Advances in the chemical vapor deposition (CVD) of Tantalum

Mugabi, James Atwoki; Bjerrum, Niels; Petrushina, Irina; Eriksen, Søren; Christensen, Erik

Publication date:
2014

Citation (APA):
CHEMICAL VAPOUR DEPOSITION (CVD) OF TANTALUM

- In Long narrow channels

James Atwoki Mugabi
PhD Student, DTU

Supervisors:
Niels J. Bjerrum
Irina Petrushina
Søren Eriksen
Erik Christensen

DTU Energy Conversion
Department of Energy Conversion and Storage
Why Tantalum?

Percentage Weight loss in 10 wt % HCl, room temperature, α-alumina abrasives and 1000 rpm for 168 hours.

Tantalum Coated Plate Heat Exchanger
SYSTEM DESCRIPTION

\[Ta_{(s)} + 2.5Cl_2_{(g)} \rightarrow TaCl_5 \]

\[TaCl_5 + \frac{5}{2} H_2 \rightarrow Ta + 5 HCl \]
Modeling

Long narrow Channel: Tubes

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Chemical Reaction: Arrhenius

Adsorption: Langmuir
Results:

Experiment 800°C, 25 mbar

![Graph showing tantalum thickness vs. position in tube for Experiment 800°C, 25 mbar. The graph includes data points for two different tries, Try 1 and Try 2.](image_url)
Experiment 850°C, 25 mbar

Tantalum Deposition Rate [µm/h] vs. Position in tube [m]

- Try 1
- Try 2
- Try 3
Experiment 900°C, 25 mbar

Tantalum Deposition Rate [µm/h] vs. Position in tube [m]

- Try 1
- Try 3
- Try 4
Experiment 950ºC, 25 mbar

Tantalum Deposition rate [µm/h] vs Position in tube [m]

- Try 1
- Try 2
All Temperatures, 25 mbar

![Graph showing tantalum deposition rate vs position in the tube at different temperatures.](image)

- **800 C**
- **850 C**
- **950 C**
- **900 C X 4**

Tantalum Deposition rate [µm/h] vs **Position in tube [m]**
All Pressures, 800 °C

Position in the Tube [m]

Tantalum Layer Deposition Rate [µm/h]

- 25 mbar -- 50g Cl2/ h
- 100 mbar -- 50g Cl2/ h
- 300 mbar -- 30g Cl2/ h
- 1 atm -- 30g Cl2/ h
Model Fitting
Model

Fluid Flow: **Navier Stokes**

Diffusion: **Fick’s Law**

Adsorption: **Langmuir**

Chemical Reaction: **Arrhenius**

Geometry: **2D Axial Symmetry and 3D**

Software: **COMSOL MultiPhysics®**
Mechanism

\[
\begin{align*}
TaCl_5(g) + \frac{1}{2}H_2 & \rightarrow TaCl_4(g) + \frac{1}{2}H_2 \\
& \rightarrow TaCl_3(g) + HCl(g)
\end{align*}
\]

Gas Phase Reaction

Surface Reaction
Model Fitting – 800 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 850 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 900 °C

![Graph showing Tantalum Deposition Rate (um/h) vs. Position in tube [m]]
Model Fitting – 950 °C

Tantalum Deposition Rate um/h vs. Position in tube [m]
Application
CB30 – Channel
CB30 – Channel (X-Y Plane)
CB30 – Streamline: Velocity field Visualization
CB30 – Streamline: Velocity field Visualization
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the right end)
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the left end)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
Thank you for your attention.