2007). The Comet assay is a rapid and sensitive technique for measuring DNA
strand breaks within mammalian cells. The name of the assay originates from the
images of comet-like structures that emerge due to DNA migration during elec-
trophoresis of treated cells (Kumaravel and Jha, 2006; Hartmann et al., 2003).

A common design of the in vivo Comet assay entails hierarchically structured
data. However, this does not seem to be accounted for in the statistical analysis.
This led us to investigate the implications in terms of the type I error rate when
the hierarchical structure of the data is disregarded. The type I error rate for two
diUerent hierarchical structures were assessed and it was investigated whether
the the type I error rate considerably exceeded the nominal α. Closed-form ex-
pressions are provided for one of these cases.

A literature study revealed that it was not possible to determine exactly how data
were analyzed due to an inadequate description. This is unfortunate since it im-
pedes reproducibility and blurs the interpretation of the reported results. Al-
though some researchers may analyze data properly, we Vnd it likely that others
are inspired by the insuXcient description in the papers and thereby unintention-
ally may fail to allow properly for the nested structure.

The aim of this study is twofold. First, we aim to shed light on the insuXcient
description of the statistical modeling that currently characterizes some papers
describing Comet assay data. Second, the implications of disregarding the hierar-
chical structure of data in the statistical modeling are assessed.

All results and derivations in this report assume balanced data, i.e. that the num-
ber of observations in each subgroup are the same. This is usually endavoured
in Comet assay studies and it is not uncommon for designed experiments in gen-
eral.

The structure of the report is as follows. Section 2 describes a common design of
Comet assay studies and the resulting inherent hierarchical nature of the collected
data. Section 3 presents possible statistical models for Vtting raw or summarized

1
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Figure 1: Outline of the design commonly used in Comet assay studies. This example
shows three treatment groups, four animals per treatment and two slides per animal. For
each slide a number of cells are scored, usually in the range of 50-100 cells.

Comet assay data. Section 4 describes a literature review examining the statisti-
cal analysis conducted in these published studies. Section 5 exposits the notation
and relevant existing results that are used in this report. In Section 6 we look at
the sampling distribution when a nested mixed-eUects model is used to Vt data.
Section 7 provides simulated type I error rates when the hierarchical data struc-
ture is ignored in case of two diUerent hierarchical data structures. Furthermore,
closed-form expressions for the type I error rate for one of these cases is derived.
Section 8 contains a discussion of the results. Some intermediate derivations are
given in the Appendix.

2 Comet assay data

A common design of in vivo Comet assay studies is illustrated in Figure 1. Animals
are randomly assigned to one of a number of diUerent treatment groups. These
treatment groups often include one negative control group, one positive control
group and dose groups where increasing doses of the compound of interest are
administered to the animals. For each animal there are a number of slides, in
practice usually one to three slides, and from each slide a number of cells are
scored.

This setup imposes a hierarchical structure of data, that is, the cells are nested
within slide, that in turn is nested within animal, which again is nested within
treatment. Often the interest lies in the assessment of the genotoxic eUect poten-
tially induced by the speciVc doses of the speciVc compound tested. The speciVc

2
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animals used in the study is not of particular interest but merely act as represen-
tatives of the general population of that species.

50-100 cells are usually scored for each slide and the shape of the individual elec-
trophoresed cells are very distinct. Cells can be scored both manually and auto-
matically. One example of manual scoring is to categorise each cell in one of Vve
categories ranging from 0 to 4 according to the shape of the cell, and a total sum
is calculated for each slide or animal (Zan et al., 2013; Pesarini et al., 2013; Malta
et al., 2012). Automated scoring is performed by imaging software. Popular end
points are % tail DNA (percent DNA located in the Comet "tail") and the Olive tail
moment, which is the product of the tail length and % tail DNA (Olive et al., 1990;
Lovell and Omori, 2008). Most of the Vndings in the current report will be equally
relevant for all types of end points assuming that they are normally distributed,
possibly by transformation.

Sometimes, a summary statistic is calculated and used as response in the sta-
tistical modeling. A natural question that arises is which summary statistic to
employ. DiUerent summary statistics have been proposed, including the mean
(Bright et al., 2011; Lovell et al., 1999; Wiklund and Agurell, 2003), the median
(Bright et al., 2011; Lovell et al., 1999; Wiklund and Agurell, 2003; Duez et al., 2003),
the 75th percentile (Lovell et al., 1999; Duez et al., 2003) and the 90th percentile
(Lovell et al., 1999; Wiklund and Agurell, 2003). Also, to comply with the skew-
ness of the within-slide distributions it has been suggested to log-transform the
raw data prior to the summary calculations (Lovell and Omori, 2008). Although a
few studies speciVcally address these issues, there is currently no consensus as to
which statistic most appropriately summarizes data.

3 Statistical analysis of Comet assay data

Comet assay data can be analyzed in diUerent ways. For some end points (e.g. %
tail DNA and tail moment) data are heavily skewed and it has been suggested to
model the data by means of theWeibull distribution (Ejchart and Sadlej-Sosnowska,
2003; Verde et al., 2006). In practice, it seems that only statistical methods rely-
ing on the normal distribution are used and three related statistical models valid
for Vtting Comet assay data are presented in the following. When data are bal-
anced and normally distributed all three methods are equivalent. However, this
requires that the statistical model matches data, i.e. if a summary statistic some-

3

97



how is calculated from the raw data this should appropriately be reWected in the
model. Due to the assumption of normally distributed data it may be requisite to
transform data prior to the statistical modeling.

3.1 Using raw cell scores as the response

When the raw cell scores are used as the response the hierarchical structure of
data and the randomly selected animals should be properly accounted for. This
can be done by employing a linear mixed-eUects model with treatment as a Vxed
eUect and animal and slide as random eUects. Animal is nested within treatment
and slide is nested within animal:

Yijkl = µ+ τi + β(i)j + γ(ij)k + ε(ijk)l (1)

where
i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, l = 1, ..., n,

β(i)j ∼ N(0, σ2
β), γ(ij)k ∼ N(0, σ2

γ), ε(ijk)l ∼ N(0, σ2).

Yijkl is the ijklth observation (one score for each cell) and µ and τi are the Vxed
eUects for the intercept and treatment, respectively. β(i)j is the random eUect
of the jth animal nested within the ith treatment, γ(ij)k is the random eUect of
the kth slide nested within the ith treatment and jth animal and ε(ij)k is the
within-group error. The parentheses in the subscripts indicate the nesting struc-
ture with the parent level(s) given inside the parentheses. See Montgomery (2005)
for a more elaborate exposition of the linear mixed-eUects model with nested
eUects.

3.2 Summarizing the response for each slide

Another way to analyze data is to summarize the % tail DNA distribution for
each slide into a single summary statistic and use this measure in the subsequent
analysis. Due to the hierarchical structure of data and the randomly selected
animals a suitable analysis of the summarized data is a linear mixed-eUects model
with treatment as a Vxed eUect and animal as a random eUect and with animal
nested within treatment:

Yijk = µ+ τi + β(i)j + ε(ij)k (2)
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where
i = 1, ..., a, j = 1, ..., b, k = 1, ..., n,

β(i)j ∼ N(0, σ2
β), ε(ij)k ∼ N(0, σ2).

Yijk is the summary statistic of interest calculated for each slide and µ and τi are
the Vxed eUects for the intercept and treatment, respectively. β(i)j is the random
eUect of the jth animal nested within the ith treatment and ε(ij)k is the within-
group error.

3.3 Summarizing the response for each animal

A third option is to calculate a summary statistic for each animal and use this as
the response. A suitable model is the Vxed-eUects model with treatment as a Vxed
eUect:

Yij = µ+ τi + εij (3)

where
i = 1, ..., a, j = 1, ..., n,

εij ∼ N(0, σ2).

Yij is the summary statistic of interest calculated for each animal, µ and τi are
Vxed eUects for the intercept and treatment, respectively, and εij is the within-
group error.

4 Literature study

To investigate how data are analyzed in practice a literature study was carried out.
Papers were retrieved from the search engine Web of Science with title: in vivo
and topic: Comet assay from January 2012 until December 2013, which resulted
in 95 papers. Of these, 47 papers conducted in vivo Comet assay studies with an
experimental setup similar to Figure 1, and these were included in the current
literature study.

Throughout the papers the execution of the experiment was well-described. This
apply in particular to non-statistical aspects but also information about the num-
ber of treatment groups, number of animals per group, number of slides per ani-
mal and number of cells per slide were often clearly stated.
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Regarding the statistical analysis of the Comet assay data it was in general not
easy to determine how it was conducted. None of the papers deVned a statisti-
cal model and no test statistics, degrees of freedom or other pointers were given.
Most often it was brieWy stated that data were analyzed with one-way ANOVA
(45%), ANOVA (21%) or Kruskal-Wallis test (15%). The remaining papers predom-
inantly used Student’s t-test (also in case of more than two treatments), Mann-
Whitneys U test or post-hoc tests such as Dunnett’s test without preceeding use of
other statistical models. None of the papers mentioned mixed models, repeated
measures ANOVA, random eUects, nested eUects or the like.

18 papers (38%) stated "Results are expressed as mean ± SD" (or mean ± SE) or
something similarly phrased. However, it was not clear how it was calculated,
i.e. if these measures were calculated for each slide, for each animal etc. Also,
it was not clear whether the statement was related to the tables presenting data
or the statistical analysis of data. In some of these cases other summary statistics
were calculated prior to the statistical analysis, i.e. in at least some cases it seems
only to concern the tables summarizing data.

23 papers (49%) calculated a summary measure prior to the statistical analysis. Of
these, only 15 papers (65%) clearly stated how it was done, and in these cases a
summary statistic most often was calculated for each animal; that amounts to 32%
of all papers that were included in the literature study. In the other 8 papers (35%)
it was not possible to deduce how the summary statistic was calculated, i.e. if it
was calculated per slide, per animal etc.

In 24 papers (51%) it seemed as no summary statistic was calculated prior to the
statistical analysis.

The imprecise description of the statistical analysis in these papers is of a concern
to us for two reasons. First, indistinctness of the methodology impedes both re-
producibility and a proper interpretation of the results. Second, the combination
of the lack of a calculated summary statistic and the reported statistical models
that are used strongly indicates that the hierarchical structure is not properly ac-
counted for in the statistical analysis. Although some researchers may analyze
data properly, we Vnd it likely that others are inspired by the inadequate de-
scription that implicitly suggests not to account for the hierarchical structure of
data.

We performed this study to accommodate these exact concerns. By bringing these
issues into focus we hope to motivate researchers to elaborate the description of
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the statistical methodology. Furthermore, we wish to create awareness of the
implications of ignoring potential hierarchical structure of data.

5 Notation and existing results

If V ∼ cχ2(ν, λ) then V is said to follow a scaled non-central χ2-distribution
with ν degrees of freedom, scaling parameter c and non-centrality parameter λ. If
c = 1 and λ = 0 then we say that V follows a non-scaled central χ2-distribution.
IfW ∼ cF (ν1, ν2, λ) thenW has a scaled non-central F -distribution with ν1 and
ν2 degrees of freedom, scaling parameter c and non-centrality parameter λ. The
cumulative distribution function of W evaluated at w is denoted G(w; ν1, ν2, λ)
whenW follows a non-scaled distribution orGs(w; ν1, ν2, λ) if the distribution is
scaled. IfW ∼ F (ν1, ν2) thenW has a non-scaled central F -distribution with the
critical value Fα;ν1,ν2 being the (1− α)th quantile such that G(Fα;ν1,ν2 ; ν1, ν2) =
1− α.
Let X1, X2, ..., Xn be independent random variables normally distributed with
expected values E(X1), E(X2), . . . , E(Xn) and common variance Var(X1) =

Var(X2) = · · · = Var(Xn) = Var(X). Also, let X = 1
n

n∑
i=1

Xi and E(X) =

E(X) = 1
n

n∑
i=1

E(Xi). Then

V =

n∑
i=1

(
Xi −X

)2

Var(X)
∼ χ2(n− 1, λ), (4)

where λ is the non-centrality parameter given as

λ =

n∑
i=1

(
E(Xi)− E(X)

)2

Var(X)

(Johnson et al., 1995). Furthermore, if V1 ∼ χ2(ν1, λ1) and V2 ∼ χ2(ν2, λ2) are
independent random variables, then according to the reproductive property of
the χ2-distribution the sum is distributed as

V1 + V2 ∼ χ2(ν1 + ν2, λ1 + λ2) (5)
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(Johnson et al., 1995; Dobson, 2002). The ratio of two independent χ2-distributed
random variables, V1 ∼ χ2(ν1, λ) and V2 ∼ χ2(ν2), each divided by its degrees
of freedom follows an F -distribution with ν1 and ν2 degrees of freedom

W =
V1/ν1
V2/ν2

∼ F (ν1, ν2, λ). (6)

with the expected value

E(W ) =
ν2(ν1 + λ)

ν1(ν2 − 2)
(7)

(Johnson et al., 1995).

Now, let yij. =
n∑
k=1

yijk, yi.. =
b∑

j=1

n∑
k=1

yijk, y... =
a∑
i=1

b∑
j=1

n∑
k=1

yijk and let

yij. =
1
n
yij., yi.. =

1
bn
yi.., y... =

1
abn
y.... The observations yijk and the group

averages yij·, yi·· and y··· are realizations of the random variables Yijk, Y ij·, Y i··
and Y ···, respectively. They are distributed as

Yijk ∼ N
(
µ+ τi, σ

2
β + σ2

)

Y ij· ∼ N

(
µ+ τi,

nσ2
β + σ2

n

)

Y i·· ∼ N

(
µ+ τi,

nσ2
β + σ2

bn

)

Y ··· ∼ N

(
µ,
nσ2

β + σ2

abn

)

(8)

See appendix A for details. Furthermore,

a∑

i=1

b∑

j=1

n∑

k=1

(Yijk − Y ij·)
2 ∼ σ2χ2 (ab(n− 1)) (9)

n
a∑

i=1

b∑

j=1

(Y ij· − Y i··)
2 ∼ (σ2

β + σ2)χ2 (a(b− 1)) (10)

bn
a∑

i=1

(Y i·· − Y ···)
2 ∼ (σ2

β + σ2)χ2 (a− 1, λ) (11)
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where

λ =

bn
a∑
i=1

τi

nσ2
β + σ2

See appendix B for details.

6 Hierarchical models for hierarchical data

In this section we will look into the behaviour of the sampling distribution when
Comet assay data summarized for each slide (i.e. as described in section 3.2) are
Vtted a linear mixed-eUects model as deVned in (2).

The hypothesis of interest is concerning equality of the diUerent dose groups

H0: τ1 = τ2 = · · · = τa = 0

H1: at least one τi 6= 0.

We Vrst consider the sum of squares attributable to the treatment eUect. Accord-
ing to (11) then

bn
a∑
i=1

(
Y i·· − Y ···

)2

nσ2
β + σ2

∼ χ2(a− 1, λ), (12)

where

λ =

bn
a∑
i=1

τ 2i

nσ2
β + σ2

.

Considering the sum of squares reWecting the error component then according to
(10)

n
a∑
i=1

b∑
j=1

(
Y ij· − Y i··

)2

nσ2
β + σ2

∼ χ2(a(b− 1)). (13)

As stated in (6) a ratio of two independent χ2-distributed random variables each
divided by their corresponding degrees of freedom follows an F -distribution. It
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can be shown with Fisher-Cochran’s theorem (Rao, 1973) that (12) and (13) are
independent, hence

Fmixed =

{
bn

a∑
i=1

(
Y i·· − Y ···

)2
/
(
nσ2

β + σ2
)}

/ (a− 1)

{
n

a∑
i=1

b∑
j=1

(
Y ij· − Y i··

)2
/
(
nσ2

β + σ2
)}

/ (a(b− 1))

=

bn
a∑
i=1

(
Y i·· − Y ···

)2
/ (a− 1)

n
a∑
i=1

b∑
j=1

(
Y ij· − Y i··

)2
/ (a(b− 1))

∼ F (a− 1, a(b− 1), λ) ,

(14)

where

λ =

bn
a∑
i=1

τ 2i

nσ2
β + σ2

. (15)

According to (7) the expected value of (14) is

E(Fmixed) =
a(b− 1)

(a− 1)(a(b− 1)− 2)

(
a− 1 +

bn
a∑
i=1

τ 2i

nσ2
β + σ2

)
(16)

and for suXciently large a or b then

E(Fmixed) ≈ 1 +

bn
a∑
i=1

τ 2i

(a− 1)(nσ2
β + σ2)

(17)

which under H0 reduces to
E(Fmixed) ≈ 1 (18)

7 The type I error rate - Disregarding the hierar-
chical structure

A type I error occurs if H0 is rejected when it indeed is true. A type II error
occurs if H0 is not rejected although it is false (i.e. H1 is true). A type I error
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is often considered the more serious of the two and is therefore controlled more
strictly. The probability of making a type I error is also called the signiVcance
level and is denoted α (Johnson et al., 2010; Hogg et al., 2005).

If some of the model assumptions are violated the actual probability of making
a type I error will diUer from the pre-speciVed signiVcance level. Therefore, we
distinguish between the former, which also is called the actual α, and the latter,
which is denoted the nominal α.

From our literature study it appears as data most often are analyzed with a one-
way ANOVA or Kruskal-Wallis test. However, in many cases it also seems that a
suiting summary measure is not used as the response. This combination violates
the assumption of independence since the observations obtained from the same
animal in that case will be correlated. In the following we will investigate the
implications when a one-way ANOVA is used in the analysis of hierarchically
structured Comet assay data, that is, when the response is the raw cell scores as
described in section 3.1 or when the response is a summary measure for each slide
as described in section 3.2. The type I error rate is obtained by simulation in case
of raw cell scores. Closed-form expressions for the type I error rate are provided
when the response is a summary measure for each slide. The type I error rates are
calculated from these expressions and are validated by simulations.

7.1 Using raw cell scores as the response

Type I error rates are in the following obtained by simulating data with a structure
as depicted in Figure 1. The simulated data are subsequently analyzed by means
of a one-way ANOVA, i.e. data are Vtted model (3).

Table 1 shows the type I error rates for diUerent combinations of number of treat-
ment groups, number of animals per treatment, number of slides per animals and
number of cells per animal. The levels reWect the numbers that appeared in the lit-
erature study although not all exact combinations occured. The variance compo-
nents used in the simulation study were σ2

β = 0.08 (animal-to-animal variation),
σ2
γ = 0.04 (slide-to-slide variation) and σ2 = 2.92. These variance component

equals the estimates obtained by Vtting model (1) to Comet assay data obtained
from an earlier study (Hansen et al., 2014). The study used % tail DNA as end
point and these estimates may thus not apply to data using other end points such
as the Olive tail moment or tail length. Nonetheless, the results given here can be
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Table 1: Type I error rate for diUerent combinations of number of treatment groups,
animals per treatment groups, slides per animal and cells per slide. The simulated type I
error rate was based on 10000 simulations for each combination (each row). The variance
components used in the simulations were σ2β = 0.08 (animal-to-animal variation), σ2γ =

0.04 (slide-to-slide variation) and σ2 = 2.92

Treatment Animals Slides Cells per Simulated
groups per treatment per animal slide type I error rate

2 4 2 50 0.335
2 4 2 100 0.474
2 4 3 50 0.397
2 4 3 100 0.535
2 8 2 50 0.330
2 8 2 100 0.464
2 8 3 50 0.398
2 8 3 100 0.532
6 4 2 50 0.747
6 4 2 100 0.909
6 4 3 50 0.840
6 4 3 100 0.950
6 8 2 50 0.758
6 8 2 100 0.905
6 8 3 50 0.838
6 8 3 100 0.950

used to give an impression of the implications when the hierarchical structure is
disregarded.

As seen in table 1 the type I error rate is severely inWated in all cases. The low-
est type I error rate for the combinations shown here occurs when we have the
lowest number of observations, namely when there is two treatment groups, four
animals per treatment, two slides per animal and 50 cells per slide. Increasing
the number of animals per treatment group did not aUect the type I error rate
much. Increasing the number of treatment groups, number of slides per animal
and number of cells per slide generally resulted in increasing type I error rates.
The type I error rates are between 0.335 and 0.950 and all type I error rates are
thus seriously inWated. In the best case a false positive is obtained more than 3
out of 10 times whereas in the most severe case a false positive occurs more than
9 out of 10 times.
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7.2 Summarizing the response for each slide

We will in the following assess the type I error rate when a summary statistic
is calculated for each slide and subsequently used as the response when model
(3) is Vtted. First, approximate closed-form expressions are derived which aid in
disclosing how the diUerent factors aUect the type I error rate. Subsequently, ap-
proximate type I error rates for diUerent combinations of the relevant factors are
calculated from the closed-form expressions and shown together with simulated
type I error rates.

7.2.1 Closed-form expressions for the type I error rate

Assume that a summary measure is calculated for each slide and the Vxed-eUects
model is employed

Yij∗ = µ+ τi + εij∗ (19)

where i = 1, ..., a, j∗ = 1, ..., bn and εij∗ ∼ N(0, σ∗2). This model typically
underlies what is referred to as a one-way ANOVA. The F -statistic is calculated
as

Fanova =

bn
a∑
i=1

(
Y i· − Y ··

)2
/ (a− 1)

a∑
i=1

bn∑
j∗=1

(
Yij∗ − Y i·

)2
/ (a(bn− 1))

(20)

which is expressed within the framework of model (2) as

Fanova =

bn
a∑
i=1

(
Y i·· − Y ···

)2
/ (a− 1)

a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
/ (a(bn− 1))

(21)

The denominator of (21) can be rewritten as
{
n

a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2
+

a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2
}
/ (a(b− 1) + ab(n− 1))

(22)
implying that sum of squares and the degrees of freedom in the denominator is
attributable both to the animal and the error part.
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A nice feature of the Fmixed-statistic given in (14) is that the sum of squares in
the numerator and denominator both follow χ2-distributions that are scaled by
nσ2

β + σ2, that is, they cancel out and the ratio follows a standard F -distribution.
This is not the case for Fanova-statistic in (21) as the sum of squares follow χ2-
distributions that are scaled diUerently. The sum of squares in the numerator is
distributed as

bn
a∑

i=1

(
Y i·· − Y ···

)2 ∼
(
nσ2

β + σ2
)
χ2 (a− 1, λ) , (23)

where λ is given in (15). Since Yijk are not independent the denominator of (21)
does not follow the usual χ2-distribution (see Box (1954) for details). However,
looking separately at the two terms in the numerator of (22) gives

n

a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2 ∼
(
nσ2

β + σ2
)
χ2(a(b− 1)), (24)

and
a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2 ∼ σ2χ2(ab(n− 1)), (25)

that is,
a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
is a linear combination of independent χ2-distributed

random variables. An approximate distribution is obtained using the rationale of
the Welch-Satterthwaite approximation (Welch, 1938; Satterthwaite, 1941; Box,
1954). The sum of squares is approximated by a scaled χ2-distribution

a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y i··

)2 ·∼· cχ2(ν) (26)

where c and ν are found by matching the Vrst two moments (see appendix C).
Thus,

c =
a(b− 1)(nσ2

β + σ2)2 + ab(n− 1)(σ2)2

a(b− 1)(nσ2
β + σ2) + ab(n− 1)σ2

=
(b− 1)(nσ2

β + σ2)2 + b(n− 1)(σ2)2

(b− 1)(nσ2
β + σ2) + b(n− 1)σ2

(27)
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and

ν =
(a(b− 1)(nσ2

β + σ2) + ab(n− 1)σ2)2

a(b− 1)(nσ2
β + σ2)2 + ab(n− 1)(σ2)2

=
a((b− 1)(nσ2

β + σ2) + b(n− 1)σ2)2

(b− 1)(nσ2
β + σ2)2 + b(n− 1)(σ2)2

(28)

where ν is known as the eUective degrees of freedom (Satterthwaite, 1941). As
previously mentioned a ratio of χ2-distributed random variables each divided by
its degrees of freedom are F -distributed. However, the sum of squares in the
denominator of (21) is not divided by its eUective degrees of freedom ν but by
a(bn− 1), so that

Fanova =

bn
a∑
i=1

(
Y i·· − Y ···

)2
/ (a− 1)

a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
/ν

· a(bn− 1)

ν
(29)

In addition, adjusting for the distinct scaling of the distributions of the numer-
ator (scaled by nσ2

β + σ2) and denominator (scaled by c) gives an approximate
distribution of Fanova

Fanova
·∼·
a(bn− 1)

ν

nσ2
β + σ2

c
F (a− 1, ν, λ), (30)

and inserting ν and c gives

Fanova
·∼· ξ F (a− 1, ν, λ), (31)

where

ξ =
(bn− 1)(nσ2

β + σ2)

(b− 1)(nσ2
β + σ2) + b(n− 1)σ2

. (32)

According to (7) then the expected value of Fanova becomes

E(Fanova) ≈ ξ
ν

(a− 1)(ν − 2)

(
a− 1 +

bn
a∑
i=1

τ 2i

nσ2
β + σ2

)
(33)
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and for suXciently large ν

E(Fanova) ≈ ξ

(
1 +

bn
a∑
i=1

τ 2i

(a− 1)(nσ2
β + σ2)

)
(34)

which under H0 reduces to
E(Fanova) ≈ ξ. (35)

When σ2
β = 0 then ξ = 1 and under H0 then E(Fanova) ≈ 1. For σ2

β > 0 then
ξ > 1 implying that E(Fanova) > 1.

In practice, when data are analyzed with a one-way ANOVA the observed Fanova-
statistic is (incorrectly) compared to a critical value obtained from an unscaled
F -distribution, Fα;a−1,a(bn−1). The approximate type I error rate is found as

Type I error rate = 1−Gs(Fα;a−1,a(bn−1); a− 1, ν), (36)

where Gs refers to the scaled cumulative distribution function of Fanova given in
(31) with λ = 0, since the type I error rate is deVned under H0.

Multiplying the scaled F -distribution by ξ−1 is a monotonic transformation (i.e. it
preserves the order of the quantiles), hence the type I error rate can also be cal-
culated as

Type I error rate ≈ 1−G
(
ξ−1 Fα;a−1,a(bn−1); a− 1, ν

)
(37)

and the type I error rate can be found by means of a non-scaled F -distribution,
which is readily available in most statistical software.

The type I error rate can also be expressed in terms of the variance compo-
nents

σ2
ratio =

σ2
β

σ2
(38)

The eUective degrees of freedom and the scaling factor is then found as

ν =
a((b− 1)(nσ2

β + σ2) + b(n− 1)σ2)2

(b− 1)(nσ2
β + σ2)2 + b(n− 1)(σ2)2

· (σ−2)2

(σ−2)2

=
a((b− 1)(nσ2

ratio + 1) + b(n− 1))2

(b− 1)(nσ2
ratio + 1)2 + b(n− 1)

(39)
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and

ξ =
(bn− 1)(nσ2

β + σ2)

(b− 1)(nσ2
β + σ2) + b(n− 1)σ2

· σ−2

σ−2

=
(bn− 1)(nσ2

ratio + 1)

(b− 1)(nσ2
ratio + 1) + b(n− 1)

. (40)

implying that the distribution of the Fanova-statistic and hence the type I error rate
is inWuenced by the relative magnitudes of σ2

β and σ
2.

The type I error rate in special cases

In the special case where n = 1, that is, there is one slide per animal, then

ν = a(b− 1) (41)

and
γ = 1 (42)

For σ2
β = 0 then

ν = a(bn− 1) (43)

and
γ = 1 (44)

In both cases the approximate distribution in (31) becomes the ususal (appropri-
ate) F -distribution and the type I error rate in (37) becomes α. This is what we
expect since the hierarchical structure of the data in these cases will vanish so
that model (19) becomes a suitable choice.

7.2.2 Results

Table 2 summarizes the type I error rate for diUerent combinations of treatment
groups, animals per treatment, slides per animal and ratios of the variance compo-
nents. The levels of the Vrst three factors, i.e. treatment groups, animals and slides
were selected among actual levels identiVed in the literature study, although not
every combination of the three factors occurred. From an earlier study (Hansen
et al., 2014), where % tail DNA was used as an end point, σ̂2

ratio = 0.9 ≈ 1 and
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Table 2: Type I error rate for diUerent combinations of number of treatment groups (a), animals per treatment groups (b),

slides per animal (n) and variance ratio σ2ratio =
σ2
β

σ2 . The eUective denominator degrees of freedom ν, the scaling parameter ξ
and the approximate E(F ) was calculated from (39), (40) and (33), respectively. The simulated type I error rate was based on
10000 simulations for each combination (each row) and the approximate type I error rate was found from (37). All approximate
type I error rates were covered by the 95% conVdence intervals for the simulated type I error rates except for two cases marked
by asterisks. Type I error rates greater then 0.20 are marked in bold.

Treatment Animals Slides σ2
ratio Den DF Den DF ξ Approximate Simulated Approximate

groups per treatment per animal a(bn− 1) ν E(F ) type I error rate type I error rate

2 4 2 0.5 14 12.50 1.40 1.67 0.094 0.094
2 4 2 1.0 14 10.90 1.61 1.98 0.118 0.120
2 4 2 2.0 14 9.14 1.84 2.36 0.150 0.148
2 4 3 0.5 22 17.96 1.77 2.00 0.139 0.137
2 4 3 1.0 22 14.29 2.20 2.56 0.186 0.183
2 4 3 2.0 22 10.85 2.65 3.25 0.227 0.230
2 8 2 0.5 30 26.89 1.36 1.47 0.090 0.092
2 8 2 1.0 30 23.69 1.55 1.70 0.120 0.114
2 8 2 2.0 30 20.21 1.74 1.94 0.140 0.138
2 8 3 0.5 46 37.56 1.72 1.81 0.131 0.133
2 8 3 1.0 46 30.25 2.09 2.24 0.178 0.174
2 8 3 2.0 46 23.54 2.48 2.71 0.223 0.213*
6 4 2 0.5 42 37.50 1.40 1.48 0.147 0.149
6 4 2 1.0 42 32.71 1.61 1.72 0.212 0.214
6 4 2 2.0 42 27.42 1.84 1.99 0.283 0.284
6 4 3 0.5 66 53.89 1.77 1.84 0.268 0.267
6 4 3 1.0 66 42.86 2.20 2.31 0.386 0.390
6 4 3 2.0 66 32.55 2.65 2.83 0.509 0.501
6 8 2 0.5 90 80.67 1.36 1.40 0.149 0.144
6 8 2 1.0 90 71.07 1.55 1.60 0.194 0.203*
6 8 2 2.0 90 60.62 1.74 1.80 0.271 0.265
6 8 3 0.5 138 112.69 1.72 1.75 0.256 0.257
6 8 3 1.0 138 90.75 2.09 2.14 0.374 0.371
6 8 3 2.0 138 70.61 2.48 2.55 0.477 0.473
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the levels of the ratio were selected as 0.5, 1 and 2 times this approximate esti-
mate.

The assumed denominator degrees of freedom was calculated as a(bn − 1) as
this is used when data are Vtted model (19). The eUective degrees of freedom ν,
the scaling factor ξ and the approximate E(F ) was calculated from (39), (40) and
(33), respectively. The simulated type I error rate was obtained by simulating data
structured as in Figure 1, and for each combination (each row in Table 2) 10000
simulations were conducted. The approximate type I error rates were calculated
from (37). Throughout the nominal α was 0.05.

In all cases the assumed denominator degrees of freedom were greater than the
eUective denominator degrees of freedom, ν, and furthermore ξ > 1. This im-
poses additional skewness to the F -distribution implying a heavier right tail as
seen in Figure 2, which illustrates the F -distributions for six treatment groups,
four animals, three slides and σ2

ratio = 1.

Increasing the number of treatment groups enhanced the type I error rate con-
siderably. The same was in evidence when the number of slides per animal were
increased. Interestingly, the number of animals per treatment group did not af-
fect the type I error rate noticeably. Increasing σ2

ratio (increasing σ2
β relative to

σ2) in general increased the type I error rate. All cases resulted in a type I error
rate greater than the nominal α at 0.05. Most combinations gave type I error
rates greater than 0.10 and almost half resulted in type I error rates greater than
0.20.

The validity of the approximate type I error rates was assessed by making an in-
formal comparison to the simulated type I error rates. To quantify the simulation
uncertainty the standard errors were calculated as se(p̂) =

√
p̂(1− p̂)/n and

Wald based 95% conVdence intervals (CI) were obtained (not shown). The sim-
ulated type I error rates were between 0.090 and 0.509, hence the standard errors
were between 0.003 and 0.005. In all but two cases the approximate type I error
rates were covered by the CI for the simulated type I error rates. This agrees
with the expectation of 1 to 2 values falling outside the CI given the number of
comparisons and the conVdence level. The two cases not covered by the CI are
marked with asterisks in Table 2. A 99% CI for the simulated type I error rates
covered all the approximate type I error rates.
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Figure 2: The F -distributions in case of six treatment groups, four animals per treatment,
three slides per animal and σ2ratio = 1. The assumed F -distribution refers to the distri-
bution from which the critical value is obtained. The approximate F -distribution is the
distribution of Fanova as deVned in (31). The approximate F -distribution has a heavier
right tail implying that the type I error rate is greater than the nominal α at 0.05.

8 Discussion

This study aimed at addressing potential issues concerning the analysis of Comet
assay data. First, from the literature study it was not possible to deduce exactly
how data were analyzed, which impedes reproducibility and blurs the interpreta-
tion of the reported results. Even if some researchers analyze data properly, we
Vnd it likely that others (e.g. new researchers in the Veld) may be inspired by
the insuXcient description of the statistical modeling in the papers and thereby
may fail to allow properly for the nested structure. Second, as we suspect that the
nested structure in data is not accounted for in the statistical model we investi-
gated the implications in terms of the type I error rate. Approximate formulas for
one likely case were derived to examine in which way the type I error rate was
aUected.

Type I error rates for diUerent combinations of the factors as they appeared in the
literature study demonstrated that the inWation is in fact non-trivial. When the
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cell scores are used as the response all type I error rates examined in the current
study were severely inWated yielding type I error rates as high as 0.950. These
results were seen for combination of factors as they appeared in the literatury
study and we therefore consider these results likely to occur in practice. Inter-
estingly, the variance components reWecting the animal and slide variation were

relatively small compared to the residual variation, i.e. the ratios were
σ2
β

σ2 = 0.026

and
σ2
γ

σ2 = 0.013, respectively. Even so, the results show that the hypothesis test
yields completely unreliable results from which erroneous inferences are made.
This means that even factors that contribute with variation that seem negligible
can have a huge impact on the results. One reason may be the high number of
scored cells, which often in practice is 50 or 100 cells per slide.

Closed-form expressions were derived for the case where a summary statistic is
calculated for each slide and they showed that the actual sampling distribution
approximately follows a scaled F -distribution. Both the number of treatment

groups, animals per treatment, slides per animal, the variance ratio σ2
ratio =

σ2
β

σ2

and the signiVcance level, α, inWuences the shape of this distribution and hence
the type I error rate. For the cases shown here the approximate type I error rates
were between 0.094 and 0.501, and for all combinations they were greater than the
nominal α at 0.05. Almost half of the cases resulted in type I error rates greater
than 0.20. In practice, the number of animals did not seem to have a noticeable
eUect on the type I error rate but all other factors that appeared in the closed-form
expressions aUected the type I error rate appreciably.

Our objective was to illustrate the implications in a simple manner with the hope
of motivating researchers within the Veld to reconsider the statistical modeling.
As the design considered here is widespread across various scientiVc areas we be-
lieve that the results may be equally relevant to researchers in other Velds.
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Appendices

A Expectation and variance of Yijk, Y ij·, Y i·· and
Y ···

In the following the expectation and variance of Yijk, Y ij·, Y i·· and Y ··· is derived
from model (2). All terms in the model are assumed to be independent and the
following results are used:

Let X1, X2, ..., Xn be random variables and let T =
∑n

i=1 aiXi. Then

E(T ) =
n∑

i=1

aiE(Xi) (45)

and if X1, X2, ..., Xn are independent then

Var(T ) =
n∑

i=1

a2iVar(Xi) (46)

(Hogg et al., 2005)

Expectation and variance of Yijk

Given that
Yijk = µ+ τi + βj(i) + ε(ij)k (47)

then

E(Yijk) = E(µ) + E(τi) + E
(
βj(i)

)
+ E

(
ε(ij)k

)

= µ+ τi (48)

and

Var(Yijk) = Var(µ) + Var(τi) + Var
(
βj(i)

)
+ Var

(
ε(ij)k

)

= σ2
β + σ2 (49)

22

116
The type I error rate for Comet assay data when the hierarchical

structure is disregarded



Expectation and variance of Y ij·

The group mean Y ij· is obtained as

Y ij· =
1

n

n∑

k=1

Yijk

=
1

n

n∑

k=1

(
µ+ τi + βj(i) + ε(ij)k

)

= µ+ τi + βj(i) +
1

n

n∑

k=1

ε(ij)k. (50)

Then

E(Y ij·) = E(µ) + E(τi) + E
(
βj(i)

)
+ E

(
1

n

n∑

k=1

ε(ij)k

)

= µ+ τi (51)

and

Var(Y ij·) = Var(µ) + Var(τi) + Var
(
βj(i)

)
+ Var

(
1

n

n∑

k=1

ε(ij)k

)

= σ2
β +

σ2

n

=
nσ2

β + σ2

n
(52)
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Expectation and variance of Y i··

The group mean Y i·· is obtained as

Y i·· =
1

bn

b∑

j=1

n∑

k=1

Yijk

=
1

bn

b∑

j=1

n∑

k=1

(
µ+ τi + βj(i) + ε(ij)k

)

= µ+ τi +
1

b

b∑

j=1

βj(i) +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k. (53)

Then

E(Y i··) = E(µ) + E(τi) + E

(
1

b

b∑

j=1

βj(i)

)
+ E

(
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

)

= µ+ τi (54)

and

Var(Y i··) = Var(µ) + Var(τi) + Var

(
1

b

b∑

j=1

βj(i)

)
+ Var

(
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

)

=
σ2
β

b
+
σ2

bn

=
nσ2

β + σ2

bn
(55)

24

118
The type I error rate for Comet assay data when the hierarchical

structure is disregarded



Expectation and variance of Y ···

The group mean Y ··· is obtained as

Y ··· =
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

Yijk

=
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

(
µ+ τi + βj(i) + ε(ij)k

)

= µ+
1

a

a∑

i=1

τi +
1

ab

a∑

i=1

b∑

j=1

βj(i) +
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

ε(ij)k. (56)

Then

E(Y ···) = E(µ) + E

(
1

a

a∑

i=1

τi

)
+ E

(
1

ab

a∑

i=1

b∑

j=1

βj(i)

)

+ E

(
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

ε(ij)k

)

= µ (57)

and

Var(Y ···) = Var(µ) + Var

(
1

a

a∑

i=1

τi

)
+ Var

(
1

ab

a∑

i=1

b∑

j=1

βj(i)

)

+ Var

(
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

ε(ij)k

)

=
σ2
β

ab
+

σ2

abn

= =
nσ2

β + σ2

abn
(58)

B Distribution of the sum of squares

In the following the distributions of the relevant sum of squares that appear in
the Fanova-statistic presented in section 6 are derived. The results are based on the
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deVnition of model (2) and the results obtained in appendix A.

Distribution of
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Y ij·)2

According to (2) and (50) then

Yijk − Y ij· = µ+ τi + β(i)j + ε(ij)k −
(
µ+ τi + β(i)j +

1

n

n∑

k=1

ε(ij)k

)

= ε(ij)k −
1

n

n∑

k=1

ε(ij)k (59)

Since ε(ij)k ∼ N(0, σ2) and 1
n

n∑
k=1

ε(ij)k ∼ N
(
0, σ

2

n

)
then

a∑

i=1

b∑

j=1

n∑

k=1

(
ε(ij)k −

1

n

n∑

k=1

ε(ij)k

)2

∼ σ2χ2 (ab(n− 1)) (60)

hence
a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2 ∼ σ2χ2 (ab(n− 1)) (61)

Distribution of n
a∑
i=1

b∑
j=1

(Y ij· − Y i··)2

According to (50) and (53) then

Yij· − Y i·· = µ+ τi + β(i)j +
1

n

n∑

k=1

ε(ij)k

−
(
µ+ τi +

1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

)

= β(i)j +
1

n

n∑

k=1

ε(ij)k −
1

b

b∑

j=1

(
β(i)j +

1

n

n∑

k=1

ε(ij)k

)
(62)
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where the last term is seen to an average of the Vrst two terms. Also,

β(i)j +
1

n

n∑

k=1

ε(ij)k ∼ N

(
0,
nσ2

β + σ2

n

)
, (63)

and
1

b

b∑

j=1

(
β(i)j +

1

n

n∑

k=1

ε(ij)k

)
∼ N

(
0,
nσ2

β + σ2

bn

)
(64)

so that

n
a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2 ∼ (nσ2
β + σ2)χ2 (a(b− 1)) (65)

Distribution of bn
a∑
i=1

(Y i·· − Y ···)2

According to (53) and (56) then

Yi·· − Y ··· = µ+ τi +
1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

−
(
µ+

1

a

a∑

i=1

τi +
1

ab

a∑

i=1

b∑

j=1

β(i)j +
1

abn

a∑

i=1

b∑

j=1

n∑

k=1

ε(ij)k

)

= τi +
1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

− 1

a

a∑

i=1

(
τi +

1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

)
(66)

where the last term is seen to be an average of the Vrst three terms. Also,

τi +
1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k ∼ N

(
τi,
nσ2

β + σ2

bn

)
, (67)

and

1

a

a∑

i=1

(
τi +

1

b

b∑

j=1

β(i)j +
1

bn

b∑

j=1

n∑

k=1

ε(ij)k

)
∼ N

(
0,
nσ2

β + σ2

abn

)
, (68)
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so that

bn

a∑

i=1

(
Y i·· − Y ···

)2 ∼ (nσ2
β + σ2)χ2 (a− 1, λ) , (69)

where

λ =

bn
n∑
i=1

τ 2i

nσ2
β + σ2

(70)

C Approximate distribution of a linear combina-
tion of χ2 variates

The sum of squares in the denominator of (21) can be partitioned as

a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y i··

)2
= n

a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2
+

a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2

(71)
which can be expressed as

V = V1 + V2, (72)

where Vi ∼ ciχ
2(νi), i = 1, ..., 2. An exact distribution of V is given in Box

(1954) and Satterthwaite (1941). However, a more accessible representation can
be accomplished by means of the Welch-Satterthwaite approach, where the dis-
tribution of V is approximated by a scaled χ2-distribution. The scaling factor
and the degrees of freedom of the χ2-distribution is found by matching the Vrst
two moments of V and the approximate distribution. In the following it will
be utilized that E(χ2

m) = m and Var(χ2
m) = 2m (Dobson, 2002; Johnson et al.,

1994).

First, the distribution of V is approximated with a scaled χ2-distribution of the
form

V ·∼· cχ2(ν). (73)

By equating the Vrst two moments of V and cχ2(ν) we get E(V1 + V2) =
E(cχ2(ν)), so that

c1ν1 + c2ν2 = cν. (74)
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Since V1 and V2 are independent (which can be shown using Fisher-Cochran’s
Theorem (Rao, 1973)), then Var(V1 + V2) = Var(cχ2(ν)), so that

2c21ν1 + 2c22ν2 = 2c2ν. (75)

The scaling factor, c, is found by inserting (74) into (75)

2c21ν1 + 2c22ν2 = 2c(c1ν1 + c2ν2) (76)

so that

c =
c21ν1 + c22ν2
c1ν1 + c2ν2

. (77)

The degrees of freedom, ν, is obtained by inserting (77) in (74) and rearranging,
so that

ν =
(c1ν1 + c2ν2)

2

c21ν1 + c22ν2
. (78)
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Appendix C

On the Type I Error Rate When the
Hierarchical Structure of Data Is

Ignored
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On the Type I Error Rate When the Hierarchical

Structure of Data Is Ignored

Abstract

Hierarchical data arise naturally in many different fields. The statis-

tical analysis should suitably accommodate the hierarchical structure.

This sometimes however seems to be disregarded, which leads to con-

siderable impact on the type I error rate. For different combinations of

relevant factors the type I error rates are between 0.074 and ≈ 1, i.e. for

all the combinations the type I error rate is greater than the nominal α

at 0.05, and in most cases the inflation is substantial. Closed-form ex-

pressions for the approximate type I error rate are provided to clarify

how they are affected. With this study we aim to show the inferential

implications that result from disregarding the hierarchical structure

in the hope of motivating researchers not to underestimate the severe

consequences and to properly account for the hierarchical structure.

KEY WORDS: Inflated alpha, nested design, violation of assumptions, non-

independence, linear mixed-effects model
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1 INTRODUCTION

Data with hierarchical structure are encountered in many different fields of

research and application. Among others, these studies appear frequently in

phychology, sociology, toxicology, pharmacology, neurology etc. In particular,

hierarchical data are often the outcome from experimental studies involving

animals and humans. This work was inspired by our practical research on

the design and analysis of animal experiments.

Data with a hierarchical structure are naturally accommodated by hierar-

chical models, also known as multilevel models, nested models, mixed-effects

models or random-effects models (Laird and Ware 1982; Raudenbush and

Bryk 2002; Gelman and Hill 2007; Verbeke and Molenberghs 2009). However,

in some fields of research these types of models seem not to have gained any

footing. For illustration purposes we will focus on a simple and in our experi-

ence quite common hierarchical structure shown in Figure 1. Here a number

of treatments are of interest and within each treatment the observations are

naturally clustered in groups. In this case various statistical approaches are

feasible depending on the aim of the study and one popular choice is to apply

a one-way ANOVA. For data arising from the design in Figure 1, a one-way

ANOVA is certainly a possibility if data are suitably aggregated and if the in-

ference of interest is at the aggregate level. However, this approach precludes

the possibility of making inference at the observational level as this would

lead to what is known as an ecological fallacy (Robinson 1950; Freedman

2

129



1 2 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Treatment

Group

Observations

Figure 1: Outline of a common experimental design. This example shows three
treatments, four groups per treatment and two observations per group.

2001; Gelman et al. 2008)

A main concern is that the statistical model should accommodate the data

to which it is applied. Thus, even though a one-way ANOVA sometimes

can be a valid choice for aggregated hierarchical data, it is in general not

suitable for raw hierarchical data. The most crucial assumption of a one-way

ANOVA is that the observations are independent, which is obviously not met

when data are hierarchically structured. Unfortunately, the use of a one-way

ANOVA in the analysis of hierarchical data sometimes occurs. This issue has

been addressed by various authors (Kenny and Judd 1986; Holson and Pearce

1992; Kromrey and Dickinson 1996; Tasca et al. 2009; McCoach and Adelson

2010), yet the occasional lack of consideration toward the dependency among

observations seems to persist (Wampold and Serlin 2000; Baldwin et al. 2005;

Baccaglini et al. 2010; Musca et al. 2011; Hansen and Kulahci 2014).

The aim of this paper is to yet again raise awareness about this issue

and shed light on the implications when the hierarchical structure is ignored

for one commonly occuring type of hierarchical data. The implications are

3
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quantified in terms of the type I error rate and closed-form expressions for

the approximate type I error rate for balanced data are derived to examine

the source of the impact on this measure. Type I error rates for different

ratios of the between-group and within-group variation and for various sample

sizes are calculated from the closed-form expressions, which are validated by

simulations. It is our hope that this exposition can add to the appreciation of

properly accounting for the non-independence among observations stemming

from the hierarchical structure of the data.

2 EXPERIMENTAL DESIGN AND STATISTICAL

MODELS

One type of hierarchical structure that is commonly seen is illustrated in

Figure 1. There are numerous examples where this structure arises naturally,

e.g. when teaching methods are compared on students that are clustered

within classes, when various doses of a given compound is tested in multiple

offsprings per litter or when observations repeatedly are collected from each

subject. This structure is thus a natural outcome in many settings, and in

the following, we use it to illustrate the pitfalls of ignoring dependency among

observations.

One way to analyze data structured as in Figure 1 is to fit a linear mixed-

effects model with treatment as a fixed effect and group as a random effect

and with group nested within treatment. Hence a proper model is

4
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Yijk = µ+ τi + β(i)j + ε(ij)k (1)

where

i = 1, ..., a, j = 1, ..., b, k = 1, ..., n,

β(i)j ∼ N(0, σ2
β), ε(ij)k ∼ N(0, σ2).

Yijk is the ijkth observation and µ and τi are the fixed effects for the intercept

and treatment, respectively. β(i)j is the random effect of the jth group nested

within the ith treatment and ε(ij)k is the within-group error. The parentheses

in the subscripts indicate the nesting structure with the parent level(s) given

inside the parentheses (Montgomery 2005).

In some cases, hierarchical data are reported to be analyzed with a one-

way ANOVA. The model underlying this method is typically:

Yij∗ = µ+ τi + εij∗ (2)

where i = 1, ..., a, j∗ = 1, ..., bn and εij∗ ∼ N(0, σ∗2). Using model (2) in-

vokes the assumption that all observations are independent. However, for

hierarchical data structured as in Figure 1 the observations are in fact not

independent. Observations within each group are correlated and if not ac-

counted for in the statistical modeling, it inflicts severe implications with

regard to the inference that is made about the treatment parameter.

5
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3 NOTATION

Let Yij. =
n∑
k=1

Yijk, Yi.. =
b∑

j=1

n∑
k=1

Yijk, Y... =
a∑
i=1

b∑
j=1

n∑
k=1

Yijk and let Y ij. =

1
n
Yij., Y i.. = 1

bn
Yi.., Y ... = 1

abn
Y.... If V ∼ cχ2(ν, λ) then V follows a scaled

non-central χ2-distribution with ν degrees of freedom, scaling parameter c

and non-centrality parameter λ. If c = 1 and λ = 0 then we say that V

follows a non-scaled central χ2-distribution. If W ∼ cF (ν1, ν2, λ) then W has

a scaled non-central F -distribution with ν1 and ν2 degrees of freedom, scaling

parameter c and non-centrality parameter λ. The cumulative distribution

function of W evaluated at w is denoted G(w; ν1, ν2, λ) when W follows a

non-scaled distribution or Gs(w; ν1, ν2, λ) if the distribution is scaled. If W ∼

F (ν1, ν2) then W has a non-scaled central F -distribution with the critical

value Fα;ν1,ν2 being the (1−α)th quantile such that G(Fα;ν1,ν2 ; ν1, ν2) = 1−α.

4 THE TYPE I ERROR RATE

In some studies (e.g. Morales et al. 2013; Chekhun et al. 2013; Almeida et al.

2013; Kelly et al. 2013) it seems that, rather than fitting a model that takes

into account the hierarchical structure as in (1), a fixed-effects model such

as given in (2) is employed

Yij∗ = µ+ τi + εij∗

where i = 1, ..., a, j∗ = 1, ..., bn and εij∗ ∼ N(0, σ∗2). This model typi-

6
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cally underlies what is referred to as a one-way ANOVA. The F -statistic is

calculated as

Fanova =

bn
a∑
i=1

(
Y i· − Y ··

)2
/ (a− 1)

a∑
i=1

bn∑
j∗=1

(
Yij∗ − Y i·

)2
/ (a(bn− 1))

which is expressed within the framework of model (1) as

Fanova =

bn
a∑
i=1

(
Y i·· − Y ···

)2
/ (a− 1)

a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
/ (a(bn− 1))

(3)

The denominator of (3) can be rewritten as

{
n

a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2
+

a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2
}
/ (a(b− 1) + ab(n− 1))

(4)

implying that sum of squares and the degrees of freedom in the denominator

is attributable both to the grouping and the error part.

A nice feature of fitting data with model (1) is that the sums of squares

in the numerator and denominator of the relevant F -statistic both follow

χ2-distributions that are scaled by nσ2
β +σ2, that is, they cancel out and the

ratio follows a central non-scaled F -distribution. This is not the case for the

Fanova-statistic in (3) as the sums of squares follow χ2-distributions that are

7
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scaled differently. The sum of squares in the numerator is distributed as

bn

a∑

i=1

(
Y i·· − Y ···

)2 ∼
(
nσ2

β + σ2
)
χ2 (a− 1, λ) ,

where

λ =

bn
a∑
i=1

τ 2i

nσ2
β + σ2

.

Since Yijk are not independent the sum of squares in the denominator of

(3) does not follow the usual χ2-distribution (see Box (1954) for details).

However, looking separately at the two terms in the numerator of (4) gives

n

a∑

i=1

b∑

j=1

(
Y ij· − Y i··

)2 ∼
(
nσ2

β + σ2
)
χ2(a(b− 1)),

and
a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y ij·

)2 ∼ σ2χ2(ab(n− 1)),

that is,
a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
is a linear combination of independent χ2-

distributed random variables. An approximate distribution is obtained using

the rationale of the Welch-Satterthwaite approximation (Welch 1938; Sat-

terthwaite 1941; Box 1954). The sum of squares is approximated by a scaled

χ2-distribution
a∑

i=1

b∑

j=1

n∑

k=1

(
Yijk − Y i··

)2 ·∼· cχ2(ν)

8
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and c and ν are found by matching the first two moments, so that

c =
(b− 1)(nσ2

β + σ2)2 + b(n− 1)(σ2)2

(b− 1)(nσ2
β + σ2) + b(n− 1)σ2

and

ν =
a((b− 1)(nσ2

β + σ2) + b(n− 1)σ2)2

(b− 1)(nσ2
β + σ2)2 + b(n− 1)(σ2)2

,

where ν is known as the effective degrees of freedom (Satterthwaite 1941).

A ratio of χ2-distributed random variables each divided by its degrees of

freedom is F -distributed. However, the sum of squares in the denominator

of (3) is not divided by its effective degrees of freedom ν but by a(bn − 1),

so that

Fanova =

bn
a∑
i=1

(
Y i·· − Y ···

)2
/ (a− 1)

a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y i··

)2
/ν

· a(bn− 1)

ν

In addition, adjusting for the different scaling of the distributions of the

numerator (scaled by nσ2
β + σ2) and the denominator (scaled by c) gives an

approximate distribution of Fanova

Fanova
·∼·
a(bn− 1)

ν

nσ2
β + σ2

c
F (a− 1, ν, λ),

and inserting ν and c gives

Fanova
·∼· ξ F (a− 1, ν, λ), (5)

9
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where

ξ =
(bn− 1)(nσ2

β + σ2)

(b− 1)(nσ2
β + σ2) + b(n− 1)σ2

.

Since the expected value of an F -distributed random variable with ν1 and ν2

degrees of freedom is E(F ) = ν2(ν1+λ)
ν1(ν2−2)

(Johnson et al. 1995), then

E(Fanova) ≈ ξ
ν

(a− 1)(ν − 2)

(
a− 1 +

bn
a∑
i=1

τ 2i

nσ2
β + σ2

)

and for sufficiently large ν

E(Fanova) ≈ ξ

(
1 +

bn
a∑
i=1

τ 2i

(a− 1)(nσ2
β + σ2)

)

which under the null hypothesis (H0) that τ1 = · · · = τa = 0 reduces to

E(Fanova) ≈ ξ.

When σ2
β = 0 then ξ = 1 and under H0 then E(Fanova) ≈ 1. For σ2

β > 0 then

ξ > 1 implying that E(Fanova) > 1.

In practice, when data are analyzed with one-way ANOVA, the observed

Fanova-statistic is (incorrectly) compared to a critical value obtained from an

unscaled F -distribution, Fα;a−1,a(bn−1). The approximate type I error rate is

10
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found as

Type I error rate ≈ 1 −Gs(Fα;a−1,a(bn−1); a− 1, ν),

where Gs refers to the scaled cumulative distribution function of Fanova given

in (5) with λ = 0, since the type I error rate is defined under H0.

Multiplying the scaled F -distribution by ξ−1 is a monotonic transforma-

tion, hence the type I error rate can also be calculated as

Type I error rate ≈ 1 −G
(
ξ−1 Fα;a−1,a(bn−1); a− 1, ν

)
(6)

and the type I error rate can be obtained by means of a non-scaled F -

distribution, which is readily available in most statistical software.

The type I error rate can also be expressed in terms of the ratio of the

variance components

σ2
ratio =

σ2
β

σ2

The effective degrees of freedom and the inverse scaling factor is then found

as

ν =
a((b− 1)(nσ2

ratio + 1) + b(n− 1))2

(b− 1)(nσ2
ratio + 1)2 + b(n− 1)

and

ξ =
(bn− 1)(nσ2

ratio + 1)

(b− 1)(nσ2
ratio + 1) + b(n− 1)

implying that the distribution of the Fanova-statistic and hence the type I

11
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error rate is influenced by the relative magnitudes of σ2
β and σ2.

The ratio σ2
ratio is a 1 to 1 function of the well-known intra-class correlation

(ICC)

ICC =
σ2
β

σ2
β + σ2

or

ICC =
1

1 + σ−2
ratio

In the special case where n = 1 (one observation per group) then ν =

a(b−1) and ξ = 1. In the case of σ2
β = 0 then ν = a(bn−1) and ξ = 1. In both

cases the approximate distribution in (5) becomes the usual (appropriate) F -

distribution and the type I error rate in (6) becomes α.

5 SIMULATION STUDY

A simulation study was conducted to verify the accuracy of the closed-form

expressions for the type I error rate. Also, the impact on the type I error rate

is assessed for different sample sizes and variance ratios when the hierarchical

structure of data is disregarded.

Simulated type I error rates were obtained by simulating data from model

(1). In all cases the between-group variation was fixed at σ2
β = 0.1 and the

reported σ2
ratio was achieved by letting σ2 = σ2

β/σ
2
ratio. As the type I er-

ror rate is defined under H0, data were generated with no treatment effect,

i.e. τ1, ..., τa = 0. For each combination (each cell in Table 1) 10000 simu-

lations were conducted. The approximate type I error rates were calculated

12
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from (6). Throughout, the nominal α was 0.05 unless stated otherwise. All

simulations and calculations were performed using R, version 3.0.2 (R Core

Team 2013). The nlme package (Pinheiro et al. 2013; Pinheiro and Bates

2000) was used to fit the linear mixed-effects model as defined in (1), and

Wilson confidence intervals (Wilson 1927; Agresti and Coull 1998) of the

simulated type I error rates were provided by the binom package (Dorai-Raj

2014).

The particular data structure addressed here (depicted in Figure 1) arises

in many different scientific disciplines where the natural range of the pa-

rameters varies. For instance, animal experiments often imply small sample

sizes and a sizeable variance ratio, σ2
ratio, whereas studies comparing produc-

tion methods on items from different batches may include a large number

of batches and/or items per batch and the variance ratio may be somewhat

smaller. The levels of the parameters, for which the type I error rates are

obtained, are selected to reflect this diversity.

Table 1 summarizes the type I error rate for different combinations of

treatments, groups per treatment, observations per group and ratios of the

variance components. Increasing the number of treatments increases the type

I error rate considerably. Similar conclusions can be made when the number

of observations per group are increased. Interestingly, the number of groups

per treatment does not affect the type I error rate noticeably. Increasing

σ2
ratio (increasing σ2

β relative to σ2) in general increases the type I error rate.

For all cases type I error rate was greater than the nominal α at 0.05. Most
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Table 1: Type I error rates for different combinations of number of treatments (a),
groups per treatment (b), observations per group (n) and variance ratio σ2ratio =
σ2β/σ

2. The approximate type I error rates were found from (5), and the simulated
type I error rates were based on 10000 simulations for each combination (each cell).

Treatm. Groups Observ. σ2
ratio

0.25 0.50 1.00 2.00

Appr. Sim. Appr. Sim. Appr. Sim. Appr. Sim.

2 2 2 0.076 0.074 0.099 0.095 0.134 0.127 0.177* 0.161
10 0.259 0.255 0.363 0.366 0.465 0.462 0.548 0.547
100 0.683 0.682 0.760 0.765 0.813 0.816 0.849 0.847

50 2 0.074 0.074 0.090 0.087 0.110 0.108 0.130 0.131
10 0.242 0.240 0.328 0.332 0.406 0.405 0.462 0.457
100 0.668 0.663 0.738 0.737 0.784 0.783 0.812 0.813

6 2 2 0.107 0.107 0.160 0.161 0.242 0.235 0.335 0.336
10 0.594 0.590 0.788 0.794 0.899 0.901 0.948 0.948
100 0.993 0.992 0.998 0.998 0.999 1.000 1.000 1.000

50 2 0.101 0.102 0.141 0.140 0.195 0.196 0.251 0.249
10 0.558 0.565 0.738 0.734 0.849 0.851 0.905 0.901
100 0.991 0.990 0.997 0.998 0.999 0.999 0.999 1.000

* Approximate type I error rates not covered by the 95% confidence intervals of
the simulated type I error rates.
Type I error rates greater than 0.20 are marked in bold.

combinations gave type I error rates greater than 0.10 and more than half

resulted in type I error rates greater than 0.50.

A visual representation of the inflated type I error rates is seen in Figure

2. This example shows the sampling distributions in case of six treatments,

two groups per treatment, ten observations per group and with a variance

ratio of σ2
ratio = 0.25. The dashed line is the assumed sampling distribution

of Fanova when the hierarchical structure is ignored, and the distribution

from which the critical value is determined. This is not the actual sampling
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Figure 2: The F -distributions in case of six treatments, two groups per treatment,
ten observations per group and σ2ratio = 0.25. The assumed F -distribution refers
to the distribution from which the critical value is obtained. The approximate
F -distribution is the distribution of Fanova as defined in (5). The approximate
F -distribution has a heavier right tail implying that the type I error rate is greater
than the nominal α at 0.05.

distribution, though, and the solid line depicts the approximate scaled F -

distribution given in (5). The expected value is E(Fanova) = 3.16, which is

greater than the usual expectation under H0 at approximately 1. Additional

skewness is thereby imposed on the F -distribution implying a heavier right

tail. For the combinations shown in Table 1 the expectations E(Fanova) are

between 1.21 and 134.56.

Proceeding with this example the type I error rate is shown as a function

of the nominal α (black line) in Figure 3. The grey solid line indicates the
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intended equality between the type I error rate and the nominal α. Both axes

are on a logarithmic scale. It can be seen that irrespective of the level of the

nominal α the type I error rate is considerably inflated when the hierarchical

structure is ignored. Even when significance is demonstrated at a level of

0.001, which often is considered fairly strong evidence against H0, it by no

means guarantees that the actual type I error rate is anywhere near the

conventional level of 0.05. In fact, for the example considered here a nominal

α of 0.001 corresponds to a type I error rate of 0.220 while a nominal α of

0.01 corresponds to a type I error rate of 0.406.

The validity of the approximate type I error rates was assessed by making

an informal comparison to the simulated type I error rates. Wilson 95%

confidence intervals (CI) were obtained (not shown), and in all cases but one

the approximate type I error rates were covered by the CI for the simulated

type I error rates. This agrees with the expectation of a few values falling

outside the CI given the number of comparisons and the confidence level.

The one case not covered by the CI is marked with an asterisk in Table 1.

6 CONCLUSION

The goal of this study is to draw attention to the implications of ignoring

the hierarchical structure of data during the analysis. We believe that this

unfortunately is the case in various fields of research and application. The

reason may be the failure to recognize the hierarchical structure or lack of ap-
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Figure 3: The type I error rate versus the nominal α (black line) in case of six
treatments, two groups per treatment, ten observations per group and σ2ratio = 0.25.
The grey solid reference line corresponds to equlity between the type I error rate
and the nominal α. Both axes are on a logarithmic scale.

preciation of the severe consequences that are entailed when the hierarchical

structure is disregarded.

For illustration purposes we focus on the simple yet widespread hierar-

chical structure shown in Figure 1. We believe that similar and potentially

more striking results can be expected when data exhibit more complicated

hierarchical structures. To clarify this further an even more detailed study

is required. However this is beyond the scope of this study.

When the hierarchical structure is ignored, the sampling distribution is

17

144
On the Type I Error Rate When the Hierarchical Structure of Data Is

Ignored



no longer the usual non-scaled F -distribution, but instead it is approximately

a scaled F -distribution. This imposes additional skewness to the sampling

distribution as opposed to when all observations are independent. Hence, the

more extreme values of the observed statistic are inferred to be significant

more often than they should, and this leads to inflation of the type I error

rate.

For different parameter values seemingly within a realistic range (depend-

ing on the particular field), the inflation of the type I error rate is rather

substantial. Thus, situations will occur where it becomes extremely likely

that the treatment effect is inferred to be significant, when in fact it is not,

and incorrect conclusions are thereby drawn.

It is of concern that studies with a positive finding, i.e. a significant

treatment effect, are more likely to be published (Easterbrook et al. 1991;

Song et al. 2010). The results from the current study confirm that null results

from studies that fail to account for the hierarchical structure are more likely

to appear significant and thus are more likely to be published. It is therefore

possible that these spurious findings are over-represented in the literature,

so that evidence against the hypothesis of the treatments being ineffective

fallaciously appears to accumulate.
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M. (2011), “Data with hierarchical structure: impact of intraclass correla-

tion and sample size on Type-I error,” Frontiers in Psychology, 2.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2013),

nlme: Linear and Nonlinear Mixed Effects Models, r package version 3.1-

113.

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-

PLUS, Statistics and Computing Series, New York, NY: Springer-Verlag.

R Core Team (2013), R: A Language and Environment for Statistical Com-

puting, R Foundation for Statistical Computing, Vienna, Austria.

Raudenbush, S. W. and Bryk, A. S. (2002), Hierarchical Linear Models,

Thousand Oaks, USA: Sage Publications, 2nd ed.

Robinson, W. S. (1950), “Ecological correlations and the behavior of individ-

uals,” American Sociological Review, 15, 351–357.

22

149



Satterthwaite, F. E. (1941), “Synthesis of Variance,” Psychometrika, 6, 309–

316.

Song, F., Parekh, S., Hooper, L., Loke, Y. K., Ryder, J., Sutton, A. J.,

Hing, C., Kwok, C. S., Pang, C., and Harvey, I. (2010), “Dissemination

and publication of research findings: an updated review of related biases,”

Health Technology Assessment, 14, 1–193.

Tasca, G. A., Illing, V., Joyce, A. S., and Ogrodniczuk, J. S. (2009), “Three-

level multilevel growth models for nested change data: A guide for group

treatment researchers,” Psychotherapy Research, 19, 453–461.

Verbeke, G. and Molenberghs, G. (2009), Linear Mixed Models for Longitu-

dinal Data, Springer Series in Statistics, New York, NY, USA: Springer.

Wampold, B. E. and Serlin, R. C. (2000), “The Consequence of Ignoring a

Nested Factor on Measures of Effect Size in Analysis of Variance,” Psycho-

logical Methods, 5, 425–433.

Welch, B. L. (1938), “The Significance of the Difference Between Two Means

when the Population Variances are Unequal,” Biometrika, 29, 350–362.

Wilson, E. B. (1927), “Probable Inference, the Law of Succession, and Statis-

tical Inference,” Journal of the American Statistical Association, 22, 209–

212.

23

150
On the Type I Error Rate When the Hierarchical Structure of Data Is

Ignored



Appendix D

In vivo Comet assay - statistical
analysis and power calculations of

mice testicular cells

Hansen, M. K., Sharma, A. K., Dybdahl, M., Boberg, J. and Kulahci, M.
(2014). In vivo Comet assay - statistical analysis and power calculations of mice
testicular cells. Mutation Research - Genetic Toxicoloty and Environmental
Mutagenesis, 774, 29-40. 10.1016/j.mrgentox.2014.08.006.

Reprinted with kind permission from Elsevier.

http://www.sciencedirect.com/science/article/pii/S138357181400237X


Mutation Research 774 (2014) 29–40

Contents lists available at ScienceDirect

Mutation Research/Genetic  Toxicology  and
Environmental Mutagenesis

jo ur nal home page: www.elsev ier .com/ locate /gentox
Comm uni t y ad dress : www.elsev ier .com/ locate /mutres

In  vivo  Comet  assay  –  statistical  analysis  and  power  calculations  of
mice  testicular  cells

Merete  Kjær  Hansena,∗, Anoop  Kumar  Sharmab,  Marianne  Dybdahlb, Julie  Bobergb,
Murat  Kulahcia,c

a Technical University of Denmark, Department of Applied Mathematics and Computer Science, Matematiktorvet, DK-2800 Kgs. Lyngby, Denmark
b Technical University of Denmark, National Food Institute, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
c Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, Luleå, Sweden

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 30 January 2014
Received in revised form 16 August 2014
Accepted 29 August 2014
Available online 8 September 2014

Keywords:
Single-cell gel electrophoresis
Genotoxicity
DNA damage
Germ cells
Power
Statistical analysis

a  b  s  t  r  a  c  t

The  in vivo  Comet  assay  is  a sensitive  method  for  evaluating  DNA  damage.  A recurrent  concern  is how
to  analyze  the data  appropriately  and  efficiently.  A popular  approach  is  to  summarize  the  raw  data  into
a summary  statistic  prior  to  the  statistical  analysis.  However,  consensus  on which  summary  statistic  to
use  has  yet to  be  reached.  Another  important  consideration  concerns  the assessment  of  proper  sample
sizes  in  the  design  of  Comet  assay  studies.  This  study  aims  to identify  a statistic  suitably  summarizing  the
% tail  DNA  of  mice  testicular  samples  in  Comet  assay  studies.  A  second  aim is  to  provide  curves  for  this
statistic  outlining  the  number  of  animals  and  gels  to use.  The  current  study  was  based  on 11  compounds
administered  via  oral  gavage  in  three  doses  to male  mice:  CAS no.  110-26-9,  CAS  no. 512-56-1,  CAS no.
111873-33-7,  CAS  no.  79-94-7,  CAS  no.  115-96-8,  CAS  no.  598-55-0,  CAS  no.  636-97-5,  CAS no.  85-28-9,
CAS  no.  13674-87-8,  CAS  no. 43100-38-5  and  CAS  no.  60965-26-6.  Testicular  cells  were  examined  using
the  alkaline  version  of the  Comet  assay  and  the  DNA damage  was  quantified  as  % tail  DNA  using a  fully
automatic  scoring  system.  From  the  raw data  23 summary  statistics  were  examined.  A linear  mixed-
effects  model  was  fitted  to  the  summarized  data  and  the  estimated  variance  components  were used to
generate  power  curves  as  a function  of  sample  size.  The  statistic  that  most  appropriately  summarized
the  within-sample  distributions  was the  median  of  the  log-transformed  data,  as it  most  consistently
conformed  to  the  assumptions  of the statistical  model.  Power  curves  for  1.5-,  2-,  and  2.5-fold  changes
of  the  highest  dose  group  compared  to the control  group  when  50  and  100  cells  were  scored  per  gel are
provided  to  aid  in  the  design  of  future  Comet  assay  studies  on  testicular  cells.

© 2014  Elsevier  B.V.  All rights  reserved.

1. Introduction

The Comet assay (also known as the single cell gel electrophore-
sis assay) is a simple, rapid, and sensitive technique for measuring
DNA strand breaks within individual mammalian cells. The in vivo
Comet assay is emerging as the default second in vivo assay to
follow-up in vitro positive genotoxicity results for regulatory and
mechanistic purposes. Typically, target organs of toxicological rel-
evance or site of contact are selected for analysis [1].

Statistical issues in the Comet assay have been addressed in
the last decade and a thorough review of the statistical aspects
of the Comet assay is given by Lovell and Omori [2], addressing
considerations both with respect to the design of the study and the
statistical analysis. A recurrent concern is how the Comet assay data

∗ Corresponding author. Tel.: +45 4525 5351; fax: +45 4588 1399.
E-mail address: mkha@dtu.dk (M.K. Hansen).

are analyzed appropriately and efficiently. The collection of models
commonly referred to as ANOVA all assume normally distributed
data. The asymmetric distribution obtained from each sample
therefore impede a direct application of standard ANOVA meth-
ods and more advanced analysis strategies must be considered
[3]. Alternatively, a summary statistic representing each within-
sample distribution may  be extracted and subsequently subjected
to a proper analysis. The latter approach is commonly practiced
although no consensus as to which summary statistic to employ
has been reached. Also, it remains unclear if a logarithmic transfor-
mation prior to the summary calculation is requisite [2]. Commonly
used summary statistics calculated from raw or log-transformed
data include the mean [4–6] and median [4–7] but other statistics
such as the 75th [5,7] and the 90th [5,6] percentile have also been
suggested. However, this issue has not been thoroughly examined
and the few studies specifically addressing this topic also concern
the tail length and tail moment [6,7]. Which summary statistic to
use for the % tail DNA has not been investigated comprehensively.

http://dx.doi.org/10.1016/j.mrgentox.2014.08.006
1383-5718/© 2014 Elsevier B.V. All rights reserved.
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Often Comet assay data are analyzed by means of a one-way
ANOVA with dose as a fixed effect. Thereby, another factor, namely
the animal, seems to be inadvertently ignored in many studies.
Observations from the same animal are not independent and ignor-
ing this factor in the model when it indeed induces variation in
the observed data thus violates the most critical assumption of the
statistical model. Since the animals are selected at random, this
second factor should be added to the model as a random factor.
The presence of both fixed effects and random effects is exactly
what characterizes a mixed-effects model. The nature of the sum-
marized data therefore implies that a suitable analysis could be
conveyed by means of a linear mixed-effects model with dose as a
fixed effect and animal as a random effect. A natural consequence
of this modelling approach is that observations from the same ani-
mal  are allowed to be more similar than observations obtained
from different animals. It thus relaxes the most important assump-
tion made by the fixed-effects model, namely the assumption of
independence. Still, the mixed-effects model makes a number of
assumptions that must be met  in order to ensure proper infer-
ence, that is, to avoid inflation of the rate of false negatives or
false positives. Furthermore, it should be taken into account that
the uncertainty of the estimated summary statistic vary consid-
erably, hence some estimates are more reliably determined than
others.

One important but sometimes overlooked concern in planning a
particular study is the determination of an appropriate sample size
in order to achieve adequate statistical power. Power is defined as
the probability of correctly rejecting the null hypothesis when it
is indeed false and, although influenced by several factors, power
in general increases with increasing sample size when all other
things are held constant. The power and sample size consideration
is treated in a simulation study by Wiklund and Agurell [6] for the
two end points tail length and tail moment on data from mice white
blood cells and different mice liver cells. For both tail length and tail
moment the mean, median and 90th percentile of the raw data and
of the log-transformed data are evaluated. Sample size recommen-
dations for the end point % tail DNA are provided by Smith et al.
[8], who used the mean of the log-transformed data as a summary
statistic from samples of rat liver, blood, bone marrow and stomach
samples.

Because of reasons such as reduced seamen quality and reduced
fertility in the Western world, there is a growing interest in the
evaluation of genotoxicity in male germ cells [9]. The comet assay
has the potential to detect germ cell genotoxicity and may  be used
for demonstrating the ability of a substance or its metabolite(s) to
directly interact with the genetic material and causing DNA dam-
age of gonadal and/or germ cells [10]. Genotoxicity data of gonadal
and/or germ cells are used in hazard assessment and in the clas-
sification/labelling of substances. Because of the growing interest

in assessing the genotoxicity of male gonadal and/or germ cells
together with the lack of analysis of summary statistics in comet
assay data of testicular cells, the focus is on testicular cells in this
study.

The present study is part of a project with the overall purpose
of extending and improving an existing quantitative structure-
activity relationship (QSAR) computer model for in vivo Comet
assay, developed at the National Food Institute, Technical Univer-
sity of Denmark. The aim of this paper is 2-fold. First, a range of
candidate summary statistics extracted from several studies were
evaluated with respect to some established criteria in order to rec-
ommend the ‘best’ summary statistic for testicular cell data. Second,
power curves for testicular cell data illustrating power as a function
of sample size were generated for this particular summary statistic
in order to facilitate the choice of animals employed per group and
the number of gels to use per animal.

2. Materials and methods

2.1. Chemicals tested

The chemicals were strategically selected in order to improve an existing
QSAR model for in vivo Comet assay. This was done by selecting chemical groups
not  already covered by the model or chemicals that could strengthen the pre-
dictive statistics of specific structural fragments. The QSAR model is based on
mice data; therefore, mice were used in this study. 11 chemicals were tested
with CAS numbers: 110-26-9 (Acrylamide, N,Nı́-methylenebis-), 512-56-1 (Methyl
phosphate phosphoric acid, trimethyl ester), 111873-33-7 (Perfluorooctane sul-
fonate), 79-94-7 (Tetrabromobisphenol A), 115-96-8 (Tris(2-chlorethyl) phosphate)
and  598-55-0 (Methylcarbamate), 636-97-5 (4-Nitrobenzoic hydrazide), 85-28-
9, (4-chloro-2-hydroxy-4-methoxybenzophenone), 13674-87-8 (Tris[2-chloro-1-
(chloromethyl)ethyl]phosphate), 43100-38-5 (4-tert-Butylbenzoic hydrazide A),
60965-26-6 (2-Bromo-2′ ,4′-dimethoxyacetophenone). Ethyl methanesulfonate
(EMS, CAS no. 62-50-0) was  used as the positive control. All the chemicals were
obtained from Sigma–Aldrich, Brondby, Denmark. To our knowledge, limited infor-
mation is available in the literature about the genotoxicity of the chemicals, apart
from CAS number 110-26-9. Table 1 summarizes the published genotoxicity results
of  the chemicals.

2.2. Animals and animal husbandry

CAS no. 110-26-9 and CAS no. 512-56-1 were tested in one animal study (study 1)
and  CAS no. 111873-33-7, 79-94-7, 115-96-8 and 598-55-0 were tested in another
animal study (study 2). CAS no. 636-97-5, 85-28-9, 13674-87-8, 43100-38-5 and
60965-26-6 were tested in a third animal study (study 3). In total 205 CD-1 male
mice, 4 weeks of age were purchased from Taconic MB,  DK-4623, Lille Skensved,
Denmark. Animals were allowed to acclimatize for a week. The weight (mean ± SD)
of  the 40 mice at arrival in study 1: 29.8 ± 1.2 g, 75 mice in study 2: 30.5 ± 1 g and
90  mice in study 3: 33.6 ± 2.3 g. The mice were randomly divided into dose groups
and  were housed individually in cages (Macrolon type III high, Techniplast Gazzada
S  ar. L., Buguggiate, Italy) with wood bedding (Tapvei, Finland) under controlled
environmental conditions (temperature 22 ± 1 ◦C, relative humidity 55 ± 5%, 12 h
light/dark cycle, air changed 10 times/h) and had free access to feed (Altromin 1324,
Lage, Germany) and tap water acidified with citric acid, pH = 3.5 (to prevent growth
of microorganisms). During the acclimatization and study periods all mice were
observed at least twice daily for any abnormalities in clinical appearance.

Table 1
Published in vivo genotoxicity results of the tested chemicals.

CAS number Reference Published in vivo comet assay data of gonadal/sperm cells Published in vivo genotoxicological data

110-26-9 [26–28] Positive response in mice gonadal sperm cells and testicular
somatic cells.
Positive response in rat testicular somatic cells.
Negative in rat gonadal sperm cells.

Positive response in comet assay in mice blood, liver, and
duodenum. Positive response in comet assay in rat blood,
duodenum and thyroid. Negative in rat liver.
Positive response in in vivo micronucleus assay (mice) in
peripheral blood and bone marrow (male rats and mice).
Positive response in other assays e.g. DNA adducts

111873-33-7 [29] Positive response in bone marrow cells (female rats) in comet
assay and micronucleus assay.

115-96-8 [30,31] Positive response in Chinese hamster bone marrow cells in the
micronucleus test (two males and two  females per dose group).
Negative in the micronucleus test (mice).

512-56-1 [32] Positive response in the dominant lethal mutation assay.
598-55-0 [34] Negative in sex linked mutations in Drosophila.
13674-87-8 [35] Negative in induction of chromosomal aberrations in rats.

Negative in induction of clastogenic effects in mice.
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2.3. Experimental design

The doses were chosen for the 11 chemicals according to the published literature
of  in vivo genotoxicity test data and experimental LD50 values after oral exposure of
mice. If no experimental data were available, a predicted QSAR LD50 value was used
for estimating the test doses (Pharma ToxBoxes version 1, now ACD/Labs). The maxi-
mum  dose was about 50% of the LD50 values, however no doses were tested above the
maximum recommendation of 2000 mg/kg bw.  The following doses were adminis-
tered; CAS no. 110-26-9: 50, 100 and 190 mg/kg bw, CAS no. 512-56-1: 125, 250 and
500 mg/kg bw,  CAS no. 111873-33-7: 100, 200 and 300 mg/kg bw, CAS no. 79-94-7:
500, 1000 and 2000 mg/kg bw, CAS no. 115-96-8: 500, 1000 and 1500 mg/kg bw,
CAS no. 598-55-0: 500, 1000 and 2000 mg/kg bw, CAS no. 85-28-9: 500, 1000 and
1500 mg/kg bw,  CAS no. 13674-87-8: 225, 450 and 900 mg/kg bw, CAS no. 43100-
38-5: 62.5, 125 and 250 mg/kg bw, CAS no. 60965-26-6: 45, 90 and 180 mg/kg bw
and CAS no. 636-97-5: 12.5, 25 and 50 mg/kg bw. Each dose group consisted of five
mice.

For  CAS no. 110-26-9, 512-56-1, 598-55-0 and 636-97-5 water was  used as the
solvent and for CAS no. 111873-33-7, 79-94-7, 115-96-8, 60965-26-6, 43100-38-5,
13674-87-8 and 85-28-9 corn oil was used. A positive control group of five mice
administered to 300 mg/kg bw EMS  (water as solvent) was  included in each of the
three animal studies. Control groups of five mice administered to solvent were also
included; water in study 1, water and corn oil in study 2 and 3. The mice were dosed
orally by gavage twice 24 h apart. Dosing suspensions were freshly prepared prior
to  each dosing occasion and given in a volume of 1 ml/100 g bw. All doses were
placed on a magnetic stirrer until dosing. All animals were fasted overnight before
the first dosing. Two to four hours after the second dosing the animals were anaes-
thetized in CO2/O2 and decapitated. After macroscopic examination, the testicles
were excised and weighed. After removing the capsule the right testicles were put
in  cryotubes and used later in the Comet assay. Freezing medium was  not added
because it was  an organ that was frozen and not cell suspensions. The cryotubes
were immediately frozen in Mr.  Frosty for about 1 h and then transferred to −80 ◦C
freezer until analyzed in the Comet assay. The left testicles were fixed in Bouin’s
fixative and routinely processed for paraffin fixation. One section (3 �M) per testis
were evaluated by an experienced pathologist. A detailed qualitative examination
of the testes was  made, taking into account the tubular stages of the spermatogenic
cycle. The examination was conducted to identify treatment-related effects such as
missing germ cell layers or types, retained spermatids, multinucleate or apoptotic
germ cells and sloughing of spermatogenic cells into the lumen.

A  testicle comprises different cell populations including somatic supportive cells
called Sertoli cells, differentiating germ cells in various stages of spermatogenesis
and spermiogenesis, interstitial Leydig cells, macrophages, and fibroblasts as well as
blood vessels and lymphatic vessels containing different cell populations. Therefore,
the DNA isolated from the testicular tissue origins from a mixture of different cell
types. The animal study was performed under conditions approved by The Danish
Agency of Protection of Experimental Animals and the in-house Animal Welfare
Committee.

2.4. Alkaline Comet assay

The Comet assay was  performed according to [11] following the recommenda-
tions of [12], with some minor modifications according to the manufacturer of the
CometAssay® Kit (Trevigen, Gaithersburg, Maryland). The cryotubes with the tes-
ticules from each mouse were added with 1.5 ml  ice cold mincing solution (Hank’s
balanced salt solution (Ca2+, Mg2+ free) with 20 mM EDTA and 10% dimethyl sulfox-
ide). The testicules were gently crushed 4–5 times with a pastil. The solution was
filtered through a 100 �m nylon filter (BD Falcon, Sigma–Aldrich, Denmark). Then,
the solution was centrifuged at 1200 rpm for 5 min  at 4 ◦C (Eppendorf Centrifuge
5810R, Buch & Holm, Herlev, Denmark). The supernatant was  removed and the pel-
let was  resuspended in 1.5 ml  mincing solution. This solution was  filtered through
a  100 �m nylon filter. Three microlitres of this suspension was  mixed with 150 �l
of  the molten CometAssay TM LMAgarose (Trevigen, Gaithersburg, Maryland, US).
Thirty microlitres of this mixture was applied onto one sample area of two gels on
two different slides (one gel on one slide) consisting of 20 gels (CometSlideTM HT,
Trevigen, Gaithersburg, Maryland, US). After solidification the embedded cells were

lysed in a cold alkaline lysis buffer for 60 min. For DNA unwinding the slides were
placed in the alkaline electrophoresis solution (pH > 13) in the electrophoresis jar
at  4 ◦C for 40 min, and electrophoresis was run in the same buffer for 30 min at 4 ◦C
(1  V/cm and 270 mA). After neutralization, fixation in 96% ethanol and DNA staining
with 10 �l SYBR Green on all gels of the slides and a drop of antifade solution was
added to each gel to avoid fading. Negative (Caco-2 cells in culture medium) and pos-
itive (Caco-2 cells exposed to 200 and 400 �M ethyl methanesulfonate for 30 min)
controls were included with each 20 gels slide for each electrophoresis run. Testicule
samples from each mouse were analyzed in two gels on two different slides.

Fully automatic Comet assay scoring was performed using the PathfinderTM

Cellscan Comet imaging system (IMSTAR, Paris, France). The system is described
in details in [13]. Tail intensity (% tail DNA) of each comet was used. The number
of  cells scored on the gels depended on the cell density of the gels. In this study
100 random cells were subsequently selected from each gel unless it was explicitly
stated otherwise, hence for each mouse 200 cells were scored (100 cells per gel and
two gels per mouse). For three of the power curves shown in Fig. 3 (first column)
50 cells were sampled per gel (100 cells per mouse). For the three remaining power
curves (second column) 100 cells were sampled per gel (200 cells per mouse). Selec-
tion of the 50 and 100 random cells for each gel was done using the sample function
in  R, version 3.0.2 [14]. Cells with high levels of DNA damage i.e. hedgehogs were
not discarded. The number of highly damaged cells with % tail DNA >80% for each
gel  were recorded.

2.5. Statistical analysis

Statistical analysis: For each gel the following summary statistics were calcu-
lated: the mean, median (50th), 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th and
95th percentile. The % tail DNA measured for each cell is naturally restricted to be
non-negative and the distribution of the % tail DNA within each sample are strongly
positively skewed. A popular endeavour to normalize the data and/or stabilize the
variance of such data is to take the natural logarithm. Each of the statistics was  thus
calculated from the raw data as well as from data subjected to the natural logarithm.
As  some observations were recorded as zero, a small constant (0.001) was added to
data when calculating the mean of the log-transformed data to avoid taken the log-
arithm of zero. Additionally, one summary statistic was calculated as the mean of
the raw data and subsequently log-transformed. This measure will be referred to as
the  log(mean). In total, 23 candidate summary statistics were extracted.

The summarized data was fitted using a linear mixed-effects model with dose
as  a fixed effect and animal as a random effect. The animals in one dose group are
different from the animals in other dose groups, and this induces a nested structure
in  data as illustrated in Figure 1. The linear mixed-effects model with animal nested
within dose is:

yijk = � + di + A(i)j + ε(ij)k (1)

where

i = 1, . . ., 4, j = 1, . . ., 5, k = 1, . . .,  2,

A(i)j∼N(0, �2
A ), ε(ij)k∼N(0, �2).

yijk is the summary statistic of interest calculated for each gel and � and di are
the fixed effects for the intercept and dose, respectively. A(i)j is the random effect
of  the jth animal nested within the ith dose and ε(ij)k is the within-group error. The
parentheses in the subscripts indicate the nesting structure with the parent level(s)
given inside the parentheses. See Montgomery [15] for a more elaborate exposition
of  the linear mixed-effects model with nested effects. The criteria for selecting a
summary statistic and all power calculations were based on this modelling approach.
Dunnett’s test was subsequently applied to compare the three dose groups to the
corresponding control group. Example of R code for fitting model (1) to Comet assay
data  is seen in appendix A. The values given in Table 2 were calculated by first
averaging the two  summary statistics obtained for each animal (i.e. one summary
statistics for each gel and two gels per animal) and from these values the average
and standard deviation were calculated.

Veh D1 D2 D3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Dose group

Animal

Gel

Fig. 1. Outline of the design of the conducted in vivo Comet assay studies. Animals in one dose group are different from animals in the other dose groups, and this imposes a
nested  structure of the study design and the resulting data. Veh, D1, D2, D3 indicate a vehicle group and three dose groups, respectively.
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Table  2a
Obtained % tail DNA after administration of CAS no. 110-26-9 (Acrylamide, N,N′-methylenebis-) and CAS no. 512-56-1 (methyl phosphate phosphoric acid, trimethyl ester)
in  study 1. Average % tail DNA with SD in parentheses. The values were calculated by first averaging the two  summary statistics for each animal and from these values the
average and SD were calculated. There were five animals in each dose group and 200 cells were scored for each mouse. Data were analyzed by means of a linear mixed-effects
model  as defined in model (1) with Dunnett’s test to compare the dose groups to their corresponding control. Values in bold indicate a significant difference. * p < 0.05, ** p
<  0.01, *** p < 0.001.

CAS no. 0 mg/kg bw 50 mg/kg bw 100 mg/kg bw 190 mg/kg bw Positive control (EMS)

110-26-9 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 7.1 (1.9) 1.0 (0.2) 6.7 (2.9) 0.8 (0.5) 8.3 (0.9) 1.3 (0.1) 14.0 (3.7)*** 1.7 (0.2)*** 12.4 (1.8)*** 1.9 (0.2)***
log(mean) 1.9 (0.3) – 1.8 (0.4) – 2.1 (0.1) – 2.6 (0.3)*** – 2.5 (0.2)*** –
Median 2.5 (0.6) 0.8 (0.3) 2.2 (1.8) 0.6 (0.7) 4.4 (0.4)* 1.5 (0.1)** 7.8 (1.5)*** 2.0 (0.2)*** 8.7 (2.6)*** 2.1 (0.3)***
65th  perc. 4.7 (2.1) 1.4 (0.4) 5.9 (3.0) 1.7 (0.6) 8.0 (0.8)* 2.1 (0.1)** 12.5 (2.8)*** 2.5 (0.2)*** 12.5 (2.6)*** 2.5 (0.2)***
75th  perc. 9.5 (4.7) 2.1 (0.4) 9.7 (4.2) 2.2 (0.4) 12.0 (2.1) 2.5 (0.2) 19.1 (6.3)** 2.9 (0.4)** 16.0 (2.4)** 2.8 (0.2)**
85th  perc. 14.9 (5.0) 2.6 (0.3) 14.5 (6.5) 2.6 (0.5) 16.4 (2.8) 2.7 (0.2) 27.8 (11.6)* 3.2 (0.4)* 21.3 (3.4)* 3.0 (0.2)**
95th  perc. 25.4 (3.9) 3.2 (0.2) 25.0 (12.2) 3.1 (0.5) 28.2 (4.1) 3.3 (0.3) 49.4 (19.1)** 3.8 (0.5)** 38.1 (3.9)*** 3.6 (0.1)***

CAS  no. 0 mg/kg bw 125 mg/kg bw 250 mg/kg bw 500 mg/kg bw Positive control (EMS)

512-56-1 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 7.1 (1.9) 1.0 (0.2) 7.9 (3.7) 0.9 (0.4) 9.8 (2.2) 1.4 (0.1) 13.9 (3.6)*** 1.9 (0.4)*** 12.4 (1.8)*** 1.9 (0.2)***
log(mean) 1.9 (0.3) – 2.0 (0.5) – 2.3 (0.2) – 2.6 (0.3)** – 2.5 (0.2)*** –
Median 2.5 (0.6) 0.8 (0.3) 2.1 (0.9) 0.6 (0.5) 4.4 (0.4) 1.5 (0.1)** 8.2 (3.2)*** 2.0 (0.4)*** 8.7 (2.6)*** 2.1 (0.3)***
65th  perc. 4.7 (2.1) 1.4 (0.4) 5.4 (3.1) 1.5 (0.6) 8.0 (0.6) 2.1 (0.1)* 12.4 (4.4)*** 2.5 (0.4)*** 12.5 (2.6)*** 2.5 (0.2)***
75th  perc. 9.5 (4.7) 2.1 (0.4) 10.8 (7.0) 2.2 (0.7) 11.7 (3.0) 2.4 (0.3) 17.9 (6.8)* 2.8 (0.4)* 16.0 (2.4)** 2.8 (0.2)**
85th  perc. 14.9 (5.0) 2.6 (0.3) 16.6 (8.9) 2.7 (0.5) 21.6 (11.0) 3.0 (0.5) 28.8 (7.3)* 3.3 (0.3)* 21.3 (3.4)* 3.0 (0.2)**
95th  perc. 25.4 (3.9) 3.2 (0.2) 32.7 (15.6) 3.4 (0.5) 38.7 (11.3) 3.6 (0.3) 46.6 (8.5)** 3.8 (0.2)** 38.1 (3.9)*** 3.6 (0.1)***

Table 2b
Obtained % tail DNA after administration of CAS no. 111873-33-7 (Perfluorooctane sulfonate) and CAS no. 79-94-7 (Tetrabromobisphenol A) in study 2. Average % tail DNA
with  SD in parentheses. The values were calculated by first averaging the two summary statistics for each animal and from these values the average and SD were calculated.
There  were five animals in each dose group and 200 cells were scored for each mouse. Data were analyzed by means of a linear mixed-effects model as defined in model (1)
with  Dunnett’s test to compare the dose groups to their corresponding control. Values in bold indicate a significant difference. * p < 0.05, ** p < 0.01, *** p < 0.001.

CAS no. 0 mg/kg bw 100 mg/kg bw 200 mg/kg bw 300 mg/kg bw Positive control (EMS)

111873-33-7 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 6.1 (2.9) 0.7 (0.6) 9.8 (1.0)** 1.0 (0.2) 8.1 (1.1) 0.8 (0.4) 6.5 (2.0) 0.8 (0.4) 12.2 (1.8)*** 1.7 (0.3)**
log(mean) 1.7 (0.5) – 2.3 (0.1)** – 2.1 (0.2) – 1.8 (0.3) – 2.5 (0.1)*** –
Median 2.7 (1.7) 0.9 (0.6) 2.7 (0.8) 1.0 (0.3) 2.4 (0.9) 0.8 (0.4) 2.5 (1.1) 0.8 (0.3) 7.6 (1.7)*** 2.0 (0.2)***
65th  perc. 4.4 (2.6) 1.3 (0.6) 5.6 (1.2) 1.7 (0.2) 4.0 (1.5) 1.3 (0.4) 4.3 (2.1) 1.4 (0.4) 10.8 (2.2)*** 2.4 (0.2)***
75th  perc. 6.4 (4.0) 1.7 (0.6) 10.2 (2.7) 2.3 (0.2) 6.7 (2.2) 1.8 (0.3) 6.4 (3.3) 1.7 (0.5) 13.9 (2.4)*** 2.6 (0.2)**
85th  perc. 9.5 (5.5) 2.1 (0.6) 19.5 (3.7)** 2.9 (0.2)** 14.0 (3.0) 2.6 (0.2) 11.7 (5.5) 2.4 (0.5) 19.2 (3.4)*** 2.9 (0.2)**
95th  perc. 24.3 (13.0) 3.1 (0.5) 46.7 (4.8)*** 3.8 (0.1)*** 43.7 (5.0)*** 3.7 (0.1)** 26.9 (7.1) 3.2 (0.3) 42.9 (4.9)** 3.7 (0.1)**

CAS  no. 0 mg/kg bw 500 mg/kg bw 1000 mg/kg bw 2000 mg/kg bw Positive control (EMS)

79-94-7 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 6.1 (2.9) 0.7 (0.6) 8.3 (1.5) 0.8 (0.4) 8.9 (2.6) 0.8 (0.5) 7.0 (1.0) 0.5 (0.2) 12.2 (1.8)*** 1.7 (0.3)**
log(mean) 1.7 (0.5) – 2.1 (0.2) – 2.1 (0.3) – 1.9 (0.2) – 2.5 (0.1)*** –
Median 2.7 (1.7) 0.9 (0.6) 2.5 (1.3) 0.8 (0.5) 2.6 (1.6) 0.8 (0.5) 1.9 (0.5) 0.5 (0.2) 7.6 (1.7)*** 2.0 (0.2)***
65th  perc. 4.4 (2.6) 1.3 (0.6) 5.5 (2.4) 1.6 (0.5) 4.9 (2.1) 1.5 (0.4) 3.4 (0.9) 1.1 (0.3) 10.8 (2.2)*** 2.4 (0.2)***
75th  perc. 6.4 (4.0) 1.7 (0.6) 8.5 (3.2) 2.1 (0.4) 8.7 (4.1) 2.1 (0.5) 5.9 (2.0) 1.7 (0.4) 13.9 (2.4)*** 2.6 (0.2)**
85th  perc. 9.5 (5.5) 2.1 (0.6) 14.6 (5.1) 2.6 (0.3) 17.1 (7.4) 2.7 (0.5) 12.8 (5.1) 2.4 (0.4) 19.2 (3.4)*** 2.9 (0.2)**
95th  perc. 24.3 (13.0) 3.1 (0.5) 37.7 (6.6) 3.6 (0.1)* 44.8 (16.9)* 3.7 (0.3)** 33.7 (7.5) 3.4 (0.2) 42.9 (4.9)*** 3.7 (0.1)**

Assessment of summary statistics: The established criteria for pursuing a suitable
summary statistic were in decreasing order of significance: (1) variance homogene-
ity,  (2) normality and (3) uncertainty of estimates. The first two criteria were directly
derived from the assumptions underlying the linear mixed-effects model [16].

For each study and summary statistic model (1) was  fitted and the standardized
residuals were calculated. The variance homogeneity assumption may  be violated
in  two distinct ways; (1a) the variance does not remain constant over the range
of  estimated mean values and (1b) the variance does not remain constant across
dose groups. Accordingly, the assessment of the variance homogeneity assumption
was  2-fold. First, to examine a possible violation as described in criterion (1a) the
square root of the absolute value of the standardized residuals were fitted via a
linear regression model using the fitted values and the p values of the slopes were
calculated. Second, regarding criterion (1b) Brown–Forsythe’s test (also known as
the modified Levene’s test) [17], which is robust to possible departures from an
underlying normal distribution, was applied to the standardized residuals and the
p  values were calculated. The normality assumption (criterion 2) was  evaluated
using Shapiro–Wilk’s test [18] applied to the standardized residuals and the p values
were extracted. These three methods were applied to each compound and summary
statistic individually and are illustrated in Fig. 2.

The extracted p values can be used as a measure of the relative performance
among the different candidate statistics. As an example we consider the group

variances. Even if all dose groups should have the same underlying true vari-
ance, the sampling distribution will most often be fairly right-skewed due to the
inherent random variation in the data. This implies that some observed group
variances will be somewhat larger than others. Applying Brown–Forsythe’s test
takes the inherent variation of data into account and the p values thus reflect
how well the observed treatment variances conform to the distribution that is
expected under the hypothesis of variance equality. High p values suggest that
the model assumptions are valid while low p values may indicate that the model
assumptions are violated. As we are interested in the summary statistic that most
consistently meet the model assumptions, the summary statistics associated with
high  p values are favoured over summary statistics that are associated with low
p  values.

It is important to keep in mind that a p value exceeding the significance level
does not guarantee that the null hypothesis is actually true [19,20]. In consequence
the  extracted p values should not be used to judge the significance of the hypothesis
of  interest. As the extracted p values are not used in the framework of hypothesis
testing (i.e. no hypothesis tests are conducted based on these p values), there is no
need to adjust for multiple testing.

Some summary statistics are more precisely estimated than others and a way
to  quantify this is to assess the variance of the summary statistics (criterion 3). The
within-sample distributions are positively skewed and bear some resemblance with
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Table  2c
Obtained % tail DNA after administration of CAS no. 115-96-8 (Tris(2-chlorethyl) phosphate) and CAS no. 598-55-0 (Methylcarbamate) in study 2. Average % tail DNA with
SD  in parentheses. The values were calculated by first averaging the two summary statistics for each animal and from these values the average and SD were calculated. There
were  five animals in each dose group and 200 cells were scored for each mouse. Data were analyzed by means of a linear mixed-effects model as defined in model (1) with
Dunnett’s test to compare the dose groups to their corresponding control. Values in bold indicate a significant difference. * p < 0.05, ** p < 0.01, *** p < 0.001.

CAS no. 0 mg/kg bw 500 mg/kg bw 1000 mg/kg bw 1500 mg/kg bw Positive control (EMS)

115-96-8 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 6.1 (2.9) 0.7 (0.6) 12.0 (5.7) 1.2 (0.6) 8.1 (4.2) 1.1 (0.7) 12.7 (3.8)*** 1.8 (0.5)*** 12.2 (1.8)*** 1.7 (0.3)**
log(mean) 1.7 (0.5) – 2.4 (0.4) – 2.0 (0.4) – 2.5 (0.3)*** – 2.5 (0.1)*** –
Median 2.7 (1.7) 0.9 (0.6) 4.2 (3.1) 1.3 (0.6) 4.2 (3.2)* 1.2 (0.6)** 7.3 (3.3)*** 1.9 (0.5)*** 7.6 (1.7)*** 2.0 (0.2)***
65th  perc. 4.4 (2.6) 1.3 (0.6) 8.6 (6.9) 1.9 (0.7) 6.4 (4.5)* 1.7 (0.6)** 10.9 (4.0)*** 2.3 (0.3)*** 10.8 (2.2)*** 2.3 (0.2)***
75th  perc. 6.4 (4.0) 1.7 (0.6) 14.5 (11.2) 2.5 (0.7) 8.8 (5.5) 2.0 (0.5) 14.9 (5.1)** 2.6 (0.3)** 13.9 (2.4)*** 2.6 (0.2)**
85th  perc. 9.5 (5.5) 2.1 (0.6) 23.3 (13.8) 3.0 (0.6) 14.8 (7.8) 2.6 (0.5) 23.7 (6.5)* 3.1 (0.3)* 19.2 (3.4)*** 2.9 (0.2)**
95th  perc. 24.3 (13.0) 3.1 (0.5) 51.9 (23.8) 3.8 (0.5) 30.2 (12.4) 3.3 (0.4) 45.2 (9.7)** 3.8 (0.2)** 42.9 (4.9)*** 3.7 (0.1)**

CAS  no. 0 mg/kg bw 500 mg/kg bw 1000 mg/kg bw 2000 mg/kg bw Positive control (EMS)

598-55-0 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 6.2 (3.0) 0.7 (0.4) 10.5 (1.9)* 1.5 (0.2)*** 13.4 (3.8)*** 1.5 (0.3)*** 8.6 (2.3) 1.1 (0.2) 12.2 (1.8)*** 1.7 (0.3)***
log(mean) 1.7 (0.5) – 2.3 (0.2)** – 2.5 (0.2)*** – 2.1 (0.3) – 2.5 (0.1)*** –
Median 2.4 (1.1) 0.8 (0.4) 4.4 (1.0) 1.4 (0.2)** 6.5 (4.0)* 1.6 (0.3)*** 3.4 (0.7) 1.2 (0.2) 7.6 (1.7)*** 2.0 (0.2)***
65th  perc. 3.7 (1.7) 1.2 (0.5) 7.6 (1.8) 2.0 (0.2)*** 9.8 (4.1)** 2.1 (0.3)** 5.9 (1.9) 1.7 (0.3) 10.8 (2.2)*** 2.4 (0.2)***
75th  perc. 5.7 (2.9) 1.6 (0.5) 11.9 (2.6)* 2.4 (0.2)*** 14.0 (4.5)*** 2.5 (0.3)*** 8.6 (3.7) 2.1 (0.4) 13.9 (2.4)*** 2.6 (0.2)***
85th  perc. 9.9 (5.1) 2.1 (0.5) 19.8 (4.0)* 2.9 (0.2)** 24.6 (7.3)*** 3.2 (0.3)*** 15.0 (6.3) 2.6 (0.4) 19.2 (3.4)*** 2.9 (0.2)**
95th  perc. 26.3 (15.8) 3.0 (0.7) 44.7 (13.1) 3.7 (0.3)* 55.8 (12.2)** 4.0 (0.2)** 37.6 (13.1) 3.5 (0.3) 42.9 (4.9)* 3.7 (0.1)*

Table 2d
Obtained % tail DNA after administration of CAS no. 636-97-5 (4-nitrobenzoic hydrazide), CAS no. 85-28-9 (4-chloro-2-hydroxy-4-methoxybenzophenone) and CAS no.
13674-87-8 (Tris[2-chloro-1-(chloromethyl)ethyl]phosphate) in study 3. Average % tail DNA with SD in parentheses. The values were calculated by first averaging the two
summary statistics for each animal and from these values the average and SD were calculated. There were five animals in each dose group and 200 cells were scored for each
mouse.  Data were analyzed by means of a linear mixed-effects model as defined in model (1) with Dunnett’s test to compare the dose groups to their corresponding control.
Values in bold indicate a significant difference. * p < 0.05, ** p < 0.01, *** p < 0.001.

CAS no. 0 mg/kg bw 12.5 mg/kg bw 25 mg/kg bw 50 mg/kg bw Positive control (EMS)

636-97-5 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 8.5 (2.2) 0.9 (0.3) 9.3 (1.7) 0.9 (0.2) 9.7 (2.0) 1.3 (0.3) 9.5 (3.6) 0.9 (0.4) 19.0 (2.5)*** 2.2 (0.2)***
log(mean) 2.1 (0.3) – 2.2 (0.2) – 2.2 (0.2) – 2.2 (0.4) – 2.9 (0.1)*** –
Median 2.7 (0.7) 1.0 (0.3) 2.3 (0.4) 0.8 (0.2) 2.5 (0.6) 1.3 (0.4) 2.6 (0.8) 0.9 (0.3) 12.1 (1.9)*** 2.5 (0.1)***
65th  perc. 4.9 (1.4) 1.5 (0.3) 4.4 (1.2) 1.4 (0.2) 6.9 (4.7) 2.0 (0.4) 4.8 (2.0) 1.5 (0.4) 17.7 (3.3)*** 2.8 (0.2)***
75th  perc. 7.7 (2.3) 2.0 (0.3) 7.3 (1.7) 1.9 (0.2) 10.2 (6.3) 2.5 (0.5) 8.4 (5.3) 2.7 (0.7) 24.8 (3.8)*** 3.2 (0.1)***
85th  perc. 14.8 (4.8) 2.6 (0.3) 18.1 (4.9) 2.8 (0.2) 19.4 (5.2) 3.1 (0.4) 19.0 (12.1) 3.8 (0.4) 37.3 (6.5)*** 3.6 (0.2)***
95th  perc. 40.2 (12.7) 3.6 (0.3) 44.9 (10.8) 3.8 (0.2) 44.2 (4.0) 4.0 (0.2) 46.9 (17.4) 4.0 (0.2) 66.7 (11.4)*** 4.2 (0.2)***

CAS  no. 0 mg/kg bw 500 mg/kg bw 1000 mg/kg bw 1500 mg/kg bw Positive control (EMS)

85-28-9 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 8.4 (1.0) 1.1 (0.2) 9.8 (0.6) 1.1 (0.1) 9.1 (1.2) 1.1 (0.2) 10.0 (3.6) 1.0 (0.2) 19.0 (2.5)*** 2.2 (0.2)***
log(mean) 2.1 (0.1) – 2.3 (0.1) – 2.2 (0.1) – 2.2 (0.3) – 2.9 (0.1)*** –
Median 4.0 (0.6) 1.4 (0.2) 3.1 (0.1) 1.1 (0.1) 3.1 (0.3) 1.1 (0.1) 2.9 (0.4) 1.1 (0.2) 12.1 (1.9)*** 2.5 (0.1)***
65th  perc. 6.0 (0.7) 1.8 (0.1) 5.5 (0.3) 1.7 (0.1) 5.3 (1.0) 1.6 (0.2) 6.2 (2.5) 1.7 (0.3) 17.7 (3.3)*** 2.8 (0.2)***
75th  perc. 8.7 (0.9) 2.1 (0.1) 9.3 (1.2) 2.2 (0.1) 8.9 (2.6) 2.1 (0.3) 10.1 (4.3) 2.2 (0.4) 24.8 (3.8)*** 3.2 (0.1)***
85th  perc. 14.6 (3.1) 2.6 (0.2) 18.2 (3.8) 2.9 (0.2) 15.2 (4.7) 2.7 (0.3) 19.7 (10.8) 2.8 (0.5) 37.3 (6.5)*** 3.6 (0.2)***
95th  perc. 31.9 (6.6) 3.4 (0.2) 47.9 (3.3) 3.8 (0.1)* 41.3 (6.8) 3.7 (0.2) 45.7 (21.6) 3.7 (0.4) 66.7 (11.4)*** 4.2 (0.2)***

CAS  no. 0 mg/kg bw 225 mg/kg bw 450 mg/kg bw 900 mg/kg bw Positive control (EMS)

13674-87-8 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 8.4 (1.0) 1.1 (0.2) 9.2 (2.4) 1.2 (0.4) 9.7 (1.3) 1.0 (0.2) 14.2 (2.3)*** 1.7 (0.3)** 19.0 (2.5)*** 2.2 (0.2)***
log(mean) 2.1 (0.1) – 2.2 (0.3) – 2.2 (0.1) – 2.6 (0.2)*** – 2.9 (0.1)*** –
Median 4.0 (0.6) 1.4 (0.2) 4.1 (1.4) 1.4 (0.3) 3.0 (0.4) 1.1 (0.1) 7.2 (2.8)** 1.9 (0.5)* 12.1 (1.9)*** 2.5 (0.1)***
65th  perc. 6.0 (0.7) 1.8 (0.1) 6.9 (2.9) 1.9 (0.4) 5.6 (1.0) 1.7 (0.2) 11.9 (3.2)*** 2.4 (0.3)*** 17.7 (3.3)*** 2.8 (0.2)***
75th  perc. 8.7 (0.9) 2.1 (0.1) 9.7 (4.2) 2.2 (0.4) 9.3 (1.8) 2.2 (0.2) 17.7 (4.1)*** 2.8 (0.2)*** 24.8 (3.8)*** 3.2 (0.1)***
85th  perc. 14.6 (3.1) 2.6 (0.2) 16.2 (5.0) 2.7 (0.3) 18.2 (4.8) 2.8 (0.2) 27.1 (4.7)*** 3.3 (0.2)*** 37.3 (6.5)*** 3.6 (0.2)***
95th  perc. 31.9 (6.6) 3.4 (0.2) 38.5 (11.4) 3.6 (0.3) 44.8 (5.9)* 3.8 (0.1)* 58.5 (6.5)*** 4.1 (0.1)*** 66.7 (11.4)*** 4.2 (0.2)***

a log-normal distribution. Therefore, we calculated the asymptotic variance of the
summary statistics of a log-normal distribution with parameters � = 2, �2 = 2 and
n  = 100 [21] together with the variance of the summary statistics under a logarithmic
transformation as seen in Table 2. The variance of log(mean) is not provided since
it  does not readily compare to the variance of the other summary statistics. These
results are approximate and serve to illustrate the difference in the precision of the
various summary statistics.

Power calculations: Data from all 11 studies were combined (combining control
groups but otherwise distinguishing different dose groups from different studies)

and fitted model (1). The variance components of the variations between animals
and within animal were extracted and used to calculate power of the test of dose at a
5% significance level. Rather than specifying a specific set of treatment means for all
four dose groups, power was calculated for a minimum difference, D,  between any
two  treatments [15]. This is a conservative approach assuming that the mean of the
two  remaining groups equal the overall average. This implies that the actual power
is  equal to or greater than what is obtained from the present power calculations. The
power curves in Fig. 3 were calculated in terms of fold changes, where the minimum
difference, D, is expressed as a ratio, e.g. the ratio of the response of the highest dose
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Table  2e
Obtained % tail DNA after administration of CAS no. 43100-38-5 (4-tert-Butylbenzoic hydrazide A) and CAS no. 60965-26-6 (2-Bromo-2′ ,4′-dimethoxyacetophenone) in study
3.  Average % tail DNA with SD in parentheses. The values were calculated by first averaging the two summary statistics for each animal and from these values the average
and  SD were calculated. There were five animals in each dose group and 200 cells were scored for each mouse. Data were analyzed by means of a linear mixed-effects model
as  defined in model (1) with Dunnett’s test to compare the dose groups to their corresponding control. Values in bold indicate a significant difference. * p < 0.05, ** p < 0.01,
***  p < 0.001.

CAS no. 0 mg/kg bw 62.5 mg/kg bw 125 mg/kg bw 250 mg/kg bw Positive control (EMS)

43100-38-5 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 8.4 (1.0) 1.1 (0.2) 9.9 (1.6) 1.1 (0.2) 12.3 (2.8)** 1.3 (0.3) 14.3 (1.5)*** 1.7 (0.2)*** 19.0 (2.5)*** 2.2 (0.2)***
log(mean) 2.1 (0.1) – 2.3 (0.2) – 2.5 (0.2)*** – 2.6 (0.1)*** – 2.9 (0.1)*** –
Median 4.0 (0.6) 1.4 (0.2) 2.8 (0.4) 1.0 (0.2)* 4.0 (1.5) 1.3 (0.4) 7.6 (0.9)*** 2.0 (0.1)*** 12.1 (1.9)*** 2.5 (0.1)***
65th  perc. 6.0 (0.7) 1.8 (0.1) 5.7 (1.1) 1.7 (0.2) 8.1 (3.2) 2.0 (0.4) 12.1 (0.5)*** 2.5 (0.1)*** 17.7 (3.3)*** 2.8 (0.2)***
75th  perc. 8.7 (0.9) 2.1 (0.1) 11.0 (2.6) 2.4 (0.2) 13.8 (6.6) 2.5 (0.5) 17.5 (2.0)*** 2.8 (0.1)*** 24.8 (3.8)*** 3.2 (0.1)***
85th  perc. 14.6 (3.1) 2.6 (0.2) 20.9 (4.6) 3.0 (0.2)* 23.4 (8.7)* 3.1 (0.4)* 28.7 (2.8)*** 3.3 (0.1)*** 37.3 (6.5)*** 3.6 (0.2)***
95th  perc. 31.9 (6.6) 3.4 (0.2) 44.6 (9.9) 3.8 (0.2)* 56.5 (13.9)*** 4.0 (0.2)*** 55.5 (8.7)*** 4.0 (0.2)*** 66.7 (11.4)*** 4.2 (0.2)***

CAS  no. 0 mg/kg bw 45 mg/kg bw 90 mg/kg bw 180 mg/kg bw Positive control (EMS)

60965-26-6 Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data) Raw data log(data)

Mean 8.4 (1.0) 1.1 (0.2) 9.7 (0.9) 1.2 (0.1) 14.3 (7.5)* 1.8 (0.5)** 12.9 (0.8) 1.8 (0.1)*** 19.0 (2.5)*** 2.2 (0.2)***
log(mean) 2.1 (0.1) – 2.3 (0.1) – 2.6 (0.5)* – 2.5 (0.1)* – 2.9 (0.1)*** –
Median 4.0 (0.6) 1.4 (0.2) 3.4 (0.4) 1.2 (0.1) 8.9 (6.9) 2.0 (0.6)* 7.3 (1.2) 2.9 (0.2)* 12.1 (1.9)*** 2.5 (0.1)***
65th  perc. 6.0 (0.7) 1.8 (0.1) 5.9 (1.0) 1.7 (0.2) 13.2 (10.2) 2.4 (0.6)* 11.8 (0.9) 2.5 (0.1)** 17.7 (3.3)*** 2.8 (0.2)***
75th  perc. 8.7 (0.9) 2.1 (0.1) 9.0 (1.3) 2.2 (0.2) 19.0 (14.5) 2.7 (0.6)* 15.1 (1.1) 2.7 (0.1)* 24.8 (3.8)*** 3.2 (0.1)***
85th  perc. 14.6 (3.1) 2.6 (0.2) 16.8 (2.8) 2.8 (0.2) 27.3 (16.7) 3.2 (0.6)* 24.1 (3.4) 3.2 (0.1)* 37.3 (6.5)*** 3.6 (0.2)***
95th  perc. 31.9 (6.6) 3.4 (0.2) 46.8 (6.6) 3.8 (0.1) 50.7 (17.5)* 3.9 (0.4)* 44.9 (10.8) 3.8 (0.2) 66.7 (11.4)*** 4.2 (0.2)***

group to the control group. Power curves were generated for 1.5-, 2- and 2.5-fold
changes for the median of the log-transformed data when 50 and 100 cells were
scored per gel, respectively.

All statistical analyses were performed using R, version 3.0.2 [14].

3. Results

3.1. Histopathological examination and the incidence of highly
damaged cells

No treatment-related effects were observed in the histological
examination of testes. Occasional multinucleated germ cells were
seen in one testis of a mouse exposed to the highest dose of
4-tert-butylbenzoic hydrazide. These appeared to be fused groups
of elongated spermatids and are known as a sign of degeneration
[22]. This specific morphology is a rare finding and was  not seen in
any controls or other exposure groups, but it cannot be determined
whether this was dose-related or not. Testicular toxicity of the
structurally related 4-tert-butylbenzoic acid has been described
previously [23,24], but at higher doses than applied here. Pro-
longed exposure to 4-tert-butylbenzoic hydrazide may  reveal
clearer signs of testicular toxicity than the short exposure period
applied in this study.

The minimum of highly damaged cells (>80% tail DNA) per gel
was 0% and the maximum was 8%. Per animal the minimum was 0%
and maximum was 6% (positive control animal and highest dosed
animal of CAS no. 43100-38-5). The values for the control dose
groups (5 animals) varied between 0.5 and 1.5%, positive control
animals between 0.6 and 2.4% and for the dosed groups of all the
CAS nos. between 0 and 2.7%. No treatment related increases of
highly damaged cells were observed.

3.2. Levels of DNA damage

Table 2 show the % tail DNA for selected summary statistics
extracted for each study. In most of the 11 studies significance was
present for some summary statistics while not for others imply-
ing that the summary statistics may  capture the effect induced
by the treatments with varying efficiency. In a few cases the log-
transformation stabilized the results in the sense that significance
was obtained for a broader range of summary statistics than for the

untransformed data rendering the choice of a specific summary
statistic less important.

3.3. Assessment of summary statistics

Suitable statistics to summarize the within-sample distributions
were evaluated according to the following criteria:

Variance homogeneity (constant variance over the range of esti-
mated mean values): Fig. 2a shows the p values obtained from the
least squares fit of the square root of the absolute value of the stan-
dardized residuals versus the fitted values. The null hypothesis is
that the slope of the regression line is 0, which occurs in case of
constant variance. High p values for testing the slope thus support
that the assumption of constant variance are valid whereas low p
values may  indicate a violation. The grey line outlines the median
for each summary statistic.

The summary statistics of the raw data were associated with p
values that were increasing with increasing percentiles. The mean
of the raw data was  associated with a median p value that was
higher than what was observed for most of the percentiles. In gen-
eral, the summary statistics of the log-transformed data resulted
in higher p values, which was  seen especially for the mean and the
median.

Variance homogeneity (constant variance across dose groups):
Fig. 2b shows the p values from the Brown–Forsythe’s test. The
null hypothesis is that the variance of the standardized residuals
are constant across different dose groups, and again high p values
support the validity of this assumption whereas low p values may
indicate a violation.

Overall, no difference appeared between the summary statis-
tics obtained from raw and log-transformed data, respectively. The
percentiles in the range around the 75th percentile of both raw and
log-transformed data as well as the median of the raw data were
associated with lower p values.

Normality: The p values from the Shapiro–Wilk’s test are given
in Fig. 2c. The null hypothesis is that the standardized residuals are
normally distributed.

The mean and the 95th percentile were associated with high
p values whereas fairly low p values were seen for the remain-
ing summary statistics derived from the raw data. In general, the
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Fig. 2. Assessment of the variance homogeneity and the normality assumption. The depicted p values are concerned with (a) variance homogeneity over the range of
estimated mean values, (b) variance homogeneity across dose groups and (c) normality. The median p values are given by the grey lines and the two vertical lines separate
the  summary statistics of the raw data, the log(mean) and the summary statistics of the log-transformed data. The ‘xth (raw data)’ and ‘xth (log data)’ are short for the xth
percentile of the raw data and of the log-transformed data, respectively.

p values associated with the summary statistics of the log-
transformed data had lower levels but were more consistent than
the summary statistics of the raw data. The log(mean) was also
associated with a relatively high p value.

Uncertainty of estimates: The asymptotic variances of the sum-
mary statistics are given in Table 3. The first column outlines the
variances assuming that the raw data are log-normally distributed.
The second column contains the variances in case of a logarithmic
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Fig. 3. Power curves outlining the number of animals per group and gels per animal required to detect certain fold changes with a power of 80% (dotted line) when 50 cells (first
column) and 100 cells (second column) are scored per gel, respectively. The power calculations apply when the summary statistic is the median of the log-transformed data.

transformation. The variances are comparable within each column
and should not be compared across the columns.

Assuming a log-normal distribution (resembling the raw data)
the median has the lowest variance. The variance increases
vastly with increasing percentiles. The variance of the 60th
percentile is approximately twice the size of the variance of
the median and the 90th and the 95th percentile is around

70 and 300 times the variance of the median. The variance
of the mean is comparable to the variance of the 80th per-
centile, which are noticeably greater than the variance of the
median.

Under a log-transformation, the mean is associated with the
smallest variance whereas the variance of the summary statistics
in the range of the median to the 75th percentile is within twice
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Table  3
The variance of each summary statistic under the assumption that the within-sample distributions for each gel are log-normally distributed with� = 2, �2 = 2 and n = 100.
The  variances are multiplied by a factor of 50 for readability.

Summary statistic Variance assuming a
log-normal distribution
(resembling raw dataa)

Variance assuming a
normal distribution
(resembling log(data)b)

Mean 64.2 1.0
Median 4.3 1.6
55th  perc. 6.1 1.6
60th  perc. 9.0 1.6
65th  perc. 13.4 1.7
70th perc. 20.8 1.7
75th  perc. 34.0 1.9
80th  perc. 60.0 2.0
85th  perc. 119.6 2.3
90th  perc. 298.0 2.9
95th  perc. 1272.5 4.7

a The calculation of the variance is based on the assumption that the raw data follow a log-normal distribution.
b Log-normally distributed data subjected to a log-transformation are normally distributed.

the size of the variance of the mean. For the higher percentiles the
variance is more steeply increasing and the variance of the 90th
and 95th percentiles is approximately 3 and 4.5 times the variance
of the mean, respectively.

3.4. Power calculations

The evaluation of the proposed summary statistics is given in
the Section 5 and points to the median of the log-transformed data
as the most expedient. Therefore, power curves are provided for
this measure.

The power calculations were based on parameter estimates
extracted from a fit of model (1) to the combined data from all 11
studies when 50 and 100 cells were scored, respectively. When 50
cells were scored the overall average of the response of the control
groups were � = 0.98 and the estimated variance components were

�̂2
A = 0.09, �̂2 = 0.11.

When 100 cells were scored then � = 0.96 and

�̂2
A = 0.08, �̂2 = 0.09.

Since the analysis were performed on the summary statis-
tics instead of the raw within-sample observations, �̂2 is a
pooled estimate containing both a contribution from gel-to-
gel variation and the within-sample variation. The size of
the estimated variance component reflecting the animal-to-
animal variation, �̂2

A was of the same magnitude as the size
of the estimated error variance, �̂2, implying that the animal-
to-animal variation indeed should be accounted for in the
statistical analysis as is the case with the mixed-effects model
.

Fig. 3 shows the power for a 1.5-, 2- and 2.5-fold change of one
of the dose groups compared to the control group when 50 and 100
cells were scored. A power of 80% is outlined by a dotted line. In all
cases the use of 2 gels per animal compared to 1 gel per animal
improved the power noticeably, whereas the impact of a further
increase in the employed number of gels was somewhat dimin-
ished. In general, the increase in power using 2 gels instead of 1 gel
was of the same magnitude as using 5 gels instead of 2 gels.

Small differences, e.g. a 1.5-fold change, were associated with
low power (< 80%) for numbers of animal less than 10 irrespective
of the number of gels used, e.g. to detect a 1.5-fold change with a
power of 80% using 5 gels per animal and 100 cells per gel required
14 animals per group. Power was increasing with increasing fold
changes and for a 2-fold change 5 animals were sufficient to achieve
a power of 80% using 2 gels scoring 100 cells per gel. To detect a

2.5-fold change with a power of 80% only 3 animals and 2 gels per
animal were needed when 100 cells per gel were scored. Power
was in general increasing with the number of cells that were scored
per gel. Increasing the number of cells from 50 to 100 cells per gel
increased power.

4. Interpreting the results when data are log-transformed

One natural way  to formulate the outcome of a linear mixed-
effects model is to express it in terms of the difference between
the response of the different dose groups and the response of the
control group, e.g. as

�highest dose group − �control group (2)

These differences are invariant to the level of the control group.
Now assume that X ∼ N(�, �2) and Y = exp(X), so that Y ∼ LN(�, �2),
i.e. Y follows a log-normal distribution. In this case the differences
defined in Eq. (2) for the normally distributed data, X, translates
into a ratio for the log-normally distributed data, Y, namely

�j − �i = ln
E(Y)j

E(Y)i
(3)

where �i denotes the mean of the normally distributed data, X,
for the ith treatment group and E(Y)i denotes the expected value
(the mean) of the log-normally distributed data, Y, for the ith treat-
ment group. The most suitable summary statistic was in this study
identified as the median of the log-transformed data. The logarith-
mic  transformation is monotonic, that is, the order of the data is
preserved after transformation, and therefore

log(median(data)) = median(log(data)) (4)

Based on the earlier shown findings and further graphi-
cal investigations (not shown) it is assumed in the follow-
ing that median(data) ∼ LN(�, �2) (corresponding to Y) and
that median(log(data)) ∼ N(�, �2) (corresponding to X). This
means that differences obtained from the statistical analy-
sis of the log-transformed data translates into x-fold changes
for the raw data. Consider the following example: from
the analysis of the log-transformed data a difference of
�highest dose group − �control group = 0.69 is obtained. From Eq. (3) we
see that E(Y)highest dose group/E(Y)control group = exp(0.69) = 2, meaning
that the obtained result corresponds to a 2-fold change relative to
the control group on the original scale of the raw data. An impor-
tant feature is that the obtained fold changes are irrespective of the
actual response level of the different groups.

These properties also apply to the power curves shown in Fig. 3.
This implies that power calculations can be made for certain fold
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changes without making any assumptions of the actual levels of
the different treatment groups, which is exactly what is reflected
in the shown power curves. It would also be possible to specify fold
changes for normally distributed data, but in this case the power
will change with the response level of the baseline group (e.g. the
control group) and assumptions about this level would have to be
made in order to calculate power.

It may  be desirable to report the absolute group levels instead
of or as a supplement to the fold changes. A simple method is to
report the back-transformed group means

exp(�i)

and the appertaining confidence interval is obtained by back-
transforming the limits of the confidence interval of the group
mean [25]. However, it is important to be aware that this back-
transformation does not yield the familiar arithmetic mean which
is normally used but rather provides the geometric mean [25]. The
geometric mean is not easily interpreted but for log-normally dis-
tributed data it is a good estimate of the median. The median may
be more sensible to report than the mean in case of skewed distri-
butions as is the case of log-normally distributed data.

There may  be some practical issues extracting a summary statis-
tic of the log-transformed data since certain summary statistics of
the raw data such as the mean and median may  be automatically
provided by the Comet assay software. However, in accordance
with Eq. (4) the median of the log-transformed data can be cal-
culated by taken the logarithm of the median of the raw data. The
expression is in general valid for all percentiles but does not apply
to the mean.

5. Discussion

One aim of this study was to identify a statistic adequately sum-
marizing the empirical distribution of the % tail DNA of testicular
samples of mice obtained for each gel in a Comet assay study.
The criteria used in this appraisal were considering the assump-
tions made by the appropriate statistical analysis together with
the robustness towards the estimation of the summary statistics
in question. A second aim was to provide power curves outlining
the appropriate number of animals and gels to use when analysing
testicular samples in the Comet assay.

For both aims the results are highly influenced by the modelling
approach. A natural consequence of the setup of the Comet assay
is that the obtained data are structured hierarchically, which are to
be modelled appropriately. Also, animal should be modelled as a
random effect to ensure proper inference, i.e. that the conclusions
drawn can be generalized. The inherent nature of the Comet assay
setup therefore suggests the use of a linear mixed-effects model as
defined in model (1).

Different proposals for a suitable summary statistic have been
proposed, some of which are considering power [6] and higher
sensitivity [7] based on actual data. Others discuss the presump-
tive behaviour of the summary statistics regarding normality [2]
and robustness of estimates [4] grounded on theoretical consider-
ations. The current study bridges these approaches using actual
data for examining the prerequisites underlying valid inference
from the statistical analysis including the issues such as normality
and constant variance, and also addresses robust estimation of the
summary statistics. The diversity in objectives partly explains the
different recommendations outlined. Spurious conclusions may  be
drawn when the requirements of the statistical analysis in question
are not met. Our view is therefore that it is more crucial to examine
if the assumptional constraints are fulfilled and that considerations
regarding desirable properties such as sensitivity and power is only
of secondary importance.

The assessment of variance homogeneity and normality
revealed that the summary statistics met  the standards diversely.
The summary statistics most consistently complying with these
criteria were the mean, 90th and 95th percentile of the raw data,
the log(mean) and the mean, median, 85th and 90th percentile of
the log-transformed data. The variance homogeneity (criterion 1)
was considered the most important in this study followed by nor-
mality (criterion 2) and the following issues only apply to these
statistics since they most optimally complied with these two  cri-
teria. Although the variances listed in Table 2 are specific to the
log-normal distribution, they reflect the diversity obtained for the
various summary statistics when the underlying distribution is
highly skewed. It is evident from Table 3 that the variance increases
immensely with increasing percentiles. The log-transformation
of data stabilizes the variance, still higher percentiles are asso-
ciated with moderately higher variances compared to the mean
or median. Moreover, as pointed out by Duez et al. [7], higher
percentiles may  more rapidly saturate than the mean or lower per-
centiles. This is a likely consequence of the nature of the percentage
data since the % tail DNA by definition cannot exceed 100%. There-
fore, it is possible that the lower and middle part reshapes more
distinctly than the upper part in response to administration of a
genotoxic compound.

Another consideration is that when data are log-transformed
the natural interpretation of the results changes as described in the
previous section. The interpretation in terms of fold changes rela-
tive to the control group is applicable when the summary statistic is
any of the percentiles (including the median). This does not apply
when the summary statistic is the mean of the log-transformed
data or the log(mean) in which case it is not clear how to inter-
pret the estimates from the statistical analysis. Altogether, from
the current data and the priority of the criteria mentioned we con-
clude that the median of the log-transformed data was the most
suitable summary statistic since it most consistently conformed to
the range of issues considered. Alternatively, the mean of the raw
data met  the criteria almost equally well. Although the interpreta-
tion of the estimates from the statistical analysis differ according to
which of the two summary statistics that are used, the interpreta-
tion is well-defined in both cases. Interestingly, the median of the
raw data did not meet the assumptions of the statistical model.

Power analyses performed by Smith et al. [8] reveal that notice-
able differences in power are obtained for different types of tissues
from rats. Power calculations of cells from the tail vein blood give
considerably lower power compared to cells from the stomach,
liver and bone marrow. The number of animals required to obtain
80% power for testicular cells in the present study is comparable to
the number of animals required for stomach, liver and bone mar-
row cells for a 2-, 2.5- and 3-fold change as reported by Smith et al.
[8]. In the present study, the use of 2 gels per animal compared
to 1 gel per animal improved the power noticeably, whereas the
impact of a further increase in the number of gels was somewhat
diminished.

To our knowledge, only one of the 11 chemicals tested in the
present study, namely acrylamide, has been tested in testicular
cells in the comet assay, and limited information is available of
comet assay data in other tissues and other genotoxicological tests
(Table 1). In the present study, acrylamide induced an effect in
testicular cells which is in line with another study where comet
assay results revealed effects in gonadal sperm cells and testicu-
lar somatic cells in mice and rats [26,27]. This chemical has also
induced in vivo genotoxic effects in other assays than the comet
assay [28]. In the present study, perfluorooctane sulfonate did not
induce an effect in testicular cells in mice at 300 mg/kg bw, how-
ever it has induced effects in rat bone marrow cells in the comet
assay and in the micronucleus assay in female rats at 0.6 mg/kg
bw/day [29]. Tris(2-chlorethyl) phosphate induced an effect in

161



M.K. Hansen et al. / Mutation Research 774 (2014) 29–40 39

testicular cells at 1500 mg/kg bw in the present study. This chem-
ical was tested positive in Chinese Hamster bone marrow cells in
the micronucleus assay at 400 mg/kg bw, however only two males
and two females were used in the dose groups [30]. In another
study in the micronucleus assay in mice, no effects were observed
[31]. Methyl phosphate phosphoric acid, trimethyl ester induced an
effect at 500 mg/kg bw in the present study. It was tested positive in
the dominant lethal mutation assay in mice at 1000 mg/kg bw [32],
but was negative in bone marrow cells in the micronucleus assay in
mice [33]. Methyl carbamate induced an effect in the present study
at 1000 mg/kg bw and was tested negative in induction of sex linked
mutations in Drosophila [34]. In the present study, Tris[2-chloro-1-
(chloromethyl)ethyl]phosphate induced an effect at 900 mg/kg bw.
It did not induce chromosomal aberrations in rats after oral expo-
sure at up to 165 mg/kg bw [35] and no clastogenic effects in mice
after intraperitoneal exposure up to 350 mg/kg bw was observed
[35].

In conclusion, we summarize the results from the current study
regarding the design and analysis of the % tail DNA of cells from
mice testicular cells in the Comet assay study. Prior to conducting
the experiment a desired fold change must be specified and the
number of animals to use can be identified from Fig. 3. In general,
more than 10 animals per group were needed for fold changes less
than 2 whereas less than 10 animals per group were sufficient for
fold changes of 2 or more. Fig. 3 shows that the largest increase
in power was gained when using 2 gels per animal instead of 1
gel whereas less was gained using 3 gels instead of 2 gels etc. The
obtained within-sample distributions were most suitably summa-
rized by the median of data subjected to the natural logarithm
or alternatively the mean of the raw data. If the median of the
log-transformed data is used as the summary statistic the natu-
ral logarithm of the median of the raw data yields an equivalent
result. The calculated summary statistics should subsequently be
used in the statistical analysis. The analysis performed should be
a linear mixed-effects model with animal nested within dose to
avoid inflation of type I and type II errors. The interpretation of the
outcome of the statistical analysis should reflect the choice of sum-
mary statistic, i.e. if the median of the log-transformed data is used
the estimates obtained from the statistical analysis are interpreted
as described in the previous section.
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Appendix A. R code for fitting linear mixed-effects model
with a nested structure in R

The following R code can be used to fit model (1) to Comet assay
data. The data should be structured column-wise with a treatment
column, an animal column and the response (the calculated sum-
mary statistic). The following example shows a data set with a

control group and three dose groups, with 5 animals in each group
and two gels per animal. A csv-file containing this data may look as

Dose, Animal,

Response

Control, 1, xxx

Control, 1, xxx

Control, 2, xxx

Control, 2, xxx

Control, 3, xxx

.  . .
Dose1, 6, xxx

Dose1, 6, xxx

Dose1, 7, xxx

Dose1, 7, xxx

. . .
Dose3, 20, xxx

where xxx is the value of the calculated summary statistic and “,”
is the delimiter. Note the consecutive numbering of the animals
(numbered 1–20 instead of 1–5 which is repeated for each dose
group). Although it is not strictly necessary to number the animals
in this way  in R it is good idea since it indicates the nesting structure
which otherwise inadvertently may  be disregarded.

The statistical software R is available at http://www.r-project.
org/. To fit model (1) in R the package nlme [36] or lme4 [37] needs
to be installed in addition to base R. In the following example we
will use the nlme package. Also, we need multcomp [38] for per-
forming Dunnett’s test. They are installed and loaded with

install.packages(“nlme”)

library(nlme)

install.packages(“multcomp”)

library(multcomp)

The csv-file can be imported into R with

dat <- read.csv(“nameoffile.csv”, header=TRUE,
sep=”,”, dec=”.”)

Note that if the csv-file uses an alternative separator or deci-
mal  point the relevant symbol can specified with the sep and dec
arguments. To ensure that Animal is a factor

dat$Animal <- factor(dat$Animal)
Model (1) can now be fitted with
m1 <- lme(Response ∼ Dose, random = ∼ 1 | Animal,

data = dat)
An omnibus test of Dose is performed with
anova(m1)
The estimates can be extracted with
fixef(m1)
and Dunnett’s test can be performed with
summary(glht(m1, linfct = mcp(Dose = “Dunnett”)))
The variance components �̂2

A and �̂2 are extracted with
VarCorr(m1)
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Appendix F

binomTools: Performing diagnostics
on binomial regression models

Christensen, R. H. B. and Hansen, M. K. (2012). binomTools: Performing
diagnostics on binomial regression models. R package version 1.0-1.
http://CRAN.R-project.org/package=binomTools/.

http://CRAN.R-project.org/package=binomTools/


Package ‘binomTools’
August 29, 2013

Type Package

Title Performing diagnostics on binomial regression models

Version 1.0-1

Date 2011-08-03

Author Rune Haubo B Christensen and Merete K Hansen

Maintainer Merete K Hansen <mkh@imm.dtu.dk>

Description This package provides a range of diagnostic methods for binomial regression models.

License GPL (>= 3)

LazyLoad yes

Repository CRAN

Date/Publication 2011-08-09 11:36:34

NeedsCompilation no

R topics documented:
beetles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
empLogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
exact.deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
halfnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
HLtest.Rsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Rsq.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
serum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Index 17

1
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2 empLogit

beetles Mortality of confused flour beetles

Description

Data from a study examining the response of confused flour beetles to increasing concentrations of
gaseous carbon disulphide. After exposure for five hours the exact concentration of carbon disul-
phide was determined and the number of dead flour beetles were recorded. For each concentration
of carbon disulphide duplicate batches of beetles were used.

Usage

data(beetles)

Format

A data frame with 16 observations on the following 4 variables.

conc Concentration of carbon disulphide (mg/l)

rep Replicate number

y Number of deaths in each dose gruop

n Total number of beetles in each dose group

Source

Strand, A.L. (1930) Measuring the toxicity of insect fumigants. Industrial and Engineering Chem-
istry: analytical edition, 83, 426-431.

References

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.

empLogit Calculates the empirical logit transform

Description

The empirical logit transform allows for a tolerence such that infinity is not returned when the
argument is zero or one.

Usage

empLogit(x, eps = 1e-3)
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exact.deletion 3

Arguments

x numerical vector for which the empirical logit transform is desired

eps numerical scalar; a tolerence to prevent infinite values

Value

the empirical logit transform of x

Author(s)

Rune Haubo B Christensen

Examples

## The function is currently defined as
## function (x, eps = 1e-3) log((eps + x)/(1 - x + eps))

## Lifted from example(predict.glm):
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
## budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
## summary(budworm.lg)

empLogit(numdead/20)

## Possible usage:
## Explorative interaction plot:
interaction.plot(ldose, sex, empLogit(numdead/20))

exact.deletion Exact deletion residuals

Description

Function to derive exact values of deletion (leave-one-out) residuals for binomial regression models

Usage

exact.deletion(object)

Arguments

object An object of class glm with a binomial family
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4 group

Details

The ith deletion residual is calculated subtracting the deviances when fitting a linear logistic model
to the full set of n observations and fitting the same model to a set of n−1 observations excluding the
ith observation, for i = 1, ..., n. This gives rise to n+1 fitting processes and may be computationally
heavy for large data sets.

Approximations to the deletion residuals, as described in Williams (1987), are provided by rstudent.

Inconsistency regarding the terminology implies that the deletion residuals are called different
names in the litterature, including likelihood residuals, studentized residuals, externally studen-
tized residuals, deleted studentized residuals and jack-knife residuals. Conversely, some of these
terms refer to different types of residuals

Value

A vector with exact deletion residuals

Author(s)

Merete K Hansen

References

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single case
deletions. Applied Statistics 36, 181-191.

See Also

Residuals, rstudent

Examples

data(beetles)
beetles.glm <- glm(cbind(y, n-y) ~ log(conc), family=binomial, data=beetles)
exact.deletion(beetles.glm)

group Group observations in a binomial glm

Description

This function groups the observations in a binomial glm based on the covariate structure. This can
make it possible to assess goodness-of-fit in some models fitted to binary observations.
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group 5

Usage

## S3 method for class ’glm’
group(object, eval = TRUE, ind = NULL, ...)

Arguments

object a binomial glm object

eval should the new glm-model be evaluated?

ind an indicator for which rows to keep. If this is not specified the grouping structure
is based on the covariate structure in the model.

... currently not used

Details

The residual deviance and residual Pearson deviance are not meaningful measures of goodness-of-
fit if the expected frequencies under the model are small (say less than five).

if eval = TRUE it is tested whether the estimated coefficients are identical up to three significant
digits and a warning is issued if this is not the case. This should be the case in well-behaved
situations but may not happen in cases of complete separation.

Value

A list with components

newCall the new call

newData a data frame with the aggregated data set

oldData a data frame with the original data set

oldN the number of rows (cases / observations) in the original data set

newN the number of rows (cases / observations) in the aggregated data set

oldObject the original fitted model

newObject if eval = TRUE the new fitted model object, otherwise empty

Author(s)

Rune Haubo B Christensen

References

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer
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6 halfnorm

Examples

## Lifted from example(predict.glm):
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
## budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
## summary(budworm.lg)
dat <- data.frame(SF=SF, sex, ldose)
dat[10, 1:2] <- rep(5, 2)
dat[13, ] <- dat[10, ]
rm(SF, sex, ldose)
SF <- as.matrix(dat[,1:2])
dat <- dat[,-(1:2)]
dat <- as.data.frame(cbind(SF, dat))

summary(m0 <- glm(SF ~ sex*ldose, binomial, dat))

## Various types of grouping:
(ind <- c(1:12, 10))
g <- group(m0, ind=ind, eval=TRUE)
g <- group(m0, eval=FALSE)
g <- group(m0, eval=TRUE)

## The correct GOF-test from the residual deviance is given by:
g$newObject

halfnorm Half normal plot with simulated envelopes

Description

halfnorm produces a half normal plot of the residuals with simulated envelopes useful for model
evaluation and detection of outliers

Usage

halfnorm(object, resType = c("approx.deletion", "exact.deletion",
"standard.deviance", "standard.pearson", "deviance",
"pearson", "working", "response", "partial"), env = T,
nsim = 20, plot = T, identify = F, n = 2)

Arguments

object An object of class glm with a binomial family

resType The type of residual used in the plot
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halfnorm 7

env Logical for whether envelopes are simulated

nsim Number of simulations used for the envelopes

plot Logical for whether the points should be plotted. If plot = F a list is returned

identify Logical for whether it should be possible to identify points interactively. Ignored
if plot = F

n How many points should be identified. Ignored if identify = F

Details

Absolute values of the residuals are used in a half normal plot that otherwise corresponds to a
regular normal probability plot.

Residuals from a binomial glm are not necessarily uncorrelated and normally distributed and may
accordingly deviate from a straight line even if the fitted model is true. If the fitted model is true the
optional simulated envelopes are likely to contain the absolute residuals.

The different types of residuals are described in Residuals

Value

If plot = T a plot is produced. Otherwise a list of the residuals and their expected values are
returned

Author(s)

Merete K Hansen

References

Atkinson, A. C. (1981) Two graphical displays for outlying and influential observations in regres-
sion. Biometrika, 68, 13-20.

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.

See Also

Residuals, identify

Examples

## Halfnormal plot with simulated envelopes
data(beetles)
beetles.glm <- glm(cbind(y, n-y) ~ conc, family=binomial, data=beetles)
halfnorm(beetles.glm, resType=’pearson’)

## Not run:
## Halfnormal plot with simulated envelopes
## Two points are interactively identified when they are selected with the mouse
halfnorm(beetles.glm, resType=’deviance’, identify = T, n = 2)

## End(Not run)
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8 HLtest.Rsq

HLtest.Rsq Goodness-of-fit tests for GLMs for binary data

Description

Goodness-of-fit tests for GLMs for binary data including the Hosmer-Lemeshow decile test and
X-squared test with normal approximation.

Usage

## S3 method for class ’Rsq’
HLtest(object, method = c("deciles", "fixed"),

decile.type = 8, ...)

## S3 method for class ’HLtest.Rsq’
print(x, digits = getOption("digits"), ...)

## S3 method for class ’Rsq’
X2GOFtest(x, ...)

## S3 method for class ’X2GOFtest.Rsq’
print(x, ...)

Arguments

object An Rsq object

x An HLtest.Rsq or an X2GOFtest.Rsq object

method The type of Hosmer-Lemeshow test to be performed. The "deciles" method
should be more accurate (Hosmer et al, 1997)

decile.type The quantile computation method; see quantile for details

digits the desired number of printed digits

... currently not used

Details

These tests are known to have very low power. They are only appropriate when the fitted frequencies
are very low and when the covariate pattern dictates strictly binary observations.

Value

For HLtest.Rsq an object of class HLtest.Rsq with components

expected the expected frequencies in the 2 x 10 entries

observed the observed frequencies in the 2 x 10 entries

resid Pearson residuals
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X2 the Pearson X-squared statistic

p.value the p-value for the goodness-of-fit test

method the method used for the test

For X2GOFtest an object of class X2GOFtest with components

p.value the p-value for the goodness-of-fit test

z.score the standardized z-score for the goodness-of-fit test

RSS the residual sums of squares term

X2 the pearson chi-squared statistic

Author(s)

Rune Haubo B Christensen

References

Hosmer, D.W. and Lemeshow, S. (1980). Goodness of fit tests for the multiple logistic regression
model. Communications in Statistics - Theory and Methods, A9(10), p. 1043-1069.

Examples

## Lifted from example(predict.glm):
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
## summary(budworm.lg)

(Rsq.budworm <- Rsq(budworm.lg))

HLtest(Rsq.budworm)
HLtest(Rsq.budworm, method="fixed")
X2GOFtest(Rsq.budworm)

profile Profile likelihoods for parameters in binomial regression models

Description

Generate and plot the profile likelihoods for each parameter in a binomial regression model
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10 profile

Usage

## S3 method for class ’glm’
profile(fitted, which.par, alpha = 0.005, max.steps = 50,

nsteps = 8, step.warn = 5, trace = F, ...)

## S3 method for class ’profile.glm’
plot(x, which.par, likelihood = TRUE,

log = FALSE, relative = TRUE, approx = TRUE, conf.int = TRUE,
level = 0.95, n = 100, fig = TRUE, ylim = NULL, ...)

Arguments

fitted An object of class glm with a binomial family

x An object of class profile.glm

which.par A numeric or character vector with the parameters to be profiled. If missing all
parameters are profiled

alpha The likelihood is profiled in approximately the 100*(1-alpha)% confidence re-
gion

likelihood Logical for whether the profile likelihood or likelihood root should be plotted

log Logical for whether the profile likelihood should be plotted on log-scale. Ig-
nored if likelihood = FALSE

relative Logical for whether the profile likelihood or log-likelihood should be plotted on
a relative or absolute scale. Ignored if likelihood = FALSE

approx Logical for whether a quadratic approximation should be included in the plot

conf.int Logical for whether a confidence interval should be included in the plot

level A scalar or numerical vector indicating the confindence level(s) to be included
in the plot. Ignored if conf.int = FALSE

n How many points to employ in the spline interpolation of the profile likelihood

fig Logical for whether the profile likelihood should be plotted. If fig = FALSE the
list of points from the spline interpolation is returned

ylim The limits of the y-axis in the plot

trace Logical for whether progress should be printed to the screen during the profiling
process

nsteps Number of profiling steps to take in each direction for each parameter. The
number is approximate since the step size is determined according to a quadratic
approximation to the profile log-likelihood, hence, the deviation of the value of
nsteps to the actual number of steps performed is influenced by the degree of
irregularity of the profile likelihood

max.steps The maximum number of profiling steps in each direction for each parameter. A
warning is issued if the number of max.steps is reached

step.warn A warning is issued if the the actual number of steps in either direction does not
exceed the number of step.warn

... Additional arguments passed to other methods
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Details

lroot returned by profile is the signed square-root of the usual profile likelihood

sgn(θ − θ̂)
√

2(l(θ̂)− l(θ))

where θ is the parameter being profiled and θ̂ is the maximum likelihood estimate of θ. The apper-
taining par.vals is a vector of θ values in an appropriate range around θ̂.

The logical argument likelihood in plot controls if the profile likelihood or the likelihood root
should be plotted.

Value

For profile: a list of class profile.glm with a range of parameter values and lroot statistics for each
parameter in which.par

For plot: if fig = FALSE a list with plotting points and confidence interval(s) for each parameter
in which.par is returned. If fig = TRUE the list is returned invisibly.

Note

The implementation of these functions are largely inspired by profile.glm from the MASS package
and profile.clm from the ordinal package. This work is a direct extension of profile from
MASS with an extended set of warnings. The main difference, though, is in the plotting functionality,
which enables plot of the usual profile likelihood and log-likelihood and the optional inclusion of
confidence interval(s).

Author(s)

Merete K Hansen

References

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Ox-
ford University Press.

See Also

glm, profile.glm, plot.profile

Examples

data(serum)
serum.glm <- glm(cbind(y, n-y) ~ dose, family=binomial, data=serum)
pr <- profile(serum.glm)
plot(pr)
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12 Residuals

Residuals Residuals from a binomial regression model

Description

Function to extract residuals from a binomial regression model

Usage

Residuals(object, type = c("approx.deletion", "exact.deletion",
"standard.deviance", "standard.pearson", "deviance",
"pearson", "working", "response", "partial"))

Arguments

object An object of class glm with a binomial family

type The type of residuals to be returned. Default is approx.deletion residuals

Details

A considerable terminology inconsistency regarding residuals is found in the litterature, especially
concerning the adjectives standardized and studentized. Here, we use the term standardized about
residuals divided by

√
(1 − hi) and avoid the term studentized in favour of deletion to avoid con-

fusion. See Hardin and Hilbe (2007) p. 52 for a short discussion of this topic.

The objective of Residuals is to enhance transparency of residuals of binomial regression models
in R and to uniformise the terminology. With the exception of exact.deletion all residuals are
extracted with a call to rstudent, rstandard and residuals from the stats package (see the
description of the individual residuals below).

• response: response residuals
yi − ŷi

The response residuals are also called raw residuals
The residuals are extracted with a call to residuals.

• pearson: Pearson residuals

Xi =
yi − nip̂i√
nip̂i(1− p̂i)

The residuals are extracted with a call to residuals.

• standard.pearson: standardized Pearson residuals

rP,i =
Xi√
1− hi

=
yi + nip̂i√

nip̂i(1− p̂i)(1− hi)

where Xi are the Pearson residuals and hi are the hatvalues obtainable with hatvalues.
The standardized Pearson residuals have many names including studentized Pearson residuals,
standardized residuals, studentized residuals, internally studentized residuals.
The residuals are extracted with a call to rstandard.
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• deviance: deviance residual
The deviance residuals are the signed square roots of the individual observations to the overall
deviance

di = sgn(yi − ŷi)
√

2yi log

(
yi
ŷi

)
+ 2(ni − yi) log

(
ni − yi
ni − ŷi

)

The residuals are extracted with a call to residuals.

• standard.deviance: standardized deviance residuals

rD,i =
di√
1− hi

where di are the deviance residuals and hi are the hatvalues that can be obtained with hatvalues.
The standardized deviance residuals are also called studentized deviance residuals.
The residuals are extracted with a call to rstandard.

• approx.deletion: approximate deletion residuals

sgn(yi − ŷi)
√
hir2P,i + (1− hi)r2D,i

where rP,i are the standardized Pearson residuals, rD,i are the standardized deviance residuals
and hi are the hatvalues that is obtained with hatvalues The approximate deletion residu-
als are approximations to the exact deletion residuals (see below) as suggested by Williams
(1987).
The approximate deletion residuals are called many different names in the litterature including
likelihood residuals, studentized residuals, externally studentized residuals, deleted studen-
tized residuals and jack-knife residuals.
The residuals are extracted with a call to rstudent.

• exact.deletion: exact deletion residuals
The ith deletion residual is calculated subtracting the deviances when fitting a linear logistic
model to the full set of n observations and fitting the same model to a set of n−1 observations
excluding the ith observation, for i = 1, ..., n. This gives rise to n + 1 fitting processes and
may be computationally heavy for large data sets.

• working: working residuals
The difference between the working response and the linear predictor at convergence

rW,i = (yi − ŷi)
∂η̂i
∂µ̂i

The residuals are extracted with a call to residuals.

• partial: partial residuals
rW,i + xij β̂j

where j = 1, ..., p and p is the number of predictors. xij is the ith observation of the jth
predictor and β̂j is the jth fitted coefficient.
The residuals are useful for making partial residuals plots. They are extracted with a call to
residuals
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14 Rsq.glm

Value

A vector of residuals

Author(s)

Merete K Hansen

References

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.

Hardin, J.W., Hilbe, J.M. (2007). Generalized Linear Models and Extensions. Second edition. Stata
Press.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single case
deletions. Applied Statistics 36, 181-191.

Examples

data(serum)
serum.glm <- glm(cbind(y, n-y) ~ log(dose), family = binomial, data = serum)
Residuals(serum.glm, type=’standard.deviance’)

Rsq.glm R-squared measures for binomial GLMs

Description

This function computes the R-squared measures for binomial GLMs proposed by Tjur (2010) "Co-
efficients of determination in logistic regression models - a new proposal: The coefficient of dis-
crimination".

Usage

## S3 method for class ’glm’
Rsq(object, ...)

## S3 method for class ’Rsq’
print(x, digits = getOption("digits"), ...)

## S3 method for class ’Rsq’
plot(x, which=c("hist", "ecdf", "ROC"), ...)
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Arguments

object a binomial glm object
x an Rsq object
which the desired plot: histograms, empirical cumulative distribution functions or ROC

(receiver operating characteristic) curve
digits the desired number of printed digits
... currently not used

Details

The plot method has the following options

"hist" Two histograms with ten bins of the fitted probabilities are plottet on top of each other; the
upper one for y = 0 and the lower one for y = 1.

"ecdf" Two ecdf curves; one for y = 0 and one for y = 1

"ROC" The (empirical) ROC curve

Value

Rsq.glm returns an object of class Rsq. The plot and print methods returns the Rsq objects
invisibly.

Author(s)

Rune Haubo B Christensen

References

Tjur, T. (2009) Coefficients of determination in logistic regression models - a new proposal: The
coefficient of discrimination. The American Statistician, 63(4), 366-372.

See Also

A HLtest (Hosmer and Lemeshow test) method exists for Rsq objects.

Examples

## Lifted from example(predict.glm):
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
## summary(budworm.lg)

(Rsq.budworm <- Rsq(budworm.lg))

plot(Rsq.budworm, "hist") ## or simply ’plot(Rsq.budworm)’
plot(Rsq.budworm, "ecdf")
plot(Rsq.budworm, "ROC")
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16 serum

serum Anti-pneumococcus serum

Description

Data from a study examining the protective effect of a serum co-administered in increasing doses
with an infecting dose of a pneumococci culture. Each dose group consisted of 40 mice (n) and the
number of deaths caused by pneumonia was recorded (y)

Usage

data(serum)

Format

A data frame with 5 observations on the following 3 variables.

dose Dose of the anti-pneumococcus serum administered

y Number of deaths in each dose group

n Total number of mice in each dose group

Source

Smith, W. (1932) The titration of antipneumococcus serum. Journal of Pathology, 35, 509-526.

References

Collett, D. (2003) Modelling binary data. Second edition. Chapman & Hall/CRC.
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