

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 14, 2024

Use Cases for Laboratory Software Infrastructure
RTLabOS Phase I: D2.1

Heussen, Kai; Thavlov, Anders; Kosek, Anna Magdalena

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Heussen, K., Thavlov, A., & Kosek, A. M. (2014). Use Cases for Laboratory Software Infrastructure: RTLabOS
Phase I: D2.1. Technical University of Denmark, Department of Electrical Engineering.

https://orbit.dtu.dk/en/publications/87b2eeac-5881-41ab-aad5-fdfffabb0871

Outline of Smart Grid Lab Software Requirements

RTLabOS D2.1

Kai Heussen, Anders Thavlov and Anna Magdalena Kosek

With Use Cases by

Kai Heussen, Anders Thavlov, Anna Kosek, Holger Kley, and Oliver Gehrke

November 2014

Report RTLabOS Phase I: D2.1

2014

By

Kai Heussen, Anders Thavlov and Anna Magdalena Kosek

With contributions from

Holger Kley, and Oliver Gehrke

Copyright: Reproduction of this publication in whole or in part must include the

customary bibliographic citation, including author attribution, report title,

etc.

Cover illustration: Anna Kosek

Published by: Ledelse og Administration, Anker Engelunds Vej 1, Bygning 101 A,

2800 Kgs. Lyngby.

Request report from: www.dtu.dk

1.1 Scope ... 2

1.2 Purpose .. 2

1.3 Methodology .. 2

1.4 Intended use .. 3

2.1 Roles .. 4

2.2 Entities ... 6

2.3 Systems ... 6

3.1 LAC A: Development & test of controllers in the lab... 10

3.2 LAC B: Managing the Lab, Information and Lab software .. 11

4.1 Co-simulation and Development Support Infrastructure... 13

4.2 Control Software Deployment and Communication Interfaces ... 13

4.3 Configuration Management .. 14

4.4 Lab Information Management .. 14

2 Use Cases for Laboratory Software Infrastructure

Use cases are a proven methodology to identify and formalize requirements for software

development. The purpose of this document is to identify and structure the requirements for lab

software support within the RTLabOS scope.

To help understand how software can support lab work, the use cases in this document

structure the activities which are to be supported by software and conceptualize the identified

software requirements.

Lab related activities are centered on experiments of different character. The types of

experiments in focus of RTLabOS have ‘system’ character, which implies a higher complexity

than the more common device-oriented testing or characterization.

This ‘systems’ scope is primarily motivated by the closed-loop characteristics of control

systems: to test or validate a control system, the scope of an experiment involves controlled

devices, measurements and test protocols, but the actual system under study is not hardware

but typically a mere software or hardware-embedded software.

Development and validation of control software in the Smart Grid context thus shifts the scope

from devices to the software and communications. Testing such systems in a laboratory

requires both, a bottom-up platform of hardware, physical devices and environments to enable

the software execution, and a top-down perspective to manage and evaluated the performance

of the ‘software-under-study’.

Naturally, smart grid control systems experimentation thus involves software intensive

experimentation. In a more general view, studies involving any form of cyber-physical systems

that include feedback loops between software and physical environments are therefore

addressed by this report.

The purpose of this document is

a) to identify and organize active stakeholders and tasks in the lab context;

b) to provide orientation with regard to identification of relevant software technologies from

a top-down point of view;

c) to identify overlaps in functionalities and potential software interfaces.

To this end, this report is structured as follows: Chapter 2 presents the concepts and rationale

for structuring the lab domain into systems and types of actors; Chapter 3 summarizes relevant

lab activities into ‘Lab Business Processes’ (LBPs; primary use cases), to structure and

motivate the value of potential software support functions; Chapter 4 then provides a collection

of more detailed use cases at a software level (SUCs), addressing a subset of the functions

outlined in the LBPs..

The organization and structuring employs a use cases methodology which stems from software

engineering and is increasingly common in the Smart Grids domain [1, 2, 3]. For the purpose of

this work, the methodology specified in IEC/PAS 62559 [4] has been simplified and adapted to

http://webstore.iec.ch/preview/info_iecpas62559%7Bed1.0%7Den.pdf

Use Cases for Laboratory Software Infrastructure Page 3

suit the more practical needs in the RTLabOS project. The resulting template, reduced to

Objectives, Actors, Preconditions, and Narrative, is visible from the Appendix A.

For practical purposes, different levels of use cases are distinguished:

 “Lab Business Processes” (LBP)

 “Software Use Cases” – (SUC)

Furthermore, the LBPs have been grouped into “Lab Activity Clusters” (LACs). These titles have

been chosen to reflect the practical connotation of either level. In principle, these levels may be

mapped to corresponding structure levels in the use case methodology [3]:

 LAC – Use Case Cluster

 LBP – High Level Use Case

 SUC – Primary Use case

As the purpose at hand is rather practical a strict standards-based mapping seemed overkill.

The primary intention for this document is to serve as reference for RTLabOS related analyses,

to summarize and formulate the key concepts.

A secondary intended use is the reference for internal coordination with respect to user needs

and incremental extensions of the software infrastructure of PowerLabDK, and other smart grid

labs.

4 Use Cases for Laboratory Software Infrastructure

In Report D1.1 [5], an initial overview of the lab software domain has been outlined. In this

report, the results from D1.1 are further concretized.

We structure the domain of software-intensive smart grid labs into human roles, assets and

entities, and systems. The specification of roles and systems contains a significant reduction of

the lab domain.

The roles, entities and actors described in the following are primarily referenced as “actors” in

the use cases (Appendix B), as reported in Chapter 3 and Chapter 4. Note that in a use case

about software, software entities and systems may both be considered as ‘actors’ and as

‘system under discussion’, depending on the scope of a use case.

A list of roles and their occurrence in use cases is provided in Table A1, Appendix A.

Roles are human organizational roles referenced in the use cases as human actors. The roles

are grouped into four classes which can then be sub-structured into more specific actors if

necessary for a use case. Note that in real lab operations, a single person may assume several

of these roles.
1. Experiment Lead (EL)

The EL performs the role of running an experiment, this single person or team is

responsible for the whole experimentation process and ensuring the intended outcome.

Three distinctions are considered for deeper specification if needed:

 - External (E) vs. internal (Lab, L) lead

 - Technical (T) vs. scientific (S) lead

 - Business Lead (BL): Economical project responsible

a. Technical Lead (TL)

is member or team of scientific or technical staff authorized to conduct an

experiment in the lab; this role involves qualified work directly on the lab and

experiment assets, e.g. application engineering, lab configuration, experiment

execution.

i. External Technical Lead (ETL)

here, ‘external’ may include businesses or visiting scientists

ii. Lab Technical Lead (LTL)

in contrast with ETL, the LTL is qualified to operate the lab and to

interact with external of scientific leads.

b. Scientific Lead (SL)

is member of the scientific staff designing an experiment and evaluating the

data collected during that experiment; this roles is used in case a role involves

a scientific skill set but no lab operational competence; also this role may be

either external or internal with respect to the lab.

c. External Business Lead (EBL)

represents an External Organization (EO)

2. Lab Owner (LO)

The LO assumes the legal and economic responsibility of the lab and its components.

Sub-roles detail the scope of this responsibility:

Use Cases for Laboratory Software Infrastructure Page 5

a. Lab Asset Owner (LAO)

responsible for a specific unit (e.g. a DER) in the lab.

b. Lab Asset System Owner (LASO)

responsible for a system of units and/or the complete lab infrastructure.

3. Lab Manager (LM)

this technical role assumes the operational and technical support responsibility of the

lab.

Sub-roles are associated with different support domains:

a. Lab Asset System Manager (LASM)

responsible for operation, support and maintenance of lab hardware

infrastructure; is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators,

SCADA systems, etc.

b. Lab IT Manager (LITM)

responsible for operation, support and maintenance of lab ICT infrastructure

(e.g. IP-level access and configuration); is the Lab staff member (or group of

staff members) that can reserve, configure and enable access to the Lab’s IT

infrastructure, including the granting of remote access and server space.

c. Lab Software Manager (LSM)

responsible for operation, support and maintenance of lab software (aspects

such as licensing, tools, code of conduct, repository management, architecture

and coordination)

4. Software Developer (SD)

this role is associated with the actual coding (not application engineering) associated

with an experiment.

a. External Software Developer (ESD)

this role covers lab-independent software development, including both local

non-lab related developments and external development.

b. Lab Software Developer (LSD)

responsible for design and implementation of lab software features and

adaptation to evolving needs or specific integration requirements.

c. Model & Simulation Developer (MSD)

a staff member with focus on developing simulation models for different

simulators.

5. Test User (TU)

a test user is required to identify the maturity of human-machine interfaces (HMI); test-

users may have domain-specific qualifications that suit better for specific HMI puposes.

a. System Operator (SysOp)

focus on technical status of the system

b. Occupant (Occ)

e.g. a home owner with limited technical interest, and primary focus on e.g.

comfort & cost

The roles are applied throughout the use cases as actors, consistent with the descriptions

provided here. Further use cases specific details on a role are provided in the respective use

case document.

6 Use Cases for Laboratory Software Infrastructure

Systems are composed of subsystems or non-decomposable “elementary” entities – keeping in

mind that the choice of an “elementary” level of entities is deliberate. For the purpose of this

report, the following entities are used:

 Lab Asset

o Distributed energy resource (DER)

o Measurement Device

o Switchgear

o Computation hardware

o Cables

o …

 Useful Information Item (UII)

is a general term referring to digital information that may be stored in files of databases;

the adjective ‘useful’ relates to an intended use in the lab context; UIIs examples:

o Simulation model

o Time series data

o Configuration information

o Code

o Documentation / Reports

o Experiment meta-data (time, participants, resources, references, …)

o …

Further entities have been identified ad-hoc when required in a specific use case.

In a use case, systems and entities can have the role of “actor” or as “system under discussion”

(SuD); a system is an “actor”, if considered external to the use case, or as SuD, if the use case

contributes to the system’s specification. The following types of systems have been identified in

RTLabOS use cases:

 Control Software (CS)

which contains both a control algorithm and (given) interfacing capabilities; special

variations of control software include

o Distributed Control systems

o Data concentration and processing algorithms

o State assessment algorithms

o Visualization and Operator support algorithms

 Lab Management and Operation System (LabOS)

which provides interfacing, supervision, configuration, monitoring, data-acquisition and

logging facilities;

 Communication infrastructure within the lab (LabCT)

which includes in particular OSI1-4 communications layers

 Real-time simulator (RTS)

which executes a simulation model in synch with the behavioral time of the simulated

processes

o Power System RTS (PS-RTS)

 Data & Information Repositories (DIR)

repository for UII, e.g. a data logger, central file system, or a model library

Use Cases for Laboratory Software Infrastructure Page 7

 Lab Information System (LabIS)

a DIR designed for experiment meta-data, used to document experiments and trace

results

These systems are generalizations of systems used in normal laboratory practice. Two central

systems concerned in many use cases are the Control Software (CS) and the LabOS. Both

terms are simplifications developed in RTLabOS and they are further defined below.

The Control Software is often in focus of interest in RTlabOS use cases and subject to be

developed, and validated by lab-related testing and demonstration (cf. Section 3.1).

AUX
adapter

Lower I/O

Upper I/O

Control Software

Figure 1: Conceptual Model of Control Software

As illustrated in Figure 1, control software has a core which represents the algorithmic element

that processes input signals and information and generates decisions and output signals.

Associated with this core are adaptors related to ensuring the communication of signals through

different channels, which are grouped into:

 control-specific adapters (‘upper’ and ‘lower’ I/O),

 auxiliary adapters, e.g. for Human-Machine-Interface (HMI) purposes.

An adapter corresponds to a software interface for exchange of signals. The distinction of

“lower” and “upper” I/O is associated with the principal function of a control system, which

distinguishes “process-oriented” and “goal-oriented” signals, respectively. The lower I/O, for

example, the refers to device-oriented control and measurement signals, whereas the upper I/O

relates for example to a control reference received from a higher control level, aggregated state

information or control-related status flags. Typically, but not necessarily, protocols are simple

and sampling rate is higher for Lower I/O as opposed to Upper I/O.

The AUX adapter refers to auxiliary information exchange. This may include e.g.

 connection & execution status information not employed in a control hierarchy,

 access control,

 HMI related data exchange for supervisory or diagnostic purposes.

The functionality of a LabOS is illustrated in Figure 2. It summarizes a number of basic software

functions which are commonly required for lab supervision such as: Lab configuration, access

control, safety, data logging and monitoring functions. This functionality is often referred to as

SCADA, or Lab SCADA, but the term is overloaded with conflicting interpretations in the power

system domain.

Beyond these basic features, a LabOS may also offer integration of lab assets as controllable

devices with a common control interface. This advanced functionality may support control

software deployment and lab monitoring, allowing for extended interoperability; it may also

increase overhead, as not all labs require a dedicated management and operation system.

The LabOS concept suggests encapsulating lab assets, abstracting component interfaces,

handling real-time access & access control, configuration, monitoring and data logging.

8 Use Cases for Laboratory Software Infrastructure

Figure 2 LabOS Domain illustration: the concept includes all essential functionality for the lab

management and operation of lab and lab assets are encapsulated, e.g. w.r.t control interfaces.

The systems, LabCT, DIR, and RTS are clear from their intuitive interpretation.

Finally, the LabIS is a proposed system which deals primarily with meta-information on lab-

related activities, projects, or experiments. The purpose and function of a LabIS is indicated in

LBP5 and discussed in Section 4.4 Lab Information Management.

Use Cases for Laboratory Software Infrastructure Page 9

Here we introduce high-level use cases focussed on the lab-related activities performed by

various actors in the lab context. As primarily activities of human actors in the lab context are

defined, we found it more concrete to refer to these activities as a ' business process' or 'Lab

business process' (LBP):

 The 'objective' is a form of business objective or outcome of the process.

 The 'actors' include roles of human actors

 the narrative and step sequence can include basic elements of a flow chart, such as forks

and joints (alternative ways of getting to the end)

 assumptions / pre-conditions are related to available resources, competences, etc.

The use cases collected in this chapter are grouped into two main lab activity clusters (LACs)

which are:

 Development & test of controllers in the lab (LAC A)

 Managing information in the lab context, the lab and lab software (LAC B)

As illustrated in Figure 3 the LBPs associated with LAC A are coherent with respect to a

common overall sequence of steps in them, which relates to development and deployment of

control software. In contrast, in LAC B, the use case focus is on the lab software services.

Lab Activity Cluster A

Lab Business Process 3

Step
1

Step
2

Step
3

Actor
1

Actor
2

Lab Business Process 2

Step
1

Step
2

Step
3

Lab Business Process 1

Step
1

Step
2

Step
3

Actor
1 Actor

2

Objective

Preconditions

System under
Discussion

Lab Activity Cluster B

Actor
1

Actor
2

Lab Business Process 2

Step
1

Step
2

Step
3

Actor
1 Actor

2

Objective

Preconditions

System under
Discussion

Actor
1

Actor
2

Lab Business Process 2

Step
1

Step
2

Step
3

Actor
1 Actor

2

Objective

Preconditions

System under
Discussion

Lab Business Process 5

Step
1

Step
2

Step
3

Actor
1 Actor

2

Objective

Preconditions

System under
Discussion

Figure 3 Elements of a Lab Business Process and relation to Lab Activity Clusters

The following LBPs have been developed in RTLabOS project:

 LBP0 Remote control of DER

 LBP1 Co-Simulation of controller, physical system & communication in separate software

tools

 LBP2 Commercial Demonstration

 LBP3 Cross-site Experiments

 LBP4 Testing SCADA System Operation Against Real-time Simulation

 LBP5 Information Sharing in the Lab Context

 LBP7 Configuration Management

 LBP8 Extending software infrastructure with additional interfaces

 LBP9 Deployment of a distributed controller in the lab

 LBP10 Testbed Environment for Training and Early Development

A full description of all LBPs can is found in Appendix B, starting page 19.

10 Use Cases for Laboratory Software Infrastructure

The LAC A lab business processes include:

 LBP0 Remote control of DERs

 LBP1 Co-Simulation of Controller, Physical system & Communications in separate software

tools

 LBP2 Commercial Demonstration

 LBP3 Cross-site Experiments

 LBP4 Testing SCADA system operation against real-time simulation

 LBP9 Deployment of a distributed controller in the lab

 LBP10 Testbed Environment for Training and Early Development

Each of these LBPs entails several generic phases of an experiment:
1) Preparation

2) Execution

3) Post-processing

4) Interpretation of results

Depending on the use case considered, specific tasks and challenges are outlined and allow an

interpretation of the associated effort. As several of the use cases address extensions of

remotely controlled DER in the lab via a control interface (often provided by LabOS) LBP0

In the bigger picture, LAC A deals with several aspects of control system development, so the

activities described are all related to the maturing of Control Software (cf. Section 2.3 and

Figure 1, p. 7).

Control software is developed in several phases by different types of activities. The phases

relate to different levels of maturity of the control software: from control concept toward to lab

testing and eventual field deployment through 5 stages (A. Concept Design, B. Development, C.

Lab Testing, D. Demonstration, E. Field Deployment, see

B.
Development

C.
Lab testing

D.
Demonstration

E.
Field

Deployment

A.
Concept
Design

Figure 4). Passing each stage reduces technical risk at the next implementation stage. From an

application point of view, these stages motivate why lab-tested control software is more ready

for actual deployment than control software that did not go through these stages. The

theoretical argument is that by each stage (possibly hidden) assumptions about system

interactions are revealed by the increasingly realistic testing environments, and thus previously

unknown implementation risks are incrementally ruled out.

B.
Development

C.
Lab testing

D.
Demonstration

E.
Field

Deployment

A.
Concept
Design

Figure 4: Conceptual map of Control Software development stages

Use Cases for Laboratory Software Infrastructure Page 11

These stages represent an intuitive sequence of lifecycle stages of a CS to emphasize the role

of different platforms, such as simulations and physical lab, qualifying the contribution of each

stage to the quality of control software. Viewed in context of development lifecycle models for

systems [6], and software [7], the stages are best viewed as a spiral development approach

where each stage completes a development cycle [8].

The scope of the LBPs addresses aspects of the phases: B. Development, C. Lab Testing, and

D. Demonstration, which include all activities associated directly with lab-related software. The

coverage of the LAC A use cases can thus be mapped out to the stages as in Table 1.

Table 1 Mapping LBPs LAC A into Control Software Development Stages

B. Development C. Lab Testing D. Demonstration
LBP0 Remote control of DERs

LBP4 Testing SCADA system operation against real-time simulation

LBP1 Co-Simulation of Controller, Physical system &
Communications in separate software tools

LBP2 Commercial Demonstration

LBP10 Testbed Environment for
Training and Early Development

LBP3 Cross-site Experiments
LBP9 Deployment of a distributed controller in the lab

These use cases thus demonstrate lab features along the development value chain. Additional

considerations with respect to operator support development and operator training have not

explicitly been considered.

This cluster of ‘platform’ use cases is associated with continuously available and ad-hoc

services supporting lab-activities, in that they define “facility” aspects relevant to different

experiments but not dependent on specific experiment types. These relate to: Inventory of

resources & information, real-time data-access, data-storage and access (e.g. historical &

models), presentation and visualization of status information, management of -software

infrastructure, -user rights, -configuration, and -access. In contrast to LAC A, here the

coherences are related to the System under Discussion instead of the step sequences.

The following lab business processes belong to LAC B:

 LBP7 Configuration Management

 LBP8 Extending Software Infrastructure with Additional Interfaces

 LBP5 Information Sharing in the Lab Context

These high level use cases specify aspects of the LabOS (LBP7 & LBP8) and the LabIS (LBP5)

systems.

As stated previously, the list of use cases is not exhaustive. Many aspects of a LabOS are

associated with basic monitoring, logging, supervision functionality for which no advanced high-

level use cases have been identified.

12 Use Cases for Laboratory Software Infrastructure

The goal for this chapter is to specify how software may contribute to improvement and

facilitation of common lab activities. In RTLabOS we define Software Use Cases (SUC) as all

the use cases where laboratory software infrastructure plays a significant role. The SUC can

refer to a single step or a set of steps in the lab business process. In this section we present

chosen SUCs corresponding to LBPs presented in section 3. The SUCs are numbered by

related LBPs that motivate the software use case.

Lab Business Process

Step 1

Step 2

Step 3

Actor1

Actor2

Lab Business Process

Step 1

Step 2

Step 3

Actor1

Actor2

Software Use Cases

 ...

Lab Business Process n

Software Use Case 1Step 1

Step 2

Step 3

Software Use Case 2

Software Use Case 3

Lab Activity Cluster B

Objective

Actor1

Actor2

Preconditions

System under
Discussion

Figure 5 Relationships between Lab Business Processes and Software Use Case

The software use cases developed in RTLabOs and corresponding LBPs are presented in

Table 2. The full description of presented SUCs is available in Appendix 0.

Table 2 Map of SUCs with corresponding LBPs

SUC LBP

SUC1a Co-Simulation orchestrator and

simulator extensions

LBP1 Co-Simulation of Controller, Physical

system & Communications in separate

software tools

SUC1b Controller framework in a co-

simulation set-up

LBP1 Co-Simulation of Controller, Physical

system & Communications in separate

software tools

SUC3 Cross-site integration of (near) real-time

data streams

LBP3 Cross-site Experiments

SUC7a Configuration management, creating a

laboratory configuration

LBP7 Configuration Management

SUC7b Configuration management, LBP7 Configuration Management

Use Cases for Laboratory Software Infrastructure Page 13

reinstating a laboratory configuration

SUC7c Configuration management, retrieving

configuration data

LBP7 Configuration Management

SUC8 Controller deployment in the laboratory

based on documented interfaces

LBP8 Extending software infrastructure with

additional interfaces

SUC9a Deployment of a distributed controller,

controller deployment

LBP9 Deployment of a distributed controller in

the lab

SUC9b Deployment of a distributed controller,

distributed messaging

LBP9 Deployment of a distributed controller in

the lab

SUC9c Deployment of a distributed controller,

controller undeployment

LBP9 Deployment of a distributed controller in

the lab

The perspective that co-simulation environments can be perceived as experimentation

platforms for smart grid related algorithms is motivated and introduced in [9]. This category

groups use cases that use co-simulation as their main experiment design paradigm:

 SUC1a Co-Simulation orchestrator and simulator extensions

 SUC1b Controller framework in a co-simulation set-up

SUC1a investigates co-simulation composition, scenario configuration, orchestration and model

integration. SUC1a can be placed in the simulation domain, as presented inError! Not a valid

bookmark self-reference., in three regions: Simulator Interface, Simulation Scenario

Configuration and Simulator Control and Synchronization. SUC1b investigates deployment of a

controller in a co-simulation environment; it can be placed in the co-simulation domain, as

presented in region Control Interfaces.

Figure 6 View of simulation domain as ‘Emulated Lab’ in analogy to LabOS (Figure 2).

This group, clusters software use cases that are explaining processes of deploying controllers

and development of communication interfaces in the power system laboratory context:

 SUC3 Cross-site integration of (near) real-time data streams

 SUC8 Controller deployment in the laboratory based on documented interfaces

 SUC9a Deployment of a distributed controller, controller deployment

14 Use Cases for Laboratory Software Infrastructure

 SUC9b Deployment of a distributed controller, distributed messaging

 SUC9c Deployment of a distributed controller, controller undeployment

SUC3 describes integration steps of deployment controller external to a laboratory. Use cases

SUC9a-c consider deployment of a distributed controller in a laboratory, considering

deployment, dealing with distributed messaging and communication between controller parts,

as well as terminating all parts of a distributed controller and restoring default controllers if

applicable. These use cases are applicable as specification of advanced LabOS functionality.

This category groups use cases that consider lab configuration management:

 SUC7a Configuration management, creating a laboratory configuration

 SUC7b Configuration management, reinstating a laboratory configuration

 SUC7c Configuration management, retrieving configuration data
SUC7a-b group describes steps of configuration management. SUC7a considers recording the

laboratory configuration in which a particular experiment is conducted, in order to allow the

correct evaluation of experimental data. In SUC7b returning to a previously stored laboratory

configuration is considered, in order to either repeat a previous experiment under identical

conditions, or restore the lab to a default configuration / common baseline. SUC7c describes

retrieving configuration data associated with an experiment, to enable the evaluation of an

experiment. Configuration management is also a LabOS function or service.

The use cases for lab information management have not been formulated in detail. Two main

aspects have to be addressed: a) the organization of “UII”-repositories for code, time series

data and documentation, which can be realized by many of solutions today.

Figure 7 Lab Information System (LabIS) for management of data about experiments

More challenging is b) the realization of a practical meta information directory, one may call ist

LabIS, for lab information system. A wiki-type of system is the simplest unstructured of

recording such information. More formal systems would require a significant overhead in

structuring the types of knowledge recorded, but it may be easier to maintain.

Use Cases for Laboratory Software Infrastructure Page 15

The work on use cases has been fruitful to put initial software development ideas in context of

another and in context of the lab use. The result is meant to facilitate future lab software

improvements by helping communicate ideas in context to find their place in a lab. Some ‘good

ideas’ may get lost for different reasons

 In a growing lab organization, the developer with a ‘good idea’ lacks the support and time

allocation, maybe because misunderstandings lead to that the value of an idea is not seen

in context

 sometimes a ‘good idea’ comes from lab users, but they can’t implement it themselves,

simply because it lacks the coordination and context.

 An external stakeholder has no insight into internal operations, so even implemented and

available functionality may remain undiscovered.

With the Lab Business Processes, we have identified some key operations in the lab in relation

to control software development and daily lab operations. These put ideas in context of ‘value’,

in the sense that it is clearer how an idea actually contributes to better operations in the lab.

The software use cases, several concrete development ideas for lab software support are

detailed further, to facilitate actual development. Some of these ideas have been addressed in

feasibility studies (RTLabOS D3 [10]). For a mapping between use cases and feasibility studies,

please refer to [10].

With limited time and scope of this project, some key ideas have been reported here, and there

also remain gaps.

Key ideas reported here and detailed in the appendices:

 The definition of the concept of a LabOS and LabIS, and many further definitions structuring

the domain of smart grid lab software infrastructure.

 The view of control software development as a driver for system testing, and thus a concept

for evaluating the contributions of enhanced lab support and simulation environments

 Specific function descriptions for a LabOS

a) Configuration management

b) Several variants for controller interfaces

 The interpretation of co-simulation as a virtual/emulated lab (Co-simulation orchestrator <->

LabOS) and association with CS development steps

In the context of the scope of this work, further lines of development may include

 Further SUCs detailing aspects of all LBPs

 A further detailed definition of a the LabIS functions

 Development of the CS development stages into a systematic strategy for smart grid

system development and testing (incl. criteria for specification and test-based validation).

16 Use Cases for Laboratory Software Infrastructure

[1] M. Uslar, M. Specht, C. Dänekas, J. Trefke, S. Rohjans, J. González, C. Rosinger and R.

Bleiker, Standardization in Smart Grids, Springer, 2013.

[2] J. Trefke, S. Rohjans, M. Uslar, S. Lehnhoff, L. Nordstrom and A. Saleem, "Smart Grid

Architecture Model use case management in a large European Smart Grid project," in

Innovative Smart Grid Technologies Europe (ISGT EUROPE), Copenhagen, 2013.

[3] CENELEC - European Committee for Electrotechnical Standardization, “CEN - CENELEC -

ETSI Smart Grid Coordination Group – Sustainable Processes,” CENELEC - European

Committee for Electrotechnical Standardization, Brussels, 2012.

[4] International Electrotechnical Commission (IEC), “62559 IntelliGrid Methodology for

Developing Requirements for Energy Systems - Publicly Available Specification (PAS),”

IEC, 2008.

[5] A. M. Kosek and K. Heussen, "D1.1 - The Requirements Domain for Laboratory Software

Infrastructure," Department of Electrical Engineering, DTU, Kongens Lyngby, 2013.

[6] C. Haskins, K. Forsberg, M. Krueger, D. Walden and D. Hamelin, “Systems engineering

handbook,” INCOSE, 2006.

[7] N. B. Ruparelia, “Software development lifecycle models,” ACM SIGSOFT Software

Engineering Notes 35, no. 3, pp. 8-13, 2010.

[8] B. W. Boehm, “A spiral model of software development and enhancement,” Computer 21,

no. 5 , pp. 61-72, 1988.

[9] A. a. M. T. a. M. S. Nieße, “Designing dependable and sustainable Smart Grids – How to

apply Algorithm Engineering to distributed control in power systems,” Environmental

Modelling & Software, Volume 56, pp. 37-51, 2014.

[10] K. Heussen, A. Thavlov and A. M. Kosek, "D3 - RTLabOS Feasibility Studies," Department

of Electrical Engineering, DTU, Kongens Lyngby, 2014.

Use Cases for Laboratory Software Infrastructure Page 17

Table A1 Identified actors

Name: Abbreviation: Parent: Appears
in:

Actor type:

Experiment Lead (EL) EL Role

Technical Lead (TL) TL EL Role

Business Lead (BL) BL EL Role

Lab Technical Lead (LTL) LTL TL Role

External technical lead ETL TL Role

Scientific Lead (SL) SL EL Role

External Business Lead (EBL) EBL BL Role

Lab Owner (LO) LO Role

Lab Asset Owner (LAO) LO LO Role

Lab Asset System Owner (LASO) LASO LO Role

Lab Manager (LM) LM Role

Lab Asset System Manager (LASM) LASM LM Role

Lab IT Manager (LITM) LITM LM Role

Lab Software Manager (LSM) LSM LM Role

Software Developer (SD) SD Role

External/Experiment Software Developer
(ESD)

ESD SD Role

Lab Software Developer (LSD) LSD SD Role

Model & Simulation Developer (MSD) MSD SD Role

Test User (TU) TU Role

System Operator (SysOp) SysOP TU Role

Occupant Occ TU Role

Control Software (CS) CS System

Lab Management, Supervision and
Operation system (LabOS)

LabOS System

Communication infrastructure within the
lab (LabCT)

LabCT System

Real-time simulator (RTS) RTS System

Power System RTS (PS-RTS) PS-RTS RTS System

Simulation Software SIM System

Domain-Specific Simulator DS-SIM SIM System

Control Strategy Simulator CS-SIM SIM System

Power System Simulator PS-SIM DS-SIM System

Building Simulator B-SIM DS-SIM System

18 Use Cases for Laboratory Software Infrastructure

Data & Information Repositories (DIR) DIR System

Lab Information System (LabIS) LabIS System

Useful Information Item (UII) UII Entity/asset

Simulation model SM UII Entity/asset

Time series data TSD UII Entity/asset

Configuration information CInfo UII Entity/asset

Documentation / Reports DOC UII Entity/asset

Lab Asset LA Entity/asset

Distributed energy resource (DER) DER LA Entity/asset

Measurement Device MEA LA Entity/asset

Switchgear SWG LA Entity/asset

Computation hardware CHW LA Entity/asset

Cable Cable LA Entity/asset

Experiment meta-data EMD Entity/asset

See Chapter 2, page 4 and following.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 19

:

LBP0 Remote control of DER ... 20

LBP1 Co-Simulation of controller, physical system & communication in separate software tools 22

LBP2 Commercial Demonstration ... 25

LBP3 Cross-site Experiments ... 28

LBP4 Testing SCADA system operation against real-time simulation ... 30

LBP5 Information Sharing in the Lab Context ... 33

LBP7 Configuration Management ... 35

LBP8 Extending software infrastructure with additional interfaces ... 37

LBP9 Deployment of a distributed controller in the lab .. 38

LBP10 Testbed Environment for Training and Early Development ... 40

Use Cases for Laboratory Software Infrastructure Appendix B - Page 20

LBP0 Remote control of DER
Author: Anders Thavlov

Objectives

This document serves as a generalized use case of monitoring and controlling DERs within a given lab domain.

It describes the process for setting up an experiment, data management and post processing of data. Thus, the

objectives are given by:

 Remotely monitor one or more lab assets, or distributed energy resources (DERs)

 Remotely control one or more DERs with a existing control software

 Record experimental data during experiment

 Retrieve data after experiment

Actors

 Experiment Lead (EL)

 Lab Asset Systems Manager (LASM)

 Lab Owner (LO)

System under Discussion

A lab system comprising one or several DERs is considered. Within the lab domain, an internal communication

infrastructure allows the DERs to be remotely monitored and controlled individually. System under discussion

comprises:

 One or multiple DERs within the lab domain.

 A lab management and operation system (LabOS), which provides interfacing, supervision, monitoring

and data-logging facilities

 (optional) An external measurements and data-loggers

 A communication infrastructure within the lab that allows DERs to be monitored and controlled.

 Control software (CS) developed by the EL running within the lab IP-domain.

 Lab information system (LabIS) used to trace experiments and results

Preconditions

 EL has received documentation for all the units and software from LASM.

 The CS is enabled to interface with the DERs using the LabOS

 EL has developed a plan for the experiment regarding asset use, grid topology and a time schedule.

Furthermore, EL has received approval from the relevant LO.

 EL is trained in the usage of Lab, DER, LabOS and LabIS.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 21

Narrative

An EL wants to use facilities within the lab for performing experiments involving one or several DERs, i.e.

controlling – or remotely monitoring response to test signals – using the LabOS system and optional additional

measurements.

Steps

1. LASM reserves requested DERs and sets up grid topology for the EL

2. EL performs test-runs for the experiment, e.g. test of communication, control and software.

3. EL sets up visual feedback to monitor the progress of the experiment, e.g. to verify connectivity with DERs

and present measurements.

4. EL brings the lab system into its initial state as defined in the experimental plan, e.g. charges batteries or

pre-cools building.

5. EL performs the experiment, monitoring progress and completion.

6. EL extracts indicative experimental data from LabOS and inspects visually, to confirm that a) data has been

logged and b) the results are reasonable (i.e. a subjective confirmation of experiment completion).

7. EL cleans up after the experiment, bringing the DERs into a default state and configuration, and releases

DERs to LASM.

8. EL ensures that complete experiment data is stored in a backed up location.

9. LASM confirms conclusion of experiment and takes over.

10. EL documents experiment using a standard template, such that the experiment can be repeated and data

can be retrieved by other users.

11. (recursive): EL or EL collaborators post-process and analyse the experiment data and note usage in LabIS.

Extensions/Variations

6.

a) EL retrieves and inspects indicative data from external data loggers.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 22

LBP1 Co-Simulation of controller, physical system & communication in separate

software tools
Author: Anna Magdalena Kosek

Objectives

Integration of simulation software tools: control strategy in agent emulation tool, power system domain

simulation, and communication simulation with a co-simulation orchestrator in order to perform a joint co-

simulation on a selected smart grid scenario. In detail objectives are as follows:

 design a co-simulation of power system, control logic and communication

 modify simulation tools to support discrete event simulation (to fit orchestrator)

 design and develop interfaces between simulations and a co-simulation orchestrator

 implement co-simulation scenario descriptions including configuration of all simulation tools

 conduct co-simulation experiments with all simulation tools

 collect data from experiments in a shared format
 evaluate results of co-simulation and compare to a single-simulation results

Actors

 Experiment Software Developer (ESD)

 Lab Software Developer (LSD)

 Lab Software Manager (LSM)

System under Discussion

The considered system consists of:

 Software simulators: controller, physical system (power systems) and communication

 Co-simulation orchestrator: third party tool enabling co-simulation

Preconditions

 The third party orchestrator is well documented

 simulations exist and can be transformed to discrete event simulations

 The intergeneration of simulation tools into a co-simulation set-up requires:

1. management of simulation execution,

2. propagation and synchronization of simulation time,

3. orchestration of data exchange,

Use Cases for Laboratory Software Infrastructure Appendix B - Page 23

4. co-simulation data logging: save data from all simulators and the orchestrator in the common

format,

5. interfaces for data exchange and simulation orchestration,

6. common scenario description,

7. adaptation of simulations to be compatible with the orchestrator.

The pre-conditions to this use case are that requirements 1)-4) were fulfilled by the existing co-

simulation orchestrator, which influences the implementation of 5)-7). In this use-case requirements

5)-7) are considered.

Narrative

The Lab Business Process aims at integration of separate simulation tools (power system, control,

communication) into a co-simulation set-up with a third-party co-simulation orchestration software. This LBP

describes all steps to adapt and integrate existing simulations with an orchestration tool and run a smart grid

scenario in the co-simulation setup.

The presented use-case is based on 7 steps:

1. LSM and LSD design a co-simulation set-up

a. design a co-simulation setup with use of existing simulation components

b. design the co-simulation inter-operation including: timing, data and simulation time

propagation, data channels, common interfaces

c. identify all components in the simulations that need to be modified in order to inter-operate

with the orchestrator

2. LSM adapts existing components in order to inter-operate during the experiment

a. If necessary extend simulators to be externally orchestrated (configured, start, stopped, fed

with data from an external source) and discretized (divided into time steps with a system state

available for every step)

b. Implement interfaces between orchestrator and all simulators for co-simulation control and

data exchange

c. Build a simulation scenario in all simulators (manually or with help of automatic configuration

tools)

3. ESD, LSM and LSD test-run with real-time monitoring capabilities for debugging

a. First run of a simple pre-experiment set-up with debugging and live monitoring of the

experiment in order to ensure the proper inter-operation of integrated tools. Data exchange is

monitored and reaction of each parts of the system is evaluated.

4. ESD runs the experimental set-up

a. Run the power system scenario in a single power system simulation environment

b. Run the power system scenario in co-simulation set-up.

5. ESD collects experimental data in the common format

Use Cases for Laboratory Software Infrastructure Appendix B - Page 24

a. data from all simulators and co-simulation orchestrator need to be gathered in a common

format.

6. LSD interprets the experimental data

a. Compare obtained results from co-simulation experiments to standalone power system

scenario.

7. LSD and ESD documents obtained results, experiment architecture and configuration

a. Gather design consideration, implementation details, results and conclusions and prepare a

scientific paper or a technical report.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 25

LBP2 Commercial Demonstration
Author: Holger Kley

Objectives

 Conduct commercial demonstration of externally-developed software against simulated or physical

power system in lab setting

o Allow rapid deployment/undeployment

o Make the demo replicable

o Facilitate IP isolation

Actors

 External Business Lead (EBL) (primary) represents an External Organization (EO)

 External Demo Lead (ETL) is the External Organization’s engineering lead (or group of engineers) for
the demonstration

 Lab Owner (LO)

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Lab Tech Lead (LTL) is the Lab staff member (or group of staff members) that is authorized to interact

with and operate Lab assets and infrastructure

System under Discussion

 Lab Ecosystem including

o Assets

o Infrastructure

o Staff

Preconditions

 External Business Lead has agreement with Lab Owner that allows access to Lab facilities in exchange

for compensation on a time-used, functionality-required or asset-used basis, or some combination

thereof.

 Lab Owner has identified LTL to work with EBL.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 26

Narrative

1. Having identified demo opportunity, EBL presents demo requirements to ETL.

2. ETL identifies functionality/modules of existing software to be demonstrated.

3. ETL identifies Lab assets and infrastructure configuration needed to demonstrate selected

functions/modules and presents them to LTL.

4. LTL and ETL collaborate to identify existing interfaces to Lab assets and infrastructure that are

supported by externally-developed software.

5. LTL requests of LASM and LITM for access.

6. LASM approves request and demo is scheduled.

7. LITM approves request and enables access to IT infrastructure.

8. ETL uses remote or local access granted by LITM to deploy software to Lab-provided server(s). (SUC 9a)

9. ETL configures software against interfaces identified/developed in step 4. (See, e.g., SUC 8.)

10. Working with LTL, ETL performs tests of data flows between externally owned software and Lab assets

and infrastructure. (SUC 9b)

11. LTL – with the assistance of LASM as needed – creates and deploys lab configuration according to

approved demo plan. (SUC 7a)

12. Working with LTL, ETL tests planned demonstration. (SUC 1 in case deployment against simulation.)

13. In the presence of EBL and EBL’s guests, ETL conducts demonstration. (SUC 1 in case deployment
against simulation.)

14. ETL removes software from lab-provided hardware. (SUC 9c)

15. LTL – with the assistance of LASM as needed – restores lab configuration (including IT infrastructure)

according to approved demo plan. (SUC7b)

Extensions/Variations

3.

a. ETL collaborates with LTL to identify Lab assets and infrastructure configuration needed to

demonstrated selected functions/modules.

4.

a. LTL and ETL collaborate to identify interfaces to Lab assets and/or infrastructure that must be

customized or developed for the demonstration.

b. LTL and ETL produce an initial estimate of lab time/functionality/assets required for

demonstration, allowing EBL and LO to estimate cost of the demonstration.

c. EBL gives final approval for demonstration

8.

a. ETL deploy software components to externally-owned hardware that is deployed to Lab

network. (SUC7a)

13.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 27

a. Working with LTL, ETL collects data and logs of demo from lab data repositories. (SUC 7c)

16. LTL tallies final time/functionality/assets used during the demo.

17. LO invoices EO.

In case the requested functionality/components have previously been demonstrated, a number of steps are

eliminated or simplified. Specifically: 2—4 are eliminated, 9 and 11 consist of loading existing configurations

(UC 7c), and 10 and 12 may have reduced requirements.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 28

LBP3 Cross-site Experiments
Author: Anders Thavlov

Objectives

Usually research projects are not confined to one single actor alone, but typically comprise multiple actors.

Therefore, situations often occur, where a researcher in one location will have to conduct an experiment in a

laboratory at another location. This can be done either by relocation of the researcher, to be physically

presents in the lab facility, or by providing tools to the researcher, which allows him to conduct experiments

off-site, i.e. conduct a cross-site experiment. In this use case, a lab business process for the latter case is

presented. From this, the objectives are given by:

 Enable cross-site exchange of data.

 Provide cross-site access for control and monitoring of Distributed Energy Resources (DER) within a

given laboratory domain.

Actors

 Experiment lead (EL), heading the experiment from outside the lab domain

 Lab Asset Systems Manager (LASM)

 Lab IT Manager (LITM)

 Lab owner (LO)

System under Discussion

A lab system comprising several DERs, which can be controlled individually via an interface provided by a lab

operation and managment system (LabOS), is considered. From outside the lab domain, an EL wants to test his

own control software (CS) to control one or more DERs within the lab domain. System under discussion

comprises:

 One or multiple DERs within the lab domain.

 A LabOS, which is isolated from the Internet by a firewall.

 Control software (CS) running outside the lab domain.

Narrative:

EL needs to use facilities within the lab domain for performing experiments, i.e. controlling – or simply

monitoring – one or several DERs. To conduct the experiment, EL is using his own CS, which will run on a

computer located outside the lab domain.

Preconditions:

 A clear written agreement (the agreement) of collaboration between EL and LO exists.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 29

 LASM has the authorisation from the LO, to secure the availability of the requested DERs in the lab

during the period of the coming experiment as defined in the agreement.

 LITM has the permission to setup a VPN account in the lab communication network.

Steps:

1. EL and LITM agree on an approach for how to facilitate the transfer of data between the CS and the

LabOS within the lab domain (in the following a VPN approach is assumed).

2. LITM sets up a VPN account for EL, possibly with an expiry date given by the agreement.

3. LASM reserves the lab units that are comprised in the experiment conducted by EL for a given period.

Both exact lab units and period should preferably be specified in the agreement to prevent any

misconceptions.

4. EL uses a VPN client to obtain access to the lab communication network and hence the LabOS.

5. While the VNP connection is connected, the EL will be able to run the CS according to “Remote control

of DERs”, as presented in LBP1.

6. After the experiment, EL disconnects his VNP client.

7. After the finalisation of the experiment, EL provides information to LASM, about how the experiment

progressed and possible problems or errors that were experienced during the experiment.

8. LASM releases the lab resources, booked for EL, and LITM disables the VPN account to prevent any

unauthorised logins after the collaboration has ended.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 30

LBP4 Testing SCADA system operation against real-time simulation
Author: Kai Heussen

Objectives

Energy systems represent an essential infrastructure which is monitored by human operators. Apart from

automatic controls, a significant part of the computations carried out serve to identify and inform about the

overall system state. Development and deployment of such computational and visualization tools can be

supported by lab environments, both by offering simulation facilities and by offering a ‘realistic’ environment
for testing.

O1. Develop real-time state assessment and operator support software in a compact rapid prototyping

environment.

O2. Test the assessment and support software in context of real-time and closed loop operation using Power

System Real-Time Simulation.

O3. Evaluate assessment and support software in context of realistic system operation scenario with test users.

O4. Support system testing by conventional SCADA system, which serves as realistic & familiar operator

interface.

Actors

 Experiment lead (EL), i.e. the staff conducting the project and final experiments

 Scientific lead (SL), i.e. the researcher(s) developing assessment algorithms & software

 Lab System developers (LSD), which may be one or several of:

o SCADA system developer or more general solution developer (SD)

o Model & PS-RTS expert (model & simulation developer, MSD)

 Test user (TU), e.g. an experienced system operator

 Lab Software Manager (LSM)

System under Discussion (S.u.D.)

 Test-bed environment for assessment algorithms (TB-AA)

 Test-bed environment for visualization and operator interaction (TB-VOS)

 Power System Real-time simulator (PS-RTS)

 Simulation Model (power system)

 conventional SCADA System

 New Feature (NF)

o real-time state assessment and supervisory control software, and/or

o operator support & visualization software

Use Cases for Laboratory Software Infrastructure Appendix B - Page 31

Preconditions

 concept for the NF is clarified by scientific lead (SL); SL is trained for operating PS-RTS

 sufficient competences and resource allocation for adaptation needs are availed (EL, LSM , LSD)

 A suitable model for the real-time simulation is available

 a qualified test user (TU) accepts the operator setup as sufficiently ‘realistic’.

Narrative

The narrative is divided into three stages of testing. Each can be performed and repeated separately,

depending on the development level and type of new feature (NF).

Steps:

STAGE I: Feature Development

1. SL prepares requirements for test-bed environment and contacts LSM to identify a suitable test-bed.

2. Lab Software Manager (LSM) or lab Software developer (LSD) prepares development environment for

SL.

3. SL develops software prototype (NF) in test-bed environment.

STAGE II: Real-time System Testing

4. Experiment lead (EL) identifies and prepares Operation Scenario (OS) for testing, including:

o A simulation model representing a test system & initial state (model),

o External inputs: time series data & events

5. The system developer(s) and the simulation engineer (SD & MSD) prepare the experiment, which

includes loading of simulation model and parameterization of the PS-RTS, as well as the NF to adapt to

the respective scenario and the SCADA data points (named variables).

6. SL together with EL execute system test and log data.

STAGE III: System Evaluation with Test users

7. Scientific and Experiment lead (SL & EL) identify and prepare Operation Scenario (OS).

8. The operator/test user (TU) is prepared for the type of system and feature (NF) to work with.

9. EL initiates the experiment by start of the simulation; here the TU is seated in the control room and

prepared to respond to events and interact with the simulation via the SCADA system. Data is passed

through an interface between PS-RTS and SCADA system, and logged automatically by the SCADA

system. Additional observations about the operator behavior may be noted by SL.

10. After a sufficient simulation time the experiment concludes. Logged data is retrieved from the SCADA

system and processed by the SL.

Use Cases for Laboratory Software Infrastructure Appendix B - Page 32

Extension/Variations

The scope above has been a full system development; the scope can be reduced, depending on the type of

feature (NF) to be developed and tested:

 A change to the power system mode of control or other features that can be modified in context of the

RTDS simulation (i.e. NF implemented directly in PS-RTS, e.g. a power system stabilizer(PSS))

 A new ‘built-in’ function added to the SCADA system (i.e. NF of SCADA, e.g. a state estimator)

 Other assessment and control software, operating on and interacting with PS-RTS I/O:

o New support functionality, implemented in parallel to SCADA (e.g. new visualization and

decision support features)

o New measurement and/or data-processing functionality (e.g. real-time stability assessment)

o New control functionality, implemented in closed loop with RTDS (e.g. distributed control)

Use Cases for Laboratory Software Infrastructure Appendix C - Page 33

Contents

SUC1a Co-Simulation orchestrator and simulator extensions .. 34

SUC1b Controller framework in a co-simulation set-up.. 36

SUC3 Cross-site integration of (near) real-time data streams .. 38

SUC7a Configuration management, creating a laboratory configuration ... 40

SUC7b Configuration management, reinstating a laboratory configuration .. 42

SUC7c Configuration management, retrieving configuration data ... 44

SUC8 Controller deployment in the laboratory based on documented interfaces... 45

SUC9a Deployment of a distributed controller, controller deployment ... 47

SUC9b Deployment of a distributed controller, distributed messaging ... 49

SUC9c Deployment of a distributed controller, controller undeployment ... 50

Use Cases for Laboratory Software Infrastructure Appendix C - Page 34

SUC1a Co-Simulation orchestrator and simulator extensions
Author: Anna Magdalena Kosek

Objective

In the co-simulation several simulations are required to work jointly and exchange data in order to represent

influences and interconnections between different simulated domains. This software use case focuses on the

co-simulation orchestrator (manager) describing its functionality and interactions with simulators. The

objectives of the simulation orchestrator are as follows:

1. management of coordinated simulation execution,
2. propagation and synchronization of simulation time,
3. orchestration of data exchange,
4. co-simulation data logging: save data from all simulators and the orchestrator in the common format,
5. central configuration of co-simulation information exchange topology (architecture)

Actors

 External Software Developer (ESD)

System under Discussion

 Software environment where orchestrator and simulation tools can exchange information

 Orchestrator (OR)

 Simulation tools (STs)

 Simulation models (SM)

 Control software (CS)

Preconditions

 scenario description - simulation scenario describing the simulation objectives, used models and
control algorithm exists

 co-simulation configuration - configuration of co-simulation information exchange topology
(architecture)

 specification of models, control software and exchanged information is available

 the third-party co-simulation orchestrator is well documented

 STs contain models of simulated entities matching the overall co-simulation scenario

Use Cases for Laboratory Software Infrastructure Appendix C - Page 35

Narrative

In this use case a set of simulation tools are to be connected and run in co-simulation setup with a third party
co-simulation orchestrator.

1. ESD designs data channels to be exchanged between simulations, specifying which simulations
exchange data in which step of the simulation, exchanged data format, exchange data frequency and
save it into the co-simulation configuration.

2. ESD configures OR with the co-simulation configuration, allowing it to determine the start and end of
the experiment, available simulators and data exchanged between simulators

3. Existing simulators are adapted to fit the co-simulation orchestrator: methods expected by the
orchestrator need to be implemented. For example all simulator implements the method doStep()
advancing the simulator to the next simulation step and waiting for further commands.

4. ESD maps the scenario description to simulation tools in order to achieve the same configuration in all
tools. This step includes configuration of SM and CS using scenario description.

5. The OR configures STs in preparation for the co-simulation. This includes start of the simulation,
parameter initialization, initial synchronization of simulation time, check if simulators are ready for the
co-simulation run.

6. OR prepares a schedule of the STs execution and plans the data exchange schedule, the schedule can
include sequential or parallel execution of STs.

7. OR executes the schedule in the loop:
1. OR sends the simulation step notification to ST as specified in the co-simulation configuration and

simulation execution schedule
2. ST request data from OR, as specified in the co-simulation configuration and data exchange

schedule
3. ST executes one or more steps, depending on the request, a specified in the simulation execution

schedule
4. OR request data from ST and saves it in a database
5. OR checks if the execution schedule has progressed, checks if all simulation have executed

requested steps and exchanged data as specified in the schedule.
8. After the schedule is finished (simulation end is finished) OR stops all STs
9. OR informs ESD about the end of co-simulation and points to a database with co-simulation results

Use Cases for Laboratory Software Infrastructure Appendix C - Page 36

SUC1b Controller framework in a co-simulation set-up

Author: Anna Magdalena Kosek

Objective

This use case considers steps of development of a controller in a co-simulation setup. Control concepts are first

developed in a pure simulation environment. These controllers are constrained by the capabilities of the

simulation tool’s scripting & development freedom – and their maturity level is limited by the scope of the

given tool. It is not easy to further test and improve the controller maturity without porting it to another

simulation tool or laboratory set-up. To increase the low maturity level of a control concept before lab-

deployment, the controller can be implemented in a co-simulation setup, so that the controller is implemented

independent of the domain-specific simulation environment, with I/O that emulates the requirements of a lab.

By separating control algorithm from domain-simulation, a higher-maturity of the control software can be

reached before lab deployment.

The objectives of this use-case are as follows:

 facilitate development of external, potentially distributed, deployable controllers

 emulate controller interfaces both for lower I/O and upper I/O

 provide infrastructure to facilitate data exchange between controller and the physical system simulator

 coordinate execution of controllers within the co-simulation set-up

Actors

 Control Software (CS)

 Domain-specific simulation environment (DS-SIM), and respective models (SM)

System under Discussion

 control strategy simulator (CS-SIM)

 (co-)simulation framework to facilitating data-exchange and simulation coordination

 Control software (CS) being deployed in a control strategy simulator

 physical system simulator with scenario configuration and components models (DS-SIM)

Preconditions/assumptions

 CS purpose is local or supervisory, not an embedded controller (i.e. a high-level language is suitable)

 the DS-SIM is capable of exposing controlled and observed variables and can interface with co-
simulation framework

 CS inputs and outputs are specified

Use Cases for Laboratory Software Infrastructure Appendix C - Page 37

Narrative

An external controller has been developed in a high-level language compatible with CS-SIM and its purpose is to
control a system simulated in a DS-SIM.

1. Controller inputs and outputs are mapped to sensors and actuators from the physical system simulator.
This includes mapping data names and DS-SIM component names; the mapping is recorded and
facilitated by the co-simulation framework

2. Define trigger events and data exchange frequency. Define data exchange triggers, which may be
periodical or event-based. e.g. “read component state every second, write control signal to component
on significant state change”;

3. Controller subscribes to the event and waits until the next event arrives.
3.1. On event a CS performs a task or a control action. The execution step is associated with a single

task or a set of tasks constrained with simulation time.
3.2. Controller receives inputs and computes results, outputs are send through channels to the physical

system simulator.
3.3. Controller awaits another event.

4. Co-Simulation framework informs CS-SIM that simulation have finished.
5. Co-Simulation framework saves simulation data into a database.

Variations
3. Alternatively the controller is assigned a period of time to perform tasks, in this case the controller

need to be able to check the current simulation time during the task.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 38

SUC3 Cross-site integration of (near) real-time data streams
Author: Anders Thavlov

Objectives

 Enable cross-site exchange of data in near real-time.

 Provide cross-site access for control and/or monitoring of Distributed Energy Resources (DER) within a

given laboratory domain.

Actors

 Experiment lead (EL), heading the experiment from outside the lab domain

 Lab Asset Systems Manager (LASM)

 Lab IT Manager (LITM)

 Lab owner (LO)

System under discussion

A lab system comprising several DERs, which can be controlled individually through a lab operation and

management system (LabOS), is considered. Within the lab domain an Ethernet network (LAN) facilitates

communication between the LabOS and the DERs. The lab LAN is isolated from the public network, i.e.

Internet, by one or more firewalls, which makes direct communication from the outside into the LAN a difficult

task. System under discussion comprises:

 One or multiple DERs within the lab domain.

 A LabOS, which is isolated from the Internet by a firewall.

 Control software (CS) running outside the lab domain.

Narrative

EL needs to use facilities within the lab domain for performing experiments, i.e. controlling – or simply

monitoring – one or several DERs. To conduct his experiment EL is using a CS, which will run on a computer

located outside the lab LAN domain. Therefore, to enable communication between the CS and LabOS behind

the firewall, a software tool that can facilitate the communication is needed.

In this use case we are considering a whiteboard server located outside the firewall that is utilised as a

mediator for exchange of data. Though not inside the lab domain, the whiteboard server is assumed to be a

legal entity of the lab facility administered by the lab staff. The whiteboard server is simply a server that carries

a text file to which data can be read from and written to by the LabOS and CS, respectively. As an alternative to

the whiteboard approach, a use case is described subsequently, where a VPN connection to tunnel through the

firewall.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 39

Preconditions

 The whiteboard server allows read and write access to both the CS and the LabOS, potentially with an

authorisation process which is known to EL.

 An extension to the CS has been developed to receive input from the whiteboard server and similarly

write output data on in

 An ancillary software module has been developed for the LabOS which takes input from the

whiteboard server and similarly writes relevant the data that is relevant to the CS.

 LASM has the authorisation from the LO to secure the availability of the requested DERs in the lab

during the period of the coming experiment as defined in the agreement.

Steps

1. EL and LITM agree on an approach for how to communicate across the firewall (in the following a

whiteboard approach is assumed).

2. EL and LITM identifies what data must be exchanged between the LabOS and the CS, for a successful

completion of the experiment.

3. LITM sets up the whiteboard server, such that it can receive data from both the LabOS and the CS,

possibly with a unique login for both processes. Furthermore, the LabOS ancillary module is set up to

write output data and read input data from the whiteboard server.

4. Similarly, EL sets up his CS, such that input and output are respectively read and written to whiteboard

server.

5. LASM reserves the lab units that are comprised in the experiment conducted by EL for a given period.

6. EL conducts his experiment.

7. With the finalisation of the experiment, EL informs LASM and provides information about how the

experiment progressed and possible problems or errors that were experienced during the experiment.

8. LASM releases lab resources that were reserved for EL.

9. LITM disables the account on whiteboard server, such that EL cannot write to the whiteboard server,

until a new experiment has been agreed upon. Furthermore, LITM disables the LabOS ancillary model

to take input from the whiteboard server, thus reverting the LabOS to normal operation.

Variations

As an alternative to the use case describe above, EL can use a VPN connection to tunnel into the lab network

domain. With the VPN connection established, EL can conduct his experiment as being present in the lab.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 40

SUC7a Configuration management, creating a laboratory configuration
Author: Oliver Gehrke

Objectives

 Record the laboratory configuration in which a particular experiment is conducted, in order to allow

the correct evaluation of experimental data

 Minimize the effort and reduce the number of potential errors by automating a tedious process

Actors

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

System under Discussion

 Laboratory with many configurable power system and communication assets

 SCADA and other automation systems (e.g. network monitoring, remote configuration)

 Automated configuration management system

 Optional: External assets used by an experiment which are not part of the default laboratory setup

Narrative

1. EL establishes the system configuration required for the experiment, either manually or automated (e.g. by

using the SCADA system to change circuit breaker positions). Depending on the authorisations held by EL,

LASM or LITM may be required to assist in the process.

2. EL asks the configuration management system to create a new configuration record. The configuration

management system associates the new record with a name/tag which may be entered manually or

generated automatically (UUID/GUID) and which permits unambigous identification of the configuration

record.

3. The configuration management system presents a list of configurable laboratory assets to EL . EL edits the

list of assets which are part of the managed configuration, e.g. by adding 3rd party hardware or by

excluding parts of the laboratory which are not relevant for the experiment.

4. The configuration management system starts an automated process of collecting configuration data from

all entities by walking through the previously edited asset list in a defined sequence. Each asset is

Use Cases for Laboratory Software Infrastructure Appendix C - Page 41

associated with asset-specific methods for information enumeration (obtaining a list of relevant

configuration information associated with this asset) and information retrieval. Methods may include

4.1. querying a laboratory SCADA system (e.g. breaker state)

4.2. direct communication with e.g. a DER controller, via a dedicated physical interface (e.g. fieldbus)

4.3. automation-assisted manual retrieval (operator is asked/instructed to obtain information from e.g. a

device nameplate, control panel or a communication client software which is not integrated into the

configuration management system)

4.4. connecting to a dedicated configuration management interface provided by the asset (e.g. web

service)

5. The retrieved information, together with timestamps and information metadata (e.g. quality, reasons for

failure to obtain some information etc.) is stored in the configuration record.

6. EL marks the stored configuration record (represented by its name/tag) as the currently active

configuration for the laboratory. The activation is timestamped and logged in order to be able to associate

data logged during the experiment (e.g. timeseries data) with the active configuration at that time.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 42

SUC7b Configuration management, reinstating a laboratory configuration
Author: Oliver Gehrke

Objectives

 Return to a previously stored laboratory configuration, in order to either (a) repeat a previous

experiment under identical conditions, or (b) restore the lab to a default configuration / common

baseline

 Minimize the effort and reduce the number of potential errors by automating a tedious process

Actors

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

System under Discussion

 Laboratory with many configurable power system and communication assets

 SCADA and other automation systems (e.g. network monitoring, remote configuration)

 Automated configuration management system

 Optional: External assets used by an experiment which are not part of the default laboratory setup

Narrative

1. EL selects a previously created configuration record from a list of names/tags. The system may ask whether

the existing configuration should be preserved in a new configuration record before activating the selected

one EL establishes.

2. The configuration management system extracts the list of affected entities from the selected configuration

record and starts an automated process of sending configuration data to all entities by walking through the

entity list in a defined sequence. Each entity is associated with entity-specific methods for updating

information. Methods may include

2.1. accessing a laboratory SCADA system (e.g. breaker state)

2.2. direct communication with e.g. a DER controller, via a dedicated physical interface (e.g. fieldbus)

2.3. automation-assisted manual setting (EL is asked/instructed to configure an asset e.g. via control panel

or a communication client software which is not integrated into the configuration management

Use Cases for Laboratory Software Infrastructure Appendix C - Page 43

system. Depending on the authorisations held by EL, LASM or LITM may be required to assist in the

process)

2.4. connecting to a dedicated configuration management interface provided by the asset (e.g. web

service)

3. The configuration management system compiles and presents a report which includes e.g.

3.1. a summary of the update process

3.2. a detailed list of problems encountered in the update process (e.g. assets whose configuration could

not be set and for what reason)

3.3. a list of assets which were included in the previous configuration / a default configuration but are not

included in the selected configuration record

4. The configuration management system marks the selected configuration record (represented by its

name/tag) as the currently active configuration for the laboratory. The activation is timestamped and

logged in order to be able to associate data logged during the experiment (e.g. timeseries data) with the

active configuration at that time.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 44

SUC7c Configuration management, retrieving configuration data
Author: Oliver Gehrke

Objectives

 Retrieve configuration data associated with an experiment, to enable the evaluation of an experiment.

 Minimize the effort and reduce the number of potential errors by automating a tedious process

Actors

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

 Scientific Lead (SL) is a member of the scientific staff designing and experiment and evaluating the data

collected during that experiment.

System under Discussion

 Laboratory with many configurable power system and communication assets

 SCADA and other automation systems (e.g. network monitoring, remote configuration)

 Automated configuration management system

 Optional: External assets used by an experiment which are not part of the default laboratory setup

Narrative

 After conducting an experiment, EL passes the name/tag of the configuration record associated with

the experiment configuration to SL.

 SL selects a previously created configuration record from a list of names/tags. The configuration

management system presents stored configuration data to SL.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 45

SUC8 Controller deployment in the laboratory based on documented interfaces
Author: Anna Magdalena Kosek

Objectives

This software use case describes a process of deployment of external controller into a laboratory environment

consisting of SCADA and DERs. In this use case the interface between controller and the SCADA have been

defined and implemented in advance or it is based on standards. The use case objectives are as follows:

 integrate the controller with the SCADA

 control DERs from the external control software

 controller can acquire data from DERs

 monitor experimental data with live visualization

Actors

 Lab Software Developer (LSD)

 External Software Developer (ESD)

 Lab Software Manager (LSM)

System under Discussion

Laboratory environment equipped with:

 Control software (CS)

 Distributed energy resource (DER)

 Lab Supervision, Control and Data-Aquisition system (LabOS)

 live experiment visualization (VIS)

Prerequisites

 the interface between LabOS and CS have been documented, implemented and verified.

 Live visualization can be configured to fit the set of available DERs in the lab

 Live visualization gathers data from the CS or it uses the same interface to LabOS as the CS

Use Cases for Laboratory Software Infrastructure Appendix C - Page 46

Narrative

In this use case an external controller is brought to a lab facility. The controller objective is to control and

monitor a set of DER hardware units, visualization objective is to present live data during the experiment. The

steps of the uses case are as follows:

1. ESD agrees with LSM on the experiment time, duration, and involved DERs: creating experimental
setup description

2. LSD activates a needed interface to SCADA. Some interfaces might be used rarely, only default
interfaces are required to work in the lab at all time.

3. ESD configures the CS with the experimental setup parameters
4. ESD configures the VIS with the experimental setup parameters
5. ESD tests lab monitoring with VIS. Depending on the design of the VIS, the CS might also be running

without any control actions in order to pipe data between LabOS and VIS
6. ESD tests CS in the experimental setup in order to check the monitoring and control
7. ESD runs the experiment with CS and VIS interfacing LabOS

Use Cases for Laboratory Software Infrastructure Appendix C - Page 47

SUC9a Deployment of a distributed controller, controller deployment
Author: Oliver Gehrke

Objectives

 Maintain consistency among different types and release versions of distributed controllers when

deploying to a number of target machines.

 Minimize the effort and reduce the number of potential errors by automating a tedious process

Actors

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

System under Discussion

 Laboratory with distributed computing hardware ("nodes") which can be used to control power system

assets

 Management software to support controller deployment

 Distributed control software to be deployed

Narrative

 EL prepares a controller configuration dataset, either manually (e.g. as a configuration file) or guided by

a graphical user interface. The configuration dataset maps each entity in the collection of distributed

computing hardware ("node") to a local controller configuration consisting of a particular piece of

controller software and/or specific configuration and/or parametrisation data applicable to the node.

(Note: this model allows for identical software with node-specific configuration/parametrisation as

well as node-specific software or combinations of both concepts)

 EL commands the controller deployment software to deploy the setup described in the controller

configuration dataset, if necessary with support from LITM. The control software and configuration is

uploaded to the distributed computing hardware. If a "default" controller is normally operating on the

computing nodes while no other controller is deployed, it is shut down now.

 The controller deployment software provides feedback to EL (e.g. visually in a graphical user interface)

about the deployment progress and status. Log entries documenting the deployment are created on

the back-end system to enable the evaluation of the experiment.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 48

 EL commands the controller deployment software to issue start commands to the individual

distributed controllers, if necessary after obtaining permission from LASM to operate lab assets. The

software may provide the capability to synchronously start all distributed controllers, or to sequence

the starting of the individual controllers.

 The controller deployment software provides feedback to EL about the running status of the individual

distributed controllers, and potential execution errors that may occur. Log entries are created to

enable the evaluation of the experiment.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 49

SUC9b Deployment of a distributed controller, distributed messaging
Author: Oliver Gehrke

Objectives

 Provide a facility for the operator of a distributed control system to communicate with the individual

parts of the system in a unified way.

Actors

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

System under Discussion

 Laboratory with distributed computing hardware ("nodes") which can be used to control power system

assets

 Custom graphical user interface (GUI) for remote-controlling a distributed controller

 Distributed messaging facility

 Distributed control software deployed and running in the lab

Narrative

 EL starts a custom GUI to receive information from and send commands to distributed controllers.

 The GUI registers with the distributed messaging facility and receives relevant data sent by the

individual distributed controllers.

 EL uses the GUI to issue a command to the distributed control system (e.g. a change in a controller

parameter)

 The messaging facility distributes the command to the relevant pieces of distributed control software.

Use Cases for Laboratory Software Infrastructure Appendix C - Page 50

SUC9c Deployment of a distributed controller, controller undeployment
Author: Oliver Gehrke

Objectives

 Terminate all parts of a distributed controller and restore default controllers if applicable

 Minimize the effort and reduce the number of potential errors by automating a tedious process

Actors

 Lab Asset Systems Manager (LASM) is the Lab staff member (or group of staff members) that can

reserve, configure and enable access to lab power system assets, simulators, SCADA systems, etc.

 Lab IT Manager (LITM) is the Lab staff member (or group of staff members) that can reserve, configure

and enable access to the Lab’s IT infrastructure, including the granting of remote access and server
space.

 Experiment Lead (EL) is a member of the scientific or technical staff authorized to conduct an

experiment in the lab.

System under Discussion

 Laboratory with distributed computing hardware ("nodes") which can be used to control power system

assets

 Management software to support controller deployment

 Distributed control software deployed and running in the lab

 Active controller configuration dataset describing the distributed controller configuration

Preconditions

 A distributed controller has been deployed on the laboratory nodes.

Narrative

 EL commands the controller deployment software to issue stop commands to the individual distributed

controllers.

 The controller deployment software provides feedback to EL about the running status of the individual

distributed controllers, and potential shutdown problems that may occur. Log entries are created to

enable the evaluation of the experiment.

 EL commands the controller deployment software to undeploy the current setup, if necessary with

support from LITM. The control software and configuration is removed from the distributed computing

hardware. Log files and data which the controller has been writing to a pre-defined location will be

copied to the back-end system; the remaining workspace is cleared together with all files created

Use Cases for Laboratory Software Infrastructure Appendix C - Page 51

during the controller run. If a "default" controller is normally operating on the computing nodes while

no other controller is deployed, it is started again at this point.

 The controller deployment software provides feedback to EL (e.g. visually in a graphical user interface)

about the undeployment progress and status. Log entries are created to enable the evaluation of the

experiment.

