Advances in the chemical vapor deposition (CVD) of Tantalum

Mugabi, James Atwoki; Bjerrum, Niels; Petrushina, Irina; Eriksen, Søren; Christensen, Erik

Publication date: 2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
CHEMICAL VAPOUR DEPOSITION (CVD) OF TANTALUM

- In Long narrow channels

James Atwoki Mugabi
PhD Student, DTU

Supervisors:
Niels J. Bjerrum
Irina Petrushina
Søren Eriksen
Erik Christensen
Why Tantalum?


Percentage Weight loss in 10 wt % HCl, room temperature, α-alumina abrasives and 1000 rpm for 168 hours.
Tantalum Coated Plate Heat Exchanger
**SYSTEM DESCRIPTION**

\[ Ta_{(s)} + 2.5Cl_2_{(g)} \rightarrow TaCl_5 \]

\[ TaCl_5 + \frac{5}{2}H_2 \rightarrow Ta + 5HCl \]
Modeling

Long narrow Channel: Tubes

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Chemical Reaction: Arrhenius

Adsorption: Langmuir
Results:

Experiment 800°C, 25 mbar

Tantalum Thickness [µm/h] vs. Position in tube [m]
Experiment 850°C, 25 mbar

Tantalum Deposition Rate [µm/h] vs. Position in tube [m]

- Try 1
- Try 2
- Try 3
Experiment 900°C, 25 mbar

Tantalum Deposition Rate $[\mu m/h]$ vs Position in tube $[m]$
Experiment 950°C, 25 mbar

![Graph showing Tantalum Deposition rate vs. Position in tube](image)
All Temperatures, 25 mbar

Position in tube [m] vs. Tantalum Deposition rate [µm/h]

- 800 C
- 850 C
- 950 C
- 900 C × 4
All Pressures, 800 °C

![Graph showing tantalum layer deposition rate at different pressures.]

- 25 mbar -- 50g Cl2/ h
- 100 mbar -- 50g Cl2/ h
- 300 mbar -- 30g Cl2/ h
- 1 atm -- 30g Cl2/ h

Position in the Tube [m]

Tantalum Layer Deposition Rate [µm/h]
Model Fitting
Model

Fluid Flow: Navier Stokes

Diffusion: Fick’s Law

Adsorption: Langmuir

Chemical Reaction: Arrhenius

Geometry: 2D Axial Symmetry and 3D

Software: COMSOL MultiPhysics®
Mechanism

\[ \text{TaCl}_5(g) + \frac{1}{2}H_2 \rightarrow \text{TaCl}_4(g) \rightarrow \text{TaCl}_3(g) \]

Adsorption

\[ \text{Ta}(s) + 4HCl(g) \]

Gas Phase Reaction

\[ \text{Ta}(s) + 3HCl(g) \]

Surface Reaction

Adsorption

\[ + 2H_2(g) \]

\[ + \frac{3}{2}H_2(g) \]}
Model Fitting – 800 °C
Model Fitting – 850 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 900 °C

Tantalum Deposition Rate um/h

Position in tube [m]
Model Fitting – 950 °C

Tantalum Deposition Rate µm/h

Position in tube [m]

DTU Energy Conversion, Technical University of Denmark
Application
CB30 – Channel
CB30 – Channel (X-Y Plane)
CB30 – Streamline: Velocity field Visualization
CB30 – Streamline: Velocity field Visualization
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the right end)
CB30 – 1st Run: Tantalum Layer Thickness (i.e. Only treated from the left end)
CB30 – 2nd Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
CB30 – 2\textsuperscript{nd} Run: Tantalum Layer Thickness (i.e. Treated from the both ends)
Thank you for your attention.