DTU Library

Best practices/poss	sible approaches or	n identifying,	quantifying,	and reporting
sustainable develo	pment benefits of N	AMAs		

Olsen, Karen Holm

Publication date: 2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Olsen, K. H. (Author). (2015). Best practices/possible approaches on identifying, quantifying, and reporting sustainable development benefits of NAMAs. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Regional Workshop on NAMAs for Africa

Windhoek, 1 – 3 October 2014

Best practices/possible approaches on identifying, quantifying, and reporting sustainable development benefits of NAMAs

Karen Holm Olsen
Low Carbon Development Programme
UNEP DTU Partnership

Outline:

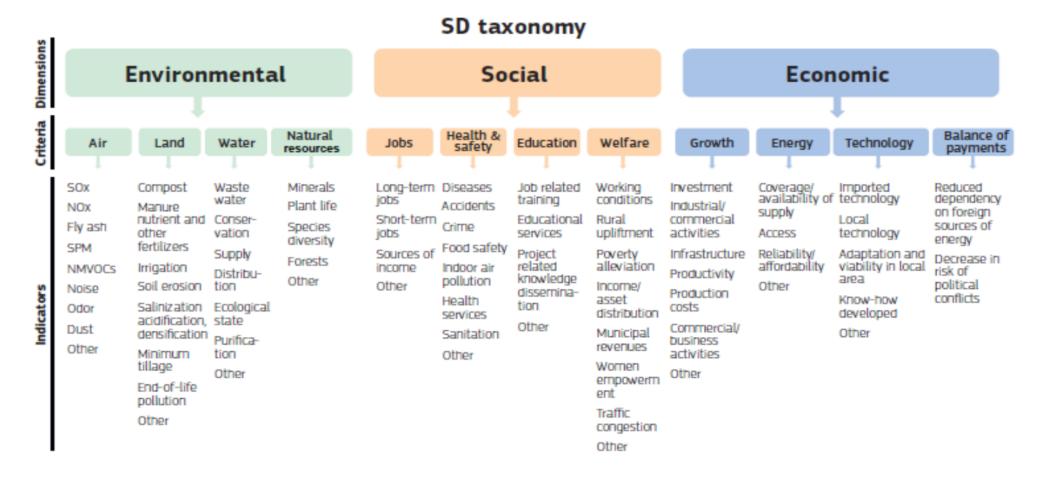
- Issues and challenges
- Overview of approaches to measure SD benefits:
 - CDM SD tool
 - A co-benefits approach to NAMAs
 - Development Impact Assessment (DIA) Visual
 - Methods to quantify/monetize the SD co-benefits by the Gold Standard & South Pole
- Examples
 - An expanded CDM SD tool analysis applied to NAMAs
 - NAMA SD evaluation tool by MDG Carbon/South Pole

Issues and Challenges

Development First!

"We should cooperate in achieving the peaking of global and national emissions as soon as possible, recognizing that the time frame for peaking will be longer in developing countries and bearing in mind that social and economic development and poverty eradication are the first and overriding priorities of developing countries and that a low-emission development strategy is indispensable to sustainable development" (Source: 2/CP.15, paragraph 2)

- How to identify, design and assess the SD co-benefits of NAMAs to achieve the most development benefits?
- How to ensure private and civil society stakeholder involvement in government-driven NAMAs?
- How to MRV the impacts of GHG reductions and co-benefits for transformational change towards low carbon and sustainable development?


Overview of approaches to measure SD co-benefits – CDM and NAMAs

	CDM SD Tool	A co-benefits approach to NAMAs	DIA Visual	Gold Standard	South Pole
Data	CDM Project Design Document (PDD)	Technology options - Stakeholder prioritization	Technology options - Expert judgement and available data	Categories of CDM projects	Empirical data for waste projects
Method	SD indicators - qualitative description	Multi Criteria Analysis (MCA)	SD indicators - structured prioritization	Monetary valuation - transfer pricing	Valuation - willingness to pay
Key stakeholder	CDM Project developer	NAMA developer	LEDS/NAMA developer	Experts	Experts

CDM SD Tool

Source: Approved at CDM EB70: https://www.research.net/s/SD_tool_vers7

Example of SDC report: - air quality Improved cook stoves programme in India

		Slightly	Partly	Highly	N/A
	Reducing SOx	•			
	Reducing NOx	•			
	Reducing Fly ash			•	
	Reducing suspended particulate matter (SPM)			•	
Air	Reducing Non Methane Volatile Organic Compounds (NMVOCs)	•			
	Reducing Noise Pollution				•

	Indicator	Specification	Extent
	The CDM PoA improves ai	r quality by reducing air pollutants as follows:	
	SOx	Due to complete combustion of biomass less smoke is released into the atmosphere which reduces the Sox emissions.	Slight
	NOx	Less smoke results in reduction of NOx emissions.	Slight
Air	Fly ash emissions	The efficient combustion process in the improved cook stoves leads to lower the fly ash and its associated emissions into the atmosphere.	High

A co-benefits approach

- Co-benefits analysis to analyse how a proposed policy objective contributes to various desired outcomes?
- Screen in, screen out and prioritise objectives based on co-benefits analysis

Implementation analysis

- Devise packages of policy instruments to achieve policy objectives
- Implementation analysis of policy instruments based on transaction and financial cost, and prioritisation among policy instruments

Output

- List of prioritised objectives with assessment of implications for outcomes
- Packages of policies for each objective, with assessment of implementation challenges

Source: Dubash et. al. (2013): "Indian Climate Change Policy. Exploring a Co-benefits Based Approach", Economic & Political Weekly, June 1, 2013

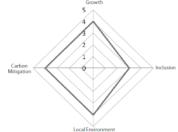
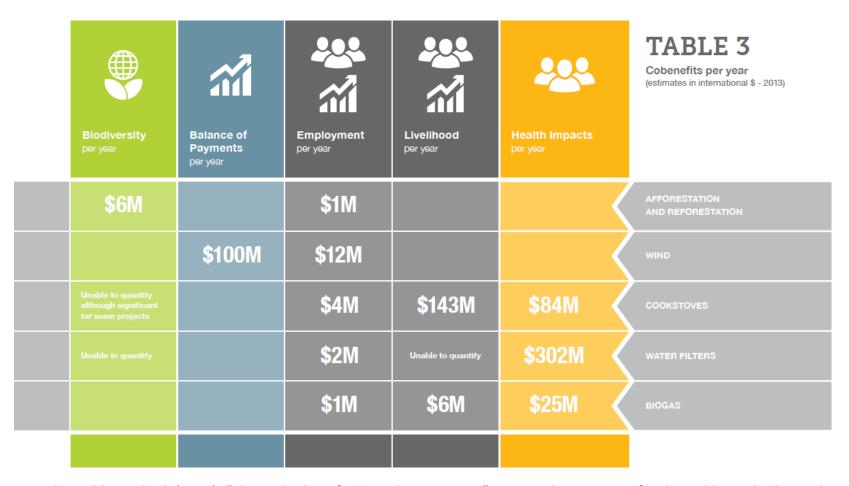

Example of co-benefit assessment

Table 4: Improving Domestic Appliance Efficiency as a Policy Objective

Description of	f Policy Objective:		
• Obj	ective: Introduce super-efficient electrical	appliances.	
• Poli	icy actors: Bureau of Energy Efficiency, app	liance manufacturing industry and distribution networks.	
• Tim	ie-scale: Medium term.		
Co-benefit		Description of Benefit or Cost	Qualitative Grading 1-5
Growth	Impacts on aggregate demand and efficiency of resource use	 Mildly positive effect due to increased demand for appliances because of lower operational costs 	4
		 Positive impact as energy inputs for unit energy services are reduced, but will be tempered by the possibly greater usage and higher number of appliances due to a rebound effect 	ł
	Creation of jobs	 Mild growth in jobs in the appliance industry in keeping with increased demand, tempered by reduced jobs in the power sector due to reduced capacity 	
	Energy security	 Neutral or mildly positive if the reduced need for power capacity results in reduced imports of coal or natural gas 	
Inclusion	Improving outcomes for the poorest	Merely increasing the efficiency of domestic appliances neither promotes nor discourages inclusion. ¹²	3
	Reducing disparities in distribution	Similar to the above argument	
Local Environment	Air	 Reduced electricity demand would lead to fewer power plants, reduced coal demand, and hence improved air quality at power generation and coal mining sites. 	4
		 Reduced life-time cost of appliances (perhaps supported by subsidies to mitigate the upfront costs) could result in increased appliance use and purchase — a "rebound effect". 	
	Water	 Reduced demand for power plants would result in reduced water demand, reduced water pollution from fly ash, and reduced water depletion due to coal mining. 	
	Land	 Reduced demand for power plants and coal mines would reduce the requirement for land significantly 	
Carbon mitiga	ation	 Similar to the reasoning for local environmental gains. GHG savings in 2020 could be about 31 million tonnes CO₂ equivalent (Chunekar et al 2011). 	4
Total (4-20)			15
Interlinkages	with other policy objectives +ve or –ve	There are no cross-linkages of this objective with either inducing a modal shift in urban transport or with the promotion of bioethanol/diesel.	

DIA Visual

Highly positive	Climate			Economic			Social						
Positive Neutral / Minor impact Negative Uncertain / policy specific	Abatement potential (2020 ktcO ₂)	Abatement cost (2020 USD/tCO.)	Climate resilience	GDP / macroeconomic impact	Energy security	Rural economic impact / development	Household / consumer Impact	Employment	Energy access	Health	Education	Gender	Environmental impact
Improved cookstoves Rural woodfuel use intensity reduced by 10% through improved cookstoves	200	-2 to 0	•	-	-	-	-	-	•	•	•	•	•
LPG for cooking LPG access by 2020 is 50% as opposed to projected 24.5%	360	3 to 85	•	-	•	_	•	•	•	•	•	•	•
Productive uses of energy (PUE) irrigation 14000ha with RE (pilot prog.) 2000 RE powered MFPs (pilot prog.)	20	n.e.*	_	_	-	•	-	-	_	•	-	•	-
Improved charcoal production Plantations and improved conversion technologies penetrate 10% of supply	100	1.5 to 20	_	-	-	_	T-2	_	y <u>ur</u> y	_	125	-	_
Landfill gas generation Accra and Kumasi landfills developed by 2020; approx. 30 MW of generation	360	18	•	-	-		-	-	-	•	1=10		•
Biodiesel production Domestic requirement for 5 percent blend by 2020	295	, 66	•	-	-	-	.e.		-	•			•


Figure 3: Completed Ghana case study visual resulting from the stakeholder workshop

Source: Cameron et al. (2014): "Visualising Development Impacts: Experiences from country case studies." Conference Paper, MAPS, January 2014, Cape Town

Gold Standard –valuation of co-benefits

Source: The Gold Standard, (2014): "The real value of robust climate action". A Net Balance Report for the Gold Standard Foundation

Method of valuation – benefit transfer

- Valuation and monetisation are assumed to bring interesting perspectives and new angles to assess the merits of mitigation actions and how to manage them
- Non-market valuation techniques remain the only currently widely accepted way to put a value on intangible benefits
- 'Benefit transfer' requires a strict control of the similarity between the two environments, where the value is transferred and is based on case by case studies

South Pole –monetizing approach to waste sector NAMAs

Mitigation actions are driven by sustainable development benefits that need to be monetized:

- Identify who is willing to pay for the SD co-benefits
- Determine the willingness to pay per unit of created co-benefit
- Facilitate a transaction of this willingness to pay to the producer of the co-benefits

"Willingness to pay" for co-benefits is determined as the existing spending within the current public budget or if privately generated through private spending.

Source: Draft discussion paper presented at side event in Bonn, 7 June 2014 titled: 'Quantifying and monetizing NAMA co-benefits'

Example 1: CDM SD Tool applied to NAMA SE ON ENERGY. O

NAMA	Environmental	Social	Economical	Institutional	Transformational
Chile:	Forest management	Gender equality	Economic alternative	Improvements in land titling	
Implementation of a			for owners of	processes	
National Forestry	Biodiversity		degraded land		
and Climate Change				Sub-national reference levels	
Strategy	Afforestation		Access to participate	and MRV systems to include	
(support for			in the forestry	indicators related to	
implementation)	Restoration of		business and in	adaptation	
	natural forests		carbon markets		
				Platform for the Generation	
	Generation			and Trading of Forest Carbon	
	of environmental			Credits	
	assets				
				Social and environmental	
				safeguards are fully	
				considered	
Uruguay:		Testing laboratories	Strengthen the	Conditions for holding a	Goal to have at least
First introduction of			assembly and	competitive process for the	50% of the national
Photovoltaic Solar		Training professionals	maintenance of the	incorporation of new plants	energy supply mix based
Energy in the			national solar network	by private companies	on renewable sources
national electrical					
grid				Capacity building support in	At least 90% of the
(support for				the regulator organism and	electrical grid supported
implementation)				the Public Electric Utility	by renewable sources
				Technical regulatory	
				framework for this resource	

An integrated approach

<u>Three elements:</u> 1) SD indicators , 2) Stakeholder involvement procedures, 3) Safeguards against negative impacts

Action/Project cycles	NAMAs	CDM
National Development Planning	Low Carbon Development Strategy (LCDS)	-
	Identify SD objectives to which NAMAs contribute	
Design of action/project	No format requirements	Project Design Document (PDD)
	Include indicators/metrics for SD benefits in the design format	
	and conduct stakeholder involvement and safeguards for no-	
	harm-done	
National Approval	Officially Designated Entity (ODE) submit NAMAs to Registry:	Designated National Authority (DNA) issues
	seek support for preparation, seek support for implementation	Letter of Approval (LoA) for SD contribution
	or for recognition (unilateral)	
Validation/Registration	-	Designated Operational Entity (DOE) and
		Executive Board (EB)/ Registry
Financing	Supported NAMAs: bilateral, multilateral, private sector, Green	Investors
	Climate Fund, Foreign Direct Investment (FDI) and carbon	
	markets. A mix of sources is possible.	
	Unilateral NAMAs: domestic finance	
	Explicit SD and climate benefits can help inform investors to	
	get the most benefits for their money	
Implementation	NAMA developer	Project owner/Coordinating Managing Entity
		(CME) for Programmes of Activities (PoAs)
Monitoring	Ditto	Ditto
	SD indicators to be monitored along with other action & GHG	
	metrics as specified in the BUR guidelines (see below)	
Reporting and Verification	International Consultation and Analysis (ICA) of Biennial Update	Designated Operational Entity (DOE)
	Report (BUR)	
	BURs include reporting on methodologies and assumptions, SD	
	objectives and steps, progress, results, estimated GHG	
	reductions and information about international market	
	mechanisms.	
	There are no requirements for MRV of individual NAMAs	
Issuance of CERs/units of GHG	Possible links to NMMs and FVA for crediting of NAMAS	Executive Board (EB)/Registry
reductions	Units of GHG reductions to be certified for their SD co-benefits	

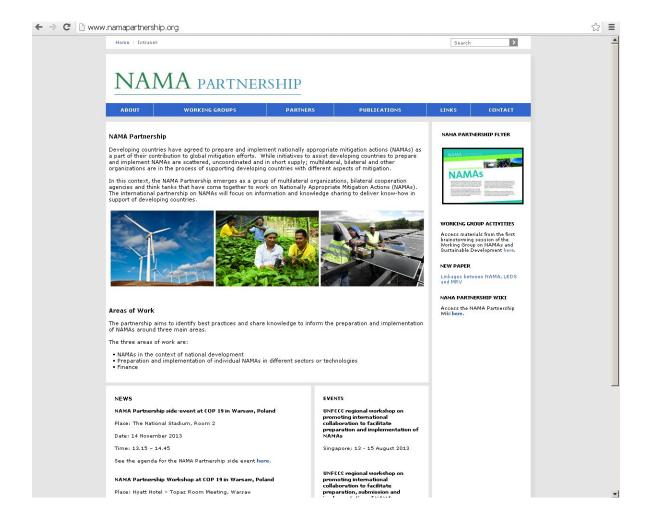
Low Carbon Development Working Paper No. 11 November 2013

Sustainable Development Impact of NAMAs:

An integrated approach to assessment of co-benefits based on experience with the CDM

Karen Holm Olsen UNEP Risø Centre Technical University of Denmark

AND SUSTAINABLE DEVELOPMENT



The Tool is an Excel work book with eight sheets:

Sheet	Description
SDGs & target	Sustainable Development Goals (SDGs) and targets are future global priorities for sustainable development. The tool makes a link between the NAMA indicators and global targets.
Instructions	The first sheet describes the eight components of the tool
SD evaluation	The SD co-benefits are quantified based on a baseline value, an intervention value and a target value for each indicator. The score is expressed as Nationally Appropriate Improvements (NAIs) that can be positive or negative.
Selection of indicators	SD indicators are selected specific to each NAMA intervention. A NAMA may consist of several interventions.
MRV	MRV is based on interventions for NAMA implementation. Three sheets provide formats for: 1) Parameter selection for indicators, 2) MRV of the intervention and 3) Monitoring format for each intervention, indicators and parameters

NAMA PARTNERSHIP WEBSITE http://www.namapartnership.org/

Thanks!

