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Preface 

This thesis was submitted to the DTU Aqua PhD School of the Technical University of Denmark 

in December 2011 for partial fulfilment of obtaining the PhD degree in biology. The work 

conducted over the past three years during this PhD programme has mainly taken place at DTU 

Aqua in Silkeborg including a four months external research visit at the School of Aquatic and 

Fishery Sciences at the University of Washington, Seattle, USA in the summer 2010. Funding 

for the PhD programme was provided by DTU Aqua and the European Commission through the 

projects UNCOVER and RECLAIM. I am further grateful for two travel grants from the Otto 

Mønsted foundation for going to Seattle twice.   

 

The overall objective of this PhD project was to enhance our understanding of the evolutionary 

processes shaping population structure and enabling adaptations to local environments in 

fishes. Three species representing two eco-types have been studied during this work; the 

marine small pelagic fishes Atlantic herring (Clupea harengus) and European sprat (Sprattus 

sprattus) as well as the salmonid Oncorhynchus mykiss. We used mtDNA and microsatellite 

markers to describe the demographic history and contemporary population structure of sprat 

(chapters 2-4). Then, considering the benefits of applying large marker panels for detecting 

signatures of natural selection (chapter 5), we developed a new panel of SNP markers for 

herring (chapter 6). This panel was used to study the occurrence and extent of local adaptation 

throughout the northeastern Atlantic distribution of herring (chapter 7) and a similar approach 

was applied to detect spatial signatures of adaptively important candidate genes in O. mykiss 

(chapter 8). In chapter 9 I conclude with a perspective of where I believe future efforts within the 

field are expected to significantly increase our perception of evolutionary processes in the wild. 

 

Here I give a brief guide through the content of the general introduction (chapter 1) that serves 

to state the background and objectives of my PhD as well as introducing relevant theory and 

methodological issues of relevance to this work. First, I state the importance of studying and 

understanding evolutionary processes in the wild, and this is followed by a short presentation of 

the European 7th Framework Programme project FishPopTrace (FPT), which has had a leading 

role during my PhD. FishPopTrace, a three year research programme, has been running over 

the course of my PhD, and a large part of my research (chapters 5-7) relates to work carried out 

in collaboration with this consortium. This is followed by a short paragraph where I place genetic 

studies in a larger biological framework needed to fully comprehend how genetic variation of 
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organisms is affected by external parameters like the surrounding environment. After this, I give 

a more technical presentation of relevant molecular markers for assessing genetic population 

structure and scales of local adaptation. This is followed by a description of different analytical 

methods for detecting signatures of local adaptation with a strong focus on three approaches 

(i.e. genome scans, candidate genes, and landscape genetics), which I have used extensively 

in my efforts for detecting local adaptation in Atlantic herring (chapter 7) and O. mykiss (chapter 

8). This is followed by a critical discussion of some analytical limitations that need careful 

consideration for interpreting results indicating local adaptation. Hereafter, I introduce my three 

study species, with a focus on the ecological characteristics making them attractive models for 

addressing questions of population structure and local adaptation in fish. Lastly, I end chapter 1 

with a brief background of the projects and motivations for conducting the different studies 

making up this thesis. 

 

Where relevant, the independent manuscripts making up this thesis will be referred to as 

chapters 2-8 throughout chapter 1 and 9. I reckon that vast amounts of relevant studies for the 

general topics discussed in the following chapters exist, and my citations suffer an inevitable 

bias towards the more fishy side of the literature. This does by no means reflect a subjective 

perception that ignored literature is inferior, but simply because I am more familiar with the cited 

examples. 

 

The final outcome of this PhD has only been made possible from invaluable help and 

collaboration from numerous people in all sorts of ways, and I apologise to those I may forget 

here – thank you. I have been blessed with the opportunity to work with an endless number of 

bright collegial biologists from all over Europe including the entire FishPopTrace consortium, 

especially Sarah, Ilaria, Babbucci, Alessia, Greg, Martin and Gary. Good times were also spent 

with fellow students from the DTU AQUA PhD school and a lot of people at DTU Aqua in 

Silkeborg. I am grateful for having been part of a team full of really bright population geneticists 

(Jakob, Thomas, Michael, and Einar) and invaluable and talented lab technicians (Karen-Lise, 

Dorte, and especially Noor for sharing the struggling with herring DNA). A million thanks go to 

my supervisor Dorte for enlightening discussions and priceless advice on scientific (and baby) 

matters; it has been a really inspiring journey over the past six years, and I hope I am now ready 

to stand on my own feet. I also want to express my sincere gratitude to Jim and Lisa Seeb for 

taking me in (even though I was unwanted in the beginning), and introduce me to salmonids, 

Fred, Kerry, Lorenz, Sewall, Scott, Mette and a bunch of other cool and hospitable folks at 



iii 
 

SAFS and around. Last, but not least, my fellow students Kristian, Mikkel, Diego, Sara, Henrik, 

the people you go to first when everything seems hopeless, or if you are just thirsty. The same 

accounts for Nina who has also been my extra sister and faithful partner the past years, whether 

we were swimming under the ice, road-tripping California or simply discussing smaller or larger 

things in life. 

 

I have really enjoyed the times spent with you all, whether they concerned science, hair wax 

(Gary) or other important things in life. 

 

I am grateful to my friends for being curious and understanding (or not) when I seemed more 

interested in working than partying for god knows which reason? My family (Far, Mor and Anna) 

for endless support and for thinking that I am a bright kid when I do not myself. 

 

My two indisputable greatest motivation sources in life: Balder for being able to instantaneously 

cure a work related bad mood by reminding me about the true values of life, simply through your 

mere existence. Balder, just thinking about thinking about you makes me happy. Maria, I can’t 

justify how much you mean for me in a few lines, but I am deeply grateful for your unconditional 

support via endless love and for giving me space and time, when my work really demanded it. 

Without you by my side, I could not have remained my sane self during these past years.  

 

 

Silkeborg, December 2011 

 
Morten Tønsberg Limborg 
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English abstract 

Marine fishes represent a valuable resource for the global economy and food consumption. 

Accordingly, many species experience high levels of exploitation necessitating effective 

management plans. However, long term sustainability may be jeopardized from insufficient 

knowledge about intra-specific population structure and adaptive divergence. The large 

population sizes and high migration rates common to most marine fishes impede the 

differentiating effect of genetic drift, having led to expectations of no population structure and 

that the occurrence of local adaptation should be rare in these species.  

Comprehensive genetic analyses on the small pelagic fish European sprat (Sprattus sprattus) 

revealed significant population structure throughout its distribution with an overall pattern of 

reduced connectivity across environmental transition zones. Population structure reflected both 

historical separations over glacial time scales and more recent colonisation of new habitats. 

Further, strong genetic divergence at several regional scales demonstrated limited connectivity 

among sea-going and local fjord populations along the Norwegian coast as well as indications 

for the potential of locally adapted populations in the brackish Baltic Sea. 

If forces of natural selection are able to override the homogenizing effects of high gene flow, the 

detection of adaptive signatures has often been constrained by a general lack of genomic 

resources. However, advances in sequencing technologies now enable cost-effective 

developments of gene-associated markers facilitating detection of adaptive divergence. To 

further address the potential existence of locally adapted populations in small pelagic fishes, we 

developed hundreds of transcriptome derived markers to identify genes affected by natural 

selection in Atlantic herring (Clupea harengus). Comprehensive sampling throughout the 

northeastern Atlantic revealed clear genetic structure among regions, and coupled with 

environmental inference strong signatures of divergent selection at a range of candidate genes 

suggested adaptation to local temperature and salinity conditions. 

A similar genome-scan based investigation of local adaptation was conducted in the salmonid 

Oncorhynchus mykiss. Despite profound socio-economic importance many populations have 

experienced strong declines and future conservation can be improved from identification of key 

environmental parameters and genes expected to maintain genetic diversity among populations. 

In contrast to marine fishes, salmonids are characterised by low gene flow, and together with 

the highly diverse habitats and phenotypes found among populations this suggest amble 
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potential for local adaptation to evolve. However, the genetic architecture and spatial scale of 

local adaptation is poorly known, and evidence has often been restricted to one or few genes at 

local scales. We found divergent selection for several genes often relating to local habitat 

conditions. Inference from known gene functions provided further evidence for adaptively 

important roles played by immune response genes. 

Overall, results from this PhD revealed complex patterns of population structure and evidence 

for locally adapted populations in small pelagic fishes as well as interesting patterns of 

adaptively important candidate genes in a salmonid. These results contribute to our 

understanding of the evolutionary processes shaping biodiversity in the wild and findings may 

be extended from the actual species studied to assist managing fish resources under an 

evolutionarily sustainable framework in the future. 
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Dansk resumé 

Marine fisk udgør en værdifuld økonomisk ressource på globalt plan, men mange arter udnyttes 

ikke på et bæredygtigt niveau, og bedre forvaltningsplaner er påkrævet. Utilstrækkelig viden om 

arters biologiske populationsstruktur og evolutionære tilpasning til lokale miljøer, kan medføre 

øget risiko for kollaps af lokale fiskebestande. Store populationsstørrelser og høje 

migrationsrater er typiske for marine fisk, hvilket i lang tid medførte en antagelse om at genetisk 

differentiering mellem populationer var usandsynlig i marine arter. Ydermere medfører disse 

faktorer en forventning om, at lokalt tilpassede populationer sjældent forekommer hos marine 

fisk.  

Genetiske analyser af brisling (Sprattus sprattus) viste tydelig populationsstruktur over hele 

udbredelsesområdet med reduceret gen-flow over en række marine transitionszoner. Nogle 

populationer har sandsynligvis været isolerede fra før den sidste istid, mens andre har 

koloniseret deres nuværende områder på et senere tidspunkt. På regionalt plan viste analyser 

en skarp genetisk differentiering mellem populationer i Nordsøen og Østersøen i relation til en 

kraftig miljøgradient, hvilket kan tyde på, at populationer er lokalt tilpassede. Et andet studie 

viste, at populationer af brisling i norske fjorde kun i begrænset omfang blander sig med store 

havgående bestande, og at de således reagerer uafhængigt på fiskeri- og klimaeffekter.  

Selvom naturlig selektion er stærk nok til at modvirke effekten af gen-flow, har det hidtil været 

svært at dokumentere graden af lokal tilpasning på grund af begrænsninger i tilgængelige 

genetiske metoder. Nye sekventeringsteknikker har gjort det muligt på én gang at udvikle 

mange gen-relaterede markører for nye arter, hvilket er et essentielt værktøj for at identificere 

lokalt tilpassede populationer. I et mere direkte forsøg på at detektere lokal tilpasning hos små 

pelagiske fisk, udviklede vi hundredvis af nye gen-relaterede markører for sild (Clupea 

harengus). Ved at analysere prøver fra hele Nordøst Atlanten og Østersøen fandt vi overordnet 

fire genetisk forskellige grupper af sild. Ydermere viste flere gener tegn på selektion i relation til 

lokale temperatur og salinitet forhold i overensstemmelse med lokalt tilpassede populationer. 

Et lignende studie havde til hensigt at identificere kandidatgener for lokal tilpasning i 

regnbueørred (Oncorhynchus mykiss), som er en socioøkonomisk vigtig art i det meste af dens 

oprindelige udbredelse inklusiv det Nordvestlige Amerika. Klimaforandringer og 

menneskeskabte habitatforringelser har medført en stor tilbagegang af mange populationer, og i 

forbindelse med genopretningsplaner er øget viden omkring hvilke miljøparametre og gener, der 
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er afgørende for lokal tilpasning essentiel. I modsætning til marine fisk er regnbueørred 

karakteriseret ved meget store miljøforskelle og lavt gen-flow mellem populationer, hvilket 

sandsynligvis indebærer divergerende selektionsregimer mellem forskellige habitater med lokalt 

tilpassede populationer. Selvom flere resultater er i overensstemmelse med dette, ved man 

generelt meget lidt om det geografiske mønster eller den genetiske baggrund for sådanne 

tilpasninger. Vores resultater viste tydelige signaturer af divergerende selektion for flere gener, 

og ved at identificere de respektive geners biologiske funktion observerede vi en vigtig adaptiv 

rolle for forskellige typer af immunresponsgener.   

De overordnede resultater fra denne PhD viste kompleks populationsstruktur og evidens for 

lokal tilpasning i små pelagiske sildefisk samt vigtige kandidatgener for tilpasning til lokale 

miljøer i regnbueørred. Disse resultater har øget vores viden om de evolutionære processer der 

opretholder biodiversitet i naturen, og de kan ligeledes medvirke til mere effektive 

forvaltningsplaner med henblik på evolutionært bæredygtige fiskerier i fremtiden. 
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Genetic population structure and local adaptation in fishes 

Genetic variation reflects evolutionary processes 

Genetic variation refers to polymorphic regions in the genome that can be scored for use in e.g. 

evolutionary studies of population and species histories. The origin of multiple alleles 

(polymorphism) at a given site in the genome originates from past mutational events. Once 

such polymorphisms exist in wild populations they are affected by a range of other evolutionary 

forces (Hedrick 2005a) where gene-flow reflects migration and leads to increased homogeneity 

among isolated populations. Contrary, genetic drift acting within populations leads to increased 

levels of differentiation among populations as a cause of random events between generations. 

Whereas the former two processes are considered neutral and expected to exert genome wide 

effects, imprints from selection are only expected to affect selected gene(s) and nearby linked 

genomic regions showing either increased (divergent selection) or reduced (balancing selection) 

levels of differentiation compared to neutrally evolving sites.  

Neutral population structure 

The time-scale upon which genomic imprints from the different processes accumulate among 

populations varies. For example, the time needed for new mutations to accumulate within single 

populations depends on the mutation rate and it may take several generations before such 

imprints become detectable between diverged populations. Contrary, signals from genetic drift, 

although depending on the effective population size (Ne), continuously accumulate over each 

generation between reproductively isolated populations. This leads to expectations of weak 

mutational imprints between recently diverged populations, and the relative mutational effect on 

genetic differentiation can thus be informative on the demographic history of a species 

(Excoffier et al. 1992; Pons and Petit 1996; chapter 2). The maintenance of contemporary 

neutral population structure mainly depends on the interplay between gene-flow and genetic 

drift acting over ecological time scales. Marine fish were traditionally perceived to represent 

genetically homogeneous populations since genetic drift is expected to exert little effect in 

species with large population sizes. This notion has now been largely abandoned from the 

accumulating evidence of biologically significant population structure in many marine fishes 

(Hauser and Carvalho 2008). Despite the often large population sizes, these results may reflect 

lower, than previously expected, levels of gene-flow among populations due to e.g. 

oceanographic retention reducing migratory potentials (Knutsen et al. 2011). Alternatively, 
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populations may potentially show adaptation to their local environments effectively reducing 

gene-flow from reduced reproductive fitness of immigrants. 

Local adaptation 

Evolutionary processes in the past have shaped contemporary genetic variation in extant 

species and populations in order to optimise their relative fitness within the environments to 

which they are exposed through natural selection. Similarly, environmental processes will 

continue to exert selective pressures at local populations in order to continuously optimise 

fitness in a changing habitat through evolutionary responses based on the standing genetic 

variation. The appearance of advantageous traits will thus develop over time through selective 

responses to changing environments. Whereas the nature of future responses of species to 

environmental change remains something between a black box and highly speculative 

predictions, current patterns of genetic variation within and among species provide us with a 

window towards understanding evolutionary processes in the past. In order to detect local 

adaptation, a well described neutral background of spatio-temporal population structure is of 

paramount importance to both evaluate the potential for local adaptation to occur (Hansen et al. 

2002), and as a background upon which loci underlying selective pressures can be detected 

(Lewontin and Krakauer 1973; Storz 2005). However, lack of detectable neutral population 

structure does not necessarily preclude the existence of reproductive isolation between 

populations, which may be observed at genes under selection (Hemmer-Hansen et al. 2007a; 

chapter 7). 

Why study population structure and local adaptation 

Natural resources play a vital role in global economy alongside unprecedented rates of climatic 

and environmental changes with non-negligible contributions stemming from anthropogenic 

activities. Climatically driven temperature increases are expected to affect most ecosystems 

directly (e.g. species assemblages and physiological processes) and in-directly (e.g. through 

biotic interactions and changed hydrographical conditions). Recent studies have already shown 

wide ecosystem responses to anthropogenic disturbances coupled with climate changes 

(Bradshaw and Holzapfel 2006) including marine ecosystems (Perry et al. 2005; Casini et al. 

2008; Dulvy et al. 2008). More specifically, increased temperatures are expected to alter salinity 

conditions in coastal and estuarine habitats from a combination of increased evaporation and 

freshwater runoffs leading to expected changes in species distributions and abundance 

(Mackenzie et al. 2007). Likewise, effects on freshwater systems are expected to include 
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changing river flow regimes and altered biotic interactions caused by species specific responses 

to environmental change (Wenger et al. 2011). Lastly, human activities including targeted 

harvest of specific traits such as size and growth rate (e.g. Jørgensen et al. 2007; Allendorf et 

al. 2008; Allendorf and Hard 2009) or habitat fragmentation like the building of dams (Waples et 

al. 2008) have substantial ecological and evolutionary impacts on wild animals.  

In order to continuously improve conservation and management of biodiversity, studying 

evolutionary dynamics in varying and changing environments is of paramount importance for 

securing long term sustainability of wild animal resources (Schindler et al. 2010). Because, only 

through an increased understanding of past evolutionary processes can we aim at predicting 

future responses of different species in a changing world. These challenges laid the foundation 

for the European 7th Framework Programme project FishPopTrace (Box 1), in which I have 

been an active participant throughout my PhD period. In the following chapters I present my 

own contribution to the field from studies of two clupeids and a salmonid species. 

 
   

Box 1. The FishPopTrace project 
 

An increasing consumer demand coupled with limited natural resources have driven global 

fisheries into a state where more than two thirds of all exploited species are harvested 

outside safe biological limits (FAO 2010). Major problems for securing sustainable fisheries 

relate to Illegal, Unreported and Unregulated (IUU) fishing which have been estimated to 

represent at least $10 billion globally (Agnew et al. 2009), and which represent up to 25% of 

the global catch. Such unlawful actions include mislabelling of fish products in order to e.g. 

obtain a higher value or hiding origin of landings from endangered and protected 

populations (Miller and Mariani 2010). Contributing to these illegal activities is inadequate 

enforcement which lacks robust techniques for assigning fish and fish products to 

population of origin. Molecular markers capable of species-level identification and assigning 

individual fish to their biological population of origin (Ogden 2008) are particularly promising 

for counteracting IUU. However, a general challenge with marine fish is weak population 

diversification (Nielsen et al. 2009a). Despite an example relating to Atlantic cod (Gadus 

morhua) at large spatial scales (Nielsen et al. 2001), adequate population divergence and 

resulting statistical power for assigning individuals to population of origin at smaller spatial 

scales is commonly lacking for most marine fish.  
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The FishPopTrace project aimed to identify gene markers affected by diversifying selection 

in four commercially important species (Atlantic herring, common sole (Solea solea), 

European hake (Merluccius merluccius) and Atlantic cod) within EU managed waters 

(Martinsohn and Ogden 2008; 2009). These markers are intended to serve multiple 

purposes, including an increased understanding and resolution of the spatial structure of 

populations and how these may be adapted to local environments. Another goal was to use 

gene markers exhibiting high levels of population divergence to develop species specific 

panels with increased statistical assignment power. 

 

To approach this goal a detailed strategy involving fish sampling, marker development, 

marker screening and validation of assignment power was incorporated in the 

FishPopTrace project (Martinsohn and Ogden 2009). First we developed transcriptome 

derived Single Nucleotide Polymorphism (SNP) markers in order to describe population 

structure and detect locally adapted populations. A subset of highly informative SNPs was 

then identified to develop a cost-effective tool box working throughout the food supply chain 

“from Ocean to fork” and intended to be used for assigning fish and fish products to 

population (and geographic area) of origin. Complementary strategies included 

microchemical and shape analyses of fish otoliths, fatty-acid profiles, proteomics and gene-

expression profiles (see the FishPopTrace website: http://fishpoptrace.jrc.ec.europa.eu/ for 

more information) to further increase scientific evidence for detecting population of origin 

(Martinsohn and Ogden 2009). These results are expected to improve efficiency of fish 

forensic tools in order to better conserve marine resources through increased compliance 

towards fishery legislations and to minimise future levels of IUU through enforcement and 

deterrence. 
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Theory and methods 

From genes to phenotypes and whole-organism performance 

In the wild, natural selection favours individuals exhibiting the phenotypes best suited to the 

particular environment in which they live. Populations inhabiting varying environments may thus 

exhibit different phenotypes in order to optimise local fitness. When such phenotypes of 

adaptive importance have a heritable component (i.e. a genetic basis), natural selection will 

increase frequencies of the more adaptive alleles within populations and increase differentiation 

between populations. However, it is rarely possible to explain adaptive phenotypic variation from 

genetic polymorphisms alone since the gene only represents the first step in a cascade of 

complex biological levels ultimately shaping the phenotype of an organism (figure 1). Most 

population genetics studies of local adaptation in the wild are limited to data reflecting variation 

at the genetic level and often lack inference from several other levels of biological processes 

with potentially high impact on an organism’s performance and relative fitness. Thus, in order to 

better link genetic variation to a certain measurable phenotype, a “mechanistic” approach 

considering multiple biological levels covering the entire pathway from genetic variation to 

whole-organism phenotype and fitness would be required (figure 1). 

Figure 1 Diagram illustrating various levels of 
biological organisation that may, or may not, 
have a genetic basis affecting whole-
organism fitness. Left broken line represents 
potential impacts on an organism from the 
external environment. Right broken line 
illustrates how natural selection may affect 
genetic variation in future generations by 
acting on the overall phenotype (figure 
modified from Dalziel et al. 2009). 
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While such approaches are only practical for few model1 species (Dalziel et al. 2009) it can still 

be useful to apply a mechanistic perspective in studies of local adaptation in the wild (Rogers 

and Bernatchez 2007). Although only few steps in figure 1 can be addressed for nonmodel2 

species including most marine fishes, one can take advantage of the mechanistic perspective 

by considering existing knowledge about the effects of certain genes, proteins, physiological 

processes or other phenotypic traits suspected to play adaptive roles in the focal or related 

species. Such information may exist for some model species and can be useful in generating 

specific hypotheses to be tested at for example the genotypic level, or as a posteriori support for 

interpreting results indicating natural selection in the genome. One example of a well described 

model fish species which has had major impact for eco-evolutionary research in the marine 

realm is the threespine stickleback (Gasterosteus aculeatus) (e.g. Colosimo et al. 2005; 

Hohenlohe et al. 2010; Kitano et al. 2010). Thus, it has been recommended to continuously 

draw on well documented knowledge from key model species (ICES 2011 and references 

therein). It is further indisputable that the near future will provide massive resources enabling 

similar levels of detailed studies in organisms currently considered nonmodel species as for 

example exemplified by the recent publication of the Atlantic cod (Gadus morhua) genome (Star 

et al. 2011). 

Despite the ever growing genomic resources available for nonmodel species, a particularly 

promising road to narrow the knowledge-gap in the genotype – phenotype pathway is the 

combined use of population genomics and quantitative genetics tools that aim at linking genetic 

variation with potentially adaptive, and quantifiable, phenotypic traits (Naish and Hard 2008; 

Stinchcombe and Hoekstra 2008). Despite the limited knowledge of especially the pathways 

including protein to physiological processes (figure 1) in most fish species, the combination of 

these tools operating at both the genetic and the phenotypic level appear especially promising 

for understanding genotype - phenotype interactions (Naish and Hard 2008). Generally, in order 

to increase the level of evidence for local adaptation in wild populations, it is an absolute 

necessity to consider multiple analytical approaches (see below) since no method alone can 

reveal information at all biological levels. 

 

1 Model organisms refer to extensively studied species often characterised by having extensive genomic resources 
like a fully sequenced genome 
 
2 Nonmodel organisms are here defined in a genetic framework of being restricted in terms of available molecular 
resources limiting genomic inference 
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Genetic markers for studying evolutionary processes 

Molecular inference about population structure in marine fishes dawned in the 1960s where the 

application of allozyme markers demonstrated hitherto unknown population structure in a range 

of marine fish (Sick 1965b; 1965a; Nævdal 1968; Grant and Utter 1980). These studies 

effectively changed the perception of population structure in the wild by uncovering the ubiquity 

of intra-specific genetic variation in the wild. Many allozyme markers were assumingly affected 

by selection (e.g. Sick 1965a) challenging demographic inference, and subsequent 

technological improvements have made DNA based markers the preferred choice in most 

population genetic studies. Especially mitochondrial (mtDNA), microsatellite and Single 

Nucleotide Polymorphism (SNP) markers (see below) have revolutionized the field of 

evolutionary studies in the wild. Other types of markers include amplified fragment-length 

polymorphisms (AFLP), restriction fragment-length polymorphisms (RFLP) and randomly 

amplified polymorphic DNAs (RAPD), which have also had their heyday. However, due to 

drawbacks like dominance (i.e. homozygotes not being distinguishable from heterozygotes) and 

uncertainties relating to reproducibility of results, their usage has ceased (Schlötterer 2004), but 

see Avise (2004) for a more in depth discussion on the history of different types of molecular 

markers. In the work presented in this PhD I used the different attributes of mtDNA, 

microsatellites & SNP markers for answering questions relating to; population structure, 

demographic history, natural selection and candidate genes for local adaptation in two small 

pelagics and a salmonid fish species. 

Historically, mtDNA markers have been the prime choice in most phylogeographic and 

population genetics studies owing to features such as high conservatism among species 

facilitating easy applications in new species using markers from close relatives (Avise et al. 

1987). Mitochondrial DNA is haploid and generally maternally inherited, effectively reducing Ne 

of mtDNA markers to ¼ that of nuclear DNA. This means that genetic drift imposes a higher 

impact on mtDNA compared to nuclear DNA and that estimates of gene-flow only reflects 

female movements. Other general features of mtDNA include lack of recombination and 

selective neutrality, and even though many of these assumptions have been questioned in 

certain cases, mtDNA remains a valuable tool for studying phylogeography, particularly in 

species without large genomic resources (Galtier et al. 2009). 

During the 1990s microsatellite markers became the single most popular genetic marker in 

ecological and evolutionary studies (Schlötterer 2004). This was to a large part due to attributes 
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like high mutation rates and concomitant high levels of polymorphism allowing unprecedented 

statistical power for detecting weak levels of population structure (Jarne and Lagoda 1996) as in 

many marine fish. The non-coding nature of most microsatellite motifs have led to a generally 

assumed neutrality of these markers (but see Nielsen et al. 2006) making them suitable for 

studying neutral evolutionary and demographic processes. However, the high mutation rates 

and polymorphic nature of microsatellites lead to potential drawbacks from size-homoplasy 

(Estoup et al. 2002) and bounding of the upper levels of population differentiation estimates 

such as FST (Hedrick 1999; 2005b). These issues have led to heated debate about the 

applicability of for example microsatellite derived FST estimates of population differentiation (see 

Holsinger and Weir 2009; Meirmans and Hedrick 2011 for two recent reviews and references 

therein). Microsatellites have, nevertheless, revolutionised the field of population genetics in 

marine, and other, fishes by uncovering hitherto undetected population structure in several 

species (Hauser and Carvalho 2008). 

During the last decade we have seen a dramatic increase in the use of SNPs in studies of 

nonmodel organisms (Morin et al. 2004; Seeb et al. 2011a). SNPs refer to single base 

substitutions and thus represent the simplest and most abundant form of genetic variation in the 

genome. In combination with the recent development of next generation sequencing (NGS) 

techniques for large scale SNP discovery (Box 2), it is now possible to screen large numbers of 

SNPs in nonmodel species obtaining extensive genomic coverage compared to most previous 

microsatellite and mtDNA based studies (Luikart et al. 2003). Furthermore, by sequencing the 

transcriptome for SNP discovery, it has become more common to study markers from known 

genes and to reveal signatures of natural selection in nonmodel species (Bouck and Vision 

2007). However, still in its infancy, a range of challenges including ascertainment bias and 

analytical considerations follow with the analyses of SNPs in nonmodel species, and these are 

reviewed in chapter 5 of this thesis. 

Despite each marker types’ unique attributes for inferring phylogenetic relationships, weak 

population structure or signatures of selection, increased inference can be obtained from 

approaches combining the information that can be retrieved from different markers. In chapter 2 

I took advantage of such a multi marker approach by using mtDNA to infer phylogenetic 

relationships and comparing patterns of genetic differentiation with microsatellite markers, which 

allowed detection of weaker levels of structure not readily uncovered with mtDNA. Likewise, the 

use of markers under divergent selection (which are more readily discovered from large SNP 
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panels), may again enable identification of population differentiation undetectable with neutral 

markers (see chapter 7).  

  

Box 2. From population genetics to genomics: The impact of Next 
Generation Sequencing 

If population genetics refer to studies applying no more than ~20 markers for inferring 

population genetic patterns, population genomics can be defined as the genome-wide 

sampling of at least 100-1000s of markers to disentangle locus specific effects like selection 

from the genome wide influence of genetic drift and gene-flow (Luikart et al. 2003). 

Population genomics in nonmodel species has been made possible via NGS techniques 

(Shendure and Ji 2008), which have facilitated genomic scale studies in the wild (Ellegren 

2008; Allendorf et al. 2010; Ekblom and Galindo 2011; Seeb et al. 2011a) including many 

fish species (Hauser and Seeb 2008). Genomic approaches now allow a range of hitherto 

unattainable inferences about the role of evolutionary forces in shaping genome wide 

variation. These include:    

• Significantly improved accuracy in estimates of demographic parameters such as Ne 

and gene-flow from greatly reduced levels of inter-marker variation and the ability of 

filtering out non-neutral loci (Luikart et al. 2003). 

 

• The possibility to effectively distinguish neutral from non-neutrally behaving markers in 

wild populations. Numerous studies have been carried out in human and model 

organisms (e.g. reviewed in Stinchcombe and Hoekstra 2008), but now applications to 

nonmodel organisms (e.g. Anderson et al. 2005; Eveno et al. 2008; Namroud et al. 

2008) including fish (Moen et al. 2008; Bradbury et al. 2010) are increasing 

dramatically. 
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• Inferring the distribution and extent of neutral vs. selected genomic variation at the intra-

genomic level (Nosil et al. 2009). For example, a recent study by Bradbury et al. (2010) 

found that 40 temperature related outlier loci out of more than 1600 screened SNPs 

only located to three out of 23 different linkage groups in Atlantic cod (Gadus morhua). 

 

• An “environmental genomics” approach relating locus specific signatures of selection to 

an ecological context by considering associations with the surrounding environment 

(Landry and Aubin-Horth 2007). 

 

• Increasing availability of new whole genome sequences of hitherto “nonmodel” fish 

species (e.g. Star et al. 2011) in the foreseeable future, allowing mapping 1000s of loci 

screened with high throughput genotyping techniques to known gene regions in the 

focal, or even closely related species (Sarropoulou et al. 2008). A fully sequenced 

genome may also allow targeted approaches screening a dense set of markers in a 

restricted part of the genome (reduced representation) for example containing candidate 

genes (Allendorf et al. 2010). Alternatively, picking a representative marker panel 

spanning the entire genome may significantly reduce the cost of screening for genome 

wide signatures of selection. 

 

• Direct high throughput genotyping of a very large number of SNPs from randomly 

amplified DNA referred to as RAD-tag  sequencing (Miller et al. 2007; Baird et al. 2008), 

as demonstrated in stickleback (Hohenlohe et al. 2010) and rainbow trout 

(Oncorhynchus mykiss) (Hohenlohe et al. 2011; Miller et al. 2011). 
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Methods for detecting local adaptation 

Below, divergent selection refers to a scenario where individuals with a specific allele (A) 

experience higher fitness in a specific environment (X), while another allele (B) of the same 

gene is favoured in a different environment (Y). The frequency of the A allele will thus be 

increased through natural selection in populations adapted to the X environment in which the A 

allele has a selective advantage. Likewise, the B allele will be selected for in populations 

inhabiting the Y environment favouring individuals carrying the B allele (Kawecki and Ebert 

2004). Compared to markers only shaped by neutral processes (see above), this leads to 

elevated levels of differentiation at this gene between populations adapted to X and Y 

environments, respectively, and this process is referred to as divergent (or disruptive) selection. 

Notably, alternative but similar scenarios include situations where only one of the alleles is 

under local selection while both alleles behave neutrally in remaining populations, however, this 

scenario leads to a similar pattern of increased differentiation at the respective gene (Kawecki 

and Ebert 2004). In the following I give a brief introduction to the most commonly used 

population genomics methods for detecting local adaptation through patterns of natural 

selection at specific genes. The objective here is to present the underlying principles and 

attributes of different methods for detecting local adaptation which I have considered during the 

work of my PhD. More exhaustive reviews of methods have been given elsewhere (e.g. Storz 

2005; Vasemägi and Primmer 2005; Stinchcombe and Hoekstra 2008; Nielsen et al. 2009a). 

Genome scans 

The underlying principle of the genome scan approach rests on the hitch-hiking effect (Maynard 

Smith and Haigh 1974) implying that genetic markers linked to genes under selection will reflect 

the variation shaped by selective forces acting on a nearby functional gene. This is caused by 

linkage disequilibrium between genes under selection and the often effectively neutral flanking 

genomic regions, resulting from low recombination rates between the target of selection and 

flanking regions. Genetic markers located within such genomic regions affected by selection can 

then be statistically identified as initial signatures of selection. The first test developed for this 

purpose was the original method by Lewontin and Krakauer (1973), which compares single 

locus estimates of population differentiation (FST) among a set of population samples with a 

distribution of FST expected under neutral conditions. Loci subject to divergent selection are thus 

expected to show elevated levels of FST compared to the neutral distribution and similarly, loci 

under balancing selection (i.e. the same allele has a selective advantage in all populations) for 
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should show reduced levels of FST. Using the same principle, subsequent statistical refinements 

have been made to overcome previous short-comings of the method and a range of alternatives 

are now available (Beaumont and Nichols 1996; Vitalis et al. 2001; Beaumont and Balding 

2004; Foll and Gaggiotti 2008; Excoffier et al. 2009). 

Although this approach relies on linkage between markers and selected genes, this feature also 

limits the biological inference that can be drawn about detected outlier loci, since these are likely 

to reflect selection in nearby genes rather than being the actual target themselves. This is 

especially pertinent for anonymous markers like AFLPs and most microsatellites. One way to 

increase the chance of observing signatures of natural selection is to use markers (e.g. 

microsatellites or SNPs) in expressed regions of the genome (i.e. transcriptome) referred to as 

Expressed Sequence Tags (ESTs). These markers represent DNA that encodes information for 

subsequent protein synthesis (see figure 1) and as such are more likely to affect the ultimate 

phenotype potentially affected by selection (Bonin 2008; Namroud et al. 2008). Another 

drawback of the genome scan approach is that it requires a fairly large number of markers to 

obtain a robust neutral background upon which candidate markers for selection can be 

detected. Until recently, this limited the effective use of genome scans in most nonmodel 

organisms, but the advent of NGS (Box 2) has facilitated fast and cost-effective developments 

of large genomic resources (including EST markers) in nonmodel species (e.g. Barbazuk et al. 

2007; Novaes et al. 2008; Hohenlohe et al. 2011; Milano et al. 2011). The increasing popularity 

of genome scans in population genomics is reflected in a recent boom of studies using this 

approach for both microsatellites (e.g. Martinez et al. 2011; Meier et al. 2011) and SNPs (e.g. 

Bonin et al. 2006; Moen et al. 2008; Namroud et al. 2008; Nielsen et al. 2009b; Bradbury et al. 

2010). One crucial point to keep in mind is, that a detected “outlier” represents a marker falling 

outside a confidence interval (e.g. 95%) expected to encompass all neutral loci based on a 

statistical model. Underlying models differ among different genome scan methods, and markers 

obtaining outlier status in some methods may behave neutrally in others (Narum and Hess 

2011). However, outliers detected by multiple methods based on different models effectively 

increase evidence of these markers being affected by selection (see e.g. chapter 7). 

Notwithstanding the inherent limitations of the genome scan approach given above and 

repeatedly pointed out (e.g. Kelley et al. 2006; Teshima et al. 2006; Excoffier et al. 2009; 

Hermisson 2009), the wide usage in recent years have highlighted different advantages and 

disadvantages for detecting signatures of selection in the wild. As a first step, genome scans 

can serve as excellent explorative tools for generating marker specific hypotheses and guide 
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downstream analyses (Beaumont 2005). By identifying and removing markers potentially 

affected by selection, genome scans can serve to compare neutral (by only including neutrally 

behaving markers) and adaptive processes in the wild (e.g. Gaggiotti et al. 2009; Nielsen et al. 

2009c). Such assumingly neutral data sets are invaluable for estimating demographic 

parameters such as Ne and m, which are crucial indicators of the status of species or 

populations in conservation genomics (Luikart et al. 2003).  

Candidate genes 

Genes of known function expected to influence a phenotypic trait of adaptive importance can be 

considered as candidate genes for detecting local adaptation. Knowledge about the function of 

a gene can thus guide sampling of populations for example representing varying environments 

between which divergent selection would be expected. In combination with other inferences 

such as comparisons of phenotypes between environments, use of molecular tools can be 

applied to link variation in the gene with assumingly adaptive phenotypes or environmental 

conditions (Guinand et al. 2004). Such genes can then be subjected to a range of single-locus 

neutrality tests to infer if the gene deviates from neutral expectations in a fashion of divergent or 

balancing selection (reviewed in Ford 2002; Vasemägi and Primmer 2005). A range of these 

methods is furthermore demonstrated in an elegant candidate gene study of the Rhodopsin 

gene in relation to photic environments of the marine sand goby (Pomatoschistus minutus) 

(Larmuseau et al. 2009). Alternatively, the spatial distribution of genetic (allelic) variation at a 

candidate gene can be compared to that of a set of neutrally behaving markers. This was 

illustrated by Hemmer-Hansen et al. (2007) where the stress response gene Hsc70 showed 

elevated levels of differentiation between populations of European flounder (Platichthys flesus) 

inhabiting different temperature and salinity regimes, compared to observed differentiation at 

assumingly neutral microsatellites. In chapter 8 we used the Ewens-Watterson test (Ewens 

1972; Watterson 1978) to look for balancing selection on a MHC class II gene in the salmonid 

Oncorhynchus mykiss3, which is expected to maintain high levels of variation within populations 

due to its general role in immune response to external pathogens (Sommer 2005). Furthermore, 

the accelerated development of transcriptome derived and gene targeted markers in nonmodel 

species (e.g. Geraldes et al. 2011; Hemmer-Hansen et al. 2011; Seeb et al. 2011b), has led to 

an increased availability of markers residing within known genes, opposed to anonymous and 

non-coding markers. This increasing number of markers representing known genes will be a 

3 Throughout this chapter I refer to the Latin name of this species due to the existence of a myriad of popular 
names referring to specific life histories and evolutionary lineages (see below and chapter 8). 
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valuable resource for picking candidate genes in future studies drawing on findings from other 

species. 

Landscape genetics 

The field of landscape genetics aims at combining information from the surrounding “landscape” 

(e.g. geographic locations and environmental parameters like temperature, habitat type, etc.) 

with patterns of genetic variation among populations (Manel et al. 2003; Holderegger and 

Wagner 2006; Sork and Waits 2010). As the name implies, these methods have originally been 

developed for terrestrial systems but have already found great use in aquatic systems as well 

(Hansen and Hemmer-Hansen 2007; Selkoe et al. 2008). One group of methods investigates 

how environmental factors correlate with neutral genetic variation among populations, and if for 

example gene-flow appears to be limited across environmental barriers (Manni et al. 2004; Foll 

and Gaggiotti 2006; Faubet and Gaggiotti 2008). These methods have been applied to 

terrestrial (e.g. Heller et al. 2010) and a range of aquatic (Kenchington et al. 2006; Gaggiotti et 

al. 2009; Galarza et al. 2009; Gomez-Uchida et al. 2009) organisms for a limited number (<20) 

of microsatellite and mtDNA markers (see also chapter 3). The recent increase in number of 

available markers (such as SNPs), including markers representing adaptive genetic variation, is 

especially promising for coupling the surrounding landscape to functionally important genetic 

variation involved in local adaptation of wild populations (Holderegger et al. 2006). Methods 

often examine marker-environmental associations on a marker by marker basis and can 

potentially link environmental signatures of evolutionary importance to specific genomic regions 

(Joost et al. 2008; Coop et al. 2010). Several studies have already taken advantage of these 

new possibilities in nonmodel fish species (Nielsen et al. 2009b; Bradbury et al. 2010; Meier et 

al. 2011). These, and other studies, have contributed fundamental knowledge about, not only 

which factors are likely to drive local adaptation, but also about the spatial scales at which 

divergent selection operates in the wild. Notably, these methods are only correlative in nature, 

and a direct effect of tested factors on genetic variation often remains to be demonstrated un-

equivocally. Nevertheless, results from these approaches still serve a useful hypothesis-

generating role. 
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Other methods 

In the course of my PhD I have mainly applied the three approaches described above, however, 

a range of other tools (e.g. QTL mapping, gene expression and proteomic based studies) to 

detect local adaptation have been applied in other nonmodel fish species and also deserve 

mention (see chapter 9). In common for these methods are that they all require complex 

laboratory facilities for breeding fish in common environments and/or large genomic coverage 

(preferably > 1000 markers). Many fish are not easily kept in captivity, and together with other 

constraints such as time and genomic resources, these approaches were not feasible during 

this PhD. However, consideration of these methods is extremely valuable for suggesting future 

directions of research based on the results obtained during my PhD, which is given in chapter 9. 

Power of combining approaches for detecting local adaptation 

The inherent uncertainty and limitation by any one method has repeatedly led to the advice of 

combining independent approaches (figure 2) for detecting local adaptation in order to 

effectively replicate results and strengthen conclusions (Luikart et al. 2003; Vasemägi and 

Primmer 2005; Stinchcombe and Hoekstra 2008; ICES 2011). Taking a hypothesis-testing 

approach by including gene markers expected to be under selection a priori, together with a 

large number of anonymous markers, increased evidence can be gained from combining the 

candidate gene approach with large scale genome scans. Thus, if the a priori candidates are 

suggested to be under selection in a genome scan combined with the known gene function 

qualifying it as a candidate, this effectively increases support for a model with selection. 
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Figure 2 Conceptual diagram illustrating how combining inferences from multiple approaches can 
accumulate evidence for local adaptation in the wild (taken from ICES 2011). It should be noted that 
different approaches need not be performed in the order illustrated here, and that many other approaches 
for inferring local adaptation exist (see text). 

Simultaneously, other markers, with no a priori expectations, may also show signatures of 

selection, and these genes may deserve more attention in downstream analyses. Such an 

approach was used by Nielsen et al. (2009b) who performed genome scans in Atlantic cod 

using 98 SNPs of which 18 were specifically designed to track candidate genes. Their results 

confirmed an adaptive status of some of these genes while also detecting a set of anonymous 

markers to be candidates for divergent selection. Co-workers and I followed a similar approach 

in a study on O. mykiss (chapter 8), where known gene identity for some outliers allowed us to 

conclude potential adaptive roles for MHC and interleukin immune response genes. 

Another powerful combination of analytical approaches is to merge findings from genome scans 

with single marker based landscape genomic analyses. Genomic signatures of local adaptation 

are only expected to be found at genes or nearby genomic regions directly influencing fitness. 

Genetic markers within these regions will therefore be expected to show particularly strong 

correlations with environmental factors driving divergent selection between environments. This 

implies increased support for local adaptation when gene markers show signatures of selection 

from both genome scans and environmental correlations (see e.g. Nielsen et al. 2009b; 

Bradbury et al. 2010). Furthermore, by replicating analyses across independent environmental 

clines one may increase support for the evolutionary importance of a given environmental 
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parameter (Figure 2; Clarke 1975; Maggs et al. 2008). This was for example demonstrated by 

Hemmer-Hansen et al. (2007a) in populations of the euryhaline European flounder inhabiting 

geographically isolated low salinity environments. In chapter 7 we also took advantage of this by 

comparing geographically independent clines of temperature and salinity in Atlantic herring 

(Clupea harengus), and in a similar way, we compared adaptive signals between different 

migratory life-history types in O. mykiss (chapter 8). 

Spatio-temporal considerations for inferring adaptive variation 

Adaptation to local environments is expected to reflect habitat heterogeneity, which may occur 

over relatively small geographic scales. This may compromise inference about the spatial scale 

at which selective forces are in play. This is particularly the case for widespread species such 

as most salmonids and marine fishes where spatially heterogeneous patterns of selection may 

be common (Miller et al. 2001; Hemmer-Hansen et al. 2007a). Thus, outliers detected from 

genome scans based on a broad geographic distribution of samples can be driven by just a few 

locally adapted populations and underlying selective processes may only occur at very local 

scales. To narrow down inference of selection in relation to local habitats, regional tests on a 

subset of local samples can be performed (Nielsen et al. 2009b; chapters 7 and 8). 

Alternatively, a hierarchical model approach can be taken in genome scan analyses (Excoffier 

et al. 2009) to infer whether outlier signals are driven solely by populations at local scales or if 

they represent more large scale patterns of selection among regional groups (see chapter 8). 

Observed signatures of positive selection may either reflect on-going selection and/or imprints 

from past selective sweeps not yet eroded from populations through combined effects of 

recombination, gene-flow and drift (Garrigan and Hedrick 2003). Signatures from past selective 

sweeps are expected to remain longer in large Ne species (Garrigan and Hedrick 2003) like 

marine fish, implying great caution when interpreting contemporary signals of selection in the 

wild. Another phenomenon is the difference between local and global hitchhiking selection 

(Bierne 2010). Here local hitchhiking refers to a locally advantageous allele representing on-

going divergent selection to local habitats, whereas global hitchhiking denotes a globally 

advantageous allele that is swept to fixation in the population of origin (i.e. past selection), and 

is in the process of spreading into neighbouring populations (Bierne 2010). To distinguish the 

latter two scenarios, a chromosome walk approach screening nearby variation can be applied, 

however this usually requires large genomic resources (Bierne 2010), which are currently 

unavailable for most marine fishes and other nonmodel species. Alternatively, observations of 
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similar adaptive signatures in geographically or phylogenetically distant populations may add 

further support for a model of on-going selection to local habitats (see discussion in Poulsen et 

al. 2011). 

 

The study models 

In the following I give a brief introduction to the studied groups of fish represented by the marine 

small pelagics European sprat (Sprattus sprattus) and Atlantic herring and the salmonid O. 

mykiss. It is not the aim here to comprehensively review the species’ biology, which has been 

done elsewhere (e.g. Blaxter and Hunter 1982 for sprat and herring; Quinn 2005 for O. mykiss), 

but rather to introduce the specific biological characteristics making these species particularly 

interesting and suited for studying population structure and local adaptation in the wild. 

 

Small pelagics (European sprat and Atlantic herring) 

Small pelagics like sprat, herring (figure 3), sardines (Sardinops sp.), and anchovies (Engraulis 

sp.) are generally characterized by high cultural and economic importance (Whitehead 1985) 

and a crucial ecological role linking energy flow from lower trophic levels to top predators 

(Bakun 2006). This has also led to well described population structures in several small pelagics 

over the years (Carvalho and Hauser 1994; Hauser and Carvalho 2008), providing an invaluable 

knowledge base for guiding current and future research on local adaptation in the marine realm 

(Nielsen et al. 2009a). Small pelagics are representatives of what has been termed “classical 

marine fish”, which is defined in an evolutionary context of having large Ne, broadcast spawning 

behaviour, large gene-flow potential due to high migration rates (m), and wide distributions 

(Palumbi 1994; Nielsen and Kenchington 2001). These attributes together with a general lack of 

physical migration barriers in the sea, have resulted in generally low levels of genetic 

differentiation among populations of marine fishes compared to anadromous (e.g. salmonids) 

and freshwater fishes (Ward et al. 1994; DeWoody and Avise 2000). While low levels of neutral 

population structure (reflecting demographic factors such as Ne and m) challenges detection of 

biologically significant differentiation among populations (Waples 1998), it facilitates detection of 

divergent selection. Notably, total response to selection (R) for a given trait in a population 

depends not only on the selection advantage (s), but also the size of Ne: R=Ne*s (Robertson 
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1960). Thus, the combination of high Ne (low drift) and high gene-flow leading to low levels of 

neutral differentiation, and potentially strong adaptive responses to selection should make 

signals of divergent selection relatively easy to detect in marine fish (Foll and Gaggiotti 2008; 

Nielsen et al. 2009a). This, of course, assumes that gene-flow is not high enough to 

homogenise allele frequencies among populations between every generation. Herring is known 

to exert strong homing behaviour to natal spawning grounds (Iles and Sinclair 1982; Aro 1989) 

despite extensive feeding migrations and mixing with other populations (Ruzzante et al. 2006), 

which indeed suggest limited gene-flow and potential for local adaptation.  

 

Figure 3 School of herring (photo: unknown). 

Another feature of fishes in general is their exothermic biology leading to profound physiological 

responses to changes in external factors such as temperature, salinity or oxygen content. When 

species or populations are not capable of responding to environmental changes through either 

phenotypic plasticity or spatial movements, they may either go extinct or adapt through 

evolutionary response over few generations. The wide distributions of most classical marine fish 

often encompass highly heterogeneous environments with spatially varying selection pressures 

elegantly setting the scene for local adaptation to evolve (Palumbi 1994; Kawecki and Ebert 

2004) and locally advantageous alleles may quickly sweep to high frequencies within 

populations. In sprat, three different sub-species have been described (Whitehead 1985) 

suggesting old divergence and low mixing among contemporary populations, which may have 

adapted to their local habitats. All these features make small pelagics excellent models for 
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studying population structure and local adaptation with a focus on environment – genome 

interactions. This line of research has been termed “environmental genomics” (Cossins and 

Crawford 2005), and represent a promising field for increasing our evolutionary sense of local 

adaptation in the sea. 

 

Salmonids (Oncorhynchus mykiss) 

Salmonid fishes have played a key role in evolutionary studies for several decades due to their 

extensive geographic distributions, immense life-history diversity and strong natal homing 

behaviour to mention a few attributes (Hendry and Stearns 2004; Quinn 2005). Salmonid 

species of the genus Oncorhynchus are naturally distributed in the North Pacific Ocean and 

spawn in freshwater tributaries from northeast Asia over Alaska down to Mexico on the west 

coast of North America (MacCrimmon 1971; Utter et al. 1980). The species O. mykiss (figure 4) 

has attracted particular attention as a function of its value in recreational and aquaculture 

activities coupled to its enigmatic biology (Halverson 2010). Especially its importance to 

aquaculture has led to the development of extensive genomic resources (e.g. Thorgaard et al. 

2002; Miller et al. 2011), which also comprise an excellent tool box for studying local adaptation 

in the wild (e.g. Narum et al. 2010; Miller et al. 2011). 

 

Figure 4 Oncorhynchus mykiss. (Photo kindly provided with permission from Daniela & Benno Wolf 
(©www.taucher.li). 

Two life-history forms exist; the anadromous steelhead which performs extensive ocean-going 

migration before returning to natal spawning areas, and the resident rainbow trout which spends 

its entire life cycle in freshwater. The evolutionary significance of these alternative life-styles has 
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been extensively studied (Hendry et al. 2003), but evidence for a genetic component identified 

through candidate genes associated with life-history remains sparse (but see examples in 

Narum et al. 2011 and chapter 8).  

After the last glacial maxima previously isolated lineages of O. mykiss came into secondary 

contact during the re-colonisation of the Pacific Northwest (chapter 8). This included populations 

within lineages colonising different environments and populations between lineages colonising 

similar environments (e.g. Miller et al. 2011). This aspect makes O. mykiss an ideal model for 

distinguishing neutral from adaptive evolutionary processes since natural replicates of 

phylogenetically distinct populations performing both migratory life-styles or inhabiting similar 

environments are abundant throughout its native distribution. 

 

Major objectives and discussion of results 

The overarching goal of this PhD was to describe population structure and detect local 

adaptation in marine small pelagics, and to shed light on the evolutionary factors more likely to 

explain adaptive signatures between populations. For comparison, insights from a different 

model system, the salmonid O. mykiss, are given in chapter 8, presenting a similar approach for 

detecting signatures of local adaption as applied for herring in chapter 7. The methods applied 

throughout the different studies reflect the ongoing transition from a population genetics to a 

population genomic era within the field of molecular ecology (Ellegren 2008; Nielsen et al. 

2009a; Allendorf et al. 2010; Ouborg et al. 2010). In the following I present the main research 

questions, strategies and results of the work conducted during my PhD. Only main findings are 

discussed here in order to tie major objectives and accomplishments, while more in depth 

discussions of results are given within each of the manuscripts presented in the following 

chapters 2-8. Concrete steps to follow up on findings from this PhD are also given here, 

whereas a wider perspective on future directions for studies on local adaptation in fish and other 

nonmodel species is given in chapter 9. 

 

Understanding demographic history and neutral population structure in the sea 

Knowledge about species’ demographic history and neutral population structure is essential for 

assessing the “potential” for local adaptation to occur within species (Hansen et al. 2002), and 
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for designing studies aiming at detecting locally adapted populations in the wild. For example, 

local adaptation is less likely to occur between populations where high gene-flow completely 

homogenise genetic variation impeding the effects of divergent selection. Contrary, local 

adaptation is more likely to evolve in large Ne populations where selective forces are expected 

to more effectively overrule the confounding effects of genetic drift. Neutral population structure 

is relatively well described in herring (Bekkevold et al. 2005; Jørgensen et al. 2005; Mariani et 

al. 2005) and O. mykiss (e.g. Allendorf and Utter 1979; Utter et al. 1980; McCusker et al. 2000), 

but not in sprat. Chapters 2, 3 and 4 report studies of population structure in sprat. Little 

molecular evidence about population structure within this species existed (e.g. Nævdal 1968), 

until recently where a comprehensive phylogeographic study was presented by Debes et al. 

(2008). Using mtDNA they showed the existence of two major evolutionary clades contradicting 

with previous categorization of sub-species (Whitehead 1985), demonstrating the 

complementary power of molecular approaches to morphometric characters in elucidating 

population structure. The work by Debes et al. (2008) was conducted in parallel with my 

microsatellite based study on population structure presented in chapter 3, and in chapter 2 we 

collaboratively combined mtDNA and microsatellite data to investigate the demographic history 

of sprat. In this thesis the order of chapters 2, 3 and 4, presenting population genetic analyses 

in sprat reflect the evolutionary time scale inferred from the respective results rather than a 

chronological order of publication. 

In chapter 2 we found that relative effects of mutation and genetic drift in explaining 

differentiation between populations varied among four marine transition zones with a tendency 

towards a weaker mutational impact at higher latitudes. This suggests more recent divergence 

of populations within the most northerly distribution in accordance with a general pattern across 

organisms of more recent colonisation after the last glacial maximum (Hewitt 2000). Overall, we 

detected four genetic clusters corresponding with the occurrence of independent population 

units in areas separated by transition zones. These results cannot rule out the existence of finer 

scale population structure within these areas. However, in chapter 4 we addressed this question 

by performing denser regional sampling in the northeast Atlantic.  

In chapter 3 we investigated the population structure of sprat in its northern distribution and our 

results revealed overall patterns of genetic homogeneity within both the North Sea and Baltic 

Sea regions, but a steep genetic division between the two seas, describing a strong 

environmental cline characterised by drastic changes in salinity. Similar overall patterns of 

strong genetic differentiation across this environmental cline has been reported in a range of 
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other marine fishes (Nielsen et al. 2003; Nielsen et al. 2004; Bekkevold et al. 2005; Hemmer-

Hansen et al. 2007b) suggesting the occurrence of a multi-species hybrid zone. However, a 

comparison of genetic structures among species revealed interesting differences in terms of the 

spatial location showing the steepest genetic divides (chapter 3). Such inter-specific 

comparisons appear promising for identifying key traits determining when and where population 

boundaries may evolve by considering ecological characteristics of different species in relation 

to genetic patterns. 

The results presented in chapter 4 aimed at determining population structure in sprat at its 

northernmost distribution with emphasis on local fjord populations along the Norwegian coast. 

The results revealed a general pattern of limited connectivity between sea-going sprat and a 

more genetically homogeneous group represented by all sampled fjord populations. These 

findings are in line with an observed discordance between sprat abundance in fjords and the 

North Sea region (see discussion in chapter 4) suggesting the existence of at least two different 

groups acting as independent demes under an ecological paradigm (sensu Waples and 

Gaggiotti 2006). 

Altogether, we found highly significant neutral population structure throughout the distribution of 

sprat at a species (chapter 2) and regional (chapters 3 and 4) scales, that may reflect locally 

adapted populations. The extent and nature of such adaptations should be targeted in future 

efforts which could furthermore benefit by including comparisons with other species for 

increasing knowledge on key traits affected by natural selection in the sea. 

 

Applying SNPs in nonmodel organisms; opportunities and challenges 

The field of molecular ecology in nonmodel organisms, including most fish, has mainly relied on 

population genetics approaches often applying 10-20 highly diverse microsatellite markers 

(Luikart et al. 2003). It was therefore necessary to thoroughly consider analytical issues before 

taking the next step towards population genomics applying more, but less diverse, markers like 

SNPs. The often bi-allelic nature of these types of markers reflects substantial differences in 

their mutational pattern and levels of variation compared to e.g. microsatellite markers. 

Secondly, new population genomic data sets often consist of marker numbers in the hundreds 

or thousands, thus limitations of classical softwares for conducting statistical tests may 

challenge analyses of genomic data sets. Even though statistical improvements are expected to 
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quickly follow the new demands, it seemed timely to evaluate the proposed wonders (Box 2) 

and potential drawbacks for applying large scale SNP data for studies on nonmodel species in 

general. 

In chapter 5 we therefore reviewed the most relevant population genetic softwares for suitability 

to handle large scale SNP data sets. Compared to other recent reviews about SNPs dealing 

with either the general applicability in ecology and evolution (e.g. Morin et al. 2004) or more 

technical aspects (e.g. Garvin et al. 2010), our review took an analytical perspective addressing 

a range of challenges relating to data analyses. 

From this review we concluded that a solid tool box of statistical tools for analysing large SNP 

data sets already exists, with many more being developed at a pace implying that the availability 

of statistical tools is not likely to become a limited factor in current population genomic studies of 

nonmodel organisms. However, alongside the continued development of sequencing and 

genotyping techniques, dealing with analytical challenges relating to genomic data sets are 

expected to remain an everyday job for a time to come. That being said, the importance of 

conducting new empirical studies applying genomic tools currently available are urgently 

needed for identification of the accompanying challenges. A continuous usage is thus crucial for 

securing timely solutions addressing such challenges while preparing molecular ecologists for 

even larger data sets in the future. 

 

A new population genomic resource for Atlantic herring 

In order to distinguish gene regions conforming to neutral or non-neutral processes of evolution, 

a large marker panel is warranted for obtaining high genomic coverage to detect signatures of 

selection. Using expressed DNA regions for marker development, one significantly increases 

the chance of finding signatures of selection at functional genetic variation affecting fitness of 

individual phenotypes. In order to accomplish this we used NGS technology to sequence the 

transcriptome of eight herring individuals sampled throughout the distribution to detect and 

develop working SNP assays (chapter 6). 

Although this strategy has been demonstrated in other organisms (Barbazuk et al. 2007; Hyten 

et al. 2010) it is not without challenges when applied to a new species with little or no existing 

genomic resources like herring. The lack of a reference genome implies that a de novo 
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assembly of single sequence reads into longer consensus contig groups was prepared to act as 

sequence backbones for downstream SNP discovery. This led to the choice of using 454 GS 

FLX sequencing (Roche) due to the advantage from the longer read lengths provided by this 

platform significantly improving assembly (Metzker 2010). Recalling that one of our objectives in 

the FishPopTrace project was to develop informative SNPs for both discriminating among 

populations and detecting local adaptation (Box 1), we applied a transcriptome based approach 

thereby focusing on SNPs in gene regions, which are more likely to be affected by selection 

(chapter 6). However, this approach often comes with the cost of an increased false positive 

rate of in silico detected SNPs due to for example the inclusion of undetected intron-exon 

boundaries within flanking regions in some fraction of SNPs (Lepoittevin et al. 2010). 

Alternatively, sequencing genomic DNA significantly reduces this risk (see e.g. Hyten et al. 

2010), but here the majority of SNPs is expected to reside within anonymous and non-

transcribed regions most likely representing neutral genetic variation. This may, however, be 

preferable for developing SNP panels designed for estimation of neutral demographic 

parameters. 

In chapter 6 we used a NGS approach to successfully identify hundreds of SNPs for use in 

downstream genomic analyses of herring. However, similar future efforts will have to consider a 

range of choices relating to for example; i) type(s) of sequencing platform used, ii) sequence 

cDNA or genomic DNA libraries, and iii) effort put into the validation pipeline, all of which 

depend on the concrete research questions being asked and available resources. Despite 

inherent pros and cons of different NGS approaches, future studies will inevitably benefit from 

the continued technological improvements offering both higher numbers and increased lengths 

of reads improving the quality of de novo assemblies (Ekblom and Galindo 2011). 

 

Genomic signatures of local adaptation 

Herring 

It is now well known that most classical marine fish to some degree exhibit biologically 

significant population structure as inferred from neutral genetic markers (Hauser and Carvalho 

2008). Temporal stability of such patterns may be upheld by either physical barriers hindering 

gene-flow between demes, increased fitness of locally adapted populations minimising the 

reproductive success of immigrants (further reducing gene-flow), or a combination of both. 
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However, the relative effect of these neutral and selective scenarios has hitherto been difficult to 

assess in classical marine fish due to lack of genomic coverage (but see Larsen et al. 2007; 

Bradbury et al. 2010). 

In chapter 7 I used our new genomic resource for herring (chapter 6) to take the next step and 

distinguish spatial patterns of neutral and selected variation among gene associated markers. 

To my knowledge, this represents the hitherto most comprehensive genome scan in a 

nonmodel classical marine fish, disregarding a recent study by Bradbury et al. (2010) on Atlantic 

cod which can be argued to represent a “semi-model” organism after the recent publication of its 

genome sequence (Star et al. 2011). Furthermore, coupled with strong signatures of 

environmental effects (especially characterised by low salinity) driving local adaptation in some 

populations, we identified a hitherto unprecedented number of candidate genes in this species. 

Known gene functions in some non-synonymous candidate SNPs included haemoglobin and 

heat shock proteins and such information reinforce the evidence for adaptive functions of these 

genes (chapter 7). 

Genomic resources for Atlantic herring and related species will inevitably increase in the future, 

and these will facilitate mapping and annotation of most candidate genes allowing a fuller 

understanding of the genetic architecture underlying adaptively important traits. Such 

approaches have for example already identified few multi-gene regions of assumingly important 

adaptive roles in other marine fishes (Bradbury et al. 2010; Hohenlohe et al. 2010). 

We found significant and spatially replicated correlations for a range of candidate genes in 

relation to temperature and salinity (chapter 7). In order to draw a more direct link between the 

environment and genes affecting overall fitness, our results can be seen as hypothesis 

generating for testing the effects of temperature and salinity on divergently adapted populations 

kept under controlled conditions. Such common garden experiments may be challenging due to 

the difficulty of rearing many marine fish in captivity. However, experiments performed on wild 

caught individuals have proven rewarding in a number of marine species (Nissling and Westin 

1997; Larsen et al. 2007) including Pacific herring (Clupea pallasi) (Griffin et al. 1998) and sprat 

(Petereit et al. 2008). Future efforts combining inference from candidate genes with 

investigations of fitness effects in controlled environmental settings are indeed appealing for 

coupling genetic signatures with phenotypic responses. 
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Herring constitute a potentially interesting model for studying a metapopulation (sensu Hanski 

1998) scenario in the Baltic – North Sea transition zone and western Baltic Sea aiming at 

identifying potential source-sink population dynamics over time. For example, Bekkevold et al. 

(2007) demonstrated different modes of origin in two small regional herring contingents 

exhibiting shifted spawning times compared to larger sympatric components. This suggest a 

complex pattern of multiple minor herring components acting more or less independently from 

larger assumed source populations, at least on an ecological time scale (Waples and Gaggiotti 

2006). Future genomic approaches could take advantage of increased power for distinguishing 

local components of often weakly differentiated herring groups by including genetic markers 

under temporally stable divergent selection (Nielsen et al. unpublished manuscript). 

Lastly, improved resolution of herring population structure over time and space from both 

neutral and adaptive markers may serve as an important component in a multidisciplinary 

approach combining genetic structure with demographic data on abundance and distribution in 

order to elucidate a potential meta-population stabilising effect of population diversity (see 

Schindler et al. 2010 for a similar scenario in a salmonid system). 

Oncorhynchus mykiss 

In chapter 8, I applied a similar genome scan approach to investigate large-scale patterns of 

natural selection and identify candidate genes in O. mykiss. While the detection of outliers for 

divergent selection in classical marine fish is facilitated by a weak background of neutral 

differentiation (Nielsen et al. 2009a), salmonids are generally characterised by higher levels of 

neutral structure caused by smaller Ne and lower levels of gene-flow (DeWoody and Avise 

2000). These differences between marine and salmonid fishes may be translated into 

expectations of increased type I errors (i.e. more false positive outliers) in marine fish whereas 

an opposite pattern of high type II errors (i.e. more false negatives) is likely to prevail in 

salmonid genome scans. In both cases, this warrants great care in the interpretation of the 

biological significance underlying statistically significant outliers from genome scans (Fraser et 

al. 2011). Nevertheless, we found several interesting signatures of evolutionary important genes 

and traits in O. mykiss (chapter 8). 

By combining inference from genome scans with landscape models we found strong evidence 

for divergent selection at varying spatial scales including different habitats and phylogeographic 

lineages. Together with a recent study by Narum et al. (2010), our landscape analyses 

contribute to recent evidence for temperature driven selection between habitats in O. mykiss, 

28



which may be related to temperature-induced differences in pathogenic communities (Tonteri et 

al. 2010) and/or accelerated growth rates in populations adapted to cold temperatures (Miller et 

al. 2011). 

We identified candidate genes for being under divergent selection between populations 

exhibiting resident or anadromous life-styles in O. mykiss, which is in accordance with two 

recent studies specifically focusing on selective signatures relating to migratory behaviour 

(Martinez et al. 2011; Narum et al. 2011). However, pure genome scan derived findings are only 

weak evidence, and further investigations should for example focus on more direct links 

between physiological processes related to smoltification (and anadromy) and potential 

candidate genes. Such investigations could benefit from a combined approach also considering 

inference from the transcriptome and proteome levels (see e.g. Giger et al. 2006; chapter 9). 

Furthermore, merging evidence from independent genome scans, single gene neutrality tests, 

and earlier findings suggested balancing selection at a class II Major Histocompatibility Complex 

(MHC) gene and divergent selection at multiple interleukin genes. To gain further insight about 

the selective processes maintaining high levels of functional variation at MHC genes, a more 

direct coupling between genetic variants and for example parasite and pathogenic load should 

be made, as for example demonstrated by McCairns et al. (2011) in stickleback. It will also be 

interesting to further assess the role of interleukin gene responses in wild populations adapted 

to different pathogenic habitats in order to shed more light on the potential adaptive role played 

by these genes in wild O. mykiss populations. This could for example be addressed with a 

common garden set up monitoring population specific gene expression at interleukin genes, 

which are already being used as indicators of innate immune responses towards various 

pathogens in O. mykiss (Klaper et al. 2010; MacKenzie et al. 2010). The MHC represents a 

well-studied gene-family in fishes and other vertebrates with a long line of evidence for 

adaptation to local environments (Bernatchez and Landry 2003; Sommer 2005). Contrary, the 

adaptive role of interleukin genes, which are involved in early responses of the innate immune 

system (Secombes et al. 2011) have not received similar levels of attention (but see e.g. Narum 

et al. 2011). Our results contribute to the accumulating evidence that immune-relevant loci in 

general play an important adaptive role in wild salmonid populations (e.g. Tonteri et al. 2010). 
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Closing remark 

In conclusion, by combining inferences from a range of different methodological approaches we 

found convincing signatures of natural selection related to local environments among wild 

populations of herring and O. mykiss. However, much remains to be done in order to fully 

comprehend the selective processes shaping adaptive divergence in space and time, but the 

results presented in chapters 7 and 8 contribute to this understanding and will help guide future 

efforts within the field.  
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Background and objectives of manuscripts 

In the following I give a brief description of the projects and motives leading to the different 

studies presented in the following chapters. It is not the intention here to present and discuss 

results, which have been done elsewhere. Rather, I present the objectives for each study in an 

evolutionary framework supposed to link the relevance of each study to an overarching goal of 

understanding the underlying mechanisms of population structure and local adaptation by 

learning from marine and salmonid fishes. Supplementary files can be found on web sites of the 

respective journals. 

Chapter 2 Imprints from genetic drift and mutation imply relative divergence times across marine 

transition zones in a Pan European small pelagic fish (Sprattus sprattus) 

This study is the result of a collaborative effort in a small group of population geneticists 

representing a working group on genetic biodiversity (GBIRM4) of marine organisms in 

European waters under the EU network of excellence MARBEF5. The major objective of this 

study was to uncover the demographic history of sprat by using known transition zone areas as 

reference points for past population splitting events. A distribution wide data set of sprat was 

produced to compare genetic imprints at two different marker systems (mtDNA and 

microsatellites). The wide geographic sampling of sprat enabled interesting comparisons from 

signatures of population differentiation across several known multi-species transition zones 

reflecting diverse historical events. This study is published in Heredity and included here with 

permission from the publisher Nature Publishing Group. 

Chapter 3 Genetic population structure of European sprat (Sprattus sprattus L.): differentiation 

across a steep environmental gradient in a small pelagic fish 

This study represents a major part of the work carried out in connection with my master thesis 

(Limborg 2007) although substantial re-writing of the manuscript and the entire publication 

process were undertaken during my PhD. As such, the article does not represent work for my 

PhD thesis but is nonetheless included here because of its relevance for linking the remaining 

work carried out during my PhD and presented in this thesis. The results add insight to the clear 

genetic structuring observed for multiple marine fishes across the strong environmental cline 

connecting the North Sea and Baltic Sea, demonstrating biologically significant intra-specific 

4 http://www.marbef.org/projects/gbirm/index.php 
5 http://www.marbef.org 
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biodiversity despite the high Ne and high gene-flow in small pelagic species. This study is 

published in Marine Ecology-Progress Series and included here with permission from the 

publisher Inter-Research. 

Chapter 4 Microsatellite DNA reveals population genetic differentiation among sprat (Sprattus 

sprattus) sampled throughout the Northeast Atlantic, including Norwegian fjords 

Local Norwegian fjord populations of sprat have shown large fluctuations in abundance with 

extended periods of low levels, despite seemingly large and stable oceanic populations in the 

North Sea region. This fact led to the current study initiated by scientists from the Institute of 

Marine Research (IMR) in Norway to which I contributed with sampling, microsatellite data, 

statistical analysis and interpretation of results. The article investigates population genetic 

structure in sprat from the northernmost parts of its distribution including samples from several 

isolated Norwegian fjords and the adjacent North Sea. This study is published in ICES Journal 

of Marine Science and included here with permission from the publisher Oxford Journals. 

Chapter 5 Application of SNPs for population genetics of nonmodel organisms: new 

opportunities and challenges 

SNPs gain increasing popularity for studies in molecular ecology and for detecting signatures of 

natural selection in particular. However, their usage in nonmodel species comes with an initial 

set of challenges like the high number of markers often applied, ascertainment bias, and 

inclusion of non-neutral loci which need careful consideration before using them in population 

genetic studies. This review considers these issues and represents the result of a collaborative 

effort of the FishPopTrace consortium, where we thoroughly discussed such issues at a work-

shop. This review is published in Molecular Ecology Resources and included here with 

permission from the publisher John Wiley and Sons. 

Chapter 6 SNP discovery using next generation transcriptomic sequencing in Atlantic Herring 

(Clupea harengus) 

This study aimed at developing a large panel of SNP assays for herring as no major genomic 

resources were available for this species at the launch of the FishPopTrace project. We 

sampled herring from major parts of its Northeast Atlantic distribution for high throughput 

sequencing in order to discover new SNPs for downstream studies. This work included a range 

of challenges from study design over analyses of sequence data to final validation of SNP 
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assays via high throughput genotyping. Therefore, many people were included in order to obtain 

adequate expertise for the different steps in the study. The final accomplishment represents one 

of the large assets of the FishPopTrace project bringing together a diverse set of experts 

synergistically generating unique output unattainable by any single research group within the 

project. This study was conducted jointly and in parallel with the now published SNP resource 

for European hake (Merluccius merluccius) by Milano et al. (2011), explaining the similarity in 

approach between these two studies. This study is published in PLoS ONE. 

Chapter 7 Environmental selection on transcriptome-derived SNPs in a high gene flow marine 

fish, the Atlantic herring (Clupea harengus) 

One of the main objectives of FishPopTrace was to increase our understanding about the 

underlying evolutionary processes shaping neutral as well as adaptive genetic variation within 

species. The occurrence of locally adapted herring populations has been suggested based on 

previous studies describing highly significant patterns of population structure in this species. 

This will also be in accordance with its successful colonisation of extreme marine ecosystems 

like the northernmost Baltic Sea characterised by near freshwater, unlike most other marine 

fishes (EEA 2002). In this study we used the SNP resource developed in chapter 6 to shed light 

on the adaptive side of population structure in herring. We aimed at distinguishing distinct 

patterns of neutral from selected variation in population structuring. Further, we used a 

landscape genomics approach to identify both candidate genes for being under selection and 

key environmental variables exerting local selective pressures. This study is published in 

Molecular Ecology and included here with permission from the publisher John Wiley and Sons. 

Please note that an Erratum is now accompanying the online version of this publication. 

Chapter 8 Signatures of natural selection among lineages and habitats in Oncorhynchus mykiss 

As part of the DTU PhD programme, students are encouraged to spend part of their time with 

an external research group within the field in order to experience different research 

environments while gaining experiences complimenting the expertise of their own institution. 

When deciding where to go I prioritised groups with a longer history of, and experience with, the 

application of SNPs for studying evolution in fishes. To fulfil these requirements I went to study 

at the School of Aquatic and Fishery Sciences at the University of Washington, Seattle, USA 

June-October 2010, where I worked with Fred Utter and the group of Jim and Lisa Seeb6. Here, 

6 http://fish.washington.edu/research/ipseg 
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I continued my research on local adaptation in fishes adding a salmonid twist. I used a newly 

developed SNP panel for investigating signatures of selection in O. mykiss representing a well 

described and complex salmonid species system with distinct evolutionary lineages and life-

history strategies. Genetic evidence for natural selection at the genome level is still scarce for 

O. mykiss in the wild, and my study represents one of the first investigations of large scale 

selective signatures applying hundreds of markers in a genome scan approach. This study is 

published in Ecology and Evolution.  
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ORIGINAL ARTICLE

Imprints from genetic drift and mutation imply relative
divergence times across marine transition zones in a
pan-European small pelagic fish (Sprattus sprattus)

MT Limborg1, R Hanel2, PV Debes3, AK Ring4, C André4, CS Tsigenopoulos5 and D Bekkevold1

Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left
complex genetic imprints on populations of marine species. This study investigated population structure and demographic
history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers
throughout the species’ distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping
genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a
complex population structure across the species0 distribution (overall yST¼0.038, Po0.01). Across transition zones markers
indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact
of mutation in the species’ southern distribution in the Mediterranean region. These results were interpreted to reflect more
recent divergence times between northern populations in accordance with previous findings. This study demonstrates the
usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population
genetic studies in species with weak genetic structure, as is the case in many marine species.
Heredity (2012) 109, 96–107; doi:10.1038/hdy.2012.18; published online 2 May 2012

Keywords: transition zones; genetic drift; mutation; phylogeography; marine fish; Sprattus sprattus

INTRODUCTION

Disentangling the evolutionary processes shaping population struc-
ture is of fundamental importance for understanding contemporary
distributions of species and populations. Species distributions are in
part determined by the environmental regimes within which a full life
cycle can be sustained. However, environmental conditions change
over time, potentially causing distributional shifts (for example, Perry
et al., 2005) and may lead to isolation of demes from a previously
panmictic population. Despite the usual lack of physical barriers in
the sea it is now generally accepted that many marine organisms show
population structures deviating from a pattern of panmixia and often
distance may be the only factor restricting gene flow. Indeed, many
species seem to display population structures reflecting barriers to
gene flow over relatively small geographic scales (for example,
Ruzzante et al., 1998; Bekkevold et al., 2005). Such genetic disconti-
nuities are often referred to as phylogeographic breaks (Avise, 2000)
and can arise and be maintained from a multitude of processes,
including climatic and glacial cycles separating previously panmictic
populations or connecting populations that diverged in allopatry
(Barton and Hewitt, 1985). In the northern hemisphere, for example,
population structures are highly influenced by the Quaternary
glaciations (Maggs et al., 2008), presumably with the strongest
imprint from the last glacial maximum (LGM) B20 000 bp.

Furthermore, retention of juvenile stages by local oceanographic
barriers has also been suggested to halt gene flow among contiguous
populations (for example, Ruzzante et al., 1998). Lastly, genetic
barriers may also be maintained by natural selection acting against
migrants between locally adapted populations (that is, a ‘tension
zone0 sensu Barton and Hewitt, 1985).

Throughout European waters, at least six major phylogeographic
breaks or transition zones have been described for a variety of
different marine taxa. These include first the area of the Aegean
Archipelago and the Dardanelle Strait separating Black Sea from
Mediterranean populations (Magoulas et al., 1996; Nikula and
Vainola, 2003). Second, gene flow barriers separating the Adriatic
from other eastern Mediterranean populations have also been
reported (Stefanni and Thorley, 2003; Peijnenburg et al., 2006).
Third, a genetic transition zone has been described in the Siculo-
Tunisian strait and/or the Strait of Messina separating populations in
western and eastern Mediterranean Basins (for example, Borsa et al.,
1997; Rolland et al., 2007). Genetic transitions between the Atlantic–
Mediterranean and between the Baltic–Atlantic regions are also
pronounced across many taxa, with reports of clear breaks from the
Strait of Gibraltar to the Almeria–Oran front (reviewed in Patarnello
et al., 2007) and in the Skagerrak–western Baltic (reviewed in
Johannesson and Andre, 2006). Lastly, the English Channel has also
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been identified to constitute a transition zone in the polychaete
Pectinaria koreni (Jolly et al., 2005).

Few marine organisms are distributed throughout European
continental waters, limiting the potential for conducting large-scale
intraspecific comparisons of multiple transition zones. Phylogeo-
graphic studies have simultaneously spanned up to three of the above
marine transition zones (e.g., Borsa et al., 1997; Rolland et al., 2007;
Larmuseau et al., 2009), but few have comprised all of them for the
same species (Nikula and Vainola, 2003; Wilson and Veraguth, 2010).

Here, we use the European sprat (Sprattus sprattus L.) as a model
for studying contemporary population structure and distribution in
relation to known transition zones. Sprat is a locally abundant, small
pelagic clupeid fish with a nearly pan-European distribution: ranging
from the Black Sea, along the northern Mediterranean and Iberian
coasts to the Atlantic, North Sea, Norwegian coastal waters and into
the Baltic Sea. Sprat thus occupies highly heterogeneous environ-
ments. A study using a mtDNA marker suggested a complex
phylogeographic history with two major clades: one representing
the clade that presumably colonised northern European waters
following the LGM, and a second in the eastern Mediterranean and
the Black Sea with a pre- or postglacial origin (Debes et al., 2008). A
substructure was also evident within clades, with genetic differences
within the ‘western’ clade between Atlantic–Baltic Sea and western
Mediterranean populations, and within the ‘eastern’ clade between
Adriatic Sea and Black Sea populations (Debes et al., 2008). A recent
microsatellite study further demonstrated population structure across
the Baltic–Atlantic transition zone (Limborg et al., 2009). In the
current study, we analyse the combined data sets for mtDNA and
microsatellite markers from the two above studies and also extend the
previous sampling coverage. The combination of a new extensive
sampling scheme with inference from both genetic markers allows us
to gain insight into the underlying evolutionary mechanisms shaping
population structure across multiple European transition zones. We
then infer relative divergence times across transition zones, defined as
‘old’ (with a significant effect of mutation on genetic differentiation)
vs ‘recent’ (with no significant effect of mutation on genetic
differentiation), by contrasting effects of genetic drift and mutation
for both marker types.

MTERIALS AND METHODS
Samples
Samples covered the species’ distribution from its northern (Northeast Atlantic

Ocean, North and Baltic Seas) to its southern (Mediterranean and Black Seas)

range (Figure 1, Table 1). Sampling density, however, differed between north

and south, reflecting a more continuous distribution of spawning locations in

the north, compared with the south where major populations presumably are

presently restricted to the Gulf of Lion, the northern Adriatic Sea and the Black

Sea Basins (Debes et al., 2008). Additional occurrences in estuarine areas

around the Iberian Peninsula have been reported, but populations are thought

to be in strong decline or even disappeared (Cabral et al., 2001). Findings in

the northern Aegean Sea have been reported (Deval et al., 2002), but our own

sampling efforts in that region have not been successful. Assumed occurrences

in the Strait of Sicily have never been confirmed (O Jarboui, personal

communication). Data from a total of 21 sampling stations representing 19

locations were included in the analysis (Figure 1). Of these, mtDNA variation

was reported for seven locations in Debes et al. (2008). Microsatellite data were

compiled for 17 sampling stations: 11 stations as reported by Limborg et al.

(2009) and six additional stations extending the previous northerly dominated

coverage southwards via the English Channel and the Atlantic into the

Mediterranean and eastwards into the Black Sea (Figure 1). This data set

effectively increased sampling coverage throughout the species distribution

including the Mediterranean region. Samples were, with few exceptions,

collected on spawning sites during the spawning season, which differs among

populations. Temporal replicates were collected from two locations (see

Table 1, Debes et al. (2008) and Limborg et al. (2009) for more details on

sampling).

Populations and geographic transition zones studied
In the following, we refer to all geographic zones with observed genetic

discontinuities as ‘genetic transition zones’, regardless of the underlying

mechanisms. Of the six major cross-species transition zones defined a priori,

the English Channel does not appear to constitute one for sprat, as samples on

either side of the English Channel show spatial as well as temporal genetic

homogeneity (Limborg et al., 2009; Glover et al., 2011). We could not address a

potential transition zone between the Adriatic Sea and the eastern Mediterra-

nean as no sprat could be obtained from the eastern Mediterranean. In the

current study, we are thus obliged to use the Adriatic population for

investigating genetic differentiation between the eastern Mediterranean and

the Black Sea. We investigated genetic differentiation across the remaining four

major transition zones separating the following regions: (i) the Baltic Sea from

the Atlantic region (here, the latter includes the North Sea and English Channel,

Balt–Atl), (ii) the Atlantic region from the Mediterranean Sea (Atl–WMed), (iii)

the western from the eastern Mediterranean Sea (WMed–EMed), and (iv) the

eastern Mediterranean Sea from the Black Sea (EMed–Black; Figure 1).

Molecular analyses
Samples from seven locations were genotyped for both mitochondrial and

nuclear DNA markers, of which both marker types were analysed for the same

individuals in three of the samples (Table 1). Thus, four samples were typed

only for mtDNA and 14 only for microsatellite markers.

In total, 210 individuals from seven locations (Table 1) were sequenced for a

partial fragment of the 50-end of the mitochondrial control region, as described

in Debes et al. (2008).

A total of 1531 individuals, including 556 new to this study, were typed for

nine species-specific microsatellite loci: Spsp47D, Spsp77C, Spsp133, Spsp155,

Spsp170, Spsp202, Spsp219, Spsp256 and Spsp275 (Dailianis et al., 2008). DNA

extraction and PCR amplification were performed as described in Dailianis

et al. (2008). PCR-amplified microsatellite fragments were analysed either on a

BaseStation 51 DNA fragment analyser (MJ Research, Skovlunde, Denmark)

followed by semi-automatically typing of genotypes with the software

CARTOGRAPHER 1.2.6 (MJ Geneworks Inc., Skovlunde, Denmark) (samples

GOT, GDA, BOR05, BOR06, ARK, BEL, KAT, SKA, GER04, GER05, ENC,

CEL, BoB and ADR), or on a Beckman Coulter CEQ 8000 (Beckman-Coulter,

Fullerton, CA, USA) automated sequencer (samples SKA, LIO, BLW and BLE).

For the latter, allele sizes were scored with the software CEQ 8000 Genetic

Analysis System (version 8.0.52; Beckman-Coulter). All individual runs

included a 400-bp ladder (Applied Biosystems, Foster City, CA, USA; Beck-

man-Coulter). To obtain consistency in genotype scoring among runs and

between platforms, we (i) analysed from two to four heterozygote control

individuals spanning the anticipated allelic ranges, (ii) double-typed two

samples (n¼ 40) on both platforms, and (iii) split the SKA sample into two

groups of n¼ 50 and genotyped on different platforms to test for consistency

in allele frequency estimates between platforms (see Supplementary File S1 for

further details on validation of scoring consistency).

Genetic variation
For microsatellites, potential effects of technical or sampling artefacts were

assessed by checking for effects of null alleles and departure from Hardy–

Weinberg Equilibrium (HWE) and gametic phase equilibrium (LD) using

MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004) and GENEPOP 4.0

(Raymond and Rousset, 1995), respectively. In all following analyses including

multiple tests, results were corrected with the sequential Bonferroni method

(Rice, 1989). Overall genetic variation and diversity were estimated by allelic

richness (Ar) for each sample and locus using FSTAT 2.9.3 (Goudet, 1995).

Weir and Cockerham0s inbreeding coefficient y IS (Weir and Cockerham, 1984)

was estimated for each locus and sample using FSTAT 2.9.3. Numbers of alleles

(A), expected and observed heterozygosity (HE and HO, respectively) were

calculated for all loci and samples using Arlequin 3.5 (Excoffier and Lischer,

2010).
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Outlier analysis
Potential effects of natural or hitchhiking selection on microsatellite loci may

obscure inferred patterns of neutral demographic processes (Nielsen et al.,

2006). We tested for any such patterns using BayeScan 1.0, following the

Bayesian method described in Foll and Gaggiotti (2008). To obtain sufficient

convergence of MCMC chains, we ran 10 pilot runs of 5000 iterations and an

additional burn-in of 5� 106 iterations with a thinning interval of 50 and a

final sample size of 50 000. For comparison, we also used the model by

Excoffier et al. (2009b) as implemented in Arlequin 3.5 (Excoffier and Lischer,

2010) by running 10 000 simulations.

Inference of total number of populations
To infer the number of populations in our samples we analysed the

microsatellite data using the Bayesian clustering model implemented in

STRUCTURE 2.3.1 (Pritchard et al., 2000). This model infers population

structure by clustering individual multilocus genotypes into a given number of

populations (K) by minimising LD and overall departure from HWE. We used

the admixture model with correlated allele frequencies among populations. We

initially considered five trials for each value of K from one to ten. To ascertain

adequate convergence of the MCMC model we used a burn-in of 5� 105

iterations, followed by 2� 106 sampled iterations. We considered the mean

probability values of lnP(X|K) given by the programme, as well as the DK

method (Evanno et al., 2005) to infer the most likely number of populations.

For subsequent biological interpretations of K we focused on the smallest value

capturing most of the structure in the data, as suggested in the manual.

Subsequently, we repeated the analysis on subsets of major clusters detected by

the first run, to detect potential finer scale substructure. All analyses were

performed with either no population information, or including population

sample as prior information, according to Hubisz et al. (2009). The latter

model has been shown to outperform the original model for clustering

populations at weak structure (that is, FST values o0.10) and with limited

numbers of microsatellite markers (Hubisz et al., 2009).

Statistical analyses of overall population structure
We used Arlequin 3.5 to estimate pairwise FST from mtDNA haplotype

frequencies (using conventional F-statistics based on haplotype frequencies

only) between all samples, and compared these to the pairwise FST estimates

(that is also based on genetic distances among haplotypes) reported in Debes

et al. (2008).

Owing to a denser coverage for samples analysed with microsatellites, the

description of population structure was mainly based on these markers. We

thus estimated an overall and pairwise genetic differentiation using Weir and

Cockerham0s (1984) estimator (here, referred to as yST) and 95% confidence

intervals (CI) using the approach described in Neff and Fraser (2010).

Statistical significance of pairwise yST estimates was tested using permutation

tests implemented in FSTAT 2.9.3. RSTCALC 2.2 (Goodman, 1997) was used

to estimate pairwise RST between all samples and significance was tested by

1000 permutations, whereas 95% CI were obtained by bootstrapping 1000

times over loci. A principal component analysis (PCA), based on allele

frequencies, for all 17 population samples was performed using PCAGEN

1.3.1 (available at: www2.unil.ch/popgen/softwares/pcagen.htm). Significance

of each principal component (PC) was tested by 10 000 randomisations.

To test if the geographic pattern of genetic differentiation is caused by

isolation by distance we ran Mantel tests for pairwise matrices between

geographic distance and genetic distance in Arlequin 3.5 with 100 000

permutations. This was performed for both marker types and for both
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Figure 1 Samples analysed for microsatellites (black squares with three letter sample ID) and mtDNA (white circles with two-letter sample ID) markers.

Sample ID corresponds to Table 1. Underlined samples represent locations with temporally repeated sampling. All samples analysed with the mtDNA marker

(white circles) are the same as in Debes et al. (2008). Grey-shaded areas with labels in italics show transition zones separating the Baltic and Atlantic

(including the North Sea, abbreviated Balt–Atl), Atlantic and Mediterranean (Atl-WMed), western and eastern Mediterranean (WMed-EMed) and the
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measures of genetic differentiation separately (linearised equivalents of

FST and FST for mtDNA, FST and RST for microsatellites, respectively).

Geographic distance was estimated by direct shipping distance between

coordinates of sampling locations calculated with the programme Netpas

Distance (Netpas).

Demographic effects on population structure
Spatial population expansions are expected to result in higher population-

specific FST values in marginal populations that have potentially undergone

more founder events and received fewer immigrants than populations closer to

an ancestral source population (Foll and Gaggiotti, 2006; Gaggiotti and Foll,

2010). To statistically test a potential effect of range expansion on population-

specific differentiation, we used GESTE v2.0 (Foll and Gaggiotti, 2006) to

estimate population-specific FST values following the approach by Balding and

Nichols (1995). Depending on the underlying demographic history of the

species, this FST estimator describes the differentiation of each population from

the overall meta-population (under a migration-drift model), or from a

common ancestral source population (under a fission model) (Foll and

Gaggiotti, 2006).

Genetic differentiation across transition zones
Subsequent analyses focused on genetic patterns across four transition zones

(Figure 1), synthesising results from the two marker types. For mtDNA data,

we pooled samples fulfilling the criteria of not crossing a transition zone as

well as not showing statistically significant differentiation for either the FST

or FST pairwise estimates within the regional groups (Table 1, also see

Supplementary File S2 for pairwise FST and FST). Applying this approach,

groups of samples thus represented the following five regions: the Baltic Sea

(abbreviated BALT in Table 1), the Northeast Atlantic (incl. North Sea; ATLA),

the western Mediterranean (WMED), the Adriatic Sea (ADRI) and the Black

Sea (incl. Strait of Bosporus; BLAS). Similarly, for microsatellite data we

pooled subsets of samples showing no statistically significant pairwise yST, to

represent the same five regions (Table 1). Samples from within the Baltic–

Atlantic transition zone (BEL, KAT and SKA; Figure 1) and a single sample

from the Celtic Sea (CEL) that showed weak, but significant, differentiation

from neighbouring samples (Supplementary File S3) were omitted from this

analysis to avoid potential confounding effects from pooling non-panmictic

populations.

The programme POWSIM 4.0 (Ryman and Palm, 2006) was used to

evaluate statistical power of both types of markers for detecting pairwise

genetic differentiation at FST levels ranging from 0.00 to 0.10. The programme

simulates the divergence of two to several subpopulations from a single

ancestral population through genetic drift to a given overall FST value defined

by controlling effective population size (Ne) and number of generations (t). To

best reflect the assumingly large Ne of sprat, we let Ne¼ 10 000 and varied t

from 0 to 2078 for simulating different levels of differentiation. After the

simulation, each subpopulation was sampled at n¼ 80 and divergence from

genetic homogeneity was tested with Fisher0s exact test. This procedure was

repeated 1000 times and the proportion of significant outcomes was used to

estimate statistical power for detecting pairwise genetic differentiation.

Founder events in populations of more recently colonised areas may have left

a stronger imprint from genetic drift, resulting in higher levels of pairwise FST

between neighbouring populations. To infer our power for detecting such

events we tested four scenarios corresponding to observed genetic differentia-

tion between populations on both sides of the four studied transition zones.

Specifically, for the Baltic–Atlantic transition zone, we pooled samples from the

BALT and ATLA groups (Table 1) to represent allele frequencies for the

ancestral population at the onset of the simulation process. Similarly, we

pooled samples for the groups flanking each of the remaining transition zones

(Table 1, Figure 1). For the mtDNA analysis, we only pooled the two

geographically closest samples on each side of a transition zone, as including

more samples led to violation of the maximal number of alleles (or haplotypes)

for a given marker (50) allowed by POWSIM, owing to a large number of

private haplotypes in all samples.

Pairwise FST estimates based on mtDNA haplotype frequencies are expected

to be mainly shaped through genetic drift, at least on time scales where

mutations can be largely ignored. In contrast, the FST estimator takes the

number of mutational differences among haplotypes into account and is able

to reveal higher resolution on divergence time between populations having

accumulated specific mutations over time (see Excoffier et al., 1992 for more

details). Comparisons of FST and FST estimates for mtDNA sequences across

multiple transition zones is therefore expected to reveal relative imprints from

genetic drift and mutation in explaining the level of genetic differentiation.

Thus, we repeated analyses in Arlequin 3.5 using 20 000 permutations to

obtain pairwise estimates of FST (using conventional F-statistics) and FST

(using a distance matrix based on haplotype nucleotide differences corrected

with the base substitution model of Tamura and Nei (1993)) between the

regions represented by the five major groups described above.

The relative effects of genetic drift and mutations in explaining genetic

differentiation across transition zones were also examined for microsatellite

data by applying the RST permutation test in SPAGeDi 1.2 (Hardy and

Vekemans, 2002). The test compares observed RST values based on allele size

differences assuming a stepwise mutation model (SMM) with a corresponding

frequency distribution (rRST) obtained by randomly permuting over allelic

states following an infinite allele model of mutation. A significantly larger

observed RST implies a significant role of mutation for explaining population

structure and suggests that divergence occurred over very long time scales

(Pons and Petit, 1996; Hardy et al., 2003). Significance was tested with 20 000

permutations using a one-sided test (RST4rRST) (Slatkin, 1995). Similar tests

were applied for global RST estimates for each locus and all loci together. For

locus Spsp275, a total of four individuals from the ENC and BoB samples had

considerably larger alleles (50–200 bp longer) than the maximum sizes

observed in all other samples. These (rare) alleles may be the results of one

or more insertion events, and including them would violate the assumption of

a SMM. Information for these four individuals was therefore ignored in RST

permutation tests.

RESULTS

One microsatellite locus (Spsp154) failed to amplify consistent
fragment lengths between the two genotyping platforms in the 40
calibration individuals and was discarded from further analyses. For
the remaining eight loci, scoring of genotypes was consistent between
the genotyping platforms (see Supplementary File S1 for more
information on calibration results).

Overall genetic variation at mtDNA
For mtDNA, a total of 128 different haplotypes with 82 segregating
sites were observed in the seven samples (Debes et al., 2008).
Haplotype diversity (h) for each sample is reported in Table 1.

Overall genetic variation at microsatellite loci
A total of 64 individuals with more than two missing genotypes were
excluded, leaving 1467 individuals for which 99.97% of all loci were
scored successfully (all summary statistics for each locus and sample
are reported in Supplementary File S4). MICRO-CHECKER sug-
gested the potential presence of null alleles for 35 (out of 136) sample
locus pairs, and stutter-prone scoring at eight sample locus pairs.
However, no general trends of a specific locus or sample were evident
and subsequent analyses including or excluding information from
affected loci did not change results. After correcting for multiple tests,
significant deviations from HWE remained for 10 of 136 (7%) tests
distributed among four loci (Spsp275: 3 significant tests, Spsp219: 1,
Spsp133: 4 and Spsp170: 2) (Supplementary File S4). One out of 28
locus pairs showed significant LD (Spsp219, Spsp133). However, this
was only observed in four of the 17 population samples. A similar test
for LD by Limborg et al. (2009) on a subset of these samples did not
show overall LD for any of these loci, and LD is thus not expected to
incur a general bias in our analyses. Nuclear genetic diversity assessed
by Ar is reported for each sample in Table 1.
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Outlier analysis
The BayeScan test indicated three outlier loci (Spsp170, Spsp202 &
Spsp275) potentially subject to divergent selection, whereas the test
implemented in Arlequin supported this only for the latter two loci,
which also showed the highest level of support for divergent selection
(Supplementary File S5). Thus, to test for potential effects of the two
outlier loci found by both methods we conducted all subsequent
analyses using (i) all loci, (ii) excluding each of the two outlier loci
and (iii) excluding both outlier loci.

Estimation of the total number of populations
The global Bayesian clustering analysis revealed the highest likelihood
for models with K¼ 3 and 4, whereas the DK method suggested K¼ 3
(Figure 2a) irrespective of whether prior sample information was used
or not. Visual inspection revealed that setting K43, did not add
further meaningful inference (not shown), and we only show results
for K¼ 3, as this presumably captures the major biological structure
across samples (that is, population clusters representing, respectively,
the Baltic Sea, the Atlantic region (including the North Sea), and the
Mediterranean region (including the Black Sea)) (Figure 2b). Sub-
sequent analyses comprising either samples from within the Baltic
Sea, the Atlantic region or both, with and without prior sample

information did not reveal further substructuring (data not shown).
When including prior sample information, an analysis comprising
Mediterranean and Black Sea samples revealed substructuring (K¼ 3)
with the Gulf of Lion (LIO), the Adriatic (ADR) and the Black Sea
(BLW and BLE) samples presumably representing genetically distinct
populations (Figure 2c). The tuning parameter, r, for the latter model
ranged from 0.06 to 0.12 among the five replicate runs. Values of r
below 1.00 indicate that ancestry proportions differ among sampling
locations and that the inclusion of prior sample information
significantly increased the power for detecting weak population
structure (Hubisz et al., 2009). Altogether, five clusters could hence
be detected using Bayesian clustering (Figure 2).

Population structure and demography
Estimators of pairwise mtDNA differentiation (FST and FST) revealed
significant population differentiation in most comparisons (see below
and Supplementary File S2). Microsatellites also revealed highly
significant population structure, with an overall yST of 0.038 (95%
CI¼ 0.015 to 0.064, Po0.001) and pairwise yST estimates ranging
between 0.001 and 0.100. Genetic differentiation between temporal
samples from both the Bornholm Basin (BOR) and the German Bight
(GER) was low and non-significant (ySTo0.005), suggesting temporal
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Figure 2 (a) Probability of each tested potential number of populations (K) inferred from the mean probability value ln [P (X|K)] (white squares) and the DK

method (black squares) (see text for more details). (b) Individual population membership plotted for K¼3. (c) Individual population membership when

repeating the cluster analysis for the Mediterranean samples (LIO, ADR, BLW and BLE) for K¼3 and including prior information of sample location.
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stability of the observed spatial structure in these regions. The level of
genetic structure varied among different geographical regions with
mostly non-significant estimates of pairwise yST within major oceanic
basins in contrast to comparisons among basins (Supplementary File
S3). In the PCA, the first two PCs explained a significant proportion of
the total genetic variance (PC1 and PC2, Po0.001; PC3 to PC10,
P¼ 1.000). PC1 explained 49.1% of the total genetic variance and
grouped samples corresponding to the two previously described major
phylogenetic clades separated at the western and eastern Mediterranean
Sea transition zone, with further separation of LIO from all other
samples (Figure 3). Samples across the Baltic–Atlantic transition zone
showed a clear East–West trend along PC2 (21.8%). This overall
pattern remained significant although the level of differentiation was
reduced when excluding the two outlier loci (not shown).

Isolation by distance was highly significant for both FST (R2¼ 0.82)
and RST (R2¼ 0.89) for all microsatellite loci (Table 2). When only
excluding one of the two outlier loci, results remained significant but
with levels of explained variance reduced by 12–19% (Table 2). When
simultaneously excluding both outlier loci the explained variation was
reduced more drastically by 63–66% for both FST and RST, and only
the FST-based test remained significant (R2¼ 0.30; Table 2). For
mtDNA, a significant but weaker pattern of isolation by distance was
revealed only for the FST values (R2¼ 0.31).

Population-specific FST estimates showed an increasing trend from
the west (Atlantic Ocean) eastward into both the Baltic Sea in the
north and into the Adriatic and Black Seas in the south (Figure 4).
This overall pattern remained when excluding one or both outlier
loci, although FST values reduced to 0.003–0.027 when excluding all
outlier loci.

Genetic differentiation across transition zones
Overall, the power to detect genetic differentiation owing to allelic
drift did not vary significantly across the four transition zones
(Supplementary File S6). The mtDNA marker data lacked sufficient
statistical power for detecting values of FSTo0.02 but could reliably
detect levels of differentiation above this level (FST¼ 0.02;
power¼ 0.872–0.952). The eight microsatellites exhibited adequate
power for detecting true FST40.005 (0.998–1.00). Type-one errors
(FST¼ 0) did not seem to seriously violate an assumed 5% a-level for
either type of marker used (Supplementary File S6).

For the mtDNA data, pairwise FST and ^ST estimates crossing one
or more of the three southern transition zones were significant for
both estimators, but with considerably higher values of the FST

estimator (Figure 5). One striking disparity, however, was observed
across the northern Baltic–Atlantic transition zone where the Baltic
group (BALT) showed statistically significant differentiation from the
Atlantic group (ATLA) for the drift-based FST estimator but not for
the FST estimator.

The mtDNA results were supported by the microsatellite-based
analyses including all loci where the mutation-based RST estimator
was not significantly higher than the purely drift-based rRST

distribution between the Baltic (BALT) and Atlantic (ATLA) groups,
suggesting a negligible mutational imprint across this transition zone
(Figure 6a). Also for microsatellite markers, mutations appeared to
have had a relatively larger role in genetic differentiation across
southern transition zones, evidenced by a significant pattern of
RST4rRST in seven comparisons (Figure 6a). A non-significant effect
was observed between the Adriatic (ADRI) and Black Sea (BLAS)
groups (Figure 6a). When excluding either of the two outlier loci an
overall pattern of a strong mutational effect across southern transition
zones remained as three and five tests remained significant when
excluding Spsp202 and Spsp275, respectively (Figure 6b, c). Con-
versely, no tests were significant when excluding both outlier loci
simultaneously (Figure 6d).

DISCUSSION

By combining inference from mitochondrial and nuclear DNA
markers we gained new insights into the potential effects of historical
demography in explaining distribution-wide population structure of
sprat covering four major transition zones. Both marker types showed
clear regional patterns of population structure and especially micro-
satellites indicated a pattern of isolation by distance. The mtDNA
marker successfully inferred old from more recent divergence times

GOT
GDA

ARK

BEL

KAT

SKA

ENC
CELBoB

LIOADR

BLWBLE

Figure 3 Genetic relationships of samples as revealed from the two first PCs from the microsatellite-based PCA. Sample IDs correspond to Figure 1.

Table 2 Results from isolation by distance tests for both marker data

shown as R2 values

Microsatellites FST RST

All loci 0.82 0.89

Excluding Spsp202 0.72 0.72

Excluding Spsp275 0.66 0.85

Excluding Spsp202&Spsp275 0.30 0.30

FST FST

mtDNA 0.01 0.31

Significant correlations (a¼0.05) are shown in bold. For the microsatellite data results are also
shown for tests excluding each of the two outlier loci individually or together.
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across the different transition zones. The advantage of combining
multiple marker types has previously been demonstrated in marine
fishes (for example, Gonzalez and Zardoya, 2007; Wilson and
Veraguth, 2010; Andre et al., 2011). However, to our knowledge the
present study is the first to directly compare relative imprints from
genetic drift and mutation between markers and throughout the
geographic distribution of a small pelagic marine fish.

Overall population structure and historical demography
The initial STRUCTURE analysis identified three population clusters
and corroborated previous assertions about genetically isolated

populations in the Atlantic region, the Mediterranean and Baltic
Sea, respectively, using fewer samples (Limborg et al., 2009). In this
study, a subsequent analysis of population subsets revealed a finer
structure within the Mediterranean/Black Sea region (Figure 2c). The
eastern Black Sea sample (BLE) appears admixed with the Adriatic Sea
population (ADR; Figure 2c), which could be explained by con-
temporary gene flow, shared ancestry or homoplasy. However, these
explanations appear unlikely considering the intermediate location of
the non-admixed sample (BLW) and this result more likely reflects
analytical limitations of the method when few markers are applied
(Hubisz et al., 2009). Overall, the clustering result is in accordance
with pairwise mtDNA and microsatellite differentiation estimates,
which also revealed the highest genetic discontinuities among major
oceanic basins (Supplementary Files S2 and S3) corresponding to the
five clusters detected by STRUCTURE (that is, the Baltic, Atlantic,
western Mediterranean, Adriatic and Black Seas).

When using STRUCTURE with the six neutrally behaving micro-
satellite loci only, no structure was detected (most likely K¼ 1),
suggesting that the observed population structure is largely driven by
the presumed outlier loci Spsp202 and Spsp275 (data not shown). This
raises the question of whether the results indeed reflect the demo-
graphic history of the species, however, at least two facts speak in
favour of this. First, the overall population structure is supported by
independent analyses of both mitochondrial and nuclear DNA, and
second, a PCA and estimates of pairwise yST omitting the two outlier
loci detected a similar and statistically significant (albeit weaker)
pattern of population structure. Moreover, the resolving power of
STRUCTURE tends to be low with few markers at low divergence
(Hubisz et al., 2009). Lastly, increased power is expected for detecting
low genetic differentiation between predefined populations based on
pairwise tests comparing allele frequencies (like yST), compared with
STRUCTURE, which does not consider such a priori-defined sub-
groups (Pritchard et al., 2007).

Our results thus support a pattern with at least five more or less
reproductively isolated genetic clusters in sprat throughout its
distribution. Similar levels of clustering are reported for other small
pelagic fishes (for example, Bekkevold et al., 2005; Grant, 2005;
Gonzalez and Zardoya, 2007), albeit those studies spanned narrower
geographic regions. Although our focus here is the large-scale
distribution, we cannot rule out the potential existence of non-
sampled locally isolated populations at smaller geographic scales.
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Figure 4 Population-specific FST values for microsatellite markers with black vertical bars representing mode values and grey boxes illustrating the 95%

highest probability density interval (the smallest interval that contains 95% of the values). Oceanic region is given for each sample next to the vertical axis

and correspond to names in Figure 1 and Table 1.
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Figure 5 Pairwise FST (white bars) and FST (black bars) estimates for

mtDNA sequences across transition zones with samples pooled into the
following regions; Baltic Sea (BALT), Atlantic Ocean (ATLA), western

Mediterranean (WMED), Adriatic Sea (ADRI) and the Black Sea (BLAS) (see

text for more details). Pairwise comparisons between regions directly

connected by each of the four transition zones are denoted with

abbreviations in italic corresponding to Figure 1. All estimates are

significantly 40 (a¼0.05) unless denoted with ns.
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Indeed, a recent study has shown existence of population structure
between Norwegian fjord populations and the North Sea sprat
population (Glover et al., 2011), suggesting the existence of isolated
local populations.

The grouping of genetic clusters along PC1 in the PCA (Figure 3)
corresponds with three distinct phylogenetic clades occurring in;
(i) the Atlantic region (including the Baltic Sea), (ii) the western
Mediterranean and (iii) the eastern Mediterranean (including the
Black Sea). This pattern suggests that historical and phylogeographic
patterns also explain a significant part of neutral genetic variation at
microsatellites in combination with contemporary migration-drift
processes. An effect of range expansions on genetic variation was
supported by population-specific FST values which were in agreement
with a ‘fission model’ where populations expanded from west (the
Atlantic Ocean) into the Mediterranean and the Black Sea, as well as
into the North and Baltic Seas. Such a demographic model was
further supported by the significant patterns of isolation by distance,
where especially the differentiation revealed by microsatellites was
explained by geographic distance. When excluding both outlier loci,
the FST-based pattern of isolation by distance was still apparent,
whereas the RST-based pattern, however, became non-significant. This
latter observation may indicate that for genetic differentiation at
microsatellites indeed contemporary migration-drift processes may be
more important than mutations, since differential mutations among

populations with low or no gene flow would most likely result in
larger RST estimates and significant isolation by distance. However,
this result may also simply reflect technical issues if for example,
neutrally behaving microsatellites are more constrained in size, which
would deflate true RST values at these loci. Fragment size (alleles)
distributions, however, did not suggest such a pattern in our data (not
shown), thus we cannot further assess this potential explanation.
Alternatively, the RST estimate may exhibit larger variance than FST

(Balloux and Lugon-Moulin, 2002) explaining the observed non-
significant isolation by distance pattern for RST when two outlier loci
were removed.

For many marine organisms in the Northeast Atlantic, major
refugia during the LGM included regions south of the Bay of Biscay
with potential smaller inter-glacial refugia further north (Maggs et al.,
2008). For example, the thornback ray (Raja clavata L.) presumably
persisted in at least two Atlantic refugia along the Iberian Peninsula
and the Azores (Chevolot et al., 2006). A similar scenario of north-
and eastward expansions from one or more south westerly Atlantic
refugia for sprat cannot be ruled out and would be in accordance with
our results. The northwards range expansion most likely happened
after the LGM in accordance with the biogeographical history of the
Baltic Sea, which did not support the present-day marine fauna before
B9–7000 bp (Sohlenius et al., 2001). Together with the study by
Debes et al. (2008), our findings of large mutational differences at the
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mtDNA marker suggest old population divergence across the Med-
iterranean transition zones potentially pre-dating the LGM. A similar
scenario of pre-LGM divergence within the Mediterranean has also
been suggested for another fish species (Wilson and Veraguth, 2010).

Differentiation of marginal populations
High microsatellite-based population-specific FST values and slightly
reduced mtDNA haplotype diversity of Adriatic Sea and Black Sea
populations compared with Atlantic samples (Figure 4, Table 1) point
to a relatively old split between an eastern Mediterranean and a
western Mediterranean/Atlantic clade. Debes et al. (2008) explained
the present-day pattern at the southern edge of the distribution of
sprat in the Mediterranean as a result of northwards shifting
isotherms since the LGM. Populations in the northernmost Medi-
terranean basins occur at their physiological limit and likely represent
trapped remnants of a formerly more widespread core population in
the Mediterranean.

However, under this scenario, the separation in the Mediterranean
of an eastern and western clade might also reflect local founder events
from cryptic inter-glacial refugia pre-dating the LGM. Postglacial
colonisation of the Black Sea could also, in theory, have taken place
from a refugial population now only represented in this area.
Moreover, the observed FST pattern (Figure 4) could also be consistent
with a stepping-stone model with lower migration rates (and higher
drift) for marginal populations, without inference about the direc-
tionality of founder events (Gaggiotti and Foll, 2010).

A post hoc permutation test in FSTAT revealed reduced allelic
richness, Ar, in the Baltic group (BALT; Ar¼ 15.06±0.10
(mean±s.e.)) compared with the Atlantic group (ATLA;
Ar¼ 20.23±0.14 (mean±s.e), one-tailed test, Po0.001), consistent
with observations for the mtDNA (h) (Table 1). Similar tests did not
reveal significantly reduced Ar in the Adriatic Sea or Black Sea
populations compared with the Atlantic group (P40.11). Assuming
that the distribution of sprat populations follows a stepping-stone
pattern; an alternative, but not mutually exclusive, explanation for
reduced diversity and increased differentiation in the marginal Baltic
Sea population can be due to reduced immigration of new alleles
compared with more ‘central’ populations. At first sight a similar
explanation appears incongruent with the relatively higher Ar in the
marginal Adriatic population (Table 1). One explanation for this
could be that higher microsatellite mutation rates and longer time
since presumably older founder events have erased signals of reduced
genetic diversity. However, strong signatures from old founder events
would not be expected if contemporary immigration is the dominat-
ing factor for shaping genetic diversity in marginal populations. For
example, increased environmental stress in marginal populations may
reduce immigration into locally adapted populations leading to
reduced diversity and greater differentiation of these populations
(Excoffier et al., 2009a). Lastly, congruent patterns of reduced genetic
diversity in Baltic populations of other ‘classical’ marine fishes
(reviewed in Johannesson and Andre, 2006) are suggestive of a
general trend reflecting shared founder histories, reduced immigra-
tion, environmental adaptation and/or other unknown factors simul-
taneously reducing Ne in this marginal sea.

Disentangling effects of genetic drift and mutation across
transition zones
We found indications that both genetic drift and mutation explain
genetic differentiation across transition zones, but the relative effect of
each varied among the different transition zones studied. This result is
likely to reflect population splitting events at different time scales.

More recently diverged populations will resemble each other in terms
of haplotypes and alleles present, as fewer new mutations are expected
to have accumulated. Pairwise differentiation between the Baltic and
Atlantic groups revealed a significant FST and a lower non-significant
FST for the mtDNA, together with a non-significant RST test for
microsatellites. Genetically admixed populations within this transition
zone (Figure 2) could suggest on-going gene flow eroding signals
from population-specific mutations. Alternatively, recent divergence
between Baltic and Atlantic populations may explain the lack of
detectable differentiation in this transition zone. Although these two
explanations may not be mutually exclusive, this, together with the
geologic history of the Baltic region, reinforces the notion of the Baltic
Sea maintaining the most recently established sprat population
among those studied (see above).

Interestingly, we see a pattern of generally larger effects from
mutation in most pairwise comparisons spanning one or more of the
three southern transition zones. This is in accordance with the results
from Debes et al. (2008) pointing towards relatively deep splits
between samples within the Mediterranean region reflecting no or
very little gene flow in combination with large divergence times. Most
comparisons crossing the transition zone separating the western and
eastern Mediterranean Sea, suggested by clade analysis to represent
the deepest phylogeographic split (Debes et al., 2008), show an
accordingly larger effect from mutation and isolation. However, for
microsatellites this result was mainly explained by two loci also
exhibiting outlier behaviour, and thus, potentially violating the
assumptions of neutrality. Furthermore, increased frequency of alleles
affected by positive selection may lead to deviations from the neutral
allele distribution expected under a SMM (see below). As a
consequence, the mtDNA-based results may better reflect true
differences between genetic drift and mutation here. The somewhat
reduced mutation effect at the mtDNA between the Adriatic Sea
population and the Black Sea samples (Figure 5) is in accordance with
expected shorter divergence times within the two major clades and/or
higher levels of gene flow (Debes et al., 2008). The mtDNA-based
estimators of genetic drift (FST) and mutational distance (FST) were
both significant between the Adriatic and Black Sea groups, as
opposed to across the transition zone separating the Baltic and
Atlantic populations. This suggests an intermediate divergence time
between the Adriatic Sea and Black Sea groups. The relatively high
mutational effect between the Atlantic and western Mediterranean
groups within the ‘western’ clade also suggest a considerably older
divergence between these groups than between the Atlantic and Baltic
Sea groups. However, owing to lack of Atlantic samples south of the
Bay of Biscay (presumably reflecting low densities), we cannot rule
out possible confounding effects from a potential undetected struc-
ture around the Iberian Peninsula. In such a case, a sample from the
more southern population would be more appropriate when testing
differentiation across the Atlantic–western Mediterranean transition
zone owing to a potentially more recent shared ancestry with the
western Mediterranean population.

A large effect of mutation relative to drift, in combination with
restricted gene flow, should lead to a genome-wide pattern of
RST4rRST. The significant contribution of mutations in explaining
differentiations among the major clades with microsatellites was
mainly driven by the two loci Spsp202 and Spsp275 (Supplementary
File S7), which were also suggested to be affected by directional
selection (Supplementary File S5). Thus, great caution should be
taken when quantitatively inferring effects from mutation and neutral
genetic drift when using these loci. Nevertheless, the congruent results
observed for two independent loci may suggest a biological
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meaningful pattern of increased mutational effects on microsatellite
variation across southern transition zones. We, however, cannot rule
out that these outlier loci behave in a non-neutral fashion and thus
violate the SMM model leaving the microsatellite-based results
inconclusive. Alternatively, our results may have indicated a general
trend of microsatellite loci mainly reflecting more recent migration-
drift processes as suggested from significant patterns of isolation by
distance, whereas genetic variation at mtDNA markers appeared
better suited for inferring older demographic histories. Indeed, for the
mtDNA results we did find varying relative effects of genetic drift and
mutation across different transition zones indicative of varying
divergence times between different sprat populations.

Other statistical methods offer more direct estimates of bottlenecks,
time since divergence and gene flow. However, the signal in our data
is likely too weak to obtain reliable estimates from these analyses, as
testified by the fact that analyses using the approaches of Piry et al.
(1999) and Garza & Williamson (2001) were inconclusive of past
bottlenecks in any of our populations (not shown). Also, attempts to
apply IMa (Hey and Nielsen, 2004) on mtDNA and microsatellite
data to infer divergence times and gene flow resulted in non-
converging MCMC chains, reflecting a lack of information in the
data. Instead, by taking advantage of a more indirect approach of
comparing relative imprints from mutation and genetic drift, we were
able to distinguish putatively ‘old’ from more ‘recent’ population
divergence across transition zones putatively characterised by varying
levels of gene flow. We thus expect that this approach may be useful in
other applications for organisms characterised by weak structure due
to recent divergence, large Ne and/or high gene flow.
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INTRODUCTION

Over the last decades ample evidence of significant,
albeit commonly low, levels of genetic population dif-
ferentiation has been accumulated for marine fishes
(e.g. Ruzzante et al. 1998, Pampoulie et al. 2004, Jør-
gensen et al. 2005, Hemmer-Hansen et al. 2007b).
These studies have challenged the long-held view of
predominantly limited population structure in marine

fishes inhabiting large coherent environments with
few physical barriers. Different explanations have
been proposed to account for observed population
structure in marine fishes. For example, physical
forcing by current systems and local gyres may retain
eggs and larvae in local nursery areas (Ruzzante et al.
1998), and historical events (e.g. geological processes)
can lead to genetic divergence of populations by isolat-
ing contingents of populations in temporary refugia
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(Hewitt 2004, Knowles & Richards 2005). Furthermore,
adaptation to local environments can lead to estab-
lishment of gene-flow barriers across environmental
transition zones through hybrid inferiority (Barton &
Hewitt 1985).

The North Sea–Baltic Sea transition zone represents
a major environmental gradient, characterised by a
dramatic change in salinity over a few hundred kilo-
metres from oceanic conditions (30 to 35‰) in the
Skagerrak to an average salinity of 8 to 10‰ in the
Western Baltic Sea. The colonisation by marine species
in the Baltic Sea is believed to have been achieved as a
result of specific adaptations to life in a marginal envi-
ronment (e.g. Ojaveer & Kalejs 2005). In the North
Sea–Baltic Sea transition zone salinity levels are
expected to exert a significant selective pressure on
local populations although other environmental fac-
tors, such as temperature dynamics, are also expected
to play a role. Indeed, it has been shown that Baltic
(Atlantic) cod Gadus morhua L. tolerate lower salinities
during egg fertilisation and the egg phase compared
with populations from the Skagerrak (Nissling &
Westin 1997). Timing of spawning also seems to con-
form to spatial and temporal production peaks
(Tomkiewicz et al. 1998, Ojaveer & Kalejs 2005).

Molecular studies have identified genetically distinct
North Sea and Baltic Sea fish populations in, for exam-
ple, Atlantic herring Clupea harengus L. (Bekkevold et
al. 2005), turbot Psetta maxima L. (Nielsen et al. 2004),
Atlantic cod Gadus morhua L. (Nielsen et al. 2003) and
European flounder Platichthys flesus L. (Hemmer-
Hansen et al. 2007b), as well as in many other organ-
isms such as algae and invertebrates (see Johannesson
& Andre 2006 for a review). Overall, studies suggest
restricted gene flow across the North Sea–Baltic Sea
transition zone, but spatial patterns vary among spe-
cies. Thus, interspecific comparisons may reveal the
relative importance of specific environmental factors
and/or biological traits for shaping patterns of popula-
tion structure (Patarnello et al. 2007).

European sprat Sprattus sprattus L. is a pelagic
schooling clupeid fish. Tolerating temperatures down
to ~5°C (Nissling 2004) and salinities down to ~4‰
(Whitehead 1985), this species has successfully
colonised a wide range of environments. Sprat is dis-
tributed in the Atlantic Ocean from the Norwegian
west coast in the north to Morocco in south, including
the Baltic Sea, and in the northern Mediterranean Sea
and the Black Sea (Whitehead 1985). In the northeast
Atlantic, spawning sprat concentrate in the deep
basins of the Baltic Sea, in the Skagerrak/Kattegat
area, the southeastern North Sea (German Bight) and
from the English Channel to the north along the British
west coast (Parmanne et al. 1994 and references
therein, ICES 2007). Spawning, however, occurs

throughout the species’ distribution, and philopatric
spawning migrations have not been described (Köster
et al. 2003b). Further, local abundance and interannual
movement among feeding areas can show substantial
variation (Stepputtis 2006). In comparison, other spe-
cies, such as cod and herring inhabiting the same areas
exhibit spawning characteristics including homing and
local retention of eggs that may induce stronger
genetic isolation among components (Voipio 1981, Iles
& Sinclair 1982, Aro 1989). In sprat, the continuous dis-
tribution of spawning habitat coupled with opportunis-
tic vagrant behaviour (De Silva 1973, Alheit 1988) sug-
gest limited barriers to gene flow among areas and
lead to expectations of weak population differentiation
in comparison with, for example, herring and cod.
Based on mtDNA data, sprat has been divided into 2
major phylogenetic clades geographically separated
by the Strait of Sicily, and 1 clade showing signs of a
more recent (since 13 000 to 7600 yr BP) northwards
expansion into the North and Baltic seas from an
Atlantic refugia (Debes et al. 2008). Within the Baltic
Sea, differences in meristic and morphometric charac-
ters, otolith structure and area specific stock dynamics
have led several authors to suggest the occurrence of
reproductively isolated populations (e.g. Aro 1989,
Ojaveer 1989). However, these hypotheses have not
been evaluated using genetic markers with sufficient
resolution for identifying small-scale population struc-
ture (but see Kozlovski 1988).

In the present study, highly variable microsatellite
markers were used to analyse European sprat samples
from major spawning areas ranging from the central
Baltic Sea to the Celtic Sea in the northeastern Atlantic
Ocean. We ask the following questions: (1) Does sprat
exhibit population structure at large (among seas) as
well as regional (within sea) scales? (2) Are potential
barriers to gene flow concurrent with salinity gradients
in the area? (3) How does sprat population structure
compare with that of other fishes in the North
Sea–Baltic Sea transition zone? (4) Which biological
and physical factors are likely to explain differences
and similarities among species?

MATERIALS AND METHODS

Sample collection. A total of 969 sprat were col-
lected during peak spawning time (March to May) in
major spawning areas in and around the North Sea
and the Baltic Sea (Table 1, Fig. 1). In total, 9 locations
were sampled, of which 2 (German Bight and Born-
holm Basin) included temporal replicates to test for
temporal stability of genetic composition within loca-
tions. The stage of maturity was determined for all
specimens, except for the Adriatic Sea sample. Prefer-
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ably, only specimens in spawning condition were in-
cluded in the genetic analyses to ensure proper repre-
sentation of the local spawning populations. The Adri-
atic Sea specimens were caught in a local spawning
area during spawning season. The Celtic Sea sample
was collected outside the spawning season and could

potentially include migrants from other popu-
lations.

Molecular analyses. DNA was extracted
from fin or muscle tissue and stored in 96%
ethanol using the DNeasy kit 250 (QIAGEN).
Genetic variation was analysed at 9 fluores-
cently labelled dinucleotide microsatellite loci
developed for sprat: Spsp47D (TET), Spsp77C
(HEX), Spsp133 (FAM), Spsp154 (TET),
Spsp170 (FAM), Spsp202 (HEX), Spsp219
(HEX), Spsp256 (TET) and Spsp275 (FAM)
(Dailianis et al. 2008). The loci were amplified
separately by PCR using standard reagents.
Annealing temperatures ranged from 56 to
62°C among loci (details in Dailianis et al.
2008). PCR amplified microsatellite fragments
were analysed on a BaseStation 51™ DNA
fragment analyser (MJ Research) and gels
were semi-automatically typed using the soft-
ware CARTOGRAPHER 1.2.6 (MJ Geneworks).
Depending on marker, between 10 and 50%
of the individuals from each sample were
reanalysed to ensure consistency of results.
Further actions were taken to minimise geno-
typing errors, as suggested by Bonin et al.
(2004). Thus, quality of PCR products was
tested on a 6% agarose gel with a negative
control to rule out contamination. Further, 4
controls of known genotypes were re-run on

every gel to ensure consistent scoring of genotypes.
Finally, all individuals in 3 samples were cross-typed
by 2 persons independently, and a third sample was
typed twice by the same person (typings separated by
months). Fish with 4 or more missing single-locus
genotypes were omitted from the dataset.
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Geographic Sample Latitude, Year Month Proportion mature No. of Ar

location ID longitude and spawning (%)a ind.

(1) Gotland Deep GOT 58.24° N, 20.31° E 2006 May 100 88 14.3
(2) Gdansk Deep GDA 54.43° N, 18.60° E 2006 Mar 100 86 14.1
(3) Bornholm Basin BOR05 55.13° N, 16.14° E 2005 Apr 100 82 14.3

BOR06 55.34° N, 16.25° E 2006 Mar 100 88 13.8
(4) Arkona Basin ARK 55.08° N, 13.50° E 2006 May 100 78 14.1
(5) Belt Sea BEL 55.42° N, 10.25° E 2006 Mar 100 83 16.2
(6) Northern Kattegat KAT 57.42° N, 10.48° E 2006 Mar 100 81 16.7
(7) German Bight GER04 54.15° N, 07.12° E 2004 May 100 88 18.5

GER05 54.07° N, 07.47° E 2005 May 100 87 18.1
(8) Celtic Sea CEL 51.59° N, 06.46° W 2005 Dec 0b 85 16.6
(9) Adriatic Sea ADR 45.36° N, 13.34° E 2005 Dec nac 85 16.2

aFish in spawning phase alternating between actively spawning and final maturation of batches
bCaught outside spawning season
cSample collected during main spawning season but maturity stage not assessed

Table 1. Sprattus sprattus. Location and details of sprat samples collected. Also given are percentages of spawning fish per
sample and mean allelic richness (Ar) corrected for the minimum sample size (n = 56) of all loci per sample

Fig. 1. Sprattus sprattus. Study area with sample locations. Circled numbers 
refer to the respective sample locations listed in Table 1
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Statistical analyses. The program MICRO-CHECKER
2.2.3 (Van Oosterhout et al. 2004) was used to test for
technical artefacts, such as null alleles. Departure from
Hardy-Weinberg equilibrium (HWE) was tested for
each locus and sample using the method by Guo &
Thompson (1992) implemented in GENEPOP 3.4 (Ray-
mond & Rousset 1995). Analyses for departure from
gametic phase equilibrium (linkage disequilibrium)
between pairs of loci by means of exact tests were also
performed using GENEPOP 3.4.

Observed and expected heterozygosities (HO and
HE), Weir & Cockerham’s (1984) inbreeding coeffi-
cient (FIS), numbers of alleles (A) and allelic richness
corrected for sample size (Ar) were calculated for
each locus and sample using FSTAT 2.9.3 (Goudet
1995). Differences in allelic richness between the
Baltic Sea samples: Gotland, Gdansk, Bornholm and
Arkona (GOT, GDA, BOR and ARK, respectively),
and samples from the northern Kattegat, German
Bight and Celtic Sea (KAT, GER and CEL, respec-
tively, hereafter, slightly inaccurately, referred to as
the North Sea group) were tested in FSTAT 2.9.3
using permutation tests. FSTAT 2.9.3 was also used
to estimate differentiation (FST) between each pair of
samples and overall using Weir & Cockerham’s
(1984) unbiased estimator θ. Pairwise population dif-
ferentiation was tested using contingency tests im-
plemented in FSTAT 2.9.3. We used PCAGEN 1.3.1
(available at: www2.unil.ch/popgen/softwares/pcagen.
htm) to perform a principal component analysis
(PCA) based on allele frequencies of all 11 samples
and significance of each principal component (PC)
was tested by 10 000 randomisations. The proportions
of genetic variation distributed between the Baltic
Sea and North Sea groups as well as between tem-
poral samples within locations (GER and BOR) were
estimated using a hierarchical analysis of molecular
variance (AMOVA) implemented in ARLEQUIN 3.11
(Schneider et al. 2000).

Salinity levels on spawning locations exhibit strong
relationships with genetic structure in the Atlantic
herring from the same area and are the environ-
mental factors with the strongest explanatory power
when analysing relationships between different en-
vironmental variables and population structure
(Bekkevold et al. 2005). To test for such a relation-
ship in sprat partial Mantel tests were applied on all
northern samples (i.e. omitting the Adriatic Sea,
ADR) to test the correlation between θ values and
either geographic distance (shortest waterway dis-
tance) or ‘environmental distance’ (applying differ-
ence in mean surface salinity as a proxy) alone, and
controlling for each of the explanatory factors. These
analyses were performed in FSTAT 2.9.3 using
10 000 randomisations.

RESULTS

Genetic variation

Overall, scoring of genotypes was consistent between
persons, months and reanalyses. However, 38 spurious
genotypes (usually inconsistent scoring of genotypes
and/or consistently weak amplification of fragments)
were omitted from further analyses leaving 931 indivi-
duals (78 to 88 per population) of which 94.9% of all
genotypes were scored successfully (Appendix 1). The
MICRO-CHECKER analyses did not suggest any major
scoring problems, albeit 28 of 99 tests (28.3%) suggested
minor problems with null alleles. Null allele frequencies
(r) estimated according to Chakraborty et al. (1992) were
in the range of r = 0.04 to 0.17 (average = 0.08) and distrib-
uted among 8 of 9 loci and all samples. Considering this
wide and non-systematic distribution of potential null al-
leles and the fact that θ values did not appear to be seri-
ously biased by the occurrence of null alleles (see below),
genotype frequencies were not corrected before estimat-
ing population differentiation. Of 99 tests, 8 tests, distrib-
uted over 4 different loci (Spsp77C, Spsp133, Spsp154
and Spsp170), and 7 samples showed deviations from
HWE (α = 0.05; Appendix 1) after adjusting for multiple
sequential tests (Rice 1989). No significant gametic phase
disequilibrium was found across loci and samples after
adjusting for multiple sequential tests. Ar varied across
loci (Appendix 1). Averaged over-loci estimates of Ar did
not vary significantly among samples within the 2 major
groups (see Table 1). However, comparing groups of
samples within each area (omitting BEL representing the
central North Sea–Baltic Sea transition zone) revealed
significantly lower genetic diversity in the Baltic Sea
samples (Ar = 14.05 ± 0.19 [mean ± SD]) compared with
the North Sea group samples (Ar = 17.10 ± 0.84, p < 0.01).

Temporal genetic differentiation

No differentiation was found between temporal (2004
and 2005) comparisons from the German Bight (θ =
0.002; 95% confidence interval [CI] = –0.001 to 0.005, p >
0.05), while samples from the Bornholm Basin (2005 and
2006) exhibited statistically significant, although low, dif-
ferentiation (θ = 0.006; 95% CI = 0.002 to 0.010, p < 0.05).
However, differentiation was statistically non-significant
when one or more of the loci exhibiting deviations from
HWE were removed (not shown).

Spatial analyses of population differentiation

Due to the minor, but significant, temporal differen-
tiation in the Bornholm Basin and the fact that sample
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sizes were large and fairly equal among col-
lections, only the most recent temporal repli-
cates (BOR06 and GER05) were used for
spatial comparisons to reduce the overall tem-
poral separation in spatial comparisons. Pair-
wise θ values for all 9 locations are shown in
Table 2 and ranged from 0.001 to 0.089 with
an overall θ of 0.030 (95% CI = 0.015 to 0.048,
p < 0.001). The Adriatic Sea population was
highly differentiated from all northern sam-
ples (pairwise θ = 0.073 to 0.089, p < 0.001 for
all comparisons).

Pairwise comparisons between samples
within the North Sea group and the Baltic Sea
group, respectively, revealed low θ values
(between 0.001 and 0.009). Nonetheless, all 3
pairwise tests within the North Sea group and
3 of 6 tests within the Baltic Sea group were
statistically significant even after correcting
for multiple tests (Table 2). Pairwise compar-
isons between North Sea and Baltic Sea sam-
ples ranged from 0.019 to 0.031, and all were
highly significant (p < 0.001). The Belt Sea
sample was significantly differentiated from
all neighbouring samples (p < 0.001) and
showed a general pattern of intermediate
levels of differentiation compared with North
Sea–Baltic Sea comparisons (θ = 0.012 to
0.022).This pattern of a strong genetic differ-
entiation between the Baltic Sea and the
North Sea mirrored the steep gradient in aver-
age surface salinity (Fig. 2).

A potential bias in population differentiation
estimates due to 4 loci not exhibiting HWE in
several samples (see above) was tested further
by recalculating overall, as well as pairwise, θ
after omitting each of these loci in turn and
when omitting all 4 loci simultaneously. None
of these estimates returned greatly differing
overall values of θ and estimates obtained by
omitting either Spsp77C, Spsp133 or Spsp154,
respectively, resulted in slightly higher overall
θ values (θ = 0.032 to 0.033). Thus, including
information from those 3 loci is not expected to
inflate estimates of differentiations across re-
gions. Similarly, pairwise θ estimates changed
little in any of the reanalyses testing the effect
of all 4 loci (see above), although comparisons
involving samples from the North Sea group
gained statistical significance in a few cases.
These minor changes do not warrant the
exclusion of any of the 4 loci in the present
study but illustrate that great caution should
be taken when interpreting low (<0.01) but sta-
tistically significant FST estimates due to high

217

S
am

p
le

G
O

T
G

D
A

B
O

R
06

A
R

K
B

E
L

K
A

T
G

E
R

05
C

E
L

A
D

R
ID G

O
T

0.
1

–
0.

51
90

0
0.

02
29

1
0.

11
20

7
<

0.
00

01
<

0.
00

01
<

0.
00

01
<

0.
00

01
<

0.
00

01

G
D

A
0.

00
2 

n
s

0.
1

–
<

0.
00

01
0.

00
57

5
<

0.
00

01
<

0.
00

01
<

0.
00

01
<

0.
00

01
<

0.
00

01
(0

.0
01

–
0.

00
3)

B
O

R
06

0.
00

2 
n

s
0.

00
6*

**
0.

1
–

0.
00

24
2

<
0.

00
01

<
0.

00
01

<
0.

00
01

<
0.

00
01

<
0.

00
01

(–
0.

00
1

–
0.

00
5)

(0
.0

01
–

0.
01

0)
A

R
K

0.
00

1 
n

s
0.

00
4*

0.
00

2*
0.

1
–

<
0.

00
01

<
0.

00
01

<
0.

00
01

<
0.

00
01

<
0.

00
01

(–
0.

00
1

–
0.

00
4)

(0
.0

00
–

0.
00

9)
(–

0.
00

1
–

0.
00

5)
B

E
L

0.
01

6*
**

0.
01

2*
**

0.
01

3*
**

0.
01

4*
**

0.
1

–
<

0.
00

01
<

0.
00

01
<

0.
00

01
<

0.
00

01
(0

.0
08

–
0.

02
4)

(0
.0

06
–

0.
01

7)
(0

.0
05

–
0.

02
2)

(0
.0

09
–

0.
02

1)
K

A
T

0.
02

2*
**

0.
02

1*
**

0.
01

9*
**

0.
02

2*
**

0.
01

0*
**

0.
1

–
0.

00
01

1
0.

00
18

7
<

0.
00

01
(0

.0
09

–
0.

03
9)

(0
.0

08
–

0.
03

4)
(0

.0
07

–
0.

03
3)

(0
.0

10
–

0.
03

5)
(0

.0
01

–
0.

02
6)

G
E

R
05

0.
03

0*
**

0.
02

9*
**

0.
02

8*
**

0.
03

0*
**

0.
01

7*
**

0.
00

7*
*

0.
1

–
0.

00
02

2
<

0.
00

01
(0

.0
12

–
0.

05
5)

(0
.0

13
–

0.
04

8)
(0

.0
11

–
0.

04
7)

(0
.0

12
–

0.
04

9)
(0

.0
03

–
0.

03
6)

(0
.0

02
–

0.
01

3)
C

E
L

0.
03

1*
**

0.
02

9*
**

0.
02

7*
**

0.
02

8*
**

0.
02

2*
**

0.
00

9*
0.

00
7*

*
0.

1
–

<
0.

00
01

(0
.0

16
–

0.
05

2)
(0

.0
18

–
0.

04
3)

(0
.0

15
–

0.
04

0)
(0

.0
16

–
0.

04
2)

(0
.0

08
–

0.
04

0)
(0

.0
03

–
0.

01
5)

(0
.0

00
–

0.
01

4)
A

D
R

0.
07

3*
**

0.
07

7*
**

0.
07

6*
**

0.
08

9*
**

0.
08

7*
**

0.
08

4*
**

0.
07

6*
**

0.
08

6*
**

0.
1

–
(0

.0
22

–
0.

13
3)

(0
.0

29
–

0.
13

8)
(0

.0
27

–
0.

13
3)

(0
.0

26
–

0.
16

0)
(0

.0
23

–
0.

16
4)

(0
.0

23
–

0.
15

5)
(0

.0
23

–
0.

13
9)

(0
.0

26
–

0.
15

7)

T
ab

le
 2

. G
en

et
ic

 d
if

fe
re

n
ti

at
io

n
 (

p
ai

rw
is

e 
F

S
T
-v

al
u

es
) 

es
ti

m
at

ed
 b

y 
θ

(W
ei

r 
&

 C
oc

k
er

h
am

 1
98

4)
, 9

5
%

 c
on

fi
d

en
ce

 in
te

rv
al

s 
(b

el
ow

 d
ia

g
on

al
) 

an
d

 p
-v

al
u

es
 (

ab
ov

e 
d

ia
g

on
al

).
L

ev
el

 o
f 

si
g

n
if

ic
an

ce
 o

b
ta

in
ed

 f
ol

lo
w

in
g

 s
eq

u
en

ti
al

 B
on

fe
rr

on
i 

co
rr

ec
ti

on
 f

or
 m

u
lt

ip
le

 t
es

ts
 (

k
=

 3
6 

te
st

s,
 R

ic
e 

19
89

).
 S

ee
 T

ab
le

 1
 f

or
 s

am
p

le
 I

D
. 

**
*p

 <
 0

.0
01

, 
**

p
 <

 0
.0

1,
*p

 <
 0

.0
5,

 n
s 

=
 n

ot
 s

ig
n

if
ic

an
t

70



Mar Ecol Prog Ser 379: 213–224, 2009

interlocus variability (Chapuis & Estoup 2007, Nielsen
et al. 2009), especially in high gene flow scenarios.

Only the first 2 principal components of the PCA
explained a significant proportion of the total genetic
variance (PC1 and 2, p < 0.001; PC3 to 10, p = 1.000).
The first principal component (PC1, explaining 42% of
the variance) in the PCA plot (Fig. 3) mainly separated
the ADR population from all others, while PC2
(explaining 32% of the variance) separated samples
from the North Sea group and Baltic Sea group into 2
major clusters with the Belt Sea sample located in
between (Fig. 3). The Baltic Sea cluster did not reveal
any obvious spatial pattern while a weak spatial pat-
tern was evident within the North Sea group. The 2
temporal samples from the German Bight clustered
together and exhibited statistically significant differen-
tiation from the other samples in the North Sea area

(KAT and CEL; Fig. 3, Table 2). Another PCA omitting
the ADR population revealed no further spatial pattern
among the remaining samples (not shown). The hierar-
chical AMOVA grouping temporal samples from the
German Bight and Bornholm Basin, respectively,
revealed a much higher degree of spatial (2.85%, p >
0.05) than temporal (0.15%, p < 0.05) genetic variance,
although only the temporal comparison was signifi-
cant. The lack of statistical significance for the former
estimate was probably an effect of reduced statistical
power in the spatial comparison due to fewer degrees
of freedom compared with the temporal comparison
(df = 1 and 2, respectively). Another AMOVA (omitting
BEL) showed that a significant proportion of the
observed genetic variation could be explained by dif-
ferentiation between the North Sea group and Baltic
Sea group (2.21%, p < 0.05) while differentiation
among locations within these groups explained a much
lower part of the overall genetic variation (0.32%, p <
0.001). Again, the lower level of statistical significance
for the between-group comparison is probably ex-
plained by lower statistical power compared with the
within-group comparison (df = 1 and 5, respectively).
The partial Mantel tests revealed a higher correlation
between genetic and environmental (salinity) distance
(r = 0.98, p = 0.0001) than between genetic and geo-
graphic distance (r = 0.63, p = 0.0003). When control-
ling for environmental distance, the geographic dis-
tance parameter became non-significant (r = 0.63, p =
0.71) while the environmental parameter remained
highly significant (r = 0.76, p = 0.0001) when control-
ling for geographic distance.
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Fig. 2. Sprattus sprattus, Platichthys flesus, Gadus morhua,
Psetta maxima and Clupea harengus. (a) Genetic differentiation
(pairwise FST) between the most northern Baltic sample and
samples following a geographical transect from the northern
Baltic Sea to the Atlantic Ocean for flounder (Hemmer-Hansen
et al. 2007b), cod (Nielsen et al. 2003), turbot (Nielsen et al.
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DISCUSSION

Large-scale population structure

This is the first study to demonstrate highly signifi-
cant population structure in European sprat based on
highly polymorphic molecular markers. We estimated
an overall FST of 0.030 (95% CI = 0.015 to 0.048), which
corresponds with similar scale studies of other marine
fishes (Ruzzante et al. 1998, Nielsen et al. 2003, 2004,
Bekkevold et al. 2005, Hemmer-Hansen et al. 2007b).
We found a sharp genetic division between North Sea
and Baltic Sea populations (see below). The Adriatic
Sea population exhibited a relatively large divergence
from all other samples (Table 2, Fig. 3). This is in con-
cordance with mtDNA data showing evidence for 2
‘major clades’, with one distributed in the eastern
Mediterranean Sea, including the Adriatic Sea and
Black Sea, and another in the western Mediterranean
Sea, northeast Atlantic Ocean, North Sea and Baltic
Sea (Debes et al. 2008). Contrary to the present study,
Debes et al. (2008) found no differentiation in allele
frequencies among samples ranging from the Bay of
Biscay to the Western Baltic. Rather, when grouping
samples from the northeast Atlantic, North Sea and
Baltic Sea, Debes et al. (2008) found a unimodal mis-
match distribution and a ‘star-burst’-shaped haplo-
type network supporting a ‘recent’ (i.e. following post-
glacial creation of marine habitats 13 000 to 7600 yr BP)
northward range expansion (Debes et al. 2008). These
combined results suggest a recent (within the last
10 000 yr) split between northeast Atlantic and Baltic
Sea populations. This would translate into approxi-
mately 4000 to 5000 sprat generations, which is as-
sumed to be sufficient time for generating the observed
levels of genetic differentiation through genetic drift,
when considering realistic combinations of effective
population size (Ne) and migration rate (m) for marine
fishes (Hauser & Carvalho 2008).

Population structure within the North Sea and the
Baltic Sea

When studying spatial population structure in high
gene flow scenarios, as in most marine fishes, it is vital
to define a genetically unique population (Waples &
Gaggiotti 2006). Here we apply the weakest criterion
from Waples & Gaggiotti (2006) for defining popula-
tions from an evolutionary (and not demographic) par-
adigm, Nem < 25. Choosing a fixed threshold value will
always be prone to subjectivity. However, the above
threshold conforms to FST values as low as ~0.01 being
statistically highly significant (Waples & Gaggiotti
2006), which is often the case for marine fishes. Thus,

despite a few statistically significant pairwise compar-
isons within the Baltic Sea (Table 2), our data most
probably reflect an overall pattern of no spatial struc-
ture as inferred from, assumingly, neutral microsatel-
lite markers. No study has revealed evidence of a tem-
porally stable genetic structure of sprat within the
Baltic Sea, and a previous approach applying allozyme
markers also failed to distinguish among spawning
components (Kozlovski 1988).

Within the North Sea/North Atlantic group a weak
structure, at most, was detected among populations
(Fig. 3, Table 2). These low estimates of spatial differ-
entiation mirror results obtained for other fishes in the
area, e.g. herring (Mariani et al. 2005) and flounder
(Hemmer-Hansen et al. 2007b). The Celtic Sea sample
did, however, not include spawning individuals and
our estimate of differentiation might, thus, be an
underestimate due to the potential inclusion of tran-
sient migrants from other populations. Nonetheless, no
study has indicated that such migrations occur. Based
on allozyme markers and phenotypic traits, Nævdal
(1968) suggested the occurrence of reproductively iso-
lated components of sprat among Norwegian fjords, as
also reported in herring (Bekkevold et al. 2005) and
cod (Knutsen et al. 2007). However, more detailed
sampling is needed for a comprehensive analysis of
population structure within the North Sea. The present
results should not be interpreted as evidence that sprat
in the North Sea and Baltic Sea areas, respectively, are
effectively panmictic. For instance, adaptive genetic
divergence at genes exposed to local selection can eas-
ily be overlooked when studying presumably neutral
(i.e. non-functional) variation in a high gene flow sce-
nario (e.g. see Hemmer-Hansen et al. 2007a).

The North Sea–Baltic Sea transition zone

Our results support the existence of a barrier to gene
flow separating the northern Kattegat, North Sea and
Celtic Sea from Baltic Sea samples (Figs. 2 & 4), with
the Belt Sea sample representing a genetically inter-
mediate transition zone. The clustering into 2 regions
was further supported by the AMOVA results, which
revealed that a higher degree of overall variation was
explained by spatial variation between the 2 clusters
compared with variation within clusters and between
years. If we consider a scenario where ‘genetically
pure’ populations occur in the Baltic Sea and the North
Sea area, the narrow transition zone could reflect
either a contact zone constituted of genetically admixed
individuals (hybrids), or a zone where individuals from
the 2 populations mix mechanically (i.e. a Wahlund
effect). In theory, the latter scenario will lead to devia-
tions from HWE causing higher than expected inbreed-
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ing coefficients (FIS), but the multi-locus FIS estimate
for the BEL sample is not fundamentally different from
other samples (Appendix 1). The genetic composition
of the BEL sample was further evaluated by simulating
a mechanically mixed (50:50) sample of sprat from the
‘pure’ North Sea and Baltic Sea populations (using the
procedure described in Nielsen et al. 2001). This simu-
lated sample did not deviate significantly from HWE at
any of the 9 microsatellite loci (results not shown),
demonstrating that genetic resolution is too low for
statistical detection of a potential Wahlund effect
caused by mechanical mixing. Furthermore, calcu-
lating individual admixture proportions in the BEL
sample, again assuming Baltic and North sea sprat as
‘pure’ contributing populations (following the proce-
dure described in Nielsen et al. 2003) revealed that the
distribution of BEL genotypes resembled a scenario
of genetically admixed individuals, rather than mech-
anical mixing (results not shown).

The partial Mantel tests revealed a stronger correla-
tion between genetic distance and difference in salin-
ity on spawning sites, than between genetic and geo-
graphic distance. Results thus clearly demonstrate
that isolation by distance is unlikely to account for
the observed population structure per se (Figs. 2 & 3).
Although we cannot infer causal evolutionary pro-
cesses directly from simple correlation analyses, our
results suggest that salinity differences (and/or some
correlated factor) play a role in maintaining reproduc-
tive barriers between the North Sea and Baltic Sea.

Other factors also probably reinforce reproductive iso-
lation by limiting temporal and/or spatial overlaps of
different groups of spawners and juveniles. Such
potential factors include physical forcing (Hinrichsen
et al. 2005) and environmentally induced spawning
behaviour and/or survival (Köster et al. 2003a). How-
ever, these possible effects need not be mutually ex-
clusive with an environmentally (e.g. salinity) induced
barrier to gene flow.

Reduced allelic richness was observed in Baltic Sea
sprat compared with samples from the northern Katte-
gat, North Sea and Celtic Sea (Table 1). Similar results
have been reported for cod (Nielsen et al. 2003), her-
ring (Bekkevold et al. 2005) and flounder (Hemmer-
Hansen et al. 2007b). Founding of new populations is
commonly associated with loss of genetic variation
(Nei et al. 1975). The shallow phylogeography of
northeast Atlantic sprat populations (Debes et al. 2008)
and the geographically marginal population in the
Baltic Sea suggest a recent colonisation by sprat,
potentially associated with reinforcement of adaptive
divergence in response to low and varying salinity in
the Baltic Sea (i.e. a primary contact zone scenario,
Garant et al. 2007). However, alternative scenarios,
such as a secondary contact zone created during the
last glacial retreat (Hewitt 2004, Knowles & Richards
2005), as often suggested for invertebrates in this
region (e.g. Väinölä 2003), cannot be ruled out based
on the present data.

Interspecific comparison of genetic structure

Our study contributes to existing knowledge of
marked genetic clines in marine fishes in the Baltic Sea
and adjacent northeastern Atlantic regions. The
threshold values in salinity for successful spawning
(Fig. 4) further indicate that Baltic Sea components of
most marine fishes indeed represent marginal popula-
tions with distributional boundaries governed by one
or more environmental factors. Cod, in particular, is re-
stricted to the deeper more saline water for successful
spawning in the Baltic Sea basins (Fig. 4). Interspecific
differences in population structure patterns may re-
flect variation in, for example, spawning strategy,
salinity tolerance (Fig. 4) and/or other traits. In this re-
spect, it is intriguing that the geographic location of the
most pronounced barriers to gene flow between Baltic
Sea and North Sea populations indeed seems to differ
among species (Fig. 2). Bekkevold et al. (2005) showed
that on a macro-geographical scale herring exhibits
highly significant population structure with differenti-
ation occurring across multiple barriers within the
transition zone. This is similar to the 1-dimensional
patterns observed for turbot (Nielsen et al. 2004) and
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Fig. 4. Psetta maxima, Gadus morhua, Platichthys flesus, Pleu-
ronectes platessa and Clupea harengus. Fertilisation success
as a function of salinity for turbot (Nissling et al. 2006), cod
(Nissling & Westin 1997), flounder (with pelagic eggs), plaice
Pleuronectes platessa (Nissling et al. 2002) and herring (Grif-
fin et al. 1998). All individuals originated from Baltic Sea
populations unless otherwise stated. Arrows A, B and C
show approximate surface salinities in the Baltic Sea proper, 

Kattegat and North Sea, respectively
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sprat (present study). In these species, genetic divi-
sions mirror surface salinity gradients (Fig. 2). In con-
trast, areas of most restricted gene flow do not directly
correlate with the surface salinity gradient for cod and
flounder (Fig. 2). For cod populations, a major division
between components of the Western Baltic and the
Baltic Sea proper occurs around the Bornholm Basin
(Fig. 2, Nielsen et al. 2003). Indeed, the salinity and
dissolved oxygen conditions of the Bornholm Basin
presently make it the only major area suitable for cod
spawning in the Baltic Sea (MacKenzie et al. 2000,
Köster et al. 2005). In flounder, neutral genetic differ-
entiation is comparatively low among populations from
the Skagerrak and southwestern Baltic, and instead a
sharp division is observed near Gotland in the central
Baltic Sea (Fig. 2, Hemmer-Hansen et al. 2007b). This
division has been ascribed to the occurrence of a shift
in life history strategy with populations north of this di-
vision having demersal eggs as opposed to pelagic
eggs (Nissling et al. 2002). When considering these in-
terspecific differences, one cannot rule out small-scale
sampling effects due to different sampling locations
among species. However, even with a cautious inter-
pretation we see strong evidence for interesting differ-
ences in the pattern of genetic structure, inferred from
neutral microsatellites, among the species compared in
Fig. 2. This suggests that multi-species approaches
in future studies might be rewarding in terms of un-
tangling key evolutionary mechanisms shaping pop-
ulation structure in the sea and e.g. for implementing
multispecies stock management. Furthermore, recent
studies have provided more direct evidence for the ex-
istence of adaptive evolution in the marine environ-
ment, despite a background of high gene flow (Hem-
mer-Hansen et al. 2007a, Larsen et al. 2007, 2008).
Inferring the relative importance of external evolution-
ary drivers and species-specific traits like population
history, life history strategy, and migratory and repro-
ductive behaviours remains a great challenge. There-
fore, it must be stressed that it is difficult to assess the
relative importance of salinity compared with other
such factors. Nevertheless, salinity seems to be a key
external factor potentially driving evolution and shap-
ing dispersal and population distribution patterns of
marine organisms inhabiting the Baltic Sea, including
European sprat.
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Samples Spsp47D Spsp77C Spsp133 Spsp154 Spsp170 Spsp202 Spsp219 Spsp256 Spsp275

GOT (n = 88)
% scored 96.6 98.9 98.9 92.0 100 100 95.5 98.9 98.9
A 15 19 10 12 13 10 34 12 15
Ar 14.7 17.4 9.4 11.6 10.6 8.7 30.9 11.2 13.8
HE 0.820 0.883 0.724 0.851 0.754 0.669 0.945 0.831 0.893
HO 0.800 0.793 0.644 0.753 0.739 0.761 0.952 0.874 0.874
HW 0.4592 0.0681 0.2218 0.0052 0.2086 0.2731 0.5806 0.019 0.6214
FIS (0.025) 0.025 0.103 0.111 0.115 0.020 –0.139 –0.008 –0.051 0.022

GDA (n = 86)
% scored 95.3 98.8 97.7 82.6 95.3 98.8 90.7 97.7 98.8
A 17 18 10 11 13 10 29 11 17
Ar 16.0 17.2 9.5 11.0 11.3 8.9 27.1 10.1 15.7
HE 0.784 0.860 0.739 0.833 0.794 0.708 0.922 0.836 0.888
HO 0.634 0.847 0.643 0.732 0.817 0.776 0.897 0.833 0.812
HW 0.0024 0.1381 0.0041 0.0001* 0.7845 0.3735 0.2299 0.3863 0.2974
FIS (0.051) 0.192 0.016 0.131 0.121 –0.029 –0.097 0.027 0.003 0.086

BOR05 (n = 82)
% scored 92.7 85.4 96.3 82.9 95.1 100 89.0 100 96.3
A 16 17 10 13 13 11 30 11 18
Ar 15.2 16.4 9.3 12.4 11.0 9.6 27.9 10.2 17.0
HE 0.744 0.851 0.752 0.816 0.756 0.667 0.939 0.816 0.884
HO 0.724 0.786 0.671 0.647 0.756 0.720 0.932 0.780 0.810
HW 0.1834 0.0014 0.0690 0.0009 0.1686 0.2133 0.3060 0.7501 0.1391
FIS (0.056) 0.028 0.077 0.109 0.208 0.000 –0.079 0.008 0.043 0.084

BOR06 (n = 88)
% scored 98.9 96.6 100 92.0 100 100 95.5 97.7 97.7
A 17 20 7 12 14 10 28 13 15
Ar 16.0 19.0 6.6 11.3 11.5 8.9 25.2 12.1 13.6
HE 0.809 0.911 0.713 0.848 0.801 0.692 0.927 0.863 0.877
HO 0.678 0.788 0.568 0.741 0.818 0.682 0.952 0.872 0.860
HW 0.0059 0.0076 0.0004* 0.0034 0.5786 0.2434 0.6609 0.0936 0.6224
FIS (0.065) 0.162 0.135 0.204 0.127 –0.022 0.014 –0.028 –0.010 0.019

Appendix 1. Sprattus sprattus. Summary of genetic data for the 11 samples and 9 microsatellite loci analysed. A and Ar are
number of alleles and allelic richness (adjusted to n = 56), respectively. HE and HO are expected and observed heterozygosity,
respectively. Results of tests for deviation from Hardy-Weinberg (HW) proportions are shown by p-values, and significant
deviations (α = 0.05) after adjustment by the sequential Bonferroni method (Rice 1989) are indicated by asterisks (*). FIS is the

estimated inbreeding coefficient (multi-locus estimate given in parentheses). See Table 1 for sample locations
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ARK (n = 78)
% scored 98.7 97.4 94.9 76.9 94.9 97.4 84.6 96.2 89.7
A 16 19 10 13 15 7 27 13 14
Ar 15.4 17.5 9.3 12.9 13.4 6.8 25.7 12.1 13.6
HE 0.806 0.871 0.681 0.869 0.796 0.616 0.931 0.841 0.875
HO 0.792 0.803 0.649 0.717 0.757 0.645 0.909 0.920 0.829
HW 0.0881 0.2480 0.2621 0.0337 0.6923 0.7540 0.4396 0.0162 0.1073
FIS (0.037) 0.018 0.079 0.048 0.177 0.050 –0.047 0.024 –0.094 0.053

BEL (n = 83)
% scored 88.0 89.2 92.8 90.4 88.0 94.0 88.0 98.8 96.4
A 13 22 12 11 21 10 30 15 20
Ar 13.0 20.8 11.3 10.9 19.8 9.0 28.3 14.2 18.5
HE 0.843 0.919 0.755 0.790 0.901 0.652 0.955 0.860 0.841
HO 0.699 0.877 0.584 0.699 0.767 0.680 0.986 0.805 0.825
HW 0.0102 0.0013 0.0005* 0.0287 0.0218 0.5818 0.6733 0.6285 0.0161
FIS (0.079) 0.171 0.046 0.226 0.116 0.148 –0.042 –0.032 0.065 0.020

KAT (n = 81)
% scored 90.1 92.6 95.1 69.1 87.7 96.3 91.4 97.5 96.3
A 19 22 10 11 22 14 28 13 22
Ar 17.7 20.1 9.1 11.0 20.9 12.1 26.1 12.3 20.7
HE 0.849 0.903 0.717 0.817 0.906 0.717 0.935 0.834 0.898
HO 0.822 0.840 0.636 0.804 0.662 0.808 0.946 0.797 0.846
HW 0.1578 0.1158 0.1962 0.1403 0.0000* 0.0290 0.0180 0.6864 0.0877
FIS (0.055) 0.032 0.070 0.113 0.016 0.271 –0.128 –0.012 0.045 0.058

GER04 (n = 88)
% scored 100 89.8 98.9 97.7 100 98.9 100 100 100
A 18 24 12 12 28 11 37 15 25
Ar 16.7 21.9 11.0 11.7 26.2 10.1 32.5 13.4 22.7
HE 0.879 0.923 0.778 0.782 0.952 0.790 0.957 0.848 0.907
HO 0.852 0.785 0.644 0.674 0.898 0.759 0.920 0.807 0.875
HW 0.4506 0.0005* 0.0199 0.0003* 0.1982 0.1296 0.1254 0.046 0.6384
FIS (0.077) 0.031 0.150 0.173 0.138 0.057 0.040 0.039 0.049 0.035

GER05 (n = 87)
% scored 95.4 96.6 97.7 97.7 86.2 97.7 98.9 100 97.7
A 19 19 13 11 28 12 35 17 23
Ar 17.4 18.5 11.2 10.4 26.2 10.9 30.9 15.4 21.7
HE 0.823 0.927 0.717 0.725 0.945 0.780 0.953 0.854 0.921
HO 0.807 0.857 0.565 0.718 0.907 0.718 0.942 0.816 0.859
HW 0.0613 0.3379 0.0011 0.0886 0.3200 0.0873 0.0680 0.1800 0.0166
FIS (0.060) 0.020 0.076 0.213 0.010 0.040 0.080 0.012 0.045 0.068

CEL (n = 85)
% scored 92.9 89.4 96.5 83.5 90.6 92.9 91.8 94.1 95.3
A 19 19 10 9 26 11 30 17 22
Ar 17.2 18.0 8.6 8.8 23.1 10.6 26.9 15.6 20.3
HE 0.836 0.902 0.636 0.736 0.915 0.740 0.942 0.826 0.902
HO 0.785 0.842 0.634 0.690 0.688 0.772 0.859 0.825 0.877
HW 0.0179 0.0104 0.3654 0.0331 0.0000* 0.0038 0.0105 0.3446 0.6927
FIS (0.062) 0.062 0.066 0.002 0.063 0.249 –0.044 0.088 0.001 0.028

ADR (n = 85)
% scored 98.8 98.8 100 84.7 100 97.6 100 100 100
A 14 26 10 11 22 20 33 15 10
Ar 13.0 24.1 9.2 10.6 19.4 18.1 28.7 14.1 8.7
HE 0.724 0.942 0.724 0.844 0.749 0.882 0.943 0.803 0.455
HO 0.690 0.929 0.506 0.833 0.706 0.735 0.894 0.729 0.388
HW 0.0021 0.1177 0.0002* 0.4476 0.0734 0.0019 0.3465 0.4068 0.0070
FIS (0.093) 0.047 0.015 0.303 0.013 0.058 0.168 0.052 0.092 0.147
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Sprat (Sprattus sprattus), small pelagic shoaling fish, were sampled from the Celtic, North, and Baltic seas, and 10 Norwegian fjords.
Significant overall genetic differentiation was observed among samples when analysed with eight microsatellite DNA loci (Global
FST ¼ 0.0065, p , 0.0001). The greatest genetic differences were observed between the Baltic and all other samples (largest pairwise
FST ¼ 0.043, p , 0.0001). No significant genetic differentiation was observed between a sample from the Celtic Sea (CEL) and the
North Sea (NSEA; FST ¼ 0.001, p ¼ 0.16), but variable levels of genetic differentiation were observed among samples collected
from Norwegian fjords (pairwise FST ranging from 0 to 0.0096, most non-significant). All fjord samples were significantly differentiated
to NSEA and CEL samples. Further, all fjord samples displayed reduced allelic richness compared with NSEA and CEL samples. Clearly,
sprat display population genetic differentiation throughout the Northeast Atlantic, and there may be limited connectivity between
Norwegian fjord and sea-going populations.

Keywords: fishery genetics, management, North Sea, pelagic fish, population genetics.

Introduction
The European sprat (hereafter referred to as sprat; Sprattus sprat-
tus) is a small, oily pelagic shoaling fish inhabiting the Baltic, the
Northeast Atlantic down to Morocco, and the northern
Mediterranean basins, as well as the Black Sea (see the ICES
FishMap for sprat). Northern Norway is the northernmost latitude
to which the species is distributed. The sprat has been and con-
tinues to remain important in marine fisheries, sustaining
catches between 100 000 and 200 000 t from the North Sea
(NSEA)–Skagerrak in the period 1996 to date (ICES, 2011).
Catch data for sprat before 1996 are considered unreliable
because of a large, but unknown, bycatch of juvenile herring
(Clupea harengus; ICES, 2011). The sprat fishery is largely oppor-
tunistic, and is often more influenced by the abundance of other
target species than by sprat abundance alone (ICES, 2009). A com-
mercial fishery targets sprat in the Norwegian fjords, yielding
annual catches of 8000–16 000 t in the 1960s, and a peak of
18 000 t in 1972. Thereafter, the catches declined steadily until
they stabilized at a low level in the 2000s (1400–3500 t annually;
Official statistics, Norwegian Directorate of Fisheries).

The translation of genetic data in fisheries management has not
been without its challenges (Waples et al., 2008). However, for
fully informed fishery management, it is necessary to quantify
and understand the level of population genetic structure displayed
within a given species. For example, is the commercial harvest con-
ducted on one or more populations, and do those populations

overlap in time and space? Marine fish, with their clear potential
for long-distance dispersal, were once regarded as having limited
population genetic structure, but it is increasingly evident that
there is significant population genetic structure. For instance, a
population structure has been observed in well-studied groundfish
such as Atlantic cod (Gadus morhua; Knutsen et al., 2003;
Pampoulie et al., 2006). Moreover, a population genetic structure
has been observed in such highly mobile pelagic species as mack-
erel Scomber spp. (Zardoya et al., 2004) and herring (Bekkevold
et al., 2005; Jørgensen et al., 2005).

The population genetic structure of sprat was first addressed in
two pilot studies using haemoglobin and allozyme genetic vari-
ation in Norway (Nævdal, 1968; Jørstad and Nævdal, 1981).
Among samples of sprat collected in Norwegian fjords, there was
some indication of population genetic structuring. However,
despite a suggestion that sprat in Norwegian waters possibly con-
sisted of two or more reproductively isolated populations, no geo-
graphic trend in genetic pattern was identified (Nævdal, 1968).
Looking at the broader range of the species, a mitochondria-based
phylogeographic study of sprat from the Baltic Sea to the Black
Sea, via the NSEA and the Mediterranean, revealed two major
clades, separated across the Strait of Sicily (Debes et al., 2008).
Recently, highly polymorphic microsatellite DNA markers have
been developed for sprat (Dailianis et al., 2008), and they have
been used to investigate the population genetic structure of sprat
across a salinity gradient from the inner regions of the Baltic Sea
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to the southern NSEA (Limborg et al., 2009). Those authors noted
a highly significant population genetic structure across the
environmental gradient between the Baltic Sea and the NSEA,
but at most a very weak structure within oceanic basins.

Sprat from the most northern region of its distribution, includ-
ing sprat within the Norwegian fjords, have to date not been sub-
jected to analysis with DNA markers. Given the fact that the region
has sustained a locally important fishery for this species, and that
some evidence of population genetic structure has been revealed
previously in pilot studies conducted in Norwegian fjords
(Nævdal, 1968; Jørstad and Nævdal, 1981), it was thought impor-
tant to investigate samples from the region with the newly devel-
oped microsatellite markers. Consequently, the aim of this study
was to investigate the population genetic structure of sprat, with
emphasis on the genetic relationship between the larger oceanic
populations, in the NSEA and Baltic Sea, and the sprat captured
in Norwegian fjords.

Material and methods
The study is based on the analysis of 1025 sprat collected from 14
locations (Table 1; Figure 1). Except Nordfjord and Baltic Sea
Gotland, all samples were taken in autumn and not during the
spawning season (spring to early summer). Sampling during a
spawning season represents the most robust approach to delineat-
ing population genetic structure, but most of the samples analysed
here were collected as part of the Institute of Marine Research’s
(IMR’s) scientific cruise for fjord sprats (see Table 1). In 2008,
nine samples (31–100 fish per sample) were collected from
seven Norwegian fjords. Data from the IMR cruise in
November–December 2008 confirmed that all fjord sprat ≤8 cm
were 0-year-olds, whereas larger sprat (≥8.5 cm) belonged to
the 1+ group. A further two samples from Norwegian fjords,
also taken on board IMR’s vessels, were collected in 2001
(Nordfjord) and in 2007 (West Fornebu). In addition to 11
fjord samples, samples of sprat were collected from commercial

vessels operating in the NSEA (2008) and the Celtic Sea (CEL;
2009; Figure 1). Finally, a subset of sprat constituting the Baltic
Sea Gotland (2006) sample from the study of the species in the
Baltic Sea (Limborg et al., 2009) was also included in the analyses.
Hereafter, source codes for the sprat samples are generally used, as
depicted in Table 1.

Genotyping
DNA was extracted in a 96-well format using the Qiagen DNeasy
kit. Each 96-well tray contained a minimum of two blank controls.
Eight dinucleotide microsatellite loci developed for sprat
(Dailianis et al., 2008) were amplified in two multiplex reactions:
Multiplex 1—Spsp047, Spsp077, Spsp170, Spsp202; Multiplex
2—Spsp219, Spsp133, Spsp256, Spsp275. These markers were
amplified using a slightly modified version (i.e. optimizing
primer concentrations and using different reagent suppliers) of a
protocol described previously (Dailianis et al., 2008). PCR frag-
ments were separated on an ABI 3730 sequencer and sized relative
to the Applied Biosystem GeneScanTM –500LIZTM size standard.
Alleles were scored using automatic binning implemented in the
Genemapper software (v4.0). Allele scoring was controlled inde-
pendently by two persons.

Statistical analysis
The program MSA (Dieringer and Schlotterer, 2003) was used to
compute summary statistics and values of the fixation index (FST; a
measure of genetic distance among populations). Genepop
(Raymond and Rousset, 1995) was used to test for deviation
from Hardy–Weinberg equilibrium (HWE) for all loci within
each sample. HWE is the state at which genotype frequencies in
a population remain stable. This was examined statistically by
Fisher’s exact test (dememorization 10 000; 100 batches; 5000 iter-
ations). The significance level was presented at a ¼ 0.05, in
addition to applying Bonferroni correction for multiple tests
(Rice, 1989). Genepop was also used to estimate observed (Ho)

Table 1. Locations, dates, and biological information relating to the sprat samples

Sample
Geographic

position Date
Sampling
method Biological information

Code Area North East Year Date Time, UTC Vessel Gear Sample (n) Mean L (cm) Mean W (g) 0-group (%)

Norwegian fjord samples
LYS Forsand, Lysefjord 58.92 06.09 2008 12 November 23:55 A A 100 12.4 12.5 0
HAR-1 Tyssedal, Sørfjord 60.14 06.56 2008 15 November 07:47 A A 100 9.6 5.2 0
HAR-2 Outer Sørfjord 60.41 06.67 2008 15 November 02:39 A A 48 6.2 1.1 100
NOR Nordfjord 61.85 05.85 2001 22 May 06:52 B A 75 13.6 15.9 0
OSL West Fornebu 59.89 10.59 2007 30 September – C B 99 12.2 13.7 0
SOG Skjolden, Sognefjord 61.49 07.59 2008 22 November 16:26 A A* 49 9.3 4.9 14
HOL Holandsfjord 66.71 13.63 2008 11 December 16:51 A A 31 11.1 7.9 0
TRH Stjørdalsfjord 63.47 10.86 2008 03 December 16:16 A A 80 11.1 9.1 0
HAR-3 Tittelsnes, Bømlafjord 59.74 05.56 2008 14 November 02:14 A A 80 6.5 1.7 100
FIN Rana, Finneidfjord 66.21 13.81 2008 13 December 06:11 A A 81 7.5 2.7 94
MEL Melfjord 66.61 13.58 2008 12 December 02:48 A A* 80 7.3 2.2 100

Sea samples
NSEA Southwest North Sea 53.75 01.50 2008 – – D – 94 – – –
CEL Southwest Celtic Sea 52.80 10.08 2009 08 October – D – 76 – – –
GOT Baltic Sea, Gotland 58.24 20.31 2006 May – D – 52 – – –

Gear: A, Harstad trawl with floats; A*, Harstad trawl without floats; B, beach-seine.
Vessel: A, “Håkon Mosby” (IMR vessel); B, “Michael Sars” (IMR vessel); C, “G. M. Dannevig” (IMR vessel); D, commercial vessel; Mean L and Mean W, mean
length and mean weight of sprat in that sample, 0-group (%), percentage of age-0 fish in the sample (the other component is fish aged 1+). “–”, not known
or not applicable.
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and expected (He) heterozygosities (i.e. the fraction of individuals
that are heterozygous in a population) and the inbreeding
coefficient FIS.

Estimates of neutral demographic processes can be biased if one
or more assumingly neutral genetic markers deviate from neu-
trality as a result of hitch-hiking selection (Neilsen et al., 2006).
Therefore, the program LOSITAN (Antao et al., 2008) was used
to test the loci for neutrality. This program utilizes an FST outlier-
detection method to identify loci that are potential candidates for
balancing or positive selection. To test for a general pattern of
reduced genetic diversity in all the more isolated fjord populations
compared with the assumed larger Atlantic populations (CEL and
NSEA), we applied the permutation test implemented in FSTAT
v2.9.3 (Goudet, 1995) to compare levels of allelic richness (RS)
between these groups. A one-sided test assuming reduced diversity
in fjord populations and using 2000 permutations was computed.

To identify any potential cryptic genetic variation within and
among samples, Bayesian clustering analysis, as implemented in

the program STRUCTURE 2.2 (Pritchard et al., 2000; Falush
et al., 2003), was used to assign individual fish to groups
without using prior information about their origin. Runs were
conducted for the number of putative populations (i.e. k), set at
1–5, each with five iterations. Correlated allele frequencies and
an admixture model were assumed. Each run consisted of a
burn-in of 250 000 Markov-chain Monte Carlo steps, followed
by 1 000 000 steps. MEGA (Tamura et al., 2007) was used to
produce phylogenetic trees using the UPGMA (unweighted pair
group method with arithmetic mean) method on matrices of pair-
wise FST values. The trees were linearized assuming equal evol-
utionary rates in all lineages (Takezaki et al., 1995).

Results
Dataset and HWE
From in all 8200 genotypes potentially scored (8 loci × 1025
samples), .95% genotyping coverage was achieved. Fish

Figure 1. Locations of sprat sample collection used for this study. For further detail, see Table 1.
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displaying genetic data for three or fewer loci were excluded from
statistical analyses.

From a total of 112 tests (all loci in all samples), 37 significant
deviations from HWE were observed at p ¼ 0.05 (Table 1). When
adjusted for Bonferroni correction (8 loci; critical p ¼ 0.006), 21
tests remained significant. These were unevenly distributed, with
three loci responsible for most of the deviations: Spsp077 ¼ 7,
Spsp133 ¼ 8, Spsp275 ¼ 2 (all other markers yielded one or
fewer deviations post-correction). These deviations are most
likely caused by null alleles, as reported previously for these
markers (Limborg et al., 2009). Consequently, all statistical ana-
lyses were conducted on the full set of eight markers in addition
to the subset of five markers excluding those displaying extensive
deviation from HWE.

Looking specifically at samples, HWE was distributed unevenly
among them, with the HOL and FIN samples displaying no devi-
ations at p ¼ 0.05, and the HAR-3, OSL, and HAR-1 samples each
displaying deviation from HWE in four markers at p ¼ 0.05.
Following Bonferroni correction and removal of the three loci
deviating extensively from HWE, only a single deviation observed
in the OSL sample remained.

Within-sample genetic variation
All samples displayed a high degree of allelic variation in all loci,
ranging from a low of eight alleles in the Baltic Sea sample for
locus Spsp170 to a high of 42 alleles in the NSEA, OSL, and
HAR-1 samples for locus Spsp219. The total number of alleles
observed for all eight loci pooled ranged from a low of 125 in
the Gotland Basin (GOT) sample from the Baltic Sea to 209 in
the NSEA sample.

Allelic richness, which partially corrects for the differences in
sample size biasing allelic diversity estimates, modified the
observed trend slightly, although the GOT (107) and the NSEA
(146) samples still represented the samples with least and greatest
allelic diversity in the dataset, respectively. Samples taken from the
Norwegian fjords were similar in allelic richness to each other.
Allelic richness in the fjord populations (RS ¼ 16.2) was

significantly reduced compared with the group of two Atlantic
samples (i.e. CEL and NSEA; RS ¼ 17.5, p ¼ 0.012).

Expected heterozygosity (pooled over all eight loci) displayed
little variation among samples, ranging from 0.82 in the Baltic
Sea sample to 0.89 in the NSEA and SOG samples. The inbreeding
coefficient FIS (pooled over eight loci) displayed positive values in
all samples except the Baltic Sea and Holandsfjord samples (both
20.02). The positive FIS values were quite large for some samples,
suggesting too few heterozygotes. When computed for the reduced
set of five loci (excluding Spsp077, Spsp133, and Spsp275), FIS

values decreased markedly and the observed heterozygosities per
sample were much closer to the expected ones (Table 2).

Among-sample genetic differentiation
Overall, significant genetic differentiation was observed among the
14 samples (8 loci global FST ¼ 0.0065, p ¼ 0.0001; 5 loci global
FST ¼ 0.0062, p ¼ 0.0001). Loci displayed variable global FST

values: Spsp047 ¼ 0.004, p , 0.0001; Spsp077 ¼ 0.0004, p ¼
0.27; Spsp170 ¼ 0.011, p , 0.0001; Spsp202 ¼ 0.014, p , 0.0001;
Spsp133 ¼ 0.004, p ¼ 0.018; Spsp219 ¼ 0.0015, p ¼
0.007; Spsp256 ¼ 0.0016, p ¼ 0.087; Spsp275 ¼ 0.016, p ,

0.0001. Following tests of neutrality using the program
LOSITAN, the locus Spsp275 was identified as a potential candi-
date for positive selection. Of the five loci included in the
reduced set of markers conforming to HWE, informative loci
still remained.

Pairwise FST values computed using all eight loci, and the
subset of five loci, revealed variable and, in some instances,
highly significant differences among samples (Table 3). In both
cases, the sample originating in the Baltic Sea displayed the greatest
differentiation of any sample (highest eight loci pairwise FST ¼

0.038, GOT vs. HOL; highest five loci pairwise FST ¼ 0.043,
GOT vs. HOL). Although small differences in relationships
among samples were observed for the datasets including eight
and five loci, the overall pattern of relationships was largely
similar (Figure 2). Specifically, the GOT sample from the Baltic
Sea was most distinct, the samples from the CEL and the NSEA
clustered together, and differences among fjord samples were

Table 2. Within-sample genetic diversity parameters

Sample n

Data from eight loci Data from five loci

At AtLR Ar Ho He FIS HWE Ho He FIS HWE

LYS (1) 100 195 14–39 132 0.80 0.87 0.09 3 (2) 0.86 0.89 0.02 1 (0)
HAR-1 (2) 99 196 13–42 134 0.81 0.87 0.07 4 (1) 0.86 0.88 0.02 1 (0)
HAR-2 (3) 41 134 10–30 129 0.83 0.87 0.04 0 (0) 0.85 0.86 0.02 0 (0)
NOR (4) 74 186 12–37 135 0.81 0.87 0.08 3 (2) 0.89 0.89 0.00 0 (0)
OSL (5) 90 192 14–42 136 0.81 0.87 0.07 4 (3) 0.87 0.88 0.02 1 (1)
SOG (6) 49 150 10–30 130 0.81 0.89 0.09 3 (1) 0.87 0.88 0.01 0 (0)
HOL (7) 31 130 10–25 130 0.88 0.87 20.02 0 (0) 0.92 0.87 20.06 0 (0)
TRH (8) 80 193 11–40 139 0.80 0.88 0.09 3 (1) 0.85 0.89 0.05 1 (0)
HAR-3 (9) 80 173 11–34 129 0.78 0.87 0.11 4 (4) 0.83 0.88 0.05 1 (1)
FIN (10) 79 185 12–37 133 0.80 0.88 0.09 4 (2) 0.87 0.89 0.02 1 (0)
MEL (11) 80 190 11–39 138 0.80 0.88 0.09 3 (2) 0.86 0.88 0.03 0 (0)
NSEA (12) 94 209 13–42 146 0.79 0.89 0.11 3 (2) 0.84 0.89 0.05 0 (0)
CEL (13) 76 194 12–40 143 0.83 0.88 0.06 2 (1) 0.88 0.90 0.02 0 (0)
GOT (14) 52 125 8–26 107 0.84 0.82 20.02 1 (0) 0.86 0.81 20.06 1 (0)

n, number of fish analysed per sample (note, these values do not necessarily match those in Table 1 because some fish were not used for DNA analysis); At,
total number of alleles observed; AtLR, range in total number of alleles per locus; Ar, allelic richness based upon sampling 28–31 fish per locus; Ho, observed
heterozygosity; He, expected heterozygosity; FIS, inbreeding coefficient; HWE, number of deviations from HWE, with data following Bonferroni correction for
multiple tests in parenthesis.
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smaller (although not without exception), largely non-significant
(Table 3), and significantly different from the CEL, NSEA, and
GOT samples.

Bayesian clustering analysis failed to detect any significant
genetic differentiation among samples, or any cryptic genetic
structure (data not presented).

Discussion
This is the first DNA-based population genetic analysis comparing
sprat sampled in Norwegian fjords, the species’ most northern dis-
tribution, and the surrounding seas. Although statistically signifi-
cant population genetic structure was observed throughout the
sampling range, only weak evidence of population genetic struc-
ture was observed among the samples collected in different
Norwegian fjords. The sample from the GOT displayed the
largest genetic differences of all samples, with the next largest
genetic differences originating in various combinations of fjord
samples compared with either the NSEA or CEL samples. The
last two samples were not statistically different from each other.
Together, these data show that sprat display distinct, and statisti-
cally significant, population genetic differentiation among the
three major regions sampled here: the Norwegian fjords, the
NSEA and CEL, and the Baltic Sea, represented by a single
sample from the GOT.

The sample originating in the GOT displayed the lowest genetic
diversity, estimated by the total number of alleles pooled over eight
loci. Further, that sample displayed the lowest allelic richness,
which compensated for the bias of allelic diversity estimates
between samples consisting of different numbers of fish. This
observation is consistent with the results of Limborg et al.
(2009), who inferred a general trend of reduced allelic richness
for Baltic Sea samples compared with a sample from the NSEA.
Looking to Norwegian fjord samples, all displayed a lower allelic
richness than either NSEA or CEL samples (Table 2). It has been
concluded before from mtDNA analyses (Debes et al., 2008) and
microsatellite analyses (Limborg et al., 2009) that the lower
genetic diversity in Baltic sprat compared with NSEA sprat
could reflect relatively recent colonization of the region. It is poss-
ible too that a similar mechanism is responsible for the lower
allelic richness in the Norwegian fjord samples compared with
the NSEA samples.

Only small and mostly insignificant genetic differences were
observed among the samples of sprat collected in Norwegian
fjords, but relatively large and statistically highly significant

Table 3. Pairwise FST values among 14 samples of sprat (bottom left matrix), and associated p values (upper right matrix), based on data
from eight microsatellite loci

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LYS (1) 0.0001 0.014 0.002 0.0001 0.038 0.004 0.0001 0.36 0.0004 0.0001 0.0001 0.0001 0.0001
HAR-1 (2) 0.0054 0.14 0.31 0.012 0.043 0.034 0.54 0.44 0.26 0.28 0.0001 0.0001 0.0001
HAR-2 (3) 0.0046 0.0018 0.022 0.18 0.38 0.44 0.12 0.93 0.1 0.010 0.0001 0.0001 0.0001
NOR (4) 0.0046 0.0005 0.0044 0.002 0.14 0.015 0.20 0.41 0.60 0.32 0.0001 0.0001 0.0001
OSL (5) 0.0096 0.0026 0.0015 0.0044 0.013 0.0006 0.16 0.063 0.017 0.0028 0.0001 0.0001 0.0001
SOG (6) 0.0028 0.0027 0.0005 0.0018 0.0041 0.074 0.13 0.58 0.65 0.23 0.0003 0.0001 0.0001
HOL (7) 0.0063 0.0038 0.0001 0.0053 0.0087 0.0036 0.48 0.39 0.008 0.055 0.0001 0.0001 0.0001
TRH (8) 0.0068 20.0002 0.0022 0.0009 0.0011 0.0017 20.0001 0.37 0.55 0.55 0.0001 0.0003 0.0001
HAR-3 (9) 0.0003 0.0001 20.0026 0.0002 0.0019 20.0004 0.0004 0.0003 0.51 0.31 0.0001 0.0001 0.0001
FIN (10) 0.0053 0.0006 0.0021 20.0004 0.0029 20.0007 0.0056 20.0003 20.0001 0.273 0.0002 0.0001 0.0001
MEL (11) 0.0058 0.0005 0.0054 0.0005 0.0040 0.0011 0.0036 20.0002 0.0005 0.0006 0.0001 0.0001 0.0001
NSEA (12) 0.0147 0.0089 0.0160 0.0080 0.0088 0.0066 0.0142 0.0071 0.0100 0.0058 0.0070 0.16 0.0001
CEL (13) 0.0158 0.0081 0.0184 0.0086 0.0094 0.0100 0.0133 0.0062 0.0101 0.0066 0.0075 0.0011 0.0001
GOT (14) 0.0243 0.0234 0.0219 0.0204 0.0186 0.0254 0.0375 0.0248 0.0221 0.0203 0.0250 0.0279 0.0284

Underlined values of p remain significant following Bonferroni correction for multiple testing (adjusted critical p ¼ 0.00055).

Figure 2. UPGMA diagrams showing genetic relationships among
the samples based upon a matrix of FST values computed using eight
(top) and five (bottom) loci.
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genetic differences were observed between all fjord samples and the
samples taken in the NSEA and the CEL. Together with the
reduced allelic diversity observed in all fjord samples compared
with the NSEA and CEL samples, it is our opinion that the data
indicate limited connectivity among sea-going sprat (in this
context referring to the sprat sampled in the CEL and NSEA)
and those found in Norwegian fjords. In turn, this could
provide a contributing factor to explaining why there has been a
historical decline in Norwegian fjord populations in the same
period that there has been a relatively stable catch of sprat in the
open seas (ICES, 2011).

A pilot study analysing haemoglobin genetic variation among
sprat sampled within Norwegian fjords revealed large genetic
differences among some pairs of samples (Nævdal, 1968). In
that study, it was concluded that sprat were probably represented
by at least two reproductively isolated spawning populations along
the Norwegian coastline. However, haemoglobin genotypes have
been linked with the growth rate in fish (Imsland et al., 2000),
although the relationship between genotype and phenotype is
not always clear (Jørstad et al., 2006). Therefore, inferring
evolutionary relationships among populations using haemoglobin
as the sole genetic marker needs to be done cautiously.
Importantly, the haemoglobin analyses reported by Nævdal
(1968) did not reveal any geographic pattern among samples of
sprat from the Norwegian fjords, and both the samples from the
haemoglobin-based and this study were almost exclusively taken
during the period when the fishery operated between autumn
and early winter as opposed to in the spawning season (spring
to early summer). It is therefore possible that any population
genetic structure among samples from the Norwegian fjords may
have been influenced by migration. This situation may also have
been complicated further by temporal variations in the influx of
larvae into fjords, resulting from spawning of the sprat popu-
lations in the NSEA, the Skagerrak, and the Kattegat. For
Atlantic cod off southern Norway, annual fluctuations in the pre-
vailing oceanographic conditions have been demonstrated to cause
variations in the local population genetic structure by varying the
component of larvae resulting from NSEA spawning and local cod
spawning (Knutsen et al., 2004).

Sprat spawning has been documented in Norwegian fjords
located on the west coast (Dannevig and Gundersen, 1954;
Torstensen, 1984). However, except fish caught in autumn in a
fishery targeting primarily age-1 sprat, and the acoustic fjord
cruise time series (1968–2008, mainly autumn to early winter),
there are limited data on the abundance of sprat within
Norwegian fjords over the year. Such demographic information
would be invaluable in interpreting the patterns of genetic struc-
ture revealed here, specifically because our samples were collected
outside the spawning season, when putative populations should be
aggregated. Certainly, the fact that only small and mostly statisti-
cally insignificant genetic differences were revealed among
Norwegian fjord samples, and that all these were highly differen-
tiated from all the other samples analysed here, including the
neighbouring NSEA, suggests that there may be considerable
gene flow and demographic connection among sprat along the
Norwegian coastline.

The only other analysis of sprat made with DNA markers found
significant statistical differentiation between sprat sampled in the
NSEA and the CEL (Limborg et al., 2009). This contrasts with
the results of the present study, in which no genetic differences
were observed between sprat sampled from these two areas. It is

not possible to elucidate fully the apparent disparity between
these two results, but it must be emphasized that the exact location
and time of year of the samples taken from these two areas were
different between the present study and that of Limborg et al.
(2009). Mixing different frequencies of partially separated popu-
lations on feeding grounds as opposed to distinct populations
aggregating during their spawning season may well lead to the dis-
parity between the results of this study and that of Limborg et al.
(2009).

Marine fish do not display population genetic structure only
over extensive distances, but also over short distances (e.g.
Knutsen et al., 2003). Nevertheless, one has to urge caution in
interpreting small but statistically significant genetic differen-
tiation, because other potential sources of variation, e.g. genotyp-
ing errors and non-representative sampling, become relatively
more important when the biological signal decreases (Nielsen
et al., 2009). Extensive temporal sampling permitted Knutsen
et al. (2011) to demonstrate that small-scale spatial genetic vari-
ation was more important than temporal variation in determining
the population genetic structure of cod in the fjords of southern
Norway. Hence, to elucidate fully the population genetic structure
of sprat among Norwegian fjords and between Norway and the
surrounding seas, it is essential that this study be expanded to
include extensive temporal sampling. First, within-year temporal
sampling, to examine the potential influence of spawning season
and the subsequent movements of these fish to and from regions
where they are targeted by fisheries in autumn, will be needed.
Further, sampling between years, to examine long-term stability
and the potential elucidating effects of pulses of larvae from
spawning taking place outside the fjords, i.e. drifting from spawn-
ing in the NSEA and/or the Skagerrak/Kattegat, will be needed.
Finally, expansion of the repertoire of genetic markers for this
species may be required to extract the best possible information
from the intensive sampling outlined above. Identification of a
resource of single-nucleotide polymorphism markers may
provide the necessary tools to achieve this. Selection of highly
informative markers from larger panels (Glover et al., 2010) may
reveal greater genetic differentiation when compared with small
suites of microsatellite markers. This may be especially true
when identifying markers under natural selection, permitting a
greater ability to delineate population structure on an ecological
time-scale that is of importance in the active implementation of
DNA-based methods in managing fisheries (Waples et al., 2008).
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Stenseth, N. Ch. 2004. Transport of North Sea cod larvae into the
Skagerrak coastal populations. Proceedings of the Royal Society of
London, Series B, 271: 1337–1344.

Knutsen, H., Jorde, P. E., André, C., and Stenseth, N. Ch. 2003.
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Abstract

Recent improvements in the speed, cost and accuracy of next generation sequencing are revolutionizing the discovery of

single nucleotide polymorphisms (SNPs). SNPs are increasingly being used as an addition to the molecular ecology toolkit

in nonmodel organisms, but their efficient use remains challenging. Here, we discuss common issues when employing

SNP markers, including the high numbers of markers typically employed, the effects of ascertainment bias and the inclu-

sion of nonneutral loci in a marker panel. We provide a critique of considerations specifically associated with the applica-

tion and population genetic analysis of SNPs in nonmodel taxa, focusing specifically on some of the most commonly

applied methods.
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Introduction

Recent improvements in the speed, cost and accuracy of

next generation sequencing (NGS) and advances in the

accompanying bioinformatic tools are revolutionizing the

opportunities for generating genetic resources in non-

model organisms. In turn, this is driving a shift from

anonymous markers such as microsatellites to direct

analyses of sequence variation including single nucleo-

tide polymorphisms (SNPs). This shift has evolved from

the initial uptake of such markers in humans and other

commercially important species, to their application in a

wide range of nonmodel species.

SNPs are attractive markers for many reasons (for

reviews see Brumfield et al. 2003; Morin et al. 2004),

including the availability of high numbers of annotated

markers, low-scoring error rates, relative ease of calibra-

tion among laboratories compared to length-based mark-

ers and the associated ability to assemble combined

temporal and spatial data sets from multiple laboratories.

Additionally, the potential for high-throughput geno-

typing improved genotyping results for poor quality

samples [such as historical, noninvasive or degraded

samples (Morin & McCarthy 2007; Smith et al. 2011)], a

simple mutation model, and the ability to examine both

neutral variation and regions under selection offers

unparalleled scope for expansive screening of genomes

and large sample sizes from natural populations.

Although several early studies questioned the advantage

of SNPs over neutral markers such as microsatellites (e.g.

Rosenberg et al. 2003), more recent studies have shown

that SNPs are also showing promise as highly informa-

tive markers, as many studies with access to very large

numbers of SNPs (mainly human) have shown that a

small fraction of the SNPs have a very high information

content for population structure analysis (e.g. Lao et al.

2006; Paschou et al. 2007), outperforming microsatellites

(Liu et al. 2005). Despite microsatellites typically display-

ing far greater allelic diversity per locus, individual SNPs

can segregate strongly among populations (Freamo et al.

2011; Karlsson et al. 2011).Correspondence: S.J. Helyar, Fax: 01248 370731;

E-mail: s.helyar@bangor.ac.uk
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Although SNPs are increasingly being used as an

addition to the molecular ecology toolkit, their use as a

standard tool in nonmodel organisms remains challeng-

ing, with debate over how to utilize them most effi-

ciently. A recent study by Garvin et al. (2010) reviewed

the technical aspects of SNP discovery and genotyping,

but there are also challenges associated with the analysis

of SNP data. These concerns vary depending on the

questions being addressed: some specific issues have

been covered in other papers (e.g. parentage assignment,

Anderson & Garza 2006; Hauser et al. 2011; power

assessment, Morin et al. 2009; development of linkage

maps, Ball et al. 2010 and relatedness, Krawczak 1999).

However, an overview of the considerations specifically

associated with the application of SNPs and their

appropriate analysis in population genetic studies of

nonmodel organisms appears timely. We focus specifi-

cally on some of the most commonly applied methods

and first discuss the challenges common to all analyses;

problems arising from the dramatic increase in the num-

ber of markers that are available, the effects of ascertain-

ment bias and the inclusion of nonneutral loci in a

marker panel.

Number of loci

Using SNP data to analyse population structure is theo-

retically straightforward, but until recently a major obsta-

cle was the identification of software that could handle

large data sets. However, for many of the standard analy-

ses, such as basic descriptive statistics, authors have

modified their software to accept several thousand loci

(see Table 1). Nevertheless, many packages are still lim-

ited by either the number of loci or the sum of individu-

als · loci that can be analysed. Additional problems may

also arise when using some analytical methods that are

computationally intensive, such as Bayesian MCMC

methods. While such software may accept very large data

sets, the time taken for a standard desktop computer to

conduct the analysis may be prohibitive.

Ascertainment bias

Ascertainment bias is the systematic deviation from the

expected allele frequency distribution that occurs

because of the sampling processes used to find (ascertain)

marker loci. In SNPs, this may occur as the markers are

generally identified in a small panel of individuals from

part of the species’ range (ascertainment width). Like-

wise, only SNPs occurring more than a predefined num-

ber (k) of times in the ascertainment sample are included

(ascertainment depth). When these SNPs are then geno-

typed on a larger sample of individuals, an ‘ascertain-

ment bias’ is introduced (Nielsen 2000; Albrechtsen et al.

2010). Because of the small size of the ascertainment

panel (compared to the population), the probability that

a SNP is identified in this panel is a function of its minor

allele frequency (MAF), i.e. SNPs with a very low MAF

are less likely to be discovered than those with a higher

MAF.

Ascertainment bias may compromise analyses based

on diversity measures, for example, any statistical mea-

sure that relies on allele frequency may be affected.

Because there is a bias towards not sampling rare SNPs,

the average diversity of polymorphic sites is overesti-

mated, while the average diversity across all sites is

underestimated. This may lead to a bias in estimates of

nucleotide diversity, population size, demographic

changes, linkage disequilibrium, selective sweeps and

inferences of population structure (Nielsen 2000; Schlöt-

terer & Harr 2002; Akey et al. 2003; Nielsen & Signorov-

itch 2003; Marth et al. 2004; Rosenblum & Novembre

2007; Storz & Kelly 2008; Guillot & Foll 2009; Chen et al.

2010; Moragues et al. 2010). The size and direction of the

bias depend on the sampling strategy used for the ascer-

tainment panel; for example, studies on both humans

and Drosophila suggest that genetic diversity will be

underestimated if individuals from the ancestral popula-

tion range are not included in the ascertainment panel

(Schlötterer & Harr 2002; Romero et al. 2009). However, a

panel based on purely ancestral (African) Drosophila did

not underestimate the diversity in the European popula-

tions. Moreover, a study by Rosenblum & Novembre

(2007) that examined a spatially structured population of

lizards found that choosing individuals at random from

across the geographical range minimized the resulting

bias. However, some studies with small ascertainment

panels are not addressing these issues (e.g. Kerstens et al.

2009; Li et al. 2010).

Three main approaches have been used to address

and correct for ascertainment bias in studies of natural

populations: (i) the application of more robust methods,

such as those based on haplotype structure (e.g. Sabeti

et al. 2007, however, this requires a full genome as refer-

ence), (ii) the simulation of data based on the ascertain-

ment process to derive appropriate critical values and

confidence intervals taking the ascertainment into

account (e.g. Carlson et al. 2004; Voight et al. 2006) and

(iii) the direct correction of the statistical estimators and

statistics using specific models (e.g. Nielsen 2000; Wake-

ley et al. 2001; Nielsen & Signorovitch 2003; Polanski &

Kimmel 2003; Marth et al. 2004; Nielsen et al. 2004;. Also

see Table 1). However, a major restriction is that the cor-

rection of the allele frequency spectrum restricts down-

stream analyses to corrected summary statistic data

(allele frequencies) with the loss of the observed individ-

ual genotypes that are needed for many applications

(e.g. determining population structure, individual
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Table 1 Computer software used for the most common aspects of population genetics

Programme Functions

Maximum

number of loci

Maximum

number of

individuals Reference and web address

PEAS v1 Multiple data

manipulation and

summary statistics

None None Xu et al. (2010).

http://www.picb.ac.cn/~xushua/index.files/

Download_PEAS.htm

Data manipulation includes file conversion for

other population genetics programmes

SNPator Multiple data

manipulation and

summary statistics

None None Morcillo-Suarez et al. (2008). http://

www.snpator.org/public/downloads/

aRamirez/tajimasDCorrector/

POPGENE Multiple summary

statistics

1000 1400 pops ⁄ 150

groups

http://www.ualberta.ca/~fyeh/

Arlequin 3.5* Multiple summary

statistics

None None Excoffier & Lischer (2010).

http://cmpg.unibe.ch/software/arlequin35/

Genepop v4 Multiple summary

statistics

None None Rousset (2008).

http://kimura.univ-montp2.fr/~rousset/

Genepop.htm

popgen† Multiple None None http://mathgen.stats.ox.ac.uk/software.html

FSTAT2.9.4 Multiple summary

statistics

10 000 200 Goudet (1995).

http://www2.unil.ch/popgen/softwares/

fstat2.9.4_10kloc_9all_200pops.zip

HIERFSTAT† F-statistics None None Goudet (2005).

http://www.unil.ch/popgen/softwares/

hierfstat.htm.

GenAlEx6.4 Multiple summary

statistics

127

or 8192‡

65 500 Peakall and Smouse (2006).

http://www.anu.edu.au/BoZo/GenAlEx/

index.php

Genetix4.05 Multiple None None http://www.genetix.univ-montp2.fr/genetix/

genetix.htm

AscB† Correction for

Ascertainment

Bias

None None Guillot & Foll (2009)

http://www2.imm.dtu.dk/~gigu/AscB/

trueFS Correction for

Ascertainment

Bias

None None Nielsen et al. (2004).

http://people.binf.ku.dk/rasmus/webpage/

truefs.html

Plink1.07§ Multiple None None Purcell et al. (2007).

http://pngu.mgh.harvard.edu/purcell/plink/

DetSel Outlier locus

detection

None None Vitalis et al. (2003).

http://www.genetix.univ-montp2.fr/detsel.html

FDIST2 Outlier locus

detection

None None Detection of loci under selection from hierarchical

F-statistics, implemented in Arlequin (see above)

BAYESFST¶ Outlier locus

detection

None None Beaumont & Balding (2004).

http://www.reading.ac.uk/Statistics/genetics/

software.html

LOSITAN Outlier locus

detection

None None Antao et al. (2008)

http://popgen.eu/soft/lositan/

BayeScan Outlier locus

detection

None None Foll & Gaggiotti (2008).

http://www-leca.ujf-grenoble.fr/logiciels.htm

matSAM v2 Outlier locus

detection

None None Joost et al. (2008).

http://www.econogene.eu/software/sam/

Structure 2.3.3 (Spatial) Genetic

Structure

The maximum data set size around 100

million genotypes (loci · ind.)**††

Pritchard et al. (2000).

http://pritch.bsd.uchicago.edu/structure.html

PCAGEN Genetic Structure 50 5000 ind.

500 pops

http://www2.unil.ch/popgen/softwares/

pcagen.htm
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assignment, multilocus heterozygosity estimates, mixed

stock analysis).

The generation of more and longer reads will eventu-

ally lead to the next step in SNP genotyping, where indi-

viduals are directly (single track) sequenced, followed by

a high-confidence assembly and phasing of sequence

reads [using for example; Phase (Stephens et al. 2001),

FastPhase (Scheet & Stephens 2006), Shape-IT (Delaneau

et al. 2008)]. Alternatively, the genotyping-by-sequencing

approach, used for instance in RAD sequencing, com-

bines the power of high throughput sequencing and

large-scale polymorphism genotyping in one step (for a

limited number of individuals) significantly reducing the

problem of ascertainment bias (Baird et al. 2008; Hohen-

lohe et al. 2010).

However, as NGS data is likely to remain the basis of

SNP development for the foreseeable future (see conclu-

sions), and considering the inherent properties of newly

developed SNPs, ascertainment bias is likely to remain a

problem in the near future and may lead to incorrect pop-

ulation genetic inferences. Consequently, attempts must

be made both to minimize the effects by careful design of

the ascertainment panel. This can be achieved by the geo-

graphical sampling of multiple individuals, the tagging

of individuals used in the sequencing for later geno-

type ⁄ haplotype reconstructions and a sufficient sequenc-

ing depth for in silico frequency spectra to be assessed

before final SNP genotyping (for instance, by combining

long (454 Roche) and short (ABI, Illumina) read sequenc-

ing runs for reference assembly and SNP discovery,

Table 1 Continued

Programme Functions

Maximum

number of loci

Maximum

number of

individuals Reference and web address

adegenet† Genetic Structure None None Jombart (2008).

http://adegenet.r-forge.r-project.org/

Geneland† Spatial Genetic

Structure

None** None** Guillot & Santos (2009).

http://www2.imm.dtu.dk/~gigu/Geneland/

TESS 2.3 Spatial Genetic

Structure

None** None** Chen et al. (2007).

http://membres-timc.imag.fr/Olivier.Francois/

tess.html

BAPS Genetic Structure None** None** Corander et al. (2008).

http://web.abo.fi/fak/mnf/mate/jc/

smack_software_eng.html

GESTE Genetic Structure None** None** Foll & Gaggiotti (2006).

http://www-leca.ujf-grenoble.fr/logiciels.htm

GeneClass2 Assignment None** None** Piry et al. (2004).

http://www.ensam.inra.fr/URLB/GeneClass2/

Setup.htm

WHICHLOCI Locus selection None** None Banks et al. (2003).

http://www.bml.ucdavis.edu/whichloci.htm

GAFS 1.1 Locus selection None** None Topchy et al. (2004).

http://www.fw.msu.edu/~scribne3/

molecularecology/programs.htm

BELS Locus selection None** None Bromaghin (2008).

http://alaska.fws.gov/fisheries/biometrics/

programs.htm

*Although Arlequin is not an R package, the latest version interfaces with R to produce the graphs.

†An R package. Additional packages may be found at http://cran.r-project.org/web/views/Genetics.html

‡The number of loci is dependant of the version of excel that you use, for pre-2007 as the number of columns in Excel was 256, but this

has increased in Excel 2007 to 16 384 columns. For versions of GenAlEx 6.3 onwards, users are given the choice of installing either

GenAlEx6.3.xla or GenAlEx 6.3 for 2007.xla. Both versions will run in Excel 2007, but to take advantage of full compatibility with

Excel 2007 you should instal the Excel 2007 specific option.

§Extensible with via R function plug-ins.

¶R scripts also available on the website.

**While the are no physical constraints on the numbers of loci or individuals that can be submitted to this programme, the number of

permutations that may needed for the computation of some options may make the calculation prohibitive on a standard desktop

computer.

††The authors suggest reducing the data set for the exploratory analysis. Additionally, for large data sets, the default settings for

BURNIN and NUMREPS can be reduced, without affecting the accuracy.
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respectively). Accounting for the bias in the resulting

data with the use of up to date statistical and simula-

tion ⁄ modelling tools will allow the robustness of results

to be assessed, despite assumption violations (Balzer

et al. 2010). However, as explored in more detail in the

following sections, ascertainment bias need not always

pose a problem.

Nonneutral loci

The availability of thousands of genetic markers rein-

forces the need for careful evaluation of the markers used

for a specific population genetic study, as markers in

genic and nongenic regions may generally differ with

respect to basic properties such as levels of variation and

population differentiation, which will affect the outcome

of downstream analyses. In genome-wide association

(GWA) studies in humans, it has been found that SNPs in

genic regions are more likely to display signatures of

both positive and negative selection than those in non-

genic regions (Barreiro et al. 2008; Coop et al. 2009) and

that genetic variation is generally lower in gene-rich

regions (Cai et al. 2009). While the degree that these find-

ings apply to nonmodel organisms remains unknown,

they do indicate that markers situated in or close to genes

may not provide a representative picture of genome-

wide effects of neutral evolutionary forces. Additionally,

genomes contain gene regulatory networks (GRNs) that

are highly conserved regions within the noncoding DNA

(Davidson et al. 2002; Woolfe et al. 2005); this implies

both that these regions will not be identified by transcrip-

tome sequencing and also that there are sections of non-

coding DNA that are under selection.

SNPs represent the most widespread type of sequence

variation in genomes, and the combination of the contin-

uing decrease in costs for NGS and new efficient method-

ologies, such as RAD-tag sequencing (e.g. Miller et al.

2007; Baird et al. 2008) and RRS (reduced representation

sequencing—e.g. Castano-Sanchez et al. 2009), is showing

great promise for fast, efficient SNP detection in nonmod-

el species. While there are methods that can preferen-

tially target noncoding regions (e.g. EPIC markers,

Palumbi & Baker 1994), there are also increasing

expressed sequence tag (EST) resources available for

many taxa, increasing the likelihood that many SNP loci

that are being developed will be located either within or

very close to coding regions. However, it is now thought

that animal genomes are pervasively transcribed

(Ponting et al. 2009) with a large number of noncoding

transcripts being polyadenylated, which will therefore be

included in EST collections. Consequently, the

representation of the genome might be larger and have

fewer constraints on sequence variability than previously

thought.

For some applications, this potential bias in genome

coverage has been highlighted as an advantage, if for

example, the aim is to identify candidate genes under

selection (Bonin 2008; Brieuc & Naish 2011; Hemmer-

Hansen et al. 2011 and also see the discussion in the sec-

tion ‘Detection of Outliers’ below). However, issues

could arise if the purpose of a study is to make general

inferences about neutral evolutionary processes, such as

genetic drift and gene flow. In such cases, markers under

selection should be removed prior to analyses (Beaumont

& Nichols 1996), as they may bias results significantly

(see also discussion in Laval et al. 2010 and below). On

the other hand, markers under selection could be

exploited for specific purposes, such as investigating

population structure on ecological rather than evolution-

ary timescales (Waples & Gaggiotti 2006), and for

increasing the power for assigning individuals to popula-

tions of origin (Nielsen et al. 2009b).

With these caveats in mind, we now review the appli-

cation of the most common analytical methods in popula-

tion genetics to SNP data, paying special attention to the

significant issues described, particularly how ascertain-

ment bias and nonneutral loci affect analyses and how

such effects can be addressed. Finally, we highlight sali-

ent priorities for further research in the integration of

SNPs into molecular ecology.

Population genetic data analyses

Measures of genetic differentiation and population
structure

With the ever increasing opportunities for SNP mining in

nonmodel species, it is becoming increasingly evident

that the apparent shortcomings of individual SNPs to

detect population structure compared to microsatellites

(Rosenberg et al. 2003) can be overcome by the relative

ease with which large numbers of SNP markers can be

developed and screened. The statistical power to detect

population structure is related to the total number of

alleles examined, and the discriminatory power of �100

(neutral) SNPs is very roughly equivalent to 10–20 micro-

satellites (Kalinowski 2002). Moreover, the most informa-

tive SNP markers (i.e. those that show the greatest allele

frequency variation among populations) in a panel may

rival (or even exceed) the average information content of

microsatellite markers (e.g. Liu et al. 2005; Smith et al.

2007). Using SNP markers to investigate population

structure is theoretically straightforward, and most stan-

dard population genetic software packages allow for

inclusion of large numbers of loci. However, there are

also practical considerations, as some (especially Bayes-

ian) methods are computationally intensive and may

have problems handling very large data sets.
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Wright’s F-statistics are arguably the most com-

monly used descriptive statistics in population and

evolutionary genetics (Wright 1931). As their original

development, many related statistics have been

described either as improvements or for specific appli-

cations, for example, for microsatellite data (GST, h,

and RST), sequence data (FST) and for quantitative

traits (QST) (see Holsinger & Weir 2009 for a review).

One issue that has caused much debate is how to

compare diversity estimates among markers, with

much focus on the effect of differing mutation rates

and levels of heterozygosity between highly polymor-

phic markers, such as microsatellites, and less variable

markers, such as allozymes and SNPs (Waples &

Gaggiotti 2006; Allendorf & Luikart 2007). In 2005,

Hedrick proposed the new statistic G’ST to provide a

measure of differentiation that allows comparison

among loci with different levels of genetic variation,

such as among microsatellites, or between different

marker types, such as allozymes ⁄ SNPs and microsatel-

lites; measures such as this and the more recent DEST

(Jost 2008) are increasingly being used (e.g. De Carv-

alho et al. 2010; White et al. 2010). However, G’ST has

also been criticized as uninformative when migration

is not expected to be negligible (Ryman & Leimar

2008). Mutation rates are in general considerably lower

for SNPs than for microsatellites (Foll & Gaggiotti

2008; Excoffier et al. 2009), and more importantly while

the expected locus-specific heterozygosity may reach

more than 0.95 for a microsatellite marker, the maxi-

mum expected heterozygosity that can be reached by

a bi-allelic SNP is 0.5. Such constraints mean that sin-

gle locus FST estimates derived from SNP markers are

likely to be more comparable than those derived from

microsatellite loci. Many of the most frequently used

programmes for calculating FST and related statistics

have recently extended their capacity for numbers of

loci and samples (details shown in Table 1).

Within human genetics, large-scale GWA studies are

increasingly focusing on the population genetics of the

samples, as unidentified structure may lead to spurious

associations between traits and markers ⁄ genes. While

such factors have enhanced the development of some

SNP-specific software, such as Plink (Purcell et al. 2007),

it has yet to be seen how applicable these are to more tra-

ditional population genetic approaches in nonmodel

organisms.

In nonmodel species, global and pairwise FST values

are typically estimated over all loci; as all markers are

assumed to be effectively neutral, there should not be

any major inconsistencies between loci. However, when

loci are potentially under different selective pressures the

estimates may be different for each locus, requiring per

locus estimates. Xu et al. (2009) proposed a new measure

of population structure specifically for SNPs. It is based

on the c parameter (Nicholson et al. 2002), which is popu-

lation-specific and measures the differentiation of the

population from the common ancestral population. In

contrast, the new measure C is an index of the overall lev-

els of population structure across populations. Extensive

simulations in Xu et al. (2009) show that C takes into

account ascertainment bias and correlates well with

Wright’s FST. The correlation increases with increasing

information (more SNPs and ⁄ or more subpopulations in

the samples).

Clustering algorithms such as Bayesian MCMC clus-

tering approaches are frequently utilized in genetic

analyses. These methods define populations by mini-

mizing departures from Hardy–Weinberg and maxi-

mizing linkage equilibrium. Clustering analyses can be

performed independently of spatial information or be

linked analytically to spatial and ⁄ or environmental

parameters; the latter commonly termed ‘landscape

genetics’ (Guillot et al. 2009). Genetic clustering and

analyses of spatial structure can be based on neutral

marker variation, on markers under selection or on a

combination, with the last of these commonly being

of particular interest in many EST-derived SNP

approaches. User-friendly software for conducting such

analyses includes Structure (Pritchard et al. 2000), BAPS

(Corander et al. 2008), GESTE (Foll & Gaggiotti 2008)

and Geneland (Guillot et al. 2005), the current versions

of which all allow for the inclusion of larger numbers

of loci (see Table 1). However, the assumptions of no

linkage disequilibrium between markers common to

many of these applications are likely to be violated

with denser SNP coverage ⁄ representation across chro-

mosomal regions, although some applications do allow

the inclusion of linkage information (Falush et al. 2003).

Including a relatively low number of markers in link-

age disequilibrium is not likely to bias estimates of

population differentiation, but may lead to overesti-

mates of clusters (Kaeuffer et al. 2007). However, the

effects of including markers with different levels of

linkage disequilibrium on estimates of cluster numbers

and divergence are not well described. As an alterna-

tive to Bayesian clustering, principal component analy-

sis (PCA) and related approaches have been applied in

several SNP studies of human population structure

(Patterson et al. 2006). An advantage of PCA-based

approaches, compared to Bayesian methods, is that

PCA can be performed quickly on desktop computers.

PCA approaches also facilitate the identification of sub-

sets of markers that effectively describe differences

among populations (Paschou et al. 2007), and it has

even been argued that PCA outperforms Bayesian

methods for inferring population structure when many

loci are available and the structure is subtle (Reeves &

Molecular Ecology Resources (2011) 11 (Suppl. 1), 123–136

� 2011 Blackwell Publishing Ltd

128 S . J . H E L Y A R E T A L .

93



Richards 2009). However, PCA methods are sensitive to

missing data and sampling effects, especially for spe-

cies and populations with continuous distributions (No-

vembre & Stephens 2008), which can limit inference

about underlying historical and demographic processes

[although ways of circumventing these problems have

been proposed for SNP data (Paschou et al. 2007)].

SNP-based estimates of population structure are

potentially affected by ascertainment bias if the SNP

panel used was developed for populations (or species)

other than those analysed (Nielsen 2000). Nonetheless,

few statistical assessments of the effect of ascertainment

bias on fundamental measures such as FST estimates

have been reported (although see Schlötterer & Harr

2002; Albrechtsen et al. 2010; and Moragues et al. 2010).

Including information for loci either under directional

or balancing selection themselves or loci tightly linked

to regions under selection leads to violation of assump-

tions for most neutral population genetic models and

may cause erroneous inference about population demo-

graphic parameters, such as rates of genetic drift and

migration between individual demes. Several reports of

population structure based on presumably neutral mar-

ker information are likely to (unknowingly) have incor-

porated nonneutral markers (Nielsen et al. 2006). In

weakly structured species, the effect of just a few loci on

overall patterns could be significant, but provided

selected loci make up only a small proportion of the

total marker number, biological inference is not gener-

ally expected to be severely biased (Luikart et al. 2003).

Nonetheless, with SNP markers often developed from

transcriptomic sequencing, the dramatic increase in gen-

ome coverage implies that some proportion of the mark-

ers are likely to be linked to genes ⁄ regions under

selection, making it of paramount importance to test for

marker ‘neutrality’ prior to exploring population struc-

ture (for example, by using outlier tests as outlined in

the section below). Studies that combine information

from neutral and nonneutral markers in analyses of

population structure and estimation of demographic

parameters are still scarce for nonmodel organisms (for

examples see Gaggiotti et al. 2009; Nielsen et al. 2009a),

and there is a need for development of analytical tools

that allow integration across marker classes (Guillot

et al. 2009).

Detection of outliers

The search for signatures of selection in molecular data

has a long tradition in evolutionary biology. Most meth-

ods rely on the concept of genetic hitch-hiking (Maynard

Smith & Haigh 1974), where a marker is linked to a site

under selection, and although not the target of selection,

the ‘hitch-hiking’ marker fails to display patterns of

neutrality. For molecular markers, the methods to detect

outlier loci can be divided into two broad categories, the

first based on linkage disequilibrium between markers,

and the second based on differences in levels of genetic

variation and levels of genetic divergence between sam-

ples (see also Vasemägi & Primmer 2005).

Genome scan approaches (see Luikart et al. 2003 and

Storz 2005 for reviews) have now been applied to an

increasing number of nonmodel organisms (e.g. Ander-

son et al. 2005; Bonin et al. 2006; Hayes et al. 2007; Eveno

et al. 2008; Moen et al. 2008; Namroud et al. 2008; Nielsen

et al. 2009a), and this has generated insight into the pros

and cons to the various approaches for detecting markers

under selection in the wild.

Many nonmodel species still have little or no genomic

resources, and the location of SNPs within the genome is

therefore often unknown, rendering methods relying on

detailed analyses of linkage disequilibrium unfeasible.

Methods based on comparisons of genetic variation in

random sets of markers have been developed both for

microsatellites (Schlötterer 2002; Kauer et al. 2003; Marshall

& Weiss 2006) and SNP-based haplotypes (Voight et al.

2006; Sabeti et al. 2007); however, these do not seem to be

relevant for a relatively limited number of SNPs without

genomic information. In contrast, many methods based on

comparisons of levels of genetic divergence between

samples can be applied to markers where information

about genomic location is missing. Hence, these methods

appear better suited for studies in nonmodel species.

Most methods based on comparisons of divergence

among samples are based on the original Lewontin–

Krakauer test, which compares single locus estimates of

FST to an expected neutral distribution of FST (Lewontin

& Krakauer 1973). The original Lewontin–Krakauer test

is now rarely used, mainly because of concerns over its

performance when allele frequencies are correlated

between samples leading to an increased number of false

positives (Robertson 1975; Beaumont 2005). However,

several closely related methods have been proposed to

overcome the shortcomings of the original approach.

With a very large number of markers, it may be possible

simply to estimate the expected distribution of FST from

the markers themselves (e.g. Akey et al. 2002), but for

most nonmodel organisms, the available number of

markers is too limited and simulations must be used to

generate the neutral distribution. In these cases, the

model used for the simulations is crucially important, as

it will effect the identification of outlier loci. For instance,

Vitalis et al. (2001, 2003) developed a method (imple-

mented in DetSel) based on pairwise population compar-

isons of individual locus FST to a simulated distribution

of FST generated under a model of two fully isolated pop-

ulations descended from a common ancestral population.

Beaumont & Nichols (1996) developed FDIST2, which
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uses a classical island model to generate the expected

neutral distribution of FST estimates. While these meth-

ods remove the need to directly use genotyped markers

as the baseline, they do so indirectly by using the esti-

mated overall FST as a starting point for simulations.

Thus, including loci under selection in the initial FST esti-

mate may generate a bias in the simulated distribution.

Additionally, the models used for the simulation of data

in the two methods are unlikely to match most natural

situations, because many populations are significantly

connected through asymmetrical patterns of gene flow.

The two limitations above have been addressed in later

Bayesian methods based on logistic regression models of

locus and population effects on FST. Both BAYESFST

(Beaumont & Balding 2004) and BayeScan (Foll & Gag-

giotti 2008) allow FST to vary between populations and

identify loci potentially under selection through esti-

mates of locus effects on FST. The two methods are based

on the same basic regression model, but differ in the way

that the effect of selection is inferred. While BAYESFST

does not conduct a formal statistical test, BayeScan uses a

likelihood ratio test to assess the most likely of the two

alternative models (no effect of selection vs. effect of

selection). Both programmes have been widely applied,

but they have also recently been found to be vulnerable

to complex population structure scenarios, such as when

populations are hierarchically structured, leading to cor-

related allele frequencies among samples (Excoffier et al.

2009). A modified, hierarchical, version of FDIST2 imple-

mented in the Arlequin 3.5 software may be more appro-

priate for such situations (Excoffier et al. 2009). The

implementation of a hierarchical island model results in

higher variance between simulated neutral loci and thus

leads to a more conservative estimate of the number of

outlier loci (Excoffier et al. 2009). It seems inevitable that

the lower false-positive rate comes at the expense of a

higher false-negative rate; however, the method has so

far only been evaluated with simulated neutral loci,

focusing on the discovery of false positives, rather than

the power for discovering true positives.

While the Bayesian methods may be relatively power-

ful for detecting directional selection, they have low

power for detecting loci under balancing selection, par-

ticularly for SNP applications (Beaumont & Balding 2004;

Foll & Gaggiotti 2008). This may be problematic in situa-

tions with low levels of population structure, when the

power for detecting directional selection could be sub-

stantially higher than the power for discriminating

between loci under balancing selection and loci evolving

under neutrality.

In general, a low number of samples also substantially

reduces the statistical power of these methods (Foll &

Gaggiotti 2008), meaning that pairwise comparisons (e.g.

between populations under different environmental

forcing) will detect only extreme outlier loci, and many

potential candidate loci may be missed. In contrast, too

many samples could also bias results, particularly if allele

frequencies are correlated among samples, resulting in

increased false-positive rates (Excoffier et al. 2009). This

bias could be reduced through analysing balanced sub-

sets of samples, i.e. using a similar number of samples

from each of a number of populations or groups of popu-

lations identified through other approaches, such as clus-

tering methods. Thus, a balanced design could minimize

effects from complex population structure not easily han-

dled by many current methods. Furthermore, it is possi-

ble to evaluate the effect of study design by running

several tests on different subsets of samples.

The genetic resource originally used for developing the

genetic markers can impact results of outlier detection

approaches in several ways. For instance, it must be

remembered that in current studies of nonmodel organ-

isms, markers will often mainly be linked to the variation

in coding (and expressed) parts of the genome (see section

on nonneutral loci). Although the effects of such an

ascertainment strategy on genome scans have yet to be

assessed, in some approaches, these markers will be used

to generate the expected ‘neutral’ distribution of FST val-

ues. However, if this baseline is biased, then results may

not truly reflect the proportion of loci under selection. Fur-

ther biases may be introduced through ascertainment bias

(see introduction and discussion in Nielsen et al. 2009b). In

addition, loci in linkage disequilibrium could bias results

by introducing biased genome coverage among the mark-

ers, for instance biassing FST through physical linkage of

loci displaying elevated or lowered levels of structuring.

Although the aforementioned methods have their lim-

itations, they have all been developed to handle relatively

large data sets and they are very useful for providing a

general overview of the data at hand. Again, the impor-

tant thing is to have clarity in the question that is being

addressed. If the goal is to identify sets of markers with

high discriminatory power between different popula-

tions ⁄ groups of populations, then in principle it does not

matter if a detected outlier is truly subject to selection, or

if it is a false positive, provided that the signal is tempo-

rally stable. In this case, the outlier detection can be

viewed as an explorative and preliminary exercise sup-

porting downstream analyses. However, if evolutionary

or demographic processes are being investigated, the

inclusion of loci under selection may influence results

significantly and careful attention should be paid to the

design of the scan for outlier loci.

Power analysis

Several population genetic applications, such as conser-

vation management, product traceability and forensic
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genetic analysis, involve the assignment of individuals,

or collections of individuals, to population of origin

based on their (multilocus) genotypes (Manel et al. 2005).

Here, the inclusion of markers exhibiting evidence for

diversifying selection need not violate assumptions and

can dramatically increase assignment success, at least if

all (or most) reference populations are represented in the

baselines against which samples are compared. Analyses

combining marker types should, however, be accompa-

nied by simulations of how potential sampling effects

could influence assignment (see Anderson 2010). Like-

wise, inclusion of nonneutral markers may be advanta-

geous when attempting to estimate genetic admixture of

individuals or populations.

For applications such as individual assignment (IA),

there are many advantages (for example, the reduction in

costs, time and computational demands) in using a

reduced panel of markers that have been identified as

maximizing the power available. For example, selection

of breed-informative SNP markers for IA in cattle

enabled a reduction in panel size from 54 000 to 200 SNPs

with negligible loss of assignment power in twelve Euro-

pean cattle breeds (Wilkinson et al., pers.com). However,

a marker panel that has been reduced for this purpose is

not suitable for many standard population genetic analy-

ses because of the bias introduced through the high grad-

ing of markers that segregate among target populations

(Waples 2010).

Identifying loci with maximum power. Not all geno-

typed loci are necessary for increasing assignment

power. Loci may have high-genotyping error rates, be

noninformative with little discriminatory power or be

strongly correlated (linked) with other markers, thereby

yielding redundant information. For some purposes, it

may be desirable to create ‘minimal panels with maxi-

mum power’, for example; panels for assigning individu-

als to major groups, or very specific panels for

discriminating between two alternative hypotheses in

relation to individual assignment. The selection of loci to

form SNP panels for assignment will be driven by the

complexity of the assignment question involved. A bi-

allelic marker will only ever be able to segregate two pop-

ulations; therefore, multiple SNPs will be needed for IA

when there are multiple candidate source populations.

By assessing assignment power at the level of the indi-

vidual SNP, there will always be a risk that the SNPs

selected with most power (e.g. highest FST values), will

be biased towards the most differentiated populations

and will not allow for assignment to more finely differen-

tiated groups. When dealing with large numbers of SNP

markers, automated methods for selecting loci with the

most power across a range of application scenarios are

required; simply ranking SNPs by FST values is unlikely

to lead to an optimum, minimal panel of markers for

complex assignment problems, as it is particular combi-

nations of loci that are likely to contain the highest dis-

crimination power.

Three different approaches for locus selection have

been developed together with accompanying software.

WHICHLOCI (Banks et al. 2003) initially estimates the

assignment power of individual loci from empirical data

and ranks them according to individual assignment

(and ⁄ or misassignments). In a second round of assign-

ment, loci are added to an assignment trial from the top

of the individual power list until the user specified level

of accuracy is achieved. The programme and approach is

relatively simple and straightforward. However, an

important caveat is that the programme does not explore

the potential power of certain combinations of loci, which

may maximize IA, but may not include loci from the top

of the list. An alternative approach is genetic algorithm-

based feature selection (GAFS, Topchy et al. 2004). This

programme uses a ‘genetic algorithm’ optimization tech-

nique, by exploring different locus combinations where

the highest classification accuracy is the parameter of

interest that is being searched for. The programme works

on many solutions simultaneously in contrast to other

optimization algorithms using incremental improvement

(see above). Although the programme allows for an

exhaustive search of all potential combinations, it may

not be computationally feasible to explore all combina-

tions, thereby leaving potentially highly discriminatory

combinations unexplored. The third and most recently

described option is ‘backward elimination locus selec-

tion’ using the programme BELS (Bromaghin 2008). The

programme excludes each locus in the baseline data tem-

porarily, and the baseline accuracy for assignment (or

Mixed Stock Analysis) of remaining loci is evaluated iter-

atively. After all loci have been evaluated, the locus caus-

ing the least power reduction is permanently excluded.

The procedure is repeated until only one locus is left or

the level of accuracy reaches a user-defined minimum.

The advantage of the programme is that (like GAFS) it

exploits possible synergistic effects among loci. The

downside is that with many loci and populations, it takes

a long time to run on a standard desktop computer.

Another shortcoming of the BELS procedure is in cases of

forensic assignment where selection for the smallest sub-

set of loci, providing 100% correct assignment is the goal.

In this case, the programme is unable to rank loci as elim-

ination of any locus from the full data set will not lead to

a drop in overall assignment power (100%). Instead, a

reverse procedure where loci are added according to

their individual assignment power and subsequently

eliminated using subsets of loci where assignment power

is below 100% could be applied (J. Bromaghin, personal

communication). Overall, it appears that the two latter
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programmes represent the most optimal approaches for

SNP loci under selection, as they search for ‘synergistic’

combinations of loci providing the highest overall level

of assignment power regardless of their individual

power.

A final note of caution for the selection of particular

loci with elevated assignment power was pointed out in

a recent paper by Anderson (2010). The programmes

described in this section all use the same data for ranking

loci and assessing their power, leading to biased and

over-optimistic estimates of assignment power. Instead,

Anderson suggested a procedure called THL (training,

holdout, leave-one-out), where a subset of samples (train-

ing samples) is used for selection of highly informative

loci to be included in the final panel of loci. These sam-

ples are combined with another subset of data (the hold-

out samples) to form the baseline for assignment using

the final panel. By assigning the holdout samples using

the full baseline sample employing a leave-one-out pro-

cedure, it is possible to separate the process of locus

selection or ‘high grading’ from the evaluation of assign-

ment power, while at the same time making use of the

whole data set. This approach should be encouraged and

implemented as a standard for evaluation of assignment

power of loci under selection.

Power for detecting population differentiation. A recent

paper by Morin et al. (2009) addresses the issue of the

number of SNPs and sample size that should be used

to maximize statistical power to identify evolutionary

significant units (ESUs) and demographic independents

units (DIPs) using the programme POWSIM (Ryman &

Palm 2006). The ‘effect sizes’, i.e. the magnitude of dif-

ferentiation required to detect two scenarios was FST =

0.2 and FST = 0.0025. The study assessed sample sizes

within 10–100, number of loci 10–75 and MAFs 0.01–0.5.

Overarching results showed that approximately 30 neu-

tral loci were required to detect ESUs (Nem = 0.1), while

identification of DIPs may require >75 loci. Different

MAFs had little effect on power; haplotypes (linked

loci) from different SNPs within the same locus could

improve power, though sample size had a strong effect

on power. For example, with 75 SNPs and FST = 0.0025,

an increase in sample size from 50 to 100 provided a

twofold increase in power (proportion of significant

tests) from 0.4 to 0.8. Accordingly, if the aim is specifi-

cally to address the issue of microgeographical popula-

tion structure, it may be advisable to use relatively

large sample sizes. Also, including loci suspected to be

under selection may increase power to detect differenti-

ation; however, the stability of the pattern has to be

investigated because contemporary selection may alter

allele frequencies even within a cohort (see Nielsen

et al. 2009a).

Glover et al. (2010) compared the IA resolution

between analyses with 309 mapped SNPs (global FST

)0.002 to 0.316; only one ‘outlier locus’) and 14 micro-

satellite markers (global FST 0.033–0.115) in wild and

domesticated strains of Atlantic salmon (Salmo salar).

They found that proportions of correctly assigned indi-

viduals was 0.65, 0.73 and 0.73 when assigned with 14

microsatellites, 300 SNPs and 195 ‘mapped’ (>1 cM)

SNPs, respectively. Overall, assignment was best (80%

correct) when �100 unlinked SNP loci were used.

Above 100 loci, assignment success decreased. Com-

paring marker types, the most informative 15 salmon

SNPs matched the level of assignment achieved by the

most informative four microsatellite loci (ranked by

maximizing allelic variation). If linkage information is

available, Structure (Pritchard et al. 2000; Falush et al.

2003) may outperform Geneclass (Cornuet et al. 1999),

as Structure enables the use of a linkage model, taking

marker distance into consideration in computations,

whereas Geneclass treats loci as independent. In the

study by Glover et al. (2010) using Structure, the use

of a linkage model led to 88% correct self-assignment

when using 300 SNPs, whereas correct assignment

was 80% with Geneclass. This study suggests that the

identification of a highly informative set of SNPs from

a larger panel is likely to give significantly more accu-

rate individual genetic self-assignment compared to

any combination of microsatellite loci. However, there

is a risk of an upwards bias of the estimates of assign-

ment success when ‘high-grading’ loci, as described by

Anderson (2010). The study by Glover et al. (2010) also

underlines the importance of using an appropriate

method for modelling the statistical power and assign-

ment resolution when choosing subsets of markers for

targeted assignment analyses.

Conclusions

In several of the aforementioned sections, attention has

been drawn to some of the concerns associated with the

discovery of SNPs from NGS data. Some of these issues,

such as the bias in genome coverage achieved, or the

complications of not having a reference genome, are

being dealt with by advances in technology (e.g. reducing

the bias in terminal end sequencing (Korbel et al. 2007),

paired-end reads for sequence assembly without a refer-

ence sequence (Li et al. 2010), also see Harismendy et al.

2009 for an evaluation of the different issues between

platforms and Everett et al. 2011 for an assessment of the

potential to assemble sequences to publicly available EST

databases). Other major drawbacks such as the conver-

sion rate from NGS data to validated SNPs, and the

inherent ascertainment bias in the data still need practical

solutions (for reviews see Hudson 2008; Shendure & Ji
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2009; Garvin et al. 2010). NGS is one of the most powerful

tools currently available, but its use must be undertaken

with its limitations in mind. Meanwhile major advances

in sequencing—such as the third generation technolo-

gies—are promising to resolve many of the difficulties

with the current systems with less expensive, longer

read, more accurate systems promised in the near future

(Eid et al. 2009; Metzker 2009; Rusk 2009). However,

although it has been suggested that ecologists may soon

be able to perform population genetics at a genome,

rather than a gene level (Hudson 2008), these technolo-

gies are likely to remain out of reach for the majority of

studies on nonmodel organisms for the foreseeable

future. Additionally, the replacement of SNP genotyping

by the analysis of the full genome sequence data is also

currently out of reach for the majority of nonmodel

species.

The continued increase in speed and decrease in

cost for SNP genotyping nonmodel organisms is

undoubtedly going to lead to further major changes in

relation to the availability of data on a genomic scale

for population genetic analysis in the near future. Cur-

rently, we are in a transition period where population

structure is typically inferred from relatively few

genetic markers for some wild organisms, while thou-

sands of markers and even whole genomes (Hohenlohe

et al. 2010) are being analysed in others. Accordingly,

we expect to see an increased movement towards gen-

ome wide analyses to gain a general understanding of

the relative importance of neutral and adaptive pro-

cesses in wild populations. Such a development will

result in a conceptual change as it will no longer be

feasible to manually edit or check data quality. In turn,

further developments will be required in relation to

statistical tools and associated software for analysing

data orders of magnitude larger than is currently stan-

dard, some of which have been highlighted above.

However, the fundamental principles of population

genetics remain the same and specific research ques-

tions will continue to require appropriate analysis

dependant on the nature of the markers used.

Although the data sets that we have access to are

increasing in size, there will continue to be a need for

small panels of ‘genetic tags’ for ecological, management

and forensic purposes where the assignment of individu-

als and groups of individuals to the population of origin

is desired. We expect these applications to grow tremen-

dously and become commonplace as the costs of geno-

typing decline progressively. To generate added

momentum, there is an enhanced need for genomic data

for nonmodel taxa, from where the high grading of the

most informative loci for individual assignment can take

place to create cost-effective panels of minimum size with

maximum power.
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Abstract

The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-
model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far
beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms
(SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources
are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper
details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals
covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and
sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig
assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for
genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously
using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot
be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and
time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in
the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of
intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in
the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing
informative marker panels for population discrimination, microarray development and for population genomic studies in
the wild.
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Introduction

Population genomic approaches have been revolutionised by

Next Generation Sequencing (NGS) technologies such as 454

(Roche) and Illumina sequencing. These developments facilitate

genome-wide analyses of genetic variation across populations of

non-model organisms [1,2], allowing a range of evolutionary

questions to be investigated effectively for the first time. Marine

fishes are excellent model systems for studying adaptation due to

their large geographic ranges that frequently encompass strong

environmental gradients and their large population sizes that

increase the relative strength of selection over drift [3]. Moreover,

many marine fishes are under extreme anthropogenic pressure

and there is an urgent need for genomic tools to identify

population structure and boundaries to allow effective manage-

ment [4]. Additionally the forensic identification of fish and fish

products throughout the food processing chain from net to plate

would assist in the fight against Illegal, Unreported and

Unregulated (IUU) fishing, currently a priority for the European

Union [5] and globally [6]. SNPs are the optimal marker for this

type of application, but large SNP panels are currently available

for few marine fish species (e.g. Atlantic cod (Gadus morhua) [7];

European hake (Merluccius merluccius) [8]). Thus, the development

of genomic resources for marine fish is urgently required for

evolutionary, conservation and management perspectives.
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The strategy used for SNP development in non-model

organisms is dependent on the availability of genomic informa-

tion from closely related species. If such resources are available,

PCR amplicons (homologous to regions in the reference

genome) can be sequenced and SNPs identified (however, these

are intrinsically limited in the number of SNPs that can be

identified). Without a reference genome, three principal

strategies for genome-wide SNP discovery can be applied;

whole genome sequencing and assembly, genome complexity

reduction and sequencing methods (e.g. RRL and RAD-seq)

and cDNA sequencing (RNA-seq). While whole genome

sequencing has now been completed for species with large

complex genomes (for example: panda (Ailuropoda melanoleura) [9];

cacao (Theobroma cacao) [10]), this remains outside the scope of

most studies, as in general the de novo assembly of larger, repeat-

rich or polyploid genomes requires additional information (e.g.

physical BAC maps or paired-end libraries) and extensive

bioinformatic capacity in order to build the large, computa-

tionally intensive, structured sequence scaffolds [11]. Genomic

libraries which sequence a small fraction of the genome

(typically 3–5%) require a high level of coverage for contig

assembly and detection of SNP variants (see [12–14] for

applications). Deep sequencing of cDNA libraries provides an

attractive approach to achieve the high sequence coverage

needed for de novo contig assembly and SNP prediction, as only

a small percentage of the genome is accounted for by the

transcriptome. Another advantage of transcriptome sequencing

is the information produced concerning functional genetic

variation in specific genes which may be under selection; these

can then be targeted to evaluate gene expression profiles. The

ability to examine both neutral variation and genomic regions

under selection provides researchers with unprecedented tools

for understanding local adaptation of wild populations at the

molecular level.

Atlantic herring (Clupea harengus) is an abundant and

ecologically highly diverse species, occurring with a more or

less continuous distribution in the North-Atlantic benthopelagic

zone. Habitats are distributed across highly diverse environ-

ments, from temperate (33uN) to arctic (80uN) and at salinities

from oceanic (,35 ppt) to brackish (down to 3 ppt). In spite of

its large ecological range, studies using ‘‘neutral’’ microsatellites

have unanimously reported weak population differentiation that

is statistically significant only on regional scales [15–17].

However, despite relatively high levels of gene flow among

populations, evidence of local adaptation has been identified in

the Atlantic herring in the Baltic Sea using microsatellite loci

[18,19]. Therefore it is expected that analyses with transcrip-

tome-wide coverage applying hundreds of markers associated

with adaptive and neutral variation will provide novel insights

into the role of selective and demographic processes in shaping

population structure.

We describe transcriptome-based SNP development in Atlantic

herring using a Roche 454 GS FLX (hereafter 454) sequencing

approach. Our aim was three-fold; 1) to develop a SNP assay

exhibiting minimal ascertainment bias across east Atlantic

populations, 2) to test the applicability of in silico SNP detection

utilizing a combined SNP screening and validation approach as a

cost efficient way of obtaining population genomic resources, and

3) to establish a transcriptome resource for tissue-specific gene

expression profiling and microarray development. We present, to

our knowledge, one of the first studies describing SNP discovery in

a non-model marine fish based on transcriptome sequencing using

NGS.

Materials and Methods

cDNA Library Construction and 454 Sequencing
SNP development was based on muscle samples from eight fish

collected from four locations from across the eastern Atlantic

(Figure 1). These locations were chosen to maximise geographic

coverage and environmental differences, thereby minimising

potential ascertainment bias. Approximately 5g of muscle tissue

was taken from each of two individuals (male and female) from

each location and immediately placed in RNAlater (Invitrogen)

and after 12 hours at 4uC, were stored at 280uC. Total RNA was

extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen). The

Oligotex mRNA Mini Kit (Qiagen) was used to isolate mRNA,

and non-normalised cDNA was synthesized using the SuperScript

Double-stranded cDNA Synthesis Kit (Invitrogen). A multiplex

sequencing library was prepared by pooling equal amounts of

cDNA from all eight individuals, where two specific 10-mer

barcoding oligonucleotides were ligated to each individual sample

to allow post-sequencing identification of sequences (modified

from [20]). High-throughput sequencing was performed on a 454

sequencer according to the manufacturers’ protocol.

Sequence Processing and Assembly
Sequences were first de-multiplexed using the barcoding tags

(sfffile tool, Roche 454 analysis software) and sorted by sample.

Mitochondrial sequences were removed from the data set by

mapping the reads against the Atlantic herring mitochondrial

genome (Genbank accession NC_009577 [21]) using the Roche

454 gsMapper software. RepeatMasker [22] was used to identify

and mask repetitive and low complexity regions within the reads

by using the zebrafish (Danio rerio) repeat library. Reads were

cleaned for short sequences (,50 bp) and low quality regions using

SeqClean (http://compbio.dfci.harvard.edu/tgi/software/). Se-

quence clustering was performed in two steps; initial clustering

was performed using CLC Genomics Workbench (CLCbio,

Denmark), the resulting ace file sequences were then assembled

‘per contig’ in CAP3 [23]. The consensus sequences for the contigs

produced by this assembly were then used as a reference for

mapping reads in the subsequent in silico SNP detection.

SNP Detection
To identify candidate SNPs, all contig specific reads from the

CAP3.ace files were re-mapped onto the consensus sequence and

candidate SNPs were identified using GigaBayes [24]. This

program scans each position of the assembly for the presence of

at least two SNP alleles and calculates the probability of a given

site being polymorphic using a Bayesian approach. No insertion or

deletion variants (InDels) were considered and the polymorphism

rate was set to 0.003. A minimum contig depth of four reads

covering the polymorphic site and a minimum of two reads for the

rare allele were required for a site to be considered as a putative

SNP. All contigs containing SNPs were filtered to remove

instances in which the alternative allele of the SNP was only

identified in a single individual, as these may either represent false

positives or may lead to strong ascertainment bias.

Microsatellite Sequence Screening
Microsatellites are an important resource for smaller scale

studies in population genetics, microsatellites within expressed

genomic regions have been shown to produce clearer genotyping

results as there are fewer null alleles and stutter bands [25,26];

therefore the contig library developed here was screened to detect

repeat regions. Assembled contigs were screened for microsatellite

repeats using MsatCommander [27] a Python program which

SNP Discovery in Atlantic Herring
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locates microsatellite repeats (di-, tri-, tetra-, penta-, and hexa-

nucleotide repeats) within fasta-formatted sequences or consensus

files. MsatCommander then uses Primer3 [28] to screen sequences

containing microsatellite loci for high-quality PCR primer sites

within the flanking regions for ‘potentially amplified loci’ (PALs

[29]).

Contig Annotation
Contigs were annotated using the Basic Local Alignment Search

Tool (BLAST) against multiple sequence databases. Blastn

searches (E-value cut-off ,1.0 E25) were conducted against all

annotated transcripts of Gasterosteus aculeatus, Tetraodon nigroviridis,

Oryzias latipes, Takifugu rubripes, Danio rerio and Homo sapiens available

through the Ensembl Genome Browser, and against all unique

transcripts for D. rerio, H. sapiens, O. latipes, T. rubripes, Salmo salar,

and Oncorhynchus mykiss in the NCBI UniGene database. Blastx

searches were conducted (E-value cut off ,1.0 E23) against the

UniProtKB/SwissProt and UniProtKB/TrEMBL databases. Last-

ly Blastx searches were performed against all annotated proteins

from the transcriptomes of G. aculeatus, T. nigroviridis, O. latipes, T.

rubripes, D. rerio and H. sapiens available through the Ensembl

Genome Browser.

To predict the effect of the mutation underlying each SNP at

the amino acid level, a pipeline was developed to predict the

reading frame for each SNP-containing contig. All contigs

containing SNPs were first blasted against six peptide sequence

databases (Ensembl genome assembly for G. aculeatus, T. nigroviridis,

O. latipes, T. rubripes, D. rerio and the Swissprot database) using the

Blastx function (E-value cut-off ,1.0 E23). For each SNP

containing contig the best match was selected and the aligned

sections of the query were saved. Subsequently, two 121 bp

sequences per SNP (i.e. 60 bp up/down-stream of the SNP

position, one sequence for each allele) were produced, these were

used in a Blastx analysis against the file retrieved from the peptide

sequences (E-value cut-off ,1.0 E210), and were then compared to

determine if the SNP represented a synonymous or non-

synonymous mutation.

Selection of Candidate SNPs for Genotyping Assay
SNPs were validated following an in silico protocol, aimed at

minimising validation costs, whilst also minimising subsequent

locus dropout. SNP selection was based on the results from the

Illumina Assay Design Tool, detection of putative intron-exon

boundaries within the flanking regions of candidate SNPs, and a

visual evaluation of the quality of contig sequence alignments. The

SNPScore from the Illumina Assay Design Tool (referred to as the

Assay Design Score/ADS) utilises factors including template GC

content, melting temperature, sequence uniqueness, and self-

complementarity to filter the candidate SNPs prior to further

inspection. The Assay Design Score (assigned between 0 and 1) is

Figure 1. Location of the 18 samples used in this study. The eight sequenced ascertainment individuals (2 per location) came from the four
sampling sites denoted in red.
doi:10.1371/journal.pone.0042089.g001
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indicative of the ability to design suitable oligos within the 60 bp

up/down-stream flanking region, and the expected success of the

assay when genotyped with the Illumina GoldenGate chemistry.

Following the Illumina guidelines, all SNPs with a score below 0.4

were discarded; SNPs with a score above 0.4 were accepted, with

SNPs scoring above 0.7 being used preferentially.

The prediction of intron-exon boundaries within the SNP

flanking regions (60 bp up/down-stream of SNP position) was

performed using two approaches. The first directly compared

SNP-containing contigs against five high quality reference

genomes for model fish species (Ensembl genome assembly for

G. aculeatus, T. nigroviridis, O. latipes, T. rubripes and D. rerio; see

Figure S1, left pipeline), using the Blastn option (E-value cut-off

1025). Blast results were then parsed via a custom Perl script

considering alignment length, start and end point of the alignment

to determine the best positive match (further details of the Perl

script and workflow are available from the authors on request). If

the 60 bp on both sides of the SNP were present in the alignment,

the candidate SNP was considered to be contained within a single

exon; otherwise an intron-exon boundary was assumed to be

present within the 121 bp assay design region. SNPs were then

assigned to one of three categories either having, or not having an

intron-exon boundary predicted within the flanking region, or as

not returning a significant match against any of the five blasted fish

genomes. In the other approach, the likelihood of a positive match

and the reliability of intron-exon boundary predictions were

increased, with SNP-containing contigs used as a query in a Blast

search (blastn, E-value cut-off 1025) against the corresponding

transcriptome of the same five reference databases (see above). If

the blast search produced a positive result, the matching transcript

was downloaded from the Ensembl database, and blasted against

its own genome sequence (see Figure S1, right pipeline). Within

the downloaded sequence, the nucleotide position corresponding

to the candidate SNP in the Atlantic herring sequence was

identified based on the start and end positions of the alignment

between the original contig and the Ensembl transcript. Using the

projected SNP position, the flanking regions were again classified

as being located on a single exon, disrupted by an intron, or not

having a significant match. Results from the two approaches were

compared to obtain a consensus estimate for the likelihood of an

intron-exon boundary occurring within the 121 bp assay for each

of the candidate SNPs.

Finally, the remaining candidate SNP contigs were visually

evaluated using clview (clview; http://compbio.dfci.harvard.edu/

tgi/software/) in order to rank putative SNPs within and among

contigs. This was assessed by considering the overall quality of the

assembly, the depth and length of alignments, and the number of

mismatch sites flanking the SNP. This step was included to

increase the likelihood of excluding incorrectly identified SNPs (for

example; regions with alternative splicing or erroneous clustering

of paralogous sequences). Within each contig, one or two SNPs

receiving the highest quality score were considered for further

validation (see below).

SNP Validation
Following the pipeline described above, 1,536 high scoring

candidate markers were chosen for validation by high throughput

genotyping assay. DNA was extracted from fin clips for 626 fish

sampled from eighteen sites across the species range in the eastern

Atlantic, including twenty fish from each of the four SNP discovery

populations (Figure 1). The quality and quantity of DNA was

checked using a Nanodrop spectrophotometer, and all samples

were standardised to 70 ng/mL. Genotyping was performed using

the Illumina Golden Gate platform [30], and was visualised using

Illumina’s GenomeStudio data analysis software (1.0.2.20706,

Illumina Inc.). Only SNP assays showing clear genotype clustering,

and individual samples with a call rate above 0.8 were considered

for further analysis.

Cross-species Amplification
To assess the utility of developed markers in related species, two

species identified from a consensus phylogeny [31], the sister

species; Pacific herring (C. pallasii) and a more distantly related

species; anchovy (Engraulis encrasicolus) were genotyped for the full

1,536 SNP panel.

Statistical Analyses
To assess the predictive value and utility of the different

parameters used in the in silico SNP validation pipeline, a binomial

logistic regression analysis was conducted. Two categorical

variables (Conversion and Polymorphism) were evaluated which

describe the outcome of the SNP assay validation; these are

expected to depend on a range of candidate predictor variables

(see below). Conversion was scored by assigning all 1,536 genotyped

SNP assays as either failed (score = 0) or successfully amplified and

clustered (score = 1). Polymorphism assigned all the successfully

amplified SNP assays into monomorphic (0) or polymorphic (1)

categories. Nine variables were then assessed for their predictive

value in determining SNP assay conversion and polymorphism: i)

number of ascertainment panel individuals supplying sequence

reads at the SNP position, ii) number of sequences aligned under

SNP position, iii) number of sequences with the minor allele, iv)

frequency of sequences with minor allele, v) number of ascertain-

ment individuals with the minor allele, vi) Illumina Assay Design

Score (ADS), vii) outcome of the intron-exon boundary pipeline

(scored as SNP assay being within a single exon, interrupted by an

intron or as having no BLAST match), viii) number of reference

species supporting findings from the intron-exon pipeline, and ix)

neighbourhood sequence quality (determined by the number of

mismatches in the flanking region alignment). To statistically test

the predictive effect of the above variables for both Conversion and

Polymorphism a two-step binomial logistic regression analysis was

used as implemented in SPSS v12.0. All variables were included in

the initial model, and a backward stepwise deletion approach was

used for optimisation, in which the least informative variable is

removed sequentially until only significantly contributing variables

remain. A Wald x2 statistic was used to estimate the relative

contribution from each remaining parameter.

For the successful polymorphic assays global values of observed

(HO) and expected (HE) heterozygosity were estimated for 20

individuals from each of the four ascertainment populations

(Figure 1) using GenAlEx 6.4 [32]. For these same populations

deviations from Hardy-Weinberg equilibrium (HWE) and evi-

dence of linkage disequilibrium (LD) were explored using

Genepop 4.0 [33]. Significance levels for HWE and LD tests

were estimated using an MCMC chain of 10,000 iterations and 20

batches. P-values were adjusted for multiple tests by false discovery

rate (FDR) correction following Benjamini & Yekutieli [34].

Lastly, ascertainment bias, resulting from the non-random

exclusion of SNPs with a low Minor Allele Frequency (MAF) from

the marker panel, may occur due to the small size (n = 8) of the

ascertainment panel (compared to the whole population), and the

limited geographical coverage (compared to the whole species

range). When markers are then genotyped on a much larger

sample of individuals the resulting ascertainment bias [35,36] may

affect the estimation of many evolutionary and population genetic

parameters [2]. To assess the magnitude of a potential bias, the

distribution of MAF in the marker panel was assessed across a

SNP Discovery in Atlantic Herring
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large data set covering 18 locations across the Eastern Atlantic to

check for an elevated non-random exclusion of SNPs with a low

MAF. An un-biased SNP panel should exhibit an ‘‘L-shape’’

distribution of MAF categories indicating adequate representation

of low MAF SNPs [37].

Results

454 Sequencing
Results for the sequencing and SNP discovery pipeline are

illustrated in Figure 2. A total of 683,503 cDNA sequences were

generated from the multiplexed Atlantic herring muscle library.

The reads were de-multiplexed to assign reads to one of the eight

sequenced individuals according to their barcoding tag. For 8% of

the raw reads no barcoding tag was identified, while the remaining

629,541 raw reads (average read length: 205 bp, Figure 3B)

contained the 59 tag sequence and could be allocated to pools per

sample per geographical region (Figure 3A). Geographic pools

ranged from 86,731 (English Channel) to 187,554 (Barents Sea)

sequences. All 454 sequence data has been submitted to the

Sequence Read Archive (SRA) under the study accession number

ERP001233 (http://www.ebi.ac.uk/ena/data/view/

ERP001233).

Sequence Processing and Assembly
Sequence cleaning and processing identified 5.8% of the

assigned reads as having a match of at least 94% identity over

60 base pairs to Atlantic herring mitochondrial sequences and

these were removed from the data set. RepeatMasker masked

1.9% of the dataset using the zebrafish repeat library. The

SeqClean program removed a further 3.5% of the assigned reads

due to low-complexity (n = 7,885), low quality (n = 169) or being

below the minimum read length of 50 bases (n = 13,010). Lastly,

some reads were trimmed, yielding a total of 571,731 reads for

sequence clustering and assembly. Initially reads were clustered

with CLC Genomics Workbench (CLCbio, Denmark), resulting in

16,456 clusters ranging from 200–400 bp. These were then

individually re-assembled with CAP3 resulting in 19,246 contigs

(some clusters produced by CLC were split into two or more

contigs) and 30,344 singletons of which more than 50% could be

annotated (Table 1). The majority of contigs consisted of less than

30 reads and ranged between 100–500 bp (Figure 3C-D).

SNP Detection and Annotation Results
SNP discovery with GigaBayes detected 6,331 putative SNPs in

1,991 separate contigs. The primary annotation of contig

sequences is summarized in Table 1 and in more detail in Table

S1.

Figure 2. Schematic of transcript assembly and SNP detection pipeline. Schematic overview with numbers of reads, contigs and SNPs
through the transcript assembly (centre) SNP detection (right hand side) and microsatellite detection (left hand side) pipelines (see text for more
details).
doi:10.1371/journal.pone.0042089.g002
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Selection of Candidate SNPs for Genotyping Assay
From the 6,331 predicted SNPs, 993 (15.6%) were located in

the terminal region of the contigs and did not have the required

minimum of a 60 bp flanking region to design oligos for the

GoldenGate array (Figure 2). Of those remaining, 85 SNPs (1.3%)

scored below the minimum value (,0.4) recommended for primer

design and were not considered. 4,104 SNPs (76.8%) had high

Assay Design Scores (between 0.7–1.0) and 1,149 SNPs (21.5%)

had acceptable Assay Design Scores (between 0.4–0.7), all 5,253 of

these were taken forward to the next stage. Of the putative SNPs

screened for potential intron/exon splicing sites within the flanking

regions, 1,235 (23.5%) had putative intron/exon boundaries

within the flanking regions, and so were rejected. The majority

(3,052, 58.1%) had no matching BLAST hits, while just 966

(18.4%) had BLAST hits which suggested that there was no

intron/exon boundary present (summarised in Figure 2).

SNP Validation
From the full 1,536 panel of SNPs that were genotyped, 290

(19%) assays failed to amplify. Of the remaining 1,246 assays, 201

were monomorphic (false positives: 13%) 467 produced ambigu-

ous clustering (30%) and 578 were polymorphic, equivalent to a

conversion rate of 38%. From these 578 SNPs an open reading

frame was obtained for 270 of the respective 121 bp sequences

(SNP and 60 bp up/down stream), of which 66 were suggested be

non-synonymous, and 204 to be synonymous, equivalent to a ratio

(non-synonymous/synonymous) of 0.32 (Table S2).

Results on the predictive value of the SNP selection parameters

for assay conversion (i.e. for successful amplification) show that

inclusion of all of the predictor variables (see methods) marginally

improves model-fitting (x2 = 18.520, d.f. = 9, p,0.030). When

using backward stepwise deletion of predictor variables, the Assay

Design Score and number of ascertainment individuals with the

minor allele were identified as the only significant predictors of

assay conversion, but only the Assay Design Score showed the

expected positive correlation with conversion rate (Table 2). The

binomial logistic regression analysis on the polymorphic status of

all successfully amplifying assays showed that when all predictor

variables were included, the overall model fit was not significant

(x2 = 11.554, d.f. = 9, p = 0.240). However, neighbourhood se-

Figure 3. Summary of sequence data. A) number of sequences successfully barcoded for each of the eight ascertainment individuals; and for the
combined data, B) sequence length, C) number of reads per contig and D) contig length.
doi:10.1371/journal.pone.0042089.g003

Table 1. Number of contigs and singletons obtained and
successfully annotated.

Total Annotated %Annotated

Contigs 19,246 11,970 62.1

Singletons 30,344 14,943 49.2

Total 49,590 26,913 54.3

doi:10.1371/journal.pone.0042089.t001
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quence quality had a significant negative correlation with

polymorphism. As before a backward stepwise deletion approach

was used and this reduced the significantly contributing predictors

to the number individuals in the ascertainment panel with the

minor allele and the neighbourhood sequence quality which, as

expected, respectively showed positive and negative correlation

with SNP polymorphism (Table 3).

Estimates of HO and HE across the four ascertainment samples

ranged from 0.00–0.63 (mean 0.18) and 0.00–0.50 (mean 0.18),

respectively (Table S2). Observed heterozygosity within the four

ascertainment populations revealed similar levels of diversity to the

18 sampled locations used for the SNP validation [38]. Tests for

deviation from HWE for each locus and population revealed 43

out of 1,249 performed tests (3.4%) with significant deviations

from HWE before correction for multiple tests. These tests were

distributed among all four populations and across 35 loci. Eight

tests distributed across three populations and seven loci retained

significance following correction for multiple tests (a= 0.05). Due

to the presence of monomorphic loci in the four ascertainment

samples, 229,094 tests for LD were performed of which 352

remained significant after correction for FDR (a= 0.05). Of these,

14 pairs were significant in more than one of the four populations

but in all cases SNPs originated from different contigs suggesting

lack of close physical linkage. SNP frequency distributions of MAF

categories in the full panel of 18 samples indicated little bias due to

non-random selection of high frequency SNPs (Figure 4).

Cross-species Amplification and Microsatellite Detection
The majority (99%) of the 578 markers identified as polymor-

phic in Atlantic herring also amplified in Pacific herring, but only

12% exhibited more than one allele. Only about 10% of the 578

SNPs amplified in anchovy, and of these, only ten loci exhibited

polymorphism.

MsatCommander detected 6,501 microsatellites with a repeat

length of between two and seven bases with four or more repeat

units in 3,741 contigs (Table 4). 27% of the microsatellites had

sufficient suitable flanking sequence to enable the design of

primers. Details of the microsatellites (number and type of repeat,

primers, Tm and %GC) are listed in Table S3.

Discussion

This study demonstrates the de novo discovery of 6,331 putative

SNPs based on 454 transcriptome sequencing of eight individuals

covering the Northeast Atlantic distribution of the Atlantic

herring. Of particular interest in the approach is the single

validation and genotyping step, disposing with the traditional step

of testing each SNP for amplification prior to large scale

genotyping (e.g. [39,40]). The data generated in this study

constitutes a new resource for genetic analysis in Atlantic herring

significantly increasing the number of known transcripts as well as

novel SNP and microsatellite markers.

Sequence Assembly and SNP Detection
For next generation sequencing to be successfully applied to the

development of genetic resources in non-model organisms,

methodological issues must be addressed to optimise the proce-

dures for each project. SNPs can be genome- or transcriptome

derived and, in the latter case, selected from more abundant or

rarer expressed transcripts; in addition, marker development is

influenced by sequence depth and contig length due to the

sequencing platform chosen and the complexity of the hypothesis

to be investigated (i.e. smaller number of SNPs required for species

identification analysis as compared to population genetic studies).

The choice of sequencing platform should reflect the objective of a

given study. While longer reads (e.g. 454 sequencing) are expected

to improve contig assembly, more, but shorter, reads (e.g. Illumina

sequencing) may be preferable in order to reduce detection of false

positive SNPs from higher alignment depth, especially when an

existing reference sequence is available. This study took advantage

of the longer read lengths obtained with 454 sequencing in a de

novo assembly of a reference scaffold for SNP discovery in herring.

The clustering and assembly step is critical for SNP mining as it

generates the reference for variant detection by mapping reads to

the contig. Therefore, the absence of a reference genome or

transcriptome poses a challenge for assessing the ‘correctness’ of a

contig assembly, as potential mis-assemblies of sequence due to

homologous or paralogous genes cannot be directly verified by

back-mapping to the species-specific genome. Generally, cluster

assembly with overly stringent parameters will lead to splitting

sequences belonging together into more contigs, resulting in a

higher number of shorter contigs with lower coverage depth.

Whilst applying criteria that are overly relaxed will assemble reads

from related genes or gene families into single contigs, resulting in

a lower numbers of contigs that have a higher sequence depth,

however this increases the likelihood of misidentifying polymor-

phisms between paralogous sequence variants (PSVs) as SNPs.

Additionally, as no genome reference is available for Atlantic

herring, the occurrence of PSVs cannot be assessed, this was

probably the cause for the majority of ambiguous clustering that

was subsequently seen in the SNPs.

For the SNP detection, the low sequence depth of the majority

of contigs (Figure 3C) required relatively low criteria to be set (i.e.

depth: four reads, redundancy: two observations of the minor

Table 2. Results for SNP detection variables for predicting
SNP assay conversion following a backward stepwise
elimination procedure.

Ba Waldb df Pc

Asc_indd 20.165 4.67 1 0.031

ADSe 0.763 4.785 1 0.029

Constant 20.378 1.464 1 0.226

aRegression coefficient for individual variable.
bWald x2 statistic.
cassociated probability.
dNumber of ascertainment individuals with the minor allele.
eAssay Design Score. Significant p-values are shown in bold.
doi:10.1371/journal.pone.0042089.t002

Table 3. Results for SNP detection variables for predicting
SNP assay polymorphism following a backward stepwise
elimination procedure.

Ba Waldb df Pc

Asc_indd 0.249 2.965 1 0.085

NSQe 20.111 7.321 1 0.007

Constant 0.935 21.137 1 0.000

aRegression coefficient for individual variable.
bWald x2 statistic.
cassociated probability.
dNumber of ascertainment individuals with the minor allele.
eNeighbourhood Sequence Quality. Significant p-values are shown in bold.
doi:10.1371/journal.pone.0042089.t003
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allele). However, these low thresholds together with the sequencing

of eight ascertainment individuals spanning the entire northeast

Atlantic distribution of herring resulted in minimal ascertainment

bias due to exclusion of low MAF SNPs (Figure 4). One expected

result of the low depth and redundancy parameters is, however,

the low conversion rate from the inflated number of candidate

SNPs (identified due to sequencing errors). The 454 platform-

specific challenge of resolving homopolymeric regions may further

have compromised SNP detection by reducing assembly quality or

calling false SNPs within these regions [41], but such an effect

could not be assessed here due to the lack of a known reference

sequence.

The use of transcriptome sequencing in this study has resulted

in only a few per cent of the total genome being covered, but at a

relatively high sequencing depth, thus limiting sequencing costs

while achieving the number of SNPs required for custom-designed

SNP assays. Additionally, transcriptome sequencing provides

information about tissue-specific genes and their expression

profile, which can be used to develop further tools for gene

expression studies such as oligonucleotide microarray or RNA-seq

approaches.

SNP Validation
The genotyping of 1,536 selected SNP assays performed with

genomic DNA for a large panel of Atlantic herring samples from

across the northeast Atlantic indicated that nearly 600 of the SNPs

are polymorphic (37.6%). However, almost 49.3% of the

candidate SNPs failed to work; due to either non-amplification

Figure 4. Minor allele frequency (MAF) distribution. The distribution of the MAF in 578 SNPs typed in 18 populations across the eastern
herring distribution.
doi:10.1371/journal.pone.0042089.g004

Table 4. Type and number of repeats of the microsatellites
detected in the herring contigs using Msatcommander.

Type of repeat Number of repeats Total

4–9 10–14 14–19 .19 Maximum

Dinucleotide 4418 505 193 175 75 5291

Trinucleotide 829 35 9 2 36 875

Tetranucleotide 202 13 3 12 31 230

Pentanucleotide 43 1 1 0 17 45

Hexanucleotide 57 2 0 1 21 60

Total 5549 556 206 190 - 6501

doi:10.1371/journal.pone.0042089.t004
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(18.9%), false positives (monomorphic loci) (13.1%) or ambiguous

clustering (17.3%). Despite our attempt to screen for potential

intron/exon splicing sites within flanking regions of all candidate

SNPs using available reference genomes, only 41.9% of all queries

matched equivalent sequences in at least one of the reference

species. Thus, the presence of undetected introns may have

constituted a major cause for genotyping failure [42]. Moreover,

candidate SNPs that appeared monomorphic in the large-scale

screening might either be the result of false-positive predictions or

could indicate real, rare SNPs not present in the samples tested

[7]. The purely in silico SNP detection method presented in this

study may have a relatively low conversion rate to validated SNPs

when compared to other methods. However, this method is still

extremely competitive given a limited resource for marker

development, once the time and cost associated with designing

and ordering hundreds of primers, running validation PCRs, and

additional Sanger sequencing for validation are considered (e.g.

[39,40]). All of which would be in addition to the cost of

genotyping the resulting 578 validated SNPs.

In order to reduce the number of erroneous SNP predictions,

i.e. to increase the probability of an in silico detected SNP being a

truly polymorphic site, further sequencing would lead to greater

sequence depth of the contigs, allowing more stringent selection of

SNP candidates. It has been shown for multiplexed re-sequencing

that more than 90% of the variants can be detected correctly using

next generation sequencing technologies when an average depth of

at least 20 reads per base is achieved [43,44]. Increasing the

average sequence depth will also be advantageous for identifying

SNPs from rarely expressed genes. Another interesting approach,

recently described by Ratan et al. [45], suggests a method to call

SNPs without a reference genome sequence. SNP calling is

performed whenever new sequences are added; thus, sequencing

continues only as long as needed to identify an adequate number

of candidate SNPs. The method is reported to work even when the

sequence coverage is not sufficient for de novo assembly. Addition-

ally, the use of next generation sequencing for analysing a

restriction enzyme-generated DNA library (RRL and in particular

RAD sequencing, for reviews see [46,47]) based on multiple

tagged individuals now enables the fast discovery of thousands of

SNPs in non-model organisms with no prior genome information

[48,49]. However, one downstream problem identified with RAD-

seq is that transferring the SNPs onto a high-throughput

genotyping platform is difficult without a reference genome, as

the majority of SNPs identified do not have the 60 bp flanking

sequenced required for assay design. This has to some extent been

solved using Paired End RAD (RAD-PE)[50], however the

bioinformatic approaches for SNP discovery in RAD-PE contigs

are still limited. Additionally, while RRL/RAD-seq approaches

eliminate the problems encountered with intron/exon boundaries

that are associated with transcriptome sequencing, these methods

only consider random fragments of the entire genome, whereas

our transcriptome based pipeline specifically targets expressed

genes with an increased likelihood for detecting SNPs (e.g. non-

synonymous substitutions) associated with genomic regions under

selection. Such non-neutral SNPs are expected to provide high

discriminatory power at the population level and will constitute a

valuable forensic tool in future applications [47,51]. The

combination of the coverage and SNP discovery rates obtained

by RAD-seq, with the targeted reduction obtained by sequencing

the transcriptome would potentially be a very powerful tool.

However, it must be noted that due to the rapid rate of technical

developments in the field, such as the increased read length and

decreasing costs of existing platforms, and the potential of nano-

sequencing technology, the best solution regarding platforms and

methods to optimise the cost effectiveness for a specific application

needs careful consideration.

When determining the predictive value of the SNP selection

parameters for successful amplification of the in silico detected

SNPs (Conversion), as expected, a positive correlation was found

with the Assay Design Score, i.e. the likelihood for designing

successful primers around the SNP position. Unexpectedly, a

negative correlation was found with number of ascertainment

individuals for which the rare allele was observed, although the

reasons behind this correlation are unclear. Overall, only very

weak predictive variables for Polymorphism were identified, with

only the neighbourhood sequence quality significantly explaining

the negative correlation; as the number of mismatches in flanking

regions increases, a predicted SNP is more likely to be a false

positive. This increase in mismatches of an aligned region could be

indicative of erroneous clustering, for example, PSVs or other

sequences with differing genomic origin (this has for example also

been seen for hake in a similar study [8]). The number of

individuals with the minor allele in the ascertainment panel also

showed a positive correlation with Polymorphism. While this

parameter is less conclusive than for predicting Conversion rate,

there is potentially a predictive role of this parameter for detecting

true SNPs. Future SNP development efforts may reduce the false

positive rate by applying relatively stringent thresholds for this

variable (e.g. having at least 2 individuals with the minor allele

represented in the SNP containing contig, although this will, of

course, depend on the size of the ascertainment panel).

The two binomial logistic regression analyses were repeated

with a reduced set of variables representing the strongest a priori

candidates (the number of sequences aligned under the SNP

position, the frequency of sequences with minor allele, the

neighbourhood sequence quality, the Assay Design Score, and

the outcome of the intron-exon boundary pipeline). This also

allowed controlling for a potential bias from non-independent

variables such as the two intron-exon and three minor allele

related parameters. Results were largely congruent confirming

Assay Design Score and neighbourhood sequence quality to be the

most significant predictors of Conversion and Polymorphism, respec-

tively.

The range of allele frequencies within the SNP panel suggests

that the strategy of carefully selecting individuals to maximise the

geographical, phenotypic and genetic diversity covered by the

SNP development samples has been successful in minimising

ascertainment bias.

Cross Species Amplification and Microsatellite Detection
A high proportion of detected SNPs also amplified single PCR

products in Pacific herring albeit with a low polymorphism rate,

which is as expected due to their development from conserved

genomic regions. However, due to the small sample size (n = 4),

this number is likely to be downwardly biased and a much higher

proportion of SNPs may in fact be polymorphic and therefore

prove useful in this species. As expected from the phylogenetics of

these species, the proportions of SNP amplification and polymor-

phism were lower in the anchovy. Additionally, our sequencing

effort has led to the discovery of a large resource of microsatellite

markers, 36% of which have primers successfully designed (Table

S3). These include both neutral loci and loci that are physically

linked to SNPs representing genomic regions that have been

shown to be under directional selection [38]. Another attribute of

multi-allelic microsatellite markers when studying adaptive genetic

variation is the increased statistical power for detecting balancing

selection compared to bi-allelic markers (such as SNPs, e.g. [52]),

and also for applications such as parental assignment.
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Conclusion
Our approach of applying barcoding and multiplexing individ-

uals for large-scale in silico mining of transcriptome sequences

seems to be a very appropriate strategy to develop new SNP

markers in non-model species as it does not require costly and

time-intensive re-sequencing of target amplicons necessitating

prior knowledge and availability of genome sequence information.

However, the purely in silico based SNP detection comes with a

trade off in the form of an expectedly lower conversion rate in the

final genotyping assay [53]. The resultant resources will be of

value in on-going analyses of population structuring and stock

dynamics, assays of adaptive variation, and for enhancing the

scope of microsatellite-based studies.

Supporting Information

Figure S1 Analysis pipeline. The path on the left of the figure

illustrates the pipeline for the genomic approach, where herring

transcripts are directly compared with five reference genomes. The

path on the right of the figure shows the pipeline for the

transcriptomic approach, where herring transcripts are first

compared to the transcriptome of the five reference species. Hits

were then subsequently matched to the corresponding genomes of

the same species (see text for more details).

(TIF)

Table S1 Number of contigs and singletons annotated using a

range of fish and human reference resources and databases.

(XLSX)

Table S2 List of the 578 validated polymorphic SNPs found in

this study, including the 120 bp flanking region, with the two SNP

alleles in brackets. Also global estimates of observed (Ho) and

expected heterozygosity (He) in the four ascertainment populations

for each SNP. The S/NS column denotes whether a SNP was

either synonymous (S) or non-synonymous (NS) with NA

designating SNPs with no contig match in the BLAST search

(see text for more details).

(XLSX)

Table S3 List of the microsatellites for which primers were

successfully designed, along with up to 200 bases flanking

sequence.

(XLSX)
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Abstract

High gene flow is considered the norm for most marine organisms and is expected to

limit their ability to adapt to local environments. Few studies have directly compared the

patterns of differentiation at neutral and selected gene loci in marine organisms. We

analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea
harengus), a highly migratory small pelagic fish, for elucidating neutral and selected

genetic variation among populations and to identify candidate genes for environmental

adaptation. We analysed 607 individuals from 18 spawning locations in the northeast

Atlantic, including two temperature clines (5–12 �C) and two salinity clines (5–35&). By

combining genome scan and landscape genetic analyses, four genetically distinct groups

of herring were identified: Baltic Sea, Baltic–North Sea transition area, North Sea ⁄ British

Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for

neutral and selected loci. We found statistically strong evidence for divergent selection at

16 outlier loci on a global scale, and significant correlations with temperature and salinity

at nine loci. On regional scales, we identified two outlier loci with parallel patterns

across temperature clines and five loci associated with temperature in the North

Sea ⁄ North Atlantic. Likewise, we found seven replicated outliers, of which five were

significantly associated with low salinity across both salinity clines. Our results reveal a

complex pattern of varying spatial genetic variation among outlier loci, likely reflecting

adaptations to local environments. In addition to disclosing the fine scale of local

adaptation in a highly vagile species, our data emphasize the need to preserve

functionally important biodiversity.

Keywords: genome scan, haemoglobin, heat shock protein, local adaptation, salinity,

single nucleotide polymorphism
Received 21 December 2011; revision received 30 March 2012; accepted 14 April 2012
Introduction

Local adaptation can evolve only if the strength of

divergent selection overrides random genetic drift and

the homogenizing effect of gene flow among popula-
nce: Morten T. Limborg, Fax: +45 35 88 31 50;

aqua.dtu.dk

thors.

well Publishing Ltd
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tions (Kawecki & Ebert 2004). These premises suggest

that the occurrence of local adaptation should be rare in

high gene flow species such as many marine organisms

(Palumbi 1994; Conover et al. 2006). In contrast, large

effective population sizes (Ne) should enhance response

to selection, and local selective pressures may be sub-

stantial considering the often immense environmental

heterogeneity experienced by widely distributed marine

species. A recent simulation-based study showed that
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even in the face of considerable gene flow, environmen-

tal heterogeneity may cause disruptive selection and

result in local adaptation (Yeaman & Whitlock 2011).

Accordingly, expectations are that genes and linked

regions under the influence of divergent selection will

show elevated differentiation, in comparison with selec-

tively ‘neutral’ gene regions. Until now, genomic stud-

ies of high gene flow marine fish have been mostly

restricted to Atlantic cod (Gadus morhua) (Moen et al.

2008; Nielsen et al. 2009b; Bradbury et al. 2010), while

for other fishes, inference of genic selection has often

been made from a single or few candidate genes

(Hemmer-Hansen et al. 2007a; Gaggiotti et al. 2009;

Larmuseau et al. 2009).

The task of identifying signatures of natural selection

in nonmodel species has been constrained by often lim-

ited numbers of (usually) neutral genetic markers

(Hauser & Seeb 2008). Next-generation sequencing (NGS)

technologies have facilitated the development of large

transcriptome-derived marker panels, effectively increas-

ing the chance of detecting natural selection by studying

functional genetic variation, which is expected to be more

directly affected by natural selection (Allendorf et al.

2010). The increased genomic coverage further improves

the chance of detecting loci affected by divergent selec-

tion from neutrally evolving sites by applying genome

scan approaches (Beaumont 2005; Storz 2005). The adap-

tive significance of actual outlier loci is often elusive

because they may not be the direct target of selection but

rather exhibit hitchhiking with genes under selection

(Maynard Smith & Haigh 1974). However, the combina-

tion of insights from known gene functions, landscape

effects (Manel et al. 2003), replicated patterns across

independent environmental clines (Schmidt et al. 2008)

and previous findings provides stronger evidence for

adaptive roles of outlier loci (Vasemägi & Primmer 2005).

Despite a predominant picture of weak population

structure in most marine fishes (Ward et al. 1994), geno-

mic regions under divergent selection may be more pre-

valent than hitherto anticipated (Nielsen et al. 2009a).

In the present study, we use the Atlantic herring (Clu-

pea harengus; hereafter ‘herring’) as a model to investi-

gate spatially explicit genomic variation in a marine

organism characterized by high gene flow and large

effective population size (Ne). Herring is a small, highly

migratory pelagic fish distributed throughout heteroge-

neous environments in large parts of the North Atlantic.

Local populations exhibit large differences in demo-

graphic and life history parameters including growth,

spawning season and migratory behaviour (Iles &

Sinclair 1982; Aro 1989). Outside spawning seasons,

several populations undergo long-distance migrations

to communal feeding areas (e.g. Ruzzante et al. 2006),

suggesting ample opportunities for dispersal and gene
117
flow. In some areas, a combination of high gene flow

and large Ne among herring populations presumably

impedes genetic detection of local demes using neutral

markers (Mariani et al. 2005). However, for other geo-

graphical regions, significant genetic structuring is evi-

dent, especially across the strong environmental cline

separating the fully marine North Sea from the brackish

Baltic Sea (Bekkevold et al. 2005) as well as weak, but

statistically significant, patterns within the Baltic Sea

(Jørgensen et al. 2005). More recently, signatures of

selection have also been demonstrated in herring

(Larsson et al. 2007; Gaggiotti et al. 2009; Andre et al.

2011), but these studies focus on comparisons between

North Sea and Baltic Sea herring for a single microsatel-

lite locus. Thus, despite many population genetic stud-

ies on herring, the geographical scale and pattern of

adaptive divergence at genomic levels remains largely

unknown.

We investigated the spatial and genomic scales at

which herring populations are likely to exhibit adapta-

tion to local environments. We conducted comprehen-

sive sampling of herring spawning populations

throughout the northeastern Atlantic, and across several

environmental gradients, and applied a statistical gen-

ome scan approach to transcriptome-derived single-

nucleotide polymorphism (SNP) markers. To assess the

robustness of loci under selection, we use two different

‘outlier tests’ for identifying gene regions exhibiting sta-

tistical evidence of predominantly either neutral or

divergent selection processes. Furthermore, we use a

complementary ‘landscape genetics’ approach to iden-

tify loci under divergent selection in relation to key

environmental parameters. Findings are discussed in

relation to the prospects and significance of detecting

functional biodiversity in high gene flow taxa through

exploring genes subject to local adaptive evolution in

the oceans.
Materials and methods

Samples

Twenty-one samples were collected from scientific sur-

veys and commercial fishing vessels, representing 18

locations spanning the majority of the species’ east Atlan-

tic distribution (Fig. 1). Three samples represented

temporal (range = 6–10 years) replicates within locations.

Populations were targeted during the spawning season

at known spawning grounds and mainly comprised

spawning (ripe and running) individuals. Samples

spanned latitudinal clines (reflecting temperature) both

in the North Sea ⁄ North Atlantic and in the Baltic Sea

(Fig. 1). Samples also covered longitudinal clines (corre-

sponding with two low-salinity environments): one
� 2012 Blackwell Publishing Ltd
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Fig. 1 Distribution of sampled locations. Average annual surface temperature (�C) and salinities (&) are given throughout the distri-

bution, and major regional areas are denoted in italics.
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spanning the North Sea ⁄ British Isles into the Baltic Sea

which is an isolated brackish sea only receiving saline

waters from the North Sea through the narrow Danish

Straits and one going from the North Sea ⁄ British Isles

with high-salinity coastal locations, changing to more

brackish spawning locations in the Ringkøbing Fjord

draining into the eastern North Sea and separated from

the low-saline Baltic Sea cline (Fig. 1). Spawning times of

herring differ among local populations (Cushing 1967)

and collections reflect this, as spring-, autumn- and win-

ter-spawning populations are all represented (Table 1).
Molecular analyses and genotyping

DNA was extracted from gill, muscle or fin tissue

stored in 96% ethanol using the E.Z.N.A. Tissue DNA

kit (Omega Bio-Tek, Norcross, GA, USA) following the

manufacturer’s protocol. A NanoDrop Spectrophotome-

ter (Thermo Fisher Scientific Inc.) was used to ensure

adequate quality and quantity of DNA prior to geno-

typing. A total of 762 individuals were screened for a

panel of 310 SNPs (Table S1, Supporting information).

These SNPs were selected from a larger collection of

578 SNPs (Helyar et al. 2012) based on robust clustering
� 2012 Blackwell Publishing Ltd
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of genotypes (see below) and minimization of the num-

ber of loci affected by very strong linkage disequilib-

rium. Genotyping was performed using a custom

Illumina Golden Gate� Assay (Fan et al. 2003) in Sen-

trix Array Matrix (SAM) format on the iScan platform.

SNPs were developed from an ascertainment panel of

eight individuals representing all major geographical

regions studied here (i.e. Baltic Sea, English Channel,

North Sea and North Atlantic) (Helyar et al. 2012), thus

minimizing ascertainment bias (Rosenblum &

Novembre 2007). Overall, 29 SNPs were discarded due

to ambiguous clustering (Table S1, Supporting informa-

tion), and of the remaining 281 SNPs, 70% were anno-

tated using BLASTN (NCBI) (Helyar et al. 2012).

Genotyping data were visualized and analysed using

the GENOMESTUDIO Data Analysis Software package

(1.0.2.20706; Illumina Inc.). One specimen was indepen-

dently re-genotyped 12 times, which allowed the esti-

mation of an overall genotyping error of 1.57% across

all loci and samples. Specimens with low call rates

(<90% loci genotyped) were discarded, leading to 607

individuals genotyped for a total of 281 SNPs (Table S1,

Supporting information) in 21 sample collections

(n = 17–39).
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ENVIRONMENTAL ADAPTATION IN ATLANTIC HERRING 5
Summary statistics

Within each population, loci were tested for departure

from Hardy–Weinberg proportions (HWE) using ARLE-

QUIN 3.5 (Excoffier & Lischer 2010) with a Markov Chain

(MC) of length 106 and 100 000 dememorizations.

A false discovery rate (FDR) was calculated to correct

for multiple testing using the approach by Benjamini &

Yekutieli (2001). Linkage disequilibrium was tested for

each marker pair in all samples with GENEPOP 4.0

(Raymond & Rousset 1995) (10 000 dememorizations,

100 batches and 5000 iterations), and the results were

corrected for multiple testing as above. For each popu-

lation, estimates of expected (He) and observed (Ho)

heterozygosities were obtained using GENALEX 6.4 (Peak-

all & Smouse 2006).
Outlier analyses

Two independent methods were used to identify puta-

tive loci under selection. ARLEQUIN v3.5 (Excoffier &

Lischer 2010) utilizes coalescent simulations to generate

a null distribution of F-statistics, with P-values condi-

tioned on observed levels of heterozygosities across loci

(Excoffier et al. 2009). Excoffier et al. (2009) demon-

strated that the hierarchical island model produces

fewer false positives than the finite island model for

species exhibiting spatial population structure. For com-

parison, we tested both models. The hierarchical island

model was implemented by grouping population sam-

ples according to the genetic clustering analyses

(Table 1), as follows: (i) the Baltic Sea, (ii) the Bal-

tic ⁄ North Sea transition area, (iii) the North Sea ⁄ British

Isles and (iv) the North Atlantic. For all analyses, the

settings were 10 000 simulations, 100 demes per group,

and 10 groups. Loci that fell outside the 95% quantile

were regarded as candidates for selection. BAYESCAN

v2.01 (Foll & Gaggiotti 2008) measures the discord

between global and population-specific allele frequen-

cies (based on FST coefficients). While this method does

not take into account the population structure, simula-

tions have shown BAYESCAN to have lower type I and II

errors than ARLEQUIN (Narum & Hess 2011). Log10 val-

ues of the posterior odds (PO) >0.5 and 2.0 were taken

as ‘substantial’ and ‘decisive’ evidence for selection

(Jeffreys 1961). An advantage of the posterior probabil-

ity approach is that it directly allows for control of the

FDR; here, the FDR was set at 0.05 and 0.01, adjusting

the log10(PO) significance thresholds corresponding to

the 0.5 and 2.0 values considered before correction. To

compare global and regionally based signatures of

selection, we performed global (21 population samples)

genome scans using both software packages as detailed

above. Based on the combined inference from these
� 2012 Blackwell Publishing Ltd
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global genome scans, each SNP was categorized as

either an ‘outlier’ (if it came out as such with either one

or both of the programs) or ‘neutral’ (if it showed no

indication of outlier behaviour with either program).

We then constructed two data sets: one including both

outlier and neutrally behaving SNP loci (referred to as

the ‘full’ marker set) and one where all loci detected as

outliers in global tests were removed (referred to as

‘neutral’ marker set). To further increase support for

potential outliers in relation to environmental adapta-

tion, we performed local genome scans to focus on the

two separate regional temperature clines and two salin-

ity clines (see Table 1 for samples included).
Population structure

For the ‘neutral’ marker set, temporal stability between

replicates for three locations (Table 1) was assessed

through pairwise FST analyses (following Weir &

Cockerham 1984) using the Fstat function implemented

in GENELAND (Guillot et al. 2005) conducted in the pro-

gram R (http://cran.r-project.org). Temporal samples

not exhibiting significant differentiation (a = 0.05) were

pooled within locations for subsequent analyses. FST

was computed between all pairs of samples using both

‘neutral’ and ‘full’ marker sets. For all comparisons, sig-

nificance was tested by permuting individuals 10 000

times among samples followed by correction for multi-

ple tests using the FDR (a = 0.05) according to Benja-

mini & Yekutieli (2001). The statistical power of the

‘neutral’ marker set for detecting genetic differentiation

was assessed using POWSIM (Ryman & Palm 2006). By

defining a given effective population size (Ne), POWSIM

simulates genetic drift within two independent popula-

tions for t generations. Ne was set to 10 000 (the maxi-

mum allowed) and t varied among simulations to

obtain a range of known FST values (0.00–0.02) between

two hypothetical populations. Hereafter, 40 individuals

were sampled from each population, and the null

hypothesis of genetic homogeneity between samples

was tested using a chi-square test. Repeating this proce-

dure 1000 times allowed the assessment of the statistical

power as the proportion of significant outcomes for

each level of FST.

To infer the number of major genetic clusters, we

used the Bayesian MCMC clustering approach imple-

mented in STRUCTURE 2.3.1 (Pritchard et al. 2000). This

model clusters all individuals into a predefined number

of clusters (K) by minimizing overall deviation from

HW and linkage equilibrium within clusters. Consider-

ing previous findings of high levels of gene flow in her-

ring, we used the admixture model with correlated

allele frequencies to reflect the most likely pattern of

population connectivity. Also, due to the sampling
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design, we allowed the model to include prior informa-

tion on sampling location (Hubisz et al. 2009). Ten inde-

pendent trials were run for each predefined K value,

with K = 1–10. We used a burn-in of 10 000 iterations

followed by 100 000 MCMC repetitions, and consistency

of the three most likely K estimates was confirmed by

longer chains of 100 000 burn-in and 500 000 final repe-

titions. In order to identify the most likely number of

genetic clusters, also considering a sound biological

interpretation, we initially considered both raw proba-

bility values of lnP(X|K) given by the program, and the

DK estimate (Evanno et al. 2005). Where two models

with consecutive K values could not be statistically dis-

tinguished, we performed hierarchical AMOVA using the

locus-by-locus approach and 10 000 permutations in

ARLEQUIN 3.5 (Excoffier & Lischer 2010), using both the

‘neutral’ and ‘full’ marker sets.

In addition, barplots of individual admixture propor-

tions were visually inspected to infer the biologically

most meaningful value of K. For example, if increasing

K by one simply added a new cluster equally repre-

sented by all individuals in the data, as opposed to the

break-up of existing clusters forming a new more or

less admixed cluster, the lower value of K would be

considered more biologically realistic.
Environmental associations with genetic variation

To test for association between specific gene regions

and environmental or landscape parameters, we

applied the Bayesian approach implemented in BAYENV

(Coop et al. 2010). This approach takes into account the

effect of underlying (neutral) population structure by

first estimating a covariance matrix based on neutral

markers, which is subsequently used to control for

demographic variation when testing landscape- and

locus-specific correlations in a Bayesian framework (see

Coop et al. 2010). For this, we estimated a neutral

covariance matrix based on the ‘neutral’ marker set.

Results are given as a Bayes factor (BF) for each

landscape variable and SNP locus correlation. This BF

represents a ratio of the posterior likelihoods of a model

where the landscape parameter has a significant effect

on the locus, over an alternative model with no effect of

the tested variable. We considered log10(BF) values

above 1.5 as ‘very strong’ evidence (Jeffreys 1961) for

an effect of the tested landscape ⁄ environmental factor

(or any correlated factors) on the observed SNP allele

distribution. The following landscape ⁄ environmental

parameters were considered: (i) latitude, (ii) longitude,

(iii) mean annual surface salinity, (iv) mean annual sur-

face temperature, (v) mean spawning period surface

salinity and (vi) mean spawning period surface temper-

ature (Table 1). The latter two parameters were tested
121
based on the assumption that mortality selection is

expected to be most important during the egg (7–

14 days) and larval (c. 2 months) phases, when natural

mortality is highest (Dahlberg 1979). Estimates for tem-

perature and salinity were calculated as the mean value

over periods ranging from 20 to 120 years (depending

on data availability) for all months (annual means) or

for the 3 months following the midpoint of the spawn-

ing period (data and sources are listed in Table 1). As

all pairwise genetic comparisons between temporally

replicated samples were nonsignificant (see Results), all

within-population genotypes across years were pooled

for these analyses. To test for relationships between

selected genetic variation and environment across both

global and local scales, we performed a global analysis

including all 18 samples as well as four regionally

based analyses (regions defined as per regional genome

scans; Table 1). To further rule out potential false posi-

tive correlations resulting from covarying isolation-by-

distance (IBD) effects, we performed partial Mantel tests

(Legendre & Legendre 1998) of locus-specific pairwise

FST matrices and environmental distances for all loci

correlating with temperature and salinity while control-

ling for geographical distance (shortest waterway) using

the NCF (spatial nonparametric covariance functions)

package in R (http://cran.r-project.org/web/packages/

ncf/index.html) and running 1000 simulations to test

for significance.
Results

Summary statistics

After removing loci that were monomorphic within a

population, a total of 5541 tests for deviation from

HWE were performed across all samples. Prior to and

following correction for multiple testing (FDR = 5%),

159 (2.6%) and 19 (0.3%) tests were significant, respec-

tively. The latter category included 19 different mark-

ers and 12 samples with a maximum of three

significant tests for the same sample. Only one signifi-

cant test involved a SNP likely to be affected by selec-

tion. A total of 726 865 tests for LD within samples

were performed, of which 1309 tests remained signifi-

cant (P < 0.05) after correction for multiple testing.

These ranged between 29 and 95 significant outcomes

(of �40 000 possible SNP pairs) within samples, and

no SNP pair was significant in more than three of 21

samples. We thus do not expect LD or departure from

HWE across the 281 loci to affect downstream analy-

ses. Levels of He and Ho were similar and ranged

between 0.27 and 0.32 with no clear spatial pattern of

regionally differentiated levels of genetic diversity

(Table 1).
� 2012 Blackwell Publishing Ltd
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Outlier tests for selected vs. neutral variation

For the global analyses, overall 16 (5.7%) and 14 (5.0%)

outlier loci were suggested to be under divergent selec-

tion at the 5% and 1% thresholds, respectively, across

the two genome scan approaches. All 16 loci were

detected by BAYESCAN, while 15 of these were also

detected by ARLEQUIN (Fig. 2a, Table 2). A comparison

of genotyping error across all loci (1.57%) vs. the 16
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global outlier loci (1.08%) affirmed that outliers were

not expected to suffer increased genotyping error rates.

No outliers for balancing selection were observed

(Fig. 2a). Based on the combined inference from global

outlier tests, the ‘full’ marker set included all loci (16

outlier loci and 265 ‘neutral’), whereas the ‘neutral’

marker set included 265 putatively neutral loci. Genome

scans comprising only samples across each of the two

temperature clines and each of the two salinity clines
3 4 5
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Table 2 Global results for selection including all samples

Outlier results

SNP (Cha_)

BAYENV results

ARLEQUIN BAYESCAN Lat Long SST SST.spawn PSU

** ** 1025.1-149 ** ** ** (**) (**)

* ** 10733.1-102

** ** 1170.1-250 ** (**)

** ** 13197.4-115 *

** ** 13371.3-81 * ** **

* 14331.1-140

** ** 1513.1-91 (Cat) * **

** ** 15389.3-101 (Hsp70) ** ** (**) **

** ** 15984.1-275 (Hba) ** * (**) **

** ** 16330.7-357

* * 2814.1-396

** ** 2884.1-367 ** * ** (*) (**)

* ** 297.1-93

** ** 381.2-437 ** (**) **

** ** 5534.1-506 ** **

** ** 5541.1-273

Overview of results from ARLEQUIN and BAYESCAN outlier tests (left of SNP names) together with all landscape association (BAYENV)

results. The first two columns left of the SNP names show all detected outliers where * and ** denote outliers with P < 0.05 or 0.01

for the ARLEQUIN analysis. BAYESCAN outliers were detected with false discovery rates of 5% (*) and 1% (**). Statistical inference of

correlations between SNPs and landscape parameters are given for relationships with log10(BF) = 1.5–2.0 (*) and log10(BF) > 2.0 (**).

Corresponding correlations from partial Mantel tests that became nonsignificant when controlling for geographical distance are

shown in parentheses. No relationships between neutral SNPs and tested landscape parameters had log10(BF) > 1.5 in the BAYENV

tests (not shown). Lat, latitude; Long, longitude; SST, annual mean temperature, SST spawn, average spawning season temperature;

PSU, annual mean salinity.
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revealed between 11 and 14 outliers, with the majority

only detected by ARLEQUIN (Tables 3–4). All 14 global

outliers detected at the 1% thresholds were also

detected in one or more regional tests. Two loci were

outliers across both temperature clines (Table 3), and

seven loci were outliers across both salinity clines

(Table 4). In total, 39 loci were identified as outliers in

one or more analyses (Tables 2–4), and of these, 28

were annotated (Helyar et al. 2012).
Population structure

Clustering analysis based on the ‘neutral’ marker set

suggested a model of K = 3 as the statistically most

likely (ln(K) = )145 231 ± 30 SD). Most individual geno-

types indicated admixture between clusters, but overall

the three identified clusters corresponded with (i) the

Baltic Sea, (ii) the Baltic ⁄ North Sea transition area and

(iii) the North Sea ⁄ British Isles ⁄ North Atlantic (Fig. 3a).

Setting K = 4 decreased the probability to

ln(K) = )145 603 ± 43 SD. Here, three samples from the

North Sea ⁄ North Atlantic (Shetland, Norway and Ice-

land) showed a trend of being admixed between a

North Sea ⁄ British Isles and a fourth, North Atlantic

cluster (Fig. 3a). AMOVA tests for K = 3 and 4 revealed

similar levels of variation among groups (Table 5).
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When using the ‘full’ marker set, a model with K = 4

was suggested as the single most likely scenario

(ln(K) = )153 959 ± 43 SD). Again, most individuals

exhibited admixed genotypes, but the four clusters

overall corresponded with (i) the Baltic, (ii) the Bal-

tic ⁄ North Sea transition area, (iii) the North Sea ⁄ British

Isles and (iv) the North Atlantic (Fig. 3b). The four

clusters were further supported by the AMOVA revealing

increased levels of variation among four groups com-

pared to three (Table 5). For a K = 4 model, the two

marker sets were largely similar in defining a total of

four groups, and we consider this as the most likely

number of groups detectable with our data. However,

in comparison, the ‘full’ marker set was able to more

clearly define the North Atlantic cluster as well as iden-

tifying admixture between the Baltic and the North

Atlantic clusters in the Bothnian Bay sample (Fig. 3).

Statistical power for detecting genetic differentiation

among local populations with neutral, bi-allelic markers

was high (>0.89 for detecting differentiation at

FST ‡ 0.005), based on the POWSIM analysis. Genetic differ-

entiation between three temporal within-location

replicates (representing three major clusters) inferred for

both the ‘neutral’ and ‘full’ marker sets was low and in

all cases nonsignificant (FST = )0.002 to 0.005, P > 0.05),

suggesting that the identified structure is temporally
� 2012 Blackwell Publishing Ltd



Table 3 Regional results for selection across two latitudinal clines (reflecting temperature gradients) in the North Sea ⁄ North Atlantic

(five samples) and in the Baltic Sea (five samples), respectively

North Sea ⁄ North Atlantic

(Norway, Iceland, Shetland, Central North Sea, English Channel)

Outlier results BAYENV results

ARLEQUIN BAYESCAN SNP (Cha_) Lat Long SST SST.spawn PSU

** ** 1025.1-149 ** (**)

** ** 10733.1-102

** ** 1170.1-250 ** (*)

** 11922.3-225

** 13197.4-115 *

** ** 13371.3-81 (**)

* 13427.1-146

* 16060.1-279

** ** 2884.1-367 ** (**)

** * 297.1-93

** ** 462.3-102

** ** 5534.1-506 ** **

Baltic Sea

(Bothnian Bay, Gulf of Finland, Gulf of Riga, Hanö Bay, Gdansk)

Outlier results

SNP (Cha_)

BAYENV results

ARLEQUIN BAYESCAN Lat Long SST SST.spawn PSU

** 10428.2-348

** 11521.1-298

** 12888.1-297

* 13197.3-287

* 13197.4-115

* 15056.1-166

* 15389.3-101 (Hsp70)

** 1567.1-307

** 15898.2-568

** 160.1-805

** * 2884.1-367

** 535.2-394

** 5625.1-135

** 9634.1-256

Results are presented as in Table 2, and underlined SNPs represent replicated outliers in both transects.
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stable at least within the time frame studied. Across all

pairs of samples, FST estimates based on 265 neutral

markers were generally low (FST = )0.002–0.012), while

estimates based on all 281 SNPs were slightly higher

(FST = )0.002 to 0.028; Table S2, Supporting informa-

tion). Comparisons between samples from the four major

population groups were generally significant for both

marker sets, whereas within-group comparisons were

often low (all FST < 0.008) and nonsignificant (Table S2,

Supporting information). Exceptions to overall within-

group homogeneity were mostly identified for the ‘full’
� 2012 Blackwell Publishing Ltd
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marker set and included (i) differentiation between the

Gulf of Finland and Hanö Bay within the Baltic group,

(ii) samples from Rügen exhibiting differentiation from

the Skagerrak and Kattegat for the Baltic ⁄ North Sea tran-

sition area group, (iii) Shetland being differentiated from

the Irish Sea, Celtic Sea and English Channel samples in

the North Sea ⁄ British Isles group, (iv) Central North Sea

and Irish Sea samples within the North Sea ⁄ British Isles

group and (v) Norway being differentiated from Iceland in

the North Atlantic group (Table S2, Supporting informa-

tion). We cannot rule out that some loci affected by selec-



Table 4 Regional results for selection across longitudinal clines including two low-salinity environments from the North Sea ⁄ British

Isles into the Baltic Sea (eight samples) and Ringkøbing Fjord (four samples), respectively.

North Sea ⁄ British Isles—Baltic Sea

(W. Ireland, Irish Sea, Central North Sea, Skagerrak, Kattegat, Rügen, Gdansk, Gulf of Riga)

Outlier results

SNP (Cha_)

BAYENV results

ARLEQUIN BAYESCAN Lat Long SST SST spawn PSU

** ** 1025.1-149 ** ** ** **

* 1170.1-250

** ** 13371.3-81 * (*) **

* 14067.1-259

** ** 1513.1-91 (Cat) * *

** ** 15389.3-101 (Hsp70) ** (**) (**) **

** ** 15984.1-275 (Hba) ** ** ** **

** * 16330.7-357

** ** 2884.1-367 ** (**) **

** ** 381.2-437

** 3888.1-826

* 688.1-238

* 693.2-263

North Sea ⁄ British Isles—Ringkøbing Fjord

(W. Ireland, Irish Sea, Central North Sea, Ringkøbing Fjord)

Outlier results

SNP (Cha_)

BAYENV results

ARLEQUIN BAYESCAN Lat Long SST SST spawn PSU

** ** 1025.1-149 * (**)

** 10733.1-102

** 13371.3-81 (*)

** 1513.1-91 (Cat) (*)

** ** 15389.3-101 (Hsp70) ** (**) **

** 15964.1-332

** ** 15984.1-275 (Hba) ** (**)

** 2884.1-367

* 318.1-301

** 5541.1-273

* 693.2-263

** 7456.1-168

* 8760.1-243

Results are presented as in Table 3, and SNPs in boldface show correlations with one or more similar landscape parameters across

both clines.
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tion were included in the ‘neutral’ marker set, because

only global outliers were excluded in defining neutral

markers, despite the prevalence of other loci exhibiting

regional outlier status. However, here we mainly apply

an intercluster comparison of neutral and selected data,

and combined with the finding of mainly weak and non-

significant neutral genetic differentiation within clusters

(Table S2, Supporting information), we argue that the

applied approach remains useful.
125
Environmental associations

The global test for correlations between individual loci

and six landscape variables revealed significant associa-

tions with one or more landscape variables for ten of

the 16 global outlier loci (Table 2). None of the 265 neu-

tral loci were correlated with any of the tested vari-

ables. Outlier loci showed distinct allele frequency

distributions potentially reflecting the effects of spatially
� 2012 Blackwell Publishing Ltd
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Table 5 AMOVA based on neutral loci (neutral marker set) and

all loci (full marker set). For each data set, an AMOVA was per-

formed for K = 3 and 4 following clustering results from STRUC-

TURE analyses (see text for details). All variance levels are

highly significant (P < 0.001)

Data set Hierarchical level

% variation

K = 3 K = 4

Neutral

marker set

Among groups (FCT) 0.31 0.32

Among populations

within groups (FSC)

0.19 0.16

Within populations (FST) 99.49 99.52

Full

marker set

Among groups (FCT) 1.10 1.32

Among populations

within groups (FSC)

0.58 0.31

Within populations (FST) 98.33 98.37
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varying selective forces. This is exemplified in Fig. 2b,

illustrating allele frequency distributions for a subset of

four global outlier loci. While allele frequencies gener-

ally vary most between the Baltic and the Atlantic,

some SNPs show more similar allele frequencies

between the geographically very distant North Atlantic

and Baltic clusters than between geographically adja-

cent regions (e.g. Cha_1025.1-149 and Cha_2884.1-367).

One locus (Cha_381.2-437) was mainly polymorphic in

Baltic populations and was either fixed or near fixation

in all other populations, whereas another locus

(Cha_15389.3-101) was polymorphic throughout the Bal-

tic and Baltic ⁄ North Sea transition area but fixed in all

other populations (Fig. 2b).

All loci significantly correlated with salinity showed

similar patterns with both annual and spawning period

averages; thus, we only present results for annual aver-

ages below (Tables 2-4). Of seven loci globally corre-
� 2012 Blackwell Publishing Ltd
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lated with salinity, six and five associations were also

significant (log10(BF) > 1.5) across the two regional

salinity clines, respectively (Fig. 4a; Table 4). Three of

these loci are annotated (Helyar et al. 2012), including a

heat-shock protein (Hsp70; Cha_15389.3-101), a haemo-

globin alpha subunit gene (Hba; Cha_15984.1-275)

and a gene coding for the enzyme catalase (Cat;

Cha_1513.1-91).

While eight loci showed significant associations with

annual mean temperature, only four of these were sig-

nificantly correlated with spawning period temperature

(Table 2). Likewise, none of the loci correlated with

spawning period temperature across the North Sea ⁄
North Atlantic temperature cline, despite five loci show-

ing significant associations with annual mean tempera-

ture (Fig. 4b). No landscape variables were significantly

correlated with allelic variation over the Baltic tempera-

ture cline (Table 3), in spite of two outlier loci identified

across both the North Sea ⁄ North Atlantic and Baltic

temperature clines. Several loci that were significantly

associated with temperature and ⁄ or salinity were also

significantly correlated with latitude and ⁄ or longitude

potentially indicating isolation-by-distance relationships

covarying with environmental factors (Table 2). How-

ever, 11 of 19 global environmental correlations

remained significant after controlling for geographical

distance using partial Mantel tests (Table 2). Including

regional tests, in total, 11 of 26 temperature correlations

and 12 of 18 salinity correlations remained significant

after accounting for geographical distance (Tables 2–4).

Further, as the method by Coop et al. (2010) already

controls for population demography using neutral mar-

ker information, it is not expected that isolation-by-dis-

tance effects alone explain the associations between

adaptive genetic variance and environmental factors, as

reported in other studies (see Vasemägi 2006).
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Discussion

The extent and dynamics of local adaptation is key to

understanding the ecological and evolutionary pro-

cesses that influence biodiversity, as well as providing a

spatially explicit framework for the conservation of

genetic resources. While it is well recognized that

opportunities for local adaptation in freshwaters due to

habitat fragmentation and typically constrained dis-

persal (e.g. Mäkinen et al. 2008; Hohenlohe et al. 2010)

are higher than in many marine fishes, recent evidence

indicates remarkably small-scale adaptive variation in

the latter (Moen et al. 2008; Poulsen et al. 2011). Here,

by applying analyses of a large number of novel tran-

scriptome-based SNP markers to spatio-temporal sam-

ples of herring, we identified outlier candidate genes

indicating divergent selection among locally adapted

populations. Moreover, candidate gene variation did

not follow spatially uniform patterns across loci, sug-

gesting that local populations have undergone multiple

selective sweeps. Landscape genetic analyses suggested
127
that environmental heterogeneity is an important driv-

ing force of divergent selection among populations,

even in high gene flow organisms.
Combining neutral and selected loci to assess
population structure

The highly consistent results from two statistical

approaches for global outlier detection strongly suggest

that the identified outlier loci or associated genomic

regions are subject to divergent selection. The global

outliers made up 5.7% of all analysed loci, which is

within the range reported for other organisms (Nosil

et al. 2009), including another high gene flow marine

fish, Atlantic cod (Nielsen et al. 2009b; Bradbury et al.

2010). No outliers were suggested to be under balancing

selection, possibly due to reduced statistical power

when studying weakly structured species (Foll &

Gaggiotti 2008). Substantial differences between the

clustering of populations when applying the ‘neutral’

vs. the ‘full’ data set were observed. Identification of
� 2012 Blackwell Publishing Ltd
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three major clusters comprising the Baltic Sea, Bal-

tic ⁄ North Sea transition area and the North Sea ⁄ British

Isles ⁄ North Atlantic, respectively, using the ‘neutral’

marker set is in accordance with a previous microsatel-

lite study (Bekkevold et al. 2005). An additional cluster

was identified when adding outlier loci to the marker

set, leading to a clear separation of North Atlantic from

North Sea ⁄ British Isles populations, but also to more

complex admixture patterns within populations. Such

patterns of structuring clearly illustrate the increased

statistical power for distinguishing weakly structured

populations from the inclusion of only a few loci

affected by divergent selection.

The inclusion of non-neutral markers may violate

model assumptions of STRUCTURE (Pritchard et al. 2000)

if outlier loci are under fluctuating environmental selec-

tion pressures uncoupled from the general population

structuring process (migration and drift) within the spe-

cies. However, differentiation at outlier loci may also

elucidate evolutionary significant population units that

could not be detected with neutral markers alone. Fur-

thermore, no systematic trends of LD or deviations

from HWE were observed at any of the outliers, and

outliers exhibited consistent and temporally stable (over

6–10 years) patterns within and among geographical

regions. Thus, we argue that careful inclusion of

selected loci in a comparative approach (as presented

here) remains useful for assessing spatial scales of

demographically and reproductively isolated popula-

tions.

At local scales, there were clear examples of genetic

separation between samples from geographically adja-

cent spawning locations, supported by both the cluster-

ing analysis and pairwise FST estimates for neutral

markers. For example, samples from two fjords drain-

ing into the eastern North Sea (Limfjord and Ringkøb-

ing Fjord) exhibited strong differentiation from all

western North Sea locations (Fig. 3), in spite of pheno-

typic marker studies showing overlapping feeding habi-

tat and large potential for mixing between populations

in these areas (Rosenberg & Palmen 1982). Similarly,

the western Baltic population of Rügen also exhibited

clear genetic heterogeneity from the two neighbouring

Baltic populations at Hanö Bay and Gdansk. In both

cases, the results demonstrate that genetic variation

does not follow a linear isolation-by-distance model,

and corroborates natal homing as a strong driver of

population structuring in herring (Gaggiotti et al. 2009).

Genetic divergence among samples in the North

Sea ⁄ British Isles ⁄ North Atlantic was dramatically differ-

ent using the ‘neutral’ vs. ‘full’ marker sets. Whereas

neutral markers exhibited low, nonsignificant differenti-

ation, agreeing with microsatellite studies (Mariani

et al. 2005; Gaggiotti et al. 2009), analyses including
� 2012 Blackwell Publishing Ltd
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selected loci exhibited a clear north–south separation

with pairwise FST estimates of the same magnitude as

between North Sea and Baltic Sea samples (Table S2,

Supporting information). Such patterns could reflect

selective sweeps for SNPs or associated gene regions at

local scales corroborating findings in other marine

fishes (Schulte 2001; Hemmer-Hansen et al. 2007a;

Larsen et al. 2007; Moen et al. 2008; Nielsen et al.

2009b; Bradbury et al. 2010; Poulsen et al. 2011), and

hence contribute to the notion that local selection pres-

sures can override the homogenizing effects of high

gene flow (Yeaman & Otto 2011). Indeed, results from

Atlantic cod have shown similar latitudinal trends in

the northeastern Atlantic Ocean to those identified for

herring in this study (Nielsen et al. 2009b; Bradbury

et al. 2010), and similar adaptive patterns have also

been demonstrated in marine fishes inhabiting the wes-

tern Atlantic (Schulte 2001; Bradbury et al. 2010).

The Baltic ⁄ North Sea transition area is hypothesized

to constitute a hybrid zone with fish being genetically

distinct from either North Sea or Baltic fish populations

across several species (Nielsen et al. 2003; Hemmer-

Hansen et al. 2007b; Limborg et al. 2009), including

herring (Bekkevold et al. 2005). A genetically distinct

cluster of herring in the Baltic ⁄ North Sea transition area

was also supported here (see e.g. Fig. 3a for K = 3), in

accordance with the findings of Gaggiotti et al. (2009).

Further, our results suggested a relatively stronger

admixture pattern for selected than for neutral loci

(compare Fig. 3a and 3b). This pattern might reflect

that populations in the transition area, despite exhibit-

ing relatively closer neutral genetic relationships with

Baltic than with North Sea populations for K = 2 (not

shown), experience environmental selection pressures

that are more similar to those in the North Sea. This

was supported by sample-specific allele frequencies for

the selected loci Cha_1025.1-149 and Cha_381.2-437, where

some Baltic ⁄ North Sea transition area samples showed

higher resemblance to North Sea populations (Fig. 2b).

The additional evidence provided here that adaptive

divergence is marked even among potentially high gene

flow species, such as herring, has wider significance. If

gene flow restricts adaptive divergence, as is often

assumed (Slatkin 1987), standard approaches using neu-

tral genetic markers and landscape genetic approaches

may be sufficient to get a crude estimate of adaptive

variation. However, indications here, as elsewhere

(Nielsen et al. 2009a), reinforce the notion of disparity

among patterns of structuring across neutral and

selected loci. Thus, if adaptive divergence does limit

gene flow, genetic population structure may be poorly

predicted from larval dispersal patterns, but more

related to environmental heterogeneity that is sometimes

obvious (Jørgensen et al. 2008), but sometimes not (Ha-
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user & Carvalho 2008). Moreover, the implications for

recruitment dynamics are considerable. Occasionally,

high rates of larval influx from divergent populations

may contribute little to local recruitment and may

indeed be detrimental by increasing maladaptive traits

(migration load). In such circumstances, selective mor-

tality may be an important factor explaining population

structure and could underlie some of the abrupt genetic

discontinuities observed across hybrid zones of diver-

gent populations, such as detected here in Baltic–North

Sea herring. Documented evidence of high selective

mortality in recruits to local populations (Planes &

Lenfant 2002; Veliz et al. 2006; Vigliola et al. 2007) adds

considerable support to this notion.
Environmental adaptation and candidate genes

Our results revealed an important role of environmental

heterogeneity in shaping adaptive genetic variation at

outlier genes. Specifically, the landscape genetic

approach demonstrated clear associations with tempera-

ture for nine outliers and with salinity for seven outlier

loci. The observation that only adaptive loci correlated

with environmental factors further illustrates that diver-

gent selection is an important force leading to locally

adapted populations of herring, despite assumingly

high levels of gene flow. Acknowledging the possibility

that temperature or salinity is merely correlated with

other environmental selection forces, our results sup-

port an evolutionary scenario with a strong environ-

mental effect on shaping adaptive genetic variation in

local herring populations.

Temperature is expected to affect a range of physio-

logical pathways representing a multitude of underly-

ing genes in poikilothermic organisms forced to exert

innate responses to changes in ambient temperatures.

Thus, it is not surprising that temperature affects a rela-

tively large number of outlier genes including those

also associated with salinity. Both temperature and

salinity have also been suggested to shape adaptive

genetic diversity among Atlantic cod in populations

from some of the same areas as in this study (Nielsen

et al. 2009b; Bradbury et al. 2010), as well as in other

marine fishes (e.g. Schulte 2001; Mäkinen et al. 2008).

However, a relatively large proportion of global outlier

loci (6 of 16) did not correlate with landscape parame-

ters, clearly suggesting an adaptive role for other

(untested) selective agents such as environmental (phys-

ical, chemical, biological) factors or landscape-indepen-

dent selection from intrinsic genetic incompatibilities

due to, for example, epistasis (Bierne et al. 2011). A few

outlier loci showed similar allele frequencies in the

Baltic and North Atlantic samples and thus a tendency

for clustering of northern Baltic and North Atlantic herring
129
for the full marker set. These presumably adaptive

signatures may reflect convergent evolution to common

environmental conditions such as low temperature,

which has also been shown for Atlantic cod on both

sides of the Atlantic Ocean (Bradbury et al. 2010).

Herring are renowned for exhibiting population-spe-

cific spawning times (Cushing 1967), which might sug-

gest local adaptation to spawning at specific seasonal

temperatures. Temperature was identified as a covari-

ant for several SNP loci in global analyses; however,

these relationships were not evident at a regional scale

except for the North Sea ⁄ North Atlantic latitudinal

cline. This could result from reduced statistical power

to detect outliers, caused by the reduced number of

samples in each subanalysis, of which the method by

Foll & Gaggiotti (2008) is expected to be particularly

sensitive (Foll & Gaggiotti 2008). This was supported by

the observation that more outlier loci were in fact

detected using the approach of Excoffier et al. (2009).

Alternatively, this observation could also be explained

by increased type I and II errors and suggests that a

large proportion of outliers only detected with the

method of Excoffier et al. (2009) are in fact false posi-

tives (Narum & Hess 2011). The apparent lack of

genetic covariance with temperature in the Baltic for

loci exhibiting such a relationship globally contrasts

with a previous microsatellite-based study (Jørgensen

et al. 2005). This discrepancy may be attributable to the

inclusion of the western Baltic Rügen population in the

study of Jørgensen et al. (2005), in contrast to this study

where it clusters with a Baltic ⁄ North Sea transition area

group. Thus, weaker levels of differentiation within the

Baltic proper may limit statistical power for detecting a

potential relationship when excluding western Baltic

samples.

Contrasting results between annual temperature and

spawning temperature for the North Sea ⁄ North Atlantic

temperature cline suggested that adaptation to spawn-

ing temperature was not the cause of selection at any of

the loci examined here. For example, the English Chan-

nel population in the southern part of the range spawns

November–January, whereas the subarctic populations

spawn in April–May and August–September (Iceland)

and March–May (Norway) (Table 1). As a result, Ice-

landic herring spawn at higher average temperatures

than English Channel herring, suggesting that any tem-

perature-related selection pressures are not specifically

associated with conditions during spawning and early

life stages (compared to observations in salmonids;

Jensen et al. 2008); notably, in contrast to our findings

for herring, a higher number of outlier genes correlated

with spawning period (compared to annual mean) tem-

perature in Atlantic cod (Nielsen et al. 2009b). These

contrasting findings may reflect biological differences
� 2012 Blackwell Publishing Ltd
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between the two species. However, another important

lesson learned from this study is that great caution is

needed when using landscape genetic approaches,

because annual estimates of environmental data may

differ substantially from population-specific seasons

actually affecting divergent selection. This is particu-

larly pertinent for species exhibiting large seasonal vari-

ation in time of spawning as seen for herring.

Alternatively, temperature conditions during early life

stages may still impose selection at genes not associated

with our marker panel. Thus, while our results support

an adaptive role of temperature in general, crucial life

stages and functions of outlier genes correlating with

temperature remain unknown.

The clear correlation between outlier SNP variation

and salinity was not driven by the Baltic populations

alone, as five of six outlier loci also showed significant

correlations with salinity across the Ringkøbing Fjord

cline. Despite the brackish Ringkøbing Fjord popula-

tion’s geographical proximity to the North Sea, it has a

close genetic relationship with Baltic ⁄ North Sea transi-

tion area populations likely reflecting a recent shared

ancestry. Thus, we cannot rule out that the Ringkøbing

Fjord population adapted to a low-saline environment

as part of a larger ancestral population, with subse-

quent colonization of the Ringkøbing Fjord. However,

whether candidate genes for salinity reflect historical

adaptation in a common ancestral population, more

recent parallel adaptation or a combination of the two,

our results strongly indicate a general adaptive role of

these genes or gene regions currently maintained in

geographically isolated low-salinity environments.

Three of these salinity-associated genes were annotated

to known functions. A strong correlation was found

between salinity and a nonsynonymous mutation

(Cha_15389.3-101) in the heat-shock protein Hsp70

(Helyar et al. 2012), a gene family with a presumed key

adaptive role in relation to environmental stress in fish

(reviewed in Iwama et al. 1998; Basu et al. 2002),

including European flounder (Platichtys flesus) (Hem-

mer-Hansen et al. 2007a; Larsen et al. 2008) and Atlan-

tic cod (Nielsen et al. 2009b). Another outlier

(Cha_15984.1-275) represented a synonymous mutation

in a haemoglobin alpha subunit gene (Hba). Different

variants of haemoglobin genes have been shown to be

involved in local adaptation of Atlantic cod populations

where different alleles are associated with divergent

oxygen affinities and different temperature and hydrog-

raphical conditions (Sick 1961; Andersen et al. 2009).

The third annotated outlier, the enzyme catalase

(Cha_1513.1-91), decomposes hydrogen peroxide that is

often generated at harmful levels during toxic stress

responses. As such, this gene may play an important

stress reaction role in marine fishes, as found for the
� 2012 Blackwell Publishing Ltd
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thornfish (Therapon jarbua) (Nagarani et al. 2011). These

candidate gene relationships are suggestive of environ-

mental adaptation, albeit whether they are directly tar-

geted by selection or exhibit hitchhiking with genomic

regions of adaptive significance is not resolved.

Bierne et al. (2011) cautioned against interpreting sig-

nificant landscape correlations as evidence for environ-

mental adaptation at specific candidate genes. Instead,

they suggested that detected outliers could represent

intrinsic genetic incompatibilities uncoupled from the

environment (so-called tension zones), which may

become trapped in external hybrid zones driven by

environmental selection. Here, candidate genes for envi-

ronmental adaptation exhibited spatially distinct varia-

tion among loci, suggesting that drivers of divergence

are not the same across loci and populations (Fig. 2b).

Thus, we argue that it is unlikely that all outliers repre-

sent environmentally uncoupled barriers to gene flow

and that a high proportion of our candidate genes

indeed reflect adaptation to local environments. How-

ever, with the data at hand, we were not able to deter-

mine whether intrinsic or exogenous processes were

more likely to have shaped patterns of differentiation at

individual loci. To further understand the genetic archi-

tecture of fitness-related traits in these presumably

locally adapted populations, studies with increasing

genomic coverage (Hohenlohe et al. 2010; Star et al.

2011) and controlled rearing experiments examining

genetically based fitness responses to specific environ-

mental factors (Kawecki & Ebert 2004) are warranted.
Concluding remarks

Such local adaptation is highly relevant to fisheries

management. It is not merely the conservation of

genetic ‘diversity’ (‘neutral and adaptive diversity at

the DNA level’) that is critical for the preservation of

stocks; it is the protection of genetic ‘resources’ (diver-

sity at the DNA level and its phenotypic expression at

ecologically important traits). Thus, extirpation of

locally adapted assemblages is of particular relevance to

vulnerable species experiencing continued environmen-

tal change such as global warming or overexploitation

(O’Brien et al. 2000). While the vulnerability of species

at high trophic levels and with long generation times is

widely accepted (Myers & Worm 2003), a recent study

by Pinsky et al. (2011) showed that the majority of col-

lapsed fisheries actually involve low-level trophic spe-

cies like herring and other small pelagic fishes. Coupled

with our findings, this implies that conserving the

genetic ‘resources’ in heavily exploited species, includ-

ing herring, is of paramount importance in safeguard-

ing population resilience (Hilborn et al. 2003; Hauser &

Carvalho 2008). Findings here constitute a basis for fur-
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ther exploration of the genomic variation underlying

locally adaptive traits in herring and for understanding

the distribution of functionally important genetic varia-

tion in marine fishes in general.
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Vasemägi A (2006) The adaptive hypothesis of clinal variation

revisited: single-locus clines as a result of spatially restricted

gene flow. Genetics, 173, 2411–2414.
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Abstract

Recent advances in molecular interrogation techniques now allow unprecedented
genomic inference about the role of adaptive genetic divergence in wild popula-
tions. We used high-throughput genotyping to screen a genome-wide panel of 276
single nucleotide polymorphisms (SNPs) for the economically and culturally im-
portant salmonid Oncorhynchus mykiss. Samples included 805 individuals from 11
anadromous and resident populations from the northwestern United States and
British Columbia, and represented two major lineages including paired popula-
tions of each life history within single drainages of each lineage. Overall patterns
of variation affirmed clear distinctions between lineages and in most instances,
isolation by distance within them. Evidence for divergent selection at eight candi-
date loci included significant landscape correlations, particularly with temperature.
High diversity of two nonsynonymous mutations within the peptide-binding re-
gion of the major histocompatibility complex (MHC) class II (DAB) gene provided
signatures of balancing selection. Weak signals for potential selection between sym-
patric resident and anadromous populations were revealed from genome scans and
allele frequency comparisons. Our results suggest an important adaptive role for
immune-related functions and present a large genomic resource for future studies

Introduction

Inference of the structure and relatedness of natural popula-
tions exploded in the 1960s and 1970s with the development
of molecular genetics and a deepening of our understand-
ing of the genetic basis driving evolutionary change (e.g.,
Lewontin 1970). Our ability to resolve closely related pop-
ulations evolved steadily through time with improvements
in interrogation techniques (reviewed in Schlötterer 2004;
Seeb et al. 2011a). Inference from single nucleotide poly-
morphisms (SNPs) during the last decade has sharpened our
ability to observe differences among populations with addi-
tion of data from adaptively important loci (Anderson et al.
2005; Paschou et al. 2007; Helyar et al. 2011). The advances in
studying functional genetic variation through genome scans
(Storz 2005) have proven especially rewarding for studies

aiming at linking phenotypic variations to a genotypic back-
ground in natural populations (Dalziel et al. 2009; Nielsen
et al. 2009a).

For decades, population genetics of Pacific salmonids has
attracted substantial attention from both managers and re-
searchers due to their economic importance as well as their
complex biology where broadly diverse life histories have
been described (reviewed in Utter 2004). A genetic ba-
sis for a range of different life histories, including oceanic
migratory patterns, has been described over the years (see
Quinn 2005 and references therein). The Pacific salmonid
Oncorhynchus mykiss (Fig. 1) has been extensively studied
reflecting its charisma in both recreational fisheries and aqua-
culture (Wishard et al. 1984; Jantz et al. 1990). Oncorhynchus
mykiss has naturally colonized a range of habitats across
the Beringial region from Kamchatka, Russia, in the west

c© 2011 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative
Commons Attribution Non Commercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.
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Figure 1. Wild rainbow trout (Oncorhynchus mykiss) in their natural environment (Photo by Finn Sivebæk).

to Mexico in the southeastern part of its native distribution
(MacCrimmon 1971). Wild populations have furthermore
been successfully introduced throughout the world (Mac-
Crimmon 1971) making it a model species for investigating
local adaptation in the wild (e.g., Rubidge and Taylor 2004;
Narum et al. 2008; Pearse et al. 2009; Narum et al. 2010b).
In O. mykiss, two North American lineages likely predating
the last glacial maximum (Allendorf and Utter 1979) included
populations along a broad coastal region of the Pacific North-
west and distinct from those inland (also referred to as red-
band trout) primarily east of the Cascade Range in the Upper
Columbia and Fraser Rivers (Fig. 2; Allendorf and Utter 1979;
Utter et al. 1980; McCusker et al. 2000). These two clades
are hereafter referred to as the coastal and inland lineages.
Two distinct life-history forms of O. mykiss include anadro-
mous steelhead, having extensive oceanic migrations, and
purely freshwater resident rainbow trout. However, generally
higher among-region than within-region genetic variation
for sympatric steelhead and rainbow trout supports a poly-
phyletic nature of the assumingly derived resident life history
(Docker and Heath 2003; Heath et al. 2008; Pearse et al. 2009).
Most studies to date remain inconclusive regarding potential
molecular adaptations and selective agents maintaining this
life-history variation (e.g., Docker and Heath 2003; Heath
et al. 2008).

Recent work using SNPs in nonmodel organisms has al-
lowed increased knowledge about the role of functional ge-
netic variation (Nielsen et al. 2009a). A large majority of
SNPs are neutral and provide useful information about neu-

tral evolution and demographic inference. However, SNPs
residing within, or linked to, expressed genes such as those
that encode for stress or immune responses, may encode alle-
les subject to natural selection and add insight into adaptive
evolutionary processes (Morin et al. 2004; Bouck and Vision
2007). As key effectors of the adaptive immune system and
displaying an unequaled level of polymorphism for coding
genes, loci of the major histocompatibility complex (MHC)
have received intense attention as candidates for genes un-
der selection (e.g., reviews in Bernatchez and Landry 2003;
Piertney and Oliver 2006). In teleost fishes alone, a 2008
review reported that the available sequence information in-
cluded 3559 MHC class I and class II allelic variants from 137
species (Wegner 2008). Salmonids are particularly well suited
for quantifying selective pressures, because of the minimalis-
tic genetic architecture of their MHC loci: whereas other ver-
tebrates possess multiple duplicated loci for both MHCI and
MHCII, salmonids have just one locus with classical MHCI
function (UBA), and one classical locus for each subunit of
the MHCII (DAA and DAB) (Hansen et al. 1999; Landry and
Bernatchez 2001). Nonclassical loci have been found for both
MHCI (Dijkstra et al. 2006; Miller et al. 2006) and MHCII
(Harstad et al. 2008), but these are highly divergent, charac-
terized by low levels of polymorphism and are functionally
different from the antigen-presenting classical loci.

In salmonid fishes, classical MHC loci have been inves-
tigated as being subject to balancing selection within and
among natural populations (e.g., Miller et al. 2001; Aguilar
et al. 2004) or divergent selection (Landry and Bernatchez

2 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Figure 2. Map of sampling locations. An
approximate projection of the current divide
between the inland and coastal lineages is
shown by a thick broken line (From Behnke
1992).

2001; Miller et al. 2001; Gomez–Uchida et al. 2011). The
type of selection inferred for these genes has been shown
to depend on the spatial scale considered with a tendency
toward balancing selection acting at smaller regional scales
(e.g., Miller et al. 2001). In contrast, patterns of divergent se-
lection have often been inferred among populations at larger
spatial scales and those inhabiting different environments
(Bernatchez and Landry 2003). However, divergent selec-
tion has also been found at fine spatial scales between eco-
types of the same lake system (Gomez–Uchida et al. 2011;
McGlauflin et al. 2011) indicating that factors such as habitat
type or correlated variables are important drivers of selec-
tion at these genes. Thus, MHC markers show great poten-
tial for understanding and disentangling complex patterns of
adaptive processes in natural populations inhabiting varying
habitats such as salmonids in the Pacific Northwest.

The purpose of this study was to screen a new genome-
wide SNP resource in O. mykiss for signatures of local adap-

tation over large parts of its native distribution. Defining
populations as all genetically differentiated samples, we com-
pared diverse spawning habitats representing different envi-
ronmental regimes including two paired steelhead and rain-
bow trout populations within the same rivers. We will refer
to steelhead and rainbow trout as anadromous and resident
populations, respectively, in order to generalize our find-
ings for other fish species exhibiting migratory life-history
variation, including sockeye salmon (O. nerka) (Taylor et al.
1996) and brown trout (Salmo trutta)(Elliott 1994). Us-
ing a panel of 276 SNPs designed with the intent of spac-
ing loci as widely as possible across the genome (including
newly developed markers previously unscreened in natural
populations), we find strong neutral structure between the
two major lineages. We probed outlier loci for signatures
of adaptation based on different habitats and life histories
and found strong adaptive signatures for immune-related
genes.

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 3
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Table 1. Sample information and summary statistics. Sample size (n), expected (HE ) and observed heterozygosity (HO), allelic richness (AR), and
percent polymorphic SNPs are given. Statistics are given for pooled samples for locations with temporal replicates.

Population name ID Year Lineage Life history n HE HO AR Percent polymorphic SNPs

1 Sustut River SUST96 1996 Coastal Anadromous 50 0.20 0.20 1.62 70%
Sustut River SUST97 1997 Coastal Anadromous 45

2 Skagit River SKAG 2007 Coastal Anadromous 59 0.25 0.24 1.80 89%
3 Skagit River SKAGRES 2009 Coastal Resident 23 0.09 0.09 1.45 55%
4 Green River GREEN 2007 Coastal Anadromous 35 0.22 0.22 1.73 80%
5 Sol Duc River SOL 2009 Coastal Anadromous 94 0.23 0.23 1.76 92%
6 Chehalis River CHEH 2007 Coastal Anadromous 95 0.22 0.21 1.69 82%
7 Deschutes River DESCH 1999 Inland Anadromous 95 0.18 0.18 1.60 75%
8 Crooked Fork Creek CROOK99 1999 Inland Anadromous 48 0.18 0.18 1.59 82%

Crooked Fork Creek CROOK01 2001 Inland Anadromous 47
9 Twisp River TWISP 2008 Inland Anadromous 81 0.19 0.18 1.65 85%
10 Twisp River TWISPRES07 2007 Inland Resident 25 0.20 0.18 1.71 86%

Twisp River TWISPRES08 2008 Inland Resident 13
11 Deadman Creek DEADM97 1997 Inland Anadromous 76 0.19 0.18 1.57 64%

Deadman Creek DEADM99 1999 Inland Anadromous 19

Materials and Methods
Sampling

We analyzed 823 individuals representing 15 collections (n =
24–95) of O. mykiss from nine rivers throughout the Pacific
Northwest of North America (Table 1; Fig. 2). Our collections
include sampling of sympatric anadromous and resident fish
from the Twisp River and sampling of allopatric anadro-
mous and resident populations from the Skagit River (see
Table 1). Temporal replicates of populations from four lo-
cations were also analyzed (Table 1) to increase sample sizes
and assure consistency in observed spatial structure (Waples
1990). For Twisp River collections, all resident fish were col-
lected further upstream compared to sampling of sympatric
anadromous fish. Residents were typically collected during
July, and fish were targeted visually by size (>180 mm), ro-
bust body shape, coloration (visible parr marks, spotting,
bold color), or evidence of spawning (wounds, scale loss,
fin tears, expressing milt); however residents were collected
from many areas that were known spawning locations of steel-
head. In contrast, the resident collection from the North Fork
Cascade River in the upper Skagit River system (SKAGRES)
was expected to represent an upstream resident population
physically isolated from downstream anadromous popula-
tions (no upstream gene flow) due to the existence of an
approximately 30-m high waterfall.

Molecular analyses and number
of SNP markers

Genomic DNA was extracted from fresh fin or opercu-
lum tissue using QIAGEN DNeasy 96 tissue kits (Qiagen,
Valencia, California, USA). PCR amplification and geno-
typing was performed in 96.96 Dynamic Arrays using the

Fluidigm IFC thermal cyclers and BioMark instruments fol-
lowing the protocols of Seeb et al. (2009). All genotypes were
scored automatically using the BioMark Genotyping Analy-
sis software (Fluidigm, San Francisco, California, USA) and
verified by two independent scorers. Any discrepancies were
reassessed and either kept as a consensus or discarded. Fur-
thermore, eight individuals from each 96 DNA sample plate
(i.e., 9% of all samples) were genotyped twice for one-third
of the SNPs on independent arrays to ensure reproducibil-
ity of results. We screened 276 SNPs (compiled from Aguilar
and Garza 2008; Brunelli et al. 2008; Campbell et al. 2009;
Sanchez et al. 2009; Stephens et al. 2009; Narum et al. 2010a;
Abadia–Cardoso et al. 2011; Hansen et al. 2011 and unpub-
lished sources listed in Table S1), of which 10 did not conform
to Hardy–Weinberg equilibrium (HWE) or were suggested to
be in linkage disequilibrium (LD), and these were excluded
from further statistical analyses (see results, Appendix 1) leav-
ing 266 informative SNPs. Another 21 were situated in six
pairs and three triplets within the same coding gene, and are
consequently very tightly linked (Appendix 2; Table S1). For
subsequent statistical analyses relating to neutral population
structure, 12 of these, together with eight suggested outliers
(P < 0.01), were discarded in order to assume neutrality
and independence among a set of 246 remaining markers
(results, Appendix 1). Genome scans and landscape genetics
analyses, which are based on individual marker information,
were based on 266 SNPs including all 21 SNPs in known
linkage groups (see below, Appendix 1).

Temporal stability of allele frequency
distributions

Pairwise FST estimates among the 15 collections were gen-
erated in Arlequin 3.5 (Excoffier and Lischer 2010) using

4 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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10,000 permutations with P values corrected for multiple
tests using the sequential Bonferroni method (k = 105) (Rice
1989). These tests revealed lower estimates between all pairs
of temporally replicated collections (FST = −0.002–0.011)
compared to all spatial comparisons (FST = 0.013–0.375).
Assuming a conservative α value of 0.001, all temporal com-
parisons remained nonsignificant while spatial comparisons
were all significant. Temporal replicates were pooled to opti-
mize sample sizes for a total of 11 populations in subsequent
analyses.

Conformance to HWE and nonrandom
segregation of SNPs

Conformance to HWE was tested independently for each lo-
cus in each of the 11 populations using the MC algorithm
implemented in Genepop 4.0 (Rousset 2008). P values were
corrected using the sequential Bonferroni method (k = 3069)
(Rice 1989). Linkage was only known for those nine groups of
SNPs that were ascertained in single Sanger sequencing reads
(Hansen et al. 2011; Table S1). Thus, we simply tested for
nonrandom segregation of all pairs of loci within each pop-
ulation using Fisher’s tests for gametic LD as implemented
in Genepop 4.0 (Rousset 2008). Due to the high number of
tests performed (i.e., 36,315 for each population), no cor-
rection for multiple tests was performed since this approach
would be overly conservative and likely underestimate truly
significant relationships. We followed a hierarchical approach
with the following criteria for assessing LD among markers:
(1) only SNPs with a minor allele frequency (MAF) > 0.10
were considered due to an expectedly high number of false
positives associated with low levels of variation, (2) only
locus pairs showing more than 50% significant tests (P <

0.05) with at least six performed tests among 11 populations,
(3) for all locus pairs showing significant LD, SNPs potentially
involved in multiple pairs were discarded.

Summary statistics

Individual global FST values were estimated for each locus
in Genepop 4.0 (Rousset 2008) as well as over all loci. Mean
expected (HE) and observed (HO) heterozygosity were cal-
culated for each locus and population using GenAlEx 6.4
(Peakall and Smouse 2006). Allelic richness (AR), a mea-
sure of the number of alleles corrected for minimum sample
size, was calculated for all populations using FSTAT v2.9.4
(Goudet 1995). GenAlEx 6.4 was used to report the percent-
age of polymorphic loci in each population.

Spatial population structure and diversity

We used 246 neutrally behaving and individually segregating
SNPs to recalculate pairwise FST estimates among all 11 pop-
ulations in Arlequin 3.5 (Excoffier and Lischer 2010) using
10,000 permutations. We then used pairwise FST values (all

P < 0.001) to generate a multi dimensional scaling (MDS)
plot in ViSta 5.6.3 (Young 1996) for visualizing neutral pop-
ulation structure.

Signatures of selection

To detect genomic regions under selection, we used a total of
266 SNPs including 21 SNPs from known groups of tightly
linked SNPs. Inclusion of known linked SNPs is expected to
increase the chance of finding signatures of selection, as even
closely linked SNPs may differ substantially in their level of
differentiation (Gomez–Uchida et al. 2011). To test for po-
tential related bias, analyses were repeated with a reduced
dataset not including linked SNPs. First, we performed a
global genome scan for nine populations (i.e., omitting the
two resident populations) using the model by Excoffier et al.
(2009) as implemented in Arlequin 3.5 (Excoffier and Lischer
2010). This approach simulates a neutral distribution of FST

(or FCT) in relation to observed heterozygosity. Observed
values by locus were then projected onto this distribution,
and loci lying above or below the simulated 99% confidence
threshold for neutral variation were considered as candidates
for divergent or balancing selection, respectively. We applied
the hierarchical test by grouping populations into two groups
representing the coastal and inland lineages (Table 1). We as-
sumed a model of 10 simulated groups with 100 demes and
performed 100,000 simulations. To further understand the
spatial pattern of potential selection for all outliers (P < 0.01)
detected for both FST (i.e., among all populations) and FCT

(i.e., between lineages here), we plotted major allele frequen-
cies over all populations. We also performed a genome scan
over all anadromous populations using BayeScan 1.0 (Foll
and Gaggiotti 2008). We ran 10 pilot runs of 5000 iterations
with an additional burn-in of 50,000 iterations and a thinning
interval of 50 followed by a final sample size of 10,000. Re-
sults from the two genome scan approaches were compared
and dual outliers were considered as strong candidates for
diversifying selection.

To investigate divergent selection between migratory life-
history types, we performed individual genome scans for
each of the two within-river anadromous and resident pop-
ulation pairs (i.e., SKAG and SKAGRES as well as TWISP
and TWISPRES) using 10 simulated demes and 100,000 sim-
ulations in Arlequin 3.5. Again, we plotted major allele fre-
quencies over all populations for all outliers above the 99%
confidence levels. BayeScan 1.0 was not considered here, since
it is expected to perform poorly with few samples (Foll and
Gaggiotti 2008).

Environmental effects on adaptive variation

We further tested for associations between landscape vari-
ables and allelic distributions for each SNP to reinforce
evidence of natural selection acting on outlier loci (as op-
posed to false positives) (e.g., Fraser et al. 2011). Underlying
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correlations between allele frequencies and landscape param-
eters may occur by chance due to either isolation by distance
or to more similar landscapes between neighbor populations.
If not taken into account, such neutral background noise is
expected to lead to an increased false-positive rate (Coop
et al. 2010). We applied the Bayesian linear model imple-
mented in the software Bayenv (Coop et al. 2010) to correct
this. This method uses a covariance matrix based on neutral
markers to filter out signals from neutral population struc-
ture while testing for significant relationships between land-
scape variables and locus-specific allele distributions. Results
are given for 266 SNPs (as described above), and each land-
scape variable as a Bayes factor (BF). This BF reflects the
ratio of the posterior support given to a model where the
landscape variable has a significant effect on allele distribu-
tions over an alternative model where there is no effect on the
SNP. First, we estimated a covariance matrix using the 246 in-
dependently and neutrally behaving SNPs (see above). Then,
we tested for correlations between each of 266 SNPs and the
following variables: (1) precipitation, (2) maximum temper-
ature, (3) minimum temperature, (4) elevation, (5) latitude,
and (6) longitude (Appendix 3). We used multiple indepen-
dent Markov chain Monte Carlo (MCMC) runs with chain
lengths of 100,000 iterations to ensure convergence of the
model.

Genetic variation at MHC genes

Some of the loci that we used were previously annotated and
represent potential candidate genomic regions for selection
(Table S1). In this study, we restrict our a priori focus to six
newly developed markers residing within the classical MHC
class I (Omy UBA3a, Omy UBA3b, and Omy UBA2a) and
the classical MHC class II (Omy DAB-431, Omy DABb, and
Omy DABc) genes (Hansen et al. 2011; Table S1). We ob-
served intriguingly high diversity at two of the MHC class
II SNPs (Omy DAB-431, Omy DABb) known to be nonsyn-
onymous (Hansen et al. 2011). To test for balancing selection
on this gene, we reconstructed most likely haplotypes from
the three SNPs in known linkage within the MHC class II gene
(Table S1) using the program PHASE V2.1 by Stephens et al.
(2001). We then used the Ewens–Watterson homozygosity
test as implemented in Arlequin 3.5 (Excoffier and Lischer
2010) to test for balancing selection on reconstructed hap-
lotypes within populations and overall assuming an infinite
allele mutation model and using 10,000 simulations. This
test compares the expected HW homozygosity based on ob-
served haplotype frequencies (here designated as Observed F
value) with a simulated value (Expected F value) expected at
mutation drift equilibrium for a gene with a similar number
of alleles (Ewens 1972; Watterson 1978), and where balanc-
ing selection will lead to smaller observed than expected F
values.

Results
Laboratory analyses and tests for HWE
and LD

We excluded 18 individuals with missing data at more than
50% of the loci, which likely reflected poor DNA quality. Six
of the 276 SNPs that we initially screened showed signifi-
cant deviation from HWE in five or more populations after
correcting for multiple tests and were excluded from further
analyses (Appendix 1; Table S1). We observed seven pairs of
loci showing significant LD (P < 0.05) in more than half of
the performed tests leading to the exclusion of four loci, of
which some were involved in multiple pairs, to avoid poten-
tial pseudoreplication by including markers in LD (Table S1).
Further analyses were based on a final dataset of 805 individ-
uals representing 11 populations (n = 23–95) and 266 SNPs
(Appendix 1).

Summary statistics

Over all populations, these 266 SNPs showed varying levels of
differentiation with global locus-specific FST values ranging
from 0.00 to 0.68. The frequency of polymorphic loci varied
from 55 to 92% among populations (Table 1). We observe
intermediate levels of genetic diversity ranging from 0.09 to
0.25 (HE), 0.09 to 0.24 (HO), and 1.45 to 1.80 (AR) with highly
reduced levels in the SKAGRES population (Table 1).

Spatial population structure and diversity

Spatial population structure inferred from significant pair-
wise FST values supported a pattern where most of the varia-
tion is likely caused by genetic drift and limited gene flow from
historical isolation of the two lineages (Fig. 3). However, be-
cause most of the variation plotted for DIM 1 in the MDS plot
was driven by the isolated SKAGRES population (Fig. 3A),
omitting this population improved resolution for inferring
spatial structure among remaining populations (Fig. 3B).
The five coastal lineage populations cluster according to ge-
ography where the distant SUST population separates from
a Puget Sound group (SKAG and GREEN) and a coastal
Washington group (SOL and CHEH). Observed population
structure within the inland lineage reflects contemporary ge-
ographic isolation with clear differentiation of the DEADM
population (Canada) from remaining populations within the
Columbia River drainage (Fig. 3B).

Signatures of selection

Candidates for balancing selection could not be distinguished
from loci with observed FST values of zero, and we did not
consider these further. The global genome scan assuming a
hierarchical island model in Arlequin 3.5 revealed eight sig-
nificant outliers for divergent selection (P < 0.01) at the FST

level (Fig. 4A) of which five loci were also candidates at the

6 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Figure 3. Multi dimensional scaling (MDS) plot showing: (a) spatial population structure for all populations including the two resident populations,
and (b) a similar plot without the SKAGRES population. Population symbols follow Figure 2.

FCT level (Fig. 4B). This finding is more than twice as many
as expected by chance alone (1% of 266 = 2.7). BayeScan de-
tected four of the eight global outliers (P < 0.01) found with
Arlequin as well as three new outliers (Table S1). These three
outliers only detected by BayeScan were all characterized by
very low minor allele frequencies (0.001–0.012), leaving them
essentially uninformative. These were not considered, and
we only interpret the eight candidates detected by Arlequin
further. Functional roles could be inferred for two of the out-
liers, Omy IL1b-163 and Omy ndk-152, which reside within
interleukin and nucleoside diphosphate kinase genes, respec-
tively (Table S1; references therein). As expected, the five FCT

outliers reflect substantial differences between the two lin-
eages (Fig. 5A), while all three outliers only detected at the
FST level suggest a pattern of divergent selection within the
coastal lineage as observed from deviating allele frequencies
in the northern SUST compared to the other coastal lineage
populations (Fig. 5B).

Outliers under potential divergent selection (P < 0.01)
were also detected in local genome scans for selection between
within river populations exhibiting alternate life histories. We
observe one outlier in the allopatric Skagit River and six in the
sympatric Twisp River comparisons (Fig. 4C and 4D). Allele

frequency plots for these local outliers all reveal a potential
effect of anadromy. For example, allele frequencies for the
anadromous Twisp River population are generally more sim-
ilar to other inland anadromous populations compared to the
sympatric resident population (Fig. 6A). For the outlier de-
tected from the Skagit river populations, this pattern is even
more pronounced (Fig. 6B). When also considering outliers at
the 95% level, SNPs within interleukin genes (Omy IL17–185
and Omy IL6–320) are observed as outliers in the Skagit
and Twisp River comparisons, respectively (Fig. 4C and 4D;
Table S1). Another marker (Omy 97954–618) appears as an
outlier for both locations at the 95% level suggestive of a
consistent pattern of diversifying selection (Table S1).

Environmental correlates

Bayesian inference for correlation between locus-specific al-
lele distributions and landscape variables showed that 12 of
17 (71%) global candidates for divergent selection (P < 0.05;
Table S1) significantly correlated with one or more variables
(Table 2), contrasted with only 11 of 246 neutrally behaving
loci (4%). When only considering “decisive” relationships
(i.e., log10 (BF) > 2), only outlier loci correlated with any of

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 7
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Figure 4. Outlier tests for identifying signatures of selection. (a) FST-based global test assuming hierarchical structure by grouping all anadromous
populations within each lineage into two major groups. (b) FCT-based global test assuming hierarchical structure as in (a). Local outlier tests for the
Skagit River (c) and Twisp River (d) anadromous and resident population pairs are also shown. All outliers above the 99% confidence threshold are
labeled including two interleukin genes at the 95% threshold (c and d) shown in italic. Plotted heterozygosity values are scaled by estimates of within
population heterozygosity (h0) and locus specific FST as: (H1 = h0/[1 – FST]) as described in Excoffier et al. (2009).

the variables (Table 2). Particularly precipitation and temper-
ature appear promising for explaining patterns of divergent
selection at some of the candidate loci or linked genomic
regions found here.

Genetic variation at MHC genes

One SNP within the MHC class I gene (Omy UBA2a) was
discarded due to significant deviation from HWE (Table S1).
Remaining MHC markers conformed to neutrality in genome
scans coupled with low diversity in three of five markers
(Appendix 4). However, the two nonsynonymous mutations
residing within the MHC class II gene (Omy DAB-431 and
Omy DABb) exhibit high levels of variation throughout most
populations (Appendix 4). Reconstructed haplotypes based
on three SNPs within the MHC class II gene revealed a signifi-
cant deviation from neutrality toward balancing selection for
two of 11 populations (Table 3). Furthermore, three popula-
tions had P values below 0.10 and all populations, except the

Skagit River resident (SKAGRES), had smaller than expected
F values pointing toward balancing selection (Table 3).

Discussion

We found highly significant spatial structure with increased
levels of neutral differentiation between and within the two
major lineages. This result is consistent with previous stud-
ies on O. mykiss from this region using allozymes and
mtDNA (e.g., Allendorf and Utter 1979; McCusker et al.
2000). Applying multiple independent analytical steps (e.g.,
genome scans, landscape genomics, and raw allele frequency
plots), the accumulated evidence supports local adapta-
tion at several genomic regions including immune response
genes.

Spatial population structure and diversity

Most of the presumed neutral genetic variation that we ob-
served can be explained by a model of historical vicariance.

8 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Figure 5. Frequency plots of major allele frequencies for loci detected as outliers (P < 0.01) in the global genome scan including nine anadromous
populations. (a) Allele frequencies for five outliers detected at both the FST and FCT level. (b) Allele frequencies for three outliers only detected at the
FST level.

Distinct evolutionary lineages have seemingly accumulated
genetic differentiation through genetic drift over glacial peri-
ods. Contemporary gene flow and drift appear less important
at this large spatial scale but probably play a greater role at
smaller regional scales among more recently diverged popula-
tions. This observation is supported by previous phylogenetic
observations (Bagley and Gall 1998; McCusker et al. 2000)
and early allozymes studies (Utter et al. 1980) showing similar
patterns of strong differentiation between inland and coastal
lineages compared to population structure within lineages.
The location above a waterfall of the SKAGRES population
likely explains its divergence (e.g., Fig. 3A) and low genetic
diversity (Table 1) as a reflection of limited gene flow and
low effective population size (Ne) with consequently strong
genetic drift. A similar scenario has been shown for another
physically isolated population of resident O. mykiss (Pearse
et al. 2009; Martı́nez et al. 2011). Omitting the SKAGRES pop-
ulation revealed further regional structure within the coastal

lineage, suggesting more recent population histories poten-
tially coupled with higher contemporary gene flow among
populations within the Puget Sound and western Washing-
ton coastal regions, respectively (Fig. 3B). Despite the large
spatial scale, these observations hold great promise for ap-
plying this SNP panel in future studies focusing on smaller
geographic scales. Variation between the geographically dis-
tant populations from Sustut River and Deadman Creek in
BC, Canada (Fig. 3B) is also apparent. The increased dif-
ferentiation observed for the Canadian populations within
respective lineages is likely a reflection of the substantial geo-
graphical separation coupled with longer divergence from the
other populations. It is noteworthy how weak this latter signal
is compared to that observed between lineages, suggesting a
limited reflection of contemporary genetic drift compared to
signals from historical separation.

Despite potential gene flow between the sympatric anadro-
mous and resident Twisp River populations (see also Christie

c© 2011 The Authors. Published by Blackwell Publishing Ltd. 9
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Figure 6. Frequency plots of major allele frequencies for loci detected as outliers (P < 0.01) between sympatric and resident population pairs. (a)
Allele frequencies for six markers detected as outliers between the Twisp River populations. (b) Allele frequencies for one outlier detected between
the populations within the Skagit River. Arrows denote populations included in the local genome scans.

et al. 2011), our results suggest some level of neutral popula-
tion structure (pairwise FST = 0.01; P < 0.001). Zimmerman
and Reeves (2000) found evidence for reproductive isolation
of sympatric steelhead and rainbow trout in the Deschutes
River, Oregon, and explained this with variation in timing
and location of spawning activities. A similar scenario with
some level of spatio-temporal reproductive isolation of the
two Twisp River populations would be in accordance with
our observations.

Signatures of spatially divergent selection

We detected eight candidates for directional selection among
all populations (Fig. 4A). Five of these were in accordance
with divergent selection between the coastal and inland lin-
eages (Figs. 4B and 5A). Allele frequency plots (Fig. 5A) re-
veal high levels of information from the five FCT outliers for
distinguishing between the two lineages. Population history

and dynamics of populations spawning within or in close
proximity to the transition zone has been difficult to infer
in previous studies applying fewer and assumingly neutral
markers (Currens et al. 2009; Blankenship et al. 2011). Out-
liers observed in our study appear promising for future inves-
tigations of the nature (e.g., distinguishing neutral and adap-
tive genetic variation) and extent of this transition zone in
O. mykiss.

Two outliers were known to reside within an interleukin
gene (Omy IL1b-163) and a nucleoside diphosphate kinase
(Omy ndk-152) gene (Table S1). A recent study also found
Omy ndk-152 and another SNP within an interleukin gene
to be affected by selection in relation to anadromy at a much
finer scale among populations within the Klickitat River (all
derived from the inland lineage) draining into the Columbia
River system (Narum et al. 2011). Our broad spatial rep-
resentation of anadromous populations limits the ability to
identify the geographic scale at which selection acts upon

10 c© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 2. Results from Bayesian inference of locus-specific landscape
correlations. Gray cells denote a locus–parameter relationship with a
log10 (BF) between 1.3 and 2.0, which can be interpreted as a P-value
between 0.01 and 0.05. Black cells represent decisive relationships with
log10 (BF) > 2.0 or equivalent P-values below 0.01. Here, global out-
liers include loci at the 5% significance level (see Table S1, Supporting
information).

Tested variables*
SNP Selection Precip Tmax Tmin Elev Lat Long

OMS00180 Outlier
OMS00118 Outlier
Omy_star-206 Outlier
Omy_121713-115 Outlier
OMS00013 Outlier
Omy_107031-704 Outlier
Omy_112301-202 Outlier
Omy_IL1b-163 Outlier
Omy_ndk-152 Outlier
Omy_108007-193 Outlier
OMS00103 Outlier
OMS00081 Outlier
Omy1004 Neutral
OMS00081 Neutral
OMS00103 Neutral
Omy_111005-159 Neutral
Omy_DABb Neutral
Omy_u09-56-073 Neutral
Omy_hsp47-86 Neutral
Omy_gluR-79 Neutral
OMS00053 Neutral
Omy_rapd-167 Neutral
Omy_09AAD-076 Neutral

∗
Precip = annual mean precipitation (mm); Tmax = annual mean max-

imum temperature (◦C); Tmin = annual mean minimum temperature
(◦C); Elev = elevation (m); Lat = latitude; Long = longitude.

outlier loci. However, by applying a hierarchical island model
and comparing outliers at the FST and FCT levels, we can de-
duce whether divergent selective forces are likely to dominate
within or between the two lineages (Fig. 5). A recent study
by Meier et al. (2011) showed that both number and types
of outlier loci for divergent selection varied substantially at
different spatial scales in brown trout. This pattern demon-
strates the need for denser sampling of populations if the
goal is to increase the spatial resolution of inferred selective
processes. The observed outliers might therefore be shaped
by heterogeneous landscapes, or other selective agents, oper-
ating at smaller geographic scales within each lineage (e.g.,
Narum et al. 2008; Narum et al. 2010b). Indeed, our land-
scape genomics analysis suggested an important link between
landscape variables and several loci (Table 2). Due to the in-
herent uncertainty of correlations between predefined vari-
ables such as used in this study, we refrain from concluding
direct functional relationships for specific loci or landscape
parameters (see also Bierne et al. 2011). Nevertheless, looking
at overall trends two main findings can be inferred from this
analysis. First, genetic variation associated with surrounding

Table 3. For each population, number of reconstructed haplotypes,
observed, and expected levels of homozygosity (F value) are given with
results from the Ewens–Watterson homozygosity test for deviation from
neutrality at an MHC class II gene (see text for more details). P-values
below 0.05 are highlighted in bold, and P-values between 0.05 and 0.10
are shown in italic.

No. of Observed Expected
Population haplotypes F value F value P-value

CHEH 6 0.289 0.467 0.104
CROOK 6 0.295 0.468 0.113
DEADM 5 0.317 0.527 0.076
DESCH 5 0.255 0.530 0.009
GREEN 5 0.328 0.463 0.187
SKAG 5 0.313 0.500 0.096
SKAGRES 2 0.841 0.777 0.569
SOL 6 0.277 0.467 0.079
SUST 4 0.500 0.606 0.363
TWISP 6 0.248 0.457 0.034
TWISPRES 6 0.312 0.409 0.274
Mean 5.1 0.361 0.516 0.173
SD 1.2 0.173 0.101 0.168

landscape variables was dominated by outlier loci suggesting
a general pattern of local adaptation to specific environments
by O. mykiss. Second, precipitation and temperature (or cor-
related factors), in particular, may play important roles in
shaping adaptive genetic variation in O. mykiss. An effect of
temperature would be in accordance with three regional (FST)
outliers following a latitudinal trend within the coastal lineage
(Fig. 5B). A recent study by Wenger et al. (2011) also suggests
an important role of temperature and flow regime (expected
to be partly correlated with precipitation) in determining the
distribution of suitable habitat for O. mykiss, adding support
for crucial adaptive roles of these environmental parameters.
However, these association-based findings remain indirect
in nature, but direct links between variations in genotype,
phenotype, and fitness remain very rare for any organism.
Future studies obtaining much denser genomic coverage (see
e.g., Hohenlohe et al. 2010) will allow a more direct chro-
mosomal location of the gene(s) actually under selection.
Alternatively, surveillance of fully controlled populations al-
lows to track gene frequencies over time after being exposed
to a new environment (e.g., Barrett et al. 2008). Thus, our
results can be seen as hypothesis generating for future studies
specifically investigating effects of certain landscape variables
or candidate genes.

Migratory life-history types

We identified one outlier potentially under divergent se-
lection between Skagit River resident and anadromous
populations (Fig. 4C). For the Twisp River resident and
anadromous populations, we found six putative outliers for
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divergent selection (Fig. 4D). The one outlier observed be-
tween the two Skagit River populations is consistent with
that expected by chance alone. Furthermore, true outliers
can be difficult to distinguish from false positives in this
comparison considering the high levels of observed neutral
differentiation between these two populations (pairwise FST

= 0.30, P < 0.001). However, the observation of six out-
lier loci (i.e., 2.3%) at the 99% confidence level between the
Twisp populations, together with another marker showing
signatures of selection in both locations, suggest ongoing se-
lection between anadromous and resident life-history types.
This overall result is consistent with recent studies identify-
ing signatures of divergent selection between different mi-
gratory variants in O. mykiss (Martı́nez et al. 2011; Narum
et al. 2011). All outlier loci show allelic patterns suggestive of
distinctions between resident populations and the anadro-
mous counterparts within the same lineages. For example,
allele frequency plots reveal a consistent pattern of higher
similarity among all inland anadromous populations than
between the anadromous and resident Twisp River popula-
tions (Fig. 6A). These differences are small and at best weak
indicators of ongoing selection between life histories. How-
ever, a mere effect of increased drift in an assumingly smaller
and more isolated resident TWISPRES population cannot
explain these observations since a general trend of increased
variation was observed for this population (Table 1; Fig. 6A).
Despite this generally inconclusive pattern, these outliers
may potentially prove rewarding in future studies with a
more targeted focus on studying selection between these life
histories.

Evidence of selection acting on immune
response genes

The two known nonsynonymous mutations in the peptide-
binding region of a MHC class II gene (Omy DAB 431 and
Omy DABb) generally showed high levels of diversity in
most populations with MAF ranging between 0.26 and 0.48
(Appendix 4). Although only two populations gave signifi-
cant results in direct tests for balancing selection acting on
reconstructed haplotypes of the MHC class II gene, a clear
overall trend toward balancing selection was revealed (Ta-
ble 3). Lack of more significant findings may be due to limited
statistical power from the limited number of alleles (Table 3)
when reconstructing haplotypes from only three segregating
SNPs. However, since these mutations change amino acids
in the crucial peptide-binding region of the MHC class II
molecules, we would expect that lack of balancing selection
would have led to elimination of otherwise assumingly dele-
terious mutations in just a few generations. While our results
are only indicative of balancing selection within or among
populations, many previous studies have detected patterns of
balancing selection acting on MHC loci in other salmonid

fishes (Landry and Bernatchez 2001; Miller et al. 2001), in-
cluding O. mykiss (Aguilar and Garza 2006). Furthermore, a
recent study by Martı́nez et al. (2011) detected divergent se-
lection on a microsatellite locus linked to a MHC class II gene
between steelhead and an upstream isolated resident popu-
lation of O. mykiss. Although not discussed by the authors,
a general trend of reduced genetic diversity was observed
in the landlocked resident population; however, this pop-
ulation exhibited increased levels of diversity at the MHC-
linked marker in accordance with balancing selection within
the resident population. More convincing conclusions about
balancing selection can be obtained from analyses based on
sequencing larger fragments of genes covering multiple poly-
morphic sites. McCairns et al. (2011) followed this approach
for a fragment of the peptide-binding region of a MHC class
II gene in stickleback (Gasterosteus aculeatus) and found simi-
lar evidence for balancing selection. Sequence-based analyses
are in general expected to be more powerful for detecting bal-
ancing selection compared to individual marker based outlier
tests (Renaut et al. 2010; Brieuc and Naish 2011; Narum and
Hess 2011).

We also found interleukin genes among outliers in all three
genome scans (Fig. 4). A recent study by Narum et al. (2011)
also found interesting patterns for these three loci. They
found Omy IL-320 to be a candidate locus for anadromy
in O. mykiss populations from the Klickitat basin in the
Columbia tributary, Washington. This result is in agreement
with our observations at this locus showing a signature of
divergent selection between the resident and anadromous
populations in the Twisp River (Fig. 4D). Furthermore, we
observed outlier patterns for two other interleukin markers
Omy IL1b-163 and OmyIL17–185 (Fig. 4B and 4C). These
two markers were observed to correlate with one or more
environmental variables in the study by Narum et al. (2011),
indicative of adaptive roles. For example, Narum et al. (2011)
found the Omy IL1b-163 locus to correlate with temper-
ature, and this finding is also supported here at a larger
spatial scale (Table 2). Despite the different spatial scales,
our results together with the study by Narum et al. (2011)
add strong support for an important adaptive role of inter-
leukin genes in O. mykiss. Temperature tolerance, or fac-
tors correlating with temperature such as parasite abun-
dance and virulence (e.g., Marcogliese 2008), have also been
shown to infer selection on immune genes in other fish and
animals in general (e.g., Kurtz et al. 2004; Sommer 2005;
McCairns et al. 2011).

In conclusion, we observed interesting patterns of adaptive
variation at both interleukin genes (divergent selection) and
a MHC class II gene (balancing selection). Here, the latter is
represented by three SNPs hitherto unscreened in wild popu-
lations. These candidate genes will inevitably prove valuable
in future studies of O. mykiss investigating the evolutionary
role of immune response processes.

12 c© 2011 The Authors. Published by Blackwell Publishing Ltd.

147



M. T. Limborg et al. Local adaptation in Oncorhynchus mykiss

The promise of applying functional genetic
variation in conservation genomics

Genome scans including functional genetic variation have
proven very promising for identifying (and understanding)
adaptively important genes and traits in nonmodel organ-
isms (e.g., Namroud et al. 2008; Nielsen et al. 2009b; Glover
et al. 2010), also see Vasemägi and Primmer (2005) and
Storz (2005) for reviews. First, identification of intraspecific
adaptive variation among populations is crucial for identify-
ing focal intraspecific population units of high conservation
value. Further, identification of highly discriminatory loci
will greatly increase power for use in management related
assignment tests (e.g., Freamo et al. 2011) or mixed-stock
analyses (Freamo et al. 2011; Seeb et al. 2011b) of natu-
ral populations. Future studies identifying adaptive variation
are thus expected to contribute toward development of more
effective conservation plans at the intraspecific level of wild
nonmodel organisms.
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Appendix

Appendix 1. SNP exclusion pipeline. Ellipses isolate numbers of SNPs in the various categories. Solid arrows connect the stages of analysis, and
broken arrows identify sets of SNPs that were excluded at each stage.
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Appendix 3. Tested environmental variables and data sources.

Environmental variable SUST1 SKAG GREEN SOL CHEH DESCH CROOK TWISP DEADM1

Precipitation (mm)2 965 873 1082 2501 1413 279 979 395 263
Maximum temperature (◦C)3 21.0 22.7 24.6 20.0 24.8 32.2 28.0 29.5 26.2
Minimum temperature (◦C) 4 –13.3 0.9 1.7 1.9 1.0 –3.5 –8.7 –9.6 –9.2
Elevation (m) 5 1352 9 22 9 28 397 1049 494 336
Latitude 56.58 48.44 47.29 47.91 46.80 44.82 46.51 48.37 50.74
Longitude –126.45 –122.34 –122.17 –124.54 –123.17 –121.09 –114.68 –120.14 –120.92

Sources:
1Precipitation and temperature data for the BC samples obtained from http://www.genetics.forestry.ubc.ca/cfcg/climate-models.html
2http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=ppt&view=maps.
3http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmax&view=maps.
4http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmin&view=maps.
5Obtained from Google Earth using coordinates.

Appendix 4. Frequency plots of major allele frequencies for five MHC-related SNPs. Omy DAB 431 and Omy DABb are nonsynonymous mutations
in the peptide-binding region of a MHC class II gene, while Omy DABc represents a synonymous mutation in the same gene. Omy UBA3a and
Omy UBA3b show allele frequencies for two SNPs residing within a MHC class I gene.

Supporting Information

Additional Supporting Information may be found online on
Wiley Online Library.

Table S1. Locus information and summary statistics

.

Please note: Wiley-Blackwell is not responsible for the content
or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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Future directions and perspectives 

In this thesis, I defined concrete objectives aiming to increase our understanding about the 

evolutionary mechanisms underlying population structure and local adaptation in marine and 

salmonid fishes. These questions were successfully addressed using population genetics and 

genomics approaches, but during the course of my work new exciting questions arose along the 

way, some of which have been discussed in chapter 1. In the following I will briefly put these 

ideas into perspective in a discussion of where I believe the future of ecological genomics will 

take us on the on-going quest of increasing our knowledge about natural selection in the wild. 

With the continuing increase in speed and reduced costs for performing large scale sequencing 

analyses, it will eventually be feasible to sequence full genomes even in population level 

studies. However, such approaches will probably not be worth the effort since a dense genome-

wide marker set should be adequate for capturing overall genomic variation due to linkage 

disequilibrium (Allendorf et al. 2010). Once a reference genome (or linkage map) has been 

generated for a given species, it can be used to tackle a range of specific questions using 

marker based approaches including the generation of genome wide marker panels (Hansen et 

al. 2011), reduced representation sequencing (Sanchez et al. 2009), as well as mapping and 

identification of candidate genes (e.g. Bradbury et al. 2010; Hohenlohe et al. 2010). 

The challenge of distinguishing past from on-going selection should receive more attention as 

this may have implications for forecasting evolutionary responses of ongoing climate changes. 

One way to approach this question is to use dense marker coverage around selected loci for 

inferring the background of adaptive mutations by distinguishing between old sweeps or more 

contemporary selection (Bierne 2010). Two of the species studied in this PhD represent 

excellent research models for addressing this question. The inland and coastal Oncorhynchus 

mykiss lineages represent a good model system for assessing such varying temporal scales of 

selection. Observed signatures may either represent imprints from glacial selection between 

differing refugial environments or more recent selection imposed by contemporary habitats (see 

chapter 8). Indeed, the necessary genomic resources for such inferences are expected to be 

available for O. mykiss in the near future (Miller et al. 2011). Another interesting case is the 

different herring populations inhabiting isolated low salinity environments in the Baltic Sea and 

Ringkøbing fjord, where at least the latter is relatively newly established (<400 years). It would 

hence be of interest to establish if salinity related adaptive signatures were caused in or ex situ 

(chapter 7). Thus, observed patterns of divergent selection in relation to low salinity in this area 
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are likely to, at least partly, represent historical adaptation in an ancestral population. It is likely 

though, that on-going selection on adaptive alleles for low salinity maintains divergent allele 

frequencies between neighbouring marine and brackish populations, and that both historical and 

contemporary selection explains the observed adaptive patterns. 

Improved temporal understanding will also be crucial for optimising inferences gained through 

landscape genomics approaches, which will undoubtedly improve our knowledge about the 

interacting effects of gene-flow, genetic drift and natural selection in varying and changing 

environments. Being able to distinguish neutral from adaptive variation and to identify 

environmental boundaries impeding gene-flow appears extremely promising for the detection of 

demographically independent units which should serve as conservation units (Ouborg et al. 

2010). Further, increased understanding of adaptive genes and associated key environmental 

variables can be used to predict future population dynamics by modelling gene-flow and 

adaptation in forecasted landscapes under various climate change scenarios (Allendorf et al. 

2010). For example, Wenger et al. (2011) predicted drastic declines in suitable habitat for four 

trout species by considering forecasted changes of key environmental factors demonstrating the 

usefulness of such an approach. 

Despite the intriguing accomplishments waiting around the corner from fully sequenced and 

annotated genomes, these will not close the existing knowledge gap between genetic variation 

and ultimate performance of organisms in the wild (Figure 1). While increased genomic 

inference may serve as a useful knowledge base for identifying candidate genes and key 

environmental factors, inference from other biological processes is required to fully understand 

the interplay between the genetic and environmental drivers shaping the phenotype. Thus, 

direct inference from higher biological levels is urgently needed. One promising approach to link 

genetic variation with “quantitative” phenotypic traits in fishes is to use QTL mapping (Figure 1; 

Naish and Hard 2008). Currently very few applications in wild nonmodel fishes exist (but see 

Rogers and Bernatchez 2007), however, this number is expected to increase in the near future 

reflecting the fast accumulation of comprehensive genomic resources in many nonmodel fishes. 

Furthermore, inferences from the transcriptome and proteome (Figure 1) appear especially 

promising for understanding higher level biological processes shaping phenotypes in wild 

organisms (Dalziel et al. 2009). Although underlying theory and methods in the fields of 

transcriptomics and proteomics are not as developed as in genetics (Anderson and Anderson 

1998), future advances within these fields will be able to illuminate new sides of the genotype– 
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Figure 1 The genotype-phenotype pathway revisited from figure 1 in chapter 1. Boxes describe how 
proteomic, QTL and transcriptomic approaches draw inference from different biological levels. 

phenotype pathway by elucidating a wider range of the “biological functions” allowing 

populations to adapt to new environmental conditions (Pandey and Mann 2000). 

In conclusion, it appears obvious that much is to be gained from closer collaborations among 

disciplines. Research at genetic and physiological levels, which conceptually address identical 

questions, should be increasingly united within scopes of scientific journals and conferences. 

Whereas Bob Dylan’s famous words “The Times They Are a-Changin” may seem universally 

fitting, the rate by which times are changing has never been faster within this field, and the 

future does indeed look promising – We’d better hold on. 

Genetic variation

mRNA

Protein function
and/or amount

Physiological 
processes

Phenotypes of 
specific traits

Whole-organism 
Performance (fitness)

Quantitative  Trait  Locus  (QTL) mapping 
relies  on  linkage  disequilibrium  between 
genetic markers  and  genes  (quantitative 
loci)  affecting  quantifiable  phenotypic 
traits of  interest  (Mackay 2001). To work 
efficiently,  traditional  QTL  mapping 
requires  elaborate breeding programs  to 
enable  control  of  measured  traits  and 
optimise  linkage  within  individuals 
(Mackay 2001). 

Transcriptomics reflects  variations  in 
gene expression (GE)  levels (measured as 
the  amount  of mRNA).  The  evolutionary 
importance of GE was first pointed out by 
King  and  Wilson  (1975)  as  a  necessary 
explanation  for  the  often  immense 
phenotypic  differences  between  closely 
related  species.  Methods  often  analyse 
1000s  of  genes  simultaneously,  and 
controlled  breeding  is  needed  to 
effectively control  for environmental and 
maternal  effects.  Important  roles  of  GE 
have  been  shown  in  fish  (Cossins  and 
Crawford  2005;  Larsen  et  al.  2007),  and 
growing  genomic  and  aquaculture 
resources  predicts  an  important  role  for 
GE studies in the future. 

Proteomics  (PT)  refers  to 
biochemical  studies  of  all 
proteins  encoded  by  the 
genome  occurring  in  cells  and 
tissues of whole organisms. The 
“proteome”  is  even  more 
complex  as  it  also  represents 
post‐translational modifications 
of  initially  transcribed  protein 
products (Lopez 2007). A major 
attribute  of  PT  is  that  you  are 
observing  traits  with  a  much 
more  direct  coupling  to  an 
organism’s  phenotype 
(Anderson and Anderson 1998). 
PT has  for  example been used 
to  detect  differences  between 
Mediterranean  and  Atlantic 
populations  of  European  hake 
(Merluccius  merluccius) 
(Gonzalez  et  al.  2010). 
Limitations of PT  include “hard 
to  standardize”  analyses  and 
limited  reference  resources  for 
non‐model species (Karr 2008). 
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