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Abstrakt (In Danish)

Kontaktudmattelse i radiale rullelejer er undersøgt ved hjælp af et 2D plan
tøjnings finite element-program. Dang Vans multiaksiale udmattelseskriterie
er først brugt i et makroskopisk studie, der modellerer en rullebane for at
undersøge omr̊adet hvor udmattelsesrevner har størst sandsynlighed for at
opst̊a. En Hertz og en elastisk-hydrodynamisk smørings trykfordeling er
p̊aført rullebanen for at modellere kontakten mellem rullen og ringen, og
resultaterne er sammenlignet ud fra Dang Van-kriteriet. Effekten af hærd-
ningsbehandling af ringoverfladen og af kompressions residualspændinger er
ydermere analyseret. Spændingshistorikken i et materialepunkt ved dyb-
den, hvor Dang Van-skadeskoefficienten er maksimal, er herefter gemt og
brugt i efterfølgende mikromekanisk analyse. Spændingshistorikken er p̊aført
som periodiske randbetingelser i et repræsentativt volumenelement, der in-
deholder en enkelt inklusion i den bærende st̊al-matrix. Indvirkningen af
indeslutningens volumenfraktion, materiale, og orientering er undersøgt. Ud-
mattelsesrevnevæksten af en allerede eksisterende revne, opst̊aet i matricen,
er til sidst undersøgt for en aluminiumoxid indeslutning ved hjælp af kohæ-
sive elementer og skademekanik. Resultater for forskellige belastningstilfælde
og forskellige revneorienteringer er sammenlignet.
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Abstract

Rolling contact fatigue in radial roller bearings is studied by means of a 2D
plane strain finite element program. The Dang Van multiaxial fatigue cri-
terion is firstly used, in a macroscopic study modeling the bearing raceway,
to investigate the region where fatigue cracks are more likely to nucleate. A
Hertzian and an elastohydrodynamic lubricated pressure distribution are ap-
plied on the bearing raceway to model the contact between the roller and the
ring, and the results are compared in light of the Dang Van criterion. The
beneficial effects of a hardening treatment of the ring surface and of com-
pressive residual stresses are also analyzed. The stress history of a material
point at the depth where the maximum Dang Van damage factor is reached
is then recorded and used in a subsequent micro-mechanical analysis. The
stress history is applied as periodic boundary conditions in a representative
volume element where a single inclusion is embedded in a bearing steel ma-
trix. The effects of different inclusion volume fractions, material particles
and inclusion orientations are examined. The fatigue crack growth of a pre-
existing crack nucleated in the matrix is finally investigated for an alumina
inclusion by means of cohesive elements and damage mechanics. Results for
different load conditions and different crack orientations are compared.
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Chapter 1

Introduction

1.1 Background

When two bodies in motion are in contact and the relative velocity of the
surfaces of the two bodies is zero in the point of contact, the two bodies are
said to be in rolling contact [1]. In real cases, due to deformability of the
bodies, the point or the line of contact becomes an area of contact, and slip
or partial slip can occur. Typical examples of elements subject to rolling
contact are roller and ball bearings, cams, gears and railways. Failure in
these structural elements is usually material fatigue, that may develop either
on the surface or in a subsurface region, due to the high number of repeated
loadings [2–4]. Rolling contacts are characterized by a small area of contact
and for this reason high stresses can be reached, usually of the order of a few
giga pascal. The state of stress, which is governed by Hertzian theory [5], is
multiaxial and involves a small volume of material. Typical contact widths, in
fact, can be a few hundredths of millimeters, and maximum Von Mises stress
is reached below the surface, according to Hertz theory, at approximately
0.5 and 0.78 times the Hertzian half contact width, depending on wheather
it is point contact (sphere-sphere or sphere-plane) or line contact (cylinder-
cylinder or cylinder-plane).

In order to increase the efficiency of the structural elements and also to
prevent wear due to the repeated contact between the surfaces, a lubricant,
such as circulating oil or grease, has to be used. The lubricant, subject to high
pressure in the contact region, may increase its viscosity considerably, acting
almost as a solid. This, together with the relative speed of the two bodies
in contact, results in a loss of symmetry in the classic elliptical Hertzian
pressure distribution, causing spikes that depend, among other things, on
the load and on the relative speed [6]. The lubrication regime, if lubricant is
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kept clean and a sufficient film thickness is guaranteed, is referred to as the
elastohydrodynamic lubrication regime (EHL). The highly localized pressure
spikes, which can be much higher than the corresponding Hertzian peak
stress, can be detrimental for the fatigue life of the material, but in practical
design and studies they are often neglected, in favour of the simpler Hertz
distribution.

Modeling rolling contact fatigue (RCF) is a challenging task, as fatigue
life and mechanisms are really dependent on parameters such as the load,
the roughness, the lubricant temperature, the residual stress state, the steel
cleanliness, etc. For this reason a first systematic approach to design bear-
ings against failure dates back to the 1940s, with the pioneering work of
Lundberg and Palmgren [7, 8]. Since then, due to the increasing usage and
demand for reliability, many studies and theories, both analytical, empirical
and numerical, have been proposed to interprete and model the complex phe-
nomena that cause failure in these mechanical subsystems. Though today a
better understanding has been reached, still scatter in fatigue life and open
questions are debated.
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Figure 1.1: (a) An example of contact between two cylinders (out of scale) and (b) the
corresponding Hertzian pressure distribution.

1.2 Rolling contact fatigue

Two main mechanisms are identified as modes of failure in RCF. In the first
case a small crack initiates on the contact surface, at some irregularity such
as a dent or a scratch. The crack then propagates with a low angle toward
the core of the material till it reaches a critical lenght at which it branches
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Figure 1.2: Mechanism of (a) surface initiated pitting and (b) subsurface initiated
spalling.

toward the surface causing a piece of material to flake out, see Fig. 1.2a . This
mechanism is usually called pitting or micro-pitting [2–4] and it is typical of
structural elements such as gears and poorly lubricated or highly loaded
bearings. If the load is not too high, the surfaces are relatively smooth and
the lubricant is kept sufficiently clean, cracks are more likely to nucleate in
the subsurface region, close to the depth at which the maximum shear stress
is reached. In this case the crack often initiates at nonmetallic inclusions,
that act as stress risers. Once the crack has nucleated, it propagates towards
the surface of the material causing the failure of the structural element. This
mechanism is referred to as spalling [2–4], Fig. 1.2b.

In rolling contact the stress components are non proportional and out
of phase and a large hydrostatic pressure is usually present, see Fig. 1.3.
Principal axes and planes of maximum shear stress are continuosly changing
and, as said before, an extremely small stressed volume is involved. This
higly localized nature leads to an enhanced effect of microstructural features
(grain sizes, hydrogen content, defects, material inclusions) on the fatigue
life and scatter in the data [4, 9–20]. A typical bearing steel, commonly used
for bearing applications and for research investigations is the 100Cr6, the
AISI/SAE 52100, or the equivalent japanese JIS-SUJ2. This is a high-carbon
chromium low alloy steel for which the approximate composition is reported
in Table 1.1. It is characterized by a high tensile strength, high resistance
to wear and high hardness, especially if tempered or quenced (∼ 600 HV or
above). Different compositions and shapes of inclusions are usually present
in the AISI 52100, as alumina (Al2O3), TiN or MnS. Other inclusions may
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Figure 1.3: A typical rolling contact stress history in a subsurface point [21]. Both
Hertzian and elastohydrodynamic lubrication cases are plotted.

also be present, and a complete and detailed overview can be found in [9].
Alumina and TiN are usually found as isolated defects, in spherical and cubic
shape, respectively. Manganese sulphide (MnS) inclusions usually have an
ellipsoidal shape, and can be found isolated or in clusters [22, 23].

The effect of inclusions on the fatigue life is maybe one of the most impor-
tant factors in the fatigue life of a bearing steel, and, in general, of any steel
operating in the very high cycle fatigue (VHCF) regime, i.e. for a number
of cycles N greater than 1011. It is well known, in fact, that fatigue life and
mechanisms may vary a lot according to the stress level applied and that a
dual step S–N curve characteristic may appear in the ultra long life regime
[24–27]. At stress levels higher than the conventional fatigue limit, in fact,
failure is more likely to be expected close to the surface of the material, while
at a stress level close to or below the fatigue limit, which is also the case for
bearings, failure usually occurs at small internal defects. The latter mecha-
nism becomes dominant in the very high cycle regime, while a coexistence of

C Si Mn P S Cu
0.99 0.23 0.34 0.014 0.014 1.45
Cr Ni Ti Al N (ppm) O (ppm)

1.45 0.02 0.001 0.025 45 8

Table 1.1: Weight percentage composition of bearing steel SUJ2, equivalent to SAE
52100 [9].
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WEA

Figure 1.4: Schematic representation of a butterfly defect with white etching cracks. It
is possible to note the two white etching areas forming the ”wings” of the butterfly: each
of them is delimited by a crack (continous line) and another boundary (dashed line).

surface and subsurface failures is present in the range between 106–109 cycles
[24–28]. Inclusions or pores may act as stress concentration sites, and cracks
may nucleate around these defects and then propagate to the surface. In the
VHCF regime microstructural changes are often observed around inclusions,
where an area, known as fish-eye, fine granular area (FGA) or optically dark
area (ODA), may develop for low stress amplitudes [9, 13, 16, 17, 25, 26].
Particular features, known as white etching cracks (WECs), as they appear
white after being etched in nital, are chacteristics of cracks nucleated at in-
clusions in materials subjected to rolling contact [3, 13, 16, 17, 19, 29–34].
Cracks, nucleated at the matrix-inclusion interface, appear in couples, i.e.
with two ”wings” on opposite sides of the inclusion, and inclined at an angle
approximately oriented at 45◦ with respect to the rolling surface, see Fig.
1.4. The martensitic structure in the WECs does not appear anymore and,
instead, an amorphous-like ultra-fine and free of carbide material is observed.
It is not clear wheater or not this formation preceeds or follows the crack nu-
cleation, and many theories have been proposed for their formation, and a
review on the topic was written by Evans [13]. It is evident anyway that
they are intimately related to the alteration induced in the microstructure
due to the RCF process. The residual stresses around the inclusions, which
are a result of the solidification process and are caused by the mismatch in
the thermal expansion coefficients of the inclusion and the matrix, are also
an important issue that should be addressed, but results in literature are
not conclusive [9, 18, 35]. However the overall macroscopic residual stress
state in the bearing rings is believed to significantly affect the fatigue life and
the crack propagation after the initiation, and several results are reported in
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literature [34–36].

1.2.1 Wind turbine gearbox bearings

A typical mechanical subsystem that may experience rolling contact fatigue
is wind turbine gearboxes. This is of a particular interest for this PhD project
which is part of a bigger project called ”REWIND”, that is aimed to improve
the reliability of wind turbines.

As the drivetrain of a wind turbine has a low rotational speed, around
13−20 rpm, a multi-stage gearbox, usually a mix of a parallel and a planetary
gear, is needed to increase the speed up to the generator speed (around
1600 rpm) [37]. It has been seen [38, 39] that one of the important reasons1

for corrective maintenance of a wind turbine is failure due to rolling contact
fatigue in one of the bearings in the gear box [40]. Therefore, the interest in
the reliability of gearboxes has grown over the last years [41, 42]. Though
failure rates in electrical systems and other subassemblies in a wind turbine
are in fact higher, or at least comparable with faults in the gearbox, recent
studies [43, 44] show that the downtime, in terms of hours lost per failure,
is much higher for the latter. This, rather than the failure rate, is therefore
one of the main reasons for the industry’s focus on these subsystems.

In the gearbox, the bearings used are mostly roller bearings, due to the
high loads involved. The majority of wind turbine gearbox failures appear
in the intermediate and high–speed shaft bearings [31], while failure is more
unlikely to be observed in the planet bearings. Even if the lubricant is kept
clean and the bearing is properly lubricated, roller bearings sometimes ex-
perience rolling contact fatigue that appears as a crack starting below the
surface of the inner race [4, 33]. Even if more rare, pitting can also be found,
as seen in [37]. Once nucleated, this crack quickly propagates to the sur-
face, resulting in particles of material flaking and leading to the failure of the
bearing. Roller bearings for wind turbine applications operate in the fully
elastic range and are subjected to a very high number of load cycles, with
an expected life of 20 years [45]. However, practical experience shows a high
life scatter in these machinery elements, with failures that sometimes occur
after a few years [31]. The failure of these elements is thought to be due
mainly to inhomogeneities and nonmetallic inclusions, that act as sites for
crack nucleation under rolling contact fatigue. The cracks usually nucleate
around inclusions, where the material experiences high stress concentration
and typical butterfly defects and WECs are observed [13, 17, 37].

1We here refer to causes related to mechanical failure.
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1.3 Models and Design against RCF

As explained in the previous section, RCF is a complex phenomenon, and,
as a result, the design of a structural element under rolling contact does not
represent an easy task, and often simplifying assumptions have to be made.
Among all, in many criteria the material is considered as homogeneous, i.e.
free of defects, which actually play a key role in the fatigue life. Accord-
ing to Sadeghi [4], models in literature can be classified as probabilistic or
deterministic models. The first ones are based mainly on the results of exper-
imental testings, while the deterministic models are theoretical, and for this
reason less sensitive to testing variables, but also often based on simplifying
assumptions. Here a brief summary of the models proposed in literature is
reported.

The current ISO standards [46] for roller bearings are based on a modi-
fication of the the Lundberg–Palmgren (L-P) model [7, 8], that after many
decades is still the frame of many other models proposed. The L-P model
predicts, in millions of cycles, the life L10 with 10% probability of failure as

L10 =
(C
P

)p
(1.1)

where p is a coeffient that depends on the contact (it is equal to 3 for ball
bearings and 10/3 for roller bearings), P is an equivalent load and C repre-
sents the dynamic load rating, obtained as function of the geometry and the
material. Equation 1.1 is obtained by manipulating the expression for the
probability of survival, which is inversely related to the maximum orthog-
onal shear stress and the number of loading cycles. The model completely
neglects the possibility to have surface failure in the ring and also the pres-
ence of lubricant. However it is probably still the most used one.

An extension of the L-P model was proposed in the 80s by Ioannides and
Harris [47] where the concept of a stress threshold, similar to a fatigue limit,
was introduced. Though this model has also been widely applied, bearings
seem to show a finite life even for extremely small loads, as predicted by
the L-P theory. Different multiaxial fatigue criteria have been proposed [48–
51], and some, e.g. the Dang Van criterion, has been used in particular for
rolling contact applications. This criterion and its further modifications have
been widely used in the last decades in the automotive industry, and, as also
other multiaxial criteria, it introduces in the formulation the instantaneous
hydrostatic pressure, in analogy to what happens in the 1D case, with the
Goodman diagram that make use of a mean stress. In the formulation used
here [52], the Dang Van criterion also correctly predicts the experimental
observation of the independence of the fatigue limit in torsion from the mean
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shear stress [53]. In spite of many applications, some studies have shown that
the Dang Van criterion might be unconservative, predicting safer operating
conditions than other criteria [52, 54–56], as for instance the Liu [48] or the
Papadopoulos criteria [49]. This has been shown in particular for rolling
contact problems as railways and bearings, where the Dang Van criterion
predicts an over-optimistic behavior for high negative hydrostatic stresses [52,
54–56]. Desimone et al. [52] proposed for this reason a modification to the
Dang Van safe locus, accounting for this issue and predicting a less sensitive
behavior with respect to negative values of the hydrostatic stress. However it
should be noted that none of these criteria, proposed for defect-free materials,
account for the presence of defects in the material. This ”virtual defect-free
approach” may lead to scatter and uncorrect design, expecially in the high
cycle regime, where the fatigue limit is strongly influenced by the inclusions.

p0

x/b+1

−1

τxy−τxy
−τmax

0.
7
8

0.85

y/b
0.

5

Figure 1.5: Line contact shear stresses in material subsurface according to Hertzian
theory and for a maximum pressure p0. The semi-half contact width is indicated with b
and τmax and τxy represent the maximum shear stress and the maximum orthogonal shear
stress. The latter one is at the basis of the L–P model.

Chen et al. [57] reported that the depths at which first crack initiated at
inclusions in bearing steel GCr15 (similar to SAE52100) and subject to rolling
contact were in the range between 0.45 b and 0.7 b, where b is the Hertzian
half-contact lenght. This is suggesting that either the maximum shear stress
or the orthogonal shear stress, that according to Hertzian theory are reached
at 0.78b and 0.5b [13], respectively, could be the driving force, see Fig. 1.5.
On this assumption Sadeghi and others have carried out extended FE studies
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to numerically model subsurface spalling under rolling contact, by means of
damage mechanics, cohesive models and statistics [58–65]. Using Voronoi
tessellation to mimic the grain microstructure in the material, fatigue crack
initiation and propagation was modelled and good agreement to experimental
evidence was found. It was also shown that, according to the simulations, a
significant amount of fatigue life was spent in crack propagation, though some
results showed the opposite [59]. Recently an extended study [66] including
crystal anisotropy showed that maximum shear stresses were reached at grain
boundaries, supporting the assumption of intergranular crack propagation
made in previous studies.
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1.4 Structure of the thesis

This thesis covers research on Rolling Contact Fatigue (RCF) in roller bear-
ings for windmill applications and it is part of the bigger project REWIND,
which is aimed to improve reliability for wind turbine critical components.
The study is an initial step toward a better understanding of failure of these
components and toward a safer design.

The research is summarized here, while it is elaborated in the appended
papers written during the author’s PhD work. These papers will be denoted
by [P1] –[P4] in the following.
Chapter 2 is dedicated to the numerical modelling of RCF. The Dang Van
criterion is introduced from the theoretical point of view, and its numerical
implementation is explained. In the second part of the chapter the model for
fatigue crack propagation is outlined.
Chapter 3 reports on the results obtained during the author’s work. First
a macromechanical study of a roller bearing under different load conditions
is presented, and studied in light of the Dang Van fatigue criterion. Subse-
quently a micro-mechanical approach is discussed, where a single inclusion
is embedded in a periodic unit cell subject to a characteristic stress history.
Irreversable cohesive elements and LEFM are then employed to study fatigue
crack growth in the matrix, where a pre-existing crack is assumed.
Chapter 4 finally sums up the thesis.
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Chapter 2

Numerical modeling

2.1 The principle of virtual work

The numerical analyses in [P1] -[P3] are performed using the finite element
approximation based on the principle of virtual work. The principle describes
equilibrium in terms of the equality between internal and external virtual
work. If body forces are neglected

∫

V

σijδuj,idV =

∫

S

TiδuidS (2.1)

where V denotes the volume, S the surface, Ti the traction, σij the stresses
and ui the displacements. All the integrations are performed in the unde-
formed configuration. The notation for differentiation, ∂()/∂xi = (),i, where
xi are the Cartesian coordinates, applies.

For the numerical analysis in [P4] the incremental form of the principle
of virtual work is adopted

∫

V

σ̇ijδu̇j,idV +

∫

St

(Ṫnδu̇n + Ṫtδu̇t)dS =

∫

S

Ṫiδu̇idS (2.2)

where St represent the interface surface and Tn,Tt,un,ut the normal and tan-
gential components of the traction and opening displacements, respectively.

2.2 The rolling contact model

In order to investigate fatigue due to rolling contact in a roller bearing, a
2-D plane strain finite element model has been formulated: part of the initial
geometry of the inner ring of the roller bearing is illustrated in Fig. 2.1a.
Only an angular sector of the solid, with angular width α = 5◦, has been
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modeled so that the computational time could be reduced. Far away from
the surface, the region analyzed is terminated by a circular arc boundary
with radius r. Along the sides,the solid is free to slide in the radial direction,
being constrained in the direction perpendicular to the sides. A cartesian
coordinate system Oxyz is used, with the origin O in the center of the shaft,
the axis z pointing out of the paper, and the axes x and y horizontally and
vertically aligned, respectively. As a 2-D model is studied, no edge effects in
the direction perpendicular to the plane of the model are accounted for.

The inner ring and the shaft have been considered as one body of external
radius R = Rs + tk, where Rs is the shaft radius and tk is the thickness of
the inner ring. This assumption is equivalent to neglecting contact stresses
related to the mounting and any local stress concentrations at the interface
between the ring and the shaft. The roller radius Rroll and length L had
also to be introduced to model the pressure distribution acting on the inner
race. The contact of the roller with the bearing raceway is simulated, in fact,
by substituting the roller with the equivalent contact pressure distribution.
Thus no contact algorithm was used here and instead two different pressure
distributions were used to investigate the problem, see Fig. 2.2.

(a)

α

r

R

(b)

Hertz

EHL

Load
advancing

Figure 2.1: (a) Geometry used to model the problem in [P1] –[P2] : R represents
the outer radius of the inner ring, r the radius limiting the lower bound of the region
analyzed, and α the angle of the region analyzed. In (b) an example of the mesh used in
the computations is shown: the extreme refined mesh region was necessary to resolve the
extremely narrow peak of the EHL pressure distribution.
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Figure 2.2: The two different normal pressure distributions used in the simulations,
pH and pEHL. The two distributions are here plotted on an equivalent flat half space,
according to the Hertzian model, where xp in Eq. (2.3) is the center of the Hertzian
pressure distribution.

A first distribution pH is taken to be the static Hertzian pressure distri-
bution for a line contact

pH(x, y) = p0

[
1−

(x− xp
b

)2

−
(y − yp

b

)2](1/2)

(2.3)

In Eq.(2.3), p0 is the maximum value of the pressure, xp and yp the coordi-
nates of the center of the contact area, b the semi-width of the contact area
under the roller and x and y the coordinates of a generic point on the surface
in the contact area. It should be noted that in the original Hertz model,
no vertical coordinate is included and an equivalent half space is introduced.
However, here it was choosen to map the Hertzian distribution on a round
surface. The value of p0 is related to the force acting on the roller by the
relation

p0 =

√
q

π

∆

ρ
(2.4)

where ∆ = (
1−ν21
E1

+
1−ν22
E2

)−1 is function of Young’s moduli Ei and Poisson’s
ratios νi of the roller and the inner race, here assumed of the same material.
The constant ρ = ( 1

R
+ 1

Rroll
)−1 is a function of the curvature radii and

q = F/L is the force per unit length acting on the roller.
The second pressure distribution used in calculations, pEHL, was inspired

by [67], where a numerical program was developed to study different EHL

21



contact problems. Under EHL conditions, the high pressure causes the vis-
cosity of the lubricant to increase exponentially: thus the lubricant becomes
able to carry both normal and shear load and causes deformations in the two
bodies in contact. As the normal load used in [67] is too small compared
to typical loads for bearings in a wind turbine gear box, the original normal
pressure distribution1 has been scaled, ensuring that the total load, F , ex-
pressed in terms of the integral of the pressure over the contact area, is the
same for the two distributions:

F =

∫

AH

pH ds =

∫

AEHL

pEHL ds (2.5)

Thus, no separate solution has been obtained here for the EHL contact prob-
lem, but the pEHL distribution applied here is considered useful for an in-
dicative parametric study. Also, the particular profile obtained, has a more
pronounced pressure spike, which is typical for high speeds, as those expected
in high speed shaft roller bearings, that rotate up to 1500–1800 rpm. The
shear load distribution, that depends, among others, on the normal load,
on the viscosity of the lubricant and on the relative velocity of bodies, ac-
counts for the friction in the contact. In order to take this into account, in
some calculations a simplified assumption, indicated by tribological calcu-
lations currently carried out at the Technical University of Denmark. [68],
was used for the shear stress distribution: pt = 0.1 pEHL. The proportional-
ity of pt is equivalent to consider a uniform value of the friction coefficient
throughout the contact. In these calculations this shear load distribution has
thus been applied to the surface of the inner ring in contact, together with
the normal distribution pEHL. The resulting friction traction on the inner
ring is oriented in the direction of the x axis. The load on the roller was
here considered constant and the contact continuous, without any vibration
effects.

The pressure distributions, that simulate the contact, are assumed to
move along the surface, in a region where the mesh is uniform. The element
size is then smoothly increased from this region to the edges, by a step
up process. The material is considered isotropic, with Young’s modulus
E = 210 GPa and Poisson’s ratio ν = 0.3.

The FE mesh, with 12388 elements and 37561 nodes, consists of zones
with different refinement and several steps up in order to decrease the number
of elements and, at the same time, guarantee a sufficiently accurate solution
in the subsurface region. The ratio of the half contact width b and the
dimension dimel of the elements in the uniform mesh region was taken to be
b/dimel = 34.

1Figure 4b in [67].
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To validate the model, the results obtained in the computations were
compared with the analytical solution for the Hertzian problem of two parallel
cylinders in contact. From [1] the principal stresses at x = 0 can be written
as

σx =− p0

[
1 + 2(y/b)2

√
1 + (y/b)2

− 2|y/b|
]

σy =− p0
1√

1 + (y/b)2

σz = ν (σx + σy)

(2.6)

while the maximum shear stress is

τmax =

{
(σz − σx)/2 for 0 ≤ |y/b| ≤ 0.436.

(σz − σy)/2 for |y/b| ≥ 0.436.
(2.7)

In Eqs. (2.6)–(2.7) the coordinate system is centered in the point of contact,
with x pointing to the right, y pointing downwards, and z aligned with the
axes of the rollers. Results, which show a good correlation, are displayed
in Fig. 2.3, where analytical solutions are plotted with continuous lines and
the solution computed is represented by dots. Also it can be seen that the
peak of the maximum shear stress, i.e. the Tresca shear stress, is reached at
0.78 b, in agreement with theory.

2.2.1 Load distribution of radial roller bearing

In Fig. 2.4 a schematic representation of the load distribution among the
rolling elements in a rolling bearing subject to an external radial load Fr is
depicted. It is known [69–71] that the radial load distribution in a rolling
bearing can be approximated by

Q(φj) = Qmax

[
1− 1

2ε
(1− cos(φj)

]t
(2.8)

where Q(φj) is the rolling element load at location φj = j 2π/Z, Z is the
number of rolling elements, Qmax is the maximum rolling element load and
ε is given by

ε =
1

2
(1− cos(φ0)) (2.9)

with φ0 the angle corresponding to half of the angular load extension. The
constant t in Eq. (2.8) is a parameter that can be chosen equal to 1.1 for
roller bearings. The angle φ is computed from the vertical, assuming positive
values in clockwise direction(j = 1, 2, . . . ) and negative values in the counter
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Figure 2.3: Principal stresses and maximum shear stress as function of the depth y from
the contact surface. Stresses are normalized by the maximum contact pressure p0 and the
depth by the half-contact width b. The continous lines are the analytical solution from
the Hertzian model and the dots represent results obtained in the computations.

clockwise direction (j = −1,−2, . . . ), see Fig. 2.4. A value of j = 0 is
assigned to the rolling element subject to the maximum load Qmax. For the
static equilibrium the radial load must be equal to the sum of the vertical
components of the rolling element loads

Fr =

φ=−φj∑

φ=−φj
Q(φ) cos(φ) (2.10)

that can be also written as

Fr = ZQmaxJr(ε) (2.11)

where Jr(ε) is the radial integral proposed by Sjövall [70]

Jr(ε) =
1

2π

∫ φ0

−φ0

[
1− 1

2ε
(1− cos(φ)

]t
cos(φ) dφ (2.12)

From Eq. (2.12) it is possible to determine the maximum load Qmax once
Fr and Jr(ε) are known. In fig. 2.5 the radial integral Jr(ε) for a roller
bearing is plotted for different values of ε. It is noted that 0 < ε < 0.5
(φ0 < 90◦) corresponds to positive clearance, ε = 0.5 (φ0 = 90◦) corresponds
to zero clearance and 0.5 < ε < 1 (90◦ < φ0 < 180◦) corresponds to negative
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φ0

Q(φ0) = Qmax

Q(φ1)

Q(φ2)Q(φ−2)

Q(φ−1)

Figure 2.4: The radial load distribution in a roller bearing.

clearance, i.e. interference. In the following, some calculations have been
carried out to study the effect of the variable load on the inner race. It
was assumed ε = 0.5 (φ0 = 90◦) and a number of 7 rolling elements loaded
(j = −3,−2, . . . , 2, 3), but any other values could have been chosen, given
the bearing geometry and the interference fit. Different sets of maximum
pressure p0 were investigated, p0 = 0.8 GPa, p0 = 1 GPa, p0 = 1.2 GPa and
p0 = 1.4 GPa and it was assumed that they were the value of the Hertzian
pressure reached at φ = 0◦ (j = 0), corresponding to the maximum rolling
element load Qmax. The pressure was related to the value of Qmax using Eq.
(2.4) and the radial loads Q(φj) were calculated and imposed, so that it was
possible to simulate the real stress history experienced by a material point
in a roller bearing. The stress history was recorded in the material points at
the depths of maximum shear stress (0.78b|Qmax), maximum orthogonal shear
stress (0.5b|Qmax) and maximum Dang Van damage factor (see Sec. 2.3). The
stress histories were then subsequently used in a micromechanical study, see
Sec. 3.2 and Sec. 3.3.1.

2.3 The Dang Van criterion

The Dang Van criterion [50, 51] is a stress based multiaxial fatigue criterion
that relates the variation of the stress state in a material point to a critical
parameter λ that should not be reached:

f [σij(t)] ≤ λ (2.13)

25



0.1 1 10
0

0.05

0.1

0.15

0.2

0.25

0.3

ε

J
r
(ε

)

InterferenceClearance

Figure 2.5: The radial integral Jr(ε) plotted against the variable ε.

The critical value λ is usually a function of the fatigue limit in pure torsion,
τw, and the fatigue limit in pure bending, σw and its choice is essential in a
multiaxial criterion since it establishes which are the most important stress
components, assumed to influence failure.

The Dang Van criterion assumes that even if at macro scale the stress
state remains in the elastic regime, at grain scale the material can show
some plasticity initially. For this reason, a residual stress tensor can exist
such that the macroscopic stress tensor gives a state of stress under the yield
limit. According to Melan’s theorem on shakedown, this residual stress tensor
must be time–invariant.

The criterion can be thus formulated as:

τmax(t) + αDV σH(t) ≤ τw (2.14)

where

αDV = 3
( τw
σw
− 1

2

)
(2.15)

is a constant that depends on the material fatigue limits previously men-
tioned, σH(t) is the instantaneous hydrostatic component of the stress tensor
and τmax(t) is the instantaneous value of the Tresca-like shear stress

τmax(t) =
ŝI(t)− ŝIII(t)

2
(2.16)

The stress deviator is obtained by the usual definition:

sij(t) = σij(t)− δijσH(t) (2.17)
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Then a constant tensor, smij , is calculated as that particular s∗ij that solves
the minmax problem

min
s∗ij

max
t

[(sij(t)− s∗ij)(sij(t)− s∗ij)] (2.18)

The shifted deviator tensor can then be defined as

ŝij(t) = sij(t)− smij (2.19)

The principal values of the shifted tensor appear in Eq. (2.16). The problem
in Eq. (2.18) is solved iteratively using a move limit approach:

min
s∗ij

max
t

[(sij(t)− s∗ij)(sij(t)− s∗ij)] = min
s∗ij

[max
t

Φ ] (2.20)

with
Φ = Φ

(
t, sij(t), s

∗
ij

)
(2.21)

Choosing an arbitrary starting value for s∗ij, for example the average devia-
toric stress tensor in the stress history for that material point, then for every
iteration we identify the maximum value of Φ. Let tm be the time step at
which max Φ happens, then the value of s∗ij is updated

s∗ij = s∗ij + ds∗ij (2.22)

with
ds∗ij = γ

(
sij(tm)− s∗ij

)
(2.23)

which can be interpreted as a modified steepest descend method. If at one
step Φ increases, γ is reduced to 0.25 γ. The iteration is stopped if the
norm of the difference between s∗ij at the current iteration step k and at the
previous step falls into a tolerance range:

‖s∗ij|k − s∗ij|k−1
‖ < εtoll (2.24)

Although a superimposed hydrostatic tension has an effect on the fatigue
life in normal cyclic loading [53], several studies [72, 73] have shown that
a superimposed mean static torsion has little or no effect on the fatigue
limit of metals subjected to cyclic torsion. The independency of the mean
shear stress is correctly predicted through the minimization process in Eq.
(2.18), see also [52, 53]. The Dang Van proposal is equivalent to request,
in the σH(t) - τmax(t) plane, that all the representative points of the stress
state, fall below the line intersecting the τmax(t) axis at τw with a negative
slope of α: if all of the points fulfill this requirement, the criterion predicts
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a safe life for the component (see Figure 2.6). The original Dang Van safe
locus predicts a detrimental effect of tensile hydrostatic stress while an over-
optimistic positive effect is expected under compressive hydrostatic stress.
The negative effect of tensile mean stress is well known in literature from
classic Haigh diagrams, that also show a flat response for negative stress
ratios [74, 75]. For this reason it is not too conservative to choose a different
safe locus in the Dang Van plane to be in agreement with this response, for
example a bilinear limit curve, as proposed in [52]. The safe locus could be
therefore identified in two segments, one with a null slope and the other one
with a negative slope equal to αDV (Figure 2.6). For σH(t) ≥ σA the safe
region is identical to the original Dang Van region, while for smaller values
of σH(t), the cut-off with the flat curve replaces the Dang Van limit curve
by a curve more on the safe side. Values of σA = σw/3 and of τA = σw/2
have been proposed in [52], on the basis of experimental results obtained
on high-strength steel smooth specimens. It is possible, if experiments are
available to support that, to choose a different set of values for (σA, τA), but
here the same choice has been made as that in [52]. If the ratio of the fatigue
limits, τw/σw, was equal to 0.5, the value αDV in Eq. (2.14) would be zero,
which is far from reality, as steels usually show ratios between 0.57 and 0.8
[53].

In the following sections, both the original safe locus and a new one with
the mentioned cut-off will be used, and results are compared. For τw a value
of 360 MPa has been imposed [76] and a ratio τw/σw = 1/

√
3 ≈ 0.577.

With this assumption the value of the constant αDV used in the calculations
is approximately 0.232. For a material point subjected, at time t, to σH(t)

Dang Van

Modified
limit curve

τmax(t)

σH(t)

τA

σA

τw

Figure 2.6: The Dang Van safe locus: the dashed line represents the alternative limit
curve, for σH(t) < σA, here assumed equal to σw/3, as proposed in [52].

and τmax(t), the ratio between τmax(t) and the corresponding limit value for
that σH(t) is here used to define the damage factor n(t). Points on the
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limit curve, then, result in a unit damage factor while points inside the safe
region have a damage factor smaller than one. As previously mentioned, two
different safe loci are here used: one with a linear limit curve and another one
with a bilinear limit curve. Consequently, a damage factor is here defined as

n(t) =
τmax(t)

τw − αDV σH(t)
(2.25)

if referred to the original Dang Van’s safety region or

n(t) =





τmax(t)
τw−αDV σH(t)

if σH > σA

τmax(t)
τA

if σH ≤ σA

(2.26)

when the bilinear limit curve is used. As mentioned above, σA and τA are
here chosen equal to σw/3 and σw/2, respectively.

2.4 Periodic Boundary Conditions

In [P3] the macroscopic stresses found in [P2] are applied to a representa-
tive volume element (RVE) to investigate the influence of inclusions. This
separate micromechanical approach is necessary as modelling an inclusion in
the macro-mechanical model proposed in [P1] -[P2] would make the compu-
tation prohibitively expensive. Thus, a RVE is used instead, and stresses are
applied as periodic boundary conditions. The unit cell is assumed to be so
small relative to the bearing geometry that the use of periodic boundary con-
ditions gives a good approximation. The unit cell is considered to be made
of an AISI 52100 bearing steel matrix, in which an inclusion is embedded.
Two different types of inclusions are studied here, an Al2O3 inclusion and
a TiN inclusion. The first type of inclusion is usually found in spherical or
ellipsoidal shape and here it has been modeled with a circular shape (Fig.
2.7a), as a 2D plane strain calculation is carried out. The second inclusion
type, made of TiN, is found in cubic shape, and it is here modeled as a
square shaped inclusion (Fig. 2.7b). A small round off at the square corners
of the inclusion is introduced to prevent an excessive stress concentration.
The values of Ei/Em = 1.8523 and Ei/Em = 1.5095 have been used as ra-
tios between the inclusion and the matrix Young’s moduli, for alumina and
titanium nitride, respectively. The Poisson’s ratio νi is taken to be 0.25 for
alumina and 0.192 for titanium nitride. The matrix has a Young’s Modulus
Em = 210 GPa and a Poisson’s ratio νm = 0.3. Different volume fractions
have been considered for both types of inclusions. For TiN also the influence
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(a) (b)

Figure 2.7: Example of the different meshes used to model the RVE. (a) Model for
Al2O3 , with volume fraction Vf = 0.01 (b) Model for TiN, with Vf = 0.001 .

of the orientation of the inclusion relative to the surface of the inner ring
has been studied. The orientation of the inclusion is specified by the angle φ
between the axis xi of the inclusion coordinate system and the axis xm of the
global coordinate system (Fig. 2.8). The axis xm is parallel to the tangent
of the inner race surface in the nearest contact point, and it is oriented in
the rolling direction.

Periodic boundary conditions on the unit cell in Fig. 2.9 are applied, as
described in [77]. Along the left and right edges of the cell the BC’s are:

u1(ξ1)− u1
A = u1(ξ2)− u1

B , u2(ξ1)− u2
A = u2(ξ2)− u2

B

T 1(ξ1) = −T 1(ξ2) , T 2(ξ1) = −T 2(ξ2)
(2.27)

where ξ1 and ξ2 are length coordinates in Fig. 2.9. Along the top and the
bottom of the unit cell the BC’s are

u1(η1)− u1
A = u1(η2)− u1

D , u2(η1)− u2
A = u2(η2)− u2

D

T 1(η1) = −T 1(η2) , T 2(η1) = −T 2(η2)
(2.28)

where η1 and η2 are defined in Fig. 2.9. The displacements of the four
corner nodes are denoted uiA , uiB , uiC and uiD. In order to prevent rigid body
motion, the two displacements uiA are chosen equal to zero, and also u2

B = 0.
Finally, periodicity requires that uiC = uiD +uiB, and therefore only the three
displacements u1

B , u1
C and u2

C are free to be prescribed.
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Figure 2.8: Orientation of the RVE with respect to the contact point on the inner
race surface. The angle δ will be used to specify the point where the maximum damage
factor is reached. The angle φ only applies to the study of TiN inclusions and defines the
orientation of the inclusion with respect to the rolling direction.
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Figure 2.9: Coordinates for the unit cell analyzed.
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Equations (2.27)-(2.28) are approximately satisfied using a standard penalty
method

T i(ξ2) = k
(
ui(ξ2)− ui(ξ1)− uiB + uiA

)
= −T i(ξ1)

T i(η2) = k
(
ui(η2)− ui(η1)− uiD + uiA

)
= −T i(η1)

(2.29)

where the stiffness k is chosen large enough to get a good approximation.
In order to apply the macroscopic stress history to the RVE, a superpo-

sition method has been used here to relate the macroscopic stresses to the
three unknown displacements:





λ11 u
1
B + λ12 u

1
C + λ13 u

2
C = Σ11

λ21 u
1
B + λ22 u

1
C + λ23 u

2
C = Σ22

λ31 u
1
B + λ32 u

1
C + λ33 u

2
C = Σ12

(2.30)

The relation between the stresses and the three displacements is assumed to
be linear.

The coefficients λij have been evaluated by imposing alternatively a small
value for one of the three independent variables, e.g. 0.001 l, and at the same
time a null value for the other two. For each of the three cases, the macro-
scopic stresses Σ11,Σ22 and Σ12 are calculated by integrating the traction
vectors along the edges. The unknowns in Eq. (2.30) reduce to only three
and therefore a column vector in the matrix of the coefficients can be eval-
uated for each case, calculating the coefficient λij as the ratio of the macro
stress component and the non zero displacement imposed. After three cal-
culations, all the coefficients λij are known, and it is possible to solve the
system (2.30). For each time step the three displacements corresponding to
the macroscopic stress component are thus calculated from Eq. (2.30) and
these displacements are imposed in the finite element problem.

2.5 The Roe-Siegmund cohesive model

The Roe-Siegmund cohesive model [78] was choosen here to study fatigue
crack propagation in the material. This model, orignally intended to model
low cycle fatigue in adhesives [78, 79], has also been used to model fatigue
crack growth in metals [80–83]. In some of these works extra-terms were also
incorporated to account, for example, for the triaxiality. Here, however, the
original formulation was chosen.

According to the Roe-Siegmund model the traction separation law is given
by a modification of the Xu–Needleman law. The two components of the
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Figure 2.10: (a) Normal and (b) tangential separation behavior.

cohesive surface traction, Tn and Tt, are given by:

Tn =σmaxe exp
(
− ∆un

δ0

){∆un
δ0

exp
(
− ∆u2

t

δ2
0

)
+ (1.0− q)∆un

δ0[
1.0− exp

(
− ∆u2

t

δ2
0

)]}

Tt =2σmaxeq
∆ut
δ0

(
1.0 +

∆un
δ0

)
exp

(
− ∆un

δ0

)
exp

(
− ∆u2

t

δ2
0

)

(2.31)
where ∆un and ∆ut represent the normal and the tangential components of
the displacement jump across the cohesive surface, ∆ = ∆un n + ∆ut t. In
Eq. (2.31) e is the Napier’s constant, δ0 is the critical opening, for which
Tn = σmax,0 and q represents the ratio between shear (∆un = 0) and normal
(∆ut = 0) cohesive surface energies under monotonic loading. The traction
law is depicted in Fig. 2.10. Fatigue crack growth is modeled by introducing a
damage parameter D [84], which can assume a value between 0 (initial state:
undamaged material) and 1 (failure). Thus, in the undamaged element, when
D = 0, the element has full strength, while for D = 1, it has no more load
carrying capacity. If damage has evolved, the current cohesive strengths are
defined as

σmax = σmax,0(1−D)
τmax = τmax,0(1−D)

(2.32)

where τmax,0 =
√

2eqσmax,0. The unloading path follows a linear relation-
ship with a slope equal to the slope of the traction separtion curve at zero
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separation. Thus the unloading/reloading relations are given by

Tn = Tn,max + κ (∆un −∆un,max)
Tt = Tt,max + κ (∆ut −∆ut,max)

(2.33)

where Tn,max and Tt,max are the normal and tangential tractions correspond-
ing to maximum value of the normal and shear separation ∆un,max and
∆ut,max, respectively.

In order to relate the change of D to the displacements and the stresses,
is it necessary to introduce a damage rate constitutive law

Ḋc =
|∆u̇|
δΣ

[ T

σmax
− Cf

]
H(∆u− δ0) Ḋc ≥ 0 (2.34)

where T is the effective traction

T =
√
T 2
n + (Tt/2eq)2 (2.35)

and ∆u the accumulated separation, function of the effective displacement

∆u =
√

∆u2
n + ∆u2

t (2.36)

and its increment ∆u̇ = ∆u|t − ∆u|t−∆t. Thus the accumulated separation
∆u can be defined as

∆u =

∫
|∆u̇| dt (2.37)

If not stated differently, a value of δΣ = 4 δ0 is assumed. If the crack is closing
(∆un < 0) the effective traction reduces to only the contribution from shear,
i.e. there is no contribution from the normal traction Tn in Eq. (2.34). In
the preliminary results, obtained in [P4] , instead, even during crack closure,
the effective traction was not reduced to the shear stress, and it was given
by Eq. (2.35). This resulted in a fast propagation, as in RCF the crack is
closed during most of the cycle, and there are high negative normal stresses.
In order to avoid an excessive damage evolution during crack closure, in the
other simulations the effective traction was thus taken to be

T =





√
T 2
n + (Tt/2eq)2 if ∆un ≥ 0

Tt/2eq if ∆un < 0
(2.38)

The parameter Cf represents the ratio between the cohesive endurance limit
and the initial undamaged cohesive normal strenght:

Cf =
σf

σmax,0
, Cf ∈ [0, 1] (2.39)
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Figure 2.11: The quarter panel geometry used for the test case.

If T
σmax

− Cf ≯ 0 then no damage evolution occurs during that increment.
Once an element has failed (D = 1), it still retains some strength in com-
pression, if ∆un < 0, such that overlap is penalized

Tn,compr = αTn,compr(∆ut,∆un, σmax = σmax,0) , Tt = 0 if ∆un < 0, D = 1
(2.40)

where a value of α = 10 was here chosen.

2.5.1 Fatigue crack growth: A test case

A test case with a cracked panel (Fig. 2.11) subjected to R = σmin/σmax = 0,
σmax = 100 MPa was carried out, in order to evaluate the Siegmund’s model
parameters δ0, σmax0 and Cf to be used in [P4] . The parameter q was set
equal to 0.429, so that the maximum normal and shear stresses are the same.
Furthermore, the fatigue limit Cf was set equal to 0.005. This choice is
justified by the need to reduce the set of parameters to be varied in the
test case computations. When fixing the value of Cf in fact, δ0 and σmax0

were the only two other parameters to be fitted. The value of Cf choosen is
justified in the prospective of modeling the VHCF regime, where even small
values of the stress imposed, below the conventional fatigue limit, may cause
failure. Though these preliminary computations were set to fall into the low
cycle regime, this seemed the best choice. Furthermore, it is worth to notice
that the test case was carried out assuming long–crack theory even though
the subsequent case assumed cracks in the order of a micron.

A Paris law with C = 11 · 10−10 and m = 4.05 was fitted with the set
of parameters δ0 = 0.5 µm, σmax0 = 21000 MPa and Cf = 0.005, see Fig.
2.12. The resulting crack growth rate is in the order of 10−6 m/cycle, with an
initial ∆KI ≈ 5.63 MPam0.5 (DKth = 5 MPam0.5). This crack growth rate
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Figure 2.12: (a) Fatigue crack growth rate versus the stress intensity range for the test
case and (b) corresponding crack lenght–cycles curve.

is at least 3 order of magnitude higher than what is expected for this material
for cracks in vacuum [85, 86], but it was here chosen to have a qualitative
understanding of the crack propagation under rolling contact, rather than
trying to simulate the exact number of cycles to failure which is, on the
other hand, practically unfeasible in the giga cycle regime. The parameters
for the cohesive law were thus used in the following calculations to study
crack propagation in the inclusion–matrix unit cell [P4] .

2.5.2 Fatigue crack growth: rolling contact

The cohesive model described in Sec. 2.5 was used to model crack propaga-
tion in a material point subject to rolling contact fatigue. A similar approach
to that in [P3] was used and, in fact, a similar RVE where an alumina particle
is embedded in the metal matrix, was modelled.

The mesh used in the calculation is shown in Fig. 2.13, where it can be
seen that in the matrix a pre-existing crack is assumed to have nucleated. The
crack is oriented radially, and has one tip on the inclusion-matrix interface
and the other tip in a region of very fine mesh. Several step up are used to
increase the size of the elements in this region to the size of the elements
at the edges of the RVE, so that the computational effort is reduced. The
fatigue crack growth is modelled by failure of the cohesive elements aligned
on the crack, that has an initial lenght a0, and that it is oriented with an
angle θ to the rolling direction (see Fig. 2.8). In the uniform mesh region
along the crack, the element size, which is sufficiently small to resolve the
cohesive region (see Sec. 2.6), is denoted as c. The initial crack lenght can
assume values between the minimum crack length a0,min and the maximum
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(a) (b) (c)

Figure 2.13: Mesh used for the calculations at full scale (a) and at different levels of
detail (b)-(c). In (c) the mesh around the crack is shown. θ = 30◦

length a0,max. This ensures that the crack tip is always in a region where
at least 8 elements of the same lenght c preceed or follow the crack tip.
Different cases were considered in the study, ”CRC”, ”INT” and ”POR”, see
Fig. 2.14. The first two assume an inclusion in the matrix, while the latter
assumes a pore. The CRC case reflects the case of a crack in the matrix that
is perfectly bonded to the inclusion. One crack tip lies on the boundary with
the inclusion, and the other one lies in the matrix. The INT case models the
case where the matrix–inclusion interface is flexible and therefore cohesive
elements are used also along the interface, though they are not allowed to
fail. The crack in this case has a tip in the matrix and a tip on the inclusion.
In [P4] the jump procedure described in Sec. 2.5.2 was not adopted, and the
effective traction was computed by means of Eq. (2.35). In the subsequent
studies only the cases ”CRC” and ”POR” were investigated.

The RVE was subject to a stress history that was applied as periodic
boundary conditions. Three different stress histories were used in the inves-
tigation, ”HDV”, ”HTAU” and ”HVM”, corresponding to the macroscopic
stress histories Σij(t) recorded at the depth of the maximum Dang Van dam-
age factor, the maximum orthogonal shear stress and the maximum Von
Mises stress, respectively.

The jump-to procedure

A jump-to procedure, similar to the ones proposed in [65] and [84] was used
to avoid long computational times. At the beginning of the j-th cycle, the
variable ∆Di in the i-th gauss integration point is set to zero. At each in-
crement this variable is increased by the damage increment in that material
point and, at the end of the j-th cycle, ∆Di will represent the damage in-
crease, for that gauss integration point, during that cycle. An average of this
quantity is calculated within all the integration points in each element and
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Figure 2.14: The two cases considered for the calculations, (a) ”CRC” or ”INT” and
(b) ”POR”. A zoom view.

the maximum value ∆Dmax among the all cohesive elements is then choosen.
The number of cycles to skip is then given by

∆N = F (∆D/∆Dmax) (2.41)

where F(X) is the operator that returns the greatest integer less than or equal
to X and ∆D is a constant. Thus the damage variable is updated in each
point i as

Di|j+∆N = Di|j + ∆N ·∆Di|j (2.42)

and the cycle counter jumps from j to j + ∆N . If ∆N is smaller than one,
no jump is allowed during that cycle. The jump procedure was first tested
on the quarter panel described in Sec. 2.5.1, and a value of ∆D = 0.025 was
found to be needed for an accurate prediction of the crack growth. However
the value of ∆D depends on how fast the damage evolves, and therefore
also on the stress history applied. For this reason, when the procedure was
tested also for fatigue crack growth under rolling contact, it was found that
this value was too big. The pace ∆D was thus reduced till no jump was
made and it was then choosen a value slightly bigger, ∆D = 0.002. In
Fig. 2.15 the fatigue crack growth curves obtained with and without the
jump procedure are plotted for different angles and for the HDV case. It
is noted that when the jump procedure is active the computations return a
faster crack growth. It was not possible to obtain a more accurate prediction
without over complicating the procedure, and it was chosen to use this value
for ∆D, that seemed on one hand to preserve the order of results obtained for
different angles, and on the other hand allowed to have a faster computation.

2.6 Mesh sensitivity

In [P3] a rounding radius was introduced at the corner of the TiN inclusion to
avoid a stress singularity, see Sec. 2.4. It is noted in fact that a sharp corner
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Figure 2.15: Comparison between results obtain with and without the jump-to proce-
dure, for different crack angles θ and for the HDV case.

of the inclusion would result in a stress singularity, as has been analyzed by
Tvergaard and Hutchinson [87] for the case of a ceramic with different grain
properties. The rounding radius used was taken to be γ lcub, where γ = 0.15
and lcub is the half width of the inclusion. The value of γ was chosen applying
a Hertz load history and results from [P3] are shown in Table 2.1 for two
different volume fractions, Vf1 = 0.0063 and Vf2 = 0.0292. As the value of γ
decreases, the maximum damage factor increases, since a more severe stress
concentration is introduced. The value of 0.15 was chosen as a compromise
between the need of a small rounding radius and a mesh not too distorted in
the region close to the radius.

Table 2.1: Maximum Dang Van damage factor reached in the matrix, for different sizes
of the rounding radius and two different orientations of a TiN inclusion. Results are shown
for the Hertz stress history, corresponding to Fig. 1.3. Vf1 = 0.0063, Vf2 = 0.0292.

0◦ 30◦

γ Vf1 Vf2 Vf1 Vf2

0.20 0.9299 0.9221 0.9703 0.9618
0.15 0.9308 0.9228 0.9737 0.9651
0.10 0.9324 0.9245 0.9779 0.9692
0.05 0.9338 0.9259 0.9815 0.9727

A mesh convergence investigation, based on the Dang Van damage fac-
tor, was also carried out in [P3] for both Al2O3 and TiN inclusions, for the
two volume fractions, Vf1 = 0.007 and Vf2 = 0.073, and for a Hertz stress
history. The TiN inclusion was investigated for two different angles, φ = 0◦

and φ = 30◦. The number of elements along the interface Nint between the
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matrix and the inclusion was doubled from 64 to 128 and, accordingly, the
number of elements increased from 4972 to 9964 in the case of Al2O3 and
from 3768 to 11768 for the TiN, see Fig. 2.16. It is noted that the element
aspect ratio at the interface is kept fixed, so the increased number of ele-
ments around the particle also gives smaller elements in the radial direction.
Results, listed in Table 2.2, show that there is little dependence, and that
the discretization used in the analysis, with 64 elements along the interface
and a much smaller number of elements, gives sufficient accuracy, with a
percentage difference of the order of 0.5%. For this reason and because of
a much reduced computational time, a value of Nint = 64 was used in the
calculations.

Table 2.2: Mesh convergence analysis results in terms of the maximum Dang Van damage
factor reached in the matrix. Hertzian stress history of Fig. 1.3 was here used, with
Vf1 = 0.007, Vf2 = 0.073. Nint represents the number of elements along the interface
between the matrix and the inclusion.

Al2O3 TiN (φ = 0◦) TiN (φ = 30◦)
Nint 64 128 64 128 64 128
Vf1 1.0137 1.0077 0.9294 0.9200 0.9723 0.9561
Vf2 0.9896 0.9875 0.9191 0.9225 0.9590 0.9581

In the preliminary investigation described in Sec. 2.5.1 the mesh depen-
dence of the fatigue crack propagation problem was checked by means of
different discretizations. A ratio δ0/c ≈ 8.12 between the separation lenght
δ0 and the cohesive element length c was chosen, so that it was possible to
resolve the cohesive behavior. The mesh was constructed with several step
down, so that a final ratio between the minimal initial crack lenght a0,min

and c was equal to 48. In the region far away from the crack tip, instead, the
element size is much bigger, and for this reason the total number of elements
is limited to 1661, see Fig. 2.17a. The initial crack lenght could only fall in
the range [a0,min, a0,max], which means that the crack tip was always preceded
and followed by a sufficiently big region of uniform elements with lenght c.
For a0 = a0,min, for instance, the number of elements before the crack tip
was equal to 8. Another much finer mesh with a0,min/c ≈ 26000 was also
tested, see Figs. 2.17b-d. It was not possible, however, to fit a Paris law
in this case, as all the elements after the first one had failed, started failing
after few cycles or portion of cycle, with a linear trend in the a − N plane.
It was concluded that the ratio a0,min/c may affect the model, causing the
Paris law not to emerge.
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(a) (b)

(c) (d)

Figure 2.16: A zoom view of the meshes used for the analyses in [P3] , (a) and (c),
and the refined meshes used in the convergence study (b) and (d), where the number of
elements along the particle was doubled to 128 elements.

(a) (b) (c)

(d)

Figure 2.17: Detail of (a) the mesh used in [P4] for the test case, and (b)-(d) different
zoom views of another much finer mesh tested.
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Chapter 3

Summary of Results

3.1 The Dang Van criterion applied on a roller

bearing [P1] -[P2]

The Dang Van criterion has been applied to the rolling contact problem and
for the geometry previously described in Sec. 2, considering three different
load cases, either with only pH , only pEHL or both pEHL and pt. The load
history has been divided in an adequate number of steps so that the distance
travelled between 2 subsequent steps is approximately 3 % of the Hertzian
contact width. For each time step, the value of the damage factor n(t) has
been calculated, both with the original Dang Van limit curve and with the
modified one. The maximum value in time

n = max
t
n(t) (3.1)

is then chosen as representative for that material point. If this n < 1, the
prediction is that initiation of fatigue failure will not occur in the mate-
rial point. The representative points corresponding to the max value of the
damage factor are plotted in Figure 3.1, in the Dang Van region, for all the
material points in the region analyzed.

In Figure 3.2 the maximum values n are plotted against the distance
from the surface. Both safe regions, as described in Sec. 2.3, are used.
As we can see, n reaches the highest value in a sub-surface region, between
0.417 b and 0.508 b, depending on the load distribution: this is consistent with
experimental observations in literature, where many sub-surface initiated
failures in bearings for windmill applications are reported. It should be noted
that, according to the Hertzian theory, the maximum shear stress (and Von
Mises stress) and the maximum orthogonal shear stress, are reached at depth
of 0.78 b and 0.5 b, respectively (See Fig. 3.3). Thus the Dang Van criterion
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Figure 3.1: A plot of the max Dang Van damage factor in all the integration points in
the region analyzed, for Hertzian and EHL load distributions.

predicts a ”critical depth” very similar to what expected from the L-P theory,
that calculates the fatigue life in rolling contact through the orthogonal shear
τxy, see Sec. 1.3.

For the two EHL load distributions, the peaks reached by the damage
factor n are smaller and closer to the contact surface than in the case with
the Hertzian pressure distribution. Analogous results are obtained with the
use of the original Dang Van safe locus.

The pressure peak used here, p0 = 1 GPa, results in a stress path that
in the Dang Van region is rather close to the modified safe locus. If we
consider the curve for the Hertz load in Figure 3.2a, the peak value of the
Dang Van damage factor is approximately 0.807, which corresponds to a
safety factor of 1.24. This safety factor can be increased by using a smaller
value of the pressure peak p0, a larger length or radius of the roller, or a
material more resistant to fatigue. Further calculations, for p0 equal to 0.8
and 0.5 GPa have been carried out, only for the Hertz distribution, and
the results returned values of the safety factor of 1.56 and 2.51, respectively.
Therefore the design tool applied here would suggest a pressure peak not
bigger than 0.8 GPa in order to have a reasonable safety factor against
fatigue failure. In Fig. 3.4 the maximum Dang Van damage factors reached
are plotted against the Hertzian maximum pressure p0 applied, for both the
original and the bilinear safe locus. It is possible to notice that an increase
in the pressure p0 from the value of 1 GPa is reflected in an increase of the
damage factor that soon reaches the limit curve (n = 1). It is here noted
that bearings mounted in a wind turbine gearbox are operating at loads
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below their dynamic load ratings1, but they often experience events, such
as grid/generator engagements/disengagements, that produce higher contact
stresses [31, 37]. It was reported by Rosinski, for instance, that a wind
turbine experiences around 15000 overload cycles per year, due to the drive
shaft torque oscillations [88]. These overloads can cause misalignments and
increase the contact stress in the raceway up to 3–5 GPa, assuming that the
load is absorbed elastically. In the practice, part of this load is accomodated
plastically, and it is believed that it may be one of the causes of WEA
formations [31, 37]. In this analysis the model is fully linear and no plasticity
can be accounted for, but it is worth remarking that results returned a safety
factor which is close to one, and this considering the material homogeneous
with no defects. For a bigger values of the pressure peak, the safety factor
according to the Dang Van criterion would fall below one and for further
increases the criterion is no more applicable (i.e. a very high number of
cycles cannot be sustained).

3.1.1 Hardness variation

The effect of the hardness variation in the inner ring was studied in [P1] [P2] ,
where different hardness profiles were assumed and the hardness was related
to the fatigue limit of the bearing steel. Murakami [9] in fact suggested
that the fatigue limit σw depends only on the hardness, and not on the
microstructure, as also shown in [20], where results for ferritic, perlitic and

1The dynamic load rating is defined as that load, constant in magnitude and direction,
that corresponds to a basic rating life L10 of 106 cycles.
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Figure 3.3: (a) Von Mises and (b) shear stress τxy under Hertz pressure. Stresses are
expressed relatively to the Young modulus E.

martensitic steels were reported.
In order to correlate the hardness to the fatigue limit in pure shear, τw,

this limit has first been related to σUTS through an approximate expression
proposed in [89] for low-alloy steels:

τw = σw/
√

3 ≈ 0.274σUTS (3.2)

Denoting the Brinell hardness by HB and using an approximate relationship
[90]

σUTS = 0.0012HB2 + 3.3HB [N/mm2] (3.3)

where HB is expressed in N/mm2, the first coefficient in mm2/N and the
second coefficient is dimensionless, an approximate final relation between τw
and HB can be written as

τw = 0.274
(

0.0012HB2 + 3.3HB
)

[N/mm2] (3.4)

Both σUTS and τw in previous equations are expressed in MPa. This pro-
cedure was first suggested by Donzella et al. [91, 92]. In the following we
assume that the fatigue limit τw is given by the expression (3.4). If another
expression τw(HB) applies for a material, this will not in principle change
the procedure. In fact, all we need is the value of τw in each material point
of the solid analyzed.

Different hardness distributions along the depth have been studied here.
Thus the value of τw corresponding to the value of the hardness at that depth
has been imposed in the material for each Gauss integration point.
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The two different hardness distributions imposed here in the subsurface
region of the inner ring and the correspondent τw distributions are shown
in Figure 3.5a and 3.5b. At distances greater than 1 mm from the surface,
HB, for both the distributions, is taken to be constant, at a value such that
the related fatigue limit, τw = τw(HB), is approximately 360 MPa. This
assumption is equivalent to considering how the effect of a surface hardening
process would benefit the fatigue response of the bearing. A recent work by
Santos et al. [93] seems to indicate an improvement of fatigue strength, for
AISI 52100, by induction heating and repeated quenching, thus validating
this assumption. In [93], measuraments presented show a similar step-like
hardened profile, with the same peak of hardness here used in Figure 3.5a-
b. Also, fatigue tests performed seem to indicate a similar fatigue limit in
pure torsion for the untreated steel and, moreover, an increase of this value
after the hardening treatment. It may be noted also that some steels show a
maximum for the curve τw(HB), which would limit the applicability of Eq.
(3.4). In fact, Eq. (3.4) is valid only for smaller values of hardness.

Results show that the values of the damage factor n and the depth at
which the maximum n is reached, are strongly dependent on the particular
distribution of hardness imposed (Figure 3.6). For all the cases analyzed, the
peak of the n-curve shifts away from the surface of the inner ring and, for the
cases shown in Figs. 3.5a and 3.5b, the peak values of n are smaller than the
corresponding peaks for a material with uniform hardness. In other words,
the rings with extra surface hardening have higher safety against fatigue
failure. It should also be noted that the maximum Dang Van damage factor
is reached, for the cases analyzed, at the interface between the hardened case
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Figure 3.5: (a)-(b) Hardness profiles and (c)-(d) correspondent values of τw in the first
millimeter of depth. Computations were carried out for r = 100 mm, R = 200 mm,
tk = 19 mm, Rroll = 21 mm, α = 5◦. The Hertzian contact area was b ≈ 0.334 mm.

and the untreated, softer core material, which is a well known critical site
for subcase failures.

3.1.2 Effect of residual stresses

In order to analyze the influence of pre-existing stresses in the bearing, a
typical residual stress distribution for the ring has been considered. It is
here noted that the Dang Van criterion can only be applied if the residual
stresses are pre-existing to the fatigue process, e.g. due to the machining or
the heating process. In this paper it is assumed that the residual stresses are
the results of the heat treatment process or diffusion hardening when, during
the cooling of the component, the material experiences a volume increase
due to the phase transformation from austenite to martensite. As the fast
cooling, and therefore the phase transformation, starts from the surface and
proceeds toward the bulk material, a compressive residual stress distribution
is obtained, as the material close to the surface cannot expand as it wishes,
constrained by the material below. The bearing with an assumed residual
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stress distribution, equilibrated by an elastic step calculation, is subsequently
subjected to the stresses caused by the contact with the roller. The results
obtained with the Dang Van criterion are then compared with the results
obtained in the bearing free of residual stresses.

In Figure 3.7 the convention used to name the residual stresses is clarified,
while, in Figs. 3.8, the residual stress distribution assumed, in terms of
principal stresses, is plotted versus the distance from the surface. Far away
from the surface, the residual stresses are assumed to be constant and near
zero. The distribution was inspired by experimental results obtained by

σr
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σt σt

σa

Figure 3.7: Convention used for the principal stresses in the polar coordinate system.
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Voskamp [94] for a deep groove ball bearing. The results for the two different
safe loci are shown in Figure 3.9. The EHL curves in the figure refer to the
EHL pressure distribution where also the effect of shear, pt, is included. The
pre-existing stress state in the inner ring, in the case of the modified safe
locus, has no effect, neither positive nor negative (Figure 3.9a). The residual
stresses, in fact, result in a simple shift along the σH axis in the Dang Van
region (Figure 2.6) but this does not change the distance from the limit
curve since all the most critical material points are subjected to values of σH
smaller than σA and therefore they are in the region where the limit value for
τmax is constant and equal to τA. If the original Dang Van limit curve is used
instead, the residual stress distribution from Figure 3.8 results in a reduction
of the maximum damage factor for the compressive residual stresses (Figure
3.9b) and a shift of the maximum toward the core of the inner race. This is
expected for the original Dang Van model, since the reduced value of σH will
have a beneficial effect, see Figure 2.6.

3.2 The micro-mechanical approach [P3]

Two different macroscopic stress histories, obtained in [P2] and resulting
from either the Hertz or the EHL contact pressure distributions in absence
of shear load have been applied to the unit cell, for both Al2O3 and TiN
inclusions (Fig. 1.3). The Dang Van multiaxial criterion was applied to the
RVE, assuming that failure would occur only in the matrix.

The results, expressed in terms of the maximum Dang Van damage factor
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For bilinear limit curve and (b) for original limit curve.

n reached in the matrix, are shown in Fig. 3.10, as function of the volume
fraction Vf . For the TiN inclusion, results are also presented as function of
the orientation of the inclusion with respect to the inner race surface (see Fig.
2.8). As the analyses carried out are 2D plane strain calculations, volume
fractions have been calculated as the ratio between the area of the inclusion,
circular for Al2O3 and square for TiN, to the area of the cell.

For both the stress histories, regardless of the inclusion type and the
volume fraction, the maximum Dang Van damage factor reached in the cell,
is always higher than that found in a homogeneous material (macroscopic
study) subjected to the same stress history [95] (nmax = 0.78 for EHL and
nmax = 0.81 for Hertz, respectively). In [95] in fact it was found that for
the load analyzed the maximum damage factor in a homogeneous material
subjected to the same macroscopic stress histories was always smaller than
the limit value 1, thus indicating a safe life for the component according to the
cited criterion. The maximum damage factor is here, in some cases, bigger
than one, due to the stress concentrations around the particles with higher
Young’s modulus. But is should be noticed that the values of σw and τw used
in these computations are experimental values that refer to the macroscopic
stress state. Corresponding experimental values referring to stresses on the
micro-scale would have to be higher. Therefore, it is possible that the cases
analyzed here are still in the safe range, even though some of the n-values
found in Fig. 3.10 exceed unity. We note that if a smaller maximum n-value,
nmax, is chosen for a design, e.g. to have a better safety factor, the maximum
load carried by the bearing will have to be reduced, or the bearing will have
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Figure 3.10: Maximum Dang Van damage factor reached in the matrix,
for different inclusions, as function of volume fraction. The load histories
applied to the cell result from (a) Hertz contact pressure and (b) EHL contact
pressure on the inner race in absence of shear load (See Fig. 1.3).

to be improved. All the curves in Fig. 3.10 show a decreasing trend as
function of the volume fraction, such that a safer life corresponds to a bigger
inclusion. This prediction may be a result of the inclusions reinforcing the
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unit cell, so that a larger inclusion reduces the stress peaks in the matrix.
For both Hertz and EHL stress histories in Fig. 1.3, the curve referring to

the Al2O3 in the following figures is in most of the cases above the curves for
TiN. This is due to the larger difference in Young’s moduli for the Al2O3 . The
shape of the inclusion, and in particular the stress concentration at the TiN
corners, is therefore found to be less important than the stress concentration
resulting from different material properties between matrix and inclusion.
However, the differences are rather small. The rounding radius used here is
equal to γ lcub, where γ = 0.15 and lcub is the half width of the inclusion.

TiN φ = 45◦
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Figure 3.11: Maximum Dang Van damage factor reached in the matrix,
for different inclusions, as function of volume fraction. The load history is
generated by EHL pressure distribution acting on the inner race, with the
shear load.

For a TiN inclusion, the damage factor for φ between 15◦ and 30◦ degrees
is in most cases higher than that for other orientations. This is always true
for the EHL load history (Fig. 3.10b) and is true for most of the volume frac-
tions under the Hertz load history (Fig. 3.10a). Apparently this particular
orientation is the most dangerous for this kind of inclusion.

In [95] it was found that a Hertz stress history results in a higher Dang Van
damage factor than the EHL distribution. In the present study, instead, all
the curves from Hertz load history in Fig. 3.10a fall below the corresponding
curves for EHL history in Fig. 3.10.

To investigate the effect of the shear load, the results for the case of the
EHL load history with the shear load pt are shown in Fig. 3.11. It is noted
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that the curves in Fig. 3.11 are similar to the corresponding curves for EHL
without shear of Fig. 3.10b. In some cases, as the alumina and the titanium
nitride for φ = 30◦ and φ = 45◦, the shear load increases the maximum
damage factor, while the opposite happens for the other curves. The orien-
tations φ = 15◦ and φ = 30◦ are still the most dangerous, though the one for
φ = 45◦ is here comparable. Differences between the corresponding curves
for the case that incorporates or neglects the shear are rather small, with the
exception of the alumina. Thus, accounting for a shear load due to EHL has
only a small effect.

A stress history corresponding to the variable radial load that is experi-
enced by the raceway, as described in 2.2.1, was applied to the RVE. Only the
volume fraction Vf = 0.012 was investigated, for both alumina and titanium
nitride, for which the two cases φ = 0◦ and φ = 30◦ were considered. Results
showed differences only from the 4th decimal digit.

3.2.1 Distribution of the damage factor in the cell

In Fig. 3.12 the contour plot for the Dang Van maximum damage factor
is shown, for an alumina inclusion with Vf = 0.012, for two different stress
histories. In Fig. 3.12a it is seen that the Hertzian load history results in a
completely symmetric distribution, with small zones of high damage factor
located at the inclusion–matrix interface, at the intersection with the two
axes of symmetry. The highest damage factor is reached at δ = ±11.8◦,
in a region almost parallel to the rolling direction. The same values are
reached in the symmetric lower half part of the cell. In fig 3.12b, which
refers to an EHL stress history in absence of shear load, the symmetry of the
contour is lost. The maximum damage factor is still located at the interface
with the inclusion, but it is reached at an angle of δ = 84.9◦. The areas
of high damage factor are still close to the interface, but they are a bit
rotated and located in a band approximately oriented at 45◦ to the overall
rolling direction, see Fig. 3.12b. This result seems to indicate that in this
direction, failure is more likely to occur. Rather small differences in the
damage factor distribution have been found for EHL stress history with or
without shear load and therefore in the following figures we will refer to the
case which includes the shear. Furthermore, as failure is assumed to happen
in the matrix rather than in the inclusion, contour plots are only presented
for the matrix. Analyses for different values of the volume fraction Vf show
distributions of the damage factor n around the particles similar to those
shown in Fig. 3.12.

In Fig. 3.13 the Dang Van damage factor for material points at the
matrix-inclusion interface is plotted versus the angle δ for the case of an alu-
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Figure 3.12: Maximum Dang Van damage factor distribution in the matrix (a) Hertz
(b) EHL without shear load. Vf = 0.012. A zoom at center of cell.

mina particle and for the hertz history. In the same figure, as a comparison, a
damage factor according to a modified Goodman diagram is also plotted. A
fully-reversed uniaxial cyclic stress is obtained from the equivalent effective
mean and amplitude values of the principal stresses [53]

σeq,m = 1√
2

√
(σI,m − σII,m)2 + (σII,m − σIII,m)2 + (σI,m − σIII,m)2

σeq,a = 1√
2

√
(σI,a − σII,a)2 + (σII,a − σIII,a)2 + (σI,a − σIII,a)2

(3.5)

and it is so compared with the linear safe locus

σa = σw

[
1− σeq,m

σUTS

]
(3.6)

where σw is the fatigue limit, σeq,m is the effective mean stress and σUTS is
the tensile strength, considered here equal to σy. The damage factor nGood
is evaluated as distance from the safe locus, in analogy to the Dang Van
damage factor n. Beside the relative ratio n/nGood, it is here interesting to
note that the absolute and relative maxima are reached approximately at the
same angles, for both cases.

In Fig. 3.14 the results for a TiN inclusion with Vf = 0.01 and φ = 0◦

are shown. As for alumina, the zone of highest damage factor is found at
the interface between the inclusion and the matrix, or very close to it. For
the Hertzian stress history the highest Dang Van damage factor is reached in
the zones that start from the four corners of the inclusion (Fig. 3.14a), while
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Figure 3.13: The damage factor for the equivalent Goodman criterion and for the Dang
Van criterion versus the angle δ. Values refer to material points at the interface between
the matrix and an alumina particle, in a RVE subject to a Hertzian load history.

for the EHL stress history it is reached close to the rounding radius of the
inclusion. However differences between the highest n and the sourrounding
zones, for both cases, are small, thus indicating that stress concentration
dominates. If the RVE is subjected to the EHL load history, a zone with
high damage factor is found in a band approximately oriented at 45◦, as
already seen for the alumina.

As the angle φ that defines the orientation of the inclusion increases,
for Hertzian stress history, the max n is reached at the interface with the
inclusion, at all 4 corners (Fig. 3.15). For the EHL stress history, instead,
only the corners in the first and third quadrant have very high values of
n. These peaks are however highly localized and zones of high Dang Van
damage factor are still found close to the other two corners.

The maximum von Mises stress, for the alumina, is reached, in the case of
Hertzian stress history, at the time step 90 in Fig. 1.3, i.e. when the roller is
exactly above the inclusion and Σ12 = 0. For the EHL stress history without
shear load, instead, the maximum von Mises stress is reached at a time which
depends on the inclusion size but which is always very close to time step 108
in Fig. 1.3, i.e. when the macroscopic shear stress is close to its negative
maximum. Analogous considerations can be made for the titanium nitride
inclusion.

In the case of a stress history that accounts for the shear load on the inner
race, results are similar to those found in absence of shear load. The maxi-
mum von Mises stress is reached typically at time step 109 in Fig. 1.3, both
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Figure 3.14: Dang Van maximum damage factor for a TiN inclusion for (a) Hertz and
(b) EHL stress history with shear load. φ = 0◦, Vf = 0.01. In (b) arrows indicate zones
where the highest values of n are reached. A zoom at center of cell.

for alumina inclusions and for titanium nitride inclusions. Small variations
are due to different orientations of the inclusions. The maximum von Mises
stress ranges, for alumina, are between 0.24σy and 0.40σy, depending on the
volume fraction and on the stress history applied; for TiN, the effective stress
range from 0.32σy to 0.33σy. The value used here for σy is 1960 MPa [14].

3.3 Fatigue crack growth [P4]

As also mentioned in Sec. 1, fatigue cracks in materials subject to rolling
contact in the very high cycle regime, usually nucleate at matrix-inclusion
interface, as result of the stress concentration effect due to the material prop-
erties mismatch. It is more likely, in fact, that a crack develops close to an in-
clusion, where the stresses amplitudes are greater and there are more chances
that some less favourably oriented grain acts as crack initiation sites. Cracks
may nucleate at the matrix-inclusion interface, and then develop radially, in
a direction which is often approximately oriented at 45◦ with respect to the
rolling surface. Sometimes, the crack nucleation also involves some partial
debonding of the inclusion from the matrix [17]. The crack initiation process,
that may take as long as 95% of the fatigue life Nf [53], is not addressed in
the results presented here, and neither the effects of inhomogenities at grain
scale. Instead, the material in the matrix is modelled as homogeneous, and
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Figure 3.15: Dang Van maximum damage factor for a TiN inclusion for (a) Hertz and
(b) EHL stress history with shear load. φ = 15◦, Vf = 0.01. Arrows indicate zones where
the highest values of n are reached. A zoom at center of cell.

only the fatigue crack growth of a pre-existing crack assumed to have nucle-
ated in the matrix, is investigated.

Some preliminary results [P4] in terms of crack lenght and number of
cycles applied are shown in Figs. 3.16-3.17, for the three cases described in
Sec. 2.5.2, ”CRC”, ”INT” and ”POR”, and for a depth corresponding to the
maximum Dang Van damage factor (HDV). In Fig. 3.16 (CRC) the results
obtained with two different values δ0 are presented, δ0 = 0.5 µm (3.16a) and
δ0 = 0.05 µm (3.16b), respectively. The value of a0 is here 1.5 µm. It is
clear that the smaller value of δ0 = 0.05 µm, i.e. a stiffer cohesive traction-
separation law, corresponds to a quicker propagation of the crack, regardless
of the angle. The cracks oriented at angles θ = 0◦ or θ = 30◦ have the fastest
propagation (Fig.3.16a), though differences with other angles are small. This
seems to be confirmed also in Fig. 3.16b, where only angles smaller than 45◦

propagated within 60 cycles. Figures 3.17a-b, that refer to cases INT and
POR, respectively, show the same trend for different angles of the crack:
the crack growth is slightly slower than the case CRC, and only the crack
oriented at 90◦ seems to propagate considerably slower. All the results show
”S-shaped” curves and this is in contrast what was expected, i.e. greater
crack growth rates for longer cracks. The author believes that this may be
due to the small size of the fine mesh region where the cohesive elements are
placed, and to the big element size step up from that region to the edges of
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Figure 3.16: Crack length evolution for the ”CRC” case, from [P4] , assuming (a)
δ0 = 0.05 µm and (b) δ0 = 0.5 µm. In (b) only cracks with angles between 0◦ and 45◦

propagated within 60 cycles.

the RVE, where the element size is much bigger. In order to improve the
understanding, further investigations were carried out, where the jump-to
procedure described in Sec. 2.5.2 and an improved damage rate constitutive
law were adopted, see Eq. (2.38).

In Figs. 3.18-3.19 the crack lenght a is plotted versus the number of cycles
N , for different crack angles θ and for the different stress histories, (a) HDV,
(b) HVM and (c) HTAU, as described in Sec. 2.5.2. A value of a0 = 2.97 µm
was here assumed. In Fig. 3.18 the results for the case CRC are presented.
As shown in the figure, the crack growth rates once the first element has
failed at a number of cycles N1 are similar, while a sensible difference can be
found in the values of N1 for different angles. The crack grow rate da/dN
is always higher in the HDV case than for HVM and HTAU. For instance,
for θ = 0◦, the crack growth rates between the first and second element are
equal to (da/dN)HDV ≈ 5 · 10−9 m/cycle, (da/dN)HVM ≈ 4 · 10−9 m/cycle
and (da/dN)HTAU ≈ 2.7 · 10−9 m/cycle, respectively.

For an inclusion located at the depth of maximum Dang Van damage
factor, Fig. 3.18a, a cracks located at either 0◦ or 90◦ starts propagating
earlier than other angles. In [21] it was found that the maximum Dang Van
damage factor was reached in a material point close to the inclusion–matrix
interface and located at an angle θ (δ in [21]) approximately of 11◦ for a cell
subject to the HDV stress histories. Furthermore, in [21] it was also found
that a region with a slightly smaller damage factor than the maximum was
reached at θ = 90◦, see Fig. 3.13. This is in agreement with the results
obtained here. On the other hand, a crack located at an angle of θ = 45◦,
that was also expected to grow faster because of experimental observations
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Figure 3.17: Crack length growth for (a) INT and (b) POR cases, from [P4] . δ0 =
0.5 µm.

found in open literature, represents the safer case, with the biggest value of
N1. However, as said before, the nucleation process is here neglected, and
only fatigue growth of cracks with the same initial lenght is investigated. It
is thus still possible that θ = 45◦ represents a more harmful case. It must
also be noted that the jump-to procedure described in Sec. 2.5.2, has been
found to underestimate by a factor of approximately 38% the value of N1

with respect to the same cases without any jump. It was found, however,
that the jump procedure preserved the order in which the curves appear on
the a-N plane, see Fig. 2.15. In Figs. 3.18b-c it is possible to see that the
order of the a−N curves changes for different depths, and it is not possible to
find a particular trend that predicts a most dangerous angle θ for any depth.
All the curves in Figs. 3.18b-c, however, lie beyond the correspondent curves
of Fig. 3.18a, i.e. they have a longer life, which is of particular interest:
in fact it suggests that the stress history recorded at a depth of maximum
Dang Van damage factor predicts a shorter life than the stress histories of a
material point subject to the maximum Von Mises stress or maximum shear
stress. The only exception is the case of θ = 22.5◦ for HVM, that predicts
valus of N approximately 23% smaller than the curve for HDV.

Results in Fig. 3.19 show that for the POR case, i.e. when the inclusion
is substitued by a pore, the crack reaches a given lenght before the CRC case
at the same angle θ: the fatigue life is shorter. It is also evident from the
curves that when the particle is absent in the matrix, the particular depth
or, equivalently the particular stress history to which the material point is
subject, has little effect on the propagation life.

In Fig. 3.20 the crack propagation for a EHL stress history is compared
with results from Hertzian history (see Fig. 3.18a and Fig. 3.19a), which are
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Figure 3.18: Crack length versus the number of cycles for (a) HDV, (b) HTAU and (c)
HVM. The curves all refer to the case of an inclusion embedded in the matrix (CRC).

plotted again for convenience. The two stress histories are shown in Fig. 1.3.
The computations, carried out for the EHL case and for a smaller number
of cycles, show that in all the cases it results in a faster propagation, though
the differences are small.

The last results also showed the same shape of the a-N curves as obtained
in [P4] , and some considerations have to be made. As the same parameters
of the test case were used for these computations, the author believes that
it might be due to a shielding effect of the inclusion. In fact, for the test
case, the crack growth rate is increasing with the crack lenght as expected,
Fig. 2.12. Stresses in a material point decrease with distance from the
inclusion, and this may cause the damage rate in the elements following a
failed element to be smaller and smaller, as this is function of tractions and
opening displacements, see Eq. (2.34). In order to investigate the problem,
some computations were runned, for θ = 0◦ and θ = 90◦ and for the same
element size, but with a longer zone where the mesh is highly refined. Thus,
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Figure 3.19: Crack length versus the number of cycles for (a) HDV, (b) HTAU and (c)
HVM. The curves all refer to the case of a pore embedded in the matrix (POR).
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Figure 3.20: Crack propagation curves for (×) Hertzian and (◦) EHL stress history. (a)
Results for inclusion (CRC) and (b) for a pore (POR).
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ahead of the crack tip more elements with size c are present, and therefore
the mesh effect, if present, is minimized. Moreover the jump-to procedure
was deactivated in this analysis. Three cases were analyzed, with a number
of cohesive elements NCZ

elm = 16 (as previously), NCZ
elm = 48 and NCZ

elm = 80,
respectively. It was found from Fig. 3.21 that, for the cases with a longer
refined mesh zone, the curvature decrease less rapidly, suggesting that there
could be also a mesh effect as the mesh size increases very rapidly outside the
refined zone. For both the angles θ = 0◦ and θ = 90◦ it can be also noted that
for bigger values of NCZ

elm the crack starts propagating at a smaller number of
cycles Despite the better results obtained increasing NCZ

elm, the calculations
become extremely heavier, and computational time is increased as much as
a factor of 10. Moreover, it can be seen that the concavity is still present.
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Figure 3.21: Crack length a versus the number of cycles N for different values of NCZ
elm

and for the crack angles θ = 0◦ and θ = 90◦.

3.3.1 Variable load

As described in Sec. 2.2.1, it is possible to model the load distribution in a
roller bearing and calculate the stress history in a material point in the ring
at a particular depth. So far it was always assumed that the stress history
applied was constant and corresponding to the maximum load on the roller
Qmax. However, it has been seen that a roller is loaded by a force Q(φ) that
depends on its angular position φ (see Fig. 2.4). In Fig. 3.22 the resulting
stress history in a material point located at the maximum Dang Van damage
factor depth is plotted. For reference, the stress history corresponding to the
maximum load Qmax is highlighted. In Fig. 3.23 the fatigue curves for an
alumina inclusion subject to the stress history of Fig. 3.22 are plotted. In the
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Figure 3.22: Stress history for a material point located at the maximum Dang Van
damage factor depth in a bearing ring. The variable load Q(φ) (see Sec. 2.2.1) acting
on the raceway results in different amplitudes of the stress components Σ11 (blue), Σ22

(green) and Σ12 (red) over a complete revolution of the bearing. For comparison the stress
history corresponding to the maximum load Qmax is also highlighted.

same figure, the curves referring to the stress history caused by a constant
load Qmax are also depicted. A value of Qmax corresponding to a maximum
Hertzian pressure p0 = 1 GPa has been used here, see Sec. 2.2, Eq. (2.4).
It should be noted that, in the case of a variable load, each revolution of
the bearing corresponds to the contact of seven loaded rollers (Fig. 3.22),
as assumed in Sec. 2.2.1, and therefore a direct comparison cannot be made
between the two sets of curves in Fig. 3.23. However, if we multiply the
number of cycle N obtained in the case of variable load by a factor of 5.2,
the curves almost coincide with the curves obtained for a constant load.
This suggests that the beginning and the end of the stress history in Fig.
3.22 have little influence on the crack propagation. Results obtained varing
the maximum load Qmax are presented in Fig. 3.24, in terms of number
of cycle N1 that are necessary to fail the first cohesive element along the
crack front, for a given angle θ. The four different maximum loads are here
expressed in terms of the maximum Hertzian pressure p0, see Eq. (2.4) in Sec.
2.2. Thus the values of p0 in the figure represent the values of the Hertzian
pressure distribution corresponding to the maximum load (Q(φ) = Qmax).
As expected the curves, in analogy to S − N curves, show that a bigger
value of the load applied corresponds to a smaller value N1 to start the crack
propagation. Also it is seen that, among the angles investigated, the angle
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θ = 90◦ represents the worst case.
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Chapter 4

Conclusions

The goal of the present work was to develop a deeper understanding on failure
for rolling contact fatigue. A particular focus was given to failure in roller
bearings for windmill application, as the thesis was part of a bigger project
called REWIND, aimed to improve the design and the reliability of wind
turbines. The outcome of the project includes the present thesis and the 4
research publications [P1] -[P4].

In the first part of the project a 2D plane strain finite element model
of a roller bearing was investigated, and results were interpreted in lights
of the Dang Van multiaxial fatigue criterion. A modified bilinear safe locus
proposed in [52] and predicting a more conservative behavior for high negative
hydrostatic stresses was adopted. Both a Hertzian and a elastohydrodynamic
lubrication load distribution were investigated and the results were compared.
It was found that for a maximum pressure p0 = 1 GPa, the maximum
Dang Van damage factor for the bilinear safe locus in the case of a Hertzian
load was reached in the subsurface region and it was approximately n =
0.807, corresponding to a safety factor of 1.24. Results obtained for the
EHL load were similar, but a smaller damage factor was reached. It has to
be noted that even though p0 = 1 GPa is a typical nominal pressure for
bearings in the gearbox of a wind turbine, much higher pressure peaks can
be reached, due for instance to transient phenomena such as grid/generator
engagements/disengagements. In these cases very high contact stresses may
rise and maximum pressure peaks can reach 3 GPa. It is clear then that even
if the Dang Van criterion predicts a safe life for an homogeneous material
and for Hertzian maximum pressure p0 = 1 GPa, a higher safefty factor
is needed, and therefore a smaller maximum pressure is suggested in the
design phase, or a larger bearing. Moreover it has to be noted that the
maximum damage factor was reached at a depth very close to 0.5b, with b
the Hertzian half-contact width. Such a critical depth represents also the
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depth were the maximum orthogonal shear stress τxy is reached, and it is
at the basis of the well known Lundberg-Palmgren model for bearings life.
The influence of a hardness treatment, modelled by imposing an assumed
hardness distribution along the depth and relating it to the fatigue limit,
was investigated. The hardness treatment, assumed to be beneficial for the
fatigue life as reported in [93], resulted in a smaller Dang Van damage factor
reached in the subsurface region, with a maximum reached at the interface
between hardened material and untreated material. Compressive residual
stresses were found to be beneficial for fatigue life (smaller damage factor),
but only for the original Dang Van safe locus.

The macroscopic investigation of the roller bearing resulted in some in-
sights, but the safe life predicted by the Dang Van criterion does not match
the experimental observations reported in literature that support the belief
of no infinite life for such mechanical elements. Moreover, poor lubrication,
overloads and inclusion content are just some of the factors that can reduce
the fatigue life. The latter is well known to be extremely relevant in the
very high cycle regime and in particular in rolling contact, as most subsur-
face failures are found to nucleate at non-metallic particles, such as alumina,
titanium nitride or manganese sulphide. In windmill bearings, typical flaws
called ”butterflies” or ”white etching cracks”, also suggest that rolling con-
tact fatigue cannot be really understood without taking into account the
effect of inclusions. A micro-mechanical study aimed to investigate the in-
fluence of alumina and titanium nitride in a AISI 52100 bearing steel matrix
was for this reason carried out. In the study, a single particle was embedded
in the matrix, and the RVE was subject to a typical rolling contact stress his-
tory as periodic boundary conditions. Both stress histories from a Hertzian
and from a elastohydrodynamic lubricated load distribution were applied,
and also the volume fraction and the inclusion orientation were investigated.
The stress concentration due to the elastic properties mismatch resulted in a
higher Dang Van damage factor than for the macroscopic study, and it was
shown that the maximum was always reached in the matrix and in a region
very close to the inclusion-matrix interface. For the EHL stress history, it
was also seen that a high damage factor was also reached, beside the inter-
face, in a characteristic band, oriented at approximately 45◦ to the rolling
direction.

In the last part of the project fatigue crack growth under rolling con-
tact was studied by means of fatigue cohesive elements. The Roe-Siegmund
model was adopted and fatigue was simulated by the continous evolution of
a damage variable in the cohesive elements. The characteristic parameters of
the model were fitted, in a test case, on a Paris law with typical values for a
bearing steel and were subsequently used in a micro-micromechanical study,
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with an alumina inclusion embedded in a bearing steel matrix. In the RVE, a
pre-existing crack was assumed to have nucleated, and only the fatigue crack
growth was analyzed. Thus, the nucleation process was not accounted for.
Stress histories recorded at different depth were applied as periodic boundary
condition and it was found that the depth of maximum Dang Van damage
factor was characterized by a faster propagation. Calculations where the in-
clusion was replaced by a circular pore returned a shorter fatigue life than
the case with the inclusion. When the RVE was subject to an EHL stress
history, this always resulted in a shorter life compared to the Hertzian load.
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Abstract  A 2-D plane strain finite element simulation of rolling contact in wind turbine roller bearings is 

used to study very high cycle fatigue (VHCF). Focus is on fatigue in the inner ring, where the effect of 

residual stresses and hardness variation along the depth are accounted for. The purpose here is to ensure that 

VHCF failure does not initiate. For the purpose the Dang Van multiaxial fatigue criterion is applied, 

simulating the contact on the bearing raceway by substituting the roller with the Hertzian static pressure 

distribution. Contact without friction is assumed here and the material used for the simulation is taken to be 

an AISI 52100 bearing steel. Both an initially stress free bearing and different residual stress distributions are 

considered. An assumed residual stress distribution, equilibrated by an elastic step calculation, is 

subsequently subjected to the stresses caused by the contact with the roller. The effect of variable hardness 

along the depth is also studied, relating its values to the fatigue limit parameters for the material and it is 

found that its distribution can have a significant influence on the probability of failure for bearings subjected 

to VHCF loading. 

 

Keywords  High Cycle Fatigue, Wind turbine, Dang Van 

 

1. Introduction 
 

It has been seen [1,2] that one of the important reasons of corrective maintenance for a wind turbine 

is a failure due to rolling contact fatigue (RCF) in one of the bearings in the gear box [3]. Therefore, 

the interest on the reliability of gearboxes grew over the last years [4,5]. Though failure rates in  

electrical systems and other subassemblies in a wind turbine are in fact higher, or at least 

comparable with faults in the gearbox, recent studies [68] show that the downtime, in terms of 

hours lost per failure, is much higher for latter ones. This, rather than the failure rate, is therefore 

one of the main reasons for the industry's focus on these subsystems. 

In the gearbox, the bearings used are mostly roller bearings, due to the high loads involved. Even if 

the lubricant is kept clean and the bearing is properly lubricated, roller bearings sometimes 

experience rolling contact fatigue that appears as a crack starting below the surface of the inner race 

[9]. Once nucleated, this crack quickly propagates to the surface, resulting in particles of material 

flaking and leading to the failure of the bearing. Roller bearings for wind turbine applications 

operate in the fully elastic range and are subjected to a very high number of load cycles, with an 

expected life of 20 years [10]. However, practical experience show a high life scatter in these 

machinery elements, with failures that sometimes occur after a few years. The failure of these 

elements is thought to be due mainly to inhomogeneities and nonmetallic inclusions, that act as sites 

for crack nucleation under rolling contact fatigue. The cracks usually nucleate around inclusions, 

where the material experiences high stress concentration and typical butterfly defects are observed. 

The modelling in the present paper is focused on ensuring that the cyclic stress fields stay within 

limits so that very high cycle fatigue damage does not initiate. Several multiaxial fatigue models 

have been developed [1115], and some of them have been applied to RCF problems. The Dang 

Van criterion [16] and its further modifications has been widely used, over the last decades,  in 

automotive industry [17] and in rolling contact problems as railwails and bearings [18,19]. It seems 

that the Dang Van criterion is not sufficiently conservative for negative values of the hydrostatic 

stress, therefore a modified version has been recently proposed [20], predicting a less sensitive 

behavior with respect to this stress component. This paper also includes a study of the overall effect 
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of pre-existing residual stresses in the material, resulting from hardening process. Using the Dang 

Van criterion, different residual stresses and hardening distributions are studied, and results are 

compared. 

2. Problem formulation 
 
Part of the initial geometry of the inner ring of the roller bearing is illustrated in Fig. 1. The inner 

ring and the shaft have been considered as one body of external radius R=Rs+tk, where Rs is the 

shaft radius and tk is the thickness of the inner ring. This assumption is equivalent to neglecting 

contact stresses related to the mounting and any local stress concentrations at the interface between 

ring and the shaft. 

In order to reduce the computational time, only an angular sector of the solid, with angular width 

α=10°, has been modeled. Far away from the surface, the region analyzed is terminated by a 

circular arc boundary with radius r. Along the edges, the solid is free to slide in the radial direction, 

being constrained in the direction perpendicular to the edges. A cartesian coordinate system Oxyz is 

used, with the origin O in the center of curvature of R, the axis z pointing out of the paper, and the 

axes x and y, respectively, horizontally and vertically aligned. As a 2-D model is studied, no edge 

effects in the direction perpendicular to the plane of the model are accounted for. The pressure 

acting on the raceway and resulting from the contact with the roller, is evaluated according to 

classical Hertzian theory, and is considered identical in any plane parallel to xy: 

                             pሺx,yሻ=p
0
 [1-(

x-xp

a
)
2
-(

y-yp

a
)
2
]
0.5	                       (1) 

In Eq.(1), p0 is the maximum value of the pressure, xp and yp the coordinates of the center of the 

contact area, a the semi-width of the contact area under the roller and x and y the coordinates of a 

generic point on the surface in the contact area. The value of p0 is related to the force acting on the 

roller by the relation 

                                    p
0
= ටq



	                                  (2) 

where  is function of the Young moduli Ei and Poisson ratios i of the roller and the inner race, 

here assumed of the same material. The constant  is a pure function of the curvature radii and 

q=F/L is the force per unit length acting on the roller.  

A bearing with the inner ring thickness tk=19 mm, mounted on a shaft of Rs=200 mm, has been used 

in the simulations. Furthermore values of 70 mm and 20 mm, respectively, are assumed for the 

length and the radius of the roller. A load of 37 KN is considered pushing the roller against the inner 

race, resulting in a static Hertzian maximum pressure p0~1	GPa. The contact is assumed continuous 

without any vibrations effects. No friction or sliding are here accounted for. 

The pressure distribution, that simulates the contact, is assumed to move along the surface, in a 

region where the mesh is uniform. Far away from the zone affected by the contact stresses, instead,  

the elements are stretched, both in the radial and in the tangential direction, close to the edges.  

The material is considered isotropic, with Young modulus E=210 GPa and Poisson ratio =0.3. 

In terms of the displacement components ui on the reference base vectors the strain tensor is given 

by 

                                  İi,j=
1

2
(u

i,j
+uj,i)                               (3) 

where (),j denotes partial differentiation. The equilibrium equations, written in terms of the stress 

tensor σij and the strain tensor İij, are obtained by the use of the principle of virtual work: 

 

׬                               σijįİijV
dV= ׬ TiuiS

dS                          (4) 
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where V and S are the volume and surface of the region analyzed, and Ti are the specified surface 

tractions. 

 
                       (a)                             (b)  

Figure 1. (a) Geometry used to model the problem: r=100mm, Rs=200mm, tk=19	mm, α=10°. (b) A detail 

of the mesh used.  

 

2.1 The Dang Van criterion 
 
A brief introduction to the basis of the fatigue criterion used will be given (see further details in 

[16]). The Dang Van criterion is a stress based multiaxial fatigue criterion. It relates the variation of 

the stress state in a material point to a critical parameter, that should not be reached: 

                                    f [σ
ij
(t)]	≤	λ                               (5) 

The critical value λ is usually function of the fatigue limits in pure torsion, w, and the fatigue limit 

in pure bending, σw, and its choice is essential in a multiaxial criterion since it establishes which is 

the most important stress component that is assumed to have influence on the failure. The Dang Van 

criterion, in particular, can be formulated as: 

                                 max(t)+αDVσH(t) ≤  w                          (6) 

where 

                                   αDV= 3 (
w

σw
-

1

2
)                              (7) 

is a constant that depends on the material fatigue limits previously mentioned, σH(t) is the 

instantaneous hydrostatic component of the stress tensor and max(t) is the instantaneous value of the 

Tresca-like shear stress  

                                   max(t)= 
σIෝ (t)-σIIIෞ (t)

2
                             (8) 

The stress deviator is obtained by the usual definition: 

                                  sij(t)=σij(t)- įijσH
(t)                            (9) 

Then a constant tensor, sij
m, is calculated by solving the minmax problem 
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                            sij
m=min

sij
*

maxt [(sij (t)-sij
*)(sij (t)-sij

*)]                    (10) 

and the shifted deviator tensor is defined as 

                                   sijෝ (t)=σij(t)- sij
m                             (11) 

The principal values of the shifted tensor appear in Eq. (8). 

The problem in Eq. (10) is solved iteratively using a move limit approach : 

                      	sij
m=min

sij
*

maxt  [(sij (t)-sij
*)(sij (t)-sij

*)] =min
sij
*

[max
t

  ]             (12) 

with 

                                  = (t,  sij (t),  sij
*)                           (13) 

Choosing an arbitrarily starting value for sij
* , for example the average deviatoric stress tensor in the 

stress history for that material point, then for every iteration we identify the maximum value of . 

Let tm be the time step at which max  happen, then the value of sij
* 	is updated  

                                     sij
*=sij

*+	dsij
*                               (14) 

with  

                                  dsij
*
=  (sij (tm)-sij

*)                           (15) 

which can be interpreted as a modified steepest descend method. If at one step  increases,  is 

reduced to 0.25 . The iteration is stopped if the norm of the difference between s୧୨∗  at the current 

iteration step k and at the previous step falls into a tolerance range: 

                                  ቛsij
*]

k
-sij

*]
k-1
ቛ ≤	İtoll                           (16) 

Although a superimposed hydrostatic tension has an effect on the fatigue life in normal cyclic 

loading [21], several studies [11] have shown that a superimposed mean static torsion has no effect 

on the fatigue limit of metals subjected to cyclic torsion. The independency of the mean shear stress 

is correctly predicted through the minimization process in Eq. (10), see also [20]. The Dang Van 

criterion could also be used with ୫ୟ୶ሺtሻ representing the maximum shear stress at every point of 

the stress history. Then, one would not account for the experimental observation that in cyclic 

torsion fatigue failure is independent of the mean shear stress, and this would usually result in lower 

permitted stress levels. 

The Dang Van proposal is equivalent to request, in the σH(t) - max(t)  plane, that all the 

representative points of the stress state, fall below the line intersecting the max(t) axis in w with 

a negative slope of α: if all of the points fulfill this requirement, the criterion predicts a safe life for 

the component (see Fig. 2). 

The original Dang Van safe locus predicts a detrimental effect of tensile hydrostatic stress while an 

over-optimistic positive effect is expected from compressive values. The negative effect of tensile 

mean stress is well known in literature from classic Haigh diagrams, that also show a flat response 

for negative stress ratios [22, 23]. For this reason it is not too conservative to choose a different safe 

locus in the Dang Van plane to be in agreement with this response, for example a bilinear limit 

curve, as proposed recently in [20]. The safe locus could be therefore identified in two segments, 

one with a null slope and the other one with a negative slope equal to α (Fig. 2). For σH(t)≥σA the 

safe region is identical to the original Dang Van region, while for smaller values of σA, the cut-off 

with the flat curve replaces the Dang Van limit curve by a curve more on the safe side. Values of 

σA =σw/3	and of A=σw/2 have been proposed in [20], on the basis of experimental results obtained 

on high-strength steel smooth specimens. However, it is possible to choose a different set of values 

for (σA,	A), though here the same choice has been made. If the ratio of the fatigue limits, σw/w, 

was equal to 0.5, the value αDV in Eq. (6) would be zero, which is far from reality, as steels usually 
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show ratios between 0.57 and 0.8 [21]. Anyway, it is always possible to assume different values of 

σA, more or less conservative than the cut off shown in Fig 2. 

In the following sections, both the original safe locus and a new one with the mentioned cut-off will 

be used, and results will be compared. For w a value of 360 MPa has been imposed [24] and a 

ratio σw/w=√3. With this assumption the value of the constant αDV used in the calculations is 

approximately 0.23205. 

 
Figure 2. The Dang Van safe locus: the dashed line represents the alternative limit curve, for σH(t)<σA, here 

assumed equal to σw/3, as proposed in [20]. 

 

For a material point subjected, at time t, to σH(t) and max(t), the ratio between max(t) and the 

corresponding limit value for that σH(t) is here used to define the damage factor n(t). Points on the 

limit curve, then, result in a unit damage factor; points inside the safe region have damage factor 

smaller than one. As previously mentioned, two different safe loci are here used: one with a linear 

limit curve and another one with a bilinear limit curve. Consequently, a damage factor is here 

defined as 

                                  n(t)=	 max(t)

w-αDV σH(t)
                              (17) 

if referred to the original Dang Van's safety region or 

                          

nሺtሻ=ቐ max(t)

w-αDV σH(t)
      								if &σH>σA

max(t)

A
                  &if	σH≤σA  

   																																												  (18) 

when the bilinear limit curve is used. As mentioned above, σA and A are chosen equal to σw/3 

and σw/2, respectively. 

3. Results and discussion 
 
The Dang Van criterion has been applied to the rolling contact problem and for the geometry 

described in section 2. The load history has been divided in an adequate number of steps and, for 

each time step, the value of the damage factor n(t) has been calculated, both with the original Dang 

Van limit curve and with the modified one. The maximum value in time 

                                   n= maxt n(t)                                (19) 

is then chosen, as representative for that material point. If this n<1, the prediction is that initiation 

of fatigue failure will not occur in the material point. The representative points corresponding to the 

max value of the damage factor are plotted, in Fig. 3, in the Dang Van region, for all the integration 

points in the region analyzed. 

In Fig. 4 the maximum values of this factor n are plotted against the distance from the surface. 

Both safe regions, as described before, are used. As we can see, n reaches the highest value in a 

sub-surface region, about 0.20 mm below the surface : this is consistent with literature, where a lot 

of sub-surface initiated failures in bearings for windmill applications are reported. 
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Figure 3. The Dang Van criterion: in order that the failure does not occur, all the representative points should 

be inside the safe region delimited by the limit curves. In this figure, and for the problem considered, only 

the representative points corresponding to max value of the damage factor are plotted for all the integration 

points in the region analyzed. 

 
Figure 4. Damage factor versus distance from surface (a) and versus distance from surface  non 

dimensionalized by the half contact width (b). 

  

3.1 Hardness variation 
 

The relationships between fatigue strength, the hardness and the ultimate tensile strength are used, 

in this section, to study the influence of the hardness variation in the inner ring. 

Since fatigue crack initiation is mainly caused by slip within grains, the yield stress, in the past, has 

been thought to have the strongest correlation with the fatigue limit. However Murakami [25] has 

found better correlations between tensile strength, hardness and fatigue limits. 

In order to correlate the hardness to the fatigue limit, w, this limit has first been related to σUTS 

through an approximate expression proposed in [26] for low-alloy steels: 

                                w=σw/√3≈ 0.274	σUTS	                     (20) 

Denoting the Brinell hardness by HB and using an approximate relationship found in [27] 

                               σUTS=0.0012 HB2+3.3 HB	                       (21) 

an approximate final relation between w and HB can be written as 

                              w=0.274 (0.0012 HB2+3.3 HB)                    (22) 

In the following we assume that the fatigue limit w is given by the Eq. (22). If another expression w(HB) applies for a material, this will not in principle change the procedure. In fact, all we need is 
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the value of w in each material point of the solid analyzed. 

Different hardness distributions along the depth have been studied here. Thus the value of w 

corresponding to the value of the hardness at that depth has been imposed in the material for each 

Gauss integration point. 

The different hardness distributions imposed in the subsurface region of inner ring and the 

correspondent w distributions are shown in Fig. 5 (a)(d). At distances greater than 1 mm from 

the surface, HB, for distributions (a) and (b), are taken to be constant, at a value such that the 

related fatigue limit, w=w(HB), is approximately 360 MPa. This assumption is equivalent to 

considering how the effect of a surface hardening process would benefit the fatigue response of the 

bearing. Results show that the values of the damage factor n and the depth at which the maximum 

n is reached, are strongly dependent on the particular distribution of hardness imposed (Fig. 6). 

 
Figure 5. Hardness distributions ((a)-(b)) and correspondent values of w ((c)-(d)) in the first millimeter of 

depth . 

 
Figure 6. Damage factor versus distance from surface. In (a) the original Dang Vang safe locus has been 

used, while in (b) the bilinear limit curve, as described in section 2.1. The different distributions are referred 

to Fig. 5.  
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For all the cases analyzed, the peak of the n-curve shifts away from the surface of the inner ring and, 

for cases shown in Figs. 5a and 5b, the peak values of n are smaller than the correspondent peaks 

for a material with uniform hardness. In other words, the rings with extra surface hardening have 

higher safety against fatigue failure. 

 

3.2 Residual stresses 
 
In order to analyze the influence of pre-existing stresses in the bearing, two different residual stress 

distributions have been considered. The bearing with the assumed residual stress distribution, 

equilibrated by an elastic step calculation, is subsequently subjected to the stresses caused by the 

contact with the roller. The results obtained with the Dang Van criterion are then compared with the 

results obtained in the bearing free of residual stresses. 

 
Figure 7. Convention used for the principal stresses in the polar coordinate system. 

 

In Fig. 7 the convention used to name the residual stresses is clarified, while, in Figs. 8a and 8b, the 

residual stress distributions, in terms of principal stresses, are plotted versus the distance from the 

surface. Far away from the surface, the residual stresses are assumed to be constant and near zero. 

The results for the two different safe loci (Fig. 2) are shown in Fig. 9. The pre-existing stress states 

in the inner ring, in the case of the modified safe locus, have little effect, neither positive nor 

negative (Fig. 9a). The residual stresses, in fact, result in a simple shift along the σH axis in the 

Dang Van region (Fig. 2) but this does not change the distance from the limit curve since all the 

most critical material points are subjected to values of σH smaller than σA and therefore they are 

in the region where the limit value for max is constant and equal to A. If the original limit curve 

is used, instead, the residual stress distribution (a) from Fig. 8 results in a reduction of the 

maximum damage factor for the compressive residual stresses, but an increase of the maximum 

damage factor for tensile residual stresses (Fig. 9b). 

 

 
Figure 8. Residual stresses assumed in terms of principal stresses. Distribution (b) is obtained by multiplying 

(a) by -1. 
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                     (a)                                        (b) 

Figure 9. Damage factor versus distance from surface for bilinear (a) and original limit curve (b).  

4. Conclusions 
 
The Dang Van criterion has been applied to a roller bearing for windmill applications and the 

influence of hardness variations and different residual stresses has been studied. Results have shown 

that, according to the Dang Van criterion, the highest damage factor is reached below the surface, 

regardless the safe locus used. This suggests that failure is most likely to initiate in the material a 

little below the surface, which is consistent with literature that reports subsurface failures of roller 

bearings for wind turbine applications. 

The effect of increased hardness, in a thin layer close to the surface, has also been studied, relating 

the hardness to the fatigue strength of the material. The particular hardness distribution induced is 

seen to be important in evaluating the safety against fatigue for the bearing. Assuming that a higher 

fatigue strength corresponds to a higher Brinell hardness, the results indicate that a hardening 

surface treatment will be beneficial in terms of fatigue damage. However, surface hardening is not 

really possible for AISI 52100 bearing steel, though some recent work [28] seems to indicate an 

improvement of fatigue strength, for these steels, by induction heating and repeated quenching. It 

may be noted also that some steels show a maximum for the curve wሺHBሻ, which would limit the 

applicability of Eq. (22). In fact, Eq.(22) is valid only for smaller values of hardness. 

Bearings with different residual stress distributions have also been studied and calculations carried 

out show, for the Dang Van criterion, a positive effect of compressive residual stresses in the 

subsurface region according to the original safe locus. No influence of residual stresses has been 

found with the use of the modified safe locus and for the load case analyzed. 
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Original Article

Application of Dang Van criterion to
rolling contact fatigue in wind turbine
roller bearings under elastohydrodynamic
lubrication conditions

Michele Cerullo

Abstract

A 2D plane strain finite element program has been developed to investigate very high cycle fatigue in wind turbine roller

bearings due to rolling contact. Focus is on fatigue in the inner ring, where the effect of residual stresses and hardness

variation along the depth is accounted for. Both classic Hertzian and elastohydrodynamic lubrication theories have been

used to model the pressure distribution acting on the inner raceway and results are compared according to the Dang Van

multiaxial fatigue criterion. The contact on the bearing raceway is simulated by substituting the roller with the equivalent
contact pressure distribution. The material used for the simulations is taken to be an AISI 52100 bearing steel and linear

elastic behavior is here assumed. The effect of different residual stress distributions is also studied, as well as the effect of

variable hardness along the depth, relating its values to the fatigue limit parameters for the material. It is found that both

for Hertzian and elastohydrodynamic lubrication contacts, the Dang Van criterion predicts that fatigue failure will first

occur in the subsurface region and that, regardless of the specific pressure distribution used, the hardness distribution

can have a significant influence on the safety against failure for bearings subjected to very high cycle fatigue loading.

Keywords

High cycle fatigue, wind turbine, Dang Van, rolling contact fatigue, elastohydrodynamic lubrication
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Introduction

It has been seen1,2 that one of the important reasons

(we here refer to causes related to mechanical failure)

of corrective maintenance for a wind turbine is failure

in one of the bearings in the gear box.3 Therefore, the

interest in the reliability of gearboxes has grown over

the last years.4,5 Though failure rates in electrical sys-

tems and other subassemblies in a wind turbine are in

fact higher, or at least comparable with faults in the

gearbox, recent studies6,7 show that the downtime, in

terms of hours lost per failure, is much higher for the

latter. This, rather than the failure rate, is therefore

one of the main reasons for the industry’s focus on

these subsystems.

In the gearbox, the bearings used are mostly roller

bearings, due to the high loads involved. The majority

of wind turbine gearbox failures appear in the inter-

mediate and high–speed shaft bearings,8 while failure

is more unlikely to be observed in the planet bearings.

It is well known that even if the lubricant is kept clean

and the bearing is properly lubricated, roller bearings

sometimes experience failure that can appear either as

a surface crack or as a subsurface crack. Both mech-

anisms have been denoted as rolling contact fatigue

(RCF) in a general review on this subject.9 In the

present investigation, the analyses focus on determin-

ing the location in the bearing (surface or subsurface)

where the safety against fatigue initiation is smallest.

Roller bearings for wind turbine applications operate

in the fully elastic range and are subjected to a very

high number of load cycles, with an expected life of 20

years.10 This expected life corresponds to a number of

cycles to failure in the order of 109–1011 cycles, which

is what is referred to as very high cycle fatigue

(VHCF) regime. It is commonly believed9,11 that fati-

gue failure in this regime is mainly due to interior
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cracks that may nucleate at nonmetallic inclusions. In

wind mill roller bearings, a crack may start below the

surface of the inner race and, once nucleated, this

crack can quickly propagate to the surface, resulting

in particles of material flaking and leading to the fail-

ure of the bearing.

Beside the expected life, practical experience shows

a high life scatter in these machinery elements, with

failures that sometimes occur after a few years.8 The

failure of these elements is thought to be mainly due

to inhomogeneities and nonmetallic inclusions that

act as sites for crack nucleation under RCF. The

cracks usually nucleate around inclusions, where the

material experiences high stress concentration and

typical butterfly defects are observed.12–14

The modeling in the present paper is focused on

ensuring that the cyclic stress fields caused by elasto-

hydrodynamic lubricated (EHL) contact stay within

limits so that VHCF damage does not initiate. A few

preliminary results for Hertzian contact stresses and a

cruder mesh have been given in Ref. 15. Several multi-

axial fatigue models have been developed,16–20 and

some of them have been applied to RCF problems.

The Dang Van criterion21,22 and its further modifica-

tions have been widely used, over the last decades, in

the automotive industry23 and in rolling contact prob-

lems as railways and bearings.24,25 It seems that the

Dang Van criterion is not sufficiently conservative for

negative values of the hydrostatic stress,25–27 therefore

a modified version has been recently proposed,27 pre-

dicting a less sensitive behavior with respect to this

stress component. This paper also includes a study

of the overall effect of preexisting residual stresses in

the material, resulting from a hardening process.

Using the Dang Van criterion in a Finite Element

Method (FEM) code developed by the author, differ-

ent residual stresses and hardening distributions are

studied, and results are compared.

Problem formulation

Part of the initial geometry of the inner ring of the

roller bearing is illustrated in Figure 1. The inner ring

and the shaft have been considered as one body of

external radius R¼Rsþ tk¼ 219mm, where

Rs¼ 200mm is the shaft radius and tk¼ 19mm is the

thickness of the inner ring. This assumption is equiva-

lent to neglecting contact stresses related to the mount-

ing and any local stress concentrations at the interface

between the ring and the shaft. A value of

Rroll¼ 21mm has been considered for the roller radius.

In order to reduce the computational time, only

an angular sector of the solid, with angular width

� ¼ 5
�
, has been modeled. Far away from the sur-

face, the region analyzed is terminated by a circular

arc boundary with radius r. Along the sides, the solid

is free to slide in the radial direction, being con-

strained in the direction perpendicular to the sides.

A Cartesian coordinate system Oxyz is used, with

the origin O in the center of the shaft, the axis z

pointing out of the paper, and the axes x and y

horizontally and vertically aligned, respectively. As

a 2D model is studied, no edge effects in the direc-

tion perpendicular to the plane of the model are

accounted for.

Two different pressure distributions (Figure 2) are

used to simulate the contact between the roller and the

raceway.

(a)

(b)

Figure 1. Geometry used to model the problem: r¼ 100mm, R¼ 200mm, tk¼ 19mm, Rroll¼ 21mm, � ¼ 5
�
. On the right, a detail

of the mesh used.
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A first distribution pH is taken to be the static

Hertzian pressure distribution for a line contact

pHðx, yÞ ¼ p0 1� x� xp

a

� �2

� y� yp

a

� �2
� �ð1=2Þ

ð1Þ

In equation (1), p0 is the maximum value of the pres-

sure, xp and yp the coordinates of the center of the

contact area, a the semi-width of the contact area

under the roller, and x and y the coordinates of a

generic point on the surface in the contact area. It

should be noted that in the original Hertz model, no

vertical coordinate is included and an equivalent half

space is introduced. However, here it was chosen to

map the Hertzian distribution on a round surface. The

value of p0 is related to the force acting on the roller

by the relation

p0 ¼
ffiffiffiffiffiffiffiffi

q

�

�

�

s

ð2Þ

where � ¼ ð1��2
1

E1
þ 1��2

2

E2
Þ�1 is function of Young’s

moduli Ei and Poisson’s ratios ni of the roller and

the inner race, here assumed of the same material.

The constant � ¼ ð1
R
þ 1

Rroll
Þ�1 is a function of the

curvature radii and q¼F/L is the force per unit

length acting on the roller.

The second pressure distribution used in calcula-

tions, pehl, was inspired by Jacobson et al.,28 where a

numerical program was developed to study different

EHL contact problems. Under EHL conditions, the

high pressure causes the viscosity of the lubricant to

increase exponentially: thus the lubricant becomes

able to carry both normal and shear load and causes

deformations in the two bodies in contact. As the

normal load used in Ref. 28 is too small compared

to typical loads for bearings in a wind turbine

gear box, the original normal pressure distribution

(Figure 4(b) in Ref. 28) has been scaled, ensuring

that the total load, F, expressed in terms of the inte-

gral of the pressure over the contact area, is the same

for the two distributions

F ¼
Z

AH

pH ds ¼
Z

Aehl

pehl ds ð3Þ

Thus, no separate solution has been obtained here

for the EHL contact problem, but the pehl distribution

applied here is considered useful for an indicative

parametric study. Also, the particular profile

obtained, has a more pronounced pressure spike,

which is typical for high speeds, as those expected in

high speed shaft roller bearings that rotate up to

1500–1800 r/min. The shear load distribution that

depends, among others, on the normal load, on the

viscosity of the lubricant, and on the relative velocity

of bodies accounts for the friction in the contact. In

order to take this into account, in some calculations a

simplified assumption, indicated by tribological calcu-

lations currently carried out at the Technical

University of Denmark,29 was used for the shear

stress distribution: pt ¼ 0:1 pehl. The proportionality

of pt is equivalent to consider a uniform value of the

friction coefficient throughout the contact. In these

calculations this shear load distribution has thus

been applied to the surface of the inner ring in con-

tact, together with the normal distribution pehl. The

resulting friction traction on the inner ring is oriented

in the direction of the x axis.

A bearing with the inner ring thickness tk¼ 19mm,

mounted on a shaft of Rs¼ 200mm, has been used in

the simulations. Furthermore values of 70 and 20mm,

respectively, are assumed for the length and the radius

of the roller. A peak load of 37 kN is considered push-

ing the roller against the inner race, resulting in a

static Hertzian maximum pressure p0 � 1 GPa. This

value of the pressure is a typical working condition

for roller bearings in the gearbox, though it must be

noted that sometimes the rings can experience over-

loads, due for instance to misalignments or grid con-

nection, that can increase this value. Here however the

load on the roller was considered constant. The

Hertzian contact half-width, a, is equal to 0.33 mm

and the contact is assumed continuous without any

vibration effects.

The pressure distributions, that simulate the con-

tact, are assumed to move along the surface, in a

region where the mesh is uniform. The elements size,

which is here 20 mm, is then smoothly increased from

this region to the edges, by a step-up process.

The material is considered isotropic, with Young’s

modulus E¼ 210GPa and Poisson’s ratio n¼ 0.3.

Figure 2. The two different normal pressure distributions

used in the simulations, pH and pehl. The two distributions are

here plotted on an equivalent flat half space, according to the

Hertzian model, where xp in equation (1) is the center of the

Hertzian pressure distribution.
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In terms of the displacement components ui on the

base vectors, the strain tensor is given by

"ij ¼
1

2
ðui,j þ uj,iÞ ð4Þ

where ðÞ,j denotes partial differentiation. The equilib-

rium equations, written in terms of the stress tensor �ij
and the strain tensor "ij, are obtained by the use of the

principle of virtual work

Z

V

�ij�"ijdV ¼
Z

S

Ti�uidS ð5Þ

where V and S are the volume and surface of the

region analyzed, and Ti are the specified surface

tractions.

The Dang Van criterion

A brief introduction to the basis of the fatigue criter-

ion used will be given (see further details in Refs.

21,22). The Dang Van criterion is a stress-based

multiaxial fatigue criterion which assumes that even

if at macroscale the stress state remains in the elastic

regime, at grain scale (called ‘‘mesoscale’’) the mater-

ial can show some plasticity initially. For this reason,

a residual stress tensor can exist such that the macro-

scopic stress tensor gives a state of stress under the

yield limit. According to Melan’s theorem on shake-

down, this residual stress tensor must be time

invariant.

The Dang Van criterion is formulated as

�maxðtÞ þ �DV�HðtÞ4�w ð6Þ

where �w is the fatigue limit in pure torsion and �w as

the fatigue limit in pure bending (see Figure 3). The

constant aDV

�DV ¼ 3
�w

�w
� 1

2

� �

ð7Þ

depends on the material fatigue limits previously men-

tioned, �HðtÞ is the instantaneous hydrostatic compo-

nent of the stress tensor, and �maxðtÞ is the

instantaneous value of the Tresca-like shear stress

�maxðtÞ ¼
ŝIðtÞ � ŝIIIðtÞ

2
ð8Þ

The stress deviator is obtained by the usual

definition

sijðtÞ ¼ �ijðtÞ � �ij�HðtÞ ð9Þ

In order to apply the Dang Van criterion, it is

necessary to find the residual stress tensor rij and,

in particular, the deviatoric part of it. In order to do

that, a constant tensor, smij ¼ �devð�ijÞ, is calculated

as that particular s�ij that solves the minmax

problem22,27

mins�
ij
maxt½ðsijðtÞ � s�ijÞðsijðtÞ � s�ijÞ� ð10Þ

Once smij is found, the following stress deviator can

be calculated

ŝijðtÞ ¼ sijðtÞ � smij ð11Þ

The principal values of this tensor appear in equa-

tion (8). The problem in equation (10) is solved itera-

tively using a move limit approach

mins�
ij
maxt½ðsijðtÞ � s�ijÞðsijðtÞ � s�ijÞ� ¼ mins�

ij
½maxt � �

ð12Þ

with

� ¼ � ðt, sijðtÞ, s�ijÞ ð13Þ

Choosing an arbitrary starting value for s�ij, for

example the average deviatoric stress tensor in the

stress history for that material point, then for every

iteration we identify the maximum value of �. Let tm
be the time step at which max � happens, then the

value of s�ij is updated

s�ij ¼ s�ij þ ds�ij ð14Þ

with

ds�ij ¼ 	 ðsijðtmÞ � s�ijÞ ð15Þ

which can be interpreted as a modified steepest

descent method. If at one step � increases, g is

reduced to 0.25g. The iteration is stopped if the

Figure 3. The Dang Van safe locus: the dashed line repre-

sents the alternative limit curve, for �HðtÞ5 �A, here assumed

equal to �w=3, as proposed in Ref. 27.
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norm of the difference between s�ij at the current iter-

ation step k and at the previous step falls into a tol-

erance range

ks�ijjk � s�ij k�1j k5 "tol ð16Þ

Although a superimposed hydrostatic tension has

an effect on the fatigue life in normal cyclic loading,30

several studies16,31 have shown that a superimposed

mean static torsion has little or no effect on the fatigue

limit of metals. The independency of the mean shear

stress is correctly predicted through the minimization

process in equation (10) that leads to the calculation

of smij , see also Refs. 27,30.

The Dang Van proposal is equivalent to request, in

the �HðtÞ � �maxðtÞ plane, that all the representative

points of the stress state fall below the line intersecting

the �max(t) axis at �w with a negative slope of aDV: if all

of the points fulfill this requirement, the criterion pre-

dicts a safe life for the component (see Figure 3).

The original Dang Van safe locus predicts a detri-

mental effect of tensile hydrostatic stress while an

overoptimistic positive effect is expected under com-

pressive hydrostatic stress. The negative effect of ten-

sile mean stress is well known in literature from classic

Haigh diagrams that also show a flat response for

negative stress ratios.32,33 For this reason it is not

too conservative to choose a different safe locus in

the Dang Van plane to be in agreement with this

response, for example a bilinear limit curve, as pro-

posed recently in Ref. 27. The safe locus could be

therefore identified in two segments, one with a null

slope and the other one with a negative slope equal to

aDV (Figure 3). For �HðtÞ5�A the safe region is iden-

tical to the original Dang Van region, while for smal-

ler values of �HðtÞ, the cutoff with the flat curve

replaces the Dang Van limit curve by a curve more

on the safe side. Values of �A ¼ �w=3 and of

�A ¼ �w=2 have been proposed in Ref. 27, on the

basis of experimental results obtained on high-strength

steel smooth specimens. It is possible, if experiments

are available to support that, to choose a different set

of values for ð�A, �AÞ, but here the same choice has been

made as that in Ref. 27. If the ratio of the fatigue limits,

�w=�w, was equal to 0.5, the value aDV in equation (6)

would be zero, which is far from reality, as steels usu-

ally show ratios between 0.57 and 0.8.30

In the following sections, both the original safe

locus and a new one with the mentioned cutoff will

be used, and results are compared. For �w a value of

360MPa has been imposed11 and a ratio

�w=�w ¼ 1=
ffiffiffi

3
p

. With this assumption the value of

the constant aDV used in the calculations is approxi-

mately 0.23. As mentioned in Ref. 11 the value of �w
here chosen also coincides with the value proposed in

the ISO 281:2007,34 where the fatigue properties for

rolling bearings in the VHCF are presented.

For a material point subjected, at time t, to �HðtÞ
and �max(t), the ratio between �max(t) and the

corresponding limit value for that �HðtÞ is here used

to define the damage factor n(t). Points on the limit

curve, then, result in a unit damage factor while points

inside the safe region have damage factor smaller than

one. As previously mentioned, two different safe loci

are here used: one with a linear limit curve and

another one with a bilinear limit curve.

Consequently, a damage factor is here defined as

nðtÞ ¼ �maxðtÞ
�w � �DV �HðtÞ

ð17Þ

if referred to the original Dang Van’s safety region or

nðtÞ ¼

�maxðtÞ
�w � �DV �HðtÞ

if �H 4 �A

�maxðtÞ
�A

if �H4�A

8

>

>

<

>

>

:

ð18Þ

when the bilinear limit curve is used. As mentioned

earlier, �A and �A are here chosen equal to �w=3 and

�w=2, respectively.

Results and discussion

The Dang Van criterion has been applied to the roll-

ing contact problem and for the geometry previously

described, considering three different load cases,

either with only pH, only pehl or both pehl and pt.

The load history has been divided in an adequate

number of steps so that the distance travelled between

two subsequent steps is approximately 3% of the

Hertzian contact width. For each time step, the

value of the damage factor n(t) has been calculated,

both with the original Dang Van limit curve and with

the modified one. The maximum value in time

n ¼ maxtnðtÞ ð19Þ

is then chosen as representative for that material

point. If this n5 1, the prediction is that initiation

of fatigue failure will not occur in the material

point. The representative points corresponding to

the max value of the damage factor are plotted in

Figure 4, in the Dang Van region, for all the integra-

tion points in the region that goes from the surface of

the inner ring to a depth of 1mm.

In Figure 5 the maximum values of this factor n are

plotted against the distance from the surface. Both

safe regions, as described before, are used. As we

can see, n reaches the highest value in a subsurface

region, between 0.14 and 0.17mm below the surface,

depending on the load distribution: this is consistent

with experimental observations in literature, where

many subsurface initiated failures in bearings for

windmill applications are reported. For the two

EHL load distributions, the peaks reached by the

damage factor n are smaller and closer to the contact

surface than in the case with the Hertzian pressure
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distribution. Analogous results are obtained with the

use of the original Dang Van safe locus.

The pressure peak here used, p0¼ 1GPa, results in

a stress path that in the Dang Van region is rather

close to the modified safe locus. If we consider the

curve for the Hertz load in Figure 5(a), the peak

value of the Dang Van damage factor is approxi-

mately 0.807, which corresponds to a safety factor

of 1.24. It is seen that the computational method pre-

sented here can be used as a design tool, such that the

safety factor can be increased by using a smaller value

of the pressure peak p0, a larger length or radius of the

roller, or a material more resistant to fatigue. Further

calculations, for p0 equal to 0.8 and 0.5GPa have

been carried out, only for the Hertz distribution,

and the results returned values of the safety factor

of 1.56 and 2.51, respectively. Therefore, the design

tool applied here would suggest a pressure peak not

bigger than 0.8GPa in order to have a reasonable

safety factor against fatigue failure.

Hardness variation

The relationships between fatigue strength, the hard-

ness, and the ultimate tensile strength are used in this

section to study the influence of the hardness vari-

ation in the inner ring.

Since fatigue crack initiation is mainly caused by

slip within grains, the yield stress, in the past, has been

thought to have the strongest correlation with the

Figure 4. The Dang Van criterion: in order that the failure does not occur, all the representative points should be inside the safe

region delimited by the limit curves. In this figure, and for the problem considered, only the representative points corresponding to

max value of the damage factor are plotted, for all the integration points in the region analyzed and for both Hertzian and EHL load

distributions.

(a) (b)

Figure 5. Damage factor versus distance from surface. (a) For the bilinear safe locus, (b) for the original Dang Van safe locus.
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fatigue limit. However, Murakami35 has found better

correlations between tensile strength, hardness, and

fatigue limits.

In order to correlate the hardness to the fatigue

limit, �w, this limit has first been related to �UTS

through an approximate expression proposed in Ref.

36 for low-alloy steels

�w ¼ �w=
ffiffiffi

3
p

� 0:274 �UTS ð20Þ

Denoting the Brinell hardness by HB and using an

approximate relationship (see Ref. 37)

�UTS ¼ 0:0012HB2 þ 3:3HB ½N=mm2� ð21Þ

where HB is expressed in N/mm2, the first coefficient

in mm2/N, and the second coefficient is dimensionless,

an approximate final relation between �w and HB can

be written as

�w ¼ 0:274 ð 0:0012HB2 þ 3:3HBÞ ½N=mm2�
ð22Þ

Both �UTS and �w in previous equations are

expressed in MPa. This procedure was first suggested

by Donzella et al.38,39 In the following we assume that

the fatigue limit �w is given by expression (22). If

another expression �w(HB) applies for a material,

this will not in principle change the procedure. In

fact, all we need is the value of �w in each material

point of the solid analyzed.

Different hardness distributions along the depth

have been studied here. Thus, the value of �w corres-

ponding to the value of the hardness at that depth has

been imposed in the material for each Gauss integra-

tion point.

The two different hardness distributions imposed in

the subsurface region of inner ring and the corres-

pondent �w distributions are shown in Figure 6(a)

and (b). At distances greater than 1mm from the sur-

face, HB, for both the distributions, is taken to be

constant, at a value such that the related fatigue

limit, �w ¼ �wðHBÞ, is approximately 360MPa. This

assumption is equivalent to considering how the

effect of a surface hardening process would benefit

the fatigue response of the bearing. A recent work

(a) (b)

(d)(c)

Figure 6. (a), (b) Hardness distributions and (c), (d) correspondent values of �w in the first millimeter of depth.

Figure 7. Damage factor versus distance from surface, as

results from different load conditions and different hardness

variations described in Figure 6. Modified safe locus for the

Dang Van criterion was here used.
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by Santos et al.40 seems to indicate an improvement of

fatigue strength, for AISI 52100, by induction heating

and repeated quenching, thus validating this assump-

tion. In Ref. 40, measurements presented show a simi-

lar step-like hardened profile, with the same peak of

hardness here used in Figure 6(a) and (b). Also, fati-

gue tests performed seem to indicate a similar fatigue

limit in pure torsion for the untreated steel and, more-

over, an increase of this value after the hardening

treatment. It may be noted also that some steels

show a maximum for the curve �w(HB), which

would limit the applicability of equation (22). In

fact, equation (22) is valid only for smaller values of

hardness.

Results show that the values of the damage factor n

and the depth at which the maximum n is reached are

strongly dependent on the particular distribution of

hardness imposed (Figure 7). For all the cases ana-

lyzed, the peak of the n-curve shifts away from the

surface of the inner ring and, for the cases shown in

Figure 6(a) and (b), the peak values of n are smaller

than the corresponding peaks for a material with uni-

form hardness. In other words, the rings with extra

surface hardening have higher safety against fatigue

failure. It should also be noted that the maximum

Dang Van damage factor is reached, for the cases

analyzed, at the interface between the hardened case

and the untreated, softer core material, which is a

well-known critical site for subcase failures.

Residual stresses

In order to analyze the influence of preexisting stresses

in the bearing, a typical residual stress distribution for

the ring has been considered. It is here noted that the

Dang Van criterion can only be applied if the residual

stresses are preexisting to the fatigue process, e.g. due

to the machining or the heating process. In this paper

it is assumed that the residual stresses are the results

of the heating process when, during the cooling of the

component, the material experiences a volume

increase due to the phase transformation from austen-

ite to martensite. As the fast cooling, and therefore the

phase transformation, starts from the surface and

proceeds toward the bulk material, a compressive resi-

dual stress distribution is obtained, as the material

close to the surface cannot expand as it wishes,

(a) (b)

Figure 10. Damage factor versus distance from surface: effect of residual stresses. (a) For bilinear limit curve, (b) for original limit

curve.

Figure 9. Residual stresses assumed in terms of principal

stresses versus the depth d from the ring surface.

Figure 8. Convention used for the principal stresses in the

polar coordinate system.
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constrained by the material below. The bearing with

an assumed residual stress distribution, equilibrated

by an elastic step calculation, is subsequently sub-

jected to the stresses caused by the contact with the

roller. The results obtained with the Dang Van criter-

ion are then compared with the results obtained in the

bearing free of residual stresses.

In Figure 8 the convention used to name the resi-

dual stresses is clarified, while, in Figure 9, the resi-

dual stress distribution assumed, in terms of principal

stresses, is plotted versus the distance from the sur-

face. Far away from the surface, the residual stresses

are assumed to be constant and near zero. The distri-

bution was inspired by experimental results obtained

by Voskamp41 for a deep groove ball bearing.

The results for the two different safe loci are shown

in Figure 10. Curves refer to the EHL pressure distri-

bution (we here also include the effect of shear, pt).

The preexisting stress state in the inner ring, in the

case of the modified safe locus, has no effect, neither

positive nor negative (Figure 10(a)). The residual

stresses, in fact, result in a simple shift along the �H
axis in the Dang Van region (Figure 3) but this does

not change the distance from the limit curve since all

the most critical material points are subjected to

values of �H smaller than �A and therefore they are

in the region where the limit value for �max is constant

and equal to �A. If the original Dang Van limit curve

is used instead, the residual stress distribution from

Figure 9 results in a reduction of the maximum

damage factor for the compressive residual stresses

(Figure 10(b)). This is expected for the original

Dang Van model, since the reduced value of �H will

have a beneficial effect, seen in Figure 3.

Conclusions

The Dang Van criterion has been applied to a roller

bearing for windmill applications under different load

conditions and the influence of hardness variations and

residual stresses has been studied. The effects of both

elastohydrodynamic pressure distributions and classic

Hertz theory, as applied to the Dang Van multiaxial

fatigue criterion, have been analyzed. Shear load has

also been applied, together with the EHL normal pres-

sure distribution, to take into account the possible fric-

tion experienced by the inner ring.

Results have shown that, according to the Dang

Van criterion, the highest damage factor is reached

below the surface, regardless of the load distribution

and the safe locus used. This suggests that failure is

most likely to initiate in the material a little below the

surface, which is consistent with experimental obser-

vations that report subsurface failures of roller bear-

ings for wind turbine applications. The Hertz

distribution resulted in a higher damage factor than

the EHL distribution, with or without shear load.

Very small differences on results were induced by

the presence of the small shear load considered here,

indicating a small influence for the criterion used and

the assumptions made on its distribution.

The effect of increased hardness, in a thin layer close

to the surface, has also been studied, relating the hard-

ness to the fatigue strength of the material. The par-

ticular hardness distribution induced is seen to be

important in evaluating the safety against fatigue for

the bearing. Assuming that a higher fatigue strength

corresponds to a higher Brinell hardness, the results

indicate that a hardening surface treatment will be

beneficial in terms of increased safety against failure.

A bearing with a residual stress distribution has

also been studied and the calculations carried out

show, for the Dang Van criterion, a positive effect

of a compressive residual stresses in the subsurface

region according to the original safe locus. No influ-

ence of residual stresses has been found with the use

of the modified safe locus, for the load cases analyzed.

All the results return a Dang Van damage factor

smaller than one, thus indicating a subcritical working

condition and an infinite safe life for the component

analyzed. On the other hand, typical working condi-

tions for these components, represented by a peak

pressure of around 1GPa, eventually may cause the

failure of these elements, which happens often long

before the expected life. Reasons for such failures

could be overloads during working conditions, e.g.

during the engagements of the generator, that may

increase the pressure up to 3.1GPa,8 beyond the

yield limit. Also the material here considered homo-

geneous is indeed heterogeneous and microstructure

alterations in the material close to the interface

between the steel and second phase particles can

occur, which may demand a more sophisticated

approach to study the problem.

The computational procedure presented here

results in a damage factor n specified by equation

(20). As discussed in the ‘‘Results and discussion’’

section, the inverse, 1/n, represents the safety factor

against fatigue, and the procedure can be used as a

design tool by varying the central parameter until an

acceptable safety factor is obtained. It is concluded

that using a peak pressure p0 somewhat lower than

1GPa would be preferable.
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1. Introduction

Many criteria have been developed to estimate the fatigue life of bear-
ings (Ioannides and Harris, 1985; ISO, 1989; Lundberg and Palmgren, 1947;
Tallian, 1992a,b), but failure still occurs, sometimes long before estimated
life (Evans, 2012, 2013; Kotzalas and Doll, 2010). Design of these bearings
usually considers the material as homogeneous. However, the material is
heterogeneous, since small inclusions are present. Thus, while a standard
design would ensure that the average macroscopic stresses in the homoge-
neous material stay within the stress range where no fatigue occurs, there is
also an interest in considering the local stress concentrations around inclu-
sions. These stress concentrations can eventually result in crack nucleation
and failure of the component (Evans, 2012; Grabulov et al., 2010; Greco et
al., 2013; Sadeghi, 2009). Thus, it is known from experiments that fatigue
failure tends to initiate at subsurface inclusions.

In the present paper we carry out a micromechanical study to improve
the understanding of the effect of small inclusions on fatigue. For the matrix
material we use a multiaxial fatigue criterion, the Dang Van criterion (Dang
Van, 1992), to look for the limiting load level below which failure is avoided.
During a cyclic stress history this multiaxial fatigue criterion follows the vari-
ation of all stress components to ensure that the stress path remains within
the fatigue limit. While the Dang Van criterion is proposed for macroscopic
stresses, it is reasonable to also expect that the criterion can be used on the
micro–level in the small region of stress concentrations around an inclusion
in the material. If the solution shows stresses outside the safe region, the
external load can be scaled down to find the maximum allowable external
load. The method used here is a standard method in the micromechanics
of failure, where the analysis of a characteristic unit cell model containing
a single inclusion is used to obtain an understanding of the material. Many
such cell model analysis have been carried out earlier, e.g. to study ductile
fracture or high temperature creep failure (Tvergaard, 1990, 1991, 2012), to
study failure of graded composite materials (Reiter et al., 1997), or to study
low cycle fatigue in short fiber composites (Tvergaard and Pedersen, 2000).
In the present case of roller bearings subject to a very high number of load
cycles (1011 or more) plastic yielding cannot be allowed, so the stress analyses
have to be elastic.

Among several published studies of rolling contact fatigue (Alley and
Neu, 2010; Hiraoka et al., 2006; Kabo, 2002; Kuo, 2007; Lai et al., 2012;
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Melander, 1997; Slack et al., 2007; Slack and Sadeghi, 2010; Stienon et al.,
2009; Weinzapfel and Sadeghi, 2013) some have used the Dang Van criterion
on the predicted variations of the macroscopic stresses (Bernasconi et al.,
2006; Ciavarella and Monno, 2010; De Simone et al., 2006). This includes
(Ciavarella et al., 2006), where the criterion has been discussed in relation
to elastic or plastic shakedown. Also a previous study (Cerullo, 2013) has
used the Dang Van criterion on the macroscopic stresses in the inner race of a
roller bearing, considering either a Hertzian or an elastohydrodynamic (EHL)
contact pressure distribution under the rollers, and the stress history has been
determined for the point of the inner race where the maximum Dang Van
damage factor is reached. In the present micromechanical studies the unit cell
model containing an inclusion is taken to be located at the most critical point
determined in (Cerullo, 2013), and the macroscopic stress history determined
for that point in (Cerullo, 2013) is applied as the boundary conditions on the
unit cell.

The matrix material is taken to be AISI 52100, which is one of the most
commonly used bearing steels, in which Al2O3 inclusions and TiN inclusions
occur.The Al2O3 inclusions can appear in spherical or ellipsoidal-like shape
(Hashimoto et al., 2011). TiN inclusions, which appear in cubic shape and
are of smaller size than Al2O3 inclusion on average, are considered dangerous
for the fatigue life of the material, partly due to the high stress concentrations
at sharp corners (Murakami, 2002). However, some authors think that TiN
particles play a minor role in the fatigue process of AISI 52100 (Hashimoto
et al., 2011), compared to that of Al2O3 particles. In the analyses here both
the effects of Al2O3 inclusions and TiN inclusions are considered, comparing
the results in terms of the Dang Van criterion, for different orientations and
volume fractions.

2. Problem formulation

In order to study the effect of inclusions on fatigue life, a characteristic
rolling stress history has to be evaluated first. Some results from a previous
macroscopic study (Cerullo, 2013), have been used here. In (Cerullo, 2013)
two different pressure distributions, a static Hertzian normal pressure distri-
bution pH or an elastohydrodynamic contact pressure distribution pehl, have
been used to model the contact between the roller and the inner race of a
roller bearing (Fig. 1). The Hertzian distribution has a peak value of 1 GPa
and the EHL distribution is scaled so that it gives the same external load on
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the roller. No separate solution for the elastohydrodynamic pressure distri-
bution has been carried out here to obtain pehl. This pressure distribution is
taken from results of Jacobson and Hamrock (Jacobson and Hamrock, 1984),
scaled to obtain the wanted load on the roller. Thus, the EHL load applied is
considered useful for a parametric study, illustrating the differences between
typical pH loads and typical pehl loads.

As the Hertzian pressure distribution considered does not include any
shear load for a frictionless model, results are here compared with the results
for the case of elastohydrodynamic pressure distribution pehl in absence of
shear load. The shapes used for pehl are indicated in Fig. 1 together with the
Hertzian pressure distribution. It is noted that these pehl shapes, according to
(Jacobson and Hamrock, 1984), have a sharp peak at the end of the contact
region. Further comparisons are made to investigate also the case where the
elastohydrodynamic pressure distribution loads the surface of the inner race
and acts together with a shear load pt, assumed here to be pt ≃ 0.1 pehl just
to get an indication of the importance of such shear loads. Therefore three
different load cases are analyzed: 1) pH 2) pehl and 3) pehl+pt. Fatigue is then
studied by means of the Dang Van multiaxial criterion (Dang Van, 1992) and
the point M is determined, where the maximum Dang Van damage factor
is reached for the macroscopic stress. The macroscopic stress history in the
point M is recorded and this stress history is here subsequently applied to
the unit cell with periodic boundary conditions (Fig. 2). The macroscopic
stresses found in (Cerullo, 2013) are applied to the representative volume
element (RVE) assuming that they are constant along the edges. Also the
unit cell is assumed to be so small relative to the bearing geometry that the
use of periodic boundary conditions gives a good approximation.

The unit cell is considered to be made of an AISI 52100 bearing steel
matrix, in which an inclusion is embedded. Two different types of inclusions
are studied here, an Al2O3 inclusion and a TiN inclusion. The first type
of inclusion is usually found in spherical or ellipsoidal shape (Hashimoto et
al., 2011) and here it has been modeled with a circular shape (Fig. 3), as a
2D plane strain calculation is carried out. The second inclusion type, made
of TiN, is found in cubic shape, and it is here modeled as a square shaped
inclusion (Fig. 3). A small round off at the square corners of the inclusion
is introduced to prevent an excessive stress concentration. The values of
Ei/Em = 1.8523 and Ei/Em = 1.5095 have been used as ratios between the
inclusion and the matrix Young’s modulii, for alumina and titanium nitride,
respectively. The Poisson’s ratio νi is taken to be 0.25 for alumina and 0.192
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(a)

α

r

R

(b)

Hertz
Ehl

Figure 1: Geometry used in (Cerullo, 2013) to model the contact between the roller and
the inner race: r = 100 mm, Rs = 200 mm, tk = 19 mm, α = 5◦. On the right, a detail
of the mesh used.

for titanium nitride. The matrix has a Young’s Modulus Em = 210 GPa and
a Poisson’s ratio νm = 0.3.

Different volume fractions have been considered for both types of inclu-
sions. For TiN also the influence of the orientation of the inclusion relative
to the surface of the inner ring has been studied. The orientation of the
inclusion is specified by the angle φ between the axis xi of the inclusion co-
ordinate system and the axis xm of the global coordinate system (Fig. 4).
The axis xm is parallel to the tangent of the inner race surface in the nearest
contact point, and it is oriented in the rolling direction.

Periodic boundary conditions on the unit cell in Fig. 5 are applied, as
described in (Tvergaard, 2012). Along the left and right edges of the cell the
BC’s are:

u1(ξ1)− u1
A = u1(ξ2)− u1

B , u2(ξ1)− u2
A = u2(ξ2)− u2

B

T 1(ξ1) = −T 1(ξ2) , T 2(ξ1) = −T 2(ξ2)
(1)

where ξ1 and ξ2 are length coordinates in Fig. 5. Along the top and the
bottom of the unit cell the BC’s are

u1(η1)− u1
A = u1(η2)− u1

D , u2(η1)− u2
A = u2(η2)− u2

D

T 1(η1) = −T 1(η2) , T 2(η1) = −T 2(η2)
(2)
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Σ11

Σ22

Σ12

Σ21

(a)

α

r

RVE

(b)

M
R

Figure 2: (a) The macroscopic stress history in the point M where the maximum Dang
Van damage factor is found (Cerullo, 2013) is applied as boundary condition on the cell
model (b).

where η1 and η2 are defined in Fig. 5. The displacements of the four corner
nodes are denoted ui

A , ui
B , ui

C and ui
D. In order to prevent rigid body

motion, the two displacements ui
A are chosen equal to zero, and also u2

B = 0.
Finally, periodicity requires that ui

C = ui
D +ui

B, and therefore only the three
displacements u1

B , u1
C and u2

C are free to be prescribed.
Equations (1)-(2) are approximately satisfied using a standard penalty

method
T i(ξ2) = k

(
ui(ξ2)− ui(ξ1)− ui

B + ui
A

)
= −T i(ξ1)

T i(η2) = k
(
ui(η2)− ui(η1)− ui

D + ui
A

)
= −T i(η1)

(3)

where the stiffness k is chosen large enough to get a good approximation.
In order to apply the macroscopic stress history to the RVE, a superpo-

sition method has been used here to relate the macroscopic stresses to the
three unknown displacements:





λ11 u
1
B + λ12 u

1
C + λ13 u

2
C = Σ11

λ21 u
1
B + λ22 u

1
C + λ23 u

2
C = Σ22

λ31 u
1
B + λ32 u

1
C + λ33 u

2
C = Σ12

(4)

The relation between the stresses and the three displacements is assumed to
be linear.
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The coefficients λij have been evaluated by imposing alternatively a small
value for one of the three independent variables, e.g. 0.001 l, and at the same
time a null value for the other two. For each of the three cases, the macro-
scopic stresses Σ11,Σ22 and Σ12 are calculated by integrating the traction
vectors along the edges. The unknowns in Eq. (4) reduce to only three and
therefore a column vector in the matrix of the coefficients can be evaluated
for each case, calculating the coefficient λij as the ratio of the macro stress
component and the non zero displacement imposed. After three calculations,
all the coefficients λij are known, and it is possible to solve the system (4).
For each time step the three displacements corresponding to the macroscopic
stress component are thus calculated from Eq. (4) and these displacements
are imposed in the finite element problem.

2.1. Numerical method
In terms of the displacement components ui on the base vectors the strain

tensor is given by

εij =
1

2

(
ui,j + uj,i

)
(5)

where (),j denotes partial differentiation. The equilibrium equations, written
in terms of the stress tensor σij and the strain tensor εij, are obtained by the
use of the principle of virtual work:

∫

V

σijδεijdV =

∫

S

TiδuidS (6)

where V and S are the volume and surface of the region analyzed, and Ti are
the specified surface tractions. The displacement fields are approximated in
terms of 8–noded isoparametric elements.
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(a)

(b)

Figure 3: Example of the different meshes used to model the RVE. (a) Model for Al2O3
, with volume fraction Vf = 0.01 (b) Model for TiN, with Vf = 0.001 .
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Surface of
the inner ring

Rolling
direction

φ

xi

yi

xm

ym

δ

O

Figure 4: Orientation of the RVE with respect to the contact point on the inner race
surface. The angle δ will be used to specify the point where the maximum damage factor is
reached. The angle φ only applies to the study of TiN inclusions and defines the orientation
of the inclusion with respect to the rolling direction.

x

y

O

A B

D Cη2

η1

ξ1 ξ2

l

l

Figure 5: Coordinates for the unit cell analyzed.
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3. The Dang Van criterion

A brief introduction to the basis of the fatigue criterion used is given here
(see further details in Dang Van (1992) or Cerullo (2013)). The Dang Van
criterion is a stress based multiaxial fatigue criterion stating that fatigue is
avoided if the following inequality is satisfied throughout the stress history:

τmax(t) + αDV σH(t) ≤ τw (7)

Here
αDV = 3

( τw
σw

− 1

2

)
(8)

is a constant that depends on the fatigue limit in pure torsion, τw, and the
fatigue limit in pure bending, σw. The instantaneous hydrostatic component
of the stress tensor is σH(t) and τmax(t) is the instantaneous value of the
Tresca-like shear stress

τmax(t) =
ŝI(t)− ŝIII(t)

2
(9)

The stress deviator is

sij(t) = σij(t)− δijσH(t) (10)

and for each material point a constant tensor, smij , is calculated as that par-
ticular s∗ij that solves the minmax problem

min
s∗ij

max
t

[(sij(t)− s∗ij)(sij(t)− s∗ij)] (11)

The shifted deviator tensor is then defined as

ŝij(t) = sij(t)− smij (12)

The principal values of the shifted tensor appear in Eq. (9). The problem in
Eq. (11) is solved iteratively using a move limit approach (see further details
in Cerullo (2013)). The minimization process in Eq. (11) accounts for the
independence of fatigue initiation in shear on the mean shear stress, that is
well known in literature (see also De Simone et al. (2006); Suresh (2006)).

The Dang Van proposal is equivalent to request, in the σH(t) - τmax(t)
plane, that all the representative points of the stress state, fall below the
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line intersecting the τmax(t) axis in τw with a negative slope of α. If all of
the points fulfill this requirement, the criterion predicts a safe life for the
component (see Fig. 6).

In order to overcome the over-optimistic prediction under compressive
hydrostatic stress, a modified safe locus has been suggested in De Simone et
al. (2006). The safe locus is thus identified in two segments, one with a null
slope and the other one with the negative slope equal to α (Fig. 6). For
σH(t) ≥ σA the safe region is identical to the original Dang Van region, while
for smaller values of σH(t), the cut-off with the flat curve replaces the Dang
Van limit curve by a curve more on the safe side. The values of σA = σw/3
and of τA = σw/2 proposed in De Simone et al. (2006), on the basis of
experimental results obtained on high-strength steel smooth specimens, are
also used here. If the ratio of the fatigue limits, τw/σw, was equal to 0.5, the
value αDV in Eq.(7) would be zero, which is far from reality, as steels usually
show ratios between 0.57 and 0.8 Suresh (2006).

Only the modified safe locus will be used in the present studies, with
τw = 360 MPa Lai et al. (2012) and a ratio τw/σw = 1/

√
3 ≈ 0.577. With

this assumption the value of the constant αDV used in the calculations is
approximately 0.232.

Dang Van

Modified
limit curve

τmax(t)

σH(t)

τA

σA

τw

Figure 6: The Dang Van safe locus: the dashed line represents the alternative limit
curve, for σH(t) < σA, here assumed equal to σw/3, as proposed in De Simone et al.
(2006).

For a material point undergoing time dependent stress variation, σij(t),
resulting in the stress dependent functions σH(t) and τmax(t) in Eq.(7), the
ratio between τmax(t) and the corresponding limit value of τmax at the cor-
responding value of σH(t) is here used to define the damage factor n(t) at
time t. Points on the limit curve, then, result in a unit damage factor while
points inside the safe region have a damage factor smaller than one. An
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instantaneous damage factor is defined as

n(t) =





τmax(t)

τw − αDV σH(t)
if σH > σA

τmax(t)

τA
if σH ≤ σA

(13)

The damage factor n in a material point, is here defined as the maximum
value reached by n(t) over the stress history

n = max
t

n(t) (14)

In the following, it will be assumed that failure would not occur inside the
inclusion, but only in the matrix. For this reason, the Dang Van damage
factor is only computed and plotted for the matrix.

4. Results

4.1. Volume fraction
Two different macroscopic stress histories, resulting from either the Hertz

or the EHL contact pressure distributions in absence of shear load have been
applied to the unit cell, for both Al2O3 and TiN inclusions (Fig. 7).

Results are shown in Fig. 8, as function of the volume fraction Vf . For
the TiN inclusion, results are also presented as function of the orientation of
the inclusion with respect to the inner race surface. As the analyses carried
out are 2D plane strain conditions, volume fractions have been calculated as
the ratio between the area of the inclusion, cylinder for Al2O3 and square for
TiN, to the area of the cell.

For both the stress histories, regardless of the inclusion type and the
volume fraction, the maximum Dang Van damage factor reached in the cell,
is always higher than that found in a homogeneous material (macroscopic
study) subjected to the same stress history (Cerullo, 2013) (nmax = 0.78
for EHL and nmax = 0.81 for Hertz, respectively). In (Cerullo, 2013) in
fact it was found that for the load analyzed the maximum damage factor in
a homogeneous material subjected to the same macroscopic stress histories
was always smaller than the limit value 1, thus indicating a safe life for the
component according to the cited criterion. The maximum damage factor is
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Figure 7: Macroscopic stress histories used in the calculations.

here, in some cases, bigger than one, due to the stress concentrations around
the particles with higher Young’s modulus. But is should be noticed that
the values of σw and τw used in these computations are experimental values
that refer to the macroscopic stress state. Corresponding experimental values
referring to stresses on the micro-scale would have to be higher. Therefore,
it is possible that the cases analyzed here are still in the safe range, even
though some of the n-values found in Fig.8 exceed unity. We note that if
a smaller maximum n-value, nmax, is chosen for a design, e.g. to have a
better safety factor, the maximum load carried by the bearing will have to
be reduced, or the bearing will have to be improved. All the curves in Fig.
8 show a decreasing trend as function of the volume fraction, such that a
safer life corresponds to a bigger inclusion. This prediction may be a result
of the inclusions reinforcing the unit cell, so that a larger inclusion reduces
the stress peaks in the matrix.

For both Hertz and EHL stress histories in Fig. 7, the curve referring to
the Al2O3 in the following figures is in most of the cases above the curves for
TiN. This is due to the larger difference in Young’s moduli for the Al2O3 . The
shape of the inclusion, and in particular the stress concentration at the TiN
corners, is therefore found to be less important than the stress concentration
resulting from different material properties between matrix and inclusion.
However, differences are rather small. The rounding radius used here is
equal to γ lcub, where γ = 0.15 and lcub is the half width of the inclusion.
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Figure 8: Maximum Dang Van damage factor reached in the matrix, for dif-
ferent inclusions, as function of volume fraction. The load histories applied to
the cell result from (a) Hertz contact pressure and (b) EHL contact pressure
on the inner race in absence of shear load (See Fig. 7).

Results for other values of γ, for some cases, and for the Hertz load history,
are presented in Table 1. As the value of γ decreases, the maximum damage
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Figure 9: Maximum Dang Van damage factor reached in the matrix, for
different inclusions, as function of volume fraction. The load history is gen-
erated by EHL pressure distribution acting on the inner race, with the shear
load.

factor increases, since a more severe stress concentration is introduced. The
value of 0.15 has been chosen as a compromise between the need of a small
rounding radius, ideally zero, and a mesh not too distorted in the region close
to the radius. It is noted that a sharp corner of the inclusion would result
in a stress singularity, as has been analyzed by Tvergaard and Hutchinson
(Tvergaard and Hutchinson, 1988) for the case of a ceramic with different
grain properties.

A mesh convergence investigation was carried out for both Al2O3 and
TiN inclusions, for 2 different volume fractions, Vf1 = 0.007 and Vf2 = 0.073,
and for a Hertz stress history. The TiN inclusion was investigated for two
different angles, φ = 0◦ and φ = 30◦. The number of elements along the
interface Nint between the matrix and the inclusion was doubled from 64
to 128 and, accordingly, the number of elements increased from 4972 to
9964 in the case of Al2O3 and from 3768 to 11768 for the TiN. It is noted
that the element aspect ratio at the interface is kept fixed, so the increased
number of elements around the particle also gives smaller elements in the
radial direction. Results, listed in Table 2, show that there is little mesh
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dependence, and that the discretization used in the analysis, with 64 elements
along the interface and a much smaller number of elements, gives sufficient
accuracy. In fact the percentage difference is of the order of 0.5%.

Table 1: Maximum Dang Van damage factor reached in the matrix, for
different sizes of the rounding radius and two different orientations of a TiN
inclusion. Results are shown for the Hertz stress history, corresponding to
Fig. 7. Vf1 = 0.0063, Vf2 = 0.0292.

0◦ 30◦

γ Vf1 Vf2 Vf1 Vf2

0.20 0.9299 0.9221 0.9703 0.9618
0.15 0.9308 0.9228 0.9737 0.9651
0.10 0.9324 0.9245 0.9779 0.9692
0.05 0.9338 0.9259 0.9815 0.9727

Table 2: Mesh convergence analysis results in terms of the maximum Dang
Van damage factor reached in the matrix. Hertzian stress history of Fig. 7
was here used. Vf1 = 0.007, Vf2 = 0.073. Nint represents the number of
elements along the interface between the matrix and the inclusion.

Al2O3 TiN (φ = 0◦) TiN (φ = 30◦)
Nint 64 128 64 128 64 128
Vf1 1.0137 1.0077 0.9294 0.9200 0.9723 0.9561
Vf2 0.9896 0.9875 0.9191 0.9225 0.9590 0.9581

For a TiN inclusion, the damage factor for φ between 15◦ and 30◦ degrees
is in most cases higher than for other orientations. This is always true for the
EHL load history (Fig. 8b) and is true for most of the volume fractions under
the Hertz load history (Fig. 8a). Apparently this particular orientation is
the most dangerous for this kind of inclusion.

In (Cerullo, 2013) it was found that a Hertz stress history results in a
higher Dang Van damage factor than the EHL distribution. In the present
study, instead, all the curves from Hertz load history in Fig. 8a fall below
the corresponding curves for EHL history in Fig. 8b.

To investigate the effect of the shear load, the results for the case of the
EHL load history with the shear load pt are shown in Fig. 9. It is noted that
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the curves in Fig. 9 are similar to the corresponding curves for EHL without
shear of Fig. 8b. In some cases, as the alumina and the titanium nitride for
φ = 30◦ and φ = 45◦, the shear load increases the maximum damage factor,
while the opposite happens for the other curves. The orientations φ = 15◦

and φ = 30◦ are still the most dangerous, though the one for φ = 45◦ is here
comparable. Differences between the corresponding curves for the case that
incorporates or neglects the shear are rather small, with the exception of the
alumina. Thus, accounting for a shear load due to EHL has only a small
effect.

4.2. Distribution of the damage factor in the cell
In Fig. 10 the contour plot for the Dang Van maximum damage factor

is shown, for an alumina inclusion with Vf = 0.012, for two different stress
histories. In Fig. 10a it is seen that the Hertzian load history results in a
completely symmetric distribution, with small zones of high damage factor
located at the inclusion–matrix interface, at the intersection with the two
axes of symmetry. The highest damage factor is reached at δ = ±11.8◦, in a
region almost parallel to the rolling direction. The same values are reached
in the symmetric lower half part of the cell. In fig 10b, which refers to an
EHL stress history in absence of shear load, the symmetry of the contour is
lost. The maximum damage factor is still located at the interface with the
inclusion, but it is reached at an angle of δ = 84.9◦. The areas of high damage
factor are still close to the interface, but they are a bit rotated and located
in a band approximately oriented at 45◦ to the overall rolling direction, see
Fig. 10b. This result seems to indicate that in this direction, failure is more
likely to occur.

Rather small differences in the damage factor distribution have been
found for EHL stress history with or without shear load and therefore in
the following figures we will refer to the case which includes the shear. Fur-
thermore, as failure is assumed to happen in the matrix rather than in the
inclusion, contour plots are only presented for the matrix. Analyses for differ-
ent values of the volume fraction Vf show distributions of the damage factor
n around the particles similar to those shown in Fig. 10. In Fig. 11 the
results for a TiN inclusion with Vf = 0.01 and φ = 0◦ are shown. As for
alumina, the zone of highest damage factor is found at the interface between
the inclusion and the matrix, or very close to it. For the Hertzian stress his-
tory the highest Dang Van damage factor is reached in the zones that start
from the four corners of the inclusion (Fig. 11a), while for the EHL stress
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Figure 10: Maximum Dang Van damage factor distribution in the matrix (a) Hertz (b)
EHL without shear load. Vf = 0.012. A zoom at center of cell.

history it is reached close to the rounding radius of the inclusion. However
differences between the highest n and the sourrounding zones, for both cases,
are small, thus indicating that stress concentration dominates. If the RVE is
subjected to the EHL load history, a zone with high damage factor is found
in a band approximately oriented at 45◦, as already seen for the alumina.

As the angle φ that defines the orientation of the inclusion increases,
for Hertzian stress history, the max n is reached at the interface with the
inclusion, at all 4 corners (Fig. 12). For the EHL stress history, instead, only
the corners in the first and third quadrant have very high values of n. These
peaks are however highly localized and zones of high Dang Van damage factor
are still found close to the other two corners.

The maximum von Mises stress, for the alumina, is reached, in the case
of Hertzian stress history, at the time step 90 in Fig. 7, i.e. when the roller is
exactly above the inclusion and Σ12 = 0. For the EHL stress history without
shear load, instead, the maximum von Mises stress is reached at a time which
depends on the inclusion size but which is always very close to time step 108
in Fig. 7, i.e. when the macroscopic shear stress is close to its negative
maximum. Analogous considerations can be made for the titanium nitride
inclusion.

In the case of a stress history that accounts for the shear load on the inner
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Figure 11: Dang Van maximum damage factor for a TiN inclusion for (a) Hertz and (b)
EHL stress history with shear load. φ = 0◦, Vf = 0.01. In (b) arrows indicate zones where
the highest values of n are reached. A zoom at center of cell.

race, results are similar to those found in absence of shear load. The maxi-
mum von Mises stress is reached typically at time step 109 in Fig. 7, both
for alumina inclusions and for titanium nitride inclusions. Small variations
are due to different orientations of the inclusions. The maximum von Mises
stress ranges, for alumina, are between 0.24 σy and 0.40 σy, depending on
the volume fraction and on the stress history applied; for TiN, the effective
stress range from 0.32 σy to 0.33 σy. The value used here for σy is 1960 MPa
(Hashimoto et al., 2011).
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Figure 12: Dang Van maximum damage factor for a TiN inclusion for (a) Hertz and (b)
EHL stress history with shear load. φ = 15◦, Vf = 0.01. Arrows indicate zones where the
highest values of n are reached. A zoom at center of cell.
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5. Conclusion

Several experimental investigations (Evans, 2012, 2013; Grabulov et al.,
2010; Greco et al., 2013; Sadeghi, 2009) have shown that failure in rolling
contact fatigue tends to initiate below the surface, at inclusions, e.g. as so-
called butterfly fracture. Here we have used a micromechanical approach to
estimate the locations around inclusions that will be most critical for the
initiation of fatigue failure, and the loads at which fatigue will initiate. As
the wind turbine roller bearings considered will be subjected to a very high
number of cycles (> 1011), we use a multiaxial fatigue criterion to ensure that
the stress cycles in the structural alloy around the inclusion do not exceed
the fatigue limit. The Dang Van criterion is a well established method for
ensuring that a componenent will avoid fatigue failure if the stress variations
stay within the safe locus. The peak values found for the damage factor n also
indicate the locations in the material where failure is most likely to initiate.
Thus, the present analyses are used to determine where micro–cracks are
expected to form, and this information will be used in a subsequent paper
to investigate, in a finite element analysis, micro–cracks propagation under
rolling contact fatigue.

The Dang Van criterion is here applied on a micro level to a material
subject to different rolling contact stress histories, resulting from a simple
Hertzian load or from an EHL pressure distribution acting on the surface of
the inner race of a bearing. A 2D plane strain finite element analysis is carried
out, where either Al2O3 inclusions or TiN inclusions are embedded in an AISI
52100 bearing steel matrix. A unit cell model containing a single inclusion is
subjected to a macroscopic stress history earlier calculated (Cerullo, 2013).
Different volume fractions have been investigated and, for the TiN inclusions,
the orientation of the inclusion relative to the inner race of the bearing has
also been studied. Results show that, regardless of the specific stress history
investigated, the highest damage factor is always reached at the interface
between the inclusion and the matrix or in a region very close to it, so
these are the locations where the first formation of micro–cracks would be
expected, if too high load is applied to the bearing. Moreover, for the EHL
stress history, zones of high maximum damage factor are reached in a band
oriented approximately at 45◦ to the overall rolling direction. For the TiN
inclusion, these regions of high damage factor still remain, but also isolated
peaks are found at corners.

The elastic stress distribution around particles will show a singularity
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if the inclusion has a sharp corner, as has been shown in detailed analyses
by Tvergaard and Hutchinson (1988). Thus, cyclic plasticity could not be
avoided if particles have completely sharp corners. In the present analyses it
has been assumed that the TiN particles have rounded corners.

For a given Vf a higher maximum damage factor is practically always
reached in the matrix with an alumina inclusion rather than with a tita-
nium nitride inclusion. This is as expected, since the alumina has a higher
Ei/Em ratio than that of the titanium nitride, and the elastic stress concen-
trations around the inclusions are entirely driven by the mismatch of elastic
properties.
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Abstract

Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact
loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic
depth, where the Dang Van damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a
periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially
from the inclusion under cyclic loading. The growth is predicted by means of irreversible fatigue cohesive elements. Different
orientations of the cracks and different matrix-inclusion bonding conditions are analyzed and compared.
c© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Politecnico di Milano, Dipartimento di Meccanica.

Keywords: Rolling contact fatigue; AISI 52100; Inclusions; Wind Turbine; Cohesive Element

1. Introduction

It is well known that fatigue failure and mechanisms may vary a lot according to the stress level applied and that a
dual step S–N curve characteristic may appear in the ultra long life regime [1–5]. At stress levels close or higher than
the conventional fatigue limit, in fact, failure is more likely to be expected close to the surface of the material, while
at a stress level below the fatigue limit, fatigue failure usually occurs at small internal defects. The latter mechanism
becomes dominant in the very high cycle fatigue (VHCF), that is to say for a number of cycles bigger than 1011, while
a coexistence of surface and subsurface failures is present in the range between 106–109 cycles [2–6].

Subsurface failure is usually dominated by crack initiation, which is strongly influenced by the features and the
defects in the microstructure [6]. Inclusions or pores may act as stress concentration sites, and cracks may nucleate
around these defects and then propagate to the surface. Sometimes microstructural changes are observed around
inclusions, where a fine granular area, known as fish-eye, may develop for low stress amplitudes [3,4,7–9].

Traditional approaches against rolling contact fatigue (RCF) consist in designing with respect to a maximum
Hertzian pressure [10], or by means of multiaxial fatigue criteria, as the Dang Van criterion [11], which has been
widely used for decades [12]. Though these approaches may be more practical, they somehow neglect the complexity
of the VHCF mechanisms. Service life in the VHCF regime is in fact strongly influenced by the presence of small
inclusions, and therefore other design criteria have been proposed, as calculations based on the stress intensity factor
(SIF) [13] or by means of the Murakami’s method [14].

The study of fatigue failure in the high and very high cycle regime is of extreme importance in those applications,
as for example wind turbine roller bearings, where any failures of the mechanism reflect in down-time costs which
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(a) (b) (c)

Fig. 1: Mesh used for the calculations at full scale (a) and at different levels of detail (b)-(c). In (c) the mesh around the crack is shown. θ = 30◦

.

have to be minimized [15,16]. For these mechanical systems, in fact, a service life as long as 20 years, equivalent to
more than 1011 cycles, is expected [17], but failure sometimes occurs long before this design life.

In this work rolling contact fatigue at an interior Al2O3 inclusion in a AISI 52100 roller bearing is investigated. The
study assumes that a small crack has already nucleated in the matrix, close to the inclusion, and therefore the crack
initiation process and time are neglected. The focus is here on the influence of the inclusion depth and on the angle
of the crack relative to the rolling surface. The characteristic rolling contact stress history is computed in a previous
work [18] and is applied here as periodic boundary conditions. The fatigue crack growth is modelled by irreversible
cohesive elements [19] and the results are compared in terms of number of cycles.

2. Problem formulation

In [18] a plane strain finite element model of a bearing ring in contact with a roller was investigated, substituing the
roller with the equivalent Hertzian load, and a characteristic rolling contact stress history was recorded, at the depth
of maximum Dang Van damage factor.

The macroscopic stress history Σi j(t) is here imposed as periodic boundary condition to a unit cell of AISI 52100, in
which a circular inclusion of Al2O3 is embedded. A straight initial crack starting from the inclusion-matrix interface
is present in the matrix, at a fixed angle for each calculation. Fatigue crack growth is modelled by means of cohesive
elements alligned along a straight path. Thus, the crack is assumed to grow without kinking.

In order to decrease the computational expense, the stress history, initially recorded in [18] using 179 points. It has
been found that an interpolation using only 12 points gives sufficient accuracy. Between each time steps, a number of
200 increments has been used for the calculations.

The cohesive elements are described by the Roe-Siegmund irreversable constituive law [19] that models the fatigue
crack growth incorporating a damage parameter, D, in the traction–separation law. When this parameter, that initially
in the undamaged element is set to zero, reaches the limit value of one, the cohesive element has failed in that
integration point. A penalty method is here used to ensure that the periodic boundary conditions are respected (see
[20] for details). A detail of the mesh used in the finite element computations is shown in Fig. 1.

According to the the Roe-Siegmund model the traction separation law is given by:

Tn = σmax,0e exp
(
− ∆un
δ0

){
∆un
δ0

exp
(
− ∆u2

t

δ20

)
+ (1.0 − q)∆un

δ0

[
1.0 − exp

(
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t

δ20

)]}

Tt = 2σmax,0eq∆ut
δ0

(
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δ0

)
exp
(
− ∆un
δ0

)
exp
(
− ∆u2

t

δ20

) (1)

while the current cohesive strenghts are defined as

σmax = σmax,0(1 − D)
τmax = τmax,0(1 − D) (2)
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The damage rate constitutive law is

Ḋc =
|∆u̇|
δΣ

[ T
σmax

−C f

]
H(∆u − δ0) Ḋc ≥ 0 (3)

where T is the effective traction and ∆u the accumulated separation (see [19]). A value of δΣ = 4 δ0 was choosen
for this study. The parameter C f represents the ratio between the cohesive endurance limit and the initial undamaged
cohesive normal strenght:

C f =
σ f

σmax,0
, C f ∈ [0, 1] (4)

Once an element has failed (D = 1), it still retains some strenght in compression, if ∆un < 0, such that overlap is
penalized

Tn,compr = ασmax,0e exp
(
− ∆un

δ0

)∆un

δ0
,Tt = 0 i f ∆un < 0, D = 1 (5)

The penalty factor α was choosen to be α = 10. No friction term was here introduced in the equations that describe
the contact condition, see Eq.(5).

The periodic cell has a lenght of l = 200 μm, while the radius of the inclusion is R = 0.05 l, which is a typical
value for Al2O3 in these steels [14]. Though the actual shape of the inclusion in the reality can be also different, e.g.
ellipsoidal, it was here modelled as perfect circular.

The crack is assumed to have an initial lenght a0 and to be inclined at an angle θ with respect to the rolling direction.
One initial crack lenght, a0 ≈ 1.5 μm was considerd, while the angle θ that defines the angular position of the crack
with respect to rolling direction is varied between 0◦ and 120◦. The maximum allowed crack length is a0 ≈ 2.97 μm:
if the crack reaches this lenght, the computations are automatically stopped. Three different cases are considered,
“CRC”, “INT” and “POR”. The first two assume an inclusion in the matrix, while the latter assumes a pore. The CRC
case reflects the case of a crack in the matrix that is perfectly bonded to the inclusion. The two crack tips are here both
in the matrix. The INT case models the case where the matrix–inclusion interface is flexible and therefore cohesive
elements are used here along the interface, though they are not allowed to fail. The crack in this case has a crack tip in
the matrix and a crack tip on the inclusion. The value of Ei/Em = 1.852 has been used as ratio between the inclusion
and the matrix Young’s modulii, while the Poisson’s ratio of the alumina, νi, is taken to be 0.25. The matrix has a
Young’s Modulus Em = 210 GPa and a Poisson’s ratio νm = 0.3. The material behaviour in both the inclusion and the
matrix is modelled as linear elastic.

3. Results

3.1. Test case

A test case with a cracked panel subjected to R = σmin/σmax = 0, σmax = 100 MPa is first studied, in order to
evaluate the Siegmund’s model parameters δ0, σmax0 and C f . The parameter q was set equal to 0.429, so that the
maximum normal and shear stresses are the same. Furthermore, the fatigue limit C f was set equal to 0.005. This
choice is justified on one hand by the need to reduce the set of parameters to be varied in the test case computations.
Fixing the value of C f in fact, δ0 and σmax0 were the only two others parameters to be fitted. The value of C f choosen,
which appears small, is justified in the prospective of modeling the VHCF regime, where even small values of the
stress imposed, below the conventional fatigue limit, may cause failure. Though these preliminaries computations
were set to fall into the low cycle regime, this seemed the best choice. Furthermore is worth to notice that the test
case was carried out assuming long–crack theory even though the subsequent case assumed cracks in the order of a
micron.

A Paris law with C = 11 · 10−10 and m = 4.05 was fitted with the set of parameters δ0 = 0.5 μm, σmax0 =

21000 MPa and C f = 0.005, see Fig. 2. The resulting crack growth rate is in the order of 10−6 m/cycle, with an initial
∆KI ≈ 5.63 MPam0.5 (DKth = 5 MPam0.5). This crack growth rate is at least 3 order of magnitude higher than what
expected for this material for cracks in vacuum [21], but it was here chosen to have a qualitative understanding of the
crack propagation under rolling contact, rather than trying to simulate the exact number of cycles to failure which is,
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Fig. 2: (a) Fatigue crack growth rate versus the stress intensity range for the test case and (b) corresponding crack lenght – cycles curve.
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Fig. 3: Crack lenght evolution for “CRC“ case, assuming (a) δ0 = 0.05 μm and (b) δ0 = 0.5 μm. In (b) only cracks with angles between 0◦ and
45◦ propagated within 60 cycles.

on the other hand, practically unfeasible in the giga cycle regime. The parameters for the cohesive law were thus used
in the following calculations to study crack propagation in the inclusion–matrix unit cell.

3.2. Rolling contact results

Results in terms of crack lenght and number of cycles applied are shown in Figs. 3-4. From Fig. 3 (“CRC”)is
clear that a to a smaller value of δ0 = 0.5 μm, i.e. a stiffer cohesive traction-separation law, corresponds a quicker
propagation of the crack, regardless of the angle. The cracks with angles between 0◦ and 30◦ have the fastest propaga-
tion (Fig.3a), though differences with other angles are small. This seems to be confirmed also in Fig. 3b, where only
angles smaller than 45◦ propagated within 60 cycles. Figures 4a-b, that refer to cases INT and POR, respectively,
show the same trend related to the angle of the crack: the crack growth is slightly slower than the case CRC, and
only the crack oriented at 90◦ seems to propagate considerably slower. All the results showed ”S“ shaped curves and
further investigations are being carried out. The author believes that this may be due to the small size of the region
where the cohesive elements are placed.
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Fig. 4: Crack lenght evolution for (a) “INT” and (b) “POR” cases. δ0 = 0.5 μm.

4. Conclusions

Fatigue crack growth under a typical rolling contact stress history has been investigated in this work, for different
crack angles, for different inclusion-matrix conditions and for the case of a pore. Results show that crack angles
between 0◦ and 45◦ propagate faster, but further investigations are suggested.
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