3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography

Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

Published in:
Microscopy (Oxford, England)

Link to article, DOI:
10.1093/jmicro/dfu081

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
rod- and plate-like morphologies with homogeneous dispersion in GdBa2Cu3O7-δ. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBa2Cu3O7-δ. Anisotropy of J_c in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBa2Cu3O7-δ.

References
doi: 10.1093/sct/jst080

3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography
Takashi Gondo1,*, Takeshi Kasama2, and Kenji Kaneko1
1Department of Materials Science and Engineering, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan, and 2Center for Electron Nanoscopy, Technical University of Denmark, Building 307, DK-2800 Kongens Lyngby, Denmark
*To whom correspondence should be addressed. E-mail: 3te11019m@s.kyushu-u.ac.jp

Introduction
Mesoporous silica, SBA-15, is one of the best candidates for the supporting material of catalytic nanoparticles because of its relative large surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for catalytic application [2]. The size of nanoparticles supported inside SBA-15 is restricted by that of the pore, and they are usually ranging from 2 nm and 50 nm in space. If it is necessary to anchor the nanoparticles within pores to avoid segregation / sintering of them. However, it is difficult to anchor them within pores in the case of use of deposition-precipitation method due to extreme low iso-electric point (IEP) of silica (~2). Therefore, TiO2 nanocrystals (IEP 6–8) were then introduced to anchor AuNPs [3]. In this study, EFTEM tomography was applied to examine the effectiveness of TiO2 for AuNPs.

Materials and method
Au/TiO2-SBA-15 was embedded into epoxy resin for electron microscopy and microtomated to around 30 nm thickness. EFTEM-tomography was operated at 120 kV and using Ti-L ionization edge via three-window method. Prior to EFTEM, STEM-HAADF tomography was also carried out for visualizing AuNPs and for comparison.

Result and discussion
Figure 1 shows 3D-volume of AuNPs and TiO2 nanocrystals from EFTEM-tomography. TiO2 nanoparticles in the porous material were successfully visualized using EFTEM-tomography, and local relationship between AuNPs and TiO2 nanocrystals were revealed. A large number of TiO2 nanocrystals were randomly distributed in the SBA-15. It was found that most AuNPs were directly on the exposed TiO2 nanocrystals. It implies that TiO2 nanocrystals were exposed on the surface of the pore and anchored AuNPs inside the pores. Critical current (I_c) of superconductor films under magnetic field is strongly influenced by dispersions and morphologies of artificial pinning centers (APCs) in general [1]. BaHfO3 (BHO) is acknowledged as the best candidates of APCs for REBCO films, which shows utmost thickness dependence and isotropic angular dependence of I_c values for REBCO films [2]. Moreover, several researchers have focused on the nanostrains caused by the lattice mismatch at the interface between APCs and REBCO matrix, which are also the source for enhanced vortex pinning of the REBCO films [3]. In this study, we investigated to examine the nanostrain at the interface using spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM).

References
doi: 10.1093/jmicro/dfu081

Microstructural characterization of GdBa2Cu3O7-δ superconductor films with BaHfO3 artificial pinning centers by scanning transmission electron microscopy
Kazuhiro Yamada1, Takeshi Nishiyama1, Kenji Kaneko1, Yukio Sato1, Ryo Teranishi1, Takeharu Kato2, Akira Ibi3, Masateru Yoshizumi2, Teruo Izumi3, and Yuh Shiohara3
1Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, 2Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan, 3HTS Technology Center, Kawasaki 213-0012, Japan

Critical current (I_c) of superconductor films under magnetic field is strongly influenced by dispersions and morphologies of artificial pinning centers (APCs) in general [1]. BaHfO3 (BHO) is acknowledged as the best candidates of APCs for REBCO films, which shows utmost thickness dependence and isotropic angular dependence of I_c values for REBCO films [2]. Moreover, several researchers have focused on the nanostrains caused by the lattice mismatch at the interface between APCs and REBCO matrix, which are also the source for enhanced vortex pinning of the REBCO films [3]. In this study, we investigated to examine the nanostrain at the interface using spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM).