Application of mesoscale models with wind farm parametrisations in EERA-DTOC

Volker, Patrick J.H.; Badger, Jake; Hahmann, Andrea N.; Hansen, S.; Badger, Merete; Husson, R.; Vincent, P.; Longepe, N.; Mouche, Alexis; Hasager, Charlotte Bay

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Application of mesoscale models with wind farm parametrisations in EERA-DTOC

P. J. H. Volker(1), J. Badger(1), A. N. Hahmann(1), S. Hansen(1), M. Badger(1), R. Husson(2), P. Vincent(2), N. Longepe(2), A. Mouche(3) and C. B. Hasager(1)

(1) DTU Windenergy (Denmark)
(2) CLS, Plouzane (France)
(3) IFREMER (France)
Introduction

Our aim is to understand better wakes of wind farms, especially their:

(1) Properties
 - Depth
 - Extension
 - Dynamics

(2) Long-term impact on
 - Wind resources
 - Environment (T, Q)

Content:
1) Mesoscale models
2) EERA-DTOC Project
3) Mesoscale models in EERA-DTOC
Mesoscale Model (General)

Mesoscale models are used for:

- Forecasting the weather
- Wind resource assessment

Weather Research and Forecast model (WRF)

2.750.000 Cells for an area $\approx 180.000 \text{ km}^2$

On our cluster: 2/3 Days per year on 70 X 20 processors
Wind Farm Parametrisations

WRF Wind Farm scheme (Fitch et al. 2012):
(1) Local drag force (Rotor swept area)
(2) Additional TKE source term

Explicit Wake Parametrisation (EWP) approach:
(1) Accounts for unresolved wake expansion
(2) Applies Grid-cell averaged drag force

Concept:

For both schemes the full TKE budget is calculated by PBL-scheme
EERA-DTOC Project

EERA-DTOC (Seventh Framework Programme (FP7)):
European Energy Research Alliance - Design Tool for Offshore Wind Farm Cluster

“Integrated and validated design tool combining state-of-the-art wake, yield and electrical models”

Universities/Institutes:
- DTU Wind Energy (Denmark)
- ECN (Netherlands)
- Universität Oldenburg (Germany)
- Fraunhofer (Germany)
- CRES (Greece)
- CIEMAT (Spain)
- CENER (Spain)
- CLS (France)

Industry:
- Carbon Trust (United Kingdom)
- RES (United Kingdom)
- Overspeed (Germany)
- Statoil (Norway)
- Statkraft (Norway)
- Iberdrola (Spain)
- EON (Sweden)
Qualitative comparison with Synthetic Aperture Radar (SAR) images. They can retrieve wind speed from back-scatter (higher wind speeds are brighter):

RADARSAT-1/-2 from Data and Products ©MacDonald, Dettewiler and Associates Ltd are acknowledged.

SAR Image (17:34 UTC) WRF-EWP (17:30 UTC)

1st of July of 2013: Belwind & Thornton

⇒ Comparable extension and divergence
30th of April 2013: UK wind farms and Belwind & Thornton

⇒ Challenge in timing snap-shots
DTOC - User Interface

Wind climate in the **target area** from WRF with/without **background** wind farms

Outcome: Annual Energy Production of the target wind farm accounting for wake losses of neighbouring wind farms
Three institutes (CENER, CIEMAT and DTU) can calculate a Wind Climate for a target area.

Without and with background wind farms.

Background

Target area
DTOC - Mesoscale Model Implementation

2 years simulation with WRF-EWP in the North-Sea without/with background wind farms

Time averaged wind speed at hub-height (119 m)

Reference Wind Farm Difference (0.05 – 0.8 m/s)
The Mesoscale model provides for all point within the **target area** in a given **period**:

- Time-Series
- Modelled Wind Climate
- Generalised Wind Climate (DTU)
Summary

Within the EERA-DTOC tool:

- Methodology has been implemented in the DTOC-TOOL
- Neighbouring wind farms can now be accounted for in time-series and the wind climate
 ⇒ Annual Energy production for a new wind farm for the Wind climate with/without neighbouring wind farms

Mesoscale models:

- Have the capability to accounts for the dynamics in the wind farm wake
- Further investigation of the long-term velocity reduction is needed
This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No FP7-ENERGY-2011-1/ n°282797