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ABSTRACT4

Grid and spectral nudging are effective ways of preventing drift from large scale weather5

patterns in regional climate models. However, the effect of nudging on the wind-speed6

variance is unclear. In this study, the impact of grid and spectral nudging on near-surface7

and upper boundary layer wind variance in the Weather Research and Forecasting model is8

analyzed.9

Simulations are run on nested domains with horizontal grid spacing 15 and 5 km over10

the Baltic Sea region. For the 15 km domain, 36-hr simulations initialized each day are11

compared with 11-day simulations with either grid or spectral nudging at and above 115012

m above ground level (AGL). Nested 5 km simulations are not nudged directly, but inherit13

boundary conditions from the 15 km experiments.14

Spatial and temporal spectra show that grid nudging causes smoothing of the wind in15

the 15 km domain at all wavenumbers, both at 1150 m AGL and near the surface where16

nudging is not applied directly, while spectral nudging mainly affects longer wavenumbers.17

Maps of mesoscale variance show spatial smoothing for both grid and spectral nudging,18

although the effect is less pronounced for spectral nudging. On the inner, 5 km domain,19

an indirect smoothing impact of nudging is seen up to 200 km inward from the dominant20

inflow boundary at 1150 m AGL, but there is minimal smoothing from the nudging near the21

surface, indicating that nudging an outer domain is an appropriate configuration for wind22

resource modelling.23
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1. Introduction24

Simulations of the climatological wind speed distribution near the surface are a necessary25

part of the modeling chain for wind resource assessment. This is particularly valuable where26

observations are not available, or where the wind resource over a large area such as the Baltic27

Sea region is required for wind energy prospecting or power systems planning. Simulating the28

wind climate raises some of the same challenges as regional climate modeling, such as finding29

the optimal way of constraining the regional model to the large scale flow while allowing it30

to develop smaller scale variance. On the other hand, wind resource mapping demands a31

resolution high enough to resolve mesoscale phenomena such as topographic channelling,32

sea breezes and low level jets that affect the near-surface wind speed. Both the mean33

and distribution of the wind speed are essential because the Annual Energy Production34

(AEP) is a function of the wind speed distribution and the wind turbine power curve.35

Furthermore, understanding the variability of the wind speed across a range of time scales is36

required for managing the power output of the wind farm and the electricity integration into37

the power system. Since the variability associated with length scales of tens of kilometers38

is commensurate with the size of a large offshore wind farm, it can lead to large power39

fluctuations (e.g. Sørensen et al. 2008; Vigueras-Rodr̀ıguez et al. 2010). The goal of this work40

is to explore the sensitivity of the mean and variance of the wind climate from mesoscale41

modeling to three methods of constraining the mesoscale model to the large scale flow.42

Simulations of the regional wind climate, like all regional climate simulations, can be43

constrained to the large scale flow by regular and frequent initialization of the model from44

large scale forcing, with the first part of each model run being discarded as a ‘spin-up’ period,45

during which time the scales resolved in the simulation transition from only those in the large46

scale forcing, to the full effective resolution of the smaller scale model. The advantage of this47

method is that simulations are short enough to prevent the interior of the mesoscale model48

diverging from the large scale circulation patterns, but the disadvantages are wasted com-49

putational power for the spin-up period, and discontinuities between individual simulations.50
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Alternatively, the mesoscale simulations can be run continuously without reinitialization,51

but as shown by Lo et al. (2008), Bowden et al. (2012) and Bowden et al. (2013), this can52

result in drift from the large scale circulation patterns. It has been shown that these prob-53

lems can be alleviated by nudging the regional climate model towards its difference from the54

large scale forcing, either by nudging in grid-point space, or by nudging in spectral space so55

that only wavenumbers above a certain threshold are nudged. For example, Bowden et al.56

(2012), Bowden et al. (2013), Liu et al. (2012), Lo et al. (2008) and Miguez-Macho et al.57

(2004) all showed better consistency with large scale circulation patterns in regional climate58

models that used nudging, although these studies were all at a horizontal resolution of 3659

km or greater. Not only has nudging been shown to improve the consistency with the large60

scale circulation patterns, but it has also been shown to improve simulations of temperature61

and wind speed near the surface (Bullock et al. 2014; Bowden et al. 2012, 2013; Otte et al.62

2012).63

Despite the advantages of nudging in the WRF model, there is a risk that some of the64

variability in the regional climate model will be damped by the nudging. For example,65

Bowden et al. (2012) suggested that nudging could reduce errors at the expense of reducing66

variability, although Otte et al. (2012) found that nudging could improve predictions of both67

monthly means and hot and cold extremes of 2 m temperature. Feser (2006) emphasized68

the importance of scale separation when studying the impact of nudging. She used two69

dimensional digital low pass and band pass filters to study the standard deviation of 2 m70

temperature and sea level pressure, in order to demonstrate that the value of downscaling71

lies in the small scales where the regional scale or mesoscale model is able to contribute to the72

variance at scales that are not well resolved in the forcing data. Hahmann et al. (2014) used73

comparison with tall meteorological masts to show that frequent reinitialization, spectral74

nudging or grid nudging resulted in similar wind climate simulations over the sea, but they75

did not address the issue of wind speed variance. For wind resource assessment, reducing76

the variance of the wind speed at typical wind turbine hub-heights may impact estimates of77
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the AEP, which relies on the full distribution of wind speed, or extreme winds, which rely78

on one tail of the distribution.79

In this work, we conduct year-long simulations over the South Baltic region using the80

Weather Research and Forecasting (WRF) model with two nested domains with horizontal81

grid spacing of 15 km and 5 km respectively. A simulation reinitialized every 24 hours,82

with a spin-up period of 12 hours is treated as the ‘control’, and compared with simulations83

that are run with spectral or grid nudging applied to the 15 km domain. To ascertain84

any smoothing effect of the two nudging methods, temporal and spatial spectra of wind85

speed near the surface and at a height of 1150 m above ground level are used to show the86

frequency-dependent impact of the nudging on the two long experiments as compared with87

the short experiment. The detailed use of spatial and temporal spectra, and in particular88

maps of temporal spectra integrated over the mesoscale wavenumbers, brings a new angle89

to the analysis of nudging and the flow of information from the domain boundaries.90

2. Experimental Setup91

The three year-long simulations were run using the WRF model version 3.2.1 for 2010.92

Although wind climates are based on more than one year of data, this is a sensitivity study,93

for which a full annual cycle was considered sufficient. Two domains with horizontal grid94

spacing of 15 km and 5 km respectively (shown in Fig. 1) were used downscale the ERA95

Interim reanalysis (Dee et al. 2011), which has a spectral resolution of T255 (about 50 km96

at this latitude). The outer, 15 km domain had dimensions of 101 × 69 grid points, while97

the inner, 5 km domain had dimensions of 204 × 105 grid points.98

Three configurations of the WRF model were tested. In the first configuration, the WRF99

model was re-initialized at 00 UTC for each day of 2010, and run for 36 hours in each case.100

By discarding a 12 hour spin-up time, the 24 hour time series starting at 12 UTC each day101

gave continuous coverage of the year. This simulation is referred to as the ‘SHORT’ model102
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run (Table 1), and is considered the ‘control’ because there is no smoothing effect from the103

nudging, and because this is the typical method chosen for wind climate estimations (eg.104

Taylor et al. (2009)).105

In the second configuration, the WRF model was re-initialized at 00 UTC every ten days,106

and run for 11 days in each case. Discarding a 24-hour spin-up time, the 10-day periods107

gave an analogous coverage to the short experiment. This simulation is labeled ’LONG-G’108

in Table 1. Grid point nudging (Skamarock et al. 2008) was used to constrain the large scale109

weather patterns in the 15 km resolution domain, while the 5 km nest was constrained only110

at the boundaries. Grid nudging was applied to the U and V wind components, potential111

temperature and water vapor mixing ratio for model level 11 (centered on ∼1150 m) up to112

the top of the model at 50 hPa, following the strategy of Rife et al. (2010). The grid nudging113

in the WRF model corrected the tendency term in the prognostic equation for each nudged114

variable with a weighted difference of the analysis field (in this case ERA-Interim) with the115

current value from the model, as described in Skamarock et al. (2008).116

Results from Peña et al. (2013), who used modeling and ceilometer observations to con-117

struct a climatology of boundary layer heights at a Danish coastal site, suggest that model118

level 11 (1150 m) will almost always be above the top of the boundary layer in the regions119

considered in this study, which is important because the nudging should not suppress the120

development of mesoscale variability within the boundary layer. There is an alternative op-121

tion in the WRF model to apply nudging only above the time-varying top of the boundary122

layer. However, due to concerns about nudging being applied close to the surface when123

the boundary layer height is small during stable conditions, this option was avoided. The124

nudging coefficient for all nudged fields was zero for levels 1–10, 3×10−5 s−1 at level 11, and125

3×10−4 s−1 for level 12 to the top of the model at 50 hPa.126

The third configuration of the WRF model (labeled ‘LONG-S’ in Table 1) was the same127

as the second, but spectral nudging was used instead of grid nudging. In spectral nudging,128

only wavelengths longer than a specified threshold are nudged. Nudging was applied to the129
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U and V wind components, potential temperature and geopotential for wavelengths longer130

than around 250 km in the zonal and meridional directions. The cut-off of 250 km was131

chosen after inspection of the average wind speed spectra of ERA-Interim over our study132

area as representing the information containing scales of the large scale forcing. This scale133

may in fact be too small, as discussed in section 5c.134

Other than the nudging and length of the simulations, the three simulations used identical135

physical and dynamical settings. Vertical diffusion in the boundary layer was parametrized136

by the Mellor-Yamada-Janjic scheme, while the Janjic Eta scheme and the unified Noah137

land-surface model were applied to the surface layer and surface physics respectively. For138

sub-grid-scale convection, the Kain-Fritsch scheme was used on both domains, and micro-139

physics was parametrized by the Thompson microphysics scheme. Shortwave and longwave140

radiation were calculated using the Dudhia scheme and the RRTM schemes respectively.141

The integrations on the two domains were executed simultaneously. One-way nesting was142

used so that spectral properties of the 15 km domain (to which nudging was applied) and143

the 5 km domain (to which nudging was not applied) could be studied independently. More144

details of the simulations and extensive validation against observational data can be found145

in Hahmann et al. (2014).146

3. Observations147

Measurement masts from 11 sites where wind speeds were measured at a height of at least148

40 m with at least hourly resolution were used for validation. The stations include inland,149

coastal and offshore locations (Fig. 2). In cases where measurements at multiple heights150

were available, the wind speed at the height closest to 39 m was chosen for consistency with151

the height of the second model level. There was a measurement available within 9 m of 39152

m at all sites except for Ryningsnäs, where the lowest measurement was at 98 m. Basic153

quality control was applied to remove wind speeds less than zero, segments with more than154
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two repeated values and wind speeds greater than 30 m s−1 that are assumed to have been155

related to measurement errors. Since there were episodes of missing data in all the time series,156

all available data in the period January 2006 to December 2011 was used, rather than just157

the modeled study period of 2010 to increase the representativity of the data. This approach158

may have introduced differences in average variance due to inter-annual variation in large159

scale weather patterns in the region, although a comparison of the spectrum from the period160

2006–2011 with that from only 2010 at Fino 1 (not shown) indicated little difference. The161

observed time series were split into 24-hour segments to calculate spectra. The number of 24162

hour segments for each observation location, together with the percentage data coverage is163

given in Table 2. Note that this is not the overall data coverage, but the number of 24-hour164

periods that satisfied the quality control criteria.165

4. Analysis of spectra and mesoscale variance166

Spatial power spectra of the modeled wind speed were calculated as described in the167

Appendix for each west-east transect of the domain, and averaged over all such transects.168

Each west-east transect was detrended prior to calculating the power spectra. As described169

in the Appendix, a Hanning window was applied to each transect to alleviate end effects.170

In the temporal domain, the same procedure was used to calculate frequency spectra of 24171

hour time series at each grid point.172

The sum of the coefficients of the power spectrum is equal to the variance of the time series173

or spatial transect (e.g., Stull 1988, Chapter 8). To study the contribution to the variance174

from the mesoscale part of the spectrum, the scalar mesoscale variance, σ2
m is defined as the175

area under the power spectrum between the frequencies pertaining to the time scales of 2176

and 8 hours (Eq. 1). The mesoscale wind speed variance, σ2
m, which has units of m2 s−2, is177
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defined as178

σ2
m =

∑
1
T2

<f< 1
T1

S(f)∆f, (1)

where T1 = 2 hours and T2 = 8 hours, S(f) is the power spectrum, f is the frequency, and179

∆f is the width of the frequency bins.180

The spatial analogy of the mesoscale variance is181

σ2
mk =

∑
1
x2

<k< 1
x1

S(k)∆k, (2)

where x1 and x2 are two length scales, S(k) is the spatial power spectrum and k is the182

wavenumber. We chose x1 and x2 to be 72 and 288 km respectively, which relate to the183

temporal scales of 2–8 hours via a simplistic Taylor transformation with a nominal wind184

speed of 10 m s−1. The spatial propagation of atmospheric variability will be governed not185

only by the wind speed at the surface, but by the wind throughout the boundary layer186

(Larsén et al. 2013). Even though 10 m s−1 is higher than the mean wind speed over the187

land (see Fig. 4), it is representative of the wind speed at the top of the boundary layer.188

5. Results189

a. Spin-up periods of the three experiments190

We compare the mean and mesoscale variance of the wind speed of the series of the191

SHORT simulation to that of the LONG-G and LONG-S simulations. We assume that the192

11 day model runs, which are initialized every 10 days to create a continuous time series, are193

not affected by spin-up. Figure 3, showing the average spatial mesoscale variance, σkm (Eq. 2)194

for each hour of the 36 hour and 11 day model runs at model level 2 (L2, centered at ∼39 m)195

and level 11 (L11, centered at ∼1150 m), suggests that this is a reasonable assumption, as196

the mesoscale variance appears to have settled into a steady diurnal oscillation after around197

18 hours. For both the 5 km and 15 km domains, the mesoscale variance near the surface198
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(L2) is greater than that at L11. In the case of the SHORT runs, the maximum mesoscale199

variance at L11 is around 60% of that at the surface for both domains. For the LONG-S200

experiment, the mesoscale variance at L11 is around 55–60% of that at the surface for both201

domains, while for the LONG-G experiment it is around 33% and 55% of that at the surface202

for the 15 km and 5 km domains respectively. Note that both the short experiment and the203

long experiments are initialized at 00 UTC. The diurnal peak in mesoscale variance occurs,204

on average, at 18–19 UTC, which means that mesoscale variance appears to increase for the205

first 18 hours of the simulations. We do not explore the equivalent result for simulations206

initialized at 12 UTC, which may in fact under-represent the first diurnal peak in mesoscale207

variance after only 6–7 hours of simulation time, but Fig. 3 hints that the amount of spin-up208

required is dependent on the initialization time because of the prominent diurnal cycle in209

variance.210

b. Average wind speeds211

Hahmann et al. (2014) used the same modeling set-up to study the sensitivity of the212

simulated mean wind at 100 m in the WRF model to various parameters including choice213

of global reanalysis data, number of vertical levels, boundary layer parametrization and grid214

or spectral nudging. They found that the most important parameters for simulating mean215

wind speed at 100 m were the boundary layer parametrization and the length of spin-up216

period. Of particular relevance to this paper, they found that using grid or spectral nudging217

made differences of only ±1.5% in wind speed at 100 m, while frequently reinitializing the218

experiments without nudging made a difference only if an insufficient spin-up period was219

used.220

Hahmann et al. (2014) also validated the long simulations against observations. They221

showed that the bias in mean wind speed was less than 3.6% at five offshore sites in the North222

and Baltic Seas with measurements from higher than 70 m above ground level. Poorer results223

were found for one offshore site that was in close proximity to a wind farm and located in224

9



the narrow channel between Denmark and Sweden. For an additional 5 onshore locations225

with measurements at heights between 30 and 125 m, there was a relative bias between −1.3226

and 21.5%, with the worst result relating to a forested site.227

This study focuses on the mesoscale variance in wind speed, which although related to228

the mean wind speed, requires a unique set of validation criteria and analysis techniques to229

those used in Hahmann et al. (2014). The average wind speed at L2 and L11 for one year230

of the SHORT simulations is shown in Fig. 4. These plots simply show the time-averaged231

model output, and should not be treated as input for wind resource assessment, as they are232

based on only one year of data and do not include microscale effects. In Fig. 5, the ratio of233

the mesoscale standard deviation (the square root of the mesoscale variance, as defined in234

Eq. 1) to the mean wind speed is shown. The plots show that the ratio of mesoscale wind235

standard deviation to mean wind speed is not constant in space. The highest ratio (up to236

8%) is found over the complex topography in Norway and Sweden, where wind speeds are237

low due to the increased form drag of the topography, although the local wind speeds are238

often higher than those shown here due to microscale effects over the mountains. In general,239

the ratio is lower over the sea than over the land, but the ratio also varies between 4% and240

7% even over apparently homogeneous areas of water such as the interior of the Baltic Sea,241

where there is little variation in mean wind speed (Fig. 4). Most of this spatial variation242

therefore comes from inhomogeneities in the mesoscale variance. This suggests that the243

mesoscale wind variance varies on a smaller length scale than the mean wind. Even at L11,244

there is variation in the ratio of standard deviation to mean wind of between 4% and 8%245

over the sea that is not reflected in the mean wind speed.246

Although validation of the mean wind speed is of obvious importance, these results show247

that mesoscale wind variability should also be validated independently. This is important248

not only for end users of the model who may be interested in wind fluctuations, but for249

the scientific evaluation of mesoscale models, since the mesoscale scale variance reflects the250

extent to which mesoscale phenomena such as convective rolls, cellular convection, gravity251
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waves or sea breezes are correctly simulated in the model.252

c. Average spectra in the temporal and spatial domains253

In this section, the scale-dependent differences in wind speed variability amongst the254

three experiments are explored using spatial and temporal spectra of the wind speed near255

the surface (L2) and the height at which the nudging is first active (L11). The aim of this256

analysis is to show which wavenumbers or frequencies are smoothed by the grid and spectral257

nudging. The advantage of the spatial spectra is that they include scales down to the smallest258

resolvable features in the model, and also allow us to examine the instantaneous spectra at259

various periods in the model initialization. Although the temporal spectra are calculated260

using 24-hour blocks, they allow us to uncover the spatial variation in the mesoscale wind261

variance, because a unique spectrum for every grid point can be calculated.262

Spatial spectra were calculated along each row of the domains using the squared coeffi-263

cients of the discrete Fourier transform (Eqs. A1 and A3 in the Appendix), and averaged to264

calculate a single spectrum. After subtracting the mean of each row, a Hanning window was265

applied to alleviate end-effects in the spectra (Eq. A2). The Hanning window had the added266

advantage of down-weighting the influence of the boundary regions on the average spectra,267

which are therefore most representative of conditions in the domain interior. Similar spectra268

were calculated along domain columns for comparison (not shown), and although there were269

small differences in the absolute values of the spectra, the relative differences among the270

experiments were nearly identical. The spectra show the average variance as a function of271

wavenumber and wavelength. The longest resolved wavelength is equal to the width of the272

domain, and the shortest resolved wavelength is the Nyquist criterion of 2∆x, although the273

spectra may be subject to aliasing at the highest wavenumbers.274

In Fig. 6, the average spatial spectra for the one year period are shown for L2 and L11,275

as well as the ratios between the LONG-G and LONG-S simulations with nudging on the276

outer nest, and the SHORT simulation (considered the control). The spectrum of the ERA277

11



Interim wind speed fields that are interpolated onto the 15-km domain and used in the FDDA278

nudging algorithms is also indicated for comparison with the spectra at L11. Red curves are279

for the 5 km domain, to which nudging is not directly applied, and black curves are for the280

15 km domain, to which nudging is applied at level 11 and upwards. In all plots, the thick281

dashed lines indicate spectral slopes of −3 and −5
3
, as found in observational studies such282

as Nastrom and Gage (1985), and which are generally considered to delineate the synoptic283

scale variance from the mesoscale variance, as discussed in Skamarock (2004).284

Figure 6 shows that at L2, the spectra for the three experiments are nearly identical. The285

spectra are not entirely smooth, but do not get smoother with increasing averaging periods286

(not shown), indicating that the irregularities in the spectra are most likely due to stationary287

topographic effects. The ratio of the variance from the LONG-G and LONG-S experiments288

to the SHORT experiment indicates that there are in fact some very small differences among289

the L2 spectra in the 15 km domain.290

At L11, there is a clear difference among the spectra of the various experiments for the 15291

km domain. The SHORT experiment has the highest variance, while the LONG-G experi-292

ment has the smallest spectral amplitude at all wavenumbers. The spectrum of the LONG-S293

experiment is similar to that of the LONG-G experiment for wavelengths longer than about294

350 km, while for wavelengths shorter than about 180 km, it bears greater resemblance to295

the spectrum of the SHORT experiment. This is seen most clearly in the ratio of the spectra296

of the long simulations to that of the short simulations (Fig 6d), which for the spectral nudg-297

ing case, return to a value close to unity for wavelengths shorter than about 180 km. This298

is the expected behavior, since the spectral nudging is applied for wavelengths longer than299

250 km, which corresponds approximately to the minimum of the ratio of the spectra of the300

LONG-S experiments to that of the SHORT experiment for the 15 km domain. However,301

the fact that the spectrum of the LONG-S experiment begins to decrease in amplitude with302

that of the ERA-Interim before recovering suggests that the 250 km cut-off for the scale-303

dependent nudging may be too short. The ratios of the spectra (Fig 6d) show that at the304
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longest wavelengths, the three experiments are nearly identical because all three are being305

dominated by long wavelengths that are forced from the boundaries and change relatively306

slowly. These wavelengths are captured well by all of the experiments. The variance of307

the LONG-S experiment is suppressed to around 60% of that in the SHORT experiment at308

a wavelength of around 280 km, then completely recovers to match the amplitude of the309

spectrum of the SHORT experiment for wavenumbers higher than about 180 km. For the310

LONG-G experiment, the variance drops in a similar manner to that in the LONG-S experi-311

ments, but it never recovers. The spectra for the LONG-G and LONG-S experiments follow312

the FDDA spectrum up to a wavelength of around 250 km, indicating the scales present in313

the subsection of the ERA Interim reanalysis data that are influencing the 15 km domain.314

For the 5 km domain, the variance is also somewhat suppressed at L11 (Fig. 6d) for315

the experiments that have grid nudging or spectral nudging applied to the corresponding316

parent domain, but variance of the long experiments drops only to around 90% of that in the317

short experiment for the case of spectral nudging, and to around 80% of that in the short318

experiment in the case of grid nudging. The only connection between the 15 km domain and319

the 5 km domain is through the boundary region, suggesting that the larger gap in spectral320

amplitudes between the two domains imposed by the nudging is inhibiting the inner domain321

from developing the same degree of mesoscale variance as the short experiment without322

nudging.323

In Fig. 7, analogous plots to those in Fig. 6 are shown, but for wind speed spectra in324

the temporal domain. The same methodology as for the spatial spectra described in the325

Appendix was used, but for spectra in the frequency domain instead of the wavenumber326

domain. For both the SHORT and the LONG experiments, a separate spectrum for each327

grid point and for each 24 hour period was calculated. For the SHORT experiment, this was328

hours 12–35 of each simulation, while for the long experiments, it was hours 36–59, 60–83,329

84–107 etc. In this way, the same diurnal cycles were used for calculating the spectra of the330

long and short experiments. The time series were detrended and a Hanning window applied331
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prior to calculating the spectra, analogous to the methodology for the spatial transects. Five332

grid points from the domain boundary were discarded when calculating the average spectra.333

The spectra show the average variance as a function of frequency and timescale. The spectra334

were calculated in blocks of 1 day, so the longest resolved timescale is 24 hours, and since335

the model output was saved hourly, the shortest timescale displayed in the figures is 2 hours,336

although aliasing may introduce errors into the spectra at this timescale. The spatial and337

temporal spectra may be related using an approximate Taylor transformation, where waves338

at the minimum of the ratio between the spectrally nudged and short experiment have a339

wavelength of 280 km (from Fig. 6) and a timescale of about 8 hours (from Fig. 7), using340

a nominal wind speed of 10 m s−1. The spectrum of the wind speed from the spectrally341

nudged experiments transitions to be closer to that of the short experiment at the highest342

frequencies, but never fully recovers the amplitude of the short experiment. The temporal343

spectra cover timescales longer than 2 hours, which using a nominal wind speed of 10 m s−1,344

relates to wavelengths greater than around 72 km on the spatial spectra.345

Figure 8 shows the modeled and observed temporal wind speed spectra for the 11 valida-346

tion sites that were described in section 3. The model spectra are a subset of those that were347

averaged over the whole domain in Fig. 7, chosen as the closest model grid points to the348

observational sites and vertically interpolated to match the heights of the observations. The349

observed time series were split into 24 hour segments, and the resolution of the observations350

was hourly. Segments with a single missing observation were filled using linear interpolation,351

while segments with more than one missing observation were rejected. A Hanning window352

was applied to both the observed and modeled time series. All WRF experiments show a353

spectral deficit relative to the observations, and the same relative differences between the354

long experiments with nudging and the short experiment without nudging as in Fig. 7 are355

seen.356

Figure 9 shows the modeled mesoscale variance (Eq. 1) from the spectra in Fig. 8 for the357

5 km domain against observed mesoscale variance for the 11 sites. Interestingly, we see that358
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there is a positive correlation with r2 = 0.48–0.56 for the three experiments, indicating that359

while the variance in the mesoscale model is too low, it may be reflecting realistic physical360

processes that differ between land and sea areas — for example, cellular convection over361

the sea, day-time convection over the land or sea breezes. The correlation for the SHORT362

experiment (0.56) is higher than that of the LONG-G and LONG-S experiments which both363

have a correlation of 0.48.364

d. Maps of average temporal variability365

Figure 9 indicates that the mesoscale variance varies between 0.15 and 0.35 m2 s−2 in the366

WRF simulations, and between 0.15 and 0.45 m2 s−2 in the observations. To further examine367

this variation, Eq. 1 is applied to every 24 hour period at every grid point, such that the368

scalar mesoscale variability can be mapped over the whole domain.369

Figures 10 and 11 are maps of the time-averaged mesoscale wind speed variance for time370

scales of 2–8 hours, calculated for each 24 hour period of the year for the three experiments.371

The most obvious trend in all the plots is that the variance is higher over the sea than372

over the land at L2, consistent with Vincent et al. (2011) who showed higher mesoscale373

variability in flow from the sea than from the land at an offshore site in the North Sea west374

of Denmark, and Vincent et al. (2013) and Larsén et al. (2013) who studied the impact of375

cellular convection and gravity waves on the mesoscale part of the wind speed spectrum.376

This result is consistent with the observed spectra and mesoscale variance in Figs. 8 and 9.377

Furthermore, all experiments on both domains at L2 and L11 show reduced variance around378

the boundaries where the smoother fields are inherited from the boundaries.379

For the 15 km domain (Fig. 10), the SHORT experiment has mesoscale wind speed380

variance of up to 0.2 m2 s−2 over the sea at L2, and up to 0.3 m2 s−2 over most of the interior381

of the domain at L11. At L11, the mesoscale variance is suppressed to less than 0.1 m2 s−2 in382

most areas for the LONG-G experiment, and less than 0.2 m2 s−2 for the LONG-S experiment.383

This reduction in variance relative to the SHORT experiment is expected, since L11 is the384
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first level at which nudging is applied. On the other hand, the variance at L2 in the 15 km385

domain nudged experiments is also suppressed relative to the SHORT experiment, suggesting386

that the smoothing at L11 and above also propagates to the surface. Similar to L11, the387

mesoscale variance is suppressed more relative to that in the SHORT experiment in the388

LONG-G experiment than in the LONG-S experiment.389

For the 5 km domain (Fig. 11), there is little impact of grid or spectral nudging of the390

15 km domain at L2, but at L11 the variance is suppressed both over the Baltic Sea, where391

the short experiment has mesoscale variance of around 0.4 m2 s−2 and both experiments with392

nudging have variance as low as 0.3 m2 s−2, and over the land, particularly over the complex393

topography in Sweden. Despite there being no nudging applied to the 5 km experiments,394

the smoothing caused by the nudging of the 15 km domain has propagated into the inner395

nest.396

6. Discussion397

The wind speed spectra for the 15 km domain for the short experiment initialized every398

24 hours, and the long experiments initialized every 10 days with either grid or spectral399

nudging demonstrate that the nudging results in a smoothing of the simulated wind speeds.400

In particular, grid nudging causes suppressed variance at all wave numbers, including those401

beyond the effective resolution of the ERA-Interim reanalysis towards which the simulations402

are nudged. In contrast, spectral nudging results in a wind speed spectrum with suppressed403

variance at the wavenumbers for which the nudging is specified, which then transitions to a404

spectrum similar to that of the short experiment for higher wave numbers (Figs. 6 and 7).405

Both the spatial and temporal spectra for the 5 km domain transition to a shallower406

spectral slope in the mesoscale part of the spectrum than that in the sub-mesoscale range,407

with the transition occurring at around 320 km for the spatial spectra and around 14 hours408

for the temporal spectra (Figs. 6 and 7). However, neither spectrum attains the spectral409
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slope of −5
3

that is usually observed in the mesoscale range (e.g., Larsén et al. 2013; Nastrom410

and Gage 1985)). There is no noticeable difference between the 5 km simulations nested in411

the three alternative versions of the outer domain, either in the position of the transition412

or in any of the average spectral amplitudes. For the 15 km domain, the long simulations413

with grid and spectral nudging have less variance than the short simulations, and at the414

observation locations, all three experiments on both domains have less variance than the415

observed spectra.416

There are some important differences between the spatial and temporal spectra, particu-417

larly at L2, where an influence of the nudging is still seen in the 15 km domain in the temporal418

spectra but is almost absent in the spatial spectra. The apparent differential impact of the419

nudging on the spatial and temporal spectra may be due to the fact that the spectrum of the420

spatial wind field can be strongly influenced by stationary topographic effects that develop421

quickly in the model, such as the acceleration of the wind over hills, or adjustments of the422

wind profile due to surface roughness changes. The temporal spectra may be more subject423

to slowly developing mesoscale features, particularly over the sea, such as cellular convection424

and sea breeze circulations that could be more sensitive to nudging. This is an interesting425

difference between the spatial and temporal spectra, and points to a potential limitation of426

using spatial spectra to study the variability in mesoscale processes near the surface.427

The maps of mesoscale variance for the 15 km domain (Fig. 10) show that mesoscale428

variance is suppressed in the two experiments with nudging relative to the SHORT experi-429

ment. Averaged over the whole domain and whole simulation period, the mesoscale variance430

is reduced by 26% at L2 and 64% at L11 in the LONG-G experiments when compared with431

the SHORT experiment, and by 16% at L2 and 38% at L11 in the LONG-S experiments.432

Although the correct spatial distribution of mesoscale variance is unknown, the comparison433

with observations suggests that it is underestimated in all the experiments presented here.434

The differences in mesoscale variance between the short experiment and the long experi-435

ments with nudging suggest a smoothing effect of the nudging, even at the surface where the436

17



nudging is not applied directly. The difference is greater over the sea, suggesting that the437

nudging might inhibit the development of organized mesoscale structures such as convective438

rolls or cellular convection that are typically found over the water.439

The simulations on the 5 km domain do not have nudging applied directly, but inherit440

some impacts of the nudging from the 15 km domain. Despite the fact that the three 5441

km domain experiments are identically allowed to spin-up mesoscale variance in the domain442

interior, the maps of mesoscale variance for the 5 km simulations (Fig. 11) indicate that443

there are some persistent and systematic differences amongst the three experiments. Even444

though the actual boundary forcing is only applied to a frame 5 grid points wide around445

the edge of the domain, the region of suppressed variance persists for up to 200 km from446

the edge of the domain in the SHORT experiment, particularly at the western side which is447

the dominant inflow boundary. Vincent et al. (2013) suggested that open cellular convection448

was a dominant driver of mesoscale variability over the North Sea, and showed that cells449

took 5–6 hours to develop in idealized simulations with the WRF model. With a nominal450

wind speed of 10 m s−1, this time corresponds to a distance of 180 km, or around 3 degrees451

in longitude. This is consistent with the distance affected by reduced variance in all three452

experiments, a result that could inform decisions about choice of domain size, particularly453

where the boundary region is influenced by flow over large water bodies where mesoscale454

phenomena tend to dominate.455

The maps of integrated mesoscale temporal variance offer a unique perspective of showing456

the spatial patterns in how information is shared between simulations and their respective457

parent domains. In particular, the extent to which the variance is suppressed around the458

boundaries of the domains, and the difference in variance between the land and the sea would459

be impossible to see using spatial spectra alone.460

Figure 6 shows that the spectrum of the experiments with spectral nudging is nearly461

identical to that of the grid nudging spectrum at low wavenumbers, then transitions to a462

spectrum that is more similar to that of the short experiment at the highest wave numbers.463
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At the lowest wavenumbers, the spectrum of the short experiment is also close to that from464

the large scale forcing, but at the highest wavenumbers, the short spectrum reflects the465

fact that the mesoscale model has spun-up more variance than was in the large scale forcing.466

Around this transition region, there is a minimum in the ratio of the spectrum of the spectral467

nudged simulations to that of the short simulations. This reflects the large gap between the468

effective resolution of the ERA-Interim Reanalysis (which has an equivalent horizontal grid469

spacing of 50 km) and the outer domain with dx = 15 km. Ideally, this transition should take470

place in the part of the spectrum where the spectrum of the mesoscale models is still close to471

that of the large scale forcing. In our case, the spectral nudging is applied for wavenumbers472

longer than 250 km, which nearly matches the position of maximum deficit between the473

spectrum of the spectral nudged experiments and that of the short experiment: 250-300 km474

on the spatial spectra, or around 8 hours on the temporal spectra.475

Verification of the spatial patterns in mesoscale variance is challenging because of the476

of the limited availability of observations. However, the scatter plot of modeled against477

observed variance at 11 observational sites in Fig. 9, suggests that while the mesoscale478

variance is suppressed in all experiments, there may be some skill in the model that could be479

enhanced using statistical modeling to produce maps of realistic levels of mesoscale variance,480

at least up to the time scale of 2 hours considered here. Fig. 9 indicates that the pronounced481

differences between mesoscale variance over the land and over sea that are seen in the model482

are probably realistic. While it can be argued that turbulence is greater over the land than483

over the water due to the enhanced surface roughness, the spatial and temporal scales we are484

studying here are considerably longer than those of turbulence. In fact, it has been shown485

that greater hour-scale fluctuations may be found over the water. For example, Larsén et al.486

(2013) demonstrated that the power spectrum at the Horns Rev wind farm in the North Sea487

showed greater amplitude during cases of open cellular convection than the climatological488

mean, and Vincent et al. (2013) showed that such phenomena can introduce large hour-scale489

fluctuations into the wind speed. Mesoscale phenomena such as open and closed cellular490
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convection, convective rolls and gravity waves are unlikely to retain their regular, periodic491

structure when they are advected over the topography and various surface effects over the492

land, so may be a source of differential mesoscale variance between the water and the land.493

7. Conclusions494

In this study, spatial and temporal spectra were used to compare the mesoscale variability495

in regional climate simulations with daily initialization, grid nudging and spectral nudging.496

In agreement with other studies, it was found that grid nudging results in a smoothing497

at all wavelengths, while spectral nudging mainly affects longer wavelengths. Integrating498

temporal spectra over the wavenumbers of interest resolves the horizontal variation in the499

impacts of the boundary conditions and grid and spectral nudging. This approach showed500

that the nudging applied at L11 and above also causes smoothing at the surface. On an501

inner nest with no nudging, there was little impact of nudging the parent domain at the502

surface. At L11, reduced variance around the domain boundaries relative to the equivalent503

experiments nested in an outer domain without nudging suggested that some smoothing was504

inherited from the parent domain. This smoothing at the boundaries due to enforcement505

of the boundary conditions persisted for up to 200 km inward from the boundary dominant506

inflow boundary. The results indicated that when using spectral nudging in the external507

domain, the interior domain is able to generate more mesoscale variability in wind speed508

than when using grid nudging, even though the choice of nudging method has little effect on509

the mean wind speed as shown in Hahmann et al. (2014).510

Although nudging is usually used to improve the representation of the mean flow, it also511

has an impact on the amount of variance for wavelengths that are not resolved in the large512

scale forcing. For areas such as wind energy, the hour-scale variability could be important,513

either for the spread of the wind speed distribution which is required for calculating the514

annual energy production, or for assessing the nature of hour-scale power fluctuations which515
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may be correlated over a large area. Furthermore, there could be a small up-scale transfer516

impact, if mesoscale variability is suppressed and consequently impacts larger scales. We517

note that increased variance cannot necessarily be equated with improved skill, since we do518

not determine when (in the case of the average temporal spectra) or where (in the case of519

the average spatial spectra) the increased variability occurs.520

The analysis here was limited to single choice of nested domains. Interestingly, since521

the 5 km domain appeared to inherit reduced variance from the boundaries of the 15 km522

domain when grid or spectral nudging was applied, the positioning of the nests will influence523

the mesoscale variance in the inner domain. Further experiments are required to explore524

this aspect of the nudging. However, it may be more likely to see an adverse effect of the525

nudging if the boundaries of the nest are placed in regions that are particularly favorable for526

the development of mesoscale variability, such as in the North Sea region, where mesoscale527

phenomena such as cellular convection are frequently observed. The results here also relate to528

a single choice of nudging coefficient. The degree of smoothing and the impact on model bias529

has been shown to be related to the nudging coefficient (eg. Bowden et al. (2012), Bullock530

et al. (2014)), and the relationship between the nudging coefficient and the reduction in531

mesoscale variance is an interesting area for further study.532

The analysis of the spatial and temporal spectra reflected the same trends, but are not533

identical. This is partly because the spatial spectra are influenced by stationary topographic534

effects (since we consider the wind speed at an approximately constant height above ground535

level), and partly because the Taylor hypothesis will not apply in all cases at the wavelengths536

that we consider. For the spatial spectra, two-dimensional longitudinal spectra were used,537

but very similar results were obtained from the equivalent lateral spectra. The maps of538

mesoscale variability have applications beyond those used here, for example in studying539

the impact of observation based initialized strategies such as variational assimilation or540

observation nudging on the evolution and maintenance of mesoscale variability.541

The results suggest that running the model for 10-day periods without re-initialization542
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and with grid or spectral nudging applied to an outer nest is a reasonable configuration543

for nested regional climate simulations that is comparable to short runs with daily re-544

initialization discarding the first 12 h, although care should be taken near the edges of545

the domain. The long-reinitialization method saves considerable computer resources and546

results in time series that are more consistent with each other.547
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APPENDIX557

558

Calculation of the spatial power spectrum559

The coefficients of the discrete Fourier transform, A(k), were calculated according to560

A(k) =
N−1∑
j=0

(
U(j)− Ū

)
W (j)e−2kji/N , (A1)

where U is the wind speed along a transect of the domain, j is the index of the gridpoint,561

W is the window function, k is the wavenumber, i =
√
−1 and N is the length of U (e.g.562

Welch 1967). In our case, a Hanning window (e.g. Oppenheim and Schafer 2009, pp. 468)563

is used, defined as564

W (j) = 0.5

[
1− cos

(
2πj

N − 1

)]
. (A2)

The power spectrum, S(k) is then calculated as565

S(k) =
2

CwNfs
|A(k)|2, 0 ≤ k ≤ N

2
, (A3)

where Cw is a correction due to the window function (e.g. Welch 1967),566

Cw =
1

N

N−1∑
j=0

W 2(j), (A4)

and fs is the sampling resolution, in this case equal to 1
dx

, where dx is the horizontal grid567

spacing.568
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Table 1. Description of the experiments

Experiment name Simulation length Spin-up length Nudging type
SHORT (control) 36 hours 12 hours none
LONG-G 11 days 24 hours grid nudging
LONG-S 11 days 24 hours spectral nudging
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Table 2. Data availability for the 11 observation verification sites. C: Coastal sites. L:
Land sites. S: Offshore sites.

Station Name Data availability
(DD/MM/YYYY)

N included
days

% days
covered

Height
[m]

Høvsøre (HV) (C) 01/01/2006–31/12/2011 1906 87 40
Østerild W (OW) (L) 15/04/2010–11/09/2011 445 87 44
Ryningsnäs (RY) (L) 18/11/2010–31/12/2011 350 86 98
FINO1 (F1) (S) 01/01/2006–31/12/2011 1826 83 40
FINO2 (F2) (S) 01/08/2007–31/12/2011 1160 72 40
Lillegrund (LG) (S) 01/01/2009–31/12/2009 291 80 40
Horns Rev 1 (HR1) (S) 01/01/2004–15/12/2009 973 45 40
Horns Rev 2 (HR2) (S) 25/06/2009–19/08/2011 257 32 40
Tystofte (TY) (L) 30/05/2006–31/12/2011 1572 77 39

Östergarnsholm (OG)
(C)

28/06/2006–20/10/2009 745 62 30

Risø (RI) (L) 01/01/2006–31/12/2011 1461 67 44
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(a)

(b)

Fig. 1. Topography maps for the 15 km (a) and 5 km (b) domains. The boundaries of the
5 km nest are indicated as a black line in (a).
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Fig. 2. The 11 observation sites used for verification of the modeled temporal spectra.
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(a)

(b)

1
Fig. 3. Domain-average mesoscale variance (σ2

mk) for each hour after simulation initialization
for the (a) 15 km (outer) domain and the (b) 5 km (inner) domain. Simulations are averaged
over a 1-year period.
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Wind Speed [m s−1]

Wind Speed [m s−1]

1

Fig. 4. Mean wind speed at (a) L2 and (b) L11 for the 5 km (inner) domain of the SHORT
simulation for the 1-year test period.
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(b)
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1

Fig. 5. The ratio of the mesoscale standard deviation to the mean wind speed at (a) L2 and
(b) L11 for the 5 km (inner) domain of the SHORT simulation for the 1-year test period.
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(a) (b)

(c) (d)

Fig. 6. Spatial wind speed spectra for L2 (a) and L11 (b) averaged over a 1-year period.
Thick lines: SHORT experiment; Thin lines: LONG-G experiments; Dashed lines: LONG-S
experiments; Thick grey line: FDDA input. The dashed line indicates slopes of −3 and −5

3
.

Ratio of the spatial wind speed spectra of the LONG-G experiments (solid) and LONG-S
(dashed) to the wind speed spectra of the SHORT experiment for L2 (c) and L11 (d). The
red curves relate to the 5 km domain and the black curves relate to the 15 km domain.
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Fig. 7. As in Fig. 6, but for the temporal spectra.
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Fig. 8. Average temporal wind speed spectra for the 11 observation sites for the 5 km
domain (red) and the 15 km domain (black). The observed average spectrum is shown in
grey and the line styles as in Figs. 6 and 7.
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Fig. 9. Average modeled mesoscale variance of wind speed (5 km domain) against averaged
observed mesoscale variance for the 11 observation sites for the SHORT, LONG-G and
LONG-S experiments. Coastal, land and offshore sites are indicated by the green, black and
red markers respectively.
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Fig. 10. Mesoscale variance of wind speed ( m2 s−2) averaged over a 1-year period from
temporal spectra for time scales of 2–8 hours for the 15 km domain for the SHORT (a and
b), LONG-G (c and d) LONG-S (e and f) experiments at L2 (left) and L11 (right).
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Fig. 11. Same as figure 10, but for 5 km domain.
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