
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 22, 2024

Classical and quantum plasmonics in graphene nanodisks
Role of edge states

Christensen, Thomas; Wang, Weihua; Jauho, Antti-Pekka; Wubs, Martijn; Mortensen, N. Asger

Published in:
Physical Review B

Link to article, DOI:
10.1103/PhysRevB.90.241414

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, T., Wang, W., Jauho, A-P., Wubs, M., & Mortensen, N. A. (2014). Classical and quantum
plasmonics in graphene nanodisks: Role of edge states. Physical Review B, 90(24), 241414.
https://doi.org/10.1103/PhysRevB.90.241414

https://doi.org/10.1103/PhysRevB.90.241414
https://orbit.dtu.dk/en/publications/609c12a3-bd7a-4e12-b74e-e8f7cd0e6b8e
https://doi.org/10.1103/PhysRevB.90.241414


RAPID COMMUNICATIONS

PHYSICAL REVIEW B 90, 241414(R) (2014)

Classical and quantum plasmonics in graphene nanodisks: Role of edge states

Thomas Christensen,1,2 Weihua Wang,1,2 Antti-Pekka Jauho,2,3 Martijn Wubs,1,2 and N. Asger Mortensen1,2,*

1Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

3Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 15 July 2014; revised manuscript received 4 November 2014; published 16 December 2014)

Edge states are ubiquitous for many condensed matter systems with multicomponent wave functions. For
example, edge states play a crucial role in transport in zigzag graphene nanoribbons. Here, we report microscopic
calculations of quantum plasmonics in doped graphene nanodisks with zigzag edges. We express the nanodisk
conductivity σ (ω) as a sum of the conventional bulk conductivity σB(ω), and a novel term σE(ω), corresponding
to a coupling between the edge and bulk states. We show that the edge states give rise to a redshift and
broadening of the plasmon resonance, and that they often significantly impact the absorption efficiency. We
further develop simplified models, incorporating nonlocal response within a hydrodynamical approach, which
allow a semiquantitative description of plasmonics in the ultrasmall size regime. Furthermore, we show that the
effect of hydrodynamic and edge-conductivity corrections scale identically, approximately with the inverse of the
disk radius, highlighting their equatable importance. However, the polarization dependence is only given by fully
microscopic models. The approach developed here should have many applications in other systems supporting
edge states.
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Introduction. Plasmonics at the nanoscale introduces a host
of novel phenomena, both in terms of improved efficacy of
certain classical phenomena, e.g., extreme field enhancements,
but also conceptually by offering a tunable transition from the
classical to the quantum regime [1]. Probing and understanding
this transition in detail, and in particular the breakdown of
classical predictions, is an important task in view of the
progress in nanofabrication [2,3]. With the emergence of low-
dimensional materials such as graphene, new avenues develop,
both experimentally and theoretically. Graphene, and several
other low-dimensional systems, exhibits an approximately
linear, gapless, two-band energy dispersion ε = ±�vFk, with
Fermi velocity vF. The plasmonic consequences of this non-
standard dispersion and dimensionality have been investigated
vigorously in recent years [4–10].

The accurate description of low-energy excitations in
graphene by simple tight-binding (TB) Hamiltonians allows
investigations of nonclassical plasmonic features of relatively
large graphene structures [11,12]. It has recently been the-
oretically demonstrated that the optical excitations of few-
atom graphene nanostructures involve multiple individual
electron-hole pairs (EHPs) strongly modified by the Coulomb
interaction, occasionally referred to as molecular plasmons
[13]. Conversely, experimental measurements on ensembles
of larger disks, of radii R � 50 nm, have exhibited distinctly
classical features [14,15]. Improving our understanding of
this transition between opposing realms is underscored by
the many advances in fabrication of graphene nanostructures
[16–18].

In this Rapid Communication we show that for smaller
graphene disks, though larger than R � 7 nm, two essential
modifications of the classical single-disk response arise, due
to edge states and to nonlocal response, producing an overall
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redshift and broadening of the dipole resonance. In particular,
we show that the existence of edge states due to zigzag (ZZ)
features can be accounted for via an edge-state conductivity,
while the impact of nonlocal response can be accounted for
effectively within a hydrodynamic model. This affirms and
extends the supposition regarding the crucial role of edge
states in prior numerical work [11]. In Fig. 1 we outline and
summarize the different computational approaches considered
in this Rapid Communication.

Electronic states. The simplest atomistic description of the
conduction electrons of graphene, without explicit treatment
of spin, is given by the pz-orbital nearest-neighbor TB
Hamiltonian with hopping energy tAB = 2.8 eV:

ĤTB = −tAB

∑
〈j,j ′〉

â
†
j b̂j ′ + b̂

†
j ′ âj , (1)

FIG. 1. (Color online) Illustration of considered levels of approx-
imation for a graphene nanodisk. Angular slices of Dirac ZZ bulk
state spinor components are indicated in red and blue, and edge state
nonzero components in green.
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with A- and B-sublattice annihilation (creation) operators
â

(†)
j and b̂

(†)
j at sites j , and with 〈j,j ′〉 indicating summa-

tion over nearest neighbors. In the low-energy limit, for
extended graphene, the characteristics of the TB approach are
asymptotically reproduced by the four-spinor Dirac equation,
ĤDψ(r) = εψ(r), with the Hamiltonian [19]

ĤD = vF(τ0 ⊗ σxp̂x + τz ⊗ σyp̂y), (2)

where p̂ = −i�∇ denotes momentum, and with Pauli matrices
τi and σi belonging to valley and sublattice subspaces, respec-
tively. In the absence of valley mixing, the four-spinor equation
for ψ(r) = [ψ+

A (r),ψ+
B (r),ψ−

A (r),ψ−
B (r)]T decouples into a

pair of two-spinor equations for ψκ (r) = [ψκ
A(r),ψκ

B(r)]T

associated with valley indices κ = ±1 pertaining to Dirac
valleys K κ = [

√
3,κ]T2π/3aLC, with lattice constant aLC =

2.46 Å [20].
Finite graphene structures are easily modeled with Eq. (1)

by omitting the absent neighbors in the matrix representation
of ĤTB, whose dimension equals the number of constituent
carbon atoms. For the continuum Dirac equation, Eq. (2),
suitable boundary conditions (BCs) are needed. General con-
siderations, enforcing no-spill current conditions, Hermiticity,
and unitarity, lead to a rather broad family of allowable
BCs [22,23], which can be made explicit by using the
atomistic details of the structural termination. In the present
work we consider ZZ lattice termination (which can be
considered appropriate, in general, for nonarmchair minimal
lattice terminations as argued in Ref. [23]) forcing a single
sublattice component to vanish, e.g., forcing ψκ

A(r) = 0 on
the boundary if the ZZ edge belongs to the B-sublattice.
For comparison we also consider the infinite mass (IM) BC
[24], corresponding microscopically to confinement due to
an atomically staggered potential [23], which enforces an
intersublattice phase relationship ψκ

B(r)/ψκ
A(r) = ieiκθ , with

θ denoting the tangential boundary angle [25].
Upon application of BCs, the otherwise linear Dirac

dispersion ε = ±�vFk is transformed into a discrete set of
energies and associated spinors. For the case of a homogeneous
disk of radius R, the nonzero-energy spinors are quantized in
angular and radial quantum numbers l = 0,±1,±2, . . . and
n = 1,2, . . . [26,27]:

ψκ
ln(r̃ ,θ ) = eilθ√

Nκ
ln

[
Jl(βlnr̃)

iκJl+κ (βlnr̃)eiκθ

]
, (3)

with normalization Nκ
ln [see Supplemental Material (SM)

[28]] expressed through the dimensionless radial coordinate
r̃ = r/R and momenta βln = εln/�ωR with circumferential
fermion frequency ωR = vF/R. The ZZ BC energies are
valley independent and correspond to zeros of the Bessel
function, i.e., βln fulfills Jl(βln) = 0, while the IM BC yields
valley-dependent energies, given by κJl+κ (βκ

ln) = Jl(βκ
ln).

Additionally, for the ZZ BC a set of zero-energy spinors exist,
here denoted by φκ

� , discretized in angular quantum numbers
� = 0,1, . . . ,�max [26,27]:

φκ
� (r̃ ,θ ) = e−iκ�θ

√
N�

[
0

r̃ �

]
, (4)
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FIG. 2. (Color online) DOS for graphene nanodisk in Dirac ZZ
and IM, and TB treatments, broadened by a loss of �η = 24 meV, with
disk diameter indicated. The asymptotic low-energy, bulk graphene
DOS is indicated in dashed gray. The region of approximately linear
DOS is indicated by gray shading.

with normalization N� (see SM). The phenomenologically
introduced cutoff angular quantum number �max is required
to avoid a divergence of the density of states at zero energy,
and is chosen to ensure a total number of zero-energy states
(including spin and valley degeneracy) ∼2πR/3aLC [23] (see
SM). Except for the � = 0 case, the zero-energy states are
predominately localized at the disk edge, with a characteristic
localization length R[1 − e−1/2(�+1)] (see SM).

In Fig. 2 we show the resulting noninteracting density of
states (DOS), phenomenologically broadened by an electron
collision rate η, computed as DOS(ε) = 2

πA
∑

ν Im[(εν − ε −
i�η)−1] withA denoting the sample area and with

∑
ν denoting

summation over all states ν (excluding spin, which contributes
a factor 2). Also, the DOS for a TB model is shown, for a
bond-centered disk. A key feature of both TB and Dirac ZZ
treatments is a prominent peak at zero energy associated with
edge states, which is not reproduced in either Dirac IM or in
bulk approximations. Additionally, due to breaking of valley
and azimuthal symmetry in TB the interstate energy-level
spacing is overestimated in Dirac treatments relative to TB.
Nevertheless, the total number of edge and bulk states in
Dirac ZZ and TB is in good agreement (see SM). Due to
the absence of edge states in Dirac IM vis-à-vis its presence
in TB, we focus in the following on Dirac ZZ. Finally, we
note the complete absence of nonconical dispersion effects,
e.g., trigonal warping [19] and van Hove quasisingulari-
ties at ±tAB [29], in the Dirac treatment, whose exemp-
tion, however, is expected to be unimportant in low-energy
plasmonics.

Random-phase approximation. To compute the optical
response of graphene disks in both TB and Dirac approaches,
the first step is to evaluate the noninteracting polarizability
[11,30]:

χ0(r,r′; ω) = 2
∑
νν ′

(fν − fν ′ )
ψ

†
ν ′(r)ψν(r)ψ†

ν(r′)ψν ′(r′)
εν − εν ′ − �(ω + iη)

, (5)

where fν denotes Fermi-Dirac equilibrium functions evaluated
at energy εν , and electron relaxation is included phenomeno-
logically through a finite rate η. We give explicit expressions
for the Dirac-disk polarizability in the SM.

The random-phase approximation (RPA) is instated by
coupling the induced charge density ρ(r) to the total field via
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RAPID COMMUNICATIONS

CLASSICAL AND QUANTUM PLASMONICS IN GRAPHENE . . . PHYSICAL REVIEW B 90, 241414(R) (2014)

χ0, leading to a self-consistent integral equation, reading, in
operator notation, as ρ = e2χ0(φext + Vρ), with V denoting
the Coulomb interaction and φext an external potential [31].
Henceforth, depending on the choice for single-particle states
used in constructing χ0, we distinguish between approaches
by the self-evident notation RPA@Dirac and RPA@TB. In the
SM we elucidate the technical details for efficiently computing
RPA@Dirac via an angular momentum decomposition, and
follow the scheme introduced in Ref. [11] for RPA@TB. The
computational complexity of these approaches is discussed
and compared in the SM. The optical absorption cross
section, i.e., the absorbed power relative to the intensity of an
incident plane wave, relates to the induced charge density via
∼ω Im[p(ω)], with p(ω) denoting the dipole moment obtained
from ρ(r).

Local response. For comparison with the two quantum
approaches described above, we also consider the traditional,
classical approach, wherein the induced charge density in
graphene is determined from the well-known bulk local-
response (LR) conductivity with intra- and interband terms
σB(ω) = σintra(ω) + σinter(ω) [32]. The interband term induces
a redshift [33] of the dipolar plasmon resonance with de-
creasing radius, but not to the extent observed in TB-RPA
calculations [11]. For the electrostatic disk, the LR problem
is solved most elegantly by using a polynomial expansion
technique, as explicated by Fetter [34], and summarized for
completeness in the SM, allowing a semianalytical solution
requiring only a numerical matrix inversion. Applying this
technique, we find that the singly radially quantized dipole
plasmon resonance, ωdp, being the resonance of primary rele-
vance in nanoscopic disks, relates to the total LR conductivity
σ (ω) via ωdp/σ (ωdp) = ζ/2iε0εBR, with εB denoting the
background dielectric constant and ζ ≈ 1.0977 accounting
for the disk geometry [35]. An intraband approximation then
entails the scaling ωdp ∝∼ 1/R1/2.

Although the bulk LR conductivity σB(ω) is usually derived
from a starting point of a continuum of bulk graphene
Dirac states, it may as well be derived from the large-radius
limit of the finite sample’s conductivity using the states
ψκ

ln from Eq. (3). Specifically, in the LR limit, the current
response due to an x-polarized field is obtained from the
conductivity [31]:

σ (ω) = 2ie2ω

A
∑
νν ′

(fν − fν ′)
|〈ψν |x |ψν ′ 〉|2

εν − εν ′ − �(ω + iη)
. (6)

Considering the Dirac ZZ states in Eqs. (3) and (4) this
gives rise to two distinct terms, one tending asymptotically to
σB(ω) with increasing radius, originating from bulk-to-bulk
transitions |〈ψκ

ln|x |ψκ
l′n′ 〉|2, and one novel term originating

from edge-to-bulk transitions:

σE(ω) = 4ie2ω

A
∑
κln�

(fln − f0)

∣∣〈ψκ
ln

∣∣x∣∣φκ
�

〉∣∣2

ε2
ln − �2(ω + iη)2

, (7)

with f0 denoting the Fermi-Dirac function at zero energy,
and εln denoting the Dirac ZZ energies corresponding to ψκ

ln.
This edge contribution, physically representing all interactions
between occupied zero-energy edge states and unoccupied
nonzero-energy bulk states, can be worked out explicitly as
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FIG. 3. (Color online) Edge-state conductivity in graphene nan-
odisks (doped to 0.4 eV) normalized to σ0 = e2/4� calculated with
finite damping �η = 6 meV. Disk diameter indicated in titles; note the
scaling factor in the center and right-hand graphs. Explicit evaluation
of Eq. (8) given in full, and large-radius limit, Eq. (9), in bold dashed;
real and imaginary parts in blue and red, respectively. The region
of edge-to-bulk transitions is indicated in gray, while the region of
concurrent edge-to-bulk and interband transitions is dark-gray, and
illustrated schematically.

a summation over the Bessel function zeros βln (see SM for
details). In the low-temperature limit, assuming positive εF,
the edge-state conductivity becomes

σE(ω) = −16ie2

π�

ω

ωR

�max∑
�=0

�ωRβ�n>εF∑
n

� + 1

β5
�n

[
1 − (

ω+iη

β�nωR

)2] . (8)

Remarkably, the above expression allows a simple asymptotic
form in the large-radius limit R → ∞. Replacing the angular
momenta � + 1 by their average at fixed energy � + 1 → 〈� +
1〉ε  ξε/�ωR , with proportionality constant ξ = 4/3π (see
SM), introducing the bulk-energy substitution β�n → ε/�ωR ,
and transforming the �n summations into integrals over εF �
ε < ∞, we find

σ∞
E (ω) = ξ

2e2

π�

vF

ωR

[
i ln

∣∣∣∣ε2
F − �

2ω2

ε2
F

∣∣∣∣ + πθ (�ω − εF)

]
, (9)

shown here, for simplicity, in the low-loss limit η → 0+ [36].
Interestingly, Eq. (9) shows that the inclusion of edge states
opens a dispersive channel scaling with ωR = vF/R, math-
ematically reminiscent of, but physically distinct from, the
scaling phenomenologically introduced in Kreibig damping
[37] and recently derived from the viewpoint of nonlocal
diffusion dynamics [38]. In addition to Landau damping due to
vertical transitions, as included in σinter(ω) for �ω � 2εF, edge-
to-bulk transitions allow nonvertical transitions at �ω � εF,
with the necessary momentum supplied by the structural
truncation with a strength proportional to 1/R. In Fig. 3
we consider σE(ω) and compare with σ∞

E (ω) for three disk
diameters. At smaller diameters σE(ω) and σ∞

E (ω) differ
substantially in the region �ω > εF with σE exhibiting peaks
at discrete transitional energies �ω  ε�n; as the diameter
is increased, and the energy difference between distinct
transitional energies decreases accordingly, σE approaches σ∞

E
asymptotically, as anticipated. We note that a generally good
agreement is apparent, even for small disks, when �ω < εF.
The importance of the edge-state conductivity vis-á-vis the
bulk conductivity diminishes with increasing diameter due to
the 1/R scaling of σE(ω). Nonetheless, even at large disk
diameters, e.g., 20 nm, the maximal edge-state conductivity is
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still on the order of ∼0.4σ0, while the magnitude of vertical
interband transitions roughly amounts to σ0.

Hydrodynamic response. The noninteracting polarizability,
the key constituent of the RPA, as considered in Eq. (5),
accounts not only for the discretized and individual nature
of the allowable states, but also for the nonlocal nature
of the electromagnetic response, manifest in the finitude of
χ0(r,r′; ω) for r �= r′. An approximate accounting of nonlocal
response can be facilitated by a hydrodynamic model [33]:

(
1 + β2

ω2
∇2

‖

)
ρ(r) = iσ (ω)

ω
∇2

‖ φ(r), (10)

with ∇2
‖ being the two-dimensional Laplacian, and with plasma

velocity denoted by β2 = 3
4v2

F (see SM). For brevity, we will
denote hydrodynamic calculations with a backbone conductiv-
ity σ (ω) by [σ ]H(ω). The primary effect of the hydrodynamic
model is to introduce a blueshift, which, in [σB]H(ω), approx-
imately amounts to a shift δωdp  1.27ω2

R/ωdp. Predictions
of the hydrodynamic model at the level [σB]H(ω) agree
excellently with predictions of RPA@Dirac IM as we show
in the SM. This underscores the accuracy of a hydrodynamic
description, since RPA@Dirac IM neglects the existence of
edge states, and thus, at large radii, is modified primarily
by nonlocal effects. Moreover, through this, we qualitatively
explain the blueshift predicted by RPA@TB in armchair
nanostructures [39,40] as a hydrodynamic shift.

Results and discussion. Figure 4 depicts the absorption
cross-sectional efficiency, i.e., cross section normalized to disk
area, for a normally incident excitation field, i.e., propagating
along z, of graphene nanodisks for different diameters, con-
trasting results obtained by LR with and without hydrodynamic
and edge-state conductivity, RPA@TB, and RPA@Dirac ZZ.
A fundamental feature of RPA@TB, not captured by any of the
continuum models, is a polarization dependence, considered
in Fig. 4 for x- and y-polarized incident fields, of the optical
response due to the discrete nature of the description. For
smaller disks, only few EHPs contribute, leading to a strong
polarization dependence. For larger disks, as the number of
contributing EHPs increases, and the collective nature of the
plasmon emerges, this dependence diminishes rapidly.

The primary feature of both RPA@TB and RPA@Dirac
ZZ for disk diameters larger than approximately 14 nm, is
the emergence of a broad dominant plasmonic resonance
redshifted with respect to the LR bulk predictions. Comparison
with [σB + σE]H(ω) and [σB + σ∞

E ]H(ω) agrees qualitatively.
A similar redshift is reproduced, ∝∼ ω2

R/ωdp ∝∼ 1/R3/2 (see

SM), but slightly underestimated in magnitude due to the
assumption of a constant total field, inherent to the dipole
approximation in Eq. (6), contrasting the actual electric field
distribution of the plasmon, which is significantly concentrated
near the edge [41]. Furthermore, the dipole resonance in
RPA@TB is damped and broadened to a larger degree than
both RPA@Dirac ZZ and [σB + σE]H(ω) as a result of
the explicit breaking of azimuthal and valley symmetry in
the discrete treatment, permitting additional dipole-allowed
transitions.

In conclusion, the redshift observed between predictions of
RPA@TB and bulk LR calculations arises from the competing
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FIG. 4. (Color online) Absorption cross-sectional efficiency at
normal incidence of graphene nanodisks calculated via LR, hy-
drodynamics with bulk and edge-state conductivities, RPA@Dirac
ZZ, and RPA@TB (for x- and y-polarized light) for disks of
increasing diameter. The sample is considered doped to εF = 0.4 eV,
with electron relaxation-rate �η = 6 meV, and at a temperature
T = 300 K. Spectra for different diameters are offset by 0.5, while
individual spectra at identical diameters are offset by 0.025. Spectra
for intermediate diameters available in SM.

effects of edge conductivity and nonlocal response, with
the former prevailing, shifting the dipole resonance ωdp to
the red and blue, respectively, with a strength ∝∼ ω2

R/ωdp in

both cases. The simultaneous accounting of both effects is
thus of paramount importance in semiclassically reproducing
the key plasmonic features of full RPA@TB predictions,
with significant corrections even at relatively large diameters
∼20 nm. Our identification and effective description of this
additional dispersive channel via edge states illustrates an
important difference between graphene and metal plasmonics.
Additionally, the equivalent size-dependent scaling with, e.g.,
nonlocal corrections, accentuates its high-ranking position in
the hierarchy of nonclassical corrections for plasmonics at the
nanoscale. Encouragingly, the salient features of Eq. (9) are
geometry independent, and we accordingly predict that the
simple analytical term can be qualitatively extended to other
graphene nanostructures, e.g., by substituting R→2A/C

with A and C denoting system area and circumference,
respectively, reasonable for sufficiently smooth boundaries.
Finally, generalizations to a much wider class of systems
supporting edge or surface states appear feasible, e.g., in
topological insulators such as bismuth bilayers [42] or silicene
[43], MoS2 nanotriangles [44], nanostructures with Ag(111)
facets [45], or indeed in any finite bipartite system which
generally supports zero-energy localized states [46].
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[17] S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu,
M. Ijäs, A. Harju, D. Vanmaekelbergh, and P. Liljeroth, Phys.
Rev. Lett. 107, 236803 (2011).

[18] X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-
Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina,
J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701
(2009).

[19] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[20] In the present study we forfeit consideration of armchair lattice
termination, which induces valley admixing [21], and thus
examine the two-spinor Dirac equations with Ĥ+
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