Wind atlas for Egypt - overview and applications

Mortensen, N.G.

Publication date: 2006

Wind Atlas for Egypt – overview and applications

Niels G. Mortensen
Meteorology Program

WAsP Days ‘06
26 January 2006

Wind Atlas for Egypt project(s)

- Previous project (1991-1996)
 - Wind Atlas for the Gulf of Suez (4 stations)
 - Hurghada Wind Energy Technology Centre
 - Demonstration Wind Farm
 - Wind Energy Master Plan for Egypt
 - Wind Atlas for the Gulf of Suez (13 stations)
 - Preliminary Wind Atlas for Egypt (25 stations)
 - Wind Atlas for Egypt (31 stations + NWA)
Wind Atlas for Egypt

- 11 wind atlas stations in operation (+12 NREA + 8 EMA)
- Database of met. measurements (~175 y, ~5 mill. obs.)
- Database of WAsP wind atlas data
- Training courses for technicians
- Training course for professionals
- Cup anemometer rehabilitation and calibration facility
- Instruments and safety features for the wind atlas stations
- Satellite-based on-line data transmission system
- SW/HW for wind data analysis and wind flow modelling
- Mesoscale modelling of Egypt using the KAMM model
- Database of KAMM modelling results (Numerical Wind Atlas)
- Wind Atlas for Egypt (2006, ~260 pages + 6 CD’s)

Meteorological mast in Zafarana
Meteorological station in Zafarana

Hurghada Cup Anemometer Calibration Facility
Wind Atlas for Egypt applications

- Application 1: Overview of Egyptian wind resources
 - Input: numerical wind atlas database
 - Output: Maps, statistics, …
- Application 2: Numerical wind atlas + WAsP
 - Input: numerical wind atlas database
 - Output: WAsP results (wind climates, power productions,…)
- Application 3: Observational wind atlas + WAsP
 - Input: observational wind atlas
 - Output: WAsP results (wind climates, power productions,…)

- Topographical inputs
- Summary
- The future

1. New wind resource maps of Egypt

- Map shows PWC
- Mean wind speed 50 m a.g.l. [ms⁻¹]
- 7 speed classes
- KAMM modelling
- Resolution 7.5 km
- NCEP/NCAR data
- GTOPO30 elevation
- GLCC land cover
- Terrain features may give higher wind speeds locally!
- Output formats:
 - map graphics
 - statistics, …
1. New wind resource maps of Egypt

Elliott et al. (1987)

2. Numerical wind atlas

- Analysis procedure (KAMM)
 NCEP/NCAR reanalysis data
 + roughness map (GLCC)
 + elevation map (GTOPO30)
 ⇒ Regional Wind Climate

- Application procedure (WAsP)
 Regional Wind Climate
 + sheltering obstacles
 + roughness map
 + elevation map
 ⇒ Predicted Wind Climate
 + power and thrust curves
 ⇒ Predicted wind farm AEP
Regional wind climate

- KAMM modelling
- Resolution 7.5 km
- Map shows RWC
- Wind climate over flat, uniform terrain
- Mean wind speed 50 m a.g.l. [ms⁻¹]
- Linear speed scale
- Output format: WAsP *.lib file
 - Weibull A and k
 - Standard heights
 - Standard z_0

Detailed wind resources at Ras El-Hekma

- WAsP modelling of detailed wind speed @ 10 m a.g.l.
- Resolution 100 m
- KAMM wind map indicates Class 2
- Offshore resource is higher: Class 5
- Coastal resource is higher: Class 3/4
- Hill/ridge resource is higher: Class 6
Verification of Numerical Wind Atlas

3. Observational wind atlas

- Analysis procedure (WAsP)
 - Observed Wind Climate
 + sheltering obstacles
 + roughness map (GE)
 + elevation map (SRTM3)
 \[\Rightarrow\] Regional Wind Climate

- Application procedure (WAsP)
 - Regional Wind Climate
 + sheltering obstacles
 + roughness map
 + elevation map
 \[\Rightarrow\] Predicted Wind Climate
 + power and thrust curves
 \[\Rightarrow\] Predicted wind farm AEP
Egyptian regional wind climates

- WAsP modelling
- 30 met. stations
- Graph shows RWC
- Wind climate over flat, uniform terrain
- Mean wind speed and power density 50 m a.g.l.
- Output format: WAsP *.lib file
 - Weibull A and k
 - Standard heights
 - Standard z_0

Gulf of Suez regional wind climates
Probably the best wind farm site in the world…

Detailed wind resources at Zafarana
Topographical inputs for WAsP

- Elevation maps
 - Shuttle Radar Topography Mission 3" elevation data
 - Digitised topographical maps
- Roughness (land-use) maps
 - SRTM Water Body Data
 - Satellite imagery (GE Pro)
 - Digitised topographical maps
 - Aerial photography
 - Site visits (mines!)
- Obstacle descriptions
 - Site visits

Shuttle Radar Topography Mission

- Grid point elevations
- 3" (~90 m) resolution
- Vertical accuracy 5-10 m
Inspection of raw SRTM data

- Check for missing information (voids = white)
- Check for spikes and wells

Katamaya elevation map from SRTM data

20x20 km with 10-m contours
2x2 km with 1-m contours
Zafarana elevation map from surveying

Alexandria roughness map from Google Earth
A complete package…

- Wind-climatological inputs
 - Numerical wind atlas (all over Egypt)
 - Observational wind atlas (30+ stations)
- Topographical inputs
 - SRTM 3" elevation data
 - SRTM Water Body Data
 - Google Earth Pro satellite imagery
- Software tools
 - WAsP, Map Editor, Utility Programs
 - Surfer, Grapher, Didger
- Other resources
 - Wind atlases, wind farm planning report, training, …
 - Bird Migration Atlas, EIA reports, guidelines, …

Wind Farm Planning

Bird Migration Atlas

Wind Atlas for Egypt

Maps & other data

Master plans

EIA GUIDELINES APPROVALS

Legislation

§§
The future…

- Numerical wind atlas
 - Long-term data (1968-95) – infrequent updating ok
- Observational wind atlas
 - Some reference met. stations should continue
 - New measurement programmes may be initiated
 - Cup anemometers must be rehabilitated and recalibrated
 - Databases can be updated and extended
 - Wind Atlas for Egypt can be updated
- Conclusions
 - present approach to wind resource assessment and siting in Egypt may be continued for several years
 - NWA methodology may be applied elsewhere…