Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

Encina Llamas, Gerard; Epp, Bastian; Dau, Torsten

Publication date: 2014

Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

Gerard Encina Llamas, Bastian Epp and Torsten Dau

Centre for Applied Hearing Research (CAHR), Technical University of Denmark (DTU)

ABSTRACT

The healthy auditory system shows a compressive input/output (IO) function as a result of healthy outer hair cell function. Hearing impairment often leads to a decrease in sensitivity and a reduction of compression, mainly caused by loss of inner and/or outer hair cells. Compression is commonly estimated based on behavioral procedures (Plack et al., 2004), which are time consuming and rely on assumptions regarding the ability to selectively investigate cochlear processing or on objective recordings such as otoacoustic emissions (OAEs) (Neely et al., 2003), which allow to selectively study cochlear processing but the interpretation of results for individual data is challenging.

Auditory steady-state responses (ASSR) are another objective method which allows fast, reliable and frequency-specific measurements of hearing function. It is hypothesized that compressive behavior is observed in normal-hearing (NH) listeners while in hearing-impaired (HI) listeners, sensitivity and compression are reduced. ASSR data are later compared to data from distortion-product otoacoustic emissions (DPOAE) recordings.

RESULTS

Normal-hearing subjects consistently show compressive functions with slopes between 0.1 and 0.5 dB/dB.

ASSR saturates or even decreases at higher stimulus levels.

Repeated points (•) recorded in different sessions show small variability in the response.

HEARING-IMPAIRED:

HI subjects show higher variability in the results.

Significant responses at input levels of 30 dB SL and above have been obtained for HI subjects.

ASSR IO functions in HI subjects reflect the loss of sensitivity at lower stimulus levels.

DPOAE in NH:

Multiple and single frequency stimulation elicit similar responses.

No interaction among the different SAM tones seems to be observed in the ASSR recordings from the used multi-frequency stimulus.

Results from single frequency stimulation recordings show slightly higher variability than results from multi-frequency stimulation.

DPOAE recordings show growing IO function with constant slopes using mid-range stimulus levels.

Compression estimate from DPOAE I/O functions was obtained using the method proposed by Neely et al. (2003).

DISCUSSION

Slopes of growth I/O functions for ASSR vs DPOAE.

HYPOTHESIS

Peripheral compression can be estimated through ASSR IO functions in NH subjects. HI subjects show a change in sensitivity and compression estimate.

METHODS

ASSR (20 subjects, 13 NH and 7 HI)

DPOAE (12 NH subjects)

RESULTS

Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

REFERENCES

ACKNOWLEDGMENT

CONCLUSIONS

Compressive IO function in normal-hearing and hearing-impaired cases are described in the manual for the hearing tests, J. Acoust. Soc. Am. (124), 278-278.

Neely et al. (2009). Distortion-product otoacoustic emissions (DPOAE) component: a measure of inner hair cell function.


