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Abstract—Traditionally, Capacitive Micromachined Ultrasonic
Transducers (CMUTs) are modeled using the isotropic plate
equation and this leads to deviations between analytical calcu-
lations and Finite Element Modeling (FEM). In this paper, the
deflection is calculated for both circular and square plates using
the full anisotropic plate equation. It is shown that the anisotropic
calculations match perfectly with FEM while an isotropic ap-
proach causes up to 10% deviations in deflection. For circular
plates an exact solution can be found and for square plates using
the Galerkin method and utilizing the symmetry of the silicon
crystal, a compact and accurate expression for the deflection
can be obtained. The deviation from FEM in center deflection
is < 0.1%. The theory of multilayer plates is also applied to
the CMUT. The deflection of a square plate was measured on
fabricated CMUTs using a white light interferometer. Fitting
the plate parameter for the anisotropic calculated deflection to
the measurement, a deviation of 0.07 % is seen. Furthermore,
electrostatic analysis is performed using energy considerations
and the calculated deflections to include the anisotropy. The
stable position, effective spring constant, pull-in distance and
pull-in voltage are found for both circular and square anisotropic
plates and the pressure dependence is also included by comparing
to the corresponding analysis for a parallel plate. Finally, it was
also measured how fabricated devices with both circular and
square plates behaved under increasing bias voltage and it is
observed that the models including anisotropic effects are within
the uncertainty interval of the measurements.

I. INTRODUCTION

Precise modeling of capacitive micromachined ultrasonic
transducers (CMUT) is important for an efficient design pro-
cess. A CMUT consists of two plates where one of them is
fixed and the other can deflect. The deflection w(x, y) of the
movable plate is an important parameter that influences several
basic CMUT parameters such as pull-in voltage and capac-
itance. Most existing analytical approaches use the isotropic
plate equation to calculate the deflection i.e. [1], [2]. However,
when using fusion bonding fabrication technology [3], the
plate usually consists of crystalline silicon. Having a silicon
(001) substrate, which are most often used, Young’s modulus
and Poisson’s ratio are strongly anisotropic. The isotropic
approach is then not correct, and can result in deviations in the
deflection compared to finite element modeling (FEM) taking
the anisotropy into account and measurements. Therefore,
to get precise modeling of these CMUTs, the anisotropy of
silicon needs to be taken into account.

The first decade after CMUTs were invented, various analyt-
ical models were presented for circular cells, which included

more and more features of the device behaviour [4], [5], [6].
However, all of them were based on parallel plate approxima-
tions for the deflection leading only to estimates of the critical
CMUT parameters. Later, the actual deflection of the movable
plate clamped at the edges was taken into account [2], [7], [8],
where it was used for calculating pull-in voltage and derivation
of an equivalent circuit model. The effect from having a non-
uniform load on the plate was included in solving the plate
equation by [7] who used superposition and a concentrically
loaded plate, and by [9] who used the Galerkin method. The
non-uniform load occurs when the bias voltage is increased, as
the electrostatic force will be greater where the gap is smaller.
This effect gets more distinct when the deflection is larger.
However, it is not necessary to include for the typical CMUT
case, where the plate never deflect more than half the gap due
to pull-in.

All of these models assumes a circular plate geometry of the
CMUT cells. For circular plates, a simple and exact solution
for the deflection exists [10], but this is not the case for square
plates. Existing solutions for the deflection of square plates is
based on series expansions with either trigonometric [11] or
polynomial basis functions [12]. None of these, however, take
the anisotropy of the plate into account.

For the first fabricated CMUTs there was no need for using
anisotropic plate theory, as the plate usually consisted of sili-
con nitride or polysilicon when fabricated with the sacrificial
release method. After the fusion bonding fabrication method
was applied to CMUTs, the anisotropy of the plate, which now
consisted of crystalline silicon, was considered [13]. However,
instead of solving the problem analytically, FEM was used to
estimate a set of material parameters (Young’s modulus and
Poisson’s ratio) to use in the models to get an approximation
as close as possible to the correct anisotropic solution.

This paper presents solutions to the full anisotropic plate
equation for both circular and square plates used in fusion
bonded CMUTs. The models were initially presented in [14]
for an anisotropic plate with circular geometry, and this was
then modified and expanded to include square plates as well
in [15]. For the circular cells the symmetry reduces the plate
equation and an exact solution for the anisotropic case can
be obtained similarly to the isotropic solution. The approach
used to solve the equation for the square plate is the Galerkin
method [16]. Utilizing the symmetry of the silicon crystal,
a compact and precise approximation of the deflection of a
square plate can be obtained for the anisotropic case.
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The plate usually also consists of more than one material.
The theory of laminar plates is described in [17], [18] and
in this paper, the multilayer plate theory including anisotropy
is applied to calculate important parameters for a two layer
silicon/metal plate typically used for CMUTs.

Having found the deflection of the CMUT plate, a model
for the electrostatic behavior of the transducer can be set up.
Circular cells have been investigated thoroughly during the
years and a full model for this plate geometry has recently been
presented [8], whereas the full electrostatic analysis for the
square plate has not been investigated previously. Furthermore,
none of the existing models include the anisotropy.

The isotropic plate equation and solutions for circular and
square plates can be found in Section II. It is followed by the
anisotropic plate equation and how to utilize the symmetry
of the silicon crystal to reduce and solve the problem in
Section III for both circular and square plates. The calcu-
lated deflection is compared to the solution for correspond-
ing isotropic cases, FEM, and measurements performed on
fabricated devices. Furthermore, in Section VI the calculated
deflection is used to find the stable position, effective spring
constant, pull-in distance and pull-in voltage of the CMUT
plates. The pressure dependence is also included. Measure-
ments of the stable position are performed on devices with
both circular and square plates and the theory is compared to
these in Section VII.

II. THE ISOTROPIC PLATE EQUATION

Conventionally, the deflection w(x, y) of a CMUT with a
thin plate is modeled using the isotropic plate equation [11]

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=

p

Di
, (1)

where p is the applied pressure difference across the plate and
the flexural rigidity is given by

Di =
E

12 (1− ν2)
h3, (2)

with E being Young’s modulus, ν being Poisson’s ratio, and
h being the thickness of the plate.

For thin clamped circular plates, an exact solution exists.
For such a plate with radius a, the center deflection is given
by [10]

w0,iso,circ =
1

64

a4p

Di
. (3)

For clamped rectangular and square plates, no simple exact
solution exists and approximate methods have to be used. The
conventional isotropic approach is based on a series expansion
of the deflection, and the center deflection for a thin clamped
square plate having side length 2L is [11]

w0,iso,sq = 0.020245
L4p

Di
. (4)

Fig. 1 shows a cross sectional view of a CMUT cell with
an applied voltage. The device parameters are illustrated for
both circular and square plates.

Fig. 1. Cross sectional view of CMUT cell with applied voltage.

TABLE I
ROOM TEMPERATURE (300K) COMPLIANCE COEFFICIENTS FOR N-TYPE

CRYSTALLINE SILICON MEASURED BY [21] FOR A SUBSTRATE WITH LOW
DOPING LEVEL (150 Ω-CM, ∼ 2.8× 1013 CM−3) AND HIGH DOPING

LEVEL (3.26 MΩ-CM, ∼ 2.1× 1019 CM−3).

Low doping High doping

sc11 7.691× 10−12 Pa−1 7.858× 10−12 Pa−1

sc12 −2.1420× 10−12 Pa−1 −2.2254× 10−12 Pa−1

sc44 12.577× 10−12 Pa−1 12.628× 10−12 Pa−1

III. THE ANISOTROPIC PLATE EQUATION

To take the anisotropy of the plate into account and avoid
the inaccuracy from isotropic modeling, the stiffness of the
plate needs to be described through the stiffness matrix of the
material instead of Young’s modulus and Poisson’s ratio. The
starting point is the relation between stress, σ, and strain, ε,
[19]

σc = ccεc, or εc = scσc. (5)

Here superscript c denotes the crystallographic coordinate
system, so cc is the stiffness matrix and sc = (cc)−1 the
compliance matrix in this coordinate system. Having a thin
plate, the stresses in the z direction can be ignored and plane
stress assumed. Using the voigt notation, the relation between
strain and stress then becomes [20]

ε1

ε2

ε6

 =


s11 s12 s16

s12 s22 s26

s16 s26 s66




σ1

σ2

σ6

 = Seff


σ1

σ2

σ6

 ,

(6)

and we can define an effective stiffness matrix from the
effective compliance matrix

Ceff = (Seff)
−1
. (7)

For silicon the effective compliance matrix is

Sc
eff =


sc

11 sc
12 0

sc
12 sc

11 0

0 0 sc
44

 . (8)

The elements in this matrix are known from measurements and
shown in Table I [21]. It is noted that the elements in (8) are
known in the crystallographic coordinate system, which is not
necessarily the same as the coordinate system of the plate.
To illustrate this further, the crystallographic and the plate
coordinate systems can be seen in Fig. 2. The solid coordinate
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system aligned to the 〈100〉 directions is where the compliance
values for silicon are known and the dashed system shows the
rotated coordinate system for the plate where the compliance
values needs to be calculated. Having silicon as plate material
and performing standard cleanroom fabrication, the plate will
usually be on a (001) substrate and aligned to the primary
wafer flat. Flat alignment is to the [110] direction, so the plate
coordinate system will be rotated ψ = 45◦ with respect to
the crystallographic coordinate system. A transformation of
the compliance matrix between the two coordinate systems is
therefore needed. As it is the stiffness matrix elements that
are to be used in the plate equation, the resulting effective
stiffness matrix for the present case can be expressed through
(7) [20]

Ceff
Si(001),[110] =

1
sc44

+ 1
2(sc11+sc12)

1
2(sc11+sc12) −

1
sc44

0

1
2(sc11+sc12) −

1
sc44

1
sc44

+ 1
2(sc11+sc12) 0

0 0 1
2sc11−2sc12

 . (9)

It is seen that the stiffness matrix has an orthotropic symmetry.
Having the effective stiffness matrix, the generalized plate

equation can be used. This is a differential equation for the
deflection, w(x, y), of a thin anisotropic plate exposed to a
uniform load p given by [20], [22]

∂4w

∂x4
+ k1

∂4w

∂x3∂y
+ k2

∂4w

∂x2∂y2
+ k3

∂4w

∂x∂y3
+ k4

∂4w

∂y4
=

p

Da
.

(10)
The plate coefficients k1-k4 and the anisotropic flexural rigid-
ity, Da, depend on the elastic constants of the plate material

k1 =
4Ceff

13

Ceff
11

k2 =
2(Ceff

12 +2Ceff
33 )

Ceff
11

k3 =
4Ceff

23

Ceff
11

k4 =
Ceff

22

Ceff
11

Da = 1
12h

3Ceff
11 ,

(11)

where Ceff
pq are elements in the effective stiffness matrix (9).

Note that the stiffness of the plate is no longer expressed
through Young’s modulus and Poisson’s ratio but directly
through the stiffness values.

Using the compliance values for silicon (Table I) and
inserting the stiffness elements in (9) into (11), it follows that
k1 = k3 = 0 and k4 = 1. Thus, aligning the plate to the
primary flat simplifies the anisotropic plate equation (10) to

∂4w

∂x4
+ k2

∂4w

∂x2∂y2
+
∂4w

∂y4
=

p

Da
. (12)

The same is the case for aligning the plate along the [100]
direction where the inverse of (8) is used instead of (9),
resulting in the same values for k1, k3 and k4. For these
two special cases, the coefficients in the plate equation are
summarized in Table II for both high and low doping levels
of the substrate.

A. Deflection of Circular plates

The solution to (10) for a circular plate of radius a fixed at
the boundary is easily obtained using polar coordinates. The

Fig. 2. The two coordinate systems, solid lines are the crystallographic system
aligned to the 〈100〉 direction and the dashed lines the plate system aligned
to the 〈110〉 direction.

TABLE III
YOUNG’S MODULUS AND POISSON’S RATIO FOR SILICON (001).

Young’s modulus Poisson’s ratio

[100] direction 130 GPa 0.278

[110] direction 169 GPa 0.062

Mean value 148 GPa 0.177

deflection at a point a distance r from the center is given by
[10]

w(r)

w0
=

(
1−

( r
a

)2
)2

. (13)

This expression is similar to the deflection for the isotropic
case, however, the center deflection is different

w0,circ =
1

8 (3 + k2 + 3k4)

a4p

Da
. (14)

By combining (3) and (14) it is possible to find an effective
flexural rigidity

Deff =
3 + k2 + 3k4

8
Da. (15)

This can be used to easily change from the isotropic plate
equation to the anisotropic plate equation in already existing
analytical models of CMUTs. An example of this will be
shown in section VI. Using the plate coefficient values from
Table II for a highly doped (001) silicon plate aligned to
the 〈110〉 direction, the effective flexural rigidity becomes
Deff = 0.91551Da.

To compare the anisotropic model with the isotropic ap-
proach and FEM simulations, the normalized deflection of a
CMUT exposed to a pressure difference is shown in Fig. 3.
The FEM simulations were performed in COMSOL Multi-
physics version 4.2a using the full anisotropic stiffness tensor
and the curves are normalized to the center deflection of
this. The isotropic curves are made using (13) and (3) and
Young’s modulus and Poisson’s ratio along the [100] and
[110] directions (see Table III) to give the dash and dashdot
lines, respectively. The anisotropic solution is made using (13)
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TABLE II
SELECTED VALUES FOR THE PLATE COEFFICIENTS AND ANISOTROPIC FLEXURAL RIGIDITY FOR PLATES ON A SILICON (001) SUBSTRATE [20]. UPPER

VALUES IN BRACKETS ARE FOR LOW DOPING LEVEL AND LOWER VALUES FOR HIGH DOPING LEVEL.

Orientation ψ k1 k2 k3 k4 12Da/h3[GPa]

[100] 0 0

 2.8133± 0.0006

2.8559± 0.0006
0 1

 140.96± 0.03

138.35± 0.03

[110] π/4 0

 1.3241± 0.0004

1.2949± 0.0004
0 1

 169.62± 0.03

167.96± 0.03
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Fig. 3. Normalized deflection cross section (y = 0) of a thin circular plate of
silicon (001) calculated with (13) using both the isotropic approach (3) with
Young’s modulus and Poisson’s ratio in the [100] and [110] directions and
the anisotropic approach (14). The circles represent the deflection calculated
by FEM.

and (14) and is shown as a solid curve. This is on top of
the FEM simulation (circles). Due to the symmetry of the
circular plate, any set of parameters from Table II can be
used. Excellent agreement between the anisotropic solution
and the finite element calculation is seen with an error of
less than 0.3%, which is due to grid size and slightly different
boundary conditions. The figure also shows that using Young’s
modulus and Poisson’s ratio corresponding to [100] or [110]
directions lead to errors in the center deflection of around 10%.
To reduce this error, it is common practice to use mean values
of Young’s modulus and Poisson’s ratio (see Table III) which
decreases the error to around 1.5%. As it can be hard to see
the solutions with small deviations from the FEM, a zoom
in on the center region of the plate is shown in the insert in
Fig. 3. Here the reduction in deviation from FEM by using the
anisotropic solution compared to the isotropic mean values of
Young’s modulus and Poisson’s ratio is clearly visible. Using
the anisotropic approach for a thin circular CMUT plate on a
(001) silicon substrate is simple and the result is exact.

B. Deflection of Square Plates

Having a square plate makes analytical deflection calcu-
lations complicated and approximate methods must be used

to solve the anisotropic plate equation. With the anisotropic
approach, the Galerkin method [16] can be used to find
approximate expressions for the deflection of a thin anisotropic
square plate. As previously stated, in the most common case
for CMUTs, the plate is fabricated on a silicon (001) substrate
and aligned to the [110] direction. For this orthotropic square
plate with sidelengths 2L, the relative deflection is found to
be [20], [23]

w(x, y)

w0
=

[
1−

( x
L

)2
]2 [

1−
( y
L

)2
]2

×
[
1 + β

( x
L

)2

+ β
( y
L

)2
]
, (16)

where the plate parameter β is defined as

β =
182 + 143k2

1432 + 91k2
. (17)

The center deflection can be written

w0,sq,Si(001) =
77(1432 + 91k2)

256(16220 + 11k2(329 + 13k2))

L4p

Da
. (18)

Equations (16)-(18) are also valid when the plate is aligned
to the [100] direction on a silicon (001) substrate. Note that
the center deflection depends only on the k2 coefficient. For
primary flat alignment, it is found by inserting k2 into (17)
and using the low doping values βlow = 0.23920 and using the
high doping values βhigh = 0.23691. For the low doping case,
this results in a normalized deflection for the plate aligned to
the 〈110〉 direction given by

w(x, y)

w0

∣∣∣∣
sq,Si(001),〈110〉

=
[
1− (x/L)2

]2 [
1− (y/L)2

]2
(19)

×
[
1 + 0.23920

[
(x/L)2 + (y/L)2

]]
,

and the center deflection becomes

w0,sq,Si(001),〈110〉 = 0.02196
L4p

Da
. (20)

For the high doping case, the factor in front becomes 0.02204
for the center deflection. Comparing (4) and (20), it is seen
that they are very similar containing the same parameters
but different coefficients and the anisotropic instead of the
isotropic flexural rigidity.

Fig. 4 shows the deflection cross section through y = 0 of
a square plate of silicon (001) given by the reduced version
of (16)

wy=0,sq = w0

[
1− (x/L)2

]2 [
1 + β (x/L)

2
]
. (21)
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Fig. 4. Normalized deflection cross section (y = 0) of a square plate of
silicon (001) calculated with (21) using both the isotropic approach (4) with
Young’s modulus and Poisson’s ratio in the [100] and [110] directions and
the anisotropic approach (20). The circles represent the deflection calculated
by FEM.

The deflection calculated with the anisotropic approach uses
k2 = 1.3241 in (17) and center deflection (20) (solid curve).
This is compared to the isotropic approach using k2 = 2
in (17) and center deflection (4), with Young’s modulus and
Poisson’s ratio in the [100] and [110] directions (dash and
dashdot curves), and to a finite element (FEM) simulation
made using the full anisotropic compliance matrix (compliance
coefficients from Table I) in COMSOL (circles). The calcu-
lated deflections are normalized to the FEM center deflection.
Excellent agreement is shown between the anisotropic curve
and FEM with a deviation of less than 0.1 % whereas the
isotropic approach leads to deviations in the center deflection
of around 10 % for both [100] and [110] directions.

IV. MULTILAYER PLATES

Following the method by [17], [18] the anisotropic plate
theory can be expanded to also include plates consisting of
more than one layer. Starting from equations for the moment
and stress resultants, it can be found that the general plate
equation including anisotropic effects has the same form as
for the single layer plate (10), however, the plate coefficients
k1− k4 and the plate stiffness Da will be different to capture
effects from having a multilayer plate.

For the CMUT application, the multilayer plate will often
consist of two layers with silicon as the main part and a
thin aluminum layer on top for contacts. The aluminum is
an isotropic material and the silicon is, as seen on (8), an
orthotropic material (when aligned to [110] direction on a
(001) substrate). For this two-layer plate, the total thickness is
called h and the ratio α = hAl/h is defined from the thickness
of the aluminum, hAl. When the plate is all silicon α = 0 and
when the plate is only aluminum α = 1. Again utilizing the
symmetry of the materials, it can be found that k1 = k3 = 0

and k4 = 1 so again only k2 and Da need to be taken into
account for the usual CMUT plates.

The expressions for k2 and the plate stiffness becomes quite
long even for the simplified case. Using the compliance values
for highly doped silicon in Table I and Young’s modulus of
E = 70 GPa and Poisson’s ratio of ν = 0.35 for aluminum in
the expressions, they become

DAlSi = (13.9963 GPa− 22.0458 GPa · α)h3 (22)
k2,AlSi = 1.29493 + 1.00464α. (23)

Furthermore, it can also be found that when having a
sufficiently thin aluminum layer, α < 0.2, a series expansion
can be used and simple correction formulas can be found.
This way, the flexural rigidity of the combined aluminum and
silicon plate compared to the flexural rigidity for a plate of
only silicon with the same thickness as the total thickness can
be expressed as

DAlSi

DSi
= 1− 1.575α. (24)

Similarly, for the plate parameter k2 it is found that

k2,AlSi

k2,Si
= 1− 0.775822α. (25)

Equations (24) and (25) both use the stiffness values for highly
doped silicon from Table I.

For a circular plate, the relative center deflection using the
same method as above can be found to be

w0,AlSi,circ

w0,Si,circ
= 1 + 1.437α. (26)

Doing the same for square plates the relation becomes
w0,AlSi,Sq

w0,Si,Sq
= 1 + 1.445α. (27)

The error between the series expansion and the full result for
the center deflection is less than 2 % for α = 0.2 for both
plate geometries. An example of a typical thicknesses of the
layers of the CMUT multilayer plate is ∼2 µm silicon and
∼0.2 µm aluminum. This gives α = 0.1 and the error when
using the series expansion is less than 0.5%.

As examples on how the aluminum layer influences the plate
parameter, stiffness and center deflection of the circular and
square plates, calculations using single and multilayer plate
theory can be seen in Table IV. Here, calculations are made
with dimensions as the fabricated devices found in Table V. It
is seen that including the aluminum layer in the calculations
affects k2 with around 7 %, the stiffness of the plate with
around 18 % and the center deflection with around 12 % in
this case.

V. DEFLECTION MEASUREMENT

To further validate the deflection of the square plate,
CMUTs with square silicon plates have been fabricated using
fusion bonding [24]. The dimensions of the fabricated device
can be seen in Table V. The deflection was measured with
a Sensofar PLu Neox 3D Optical Profiler using white light
interferometry. Fig. 5 shows a measured cross section of the
normalized deflection for a fabricated device. It is normalized
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TABLE IV
EXAMPLES ON k2 , STIFFNESS AND CENTER DEFLECTION WHEN USING

SINGLE OR MULTILAYER PLATE THEORY.

α k2 12Da/h3 w0

Circ., multi 0.10 1.3954 141.50 GPa 29.4 nm

Circ., Si - 1.2949 167.96 GPa 25.7 nm

Sq., multi 0.08 1.3753 146.79 GPa 12.5 nm

Sq., Si - 1.2949 167.96 GPa 11.2 nm

TABLE V
DIMENSIONS OF DEVICES FABRICATED WITH CIRCULAR AND SQUARE

PLATES USING WAFER BONDING.

Circular Square

Size (a, L) 36 µm 32.5 µm

Plate thickness, Si hSi 1.8 µm 2.3 µm

Al thickness hAl 200 nm 200 nm

Gap height (vacuum) g (uncertain) 405 nm

Insulation layer tox 195 nm 198 nm

in both center deflection and distance across the plate to com-
pare the shape of the measured deflection with the calculated
deflection. The red curve is a fit made to the measurements
using the anisotropic model (21). The plate parameter β is
fitted to the measurements. As it is seen in the figure, the
fitted value for β is 0.243. Using (23) for calculating β for
this multilayer plate (2 µm highly doped silicon (001) substrate
aligned to [110] direction with 200 nm Al) a deviation of only
0.07 % is obtained.

VI. ELECTROSTATIC ANALYSIS

Many important design parameters for CMUTs depend on
the deflection of the plate. By using the solutions found in the
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Fig. 5. Normalized deflection cross section (y = 0) from measurement on
a fabricated CMUT with square plate of silicon (001) aligned to [110]. The
red curve is a fit made from (21).

previous sections and performing electrostatic analysis, it is
possible to find the stable position of the plate, when applying
a certain bias voltage. The stable position is the position where
the spring force balances the electrostatic and pressure forces.
From this the pull-in distance and pull-in voltage can be found.

The analysis in the following is based on energy considera-
tions. The total potential energy Ut consists of three terms, the
strain energy Us, the electrostatic energy Ue, and the energy
from applying a pressure Up

Ut = Us + Up + Ue. (28)

The method is valid for all systems where the total potential
energy is of the form

Ut =
k0w

2
0

2
− pAeffw0 −

1

2
V 2Ct(w0), (29)

where k0 is the generalized spring constant that comes from
the calculation of the strain energy, Aeff is the effective area
of the plates i.e. the area that goes into calculation of the work
performed by deflecting the plate due to applied pressure, V
is the applied voltage, p the atmospheric pressure, Ct the total
capacitance of the device and w0 the center deflection of the
plate. For the parallel plate k0 = k and Aeff = A.

The total force on the system, Ft, is found by differentiating
the total potential energy with respect to the center deflection,
which is used as a reference in this work (any deflection could
be used as a reference)

Ft =
∂Ut

∂w0
= k0w0 − pAeff −

1

2
V 2C ′t(w0), (30)

where C ′t(w0) denotes the capacitance differentiated with
respect to w0. The stable position of the plate can be found
for a given applied voltage as the point where the total force
is zero, so solving

k0w0 = pAeff +
1

2
V 2C ′t(w0). (31)

The effective spring constant, keff , can be found as the second
derivative of the total potential energy or by differentiating the
total force

keff =
∂Ft

∂w0
= k0 −

1

2
V 2C ′′t (w0). (32)

Pull-in occurs when the effective spring constant is zero and
the pull-in voltage VPI can be expressed as

VPI =

√
2k0

C ′′t (w0)
. (33)

Inserting the pull-in voltage (33) into the equation for the
stable position (31) the pull-in distance can be found by
solving the equation

k0w0 = pAeff +
k0C

′
t(w0)

C ′′t (w0)
. (34)

This can then be inserted into (33) to obtain the pull-in voltage.
Finding pull-in distance and voltage is therefore a question of
solving the two equations (31) and (34) for the two variables.

In the following, this analysis is shown for both circular and
square plates, with the anisotropic effects taken into account,
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and for a parallel plate capacitor for comparison. Similar
analysis has previously been shown by others for isotropic
circular plates i.e. [2], [8] and is therefore shown here in
compact form with focus on the anisotropy of the plate.

A. Capacitance

An important variable in the electrostatic analysis for
CMUTs is the capacitance. The capacitance at zero deflection,
C0, of the plate can for both the circular and square plates
be divided into two contributions: The capacitance from the
vacuum gap C0 = ε0A/g and the capacitance from the
insulation oxide between in electrodes Cox = ε0εoxA/tox. A
is the area of the plates, g the vacuum gap, ε0 the vacuum
permittivity, tox the thickness of the insulation oxide layer,
and εox the relative permittivity of the oxide. The effect from
having both contributions can be collected in an effective gap
height

geff = g +
tox

εox
. (35)

The total capacitance at zero deflection can then be written

Ct0 =

(
1

C0
+

1

Cox

)−1

=
ε0A

geff
. (36)

Taking the deflection of the plate into account, the total
capacitance of the device is

Ct =
1

geff

∫∫
ε0

1− ηf(x, y)
dx dy (37)

where η = w0/geff is the normalized center deflection and
f(x, y) is a function describing the shape of the deflection.
For circular plates, this function will be (13), for square plates
it is (19), and for the parallel plate f = 1.

The total capacitance of a parallel plate capacitor is given
by

Ct,parallel = Ct0
1

1− η
. (38)

For the circular plate, the integral can be solved analytically
and the total capacitance becomes [2], [8]

Ct,circ = Ct0

√
1

η
arctanh

√
η. (39)

For the square plate, there is no analytical solution. The
integration in (37) can instead be performed numerically. The
total capacitance for this plate can be written

Ct,sq = Ct0fs(η). (40)

where fs(η) is a function describing the shape of the ca-
pacitance curve. Various functions can be used as the shape
function, e.g. spline fit to the numerically found solution, a
higher order polynomial fit or an interpolation function. A
Taylor expansion can also be used, however, at least 8 terms
is needed to get sufficient accuracy.

To obtain expressions that can be used for further calcu-
lations for the square plate, it is advantageous to look at
where the capacitance is used and compare with results for
the parallel plate. Inspecting (31)-(34) it is seen, that to find
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Fig. 6. Capacitance for the square plate and its derivatives. The circles show
the numerically found solutions and the curves the second order fits.

the stable position, the effective spring constant, the pull-in
voltage and the pull-in distance, f ′s(η), f

′′
s (η), 1/f

′′
s (η) and

f ′s(η)/f
′′
s (η) needs to be used. For the parallel plate, using the

normalized capacitance from (38) to obtain the shape function
for this plate type, the expressions will have the form

fs(η) =
1

1− η
, f ′s(η) =

1

(1− η)2
, f ′′s (η) =

2

(1− η)3
,

1/f ′′s (η) =
1

2
(1− η)3, f ′s(η)/f

′′
s (η) =

1

2
(1− η). (41)

The equations are then rearranged and plotted to be able to fit
second order polynomials to the numerically found solution.
This way, the following can be used as approximations for the
square plate capacitance in the equations in the next sections

fs(η) =
1

1− 0.296η − 0.136η2
(42)

f ′s(η) =
1

(1.813− 1.050η − 0.299η2)2
(43)

f ′′s (η) =
1

(1.405− 0.953η − 0.271η2)3
(44)

1/f ′′s (η) = (1.405− 0.953η − 0.271η2)3 (45)

f ′s(η)/f
′′
s (η) =

1

1.211 + 0.647η + 2.906η2
(46)

Using these will result in deviations from the numerical
solution of less than 0.05 %, 0.08 %, 0.3 % and 2 %,
respectively. Note that the polynomial fits are only valid
for relative deflections of 0-0.5, e.g. below pull-in. A plot
showing how the polynomials are fitted can be seen in Fig. 6,
where the circles show the numerically found solutions for the
capacitance and its derivatives and the curves show the fits.

Fig. 7 shows the total capacitance normalized to the total
capacitance with no deflection, Ct/Ct0, versus the relative
deflection, η, for all three plate types. For the square plate
shape function, the numerically found solution is shown in
the plot. It is seen that when normalized, the circular and
square plates have similar capacitance responses. For example,
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Fig. 7. Normalized total capacitance versus normalized deflection for a
circular (39) and a square plate (40). The parallel plate solution (38) shown
for comparison. The polynimial solution for the square plate is shown as the
circles.

at a relative deflection of 0.4 the deviation is 1.4% between
the square and circular capacitance, whereas using the parallel
plate approximation results in a much larger difference as seen
in the figure. For the square plate the polynomial solution from
(42) is also shown in Fig. 7 as the circles.

B. Energy calculations

The total strain energy is calculated by integrating the strain
energy density using (6) and (9). Having a thin plate, we can
assume plane stress and the expression becomes

Us =
1

2

∫∫∫
(σ1ε1 + σ2ε2 + σ6ε6) dxdy dz, (47)

where the strains are given by

ε1 = −z ∂
2w(x, y)

∂x2
, ε2 = −z ∂

2w(x, y)

∂y2
, ε6 = −2z ∂

2w(x, y)

∂x∂y
.

(48)

The energy due to the externally applied pressure is calcu-
lated as minus the work performed (i.e. force times length,
here pressure times area times length) when deflecting the
plate

Up = −
∫∫

pw(x, y) dxdy. (49)

The electrostatic energy is expressed through the charge Q
or applied voltage V , the vacuum permittivity ε0, gap height
geff and the total capacitance Ct of the device

Ue = −1

2
V 2Ct

= −1

2
V 2

∫∫
ε0

geff − w(x, y)
dx dy (50)

The capacitance inserted during the second equalization in
(50) is valid for all plate geometries, if the right expression
for the deflection is used in each case. It can be seen how

the deflection of the plate appears, and therefore, the plate
geometry and the anisotropy of the plate is included through
the deflection.

For a circular plate (47) becomes

Us,circ =
1

2

∫ h/2

−h/2

∫ 2π

0

∫ a

0

r (σ1ε1 + σ2ε2 + σ6ε6) dr dθ dz

=
h3πw2

0

9a2

(
3Ceff

11 + 2Ceff
12 + 3Ceff

22 + 4Ceff
33

)
, (51)

and (49) and (50) become [2]

Up,circ = −
∫ a

0

2πprwdr = −1

3
πpa2w0 (52)

Ue,circ = −1

2
CtV

2 = −1

2
V 2Ct0

√
1

η
arctanh

√
η. (53)

Using (11) it can be seen that the strain energy can be written
in terms of the effective flexural rigidity

Us,circ =
h3πw2

0

9a2
(3 + k2 + 3k4)

12Da

h3
=

32πDeffw
2
0

3a2
(54)

By changing the flexural rigidity, it is possible to easily switch
between isotropic and anisotropic calculations in (54).

Comparing (54), (51), and (52) with (29), it can be seen
that for the circular plate the general spring constant and the
effective area are given by

k0,circ =
2 · 32Deffπ

3a2
=

64Deffπ

3a2
(55)

Aeff,circ =
1

3
πa2. (56)

For the square plate, only the most common case with a
highly doped plate on silicon (001) substrate aligned to the
〈110〉 direction is considered. Using the deflection from (19),
the strain energy for the square plate becomes

Us,sq =
1

2

∫ h/2

−h/2

∫ L

−L

∫ L

−L
(σ1ε1 + σ2ε2 + σ6ε6) dx dy dz

=
4096h3w2

0

4729725L2

(
γ1C

eff
11 + 2γ2C

eff
12 + γ1C

eff
22 + 4γ2C

eff
33

)
,

(57)

γ1 =
(
1001 + 468β + 476β2

)
, γ2 = 26

(
11 + 2β2

)
.

Using the value for βhigh, γ1 = 1138.5 and γ2 = 288.9.
Inserting the plate coefficients from (11) into (57), it can be
seen that the strain energy can be written in terms of the plate
coefficients and the anisotropic flexural rigidity

Us,sq =
49152

4729725
(γ1 + γ2k2 + γ1k4)

Daw
2
0

L2
, (58)

Using the values from Table II, the strain energy for the square
plate of silicon (001) aligned to the 〈110〉 direction becomes

Us,sq,Si(001),[110] = ξs
h3w2

0

L2
, (59)

where the constant is ξs = 385.637 GPa.
The energy contribution from applied pressure (49) is for

this case given by

Up,sq = −
∫ L

−L

∫ L

−L
pw(x, y) dxdy (60)

Up,sq,Si(001),[110] = −ξppL2w0. (61)
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where ξp = 1.215.
The electrostatic energy can in this square plate case not be

found exact as an approximation is needed for the total ca-
pacitance. Using the result from (40) this energy contribution
can be expressed as

Ue,sq = −1

2
V 2Ct0fs(η). (62)

Comparing (59) and (61) with (29), it is seen that for the
square plate the general spring constant and the effective area
are given by

k0,sq =
2 · ξsh3

L2
=

2h3ξs
L2

(63)

Aeff,sq = ξpL
2. (64)

C. Stable position

Using the expressions (52)-(54) for the energies and the
equation for the stable position (31), the stable position for
the circular plate becomes

Vstable,circ =√
−256geffη

3/2(−a4pπ/64 +Deffπηgeff)(−1 + η)

3a2Ct0

(
−arctanh

[√
η
]
+ η arctanh

[√
η
]
+
√
η
) . (65)

which is found in a similar way as in [2], [8].
A comparison of the stable position found using the

anisotropic approach, (65), and measurements on a fabricated
device can be found in Section VII.

For the square plate, combining the expressions in (59), (61)
and (62), the stable position for the highly doped square plate
on silicon (001) substrate aligned to the 〈110〉 direction can
be found by (31)

Vstable,sq =

√
2geff

(
−L4pξp + 2h3ηξsgeff

)
Ct0L2f ′s(η)

. (66)

For an easy approximation (43) can be inserted into (66).
Devices with square plates were also fabricated and a

comparison of the stable position found using the anisotropic
approaches compared to the measured center deflection can be
found in Section VII.

Originally, the CMUT was modelled by use of a parallel
plate approximation [4], [5]. The parallel plate case is also
included here for comparison and in this case, the stable
position is

Vstable,parallel =

√
2(−1 + η)2geff(−Ap+ kηgeff)

Ct0
. (67)

From the static analysis, it is possible to present a set of
general design plots for CMUTs by using adequate normal-
izations. Hereby, the results for circular, square and parallel
plates can be compared. For specific device behavior, the
equations for zero applied pressure or voltage can be used
to eliminate the normalizations. These expressions are derived
in section VI-E.

Fig. 8 shows the stable position of the plate for varying bias
voltages. The bias voltage is normalized to the pull-in voltage
at zero applied pressure V/VPI,p0 and the deflection to the
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Fig. 8. Stable voltage normalized to pull-in voltage at zero applied pressure
versus relative center deflection normalized to the pull-in distance at zero
applied pressure for circular (65), square (66) and parallel plates (67).

pull-in distance at zero applied pressure η/ηPI,p0. It is seen
that the circular and square plate give almost identical results,
whereas the parallel plate has a slight deviation. At 80 %
of pull-in, which is where the CMUT is usually designed to
operate, the deviation of the square plate result compared to
the circular plate result is only 0.01 %. For the parallel plate
the deviation is 0.3 % compared to the circular plate result. It
should be noted that the result for the circular plate in Fig. 8
is similar to a previously shown figure in [8] which, however,
does not show the parallel and square plate cases.

D. Spring constant

As mentioned earlier, the effective spring constant can be
found by performing the double differentiation of the total
potential energy with respect to center deflection, see (32). The
generalized spring constant can be identified from the strain
energy for both circular and square plates, (55) and (63), and
for the parallel plate the spring constant is simply just k. All
these expressions can be inserted into the generalized effective
spring constant (32) to obtain the effective spring constant for
each plate type. The effect of spring softening is easily seen
in (32) as the second term and it is seen to depend on the
capacitance. Furthermore, it is seen that the spring constant at
zero applied voltage is the generalized spring constant.

In Fig. 9, the effective spring constant relative to the spring
constant at zero applied voltage keff/k0 is shown versus
the normalized relative deflection η/ηPI,p0 (lower axis) or
normalized voltage (upper axis). The spring softening effect is
clearly seen as the effective spring constant becomes smaller
when the deflection and bias voltage increases. Again the
circular and square plate behave almost identical and the
parallel plate approximation differs from the two. Operating
at 80% of pull-in the deviation between square and circular
plate results is 0.47% and for the parallel plate it is 12.5%.

In general, it is seen from Figs. 8 and 9 that the overall
behaviour of the CMUT is well captured by both the more
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Fig. 9. Normalized effective spring constant versus relative center deflection
normalized to the pull-in distance for circular, square and parallel plates.

accurate results for the circular and square plates but also
by the parallel plate approximation. The difference lies in
the normalizations i.e. the pull-in point calculation which is
different for each case when using the actual shape of the
deflection. The anisotropic effects are included through these
as well. This means that practically the simple expressions can
be used to model the CMUTs with good approximations, if
using the specific de-normalizations for each plate type.

E. Pull-in

For the parallel plate, the pull-in distance at zero applied
pressure is given by ηPI,p0,parallel = 1/3. The corresponding
pull-in voltage is

VPI,p0,parallel =

√
8kg2

eff

27Ct0
. (68)

The pressure dependence on the pull-in distance can be found
analytically for this plate type and is given by

ηPI,parallel = 1/3 + 2/3pr, (69)

where the relative pressure is given by pr = pA/(geffk). The
relative pressure is the applied pressure normalized to the
pressure it takes to deflect the plate the size of the effective
gap, pg. Fig. 10 shows the linear dependence of the pressure
on the pull-in distance, (69), as the black dotted curve. The
pressure dependent pull-in voltage can for the parallel plate
also be calculated analytically and is given by

VPI,parallel =
(−Ap+ kgeff)

3

27Ct0k2geff
. (70)

It is seen that the influence of the pressure on the pull-in
distance, and thus also the pull-in voltage, is dependent on the
geometry of the device. Defining the relative pull-in voltage as
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Vrel = VPI/VPI,p0 and using (70) and (68), the relative pull-in
voltage for the parallel plate yields

Vrel,parallel = (1− pr)
(3/2). (71)

Fig. 11 shows a comparison of the relative voltage versus the
relative pressure with a black dotted curve for the parallel
plate.

Looking at the circular plate and the special case where the
applied pressure is zero, the relative pull-in distance becomes
ηPI,p0,circ = 0.463 from (34). With this pull-in distance
inserted into (65), the pull in voltage at zero applied pressure
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for the circular plate becomes

VPI,p0,circ =

√
89.4459Deffg

2
eff

a2Ct0
. (72)

To find the influence of the pressure on the pull-in distance,
(34) is evaluated for varying values of the pressure. The result
can be seen as red points in Fig. 10. As also observed by [2],
[8], the influence of the pressure on the pull-in distance is
found to be linear as for the parallel plate. The expression can
be found by considering the boundary conditions ηPI(0) =
ηPI,p0 and ηPI(1) = 1. Using these conditions the expression
for the pressure dependent relative pull-in distance becomes

ηPI = ηPI,p0 + (1− ηPI,p0)pr, (73)

where the relative pressure is given by pr = p/pg =
pa4/(64geffDeff) for the circular plate. Inserting ηPI,p0,circ =
0.463 for the circular plate yields

ηPI,circ = 0.463 + 0.537pr. (74)

Eqn. (74) is plotted as the red solid curve in Fig. 10. The
maximum deviation between the expression and the data points
is 0.6 %. Compared to the parallel plate solution the difference
in pull-in distance at zero applied pressure is clearly observed.
Furthermore, note that (73) also applies for the parallel plate
as seen in (69).

To see how the pressure affects the pull-in voltage for the
circular plate, the relative pull-in voltage is again considered.
For simplicity, the equation for the pressure dependent pull-in
voltage is not shown, but it is found from the pull-in distance,
(74), inserted into the stable position, (65). The resulting
equation is evaluated for varying values of pressure and this is
shown as red dots in Fig. 11. It is seen that the pull-in voltage
decreases for increasing external pressure as expected, since
the plate is deflected due to the applied pressure. To follow the
analytical expression obtained for the parallel plate, a fit was
made to an expression having the same form as this analytical
result Vrel = (1− pr)

(K·3/2), where K is the fitted parameter.
The result from fitting is

Vrel,circ = (1− pr)
(0.710·3/2), (75)

Using this fit a maximum deviation of only 3.9 % is obtained.
Also for the pull-in voltage, a difference is observed between
the the parallel and circular plate.

To expand this pull-in investigation to square plates as well,
the same procedure as for the circular plates is followed. For
the square case, the pull-in distance in the special case of zero
applied pressure becomes ηPI,p0,sq = 0.466 which is very
close to the circular plate pull-in distance. The corresponding
pull-in voltage is

VPI,p0,sq =

√
2.95118g2

effh
3ξs

Ct0L2
. (76)

To find the influence of the pressure on the pull-in distance
for the square plate it was calculated for different pressures
and plotted as triangular points in Fig. 10. As for the two
other plate geometries, the influence of the pressure on the

pull-in distance is found to be linear and using (73) it can be
described as

ηPI,sq = 0.466 + 0.534pr, (77)

where the relative pressure for the square plate is given by
pr = 0.021961pL4/(geffDa). Eqn. (77) is shown as a dashed
blue line in Fig. 10. The maximum deviation between the fit
and the data points for the square plate is 0.7%.

In Fig. 11, it is seen how the pressure affects the pull-in
voltage for the square plate shown as triangular points and
a fit with a dashed blue line. The calculation method is the
same as for the circular plate, and the same behavior is also
observed. A fit of the data points to an expression of the same
form as for the parallel plate case yields

Vrel,sq = (1− pr)
(0.712·3/2), (78)

resulting in a maximum deviation of 1.7%.

VII. MEASUREMENTS

To compare the anisotropic approach for modeling CMUTs
to measurements for further validation of the theory for both
circular and square plates, devices with both plate types
were fabricated using a fusion bonding method [24]. The
dimensions of the devices can be seen in Table V.

Measurements of the stable position (presented as the de-
flection in the center of the plate) for increasing bias voltage
were performed on the fabricated devices. The deflections
were measured as area scans with a Sensofar PLu Neox 3D
Optical Profiler using white light interferometry.

Fig. 12 shows the measurements of the circular plate device.
It is seen how the center deflection varies with the applied
voltage and how it deflects more when approaching the pull-
in voltage as expected. The center deflection for the measure-
ments is found as the average of 10 cells and gray shaded
areas corresponds to plus/minus two standard deviations. For
the circular device there was some uncertainty in the final gap
height due to the fabrication method. Because of this it was
not possible to plot the theoretical stable position for a circular
plate, (65), together with the measurements. Instead, a fit was
made which is shown as the theoretical curve in Fig. 12. From
the fit, a gap height of 457 nm was found, and it is seen that
the expression captures the behavior of the device very well.
With this gap, the theoretical curve is within the uncertainty
interval of the measurements. Also, the pull-in voltage is in
good agreement with the experimentally found value, as it was
measured to be 140 V, compared to an expected value of 138 V
from the anisotropic model (75).

Measurements with a DC voltage applied were also per-
formed for the square plate and the results are shown in
Fig. 13. The center deflection for the measurements is found as
the average of 10 cells and the gray shaded areas correspond
to plus/minus two standard deviations. The theoretical curve
is made from the stable position analysis and is for this
case plotted directly as the gap height was known from this
fabrication run. It is seen that the anisotropic theory matches
well with the measurement as it is within the error margin.
Also, the pull-in voltages are in good agreement as it was
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Fig. 12. Measured center deflection for increasing bias voltage together with
theoretical curves for a circular plate (65).

Fig. 13. Measured center deflection for increasing bias voltage together with
theoretical curves for a square plate (66).

measured to be 206 V, compared to an expected value of 201 V
from the anisotropic model (78).

VIII. CONCLUSION

In this paper, it was demonstrated how wafer bonded
CMUTs with both circular and square plates can be analyti-
cally modelled using the full anisotropic properties of single
crystalline silicon. For the circular plate, an exact solution to
the plate equation was obtained, and for the square plate, the
full anisotropic plate equation was solved using the Galerkin
method. In this case, it is seen that the deflection simplifies
by utilizing the symmetry of the silicon crystal and a compact
solution is obtained for square CMUT plates on a (001) silicon
substrate aligned to the [110] direction. Using this approach,
the analytic plate deflections show excellent correspondence
with FEM calculations and measurements. Using isotropic
plate theory to calculate the deflection of anisotropic silicon
plates results in deviations from FEM or measurements of up
to 10 %. Using the anisotropic theory reduces the deviation

from FEM to less than 0.3 % for the circular plate and
0.1 % for the square plate. Fitting the anisotropic calculated
deflection for the square plate to the measurement, a deviation
of only 0.07 % is observed for the fitted plate parameter. The
theory of multilayer plates is also applied to CMUTs, however,
only a small difference will be obtained in the deflection for
the typical CMUT case.

A full electrostatic analysis, including the anisotropic effects
was carried out for both circular, square, and parallel plate
devices. The analysis is based on energy considerations and
capacitance, effective spring constant, stable position, pull-in
distance, and pull-in voltage are all calculated. In the pull-in
analysis, the pressure dependence is also included. The circular
and square plate devices are seen to behave very similar with a
difference of 0.01% for stable position and 0.47% for effective
spring constant at 80% of pull-in. Using the parallel plate
approximation will results in deviations of 0.3% and 12.5%,
respectively, at 80% of pull-in. The pressure dependence is
expressed through linear fits for the pull-in distance with a
maximum deviation of only 0.6% for the circular plate and
0.7% for the square plate. The pressure dependent pull-in
voltage was seen to follow an exponentiation expression with
maximum deviations of 3.9% and 1.7% for the circular and
square plate, respectively. Using the capacitance function of
the circular plate for the square plate, the maximum deviation
is 1.6%.

Devices with both circular and square plates were fabri-
cated, and the stable position and pull-in voltage measured.
Comparing this to to the anisotropic theory, it is seen that the
theory is within the uncertainty interval of the measurements
in both cases.
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