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A Matheuristic Approach for Solving the Railroad Hump Yard

Block-to-Track Assignment

Department of Engineering Management
Technical University of Denmark

Jørgen Thorlund Haahr and Richard Martin Lusby

Abstract

This paper presents a novel matheuristic for solving
the Hump Yard Block-to-Track Assignment Problem.
This is an important problem rising in the railway
freight industry and involves scheduling the transi-
tions of a set of rail cars from a set of inbound trains
to a set of outbound trains over a certain planning
horizon. It was also the topic of the 2014 challenge
organised by the Railway Applications Section of the
Institute for Operations Research and the Manage-
ment Sciences for which the proposed matheuristic
was awarded first prize. Our approach decomposes
the problem into three highly dependent subprob-
lems. Optimization-based strategies are adopted for
two of these, while the third is solved using a greedy
heuristic. We demonstrate the efficiency of the com-
plete framework on the official datasets, where so-
lutions within 4-14% of a known lower bound (to a
relaxed problem) are found. We further show that
improvements of around 8% can be achieved if out-
bound trains are allowed to be delayed by up to two
hours in the hope of ensuring an earlier connection
for some of the rail cars.
Keywords— Freight Train Optimization, Hump

Yard Optimization, Block To Track Assignment,
Matheuristic

1 Introduction

This paper addresses the 2014 challenge posed by the
Railway Applications Section (RAS) of the Institute
for Operations Research and the Management Sci-

ences. The challenge focuses on an important problem
arising in the railway freight transportation industry
known as the Hump Yard Block-to-Track Assignment
(HYBA). In particular, the problem requires one to
consider, and schedule the movements of a number
of rail cars through a classification or hump yard.
The primary purpose of such a yard is to act as a
consolidation point, where rail cars arriving over a
certain time horizon on a number of inbound trains
are rearranged, or classified, into groups of rail cars
sharing the same destination. These groups are then
subsequently pulled out and combined to form new
outbound trains, which remove rail cars from the clas-
sification yard. A classification yard typically consists
of four main components: an arrival yard, a hump, a
classification bowl, and a departure yard. During the
processing of an inbound train each of its rail cars
is pushed over the hump, and, under the influence
of gravity, and with the use of switches, rolls to a
pre-assigned classification track in the bowl. Bowls
typically consist of multiple, parallel tracks of possi-
bly different lengths, where partial outbound trains
can be assembled before being pulled together to form
outbound trains in the departure yard.

How to handle the steady flow of rail cars is of
paramount importance to the efficiency of any clas-
sification yard. However, coordinating the processing
of arriving inbound trains with the allocation of clas-
sification tracks and the assembly of outbound trains
is not a trivial task. All processes within the yard
are subject to a variety of different restrictions and,
if scheduled poorly, can result in a situation where
rail cars needlessly wait long periods of time before
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leaving on an outbound train. The aim of the HYBA
is to process all cars in such a way that their average
dwell time in the yard is minimized.

In this paper we present a novel solution approach
for the HYBA problem. We propose a matheuris-
tic based on a decomposition of the problem into
three distinct, highly dependent subproblems. Exact
optimization-based solution strategies are discussed
for two of these and the performance of the full
heuristic is analysed on the official data sets. These
data sets are of a practical size and based on a typi-
cal North American classification yard; each consid-
ers a planning horizon of 42 days during which 702
inbound trains arrive (carrying in total 52246 rail
cars) to be processed. There are between 42 and 58
classification tracks on which to sort the rail cars,
which comprise 46 different destinations. Further-
more, there are 18 daily outbound trains. An out-
bound train is scheduled to depart at the same time
every day, and each destination is served by exactly
one outbound train. On such data sets, the proposed
approach obtains acceptable solutions, within 4-14%
of a known lower bound (for a relaxed problem) for all
data sets. We report run-times of at most 11 minutes.

To identify any bottlenecks at the considered clas-
sification yard we also perform a series of what if
analyses. For example, we discuss the effects of hav-
ing longer classification tracks or more capacity on
the outbound trains and compare the performance
improvement to the base case. Finally, we show that
substantial reductions of around 8% in average dwell
time can be made if it is possible to allow outbound
trains to be delayed by up to two hours. Given the
relatively short run times of the approach, it is clearly
evident that the proposed methodology is equally ap-
plicable at the strategic level planning decisions con-
cerning railway classification yard design.

In what follows we describe aspects of the solution
approach in more detail. We begin in Section 2 with a
short summary of previous research in this area. Sec-
tion 3 provides a formal description of the problem,
while Section 4 introduces the models developed, to-
gether with their respective solution approaches. The
performance of the approach is the subject of Sec-
tion 5, where we present results on the benchmark
instances provided. Finally, conclusions are drawn in

Section 6.

2 Literature Review

The highly complex nature of hump yard planning
makes it a perfect application for Operations Re-
search methodologies. Not surprisingly, various stud-
ies have been conducted on problems similar in na-
ture, but not identical, to the one considered in this
paper. In this section we provide a brief review of
the research that is available in the literature and,
where relevant point, out any differences to the prob-
lem at hand. Furthermore, we restrict the review to
those studies that concern hump yard planning on
a microscopic level only (i.e. planning the shunting
movements within a single hump yard) since this is
precisely the problem we address in this paper. For a
general introduction to shunting within hump yards
the reader is referred to e.g. [6] and [10], while mod-
els that address hump yard planning at a macro-
scopic level (i.e. between different yards), commonly
known as the railroad blocking problem, can be found
in e.g.[1], [2], [18].

Methods for hump yard planning are typically cat-
egorized as being either single or multi stage methods,
with the latter being by far the more researched. In a
single stage method, each rail car arriving on an in-
bound train can be humped to a classification track
exactly once before it is pulled out to an outbound
train. Multi stage methods, on the other hand, allow
rehumping (i.e. cars can be humped multiple times).
This additional flexibility is provided in the hope of
obtaining a better sorting of the cars and, ultimately,
a more efficient use of the yard. Typically a so-called
mixing track is specified, where any car assigned to
the mixing track can be pulled back to the hump and
classified again.

The works of [3], [4], and [5] specifically address
the problems of sorting and classifying rail cars at a
hump yard using the mixed track concept. All papers
restrict their attention to scheduling the classification
bowl of the hump yard only. A noticeable difference
between this problem and the one that we consider
is that the formation of the outbound trains happens
directly on the tracks of the classification bowl. Typ-
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ically a track of the bowl is dedicated to a specific
outbound train and the cars destined for the out-
bound train appear on the train in the order they
are humped to the track. As reserving a classification
track for a single outbound train claims significant
sorting capacity, it is impractical to allocate an out-
bound train an entire track from the arrival of its first
car until its departure. As such, a number of mixing
tracks is used to temporarily hold cars for different
trains. The cars on such tracks are then rehumped.

In [3], the authors describe an integer programming
formulation that attempts to minimize the number
of rehumpings that must be performed. These extra
shunting movements are termed roll-ins by the au-
thors. The model is solved using a branch-and-price
algorithm and tested on 192 real-life instances from
the Hallsberg marshalling (hump) yard in Sweden.
The authors provide a direct comparison with a com-
pact integer programming formulation and demon-
strate the superiority of the column generation pro-
cedure. The work of [4] extends this methodology to
model situations in which the arriving rail cars each
belong to a certain block, and these blocks must ap-
pear in a pre-specified order on the outbound train.
Again, the Hallsberg hump yard in Sweden forms the
basis of the computational study, where 50 instances
with a planning horizon of three days are considered.
An extension to [3] is also considered in [5], where
a new arc-based model is presented, along with a
rolling-horizon solution framework and an analysis
of yard capacity.

The problem we consider shares strong similarities
with that considered in [3], [4], and [5]; however, there
are several key differences. Firstly, the incoming se-
quence of cars is not fixed in our problem (i.e. we
can decide the order in which to process the inbound
trains), we are not allowed to rehump cars, and we
must coordinate the assembly of outbound trains us-
ing a set of pullback engines. That is, the assignment
of a rail car to a classification track does not implicitly
indicate the outbound train, nor the order in which
it appears on an outbound train.

Identifying an efficient sorting of inbound rail cars
at classification yards is also the focus of [8]. The
authors adopt a more theoretical approach to the
problem and prove that the problem of finding the

minimum number of tracks required to sort a set of
arriving rail cars into blocks of cars that can be pulled
out in a specific order from the classification tracks is
NP-complete. This topic is also addressed by [7, 12]
and [17]. In [12], the authors develop a novel encoding
strategy for classification schedules, discuss its com-
plexity, and present algorithms that can be used to
solve practical rail car classification problems. Theo-
retical aspects of rail car classification are also consid-
ered in [17]. In addition, the author describes several
practical extensions of the problem, and an integer
programming formulation is developed to solve the
classification problem. Finally, [7] close an open proof
from [12] and show that identifying optimal classifi-
cation schedules in constructing one long outbound
train from multiple inbound trains is NP-Hard.

Dirnberger and Barkan, in [9], consider improv-
ing the performance of classification yards and intro-
duce the concept of so-called lean railroading. This
approach adapts production management strategies
to the railroad environment. The pull-down, or out-
bound train assembly, process is identified as the
main bottleneck, and the authors suggest that to
improve the performance of classification yards em-
phasis should be placed on identifying quality sorting
strategies instead of merely measuring the number of
cars processed at the hump. Studies reported in the
paper suggest that capacity for train assembly can be
increased by as much as 26%.

Attempts to improve the connection reliability of
hump yards are provided in the two part series of pa-
pers [13] and [14]. Determining which cars to process
at the hump, and in which order, is critical in en-
suring cars meet specific (i.e. the earliest) outbound
departures. The first paper, [13], considers the rela-
tionship between priority-based-classification and dy-
namic car scheduling to produce a reliable service.
The author emphasizes the need for better informa-
tion to be available at the time at which a car is
humped (ideally the outbound train to which it will
be assigned). This can be coupled with a more effi-
cient block-to-track assignment to ensure the classi-
fication yard is being used to its full potential. This
is precisely the topic of the second paper, [14]. The
author describes a dynamic car block-to-track assign-
ment strategy based on delivery commitment rather
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then a first-in-first-out strategy. In other words, cars
with very little schedule slack should have access to
the first available outbound train capacity. The pro-
posed heuristic framework sorts cars by outbound
train and destination yard block as opposed to just
destination yard block, giving greater knowledge re-
garding the exact make-up of each outbound train.

He et al. [11] present a Mixed Integer Program
(MIP) model for optimizing single stage hump yard
operations (i.e. no rehumping), from inbound train
classification to outbound train assembly and depar-
ture. The model also appears to account for out-
bound block standing orders and limits on the num-
ber of pullback engines available to do the sorting.
Due to its size and complexity, the authors present a
decomposition-based heuristic and discuss its perfor-
mance on several practical instances arising in China.
The problems considered up to 170 inbound trains
per day (with up to 8000 cars per day in total). The
objective essentially minimizes a combination of the
dwell time of the rail cars in the yard and delays to
outbound trains. Running times of the algorithm are
reported to be within 10 minutes.

Finally, simulation models for hump yard planning
are described by [15, 16]. The focus in these papers
is not on optimizing the hump yard schedules, but
rather to identify bottlenecks in the existing infras-
tructure (i.e. the number of cars, blocks, and that can
be handled) with existing scheduling strategies.

3 Problem Description

The considered problem has been introduced and de-
fined by the Railway Application Section Competi-
tion 2014 [19]. In this section we present a standalone
definition of the considered problem as well as in-
troduce the notation we use throughout the paper.
We reuse the notation and concepts of the original
formulation to a great extent. An illustration of the
problem mechanics is shown in Figure 1.

We assume that there is a set of inbound trains I
arriving to the hump yard over a given time horizon.
Each inbound train consists of a coupled, ordered se-
quence of railcars that will be separated at the hump
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Figure 2: The different outbound blocks on each of
the first 10 inbound trains. Each outbound block is
associated with a specific colour.

in the yard. Each train i ∈ I arrives at the hump
yard at a given time ai, given in seconds from the
start of the horizon. Note that this does not indicate
the time at which it will be humped; a train can wait
in the arrival yard as long as is necessary. The arrival
yard is assumed to have infinite capacity. We denote
the set of railcars Ci for a given inbound train i ∈ I.
Naturally, the full set of cars to be processed is there-
fore C :=

⋃
i Ci. Along with a length lc, each car c ∈ C

has a known block ID (henceforth referred to as just
block), denoted bc. This indicates the car’s next des-
tination, examples are BOS for Boston and PHX for
Phoenix. The set of all blocks is given by B. As an ex-
ample, Figure 2 indicates the composition of the first
10 inbound trains. In other words, how many cars
of each outbound block are on the train; a different
colour is used for each block. The bar chart provides
a summary of the block counts only. On any given in-
bound train, the cars associated with a certain block
are not usually in consecutive order, but distributed
throughout the train. This random pattern is repre-
sentative for the inbound trains in our dataset, i.e.,
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Figure 1: An example of problem instance illustrating the railcars, the three different yards in three timesteps
on the vertical axis. Railcars are represented as boxes with colours corresponding to their designated desti-
nations (or block ids). Assume one car can be hump every minutes, and that the pullout time is 20 minutes.
Three different inbound trains with distinct arrival times (8:00, 12:00 and 16:00) and one outbound train
departing at 9:00 are shown. In the top we see the initial state, where nothing is assigned. In the middle
state a inbound train has been processed and bowl tracks have been assigned to the railcars. In the bottom
a cut has been pulled out and assigned to meet the departing train.

we rarely see long sequences of cars with identical
blocks.

Every inbound train i ∈ I must be processed, i.e.,
each of the cars c ∈ Ci must be decoupled, pushed
over a hump, and moved to an available track in the
classification bowl. Note that process can be paused
for a period, i.e., a partially decoupled inbound train
can be stopped on the hump, e.g., if no track with
sufficient space is available in the classification bowl.

It is assumed that the bowl consists of a set of
parallel tracks T , where each t ∈ T has a known
length γt, and operates as a first-in-first-out queue.
The tracks of the bowl are be used to sort the cars
into lines of cars. A line is a sequence of cars of the
same block and which are assigned to the same pull-
out (i.e. they appear on the same outbound train).

When humping a train several constraints must be
respected. Firstly, it is assumed two hump engines
are available to perform the humping operations; one
pulls cars from an inbound train to the hump, while
the other is used to retrieve inbound trains from the

arrival yard, i.e., bring them to the humping point.
An inbound train’s humping time refers to the time
at which its first car is humped and two consecu-
tive humpings must therefore be separated by some
minimum duration. This duration is equal to either
the minimum time required to hump all of the first
train’s cars (each car is assumed to take a constant
time, λ seconds, to hump), or the time required to
retrieve the next inbound train from the arrival yard,
again constant and equal to δ seconds, whichever is
the longer. In addition, all of a train’s cars must be
humped before any other train can be humped, i.e,
no train can be partially humped; it is considered to
be an atomic operation.

Railcars, that are coupled together, are pulled from
bowl tracks and appended to awaiting outbound
train. Each outbound train o ∈ O is scheduled to de-
part at the given time do and has a maximum length
ηo of railcars that it can carry. An outbound train
has a predetermined route through specific destina-
tions (i.e. blocks) which is why the assigned railcars
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must conform to a standing order, that stipulates the
order in which the railcar destinations (blocks) must
appear on the outbound train.

Outbound trains are built in the departure yard
using three available pullout engines. Pullout engines
move so-called cuts of rail cars from the bowl to the
departure yard. A cut simply refers to a sequence of
lines that adhere to the standing order of the desig-
nated outbound train. Like hump engines, several re-
strictions exist for the pullout engines. First, pullouts
from the same bowl track must be separated in time
by a minimum duration to allow a smooth operation.
Second, pullouts to the same outbound train must
also be separated in time as multiple engines cannot
build the same departure train simultaneously. Third,
consecutive pullouts by the same engine must also be
spaced by a minimum duration, corresponding to the
time required to perform one job, which we denote ρ.

Finally, an outbound train can only be built within
a certain time window of its scheduled departure
time; e.g for the considered problem, an outbound
train can start to be assembled, at the earliest, 4
hours prior to its departure. However, we also con-
sider an extension to the problem where departures
can be delayed. Note that delaying a given outbound
train will increase the dwell time for all cars assigned
to that departure; however, it will also potentially
reduce the dwell time of other rail cars that would
otherwise miss the connection if it departed on time.

The objective of this problem is to determine the
humping sequence of the inbound trains, which bowl
track to use when humping each car, and the sched-
ule for the pullout engines (i.e. how each outbound
train should be built) such that all constraints are
satisfied and the average dwell time of the cars in the
yard is minimized. In other words, we need to de-
termine an itinerary for each individual railcar (i.e.
hump time, assigned bowl track, pullout time and
outbound train), such that none of the constraints
are violated.

4 Modelling & Methodology

Given the problem’s size and complexity, it is ex-
tremely difficult to construct a tractable mathemat-

ical model for the entire problem. Hence, we de-
compose the problem into three smaller, interdepen-
dent subproblems. which we term the Hump Se-
quencing Problem (HSP), the Block to Track As-
signment Problem (BTAP), and The Pullout Alloca-
tion Problem (PAP), respectively. For the HSP and
the PAP we describe MIP based optimization ap-
proaches, while we present a simple greedy heuristic
for the BTAP. In this section we elaborate on each of
these problems as well as the proposed methodolgy
to solve them.

To set the context we provide a brief overview of
the proposed methodology before going into specific
details regarding each of the subproblems. Figure 3
illustrates the flow of the proposed approach. We be-
gin by finding an arrival sequence for the inbound
trains, e.g. using the HSP, and this remains fixed for
the remainder of the algorithm. That is, after finding
this processing sequence we never revise the hump-
ing order of the inbound trains. Cars are then itera-
tively humped into the bowl and assigned classifica-
tion tracks using the BTAP. As soon as a car can-
not be humped into the classification bowl, possibly
due to a lack of space or no free tracks, the humping
process is halted and pullouts are scheduled to make
space in the bowl. Which pullouts to perform are de-
cided by the PAP. Note that during an iteration the
PAP and BTAP are not necessarily considering the
bowl at the exact same time or time period. In gen-
eral when the BTAP pauses at time t, e.g., due to lack
of space or compatible tracks, the PAP will consider
pullouts that occur before t.

This process of humping cars and performing pull-
outs continues until there are no cars left to process.
To provide a quality measure on the solutions found,
in Section 4.1, we show how one can obtain lower
bounds on the minimum average car dwell time. The
lower bounds, albeit potentially weak, provide some
sort of quality measure for the obtained solutions.
Sections 4.2 through 4.4 are dedicated to the HSP,
BTAP, and the PAP, respectively.

4.1 Lower Bounds

In order to verify the quality of the solutions pro-
duced by the matheuristic it is important to obtain
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Figure 3: An overview of the proposed solution frame-
work.

a lower bound on the total dwell time. Here we de-
scribe two rather simple approaches for generating
such bounds. Both bounds assume that outbound
train departure times are fixed.

The first lower bound assumes that all outbound
trains have infinite capacity, that all trains can be
humped immediately, and that there are no capacity
nor ordering restrictions in the classification bowl. It
does, however, respect the humping rate of the cars.
That is, the time at which any car is assumed to be
available for a departure is a certain duration after
the arrival time of the train it is on. This duration is
the time needed to hump the cars ahead of it on the
train.

The lower bound on average dwell time (in hours)
is calculated as follows:

LB =
(
∑
i∈I

∑
c∈Ci dc − ai)

3600 · |C|
, (1)

where the dc refers to the departure time of c ∈ Ci.
Here dc is simply the departure time of the earliest
outbound train car c can be assigned to such that
dc ≥ ai + λ · (n − 1), where n states the position of
car c in the sequence of cars on train t and ranges
from one to |Ci|.

The second lower bound is calculated similarly,

with the exception that outbound train capacity is
taken into consideration. That is, dc denotes the ear-
liest outbound train with available capacity car c can
be assigned to. The method processes cars ordered
by their lengths and (for the ease of computation) al-
lows fractional cars to be assigned to outbound trains.
Naturally, the second bound is likely to be tighter
than the first; however, the magnitude of this increase
can provide insight into how restrictive the outbound
train capacity is.

The bounds are calculated independent of the de-
tails of the classification bowl, and it will therefore
not vary across the data sets we consider. Intuitively
one would expect a more accurate bound to be higher
in cases with fewer classification tracks since process-
ing the cars in the bowl would likely require more
time. Nevertheless, calculating the two bounds using
Equation (1) yields values of 12.046 and 12.575 dwell
hours in average, respectively.

Formulating and solving the second bound ap-
proach as a MIP, thereby removing fractionality, im-
proves the bound to 12.591 hours at the cost of a
factor 104 increase in runtime.

4.2 The Hump Sequencing Problem

The hump sequencing problem entails identifying the
best order in which to process the inbound trains. De-
pending on its block composition, it may or may not
be critical to hump the cars on an inbound train into
the bowl immediately. If, for example, the train is
carrying cars for which the earliest outbound train
is some time away, it may be preferable to hump an-
other inbound train which arrives later but which car-
ries cars for an earlier outbound train. Hence, simply
processing inbound trains in their arrival order may
result in some cars missing their earliest departure,
and thus incurring unnecessary dwell time. We for-
mulate this problem as a MIP and attempt to min-
imize the departure day of the final car to be pro-
cessed. Firstly, binary variables xco are introduced
and indicate whether or not car c ∈ C is assigned
to outbound train o ∈ Oc. Oc indicates the set of
outbound trains to which car c can be assigned, i.e.
Oc = {o : o ∈ O, bc ∈ Bo}. A second set of binary
variables yij governs the sequencing order of inbound
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trains i and j ∈ I. Note that for any two trains only
one binary sequencing variable is required, and we use
the arrival time of the trains to define a partial order.
That is, i ≺ j if train i ∈ I arrives before train j ∈ I.
Finally, continuous variables hi are defined and rep-
resent the humping time of train i. A solution to this
problem must respect several constraints. In particu-
lar, a minimum separation time must elapse between
consecutive humpings, no car can depart before it
has been humped, and the length of departing out-
bound trains must be respected. This problem does
not consider the classification bowl nor the pullout
engines explicitly and thus is expected to provide an
optimistic solution; however, for problems with many
classification tracks (i.e. more than the |B|) it should
provide a good indication on the processing order.
The full mathematical model is given below.

minimize:
∑
c∈C

∑
o∈Oc

day(o) · xco, (2)

hj ≥ hi + ∆ij −M(1− yij)
∀i, j ∈ I, i ≺ j, (3)

hi ≥ hj + ∆ji −Myij

∀i, j ∈ I, i ≺ j, (4)∑
o∈Oc

doxco ≥ hinbound(c) + ind(c) · λ

∀c ∈ C, (5)∑
c∈Co

lcxco ≤ ηo

∀o ∈ O, (6)∑
o∈Oc

xco = 1

∀c ∈ C, (7)

xco, yij ∈ {0, 1}, (8)

hi, ≥ 0, (9)

where day(o) gives the departure day of outbound
train o, inbound(c) gives the inbound train carrying
car c, ind(c) gives the index of car c in Ci, and Co
denotes the set of cars that can be assigned to out-
bound train o ∈ O. The objective (2) minimizes the

total number of days require to process all cars. Con-
straints (3) and (4) collectively ensure a minimum
time separation between two consecutive humpings,
while constraints (5) stipulate that a certain time
must elapse upon arrival before the car can depart on
an outbound train. Here ∆ij = max(λ · |Ci|, δ) which
ensures a minimum separation time and enough time
to hump cars of inbound train i, while M is a large
number. In this case M is equal to the latest arrival
time of any train i ∈ I. The maximum length of all
outbound trains is enforced by constraints (6). Con-
straints (7) ensure each car is assigned to exactly one
departure. Finally, variable domains are given by (8)
and (9), respectively.

Due to the size of this model, it is solved using a
rolling time horizon based approach where each hori-
zon considers a subset of arrivals only. A rolling time
horizon is justified in this context as it is likely that
most changes in humping order (compared to the ar-
rival order) are likely to be local. E.g. it is very un-
likely that we would hump the last train to arrive
first, but it might be beneficial to process it before
the train that arrives second to last. To ensure so-
lutions found using this approach are not too short
sighted, a small subset of the last trains to arrive in
one horizon are included again in the subsequent hori-
zon. In Section 5, this strategy is compared against
the greedy approach of simply processing trains in
their arrival order.

4.3 Block-To-Track-Assignment
Problem

Whenever a rail car is humped, it must be assigned
one of the classification tracks in the bowl. To assign
a classification track we use a simple greedy heuris-
tic. This procedure is as follows. If a line of the same
block as that of the car being humped already exists
in the bowl, and there is enough remaining capac-
ity on the track, the car is humped to that track.
Otherwise, a randomly selected “open track”, i.e. an
empty bowl track, is assigned. If neither option is pos-
sible, humping is momentarily paused, and pullouts
are performed to create more space in the bowl.

Given the highly fragmented nature of the out-
bound blocks arriving on inbound trains, creating
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mixed tracks (i.e. classification tracks with possibly
several different outbound blocks) would result in
many short lines on the classification tracks. This in
turn would lead to a greater number of pullouts be-
ing required to assemble the outbound trains. Thus,
the greedy track allocation strategy ensures classifi-
cation tracks are dedicated to specific blocks, possi-
bly at the expense of more pauses in the humping of
the rail cars. The performance of this simple heuris-
tic strategy was compared to a more intelligent ap-
proach of assigning tracks based on outbound block
volumes (classified as low, medium, or high based on
number of cars). However, the latter, surprisingly, did
not perform better.

4.4 The Pullout Allocation Problem

After humping has been performed in the framework,
pullouts must be performed. Two pullout methods
are developed and discussed. The first is a greedy
approach (Greedy), while the second uses more so-
phisticated modelling techniques to better exploit the
available pullout engine resources.

Greedy Pullout

The input for Greedy is a point in time, the bowl state
at this time, and the next outbound train to process.
Greedy sequentially processes outbound trains, by de-
parture time or by an order stipulated by the HSP.
For a given train o ∈ O, it analyses all bowl tracks
and tries to pull lines from tracks in the order spec-
ified by the departure’s standing order. An overview
of the method is shown in Algorithm 1.

The track with the longest available length is iden-
tified and pulled out (LongestTrack). The exact pull-
out time is determined by inspecting existing engine
usage and pullouts. The LongestTrack sub-procedure
ensures that Greedy finds the earliest, feasible time
for a pullout. After each pullout the time is advanced
by the pullout time, since this is the minimum time
required to do the next pullout. Although it is possi-
ble, the algorithm will never pull the same track more
than once for the same departure. Note that we use
an inner while loop in order to be able pullout several
track with the same block.

Algorithm 1

1: procedureGreedyPullout(departure, bowl, time)
2: for b ∈ BlockStandingOrder(departure) do
3: (track, len) ←LongestTrack(bowl, b, time)
4: while len > 0 do
5: next ← NextPulloutTime(track,

departure, time)
6: bowl ← PerformPullout(bowl, track,

departure, next)
7: time ← next
8: (track, length) ←LongestTrack(bowl,

b, time)

Pullout MIP

One shortcomming of the Greedy method is its in-
ability to share pullout engine resources and to con-
sider what is beneficial or harmful for other outbound
trains since it does not consider future consequences
of local decisions. Here we propose a MIP-based pull-
out scheme that considers multiple outbound trains
simultaneously. Figure 4 compares the methods using
a simple example.

At any point in time each bowl track contains a
set of lines. We will consider the line closest to the
pullout end of any track; any line behind this will
be left untouched. Therefore, at any time, each track
t ∈ T can be mapped to a unique block and, con-
sequently, a unique departure (and unique standing
order therein). The mapping is not bijective since a
standing order can be mapped to multiple compatible
tracks. The input for this method is hence a point in
time time and the corresponding bowl state. Based
on this input and the instance data, we formulate
a MIP model to identify which pullouts to perform.
This MIP forms the basis of Algorithm 2.

For each track t ∈ T a list of possible pullout can-
didates Ct is generated. All candidates for the same
track differ in pullout time that effectively limits how
many cars can be pulled. The set of all candidates is
denoted C :=

⋃
t∈T Ct.

A binary decision variable xc is introduced and in-
dicates whether or not candidate c ∈ C is selected.
Some candidates cannot be selected simultaneously
as this would create a standing order violation on the
designated outbound train. We define set C− ⊆ C×C
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14:00

Departures
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Naive Approach

14:30
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14:30
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Railcars on bowl tracks

Figure 4: A comparison of the Greedy and MIP pullout approach. In the top-left the current bowl tracks are
illustrated, and in the top-right the scheduled departures are depicted. In this example one pullout engine
is available and requires one hour per pullout job, and each departure can be built two hours in advance.
The Greedy method processes the departures in iteration, thus in this example nothing is assigned to the
second departures as the engine has been fully assigned up until 14:00. The MIP method, however, identifies
a solution that shares the engines such that the total number of pulled railcars is maximized.

to contain exactly these pairwise conflicts. C− is de-
termined in a preprocessing step.

If a candidate is selected we do not enforce all cars
in the candidate to be pulled, only a subset. There-
fore, for each track t ∈ T we monitor the total length
of the cars pulled. To do this we introduce one contin-
uous variable yt for each track t ∈ T . Note that the
decision variables xc and yt can lead to an infeasible
decision as it may imply taking a percentage of some
car. In practice we therefore leave the one fractional
car behind. In addition, since all cars have individual
lengths, these decision variables do not factor in the
railcar by length ration. Optimality is thus no longer
guaranteed, but we argue that a significant speed-up
is achieved, through a simplified and smaller model,
at a low cost. A fractional solution is only achieved
when the outbound train has reached its capacity;
this is rarely the case. Also note, that obtaining an
optimal solution here using a more precise model will
not make the overall framework optimal.

We also define the set To ⊆ T , which gives the set of
tracks containing lines for outbound train o ∈ O. To
accurately model the pullout movements two types
of (time) interval sets are introduced. The first, Π, is

the set of non-overlapping intervals generated by in-
cluding all candidate pullout start and end times. An
element, π, of this set is a subset of C that overlaps
with the interval. A similar second set, Ωo, contains
all non-overlapping intervals generated by including
all candidate pullout start and end times correspond-
ing to a outbound train o ∈ O. An element, ω, of this
set is a subset of C that overlaps with the interval.

As mentioned in Section 3, outbound trains have a
given capacity. Given the current bowl state and pre-
vious pullouts, it is know how much remaining length
remCapo is available on all outbound trains. Finally,
it is also given that we have a number, numEngines,
of pullout engines available. The number of pullout
engines being used, as a result of earlier choices, dur-
ing interval π ∈ Π is assumed to be usedEnginesπ.

The pullout allocation MIP is as follows:

maximize:
∑
t∈T

yt · objy (10)∑
c∈Ct

xc ≤ 1

∀t ∈ T (11)
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xc + xc′ ≤ 1

∀(c, c′) ∈ C− (12)∑
t∈To

yt ≤ remCapo

∀o ∈ O (13)

ytrack(c) ≤ xc · lengthc +M(1− xc)
∀c ∈ C (14)

yt ≤
∑
c∈Ct

xc · lengthc

∀t ∈ T (15)∑
c∈ω

xc ≤ 1

∀ω ∈ Ωo, o ∈ O (16)∑
c∈π

xc ≤ numEngines− usedEnginesπ

∀π ∈ Π (17)

xc ∈ {0, 1} ∀c ∈ C (18)

yt ≥ 0 ∀t ∈ T (19)

The objective is ideally to maximize the number
of cars but as discussed we only model the number
of feet pullout out. In this model we approximate the
number of cars by setting objy to the average number
of cars per feet. This approximation works well due to
the fact that the capacity of most outbound trains is
not binding. And, in any case, all cars must be pulled
out sooner or later.

The first set of constraints (11) ensure at most
one candidate is selected per track. Constraints (12)
guarantee that pullouts respect the outbound train’s
standing order by prohibiting conflict pairs. The re-
maining capacity of an outbound train must be re-
spected; this is the purpose of Constraints (13). Con-
straints (14) link the pullable length of the track to
the selected candidate decision, while (15) makes sure
that zero length is pulled from a track if no candidates
from the track are selected. Constraints (16) ensure
candidates selected for the same departure, o, respect
a minimum distance. This is modelled by making sure
that one candidate can remain active (in a pullback
process) in the same interval for the same depar-
ture. Similarly constraints (17) ensure that at most

numEngines engines are used concurrently in ev-
ery period. Finally, variable domains are give by (18)
and (19).

Framework Integration

This MIP-based procedure is called every x minutes
at time t = tlast + x, where x is set to an appropri-
ate value set in the tuning phase. The pullout MIP
identifies the best set of pullouts to be performed;
however, not all are actually performed by the over-
all framework since the model only considers partial
information based on the current state of the bowl.
Ideally, one only wants to perform pullout decisions
which will definitely not change in later iterations.
Thus, every decision made before the last hump time
or before time t. An overview of the algorithm is given
in Algorithm 2. Using a discretization step all candi-
date pullouts after time within the build window of
the departures are generated. Next the list of candi-
dates is filtered. All candidates that violate standing
orders due to existing pullouts in the bowl are re-
moved. Candidates that violate the separation con-
straint (of past assignments) on the corresponding
track are removed. Candidates that violate the sep-
aration constraint (of past assignments) on the de-
parture are also removed. The generated candidate
pullout events and existing engine usage are anal-
ysed and the available engine capacity is stored for
all relevant time periods.

This approach is superior to the Greedy approach
as it considers interdependencies between multiple
departures. Although the method operates on par-
tial future information, depending on how much is
in the bowl, it can still consider future consequences
of pullouts to some extent. Solving the MIP model
using a commercial solver allows us to find near op-
timal solutions very fast in practise. This benefit is,
however, also a liability since the runtime overhead
of using a general purpose solver must be paid. The
model has to be built and solved many times - in some
cases building the model is more expensive than solv-
ing it. For practical reasons, the number of generated
candidates is limited or discretized, and therefore the
model is unable to gain a fine-grained control of the
pullouts.
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Algorithm 2

1: procedure PulloutMIP(bowl, time, time’)
2: C ← {}
3: for t ∈ ClassificationTracks do
4: s ← FrontSegment(t, bowl, time)
5: b ← BlockOfSegment(s)
6: d ← DepartureOfBlock(b)
7: (wα,wω) ← DepartureBuildWindow(d)
8: C ← C∪ Filter(Generate(t,wα,wω))

9: model ← BuildMipModel(bowl, C)
10: pullouts ← Solve(model)
11: lastHump ← LastHumpedCar(bowl)
12: for p ∈ pullouts do
13: pt ← PulloutTime(p)
14: if pt ≤ max(lastHump, time’) then
15: bowl ← PerformPullout(bowl, p)

Finally, we mention, that this approach assumes
that only one line can be pulled out simultaneously.
The model should ideally consider the possibility of
pulling multiple lines on a particular track; however,
given the limited number of lines allowed simultane-
ously in the bowl, this did not seem to be a critical
concern. The proposed model can be extended with-
out much difficulty to handle multiple lines.

5 Computational Results

In this section we discuss and benchmark our algo-
rithm by incrementally enabling the more advanced
features. For each experiment we report a few key
performance indicators. All runs are performed mul-
tiple times in order to examine the expected aver-
age performance and expected deviation; the varia-
tion is due to the heuristic used for the BTAP. We
consider the data instances for the HYBA problem
introduced by in the RAS Problem Solving Competi-
tion in 2014 [19]. Table 1,2 and Table 3 respectively
summarize the instances characteristics, differences
and parameters.

First we evaluate the framework performance us-
ing the Greedy pullout algorithm processing inbound
trains on the hump by arrival order. The results are
shown in Table 4. The results show that we can solve
the instances within 2 seconds achieving a optimal-

Inbound trains 702
Rail cars 52 247
Rail cars length 3 049 094 feet
Horizon 42 days

Min train length 55.0 feet
Max train length 9 200.0 feet
Average train length 4 343.4 feet

Min train cars 1
Max train cars 161
Average train cars 74.4

Min distinct blocks 1
Max distinct blocks 32
Average distinct blocks 15.3

Table 1: Statistics on the instance inbound trains.

Instance No Tracks Total Length

1 58 122 489
2 50 109 853
3 42 96 354

Table 2: List of data instances. The columns show
the instance number, number of classification tracks
in the bowl, and the total length (in feet) of tracks.

Hump engines 2
Pullout engines 3
Time between train humping 20 Minutes
Humping rate 30 Seconds
Pullout time per job 20 Minutes
Start build time offset 4 Hours

Table 3: List of instance parameters.
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No Time Dwell Max Lines Gap

1 1.6 16.4 96.3 61.2 28.7%
2 1.4 16.9 88.5 53.6 32.9%
3 1.3 38.7 96.4 45.0 204.5%

Table 4: Results using a greedy humping and pullout
strategy. The columns respectively show the instance
number, average runtime in seconds, average dwell
time in hours, maximum dwell time of an individual
car, the average maximum no of concurrent lines in
the bowl, and finally the relative optimality gap.

ity bound of around 30% for the first two instances,
but around a staggering 200% for the third instance.
The deviation between runs is very low for the first
two (up to 0.1 average dwell hours); however, it spans
128.46%− 312.71% for the last instance.

We do not see much improvement nor loss when
activating low or high volume track selection for the
BTAP, metioned in Section 4.3. Runtime remains un-
changed, but a benchmark showed that only the last
data set is improved up to 2.4 average dwell hours.

The biggest improvement was observed when using
the MIP method for the PAP instead of Greedy. The
results are summarized in Table 5. The benchmark
reports a significant improvement in average/bound
for all instances. The last instance is, however, still
around ten percentage points above the other two.
As expected, the runtime is increased, from a few
seconds to a few minutes. A noticeable increase in
maximum dwell time can be observed compared to
the previous benchmark, but the average maximum
number of lines is not changed significantly. This is to
be expected since the MIP pullout approach does not
process the bowl on a first-come first-served fashion.

Finally we benchmark the performance of using the
PAP MIP together with the HSP MIP method. The
results are shown in Table 6. A consistent improve-
ment of 0.06 to 0.08 average hours was observed, i.e.,
roughly 5000 dwell hours. This improvement does,
however, come at the cost of approximately twice the
runtime. The maximum dwell time and average max-
imum line usage show no noticeable change.

No Time Dwell Max Lines Gap

1 289 13.17 129.9 61.0 4.72%
2 280 13.21 117.6 54.2 5.05%
3 350 14.33 76.6 45.5 13.89%

Table 5: Results using a greedy humping method and
the MIP pullout method. The columns respectively
show the instance number, average runtime in sec-
onds, average dwell time in hours, maximum dwell
time of an individual car, the average maximum no
of concurrent lines in the bowl, and finally the rela-
tive optimality gap.

5.1 What-If Scenarios

We perform a second line of what-if scenarios in or-
der to identify the current bottlenecks of the data
sets. In isolation we change the parameters and data
instances in order to achieve different results. All
changes are based on the first original instance, i.e,
the least restrictive instance with most classification
tracks.

The complete set of scenarios and results are listed
in Table 7. In the first scenario, we increase the size of
all tracks in the bowl. In the second we add more pull-
out engines. In the third we allow a very high number
of lines. In the forth we allow longer outbound trains.

The experiments show that the average dwell is im-
proved most by adding longer tracks or longer out-
bound trains. Adding more pullout engines or allow-
ing more concurrent lines in the bowl does not have
a significant impact.

5.2 Delayed Departures

The MIP-based lower bound method from Section 4.1
can without much difficulty be extended to allow de-
parture delays. In order to make the altered model
tractable, we make alterations that allow an out-
bound train to select between departure times in a
discrete set. The optimal solution is therefore a guess
(or an optimistic guess) of the average dwell time
when allowing departures.

Due to the discretization, this is not a true lower
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Runtime (s)

No Time Hump Pullout Dwell Dev Max Lines Gap Gap

1 611 255 352 13.10 0.01 138.6 61.1 4.05% 0.51
2 598 254 340 13.14 0.03 135.8 54.0 4.32% 0.54
3 663 255 406 14.27 0.10 74.9 45.4 13.30% 1.67

Table 6: Final results obtained using the MIP method for both hump sequencing and pullouts. The columns
respectively show the instance number, average runtime in seconds, average dwell time in hours, standard
deviation of average dwell time, maximum dwell time of an individual car, the average maximum number of
concurrent lines in the bowl, and finally the relative and absolute gap to our lower bounds.

Runtime (s)

Scenario Total Hump Pullout Dwell Max Lines Change

Long tracks 414.2 247.7 150.9 12.96 71.0 45.0 -0.14
Many engines 662.0 245.5 413.0 13.08 138.2 60.9 -0.02

Many Lines 608.7 255.0 349.6 13.10 138.6 61.1 -0.00
Long trains 429.4 150.2 275.9 12.47 47.6 57.8 -0.63

Table 7: Results for the What-If scenario benchmarks. The columns respectively show the scenario name,
average runtime in seconds, average dwell time in hours, maximum dwell time of an individual car, the
average maximum number of concurrent lines in the bowl, and finally the change in average dwell-time
compared to the normal instance.
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bound when considering delays; however, it is a good
indication that one can expect improvements by con-
sidering delays for outbound trains. In our test we
allow delays of up to 380 minutes with 20 minutes
discretization. This results in a lower bound of 10.10
average dwell hours. This significant reduction sug-
gest that big savings can be achieved by allowing de-
partures to be delayed. We note, that roughly half of
all outbound trains were delayed in this lower bound
solution.

Finally, we benchmarked the result of allowing up
to 2 hours delay in our solution methods, thus getting
a real solution instead of a bound. These settings gen-
erate average dwell hours of 12.31, 12.33, and 12.42
the three datasets. Again, a significant improvement,
especially for the last instance.

6 Conclusions

In this paper we consider the HYBA problem. We
propose a heuristic framework which decomposes the
problem into three interdependent subproblems. A
version of the algorithm in which we consider greedy
strategies for the humping and pullout process ob-
tains acceptable solutions within two seconds. A
second version, in which the humping and pullout
strategies are solved using MIP models, obtains so-
lutions that are significantly better; however, it does
take substantially more time. The runtime is, how-
ever, still very reasonable considering the length of
the planning horizon. The solutions obtained have a
proven optimality gap of a few percent. An addition
experiment shows that significant improvements can
be obtained by allowing outbound trains to be de-
layed.

In addition to solving the HYBA problem the
proposed heuristic method can be used to estimate
the effect of infrastructure or equipment investments.
Several What-If scenarios are considered and the re-
sults show that the studied data instance can benefit
from longer outbound trains and additional track-
length in the classification yard. However, allowing
more concurrent lines in the bowl or using additional
pullout engines does not make a significant difference.

Simple methods have been proposed for finding

lower bounds for the problem. The results show that
the lower bounds give good estimates for the two first
instances. The methods do not take the bowl tracks
into account, which explains why a weaker bound is
achieved for the last instance. Promising directions
for future research include strengthening this lower
bound calculation to reflect the limitations of fewer
bowl tracks as well as integrating certain components
of the algorithm. In particular, one idea could be to
allocate a set of rail cars to bowl tracks when hump-
ing a specific car, as opposed to the current approach
of greedily allocating each individual rail car a track
when it is being humped. Finally, having the abil-
ity to dynamically adjust the humping sequence may
also yield further improvments.
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