Introduction of flexible monitoring equipment into the Greenlandic building sector

Heller, Alfred; Kotol, Martin; Orthmann, Christian

Publication date:
2014

Citation (APA):
Introduction of flexible monitoring equipment into the Greenlandic building sector

Sisimiut, Greenland
7-9 April 2014
(Al)Fred Heller & Martin Kotol & Christian Orthmann
Dept. of Building Physics and Services, Denmark
alfh@byg.dtu.dk
Wireless Sensor Network (WSN) - Basics

• Sensors of any type
• Connected thought network
• Communication wireless
 – with a Synchronization node
 – with each other
 – through each other (hops)

• Strength
 – Sensors can be added and removed in the running network
 – Sensors can communicate through each other
 – ... a very flexible selv configuring platform
Development History

• 1st trial with SunSpots
 – Very good implementation of the WSN technology
 – Very bad implementation of the many sensors
 • E.g. Heat sensor was placed too near to the light diode
• 2nd trial with a development company
 – Lack of maturity
 – Lack of development infrastructure for programming the nodes
 – Very high price due to small production
• 3rd trial is the one presented here – Libelium Waspmote
Waspmites

- Extremely flexible development and demonstration platform
 - customizable
 - consisting of:
 - Sensor Board
 - Sensor Network modules (exchangeable)
 - Communication modules - plugins (GSM, Wifi, Zigbee etc.)
 - Battery packages
 - other characteristics
 - Open source
 - programming platform
 - policy
 - and community
Laboratory testing

- Range in the free: 50 meters
- Range in buildings (steel-concrete and brick stones): 30 meters
- Battery charging and usage
- Sensor precision
- ... and much more
The Building – Apisseq - Dormitory

- Dormitory, built 2010

- Aim: To save energy and keep the indoor environment
HVAC optimization

- **Before:**
 - On-off control which means on-all-the-time
- **After:**
 - Demand controlled on basis of CO2-measurements in every room
- **Requires:**
 - Sensors
 - Control strategy
 - If one sensor is above a threshold => ”On”
 - Else ”Off”
- **Expected savings = >70% ventilation energy**
HVAC optimization

- Installation of 18 sensors
- .. on half of the symmetrical building

- Enables comparison of the two buildings
 - to be corrected for the influence of solar gain through windows

Wireless controlled

On-off controlled
The Case Study Results – So fare ...

- Update software on any device to same state
 - Not the case by delivery
- Test sensors (until experiences are large)
- Configuring is straight forward
- Open source platform, Arduino with some changes
- Casing must be solved
- With a few sensors on can do the work as one goes
- With many sensors on has to build up procedures
- Configuration and programming may take a few days (not fulltime at all)

- Unfortunately no results on monitoring due to delays
Costs

Table 2. Price estimation for the wired solution

<table>
<thead>
<tr>
<th>Item</th>
<th>Price (incl.VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18x CO₂ sensors (Vaisala CARBOCAP® GMW 22)</td>
<td>6,000 €</td>
</tr>
<tr>
<td>Programmable logic controller with web server (Prolon PID 4000) including installation</td>
<td>4,000 €</td>
</tr>
<tr>
<td>Installation of the sensors</td>
<td>6,000 €</td>
</tr>
<tr>
<td>Total</td>
<td>16,000 €</td>
</tr>
</tbody>
</table>

Table 1. Price estimation for the wireless solution

<table>
<thead>
<tr>
<th>Item</th>
<th>Price (incl.VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19x Wasp mote ZigBee PRO</td>
<td>3,800 €</td>
</tr>
<tr>
<td>18x Gases Sensor Board v2.0</td>
<td>2,160 €</td>
</tr>
<tr>
<td>18x Solid electrolyte CO₂ Sensor TGS 4161</td>
<td>880 €</td>
</tr>
<tr>
<td>Meshium ZigBee-PRO-AP</td>
<td>660 €</td>
</tr>
<tr>
<td>Installation of the sensors</td>
<td>500 €</td>
</tr>
<tr>
<td>Total</td>
<td>8,000 €</td>
</tr>
</tbody>
</table>

• plus configuration & programming for both solutions

• STATUS
 – Due to paternity leave, the project is derailed
 – Not installed yet (to be installed in April 2014)
 – To be reported in October 2014
Expected results above the case study

- Simple coupling to
 - "Internet of Things"
 - "Big data"
 - Building Automation / "Smart Buildings"
 - "Smart Grid"

- Applicable for Positioning
Further work and Opportunities

• Battery lifetime
• Battery charging
• ... standardization on
 • Configuration
 • Programming
 • communication protocols
 • ...
• Flexible monitoring system developments
 – Commissioning
 – Debugging

• Positioning – on basis of the node RSSI measurements (~ 40 cm precise)
Any Greenlandic reflection

• Assumptions:
 - Limited access to automation professionals in Greenland
 - Skilled labour is expensive
 - Demanding to come around
 - => Hence expensive to use professionals
Any Greenlandic reflection

- Drawback for WSN
 - Hardware can be cheap and expensive
 - (many possibilities – choose one)
 - Battery charging is not solved – el-wired is recommended
 - (not really wireless, well?)
 - Sensor quality depends on the sensors applied (price-performance)
Any Greenlandic reflection

• Strength of WSN
 – Extremely easy installation, after prepared configuration
 – Very cheap installation (if el-wired)
 – Remote configuration and programming
 – Remote and automated calibration of sensors (esp. CO2-sensors)
 – Repurposing of hardware (a topic in itself)

![CO2 Measurement Comparison](chart.png)

Figure 5.9: CO\textsubscript{2} measurements from the burning procedure
Thanks to ...

- my colleagues
 - Christian Orthmann
 - Martin Kotol
- Bjarne Saxhof Foundation
Alternative platforms

- National Instruments
- Digital Instruments
- MakeThisWork
 - Danish produced
 - Communication: Bluetooth Low Energy – good battery conditions
 - rather expensive, 6000 DDK/node with a set of sensors)
- ... and many more