
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 02, 2024

Dynamical image-charge effect in molecular tunnel junctions
Beyond energy level alignment

Jin, Chengjun; Thygesen, Kristian Sommer

Published in:
Physical Review B. Condensed Matter and Materials Physics

Link to article, DOI:
10.1103/PhysRevB.89.041102

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jin, C., & Thygesen, K. S. (2014). Dynamical image-charge effect in molecular tunnel junctions: Beyond energy
level alignment. Physical Review B. Condensed Matter and Materials Physics, 89(4), Article 041102.
https://doi.org/10.1103/PhysRevB.89.041102

https://doi.org/10.1103/PhysRevB.89.041102
https://orbit.dtu.dk/en/publications/50c39ebf-602b-4343-8ad5-8ac11813e918
https://doi.org/10.1103/PhysRevB.89.041102


RAPID COMMUNICATIONS

PHYSICAL REVIEW B 89, 041102(R) (2014)

Dynamical image-charge effect in molecular tunnel junctions: Beyond energy level alignment

Chengjun Jin and Kristian S. Thygesen
Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark,

DK-2800 Kgs. Lyngby, Denmark
(Received 11 October 2013; revised manuscript received 18 December 2013; published 6 January 2014)

When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the
electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such
that a static model for the image potential applies. Here we investigate how the finite IC formation time affects
charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical
treatment shows that the conductance is suppressed by a factor Z2, where Z is the quasiparticle renormalization
factor, compared to the static IC approximation. We show that Z can be expressed either in terms of the plasma
frequency of the electrode or as the overlap between electrode wave functions corresponding to an empty and
filled level, respectively. First-principles GW calculations for benzene-diamine connected to gold electrodes
show that the dynamical corrections can reduce the conductance by more than a factor of two when compared to
static GW or density functional theory where the molecular energy levels have been shifted to match the exact
quasiparticle levels.

DOI: 10.1103/PhysRevB.89.041102 PACS number(s): 85.65.+h, 31.70.Dk, 71.10.−w, 73.20.−r

The effect of image forces on tunneling electrons was
first studied by Sommerfeld and Bethe [1] and Holm [2]
in the 1930s, and later refined by Simmons [3] to a form,
which still today is widely used. In Simmons model, the
effect of image forces is described by a simple 1/z correction
to the tunneling barrier. Its range of validity has recently
been critically examined on basis of ab initio calculations
and experimental data for (sub-)nanometer-sized tunneling
junctions [4–8].

Image charge (IC) forces also have important consequences
for electron transport at metal-molecule interfaces because
they influence the position of the molecular energy levels
relative to the metal Fermi level [9–14]. Because the interaction
with the image charge lowers the energy cost of adding an elec-
tron/hole to a molecular orbital, the occupied energy levels are
shifted upwards, while the empty levels are shifted downwards
in energy as the molecule approaches a metal surface.

Theoretically, the image forces are challenging to describe
because they are created by the electron on which they act.
To properly include such correlation effects one must go
beyond standard single-particle theories like Hartree-Fock
and density functional theory (DFT) [15,16]. For transport
in molecular junctions, this has been done previously using
the GW approximation to the electron self-energy both in the
steady state [17–20] and time-dependent [21] regimes. Due
to the computational complexity of such many-body methods,
simple ad hoc correction schemes have been developed which
shift the energy of the molecular orbitals by an amount
estimated from a classical image charge model [22,23]. Such
correction schemes, generally termed DFT + �, have been
shown to improve the agreement with experiments compared
to the uncorrected DFT result [24]. An interesting question is
then whether such a level correction scheme captures all the
effects of the IC on electron transport if the corrections are
chosen to reproduce the exact level alignment for the frontier
orbitals. It was recently shown that the IC not only influences
the energy of the molecular orbitals but also their spatial shape
[25]. A change in orbital shape will change the hybridization
with the metal states and thereby affect the tunneling rate.

This effect is beyond the DFT + � schemes, but should be
significant only for highly polarizable molecules.

Except for the few many-body calculations, all previous
attempts to model the IC effect in molecular transport junctions
have been based on the assumption that the IC forms instanta-
neously such that a static IC model applies. On the other hand,
it is intuitively clear that the role of the IC depends on the time it
takes to polarize the electrode compared to the time the electron
spends on the molecule. The former is given roughly by the
inverse plasmon frequency of the electrode, τp ≈ 1/ωp, while
a simple expression for the latter follows from the time-energy
uncertainty relation, τtun ≈ �/|EF − εa|, where εa is the
energy of the molecular orbital closest to the Fermi level. We
note that the related problem of how a finite plasmon frequency
influences the spatial form of the image potential at a metal
surface has been studied by several authors in the past [26–28].

In this Rapid Communication we show, using both a simple
one-level model and first-principles many-body calculations,
that the finite electrode response time always suppresses the
conductance of a molecular junction compared to the result of
a noninteracting model with the exact same level alignment
(static IC approximation). Formally this is a consequence of
the reduction of the quasiparticle weight of the molecular
resonance from 1 to Z < 1 due to the electron-electron
interactions which shift spectral weight from the single-
particle excitation to other excitations (in particular plasmons).
In the off-resonance tunneling regime, the conductance of the
one-level model is suppressed by Z2 compared to the static
result. We provide two complementary physical explanations
for this reduction. In a dynamical picture, it can be related to
the ratio between the characteristic IC formation time τp and
the dwell time of the electron on the molecule expressing the
reduced screening of the electron due to the “lagging behind”
of the IC. In a picture of hopping between many-body states, Z
can be expressed as an overlap of the electrode wave function
with and without the IC and thus explains the origin of the
reduced tunneling rate as a mismatch between the initial and
final states of the electrode. Ab initio GW calculations for
benzene-diamine (BDA) connected to gold electrodes shows
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a conductance reduction of almost a factor 3 compared to
the static approximation (noninteracting transport through
optimally tuned energy levels), demonstrating the importance
of dynamical corrections for realistic systems.

We consider the problem of electron transport through a
single electronic level |a〉 coupled to left (L) and right (R)
electrodes. Due to the hopping matrix elements between |a〉
and the states of the electrodes, the level is broadened into
a resonance with a finite spectral width γ , which we take
to be energy independent for simplicity. We assume that the
level is unoccupied, i.e., εa > EF + γ , however, the case of
an occupied level is treated completely analogously. The time-
ordered Green’s function of the localized level can be written

Ga(ω) = 1

[ω − εa − Re �a(ω)] + i[γ − Im �a(ω)]
, (1)

where the self-energy �a(ω) = 〈a|�̂(r,r′,ω)|a〉 accounts for
the Coulomb interaction between electrons in the electrodes
and an electron in |a〉. To lowest order in the interaction, the
self-energy contains the Hartree and exchange potentials of
Hartree-Fock theory. These terms do not contribute to the
image charge effect and are therefore absorbed in εa . Thus
� includes only the higher order terms (correlation effects).

The screening from the electrodes shifts the pole of the GF
from εa to the quasiparticle (QP) energy

εQP
a = εa + �εic, �εic = Z�a(εa), (2)

where �εic denotes the image charge shift and Z = [1 −
d�a(εa)/dω]−1 is the renormalization factor to be discussed
later.

Within the GW approximation [29], the self-energy takes
the form

�(r,r′,ω) = i

2π

∫
G0(r,r′,ω + ω′)W̄ (r,r′,ω′)dω′, (3)

where W̄ = W − v, and W is the dynamically screened
Coulomb interaction. We have subtracted the bare Coulomb
interaction v = 1/|r − r′| from W to avoid double counting
of the exchange energy which is already contained in εa . The
unperturbed Green’s function, is given by

G0(r,r′,ω) = ψa(r)ψa(r′)∗

ω − εa + iγ

+
∑

k

ψk(r)ψk(r′)∗

ω − εk + i0+sgn(εk − EF )
. (4)

In terms of the density response function of the metal electrode
χ , we have (suppressing the integration over spatial variables)
W̄ (ω) = vχ (ω)v. Neglecting the spatial overlap between |a〉
and the metal states, the relevant matrix element of the screened
interaction 〈a|W̄ (ω)|a〉 becomes

W̄a(ω) =
∫ ∫

Va(r)χ (r,r′,ω)Va(r′)dr dr′, (5)

where Va(r) is the potential created by an electron in the
state |a〉,

Va(r) =
∫ |ψa(r′)|2

|r − r′| dr′. (6)

A Feynman diagram of the self-energy is shown in Fig. 1.

Ga |ψ >
0

Filled level

|a>

χ

Empty level

Va

e

|ψ >
0

FIG. 1. (Color online) Upper panel: When the localized level
|a〉 is empty, the charge distribution corresponding to the electrode
ground state, |�0〉, is homogeneous (no image charge). Lower panel:
When the level is occupied, the potential from the localized electron,
Va(r), induces an image charge in the electrode ground state, |�̃0〉.
A Feynman diagram for the self-energy describing the IC effect is
shown in the upper panel.

Using a plasmon pole approximation (PPA) for the response
function,

W̄a(ω) = A
( 1

ω − ωp + iγp

− 1

ω + ωp − iγp

)
, (7)

the self-energy can be evaluated using complex contour
integration

�a(ω) = A

ω − εa − ωp + i(γ + γp)
, (8)

where ωp and γp are the characteristic plasmon energy and
spectral width, respectively. It follows that the imaginary part
of �a is a Lorentzian of width � = γ + γp centered at ωp +
εa . In the rest of the Rapid Communication we assume, for
simplicity, that � � ωp. Since we are only interested in �a(ω)
in the range between EF and εa , this means we can set � = 0 in
Eq. (8). The constant A can be fixed by invoking the condition
�εic = Z�a(εa), which results in

A = �εicω
2
p

ωp − �εic
. (9)

Close to equilibrium, i.e., for small bias voltages, the
conductance is given by Landauer’s fromula G = 2e2

h
T (EF )

[30]. For the single-level model, the transmission at the Fermi
level can be written

T (EF ) = γ 2

(
EF − εeff

a

)2 + γ 2
, (10)

where we have defined the effective energy level seen by the
tunneling electron as

εeff
a = εa + Re �a(EF )

= εa + �εic

(
ωp

|EF − εa| + ωp

)
. (11)
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In the above expression we have assumed, for simplicity of
the expression, that �εic � ωp. The transmission through the
interacting level is thus equivalent to transmission through a
noninteracting level with energy εeff

a . When the image charge
formation is fast compared to the average time spent by
the electron on the molecule, i.e., when ωp � |EF − εa|,
the effective level equals εQP

a and the static image charge
approximation is valid. In the opposite regime where the
tunneling time is short compared with the image charge
formation, i.e., ωp � |EF − εa|, the self-energy vanishes and
the tunneling electron “sees” the unscreened level εa .

In Eq. (10) we have embedded the effect of the finite
electrode response time into an effective level position.
Although this seems like a reasonable consequence of a partial
image charge screening, it does not reflect the correct physics,
since the pole of the Green’s function, and thus the spectral
peak, remains at εQP

a . What is affected is the renormalization
factor Z. Using Eqs. (8) and (9) it follows that

Z = 1 − �εic

ωp

. (12)

Within the quasiparticle approximation, one expands �(ω) to
first order around εa which yields the transmission function

T QP(ω) = (Zγ )2

(
ω − ε

QP
a

)2 + (Zγ )2
. (13)

This shows that the transmission resonance remains at εQP
a , but

is narrowed by a factor of Z compared to the noninteracting
result. In the off-resonant tunneling regime where |EF −
εQP
a | � γ it follows that the conductance is suppressed by

a factor Z2 compared to the static approximation which sets
�a(ω) = �εic.

The Green’s function formalism describes the propagation
of one electron with the effect of all other electrons of the
system embedded into the self-energy. Alternatively, one can
describe the transport process in terms of transitions between
many-body states with a different number of electrons on
the level. For noninteracting electrons this involves only the
hopping matrix elements between the state |a〉 and the single-
particle states of the electrodes, |k〉. However, within such a
picture we neglect the fact that all the other electrons in the
electrode also feel a change in potential when the occupation
of the localized level changes. To account for this effect, the
single-particle transition matrix element must be multiplied by
the overlap between the initial and final many-body states of
the electrode, 〈�0|�̃0〉. The situation is sketched in Fig. 1.

Using first order perturbation theory to treat the effect of an
electron on the molecule, the change in the electrode ground
state becomes

∣∣�(1)
0

〉 =
∑
s 	=0

〈�s |V̂ |�0〉
Es − E0

|�s〉, (14)

where V̂ = ∫
n̂(r)Va(r)dr with Va(r) defined in Eq. (6), is the

operator describing the potential created by the electron on the
level.

Using the Lehmann representation for the response function
in Eq. (5), performing the integration in Eq. (3), and taking the

derivative at ω = εa , one obtains

Z =
(

1 +
∑
s 	=0

|〈�s |V̂ |�0〉|2
(Es − E0)2

)−1

. (15)

Noting that the normalized final state is |�̃0〉 = (|�0〉 +
|�(1)

0 〉)/(1 + 〈�(1)
0 |�(1)

0 〉)1/2, and comparing with Eq. (14), it
follows that

Z = |〈�̃0|�0〉|2. (16)

In fact, this also follows from a more general result stating that
Z is the squared norm of the QP state |a〉 (see, e.g., Ref. [25]).
Equation (16) shows that the origin of the Z2 conductance
suppression expressed by Eq. (13) (at least in the cotunneling
regime where |EF − εQP

a | � γ ), can be understood as a
mismatch of the initial and final states of the electrodes.
Here we note the similarity with the phenomenon known as
Franck-Condon blockade where transport through a molecule
is suppressed/blocked due to reduced overlap between the
initial and final vibronic states of the molecule [31]. According
to Eq. (16) the magnitude of Z is determined by the relative
weight of the component |�(1)

0 〉 in the final state |�̃0〉. We can
relate the norm of |�(1)

0 〉 to the response time of the electrode by
noting that the terms in Eq. (14) have an Es − E0 denominator.
Within the PPA the dominant terms come from the plasmon
excitations for which Es − E0 ≈ ωp. Thus a faster electrode
response, i.e., larger ωp, is equivalent to a smaller perturbation
of the ground state and thus Z closer to unity. This is again
consistent with Eq. (12).

To test the role of dynamical screening under more realistic
conditions, we have performed first-principles GW calcula-
tions for the benchmark system of BDA connected to gold
electrodes (see inset of Fig. 2). The details of the calculation
follow Ref. [18]. In brief, the Green’s function of the contacted
molecule is obtained by solving the Dyson equation self-
consistently including both lead coupling self-energies and the
GW self-energy. We use a basis of numerical atomic orbitals

-4 -2 0 2
Energy E-EF (eV)

10-3

10-2

10-1

100

Tr
an

sm
is

si
on

DFT
DFT+ΣSO
GW
static GW

FIG. 2. (Color online) The transmission function of the
gold/BDA junction calculated using four different methods (see
text). For the static GW calculations we employed the xc potential
of Eq. (18).
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at the double-ζ plus polarization level for the gold electrodes
and double-ζ for the BDA. The GW self-energy is evaluated
in a spatial region containing the molecule and the four closest
Au atoms on each side of the molecule. For the considered
junction geometry this is sufficient because the IC is essentially
confined to the tip Au atoms [18].

In Fig. 2 we show the transmission function calculated using
four different methods. In addition to the GW result we show
the transmission obtained from DFT with the standard Perdew-
Burke-Ernzerhof exchange-correlation (xc) functional [32].
Not surprisingly the latter yields a higher conductance due
to the well-known underestimation of the molecular energy
gap. To isolate the role of dynamical effects we have used
a “scissors operator” to adjust the energies of the molecular
orbitals in the DFT calculation to those obtained with GW:

�SO =
∑

ν∈mol

�εν |ψν〉〈ψν |. (17)

The molecular orbitals |ψν〉 are obtained by diagonalizing the
DFT Hamiltonian within the subspace spanned by the basis
functions of the BDA. In practice, the energy shift (�εν) of
the three highest occupied and three lowest unoccupied orbitals
are fitted to match the positions of the main peaks in the GW
transmission spectrum. As a fourth method we followed the
QPscGW scheme of Schilfgaarde et al. to construct a static
and Hermitian xc potential from the GW self-energy using the
expression [33]

V xc = 1

2

∑
νμ∈mol

|ψν〉Re
{[

�
(
εQP
ν

)]
νμ

+ [
�

(
εQP
μ

)]
νμ

}〈ψμ| (18)

with the QP energies εQP
ν obtained from the full GW cal-

culation. As can be seen from Fig. 2, the QPscGW and
DFT + �SO methods yield very similar transmission spectra.
This is because the off-diagonal matrix elements of V xc

from Eq. (18) are essentially zero, meaning that the DFT
and QP molecular orbitals coincide. (This is not surprising
given the low polarizability of BDA [25].) We thus conclude
that the observed difference in transmission between full GW
on the one hand and DFT + �SO or QPscGW on the other
hand, is neither due to differences in energy level alignment
nor in the spatial shape of orbitals, but originates from the
frequency dependence of the GW self-energy.

In Fig. 3 we show the Hartree-Fock (HF) and GW results for
the spectral function of the BDA highest occupied molecular
orbital (HOMO) together with the imaginary and real parts
of the GW self-energy 〈ψH |�̂(ω)|ψH 〉. From this it follows
that the GW self-energy shifts the HOMO up in energy by
1.9 eV. The corresponding self-energy shift for BDA in the
gas phase, caused by intramolecular screening, is found to be
1.0 eV. From this we conclude that the size of the IC shift,
caused by the metallic screening, is 0.9 eV. It is clear from the
almost linear behavior of Re �(ω), that the linear expansion
of � leading to Eq. (13) is well justified. Furthermore, the

FIG. 3. (Color online) The spectral function of the HOMO of the
contacted BDA molecule calculated with Hartree-Fock (blue) and
GW (red). The real and imaginary parts of the GW self-energy are
also shown (black curves).

imaginary part of the GW self-energy vanishes for energies
above εH in agreement with the one-level model. The width
of the spectral functions in Fig. 3 is given by the imaginary
part of the coupling self-energy (not shown). The energy
variation of this broadening follows the density of states at the
gold tip atom. This explains the larger broadening of the GW
resonance compared to the HF resonance which is situated
below the gold d band.

From the slope of Re � we obtain the renormalization factor
of Z = 0.84. Based on the one-level model this should lead
to a conductance suppression by a factor Z2 = 0.71 which
is, however, not sufficient to explain the observed difference
between the GW and static GW result (see Fig. 2). The
reason for this is that the BDA junction is not well described
by a one-level model. While the unoccupied states play a
minor role for the conductance, the HOMO-2, which is an
antibonding version of the HOMO, must be included to obtain
a realistic model. This points to a nontrivial interplay between
the dynamical effects on different transport channels.

In conclusion, our results demonstrate that the role of
electron-electron interactions in charge transport across a
metal-molecule interface goes beyond the well-established ef-
fect on the energy level alignment. In general, the image charge
dynamics renormalizes the level broadening (or equivalently
the tunneling rate) by an amount that depends on the plasmon
frequency of the electrode. Since the former can be tuned, e.g.,
by nanostructuring or electrostatic gating, this could provide a
basis for experimental investigations of the dynamical image
charge effect.

The authors acknowledge support from the Danish Council
for Independent Research’s Sapere Aude Program through
Grant No. 11-1051390.
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