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ABSTRACT

This thesis presents new algorithms and data structures for handling data represented as
grammar-compressed strings. The compression scheme we focus on is the Straight Line
Program (SLP). In the following, S is an SLP of size n compressing a string S of size N .
We consider the following problems.

The q-gram profile of a compressed string. We present an algorithm for computing
the q-gram profile from a grammar-compressed string that runs in O(N − α) expected
time and uses O(n+ q+ kS,q) space. Here, N −α ≤ qn is the exact number of characters
decompressed by the algorithm and kS,q ≤ N − α is the number of distinct q-grams in S.
This simultaneously matches the current best known time bound and improves the best
known space bound. Our space bound is asymptotically optimal in the sense that any
algorithm storing the grammar and the q-gram profile must use Ω(n+ q+ kS,q) space. To
achieve this we introduce the q-gram graph that space-efficiently captures the structure
of a string with respect to its q-grams, and show how to construct it from a grammar.

Fingerprints and Longest Common Extensions in compressed strings. The Karp-
Rabin fingerprint of a string is a type of hash value that due to its strong properties has
been used in many string algorithms. In this paper we show how to construct a data
structure for a grammar-compressed string that answers fingerprint queries. That is,
given indices i and j, the answer to a query is the fingerprint of the substring S[i, j].
We present the first O(n) space data structures that answer fingerprint queries without
decompressing any characters. For SLPs we get O(logN) query time, and for Linear SLPs
(an SLP derivative that captures LZ78 compression and its variations) we get O(log logN)
query time. Hence, our data structures has the same time and space complexity as for
random access in SLPs. We utilize the fingerprint data structures to solve the longest
common extension problem in query time O(logN log `) and O(log ` log log `+ log logN)
for SLPs and Linear SLPs, respectively. Here, ` denotes the length of the LCE.

Subsequence matching in compressed strings and the tree color problem. We
present a new algorithm for subsequence matching in grammar-compressed strings that
uses O(n+ nσ

w ) space and O(n+ nσ
w +m logN logw ·occ) or O(n+ nσ

w logw+m logN ·occ)
time. Here w is the word size and occ is the number of occurrences of the pattern. Our
algorithm uses less space than previous algorithms and is also faster for occ = o( n

logN )

occurrences. The algorithm uses a new data structure that allows us to efficiently find
the next occurrence of a given character after a given position in a compressed string.
This data structure in turn is based on a new data structure for the tree color problem,
where the node colors are packed in bit strings.

Random access in compressed strings. The random access problem for compressed
strings is to build a data structure that efficiently supports accessing the character in
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iv ALGORITHMS AND DATA STRUCTURES FOR GRAMMAR-COMPRESSED STRINGS

position i of a string given in compressed form. We present a data structure using
O(n∆ log∆

N
n logN) bits of space that supports accessing position i of a grammar-

compressed string in O(log∆N) time for ∆ ≤ logO(1)N . The query time is optimal
for polynomially compressible strings, i.e., when n = O(N1−ε).

Bookmarking of compressed strings. We consider the problem of storing an SLP and
a set of positions {i1, . . . , ib} such that any substring of length l starting from one of the
positions can be decompressed in O(l) time. Our solution requires space

O

(
min

1≤τ≤log∗N

{
τ(n+ b) + min{n, b} log(τ)N

})
.



DANISH ABSTRACT

Denne afhandling præsenterer nye algoritmer og datastrukturer til at håndtere data
repræsenteret som en grammatik-komprimerede streng (tekst). Vi fokuserer på kompres-
sionsmetoden kaldet Straight Line Program (SLP). I det resterende af dette afsnit er S
en SLP af størrelse n der komprimerer en streng S af størrelse N . Vi studerer følgende
problemer.

Q-gram–profilen af komprimerede strenge. Vi præsenterer en algoritme til at beregne
q-gram profilen af en grammatik-komprimeret streng der kører i O(N − α) forventet
tid og bruger O(n + q + kS,q) plads. Her er N − α ≤ qn det præcise antal karakterer
som algoritmen dekomprimerer og kS,q ≤ N − α er antallet af unikke q-gram i S. Dette
svarer til tidsgrænsen for den nuværende hurtigste algoritme og forbedrer pladsforbruget.
Vores datastruktur er asymptotisk optimal idet enhver algoritme der både skal lagre
grammatikken og q-gram–profilen skal bruge Ω(n+ q + kS,q) plads. For at opnå dette
introducerer vi q-gram–grafen, som beskriver strukturen i en text i forhold til dens q-gram
på en pladseffektiv måde, og vi viser hvordan denne kan konstrueres fra en grammatik.

Fingeraftryk og længste fælles præfiks i komprimerede strenge. Et Karp-Rabin fin-
geraftryk af en streng er en slags hash-værdi som pga. sine stærke egenskaber anvendes
i mange strengalgoritmer. I denne artikel viser vi hvordan man konstruerer en datas-
truktur til at svare på fingeraftrykforespørgsler for komprimerede strenge. Dvs., givet
to positioner i og j, så er en svaret på en forespørgsel fingeraftrykket for delstrengen
S[i, j]. Vi præsenterer den første datastruktur der bruger O(n) plads og kan svare på
fingeraftrykforespørgsler uden at dekomprimere tegn fra strengen. For SLP’er tager en
forespørgsel O(logN) tid, og for Lineære SLP’er (en variant af en SLP som modellerer
LZ78 kompression og dens varianter) tager det O(log logN) tid. Disse forespørgselstider
svarer til tiden for random access i SLP’er. Vi udnytter fingerafstrykdatastrukturen til at
løse længeste fælles præfiks-problemet i O(logN log `) tid og O(log ` log log `+ log logN)
tid for henholdsvis SLP’er and Lineære SLP’er. Her er ` længden af svaret på en længste
fælles præfiks-forespørgsel.

Søgning efter delsekvenser i komprimerede strenge og træfarveproblemet. Vi
præsenterer en ny algoritme til søgning efter delsekvenser i grammatik-komprimerede
strenge som brugerO(n+nσ

w ) plads ogO(n+nσ
w +m logN logw·occ) ellerO(n+nσ

w logw+
m logN ·occ) tid. Her er w ordstørrelsen og occ er antallet af gange delsekvensen forekom-
mer. Algoritmen bruger mindre plads end tidligere algoritmer og er hurtigere end den
hidtil hurtigste når occ = o( n

logN ). Algoritmen er baseret på en ny datastruktur som
effektivt kan svare på en forespørgsel om på hvilken position et bestemt tegn forekommer
næste gang i en komprimeret streng. Denne datastruktur anvender en ny datastruktur til
en variant af træfarveproblemet hvor knudernes farver er pakket i bitstrenge.

v



vi ALGORITHMS AND DATA STRUCTURES FOR GRAMMAR-COMPRESSED STRINGS

Random access i komprimerede strenge. Random access problemet i komprimerede
strenge handler om at konstruere en datastruktur som understøtter tilgang til tegnet
der står på position i af den komprimerede streng. Vi præsenterer en datastruktur som
bruger O(n∆ log∆

N
n logN) bits plads og understøtter tilgang til position i i O(log∆N)

tid, hvor ∆ ≤ logO(1)N . Dette er optimalt for strenge der komprimerer polynomielt godt,
altså når n = O(N1−ε).

Bogmærker i komprimerede strenge. Vi ønsker at gemme en SLP og et sæt af posi-
tioner (bogmærker) {i1, . . . , ib} således at en delstreng af længde l startende i en af disse
positioner kan decomprimeres i O(l) tid. Vores datastruktur skal bruge følgende plads

O

(
min

1≤τ≤log∗N

{
τ(n+ b) + min{n, b} log(τ)N

})
.
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CHAPTER 1

INTRODUCTION

Textual databases for e.g. biological or web-data are growing rapidly, and it is often
only feasible to store the data in compressed form. However, compressing the data
comes at a price. Traditional algorithms for e.g. pattern matching requires all data to
be decompressed – a computationally demanding task. In this thesis we design data
structures for accessing and searching compressed data efficiently. The goal is to augment
a compressed file to enable answering queries about the data by adding as little data as
possible.

We consider some fundamental problems in string pattern matching and some new
problems arising from wanting to store the data in compressed form while supporting
fast access to certain parts of the data. We focus on grammar-compressed strings because
this provides a very general model that captures many other compression schemes.

The work in this thesis appears in the following papers.

• Compact q-Gram Profiling of Compressed Strings
Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz.
In Theoretical Computer Science, volume 550, 2014. An extended abstract ap-
peared in Proceedings of the 24th Symposium on Combinatorial Pattern Matching,
2013.

• Fingerprints in Compressed Strings
Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel Vildhøj,
and Søren Vind.
In Proceedings of the 13th Algorithms and Data Structures Symposium, 2013.

• Compressed Subsequence Matching and Packed Tree Coloring
Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz.
In Proceedings of the 25th Symposium on Combinatorial Pattern Matching, 2014.

• Optimal Time Random Access to Grammar-Compressed Strings in Small Space
Patrick Hagge Cording.
Unpublished. Will be merged with Belazzougui et al. [15] and submitted for
publication in 2015.

• Bookmarks in Grammar-Compressed Strings
Patrick Hagge Cording, Pawel Gawrychowski, and Oren Weimann.
Unpublished.

The rest of this chapter will largely cover the basic prerequites for the results presented
in this thesis. In Section 1.5 we introduce the problems studied along with an outline of
the solutions. Chapter 2 through to 6 present our solutions independently and in a form
that is unaltered from the way they appear when originally published.
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2 ALGORITHMS AND DATA STRUCTURES FOR GRAMMAR-COMPRESSED STRINGS

1.1 Model of Computation

We base our work on the word RAM model of computation. The most meticulous
description of this model is found in [56]. The word RAM is a unit-cost random-access
machine with a word size of w bits. We assume that we have access to inifinitely many
memory cells that are not initialized in any way. Each memory cell holds an integer value
in the range 0, . . . , 2w − 1.

We adopt the common assumption that w ≥ logN where N is the input size (in this
work, N is the size of the uncompressed string), i.e., a word can hold the address to any
element of the input.

The word RAM adopts basic operations from the RAM model such as load, store,
comparison, and jump statements. In addition we assume that we can perform basic
arithmetic operations on words such as addition, subtraction, multiplication, division,
left and right shifts, and standard bitwise operations (AND, OR, XOR, and NOT). We also
assume that the machine has access to an operation that can produce a random number
in some specified range.

All of the operations mentioned above are performed in unit time. The running time
of an algorithm is the number of unit-time operations it performs. Unless otherwise
noted, the space usage of an algorithm is measured in the number of distinct w-bit
memory cells the algorithm writes to.

1.2 Strings and Trees

The following is the general terminology for strings and trees used throughout the thesis.
A string S is a sequence of N characters drawn from an alphabet Σ of size σ. S[i, j] is

the substring starting in position i and ending in j, both positions inclusive. S is indexed
from 1 to N . We assume that the i-th character S[i] can be accessed in O(1) time, i.e.,
w = Ω(logN) and that σ = O(2w).

Trees are rooted and ordered unless otherwise noted. For a node v, we refer to the
edge adjacent to the parent of v as the ingoing edge of v and the edges going to v’s
children as outgoing edges of v. For binary trees, we denote the children of a node v by
left(v) and right(v). Both nodes and edges may be labelled.

1.3 Compression Schemes

The work presented in this thesis is largely focused on a compression scheme named
after its representation, namely, the Straight Line Program (SLP). The SLP is a widely
studied compression scheme because of its simplicity and it is known to model many
other compression schemes. We also describe the LZ77 [109] and LZ78 [110] schemes,
named after its inventors Lempel and Ziv in the years 1977 and 1978.

These three compression schemes are closely related. For instance, an LZ77 com-
pressed file can be converted to an SLP with logarithmic overhead and an LZ78 file can
be converted with only constant overhead. The conversion can be done in time nearly
linear in the compressed size of the files. Consequently, if we design a data structure for
the SLP of size f(n) we also have a data structure for LZ77 of size O(f(n log N

n )) and a
data structure for LZ78 of size O(f(n)). An overview of algorithms to convert between
files from different compression schemes is given in [54].

We now give the details of SLPs, LZ77, and LZ78 along with terminology used
throughout the thesis.

1.3.1 Straight Line Programs

A Straight Line Program (SLP) is a context-free grammar in Chomsky normal form that
generates one string only. A production rule either has two other rules on its righthand
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side if it is non-terminal or a character from Σ if it is terminal. Rules are unambiguous
and non-recursive.

For convenience we assume that the SLP is represented as a directed acyclic graph
(DAG). Nodes in the DAG are labeled with the names of production rules. Non-terminals
have out-degree 2 and a terminal has one outgoing edge to a node labelled by one
character. An example of an SLP is shown in Figure 1.1.

X7 = X6X5

X6 = X5X4

X5 = X4X3

X4 = X3X1

X3 = X1X2

X2 = b

X1 = a

a b

X1 X2

X4 X3

X6 X5

X7

a b a a b a b a a b a a b

X1 X2

X1 X1 X2 X1 X2

X1

X1 X2

X1 X1 X2

X3

X4 X3 X3 X3

X5 X4 X4 X3

X6 X5

X7

Figure 1.1: An SLP compressing the string abaababaabaab, its corresponding DAG, and its parse
tree.

Let S denote an SLP with n nodes compressing a string S of size N . The size of the
SLP will lie in the range logN ≤ n ≤ N . To decompress a string we start a top-down
left-to-right traversal starting from the node representing the start rule of the grammar.
The tree emerging from this is the parse tree of the SLP and the leaves on the tree (read
from left to right) is the uncompressed string. The height h of S is the longest path from
its root to a leaf in the parse tree of S.

If we want to support decompression of substrings without having to decompress the
entire string, then we need to add auxiliary data to the SLP. The simplest approach is
to store the size of the string generated by each node. This requires O(n) space and we
may decompress an arbitrary substring of length l in O(h+ l) time. Using a much more
elaborate data structure, this can be improved to O(logN + l) time while retaining O(n)
space [21]. Using non-linear space, decompression can be done in O(logN/ log logN + l)
time [15]. In some cases, the “kick-off” time can be avoided. We may decompress the
prefix or suffix of length l of a string generated by some node in O(l) time, provided that
we have already found said node [50].

Finding the smallest SLP representing a string is NP-hard [26]. However, several
approximation algorithms exist [26,61,62,88] and efficient practical algorithms have
been developed [73,85]. We do not assume that the SLP given as input for our algorithms
is optimal.

1.3.2 LZ77

The LZ77 factorization of a string S of size N is a sequence of factors f1, . . . , fz such that
these generate S when expanding them left to right. A factor has the form fk = (i, j, α),
where the string S[i, j] is a substring of the string obtained from expanding f1, . . . , fk−1

and α is a character. Some factors may expand to just α and will then have null values
instead of i and j. The LZ77 factorization defined here is not self-referential. In the
self-referential version of LZ77, a factor fk is allowed to refer to a substring that is a
concatenation of a suffix of f1, . . . , fk−1 and a prefix of itself. Since we at most double
the size of the string for every factor we add, the achievable compression for LZ77 is
logN ≤ z ≤ N . The following is an example of an LZ77 factorization of a string.
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(−,−, a)(−,−, b)(1, 1, a)(2, 3, b)(3, 6, a)(−,−, b)

Figure 1.2: The LZ77 factorization of the string abaababaabaab.

To decompress a string we process the factors from f1 to fz. When processing
fk = (i, j, α) we append S[i, j] to the string that we have already decompressed from
f1, . . . , fk−1 and then append α.

The greedy LZ77 parse maximizes the substring of f1, . . . , fk−1 referred to from fk,
and is known to produce the optimal LZ77 factorization [28,32,92] when measuring
the number of factors produced1. The optimal factorization may be found in O(N) time
given the suffix tree/array2 of S.

Given the LZ77 factorization of S we may build an SLP of size O(z log N
z ) for

S [88]. Hence, a data structure using f(n) space for SLPs is also a data structure
using O(f(z log N

z )) space for an LZ77 compressed file of size z. If we want to convert
an SLP to the LZ77 factorization, this can be done in O(poly(n)) time [54].

Unlike the SLP, LZ77 is used widely in data compression software in practice (often
combined with other methods and/or in derivative variants). For example, it is the basis
of the gzip, png, rar, and zip file formats.

1.3.3 LZ78

Much like LZ77, the LZ78 factorization is a sequence of factors f1, . . . , fz that generate S
when expanded left to right. However, in this scheme a factor has the form fk = (fi, α),
where 1 ≤ i < k and α is a character. As with LZ77, factors can have a null value
instead of fi and in this case only expand to one character. With LZ78 compression we
may achieve a compression in the range

√
N ≤ z ≤ N . The following shows the LZ78

factorization of a string.

(−, a)(−, b)(1, a)(2, a)(4, a)(5, b)

Figure 1.3: The LZ78 factorization of the string abaababaabaab.

LZ78 can be seen as a restricted version of LZ77 where the strings that are referred to
from factors are restricted to start and end in substrings that correspond to the expansion
of a single preceding factor. Contrary to LZ77, the LZ78 parse may be seen as a grammar,
and it converts to an SLP with less overhead. For each unique character we create a
terminal node with an edge to that character. For each factor fk = (fi, α) we create a
node vk with vi as its left child and the terminal node representing α as its right child.
Finally, we build a binary tree with the sequence v1, . . . , vz as leaves. The resulting SLP
has size O(z). Recent advances also show that we can convert a string compressed by an
SLP into its LZ78 factorization in almost linear time [12,13].

LZ78 is used in e.g. the gif file format among others.

1.4 Techniques

In this section we cover some of the core techniques that we rely on to design the
algorithms and data structures in this thesis.

1The greedy parsing strategy is no longer optimal when measuring the output in number of bits re-
quired [39].

2It is assumed for this chapter that the reader is familiar with the suffix tree or array. Otherwise, see
[36,55,80,103,106] or [67,77].
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1.4.1 Karp-Rabin Fingerprints

Karp-Rabin fingerprints [69] is a popular tool when designing string algorithms because
they can be stored in little space and can be used to quickly compare strings with a
small probability of error. A fingerprint function maps substrings of arbitrary length into
integer hash values. The idea originates from a pattern matching algorithm by Karp
and Rabin in 1987 and has since then been used in the design of many randomized
algorithms (see e.g., [7,10,29–31,37,49,64,87]). They play a crucial role in the first
two results of this thesis, described in Chapter 2 and Chapter 3.

Let S be a string, p a prime, and b a randomly chosen number. Then the Karp-Rabin
fingerprint φ(S) is

φ(S) =

|S|∑
k=1

s[k] · bk mod p

This type of fingerprint function has a range of properties that makes it ideal for use
in string algorithms. In particular:

• For two strings S1 and S2, if S1 = S2 then φ(S1) = φ(S2) with high probability. If
S1 6= S2 then φ(S1) 6= φ(S2).

• φ is a rolling function. That is, given φ(S[i, j]) we can compute φ(S[i+ 1, j + 1]) in
constant time.

• Given φ(S1) and φ(S2), we can compute φ(S1S2) in constant time. Similar opera-
tions are also possible in constant time.

Further details on how to chose the parameters and how the above operations are
implemented is given in the respective chapters where needed.

1.4.2 Decomposition of SLPs

A heavily used technique in the design of algorithms and data structures for trees is the
decomposition of trees into paths. Perhaps most notable is the heavy-path decomposi-
tion [57,90] that first appeared in the early 80s and since has been used in many results.
Here we will describe the generalization of tree decompositions to SLPs.

A path decomposition of a tree will typically select one outgoing edge for each node
based on some rule. A simple rule is to always select the leftmost outgoing edge. We
could also select the path going to the child spanning the largest subtree among the
children – the is known as the heavy-path decomposition. The selected edges will form a
set of disjoint paths. When doing the same thing for SLPs, the selected edges will form a
forest where the trees are rooted in the terminals of the SLP and grow upwards. Now
the problem of traversing the SLP is reduced to visiting and solving some problem on a
number of trees.

The left-path decomposition of SLPs was used implicitly in [50] to support backtrack-
ing on a path that is traversed by following a pointer from a node to its leftmost child.
Heavy-path decomposition of SLPs was first used in [21] as a core technique in a data
structure for random access in SLPs. We fix a heavy-path decomposition of an SLP as
follows. For each node with children u and w, select the edge to u as heavy if u generates
a string that is longer than the string generated by w, and the edge to w otherwise. On
any path from the root of the SLP to a leaf we visit at most logN of the trees emerging
from the heavy-path decomposition.

The heavy-path decomposition of SLPs will play a role in the data structures described
in Chapter 3, 4, and 6.
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1.4.3 Balancing SLPs

Alike trees, SLPs can be balanced in many ways. We say that an SLP is balanced if its
parse tree is balanced according to any definition that applies to trees. For example, an
SLP is substring-balanced if for every node with children v and u, the strings generated
by v and u have the same length (within a constant factor). It corresponds to the parse
tree being leaf-balanced. A balanced SLP typically provides a guarantee on its height
which is an advantage in algorithms that employ top-down traversals of the SLP. When
the SLP is balanced there are often very simply algorithms with bounds matching the
best known bounds for some problem. Balancing of the SLP will play an important role
in the result presented in Chapter 5.

Given an arbitrary, and possibly unbalanced SLP, the two most widely methods
([26,88]) for balancing the SLP are actually approximation algorithms for the smallest
grammar problem exerting the side effect that the resulting SLP is balanced. Common to
the two algorithms is that they produce an SLP of size O(z log N

z ), where z is the size of
the LZ77 parse of the input string3. The number of nodes in the smallest SLP of a string
is always greater than or equal to z, so if we use the approximation algorithms on a
string that is already compressed to an SLP of size n, the resulting balanced SLP has size
O(n log N

n ). The two algorithms differ in the balancing scheme that the resulting SLPs
adhere to. One produces a substring-balanced SLP and the other a height-balanced SLP.

We do not assume that the SLPs given as input to our algorithms are balanced.

1.4.4 Pattern Matching in SLPs

In string pattern matching the goal is to find and report all occurrences of a pattern string
of size m in a much larger string, often called the text. In compressed pattern matching
the text, or both the text and the pattern, are compressed. When both the text and the
pattern are compressed we call it fully-compressed pattern matching and when only the
text is compressed it is semi-compressed pattern matching.

Two heavily studied variations of pattern matching are approximate pattern matching
and the k-mismatch problem, where we allow up to k errors in an occurrence of the
pattern (see e.g. [8,84] for details on these problems).

We will now describe the basic algorithm for semi-compressed pattern matching in
an SLP. The method is interesting because it reduces the problem to pattern matching in
uncompressed strings and therefore also works for approximate pattern matching and
the k-mismatch problem if we plug in the known algorithms for these problems. With a
few exceptions, better algorithms do not exist for these problems on SLPs.

The source of the algorithm is uncertain to us. It might originate from [70] albeit in
a different form than presented here.

Consider a node v with children u and w in an SLP S. Let the relevant substring of v
be the suffix of length m− 1 of the string generated by u concatenated with the prefix of
length m− 1 of the string generated by w. It can be shown that the pattern occurs in the
string generated by S if and only if it occurs in at least one of the relevant substrings4.
Let S(v) be the string generated by v. We may compute the prefixes and suffixes of length
at most m− 1 as follows. For each terminal v generating the character c, let Pref(v) = c
and Suf(v) = c. For each internal node v = uw, the prefixes and suffixes are found as
follows.

3In a recent survey on SLPs by Lohrey [76], it is claimed that the algorithm by Rytter [88] also can be
used to produce a balanced SLP without approximating the smallest grammar and avoid producing the LZ77
factorization at that.

4Variations of this theorem is used in this thesis; see Lemma 2.3 on page 16 and Lemma 6.2 on page 55.
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Pref(v) =

{
Pref(u) if |u| ≥ m− 1

S(u)Pref(w)[1,m− |u| − 1] otherwise

Suf(v) =

{
Suf(w) if |w| ≥ m− 1

Suf(u)[|w|+ 1,m]S(w) otherwise

Computing tables with the prefixes and suffixes can be done in O(nm) time and space
and from these we may construct all relevant substrings. Then we run a linear time
pattern matching algorithm, such as the one by Knuth, Morris and Pratt [71], and all
occurrences of a pattern is found in O(nm) time.

Alternatively, the suffix and prefix of u and w for some node v = uw can be de-
compressed in O(m) time using the O(n)-space data structure of Gasieniec et al. [50].
Pattern matching still takes O(nm) time but the space is reduced to O(n+m).

To report the occurrences we need to add some bookkeeping and visit the nodes in a
certain order. The running time and space usage becomes O(nm+ occ), where occ is the
number of occurrences of the pattern.

To extend the method to approximate pattern matching or the k-mismatch problem
we modify the algorithm to decompress the prefixes and suffixes of length m − 1 + k
and apply the known algorithms accordingly. For approximate pattern matching we get
O(nmk) time if we for instance plug in the algorithm of Landau and Vishkin [72]. For k-
mismatch we get O(nm

√
k log k) or O(n(m+ k3) log k)) time by applying the algorithms

by Amir et al. [8].

1.5 Our Contributions

In this section we will introduce the problems and results of this thesis.

1.5.1 Chapter 2: Compact q-Gram Profiling of Compressed Strings

A q-gram is popular term in bioinformatics used to denote a substring of length q. The
q-gram profile of a string is a mapping from every q-gram to the number of occurrences
in the string. We show how to construct a data structure representing this mapping from
an SLP. The data structure supports queries for the number of occurrences in O(q) time
(and also support listing all q-gram occurring once or more). Methods for computing the
q-gram profile from an uncompressed string can be used if we apply the same reduction
as in Section 1.4.4, but the challenge is to use less space than what this approach offers.

Goto et al. [52, 53] were the first to present algorithms for computing the q-gram
profile of an SLP-compressed string. Their first algorithm uses O(qn) time and space
which was later improved to O(N − α) time and space. They show that N − α is an
asymptotic improvement over qn. Specifically, it is the number of characters sufficient
to decompress to capture every distinct q-gram in S. The expression depends on the
amount of redundancy captured by the SLP. It seems inevitable that we have to visit
every node once (and decompress some characters) to ensure that we have read all
distinct q-grams, so the drawback of Goto et al.’s algorithms is that the space usage also
depends on the quality of the compression.

We present a randomized algorithm for computing the q-gram profile. It runs in
O(N − α) time and uses O(n + q + kS,q) space, where kS,q is the number of distinct
q-grams in S. This improves the space usage over the algorithms by Goto et al. In our
solution, a specific q-gram does not appear more than once in the q-gram profile, even if
it occurs many times in S and this redundancy not is reflected by the SLP.

The algorithm works by first computing a subgraph of the De Bruijn graph containing
every distinct q-gram of S exactly once. This graph is then transformed to a set of strings
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represented by a trie and we compute the suffix tree of the set of strings. Augmented
with a little extra data, the suffix tree serves as the q-gram profile.

To efficiently compute the De Bruijn graph we use Karp-Rabin fingerprints. Con-
sequently, our algorithm has a positive probability of computing an incorrect q-gram
profile. We show how to transform the algorithm from a Monte-Carlo to a Las-Vegas type
randomized algorithm by verifying that the chosen fingerprint function is collision free
for all q-grams in O(N − α) time. We are to the best of our knowledge the first to show
how to do this using the suffix tree. To summarize, our algorithm employs fresh uses of
the old and well-known concepts of the De Bruijn graph, the suffix tree and Karp-Rabin
fingerprints to build the q-gram profile in optimal space.

Related work

Our work demonstrates how to utilize the SLP to extract relevant information from
the string without having to decompress more than the neccessary characters. Mining
characteristics of strings is useful in many settings. Related to this, it has been shown
how to compute all palindromes [79], and how to find the longest repeating substrings
and the most frequent substring [59] in SLPs. The closely related problem of finding
the frequencies of non-overlapping q-grams in an SLP-compressed string has also been
studied [51].

Further work and open problems

We have shown how to verify that a fingerprint function is collision-free for all substrings
of length q. In the next section we need to verify that it is collision-free for q = 2i for
i = 1, . . . , logN . Verifying that a function is collision-free seems to be an important
element in the design of randomized algorithms based on fingerprints, and remaining
question is how to do this fast in compressed space. We will resume this discussion in
the next section.

1.5.2 Chapter 3: Fingerprints in Compressed Strings

In this work we consider two problems. The first is to construct a data structure that
efficiently supports finding the Karp-Rabin fingerprint of any substring of a grammar-
compressed string. The second is to construct a data structure for the longest common
extension (LCE) problem on a compressed string. The LCE of two indices in S is
the length of the longest substring starting in these two indices. Or formally, given
i and j, the answer to a query is the length ` of the maximum substring such that
S[i, i+ `] = S[j, j + `].

To tackle the latter problem we take the approach of [91] where the LCE is computed
by doing an exponential search on ` using Karp-Rabin fingerprints to compare substrings.
To implement this, we develop a data structure for finding fingerprints in SLPs.

The LCE problem is fundamental in string matching, and efficient theoretical and
practical solutions have been developed for uncompressed strings[19,91]. We are the
first to present a dedicated solution for grammar-compressed strings. Other solutions
depend on data structures for fast decompression of substrings and require Ω(`) time
to compute the LCE. Our data structure supports finding the Karp-Rabin fingerprint of
any substring in O(logN) time. Using this data structure, we get a data structure that
anwers LCE queries in O(logN log `) time.

Since the data structure uses Karp-Rabin fingerprints there is a probability that the
answer is incorrect. However, we show how to verify that the selected fingerprint function
is collision-free for all the fingerprints that we may possibly use in our algorithm. We
may do this in O(N logN) time and O(N) space or alternatively O(N2/n logN) time
and O(n) space.
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In addition, we also show how SLPs model LZ78 and how to efficiently utilize the
structure of the resulting SLP to obtain faster algorithms for finding fingerprints and the
LCE problem.

The fingerprint data structure is an augmentation of the random access data structure
due to Bille et al. [21]. In addition to the data we need to store to facilitate random
access queries, we also store fingerprints that we can stitch together as we do a top-down
traversal.

Further work and open problems

The query time and space bounds of our fingerprint data structure matches the bounds
of the random access data structure of Bille et al. [21]. It seems unlikely that computing
the fingerprint of an arbitrary substring should be faster than accessing some character
of S. We refer to Section 1.5.4 where the random access problem is discussed.

With the addition of our fingerprint data structure, we now know how to support
finding fingerprints and random access queries in O(logN) time and O(n) space. For
uncompressed strings, both of these primitives are supported O(1) time and linear space.
It is also known how to perform LCE queries in uncompressed strings in O(1) time using
O(N) space, while in SLPs it requires O(log2N) time. Perhaps this indicates that there is
a faster algorithm for the LCE problem on compressed strings.

We saw in this and the previous section that the Karp-Rabin fingerprint is a powerful
tool for designing randomized algorithms. The caveat is that in order to make the
algorithm deterministic, we need to verify that the function is collision-free for some set
of substrings of S. In the previous section we saw how to efficiently verify the function
in compressed space, but in the present work it added an undesireable O(N2/n logN)
term to the construction time of the data structure. We leave it as an interesting open
question how to verify that fingerprint functions are collision-free in compressed space
and in general.

1.5.3 Chapter 4: Compressed Subsequence Matching and Packed Tree Coloring

The subsequence matching problem is to find and report all the minimal substrings of a
string that contains a given pattern as a subsequence. A match is minimal when it is no
longer a match if the substring containing it is shortened.

There is no upper limit on how big the window that contains a minimal occurrence
may be, so the reduction given in Section 1.4.4 does not apply. The size of the relevant
substrings simply cannot be bounded.

Previous results for subsequence matching in SLPs are summarized in Table 4.1
on page 38. They are based on dynamic programming and the fastest of these, due to
Yamamoto et al. [108], runs in O(nm+occ) time and space. The pattern of dependencies
in the dynamic program excludes the application of standard techniques to speed up the
algorithm or reduce the space usage.

Our algorithm for compressed subsequence matching uses O(n+ nσ
w ) space and runs

in

• O(n+ nσ
w +m logN logw · occ) time, or

• O(n+ nσ
w logw +m logN · occ) time.

With a straightforward trick we may limit the alphabet size to σ = m and are therefore
guaranteed that we asymptotically never use more space than the previously best known
algorithm. For occ = o( n

logN ) our algorithm also runs faster than the O(nm)-time
algorithm.

To overcome the challenges posed by the known methods we have based our algorithm
on the classic algorithm for subsequence matching in uncompressed strings, where the
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text is scanned left to right for occurrences of the pattern. Instead of scanning the full
uncompressed string we develop a data structure for SLPs that allow fast queries for the
next occurrence of a specific character. This data structure is able to answer queries of
the form “what is the index of the first occurrence of character c after position i?” It is
based on a heavy-path decomposition of the SLP that links the problem to finding the
first colored ancestor (FCA) in trees.

In the FCA problem the nodes of a tree has zero or more colors and the goal is to
construct a data structure that may answer queries of the form “what is the deepest node
with color c that is an ancestor of node v?”.

Muthukrishnan and Müller [83] invented a data structure for this problem that uses
O(t+D) space and has query time O(logw), where t is the size of the tree and D is the
accumulated number of colors given to nodes. Using this in our setting would yield poor
space bounds since the best bound on the number of colors is D = O(tσ) which sums to
O(nσ) when applied to all the trees in the heavy-path decomposition.

In this paper we present a FCA data structure that places itself between the state-
of-the-art solution and the trivial solution in terms of space usage. It is constructed
in a way that allows data to be packed into machine words, and thus use only O( tσw )
space. The query time is either O(1) or O(logw) depending on whether we want to
spend O( tσw logw) or O( tσw ) time on preprocessing, respectively.

Related work

Subsequence matching is just one of many variations of string pattern matching that
has attracted attention. Exact semi-compressed pattern matching in LZ77 and LZ78
was first studied by Farach and Thorup [37] and Amir et al. [6], and later improved by
Gawrychowski [46,48]. In SLPs, the problem can be solved in O(nm) time as described
in Section 1.4.4. Moreover, pattern matching is known to reduce to convolution; see
e.g. [55]. Tanaka et al. [96] show how to compute the convolution of a compressed
string and an uncompressed pattern in time O(nm logm).

Semi-compressed approximate pattern matching has also been studied. Kärkkäi-
nen et al. [66] and Bille et al. [18] give algorithms for approximate pattern matching in
LZ78 compressed strings with a running time of O(zmk + occ). By plugging in Landau
and Vishkins algorithm [72] to the reduction in Section 1.4.4 we get an algorithm with
running time O(nmk) for SLPs. Another approach is taken by Tiskin [100] who presents
an O(nm logm) time algorithm for approximate pattern matching.

Fully-compressed pattern matching seems related to the previously mentioned prob-
lems, but the solutions employ a very different fan of techniques; see e.g. [44,49,58,60,
70,75,82].

Claude and Navarro [27] and Gagie et al. [41] studied the problem of indexing a
string compressed by an SLP. The latter uses nearly linear space and supports finding all
occurrences of a pattern in O(m2 + occ · log log n) time.

Further work and open problems

At first it might seem that our algorithm can be modified to also work for approximate
pattern matching. However, it has been based specifically on the premise that all
characters of the pattern must occur in a match, which is rather limiting.

A glaringly open problem is to determine if the logw-factor that is shifted from query
time to preprocessing time in the FCA data structure can be removed. Preliminiary
studies indicate that it might be possible to trade it with a log∗ w-factor on both time
bounds [45].

Moreover, it is not unreasonable to believe that the logN of the query time can be
reduced. Our algorithms repeatedly queries the SLP about the first character c after
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position i in S, and this is clearly at least as hard as random access in the compressed
string (see the next section for a discussion on this). However, since it is in fact multiple
successive queries, we believe that a more clever solution exists.

1.5.4 Chapter 5: Optimal Time Random Access to Grammar-Compressed Strings in Small
Space

Accessing a specific position in a string is a fundamental primitive in algorithm design, and
we assume that this takes O(1) time in the RAM model when the string is uncompressed.
In a grammar-compressed string it is more complicated. We develop a data structure that
can answer the question “which character is in position i of the compressed string?”, also
known as random access in compressed strings.

Bille et al. [21] present a data structure using O(n) space that supports random
access in O(logN) time. Until this, random access was done by storing the lengths of
the strings generated by each node and use these for a top-down traversal in O(h) time.
Because of the the clean bounds given by Bille et al. (and possibly also due to the high
complexity of their data structure), it was widely believed that this was optimal until
Verbin and Yu [105] proved lower bounds saying otherwise. Verbin and Yu show two
results. First, if we allow O(poly(n)) space, then Ω(n1/2−ε) time is a lower bound for
random access in a grammar-compressed string with any compression ratio. Second, if
the size of the string in question is polynomial in the size of the grammar compressing
it, i.e., when n = O(N1−ε), then Ω(log n/ log log n) time is a lower bound for random
access using O(n · polylog(N)) space. This discovery inspired the search for a better
random access data structure.

We describe a data structure using O(nτ logτ
N
n logN) bits of space that supports

random access in O(logτ N). If we set τ = logO(1)N , the query time is optimal within a
constant factor for polynomially compressible strings as shown by Verbin and Yu.

Our data structure is constructed in two steps. First we balance the input grammar
and then we increase the degree of each node. A nearly identical data structure has
been presented independently by Belazzougui et al. [15]. We improve the space usage of
their data structure by a log τ factor. This improvement comes from employing a specific
algorithm to balance the SLP and using this in the analysis of the space usage.

Further work and open problems

For SLPs with arbitrary compression ratio there still is a gap between the lower bounds
and the upper bound achieved by our data structure. Specifically, we highlight the
following interesting open questions:

• Is there a data structure with optimal O(n1/2−ε) query time?

• Is there a linear space data structure with optimal query time O(logN/ log logN)
for polynomially compressible strings?

• Can we construct a data structure with a time-space product of n logN? That is, a
data structure that offers the same space and time bounds as Bille et al. [21] as one
extreme and optimal query time, i.e., O(logN/ log logN) time and O(n log logN)
words of space, as the other.

• Are there different lower bounds if we are limited to O(n) space?

As mentioned, our data structure relies on having to balance the input SLP as a first
step. It also remains an open question whether the SLP can be balanced (for any suitable
definition of balancing) while only adding o(log N

n ) nodes.
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1.5.5 Chapter 6: Bookmarks in Grammar-Compressed Strings

A bookmark in a compressed string is a position from which any substring of length l
starting in that position can be decompressed in O(l) time. For the bookmarking problem,
we are given an SLP and a set of b bookmarks (positions in the string) and the goal is to
build a data structure that supports decompression of substrings starting in a bookmark
in linear time.

Using existing techniques, it requires some time to iniate the decompression of an
arbitrary substring. If we use the data structure by Gasieniec et al. [50] the initiation time
is O(h). The random access data structures by Bille et al. [21] or Belazzougui et al. [15]
also support O(l)-time substring decompression after a O(logN)- or O(logN/ log logN)-
time random access query, respectively. For short substrings the “kick-off” time is
dominant.

Gagie et al. [42] present a bookmarking data structure that uses O(n + b log∗N)
space for balanced SLPs. If the SLP is not balanced the space usage of their data structure
becomes O(n log N

n + b log∗N), cf. Section 1.4.3.
We present a bookmarking data structure that uses space

O

(
min

1≤τ≤log∗N

{
τ(n+ b) + min{n, b} log(τ)N

})
.

The optimal value for τ depends on the relationship between the size of the SLP and
the number of bookmarks. If b = Θ(n) then the two terms balance when τ = log∗N
and the space becomes O(n log∗N). For other values of b, i.e., when b ≤ n

log(c)N
or

n log(c)N ≤ b, for some constant c, the terms balance for τ = c.
Our data structure is based on the observation that since we can decompress an

arbitrary substring of length l in O(logN + l) time, we only have to facilitate decompres-
sion of substrings of length less than logN from the bookmarks. It consists of τ copies
of the SLP. The i-th copy is restructured such that for any substring of length at most
log(i)N there exists two nodes that generate strings whose concatenation contains the
substring. Depending on the size of the substring we want to decompress, we start the
decompression from a certain bookmark from one of these τ nodes.

Further work and open problems

The space bound of our data structure may be stated as O((n+ b) log∗N). It is relevant
to investigate if the log∗N -factor is in fact necessary.
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Abstract

We consider the problem of computing the q-gram profile of a string S of size N
compressed by a context-free grammar with n production rules. We present an
algorithm that runs in O(N −α) expected time and uses O(n+ q+kS,q) space, where
N − α ≤ qn is the exact number of characters decompressed by the algorithm and
kS,q ≤ N − α is the number of distinct q-grams in S. This simultaneously matches
the current best known time bound and improves the best known space bound. Our
space bound is asymptotically optimal in the sense that any algorithm storing the
grammar and the q-gram profile must use Ω(n+ q + kS,q) space. To achieve this we
introduce the q-gram graph that space-efficiently captures the structure of a string
with respect to its q-grams, and show how to construct it from a grammar.

2.1 Introduction

Given a string S, the q-gram profile of S is a data structure that can answer substring
frequency queries for substrings of length q (q-grams) in O(q) time. We study the problem
of computing the q-gram profile from a string S of size N compressed by a context-free
grammar with n production rules. We assume that the model of computation is the
standard w-bit word RAM where each word is capable of storing a character of T , i.e.,
the characters of T are drawn from an alphabet {1, . . . , 2w}, and hence w ≥ logN [56].
The space complexities are measured by the number of words used.

The generalization of string algorithms to grammar-based compressed text is currently
an active area of research. Grammar-based compression is studied because it offers a
simple and strict setting and is capable of modelling many commonly used compression
schemes, such as those in the Lempel-Ziv family [109,110], with little expansion [26,88].
The problem of computing the q-gram profile has its applications in bioinformatics, data
mining, and machine learning [43,74,86]. All are fields where handling large amount of
data effectively is crucial. Also, the q-gram distance can be computed from the q-gram
profiles of two strings and used for filtering in string matching [23,63,93–95,102].

Recently the first dedicated solution to computing the q-gram profile from a grammar-
based compressed string was proposed by Goto et al. [53]. Their algorithm runs in O(qn)

13
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expected time1 and uses O(qn) space. This was later improved by the same authors [52]
to an algorithm that takes O(N − α) expected time and uses O(N − α) space, where N
is the size of the uncompressed string, and α is a parameter depending on how well S is
compressed with respect to its q-grams. N − α ≤ min(qn,N) is in fact the exact number
of characters decompressed by the algorithm in order to compute the q-gram profile,
meaning that the latter algorithm excels in avoiding decompressing the same character
more than once.

We present a Las Vegas-type randomized algorithm that gives Theorem 1.

Theorem 2.1 Let S be a string of size N compressed by a grammar of size n. The q-gram
profile can be computed in O(N − α) expected time and O(n+ q + kS,q) space, where
kS,q ≤ N − α is the number of distinct q-grams in S.

Hence, our algorithm simultaneously matches the current best known time bound and
improves the best known space bound. Our space bound is asymptotically optimal in
the sense that any algorithm storing the grammar and the q-gram profile must use
Ω(n+ q + kS,q) space.

A straightforward approach to computing the q-gram profile is to first decompress the
string and then use an algorithm for computing the profile from a string. For instance, we
could construct a compact trie of the q-grams using an algorithm similar to a suffix tree
construction algorithm as mentioned in [68], or use Rabin-Karp fingerprints to obtain
a randomized algorithm [102]. However, both approaches are impractical because the
time and space usage associated with a complete decompression of S is linear in its size
N = O(2n). To achieve our bounds we introduce the q-gram graph, a data structure
that space efficiently captures the structure of a string in terms of its q-grams, and show
how to compute the graph from a grammar. We then transform the graph to a suffix tree
containing the q-grams of S. Because our algorithm uses randomization to construct the
q-gram graph, the answer to a query may be incorrect. However, as a final step of our
algorithm, we show how to use the suffix tree to verify that the fingerprint function is
collision free and thereby obtain Theorem 2.1.

2.2 Preliminaries and Notation

2.2.1 Strings and Suffix Trees

Let S be a string of length |T | consisting of characters from the alphabet Σ. We use
S[i, j], 0 ≤ i ≤ j < |S|, to denote the substring starting in position i of S and ending in
position j of S. We define socc(s, S) to be the number of occurrences of the string s in S.

The suffix tree of S is a compact trie containing all suffixes of S. That is, it is a
trie containing the strings S[i, |T | − 1] for i = 0..|T | − 1. The suffix tree of S can be
constructed in O(|T |) time and uses O(|T |) space [36]. The generalized suffix tree is
the suffix tree for a set of strings. It can be constructed using time and space linear in
the sum of the lengths of the strings in the set. The set of strings may be compactly
represented as a common suffix tree (CS-tree). The CS-tree has the characters of the
strings on its edges, and the strings start in the leaves and end in the root. If two strings
have some suffix in common, the suffixes are merged to one path. In other words, the
CS-tree is a trie of the reversed strings, and is not to be confused with the suffix tree. For
CS-trees, the following is known.

Lemma 2.1 (Shibuya [89]) Given a set of strings represented by a CS-tree of size n
and comprised of characters from an alphabet of size O(nc), where c is a constant, the

1The bound in [53] is stated as worst-case since they assume alphabets of size O(Nc) for fast suffix sorting,
where c is a constant. We make no such assumptions and without it hashing can be used to obtain the same
bound in expectation.
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generalized suffix tree of the set of strings can be constructed in O(n) time using O(n)
space.

For a node v in a suffix tree, the string depth sd(v) is the sum of the lengths of the labels
on the edges from the root to v. We use parent(v) to get the parent of v, and nca(v, u) is
the nearest common ancestor of the nodes v and u.

2.2.2 Straight Line Programs

A Straight Line Program (SLP) is a context-free grammar in Chomsky normal form that
derives a single string S of length N over the alphabet Σ. In other words, an SLP S is a set
of n production rules of the form Xi = XlXr or Xi = a, where a is a character from the
alphabet Σ, and each rule is reachable from the start symbol Xn. Our algorithm assumes
without loss of generality that the compressed string given as input is compressed by an
SLP.

It is convenient to view an SLP as a directed acyclic graph (DAG) in which each node
represents a production rule. Consequently, nodes in the DAG have exactly two outgoing
edges. An example of an SLP is seen in Figure 2.2(a). When a string is decompressed we
get a derivation tree which corresponds to the depth-first traversal of the DAG.

We denote by tXi
the string derived from production rule Xi, so S = tXn

. For
convenience we say that |Xi| is the length of the string derived from Xi, and these values
can be computed in linear time in a bottom-up fashion using the following recursion. For
each Xi = XlXr in S,

|Xi| =

{
|Xl|+ |Xr| if Xi is a nonterminal,
1 otherwise.

Finally, we denote by occ(Xi) the number of times the production rule Xi occurs in
the derivation tree. We can compute the occurrences using the following linear time
and space algorithm due to Goto et al. [53]. Set occ(Xn) = 1 and occ(Xi) = 0 for
i = 1..n− 1. For each production rule of the form Xi = XlXr, in decreasing order of i,
we set occ(Xl) = occ(Xl) + occ(Xi) and similarly for occ(Xr).

2.2.3 Fingerprints

A Rabin-Karp fingerprint function φ takes a string as input and produces a value small
enough to let us determine with high probability whether two strings match in constant
time. Let s be a substring of S, c be some constant, 2N c+4 < p ≤ 4N c+4 be a prime, and
choose b ∈ Zp uniformly at random. Then,

φ(s) =

|s|∑
k=1

s[k] · bk mod p.

Lemma 2.2 (Rabin and Karp [69]) Let φ be defined as above. Then, for all 0 ≤ i, j ≤
|S| − q,

φ(S[i, i+ q]) = φ(S[j, j + q]) iff S[i, i+ q] = T [j, j + q] w.h.p.

We denote the case when S[i, i + q] 6= S[j, j + q] and φ(T [i, i + q]) = φ(T [j, j + q]) for
some i and j a collision, and say that φ is collision free on substrings of length q in S if
φ(S[i, i+ q]) = φ(S[j, j + q]) iff S[i, i+ q] = S[j, j + q] for all i and j, 0 ≤ i, j < |S| − q.

Besides Lemma 2.2, fingerprints exhibit the useful property that once we have
computed φ(S[i, i+ q]) we can compute the fingerprint φ(S[i+ 1, i+ q + 1]) in constant
time using the update function,

φ(S[i+ 1, i+ q + 1]) = φ(S[i, i+ q])/b− S[i] + S[i+ q + 1] · bq mod p.
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2.3 Key Concepts

2.3.1 Relevant Substrings

Consider a production rule Xi = XlXr that derives the string tXi
= tXl

tXr
. Assume that

we have counted the number of occurrences of q-grams in tXl
and tXr

separately. Then
the relevant substring rXi

is the smallest substring of tXi
that is necessary and sufficient

to process in order to detect and count q-grams that have not already been counted. In
other words, rXi is the substring that contains q-grams that start in tXl

and end in tXr as
shown in Figure 2.1. Formally, for a production rule Xi = XlXr, the relevant substring
is rXi

= tXi
[max(0, |Xl| − q + 1) : min(|Xl| + q − 2, |Xi| − 1)]. We want the relevant

substrings to contain at least one q-gram, so we say that a production rule Xi only has a
relevant substring if |Xi| ≥ q. The size of a relevant substring is q ≤ |rXi | ≤ 2(q − 1).

Xi

Xl Xr

tXi

tXl
tXr

rXi

2(q − 1)

Figure 2.1: The derivation tree for Xi = XlXr and the relevant susbtring rXi of Xi.

The concept of relevant substrings is the backbone of our algorithm because of the
following. If Xi occurs occ(Xi) times in the derivation tree for S, then the substring tXi

occurs at least occ(Xi) times in S. It follows that if a q-gram s occurs socc(s, tXi) times
in some substring tXi

then we know that it occurs at least socc(s, tXi
) · occ(Xi) times in

S. Using our description of relevant substrings we can rewrite the latter statement to
socc(s, tXi

) ·occ(Xi) = socc(s, tXl
) ·occ(Xl)+socc(s, tXr

) ·occ(Xr)+socc(s, rXi
) ·occ(Xi)

for the production rule Xi = XlXr. By applying this recursively to the root Xn of the
SLP we get the following lemma.

Lemma 2.3 (Goto et al. [52]) Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of
production rules that have a relevant substring, and let s be some q-gram. Then,

socc(s, T ) =
∑
Xi∈Sq

socc(s, rXi
) · occ(Xi).

2.3.2 Prefix and Suffix Decompression

The following Lemma states a result that is crucial to the algorithm presented in this
paper.

Lemma 2.4 (Ga̧sieniec et al. [50]) An SLP S of size n can be preprocessed in O(n)
time using O(n) extra space such that, given a pointer to a variable Xi in S, the prefix
and suffix of tXi

of length j can be decompressed in O(j) time.
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Ga̧sieniec et al. give a data structure that supports linear time decompression of prefixes,
but it is easy to extend the result to also hold for suffixes. Let s be some string and sR the
reversed string. If we reverse the prefix of length j of sR this corresponds to the suffix
of length j of s. To obtain an SLP for the reversed string we swap the two variables on
the right-hand side of each nonterminal production rule. The reversed SLP S ′ contains
n production rules and the transformation ensures that tXi′ = tRXi

for each production
rule Xi′ in S ′. A proof of this can be found in [79]. Producing the reversed SLP takes
linear time and in the process we create pointers from each variable to its corresponding
variable in the reversed SLP. After both SLP’s are preprocessed for linear time prefix
decompression, a query for the length-j suffix of tXi

is handled by following the pointer
from Xi to its counterpart in the reversed SLP, decompressing the prefix of length j of
this, and reversing the prefix.

2.3.3 The q-gram Graph

We now describe a data structure that we call the q-gram graph. It too will play an
important role in our algorithm. The q-gram graph Gq(S) captures the structure of a
string S in terms of its q-grams. In fact, it is a subgraph of the De Bruijn graph over Σq

with a few augmentations to give it some useful properties. We will show that its size is
linear in the number of distinct q-grams in S, and we give a randomized algorithm to
construct the graph in linear time in N .

A node in the graph represents a distinct (q − 1)-gram, and the label on the node
is the fingerprint of the respective (q − 1)-gram. The graph has a special node that
represents the first (q − 1)-gram of S and which we will denote the start node. Let x and
y be characters and α a string such that |α| = q− 2. There is an edge between two nodes
with labels φ(xα) and φ(αy) if xαy is a substring of S. The graph may contain self-loops.
Each edge has a label and a counter. The label of the edge {φ(xα), φ(αy)} is y, and its
counter indicates the number of times the substring xαy occurs in S. Since |xαy| = q
this data structure contains information about the frequencies of q-grams in S.

Lemma 2.5 The q-gram graph of S, Gq(S), has O(kS,q) nodes and O(kS,q) edges.

Proof Each node represents a distinct (q − 1)-gram and its outgoing edges have unique
labels. The combination of a node and an outgoing edge thus represents a distinct
q-gram, and therefore there can be at most kS,q edges in the graph. For every node
with label φ(S[i, i + q − 1]), i = 1..|S| − q − 1, the graph contains a node with label
φ(S[i+ 1, i+ q]) with an edge between the two. The graph is therefore connected and
has at most has at most kS,q + 1 nodes.

The graph can be constructed using the following online algorithm which takes a string
S, an integer q ≥ 2, and a fingerprint function φ as input. Let the start node of the graph
have the fingerprint φ(S[0, (q− 1)− 1]). Assume that we have built the graph Gq(S[0, k+
(q− 1)− 1]) and that we keep its nodes and edges in two dictionaries implemented using
hashing. We then compute the fingerprint φ(S[k + 1, k + (q − 1)]) for the (q − 1)-gram
starting in position k + 1 in S. Recall that since this is the next successive q-gram, this
computation takes constant time. If a node with label φ(S[k + 1, k + (q − 1)]) already
exists we check if there is an edge from φ(S[k, k+ (q− 1)− 1]) to φ(S[k+ 1, k+ (q− 1)]).
If such an edge exists we increment its counter by one. If it does not exist we create it
and set its counter to 1. If a node with label φ(S[k + 1, k + (q − 1)]) does not exist we
create it along with an edge from φ(S[k, k + (q − 1)− 1]) to it.

Lemma 2.6 For a string S of length N , the algorithm is a Monte Carlo-type randomized
algorithm that builds the q-gram graph Gq(S) in O(N) expected time.
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2.4 Algorithm

Our main algorithm is comprised of four steps: preparing the SLP, constructing the
q-gram graph from the SLP, turning it into a CS-tree, and computing the suffix tree of
the CS-tree. Ultimately the algorithm produces a suffix tree containing the reversed
q-grams of S, so to answer a query for a q-gram s we will have to lookup sR in the
suffix tree. Below we will describe the algorithm and we will show that it runs in O(qn)
expected time while using O(n+ q + kS,q) space; an improvement over the best known
algorithm in terms of space usage. The catch is that a frequency query to the resulting
data structure may yield incorrect results due to randomization. However, we show how
to turn the algorithm from a Monte Carlo to a Las Vegas-type randomized algorithm with
constant overhead. Finally, we show that by decompressing substrings of S in a specific
order, we can construct the q-gram graph by decompressing exactly the same number of
characters as decompressed by the best known algorithm.

The algorithm is as follows. Figure 2.2 shows an example of the data structures after
each step of the algorithm.

Preprocessing. As the first step of our algorithm we preprocess the SLP such that we
know the size of the string derived from a production rule, |Xi|, and the number of
occurrences in the derivation tree, occ(Xi). We also prepare the SLP for linear time prefix
and suffix decompressions using Lemma 2.4.

Computing the q-gram graph. In this step we construct the q-gram graph Gq(S) from
the SLP S. Initially we choose a suitable fingerprint function for the q-gram graph
construction algorithm and proceed as follows. For each production rule Xi = XlXr

in S, such that |Xi| ≥ q, we decompress its relevant substring rXi . Recall from the
definition of relevant substrings that rXi

is the concatenation of the q − 1 length suffix of
tXl

and the q − 1 length prefix of tXr
. If |Xl| ≤ q − 1 we decompress the entire string

tXl
, and similarly for tXr

. Given rXi
we compute the fingerprint of the first (q − 1)-gram,

φ(rXi
[0, (q − 1)− 1]), and find the node in Gq(S) with this fingerprint as its label. The

node is created if it does not exist. Now the construction of Gq(S) can continue from this
node, albeit with the following change to the construction algorithm. When incrementing
the counter of an edge we increment it by occ(Xi) instead of 1.

The q-gram graph now contains the information needed for the q-gram profile;
namely the frequencies of the q-grams in S. The purpose of the next two steps is to
restructure the graph to a data structure that supports frequency queries in O(q) time.

Transforming the q-gram graph to a CS-tree. The CS-tree that we want to create is
basically the depth-first tree of Gq(S) with the extension that all edges in Gq(S) are also
in the tree. We create it as follows. Let the start node of Gq(S) be the node whose label
match the fingerprint of the first q− 1 characters of S. Do a depth-first traversal of Gq(S)
starting from the start node. For a previously unvisited node, create a node in the CS-tree
with an incoming edge from its predecessor. When reaching a previously visited node,
create a new leaf in the CS-tree with an incoming edge from its predecessor. Labels on
nodes and edges are copied from their corresponding labels in Gq(S). We now create a
path of length q − 1 with the first q − 1 characters of S as labels on its edges. We set the
last node on this path to be the root of the depth-first tree. The first node on the path is
the root of the final CS-tree.

Computing the suffix tree of the CS-tree. Recall that a suffix in the CS-tree starts in
a node and ends in the root of the tree. Usually we store a pointer from a leaf in the
suffix tree to the node in the CS-tree from which the particular suffix starts. However,
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when we construct the suffix tree, we store the value of the counter of the first edge in
the suffix as well as the label of the first node on the path of the suffix.
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Figure 2.2: An SLP compressing the string ababbbab, and the data structures after each step of
the algorithm executed with q = 3.

Our algorithm resembles the one by Goto et al. [52]. The main difference between the
algorithms is that Goto et al. use the so-called neighbour graph to capture the q-grams
of S where we use the q-gram graph. This is also the key to the improvement in space
usage. If a q-gram occurs in several relevant substrings it will occur several times in the
neighbour graph but only once in the q-gram graph.

2.4.1 Correctness

Before showing that our algorithm is correct, we will prove some crucial properties of
the q-gram graph, the CS-tree, and the suffix tree of the CS-tree subsequent to their
construction in the algorithm.

Lemma 2.7 The q-gram graph Gq(S) constructed from the SLP is connected.

Proof Consider a production ruleXi = XlXr. If |Xi| ≤ 2(q−1) we decompress the entire
string tXi

and insert it into the q-gram graph, and we know that Gq(tXi
) is connected.

Assume that Gq(tXl
) and Gq(tXr

) are both connected. We know from Lemma 2.3 that if
we insert all the relevant substrings of the nodes reachable from Xl (including Xl) into
the graph, then it will contain all (q − 1)-grams of tXl

. Since the first q − 1 characters of
rXi is a suffix of tXl

, the subgraphs Gq(tXl
) and Gq(rXi) will have at least one node in

common, and similarly for Gq(tXr
) and Gq(rXi

). Therefore, Gq(Xi) is connected.
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Lemma 2.8 Assuming that we are given a fingerprint function φ that is collision free for
substrings of length q − 1 in S, then the CS-tree built by the algorithm contains each
distinct q-gram in S exactly once.

Proof Let v be a node with an outgoing edge e in Gq(S). The combination of the label
of v followed by the character on e is a distinct q-gram and occurs only once in Gq(S)
due to the way we construct it. There may be several paths of length q − 1 ending in v
spelling the same string s, and because the fingerprint function is deterministic, there
can not be a path spelling s ending in some other node. Since the depth-first traversal of
Gq(S) only visits e once, the resulting CS-tree will only contain the combination of the
labels on v and e once.

Lemma 2.9 Assuming that we are given a fingerprint function φ that is collision free for
substrings of length q − 1 in S, then any node v in the suffix tree of the CS-tree with
sd(v) ≥ q is a leaf.

Proof Each suffix of length ≥ q in the CS-tree has a distinct q length prefix (Lemma 2.8),
so therefore each node in the suffix tree with string depth ≥ q is a leaf.

We have now established the necessary properties to prove that our algorithm is correct.

Lemma 2.10 Assuming that we are given a fingerprint function φ that is collision free
on all substrings of length q − 1 of S, our algorithm correctly computes a q-gram profile
for S.

Proof Our algorithm inserts each relevant substring rXi exactly once, and if a q-gram s
occurs socc(s, rXi

) times in rXi
, the counter on the edge representing s is incremented

by exactly socc(s, rXi
) ·occ(Xi). From Lemma 2.3 we then know that when Gq(S) is fully

constructed, the counters on its edges correspond to the frequencies of the q-grams in
S. Since Gq(S) is connected (Lemma 2.7) the tree created by the algorithm is a CS-tree
that contains each q-gram from Gq(S) exactly once (Lemma 2.8). Finally, we know from
Lemma 2.9 that a node v with sd(v) ≥ q in the suffix tree is a leaf, so searching for a
string of length q in the suffix tree will yield a unique result and can be done in O(q)
time.

2.4.2 Analysis

Theorem 2.2 The algorithm runs in O(qn) expected time and uses O(n+q+kS,q) space.

Proof Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of production rules that have a
relevant substring. For each production rule Xi = XlXr ∈ Sq we decompress its relevant
substring of size |rXi

| and insert it into the q-gram graph. Since rXi
is comprised of the

suffix of tXl
and the prefix of tXr

we know from Lemma 2.4 that rXi
can be decompressed

in O(|rXi
|) time. Inserting rXi

into the q-gram graph can be done in O(|rXi
|) expected

time (Lemma 2.6). Since |Sq| = O(n) and q ≤ |rXi | ≤ 2(q − 1) this step of the algorithm
takes O(qn) time. When transforming the q-gram graph to a CS-tree we do one traversal
of the graph and add q − 1 nodes, so this step takes O(q + kS,q) time. Constructing the
suffix tree takes expected linear time in the size of the CS-tree if we hash the characters
of the alphabet to a polynomial range first (Lemma 2.1). Finally, observe that since
our algorithm is correct, it detects all q-grams in S and therefore there can be at most
kS,q ≤

∑
Xi∈Sq |rXi | = O(qn) distinct q-grams in S. Thus, the expected running time of

our algorithm is O(qn).
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In the preprocessing step of our algorithm we use O(n) space to store the size of the
derived substrings and the number of occurrences in the derivation tree as well as the
data structure needed for linear time prefix and suffix decompressions (Lemma 2.4). The
space used by the q-gram graph is O(kS,q), and when transforming it to a CS-tree we
add at most one new node per edge in the graph and extend it by q − 1 nodes and edges.
Thus, its size is O(q + kS,q). The CS-tree contains O(q + kS,q) suffixes, so the size of the
suffix tree is O(q + kS,q). In total our algorithm uses O(n+ q + kS,q) space.

2.4.3 Verifying the fingerprint function

Until now we have assumed that the fingerprints used as labels for the nodes in the
q-gram graph are collision free. In this section we describe an algorithm that verifies if
the chosen fingerprint function is collision free using the suffix tree resultant from our
algorithm.

If there is a collision among fingerprints, the q-gram graph construction algorithm
will add an edge such that there are two paths of length q − 1 ending in the same node
while spelling two different strings. This observation is formalized in the next lemma.

Lemma 2.11 For each node v in Gq(S), if every path of length q − 1 ending in v spell
the same string, then the fingerprint function used to construct Gq(S) is collision free for
all (q − 1)-grams in S.

Proof From the q-gram graph construction algorithm we know that we create a path
of characters in the same order as we read them from S. This means that every path of
length q− 1 ending in a node v represents the q− 1 characters generating the fingerprint
stored in v, regardless of what comes before those q − 1 characters. If all the paths of
length q − 1 ending in v spell the same string s, then we know that there is no other
substring s′ 6= s of length q − 1 in S that yields the fingerprint φ(s).

It is not straightforward to check Lemma 2.11 directly on the q-gram graph without
using too much time. However, the error introduced by a collision naturally propagates
to the CS-tree and the suffix tree of the CS-tree, and as we shall now see, the suffix tree
offers a clever way to check for collisions. First, recall that in a leaf v in the suffix tree,
we store the fingerprint of the reversed prefix of length q − 1 of the suffix ending in v.
Now consider the following property of the suffix tree.

Lemma 2.12 Let vφ be the fingerprint stored in a leaf v in the suffix tree. The fingerprint
function φ is collision free for (q − 1)-grams in S if vφ 6= uφ or sd(nca(v, u)) ≥ q − 1 for
all pairs v, u of leaves in the suffix tree.

Proof Consider the contrapositive statement: If φ is not collision free on S then there
exists some pair v, u for which vφ = uφ and sd(nca(v, u)) < q − 1. Assume that there is
a collision. Then at least two paths of length q − 1 spelling the same string end in the
same node in Gq(S). Regardless of the order of the nodes in the depth-first traversal of
Gq(S), the CS-tree will have two paths of length q − 1 spelling different strings and yet
starting in nodes storing the same fingerprint. Therefore, the suffix tree contains two
suffixes that differ by at least one character in their q − 1 length prefix while ending in
leaves storing the same fingerprint, which is what we want to show.

Checking if there exists a pair of leaves where vφ = uφ and sd(nca(v, u)) < q − 1
is straightforward. For each leaf we store a pointer to its ancestor w that satisfies
sd(w) ≥ q − 1 and sd(parent(w)) < q − 1. Then we visit each leaf v again and store vφ
in a dictionary along with the ancestor pointer just defined. If the dictionary already
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contains vφ and the ancestor pointer points to a different node, then it means that
vφ = uφ and sd(nca(v, u)) < q − 1 for some two leaves.

The algorithm does two passes of the suffix tree which has size O(q + kS,q). Using
a hashing scheme for the dictionary we obtain an algorithm that runs in O(q + kS,q)
expected time.

2.4.4 Eliminating redundant decompressions

We now present an alternative approach to constructing the q-gram graph from the SLP.
The resulting algorithm decompresses fewer characters.

In our first algorithm for constructing the q-gram graph we did not specify in which
order to insert the relevant substrings into the graph. For that reason we do not know
from which node to resume construction of the graph when inserting a new relevant
substring. So to determine the node to continue from, we need to compute the fingerprint
of the first (q−1)-gram of each relevant substring. In other words, the relevant substrings
are overlapping, and consequently some characters are decompressed more than once.
Our improved algorithm is based on the following observation. Consider a production rule
Xi = XlXr. If all relevant substrings of production rules reachable from Xl (including
rXl

) have been inserted into the graph, then we know that all q-grams in tXl
are in the

graph. Since the q − 1 length prefix of rXi is also a suffix of tXl
, then we know that a

node with the label φ(rXi [0, (q − 1)− 1]) is already in the graph. Hence, after inserting
all relevant substrings of production rules reachable from Xl we can proceed to insert
rXi

without having to decompress rXi
[0, (q − 1)− 1].

Algorithm. First we compute and store the size of the relevant substring |rXi
| =

min(q − 1, |Xl|) + min(q − 1, |Xr|) for each production rule Xi = XlXr in the subset
Sq = {Xi | Xi ∈ S and Xi ≥ q} of the production rules in the SLP. We maintain a linked
list L with a pointer to its head and tail, denoted by head(L) and tail(L). The list is
initially empty.

We now start decompressing S by traversing the SLP depth-first, left-to-right. When
following a pointer from Xi to a right child, and Xi ∈ Sq, we add Xi and the sentinel
value |rXi

| − (q − 1) to the back of L. As characters are decompressed they are fed to
the q-gram graph construction algorithm, and when a counter on an edge in Gq(S) is
incremented, we increment it by occ(head(L)). For each character we decompress, we
decrement the sentinel value for head(L), and if this value becomes 0 we remove the
head of the list and set head(L) to be the next production rule in the list. Note that when
L is empty in the beginning of the execution of the algorithm we do not alter any values.

When leaving a node Xi ∈ Sq we mark it as visited and store a pointer from Xi to the
node with label φ(tXi

[|Xi| − (q − 1), |Xi| − 1]) in Gq(S), i.e., the node labelled with the
suffix of length q − 1 of tXi

. To do this we need to consider two cases. Let Xi = XlXr. If
Xr ∈ Sq then we copy the pointer from Xr. If Xr /∈ Sq then φ(tXi [|Xi|− (q−1), |Xi|−1])
is the most recently visited node in Gq(S).

If we encounter a node that has been marked as visited, we decompress its prefix of
length q − 1 using the data structure of Lemma 2.4, set the node with label φ(tXi

[|Xi| −
(q − 1), |Xi| − 1]) to be the node from where construction of the q-gram graph should
continue, and do not proceed to visit its children nor add it to L.

Analysis. Assume without loss of generality that the algorithm is at a production rule
deriving the string tXi = tXl

tXr and all q-grams in tXl
are in Gq(S). There is always such

a rule, since we start by decompressing the string derived by the left child of the leftmost
rule in Sq. For each variable Xi added to L we decompress |rXi | − (q − 1) characters
before Xi is removed from the list. We only add a variable once to the list, so the total
number of characters decompressed is at most (q−1)+

∑
Xi∈Sq |rXi

|−(q−1) = O(N−α),
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and we hereby obtain our result from Theorem 2.1. This is fewer characters than our
first algorithm that require

∑
Xi∈Sq |rXi

| characters to be decompressed. Furthermore, it
is exactly the same number of characters decompressed by the fastest known algorithm
due to Goto et al. [52].
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Abstract

The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong
properties has been used in many string algorithms. In this paper we show how
to construct a data structure for a string S of size N compressed by a context-free
grammar of size n that answers fingerprint queries. That is, given indices i and j,
the answer to a query is the fingerprint of the substring S[i, j]. We present the first
O(n) space data structures that answer fingerprint queries without decompressing
any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for
Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we
get O(log logN) query time. Hence, our data structures has the same time and space
complexity as for random access in SLPs. We utilize the fingerprint data structures
to solve the longest common extension problem in query time O(logN log `) and
O(log ` log log `+ log logN) for SLPs and Linear SLPs, respectively. Here, ` denotes
the length of the LCE.

3.1 Introduction

Given a string S of size N and a Karp-Rabin fingerprint function φ, the answer to a
FINGERPRINT(i, j) query is the fingerprint φ(S[i, j]) of the substring S[i, j]. We consider
the problem of constructing a data structure that efficiently answers fingerprint queries
when the string is compressed by a context-free grammar of size n.

The fingerprint of a string is an alternative representation that is much shorter than
the string itself. By choosing the fingerprint function randomly at runtime it exhibits
strong guarantees for the probability of two different strings having different fingerprints.
Fingerprints were introduced by Karp and Rabin [69] and used to design a randomized
string matching algorithm. Since then, they have been used as a central tool to design
algorithms for a wide range of problems (see e.g., [7,10,29–31,37,49,64,87]).

A fingerprint requires constant space and it has the useful property that given the
fingerprints φ(S[1, i − 1]) and φ(S[1, j]), the fingerprint φ(S[i, j]) can be computed in
constant time. By storing the fingerprints φ(S[1, i]) for i = 1 . . . N a query can be
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answered in O(1) time. However, this data structure uses O(N) space which can be
exponential in n. Another approach is to use the data structure of Ga̧sieniec et al. [50]
which supports linear time decompression of a prefix or suffix of the string generated by
a node. To answer a query we find the deepest node that generates a string containing
S[i] and S[j] and decompress the appropriate suffix of its left child and prefix of its right
child. Consequently, the space usage is O(n) and the query time is O(h+ j − i), where h
is the height of the grammar. The O(h) time to find the correct node can be improved
to O(logN) using the data structure by Bille et al. [21] giving O(logN + j − i) time
for a FINGERPRINT(i, j) query. Note that the query time depends on the length of the
decompressed string which can be large. For the case of balanced grammars (by height
or weight) Gagie et al. [41] showed how to efficiently compute fingerprints for indexing
Lempel-Ziv compressed strings.

We present the first data structures that answer fingerprint queries on general gram-
mar compressed strings without decompressing any characters, and improve all of the
above time-space trade-offs. Assume without loss of generality that the compressed string
is given as a Straight Line Program (SLP). An SLP is a grammar in Chomsky normal form,
i.e., each nonterminal has exactly two children. A Linear SLP is an SLP where the root
is allowed to have more than two children, and for all other internal nodes, the right
child must be a leaf. Linear SLPs capture the LZ78 compression scheme [110] and its
variations. Our data structures give the following theorem.

Theorem 3.1 Let S be a string of length N compressed into an SLP S of size n. We can
construct data structures that support FINGERPRINT queries in:

(i) O(n) space and query time O(logN)

(ii) O(n) space and query time O(log logN) if S is a Linear SLP

Hence, we show a data structure for fingerprint queries that has the same time and space
complexity as for random access in SLPs.

Our fingerprint data structures are based on the idea that a random access query for i
produces a path from the root to a leaf labelled S[i]. The concatenation of the substrings
produced by the left children of the nodes on this path produce the prefix S[1, i]. We
store the fingerprints of the strings produced by each node and concatenate these to get
the fingerprint of the prefix instead. For Theorem 3.1(i), we combine this with the fast
random access data structure by Bille et al. [21]. For Linear SLPs we use the fact that
the production rules form a tree to do large jumps in the SLP in constant time using a
level ancestor data structure. Then a random access query is dominated by finding the
node that produces S[i] among the children of the root, which can be modelled as the
predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using finger
searching techniques. Specifically, a finger for position i in a Linear SLP is a pointer to
the child of the root that produces S[i].

Theorem 3.2 Let S be a string of length N compressed into an SLP S of size n. We can
construct an O(n) space data structure such that given a finger f for position i or j, we
can answer a FINGERPRINT(i, j) query in time O(log logD) where D = |i− j|.

Along the way we give a new and simple reduction for solving the finger predecessor
problem on integers using any predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we assume that
the model of computation is the RAM model with a word size of logN bits.
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3.1.1 Longest common extension in compressed strings

As an application we show how to efficiently solve the longest common extension problem
(LCE). Given two indices i, j in a string S, the answer to the LCE(i, j) query is the length
` of the maximum substring such that S[i, i + `] = S[j, j + `]. The compressed LCE
problem is to preprocess a compressed string to support LCE queries. On uncompressed
strings this is solvable in O(N) preprocessing time, O(N) space, and O(1) query time
with a nearest common ancestor data structure on the suffix tree for S [57]. Other
trade-offs are obtained by doing an exponential search over the fingerprints of strings
starting in i and j [20]. Using the exponential search in combination with the previously
mentioned methods for obtaining fingerprints without decompressing the entire string
we get O((h + `) log `) or O((logN + `) log `) time using O(n) space for an LCE query.
Using our new (finger) fingerprint data structures and the exponential search we obtain
Theorem 3.3.

Theorem 3.3 Let G be an SLP of size n that produces a string S of length N . The SLP G
can be preprocessed in O(N) time into a Monte Carlo data structure of size O(n) that
supports LCE queries on S in

(i) O(log ` logN) time

(ii) O(log ` log log `+ log logN) time if G is a Linear SLP.

Here ` denotes the LCE value and queries are answered correctly with high probability.
Moreover, a Las Vegas version of both data structures that always answers queries
correctly can be obtained with O(N2/n logN) preprocessing time with high probability.

Furthermore, when all the internal nodes in the Linear SLP are children of the root
(which is the case in LZ78), we show how to reduce the Las Vegas preprocessing time to
O(N logN log logN).

The following corollary follows immediately because an LZ77 compression [109]
consisting of n phrases can be transformed to an SLP with O(n log N

n ) production
rules [26,88].

Corollary 3.1 We can solve the LCE problem in O(n log N
n ) space and O(log ` logN)

query time for LZ77 compression.

Finally, the LZ78 compression can be modelled by a Linear SLP SL with constant overhead.
Consider an LZ78 compression with n phrases, denoted r1, . . . , rn. A terminal phrase
corresponds to a leaf in SL, and each phrase rj = (ri, a), i < j, corresponds to a node
v ∈ SL with ri corresponding to the left child of v and the right child of v being the leaf
corresponding to a. Therefore, we get the following corollary.

Corollary 3.2 We can solve the LCE problem in O(n) space and O(log ` log log ` +
log logN) query time for LZ78 compression.

3.2 Preliminaries

Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at index i
and let S[i, j] be the substring of S of length j − i + 1 from index i ≥ 1 to |S| ≥ j ≥ i,
both indices included.

A Straight Line Program (SLP) S is a context-free grammar in Chomsky normal form
that we represent as a node-labeled and ordered directed acyclic graph. Each leaf in S is
labelled with a character, and corresponds to a terminal grammar production rule. Each
internal node in S is labeled with a nonterminal rule from the grammar. The unique
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string S(v) of length size(v) = |S(v)| is produced by a depth-first left-to-right traversal
of v ∈ S and consist of the characters on the leafs in the order they are visited. We let
root(S) denote the root of S, and left(v) and right(v) denote the left and right child of
an internal node v ∈ S, respectively.

A Linear SLP SL is an SLP where we allow root(SL) to have more than two children.
All other internal nodes v ∈ SL have a leaf as right(v). Although similar, this is not the
same definition as given for the Relaxed SLP by Claude and Navarro [27]. The Linear
SLP is more restricted since the right child of any node (except the root) must be a leaf.
Any Linear SLP can be transformed into an SLP of at most double size by adding a new
rule for each child of the root.

We extend the classic heavy path decomposition of Harel and Tarjan [57] to SLPs
as in [21]. For each node v ∈ S, we select one edge from v to a child with maximum
size and call it the heavy edge. The remaining edges are light edges. Observe that
size(u) ≤ size(v)/2 if v is a parent of u and the edge connecting them is light. Thus, the
number of light edges on any path from the root to a leaf is at most O(logN). A heavy
path is a path where all edges are heavy. The heavy path of a node v, denoted H(v), is
the unique path of heavy edges starting at v. Since all nodes only have a single outgoing
heavy edge, the heavy path H(v) and its leaf leaf (H(v)), is well-defined for each node
v ∈ S.

A predecessor data structure supports predecessor and successor queries on a set
R ⊆ U = {0, . . . , N − 1} of n integers from a universe U of size N . The answer to
a predecessor query PRED(q) is the largest integer r− ∈ R such that r− ≤ q, while the
answer to a successor query SUCC(q) is the smallest integer r+ ∈ R such that r+ ≥ q.
There exist predecessor data structures achieving a query time of O(log logN) using
space O(n) [81,104,107].

Given a rooted tree T with n vertices, we let depth(v) denote the length of the path
from the root of T to a node v ∈ T . A level ancestor data structure on T supports
level ancestor queries LA(v, i), asking for the ancestor u of v ∈ T such that depth(u) =
depth(v) − i. There is a level ancestor data structure answering queries in O(1) time
using O(n) space [35] (see also [2,16,17]).

3.2.1 Fingerprinting

The Karp-Rabin fingerprint [69] of a string x is defined as φ(x) =
∑|x|
i=1 x[i] · ci mod p,

where c is a randomly chosen positive integer, and 2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-
Rabin fingerprints guarantee that given two strings x and y, if x = y then φ(x) = φ(y).
Furthermore, if x 6= y, then with high probability φ(x) 6= φ(y). Fingerprints can be
composed and subtracted as follows.

Lemma 3.1 Let x = yz be a string decomposable into a prefix y and suffix z. Let N
be the maximum length of x, c be a random integer and 2N c+4 ≤ p ≤ 4N c+4 be a
prime. Given any two of the Karp-Rabin fingerprints φ(x), φ(y) and φ(z), it is possible to
calculate the remaining fingerprint in constant time as follows:

φ(x) = φ(y)⊕ φ(z) = φ(y) + c|y| · φ(z) mod p

φ(y) = φ(x)	s φ(z) = φ(x)− c|x|

c|z|
· φ(z) mod p

φ(z) = φ(x)	p φ(y) =
φ(x)− φ(y)

c|y|
mod p

In order to calculate the fingerprints of Lemma 3.1 in constant time, each fingerprint
for a string x must also store the associated exponent c|x| mod p, and we will assume
this is always the case. Observe that a fingerprint for any substring φ(S[i, j]) of a string
can be calculated by subtracting the two fingerprints for the prefixes φ(S[1, i− 1]) and
φ(S[1, j]). Hence, we will only show how to find fingerprints for prefixes in this paper.
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3.3 Basic fingerprint queries in SLPs

We now describe a simple data structure for answering FINGERPRINT(1, i) queries for a
string S compressed into a SLP S in time O(h), where h is the height of the parse tree
for S. This method does not unpack the string to obtain the fingerprint, instead the
fingerprint is generated by traversing S.

The data structure stores size(v) and the fingerprint φ(S(v)) of the string produced
by each node v ∈ S. To compose the fingerprint f = φ(S[1, i]) we start from the root
of S and do the following. Let v′ denote the currently visited node, and let p = 0 be a
variable denoting the size the concatenation of strings produced by left children of visited
nodes. We follow an edge to the right child of v′ if p + size(left(v′)) < i, and follow a
left edge otherwise. If following a right edge, update f = f ⊕ φ(S(left(v′))) such that
the fingerprint of the full string generated by the left child of v′ is added to f , and set
p = p+ size(left(v′)). When following a left edge, f and p remains unchanged. When a
leaf is reached, let f = f ⊕ φ(S(v′)) to include the fingerprint of the terminal character.
Aside from the concatenation of fingerprints for substrings, this procedure resembles a
random access query for the character in position i of S.

The procedure correctly composes f = φ(S[1, i]) because the order in which the
fingerprints for the substrings are added to f is identical to the order in which the
substrings are decompressed when decompressing S[1, i].

Since the fingerprint composition takes constant time per addition, the time spent
generating a fingerprint using this method is bounded by the height of the parse tree for
S[i], denoted O(h). Only constant additional space is spent for each node in S, so the
space usage is O(n).

3.4 Faster fingerprints in SLPs

Using the data structure of Bille et al. [21] to perform random access queries allows for
a faster way to answer FINGERPRINT(1, i) queries.

Lemma 3.2 ([21]) Let S be a string of length N compressed into a SLP S of size n.
Given a node v ∈ S, we can support random access in S(v) in O(log(size(v))) time, at
the same time reporting the sequence of heavy paths and their entry- and exit points in
the corresponding depth-first traversal of S(v).

The main idea is to compose the final fingerprint from substring fingerprints by perform-
ing a constant number of fingerprint additions per heavy path visited.

In order to describe the data structure, we will use the following notation. Let V (v)
be the left children of the nodes in H(v) where the heavy path was extended to the right
child, ordered by increasing depth. The order of nodes in V (v) is equal to the sequence in
which they occur when decompressing S(v), so the concatenation of the strings produced
by nodes in V (v) yields the prefix P (v) = S(v)[1, L(v)], where L(v) =

∑
u∈V (v) size(u).

Observe that P (u) is a suffix of P (v) if u ∈ H(v). See Figure 3.1 for the relationship
between u, v and the defined strings.

Let each node v ∈ S store its unique outgoing heavy path H(v), the length L(v),
size(v), and the fingerprints φ(P (v)) and φ(S(v)). By forming heavy path trees of total
size O(n) as in [21], we can store H(v) as a pointer to a node in a heavy path tree
(instead of each node storing the full sequence).

The fingerprint f = φ(S[1, i]) is composed from the sequence of heavy paths visited
when performing a single random access query for S[i] using Lemma 3.2. Instead of
adding all left-children of the path towards S[i] to f individually, we show how to add
all left-children hanging from each visited heavy path in constant time per heavy path.
Thus, the time taken to compose f is O(logN).
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S(u) S(a2) S(b1)

S(v) S(a1) S(a2) S(b1) S(b2)

P (v) S(a1) S(a2)

P (u) S(a2)

a1

a2

a3

b2

b1

v

u

V (v) = {a1, a2, a3} leaf (H(v))

Figure 3.1: Figure showing how S(v) and its prefix P (v) is composed of substrings generated
by the left children a1, a2, a3 and right children b1, b2 of the heavy path H(v). Also
illustrates how this relates to S(u) and P (u) for a node u ∈ H(v).

More precisely, for the pair of entry- and exit-nodes v, u on each heavy path H
traversed from the root to S[i], we set f = f ⊕ (φ(P (v))	s φ(P (u)) (which is allowed
because P (u) is a suffix of P (v)). If we leave u by following a right-pointer, we addition-
ally set f = f ⊕φ(S(left(u))). If u is a leaf, set f = f ⊕φ(S(u)) to include the fingerprint
of the terminal character.

Remember that P (v) is exactly the string generated from v along H, produced by the
left children of nodes on H where the heavy path was extended to the right child. Thus,
this method corresponds exactly to adding the fingerprint for the substrings generated by
all left children of nodes on H between the entry- and exit-nodes in depth-first order, and
the argument for correctness from the slower fingerprint generation also applies here.

Since the fingerprint composition takes constant time per addition, the time spent
generating a fingerprint using this method is bounded by the number of heavy paths
traversed, which is O(logN). Only constant additional space is spent for each node in S,
so the space usage is O(n). This concludes the proof of Theorem 3.1(i).

3.5 Faster fingerprints in Linear SLPs

In this section we show how to quickly answer FINGERPRINT(1, i) queries on a Linear
SLP SL. In the following we denote the sequence of k children of root(SL) from left to
right by r1, . . . , rk. Also, let R(j) =

∑j
m=1 size(rm) for j = 0, . . . , k. That is, R(j) is the

length of the prefix of S produced by SL including rj (and R(0) is the empty prefix).
We also define the dictionary tree F over SL as follows. Each node v ∈ SL corresponds

to a single vertex vF ∈ F . There is an edge (uF , vF ) labeled c if u = left(v) and
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r1 r2 r3 r4 r5 r6

a a ab b b
(a) Linear SLP.

r1 r2

r3r4

r5 r6

a b

b

a

a

b

(b) Dictionary tree.

Figure 3.2: A Linear SLP compressing the string abbaabbaabab and the dictionary tree obtained
from the Linear SLP.

c = S(right(v)). If v is a leaf, there is an edge (root(F ), vF ) labeled S(v). That is, a left
child edge of v ∈ SL is converted to a parent edge of vF ∈ F labeled like the right child
leaf of v. Note that for any node v ∈ SL except the root, producing S(v) is equivalent
to following edges and reporting edge labels on the path from root(F ) to vF . Thus, the
prefix of length a of S(v) may be produced by reporting the edge labels on the path from
root(F ) until reaching the ancestor of vF at depth a.

The data structure stores a predecessor data structure over the prefix lengths R(j)
and the associated node rj and fingerprint φ(S[1, R(j)]) for j = 0, . . . , k. We also have a
doubly linked list of all rj ’s with bidirectional pointers to the predecessor data structure
and SL. We store the dictionary tree F over SL, augment it with a level ancestor data
structure, and add bidirectional pointers between v ∈ SL and vF ∈ F . Finally, for each
node v ∈ SL, we store the fingerprint of the string it produces, φ(S(v)).

A query FINGERPRINT(1, i) is answered as follows. Let R(m) be the predecessor of
i among R(0), R(1), . . . , R(k). Compose the answer to FINGERPRINT(1, i) from the two
fingerprints φ(S[1, R(m)]) ⊕ φ(S[R(m) + 1, i]). The first fingerprint φ(S[1, R(m)]) is
stored in the data structure and the second fingerprint φ(S[R(m) + 1, i]) can be found
as follows. Observe that S[R(m) + 1, i] is fully generated by rm+1 and hence a prefix of
S(rm+1) of length i−R(m). We can get rm+1 in constant time from rm using the doubly
linked list. We use a level ancestor query uF = LA(rFm+1, i − R(m)) to determine the
ancestor of rFm+1 at depth i − R(m), corresponding to a prefix of rm+1 of the correct
length. From uF we can find φ(S(u)) = φ(S[R(m) + 1, i]).

It takes constant time to find φ(S[R(m) + 1, i]) using a single level ancestor query
and following pointers. Thus, the time to answer a query is bounded by the time spent
determining φ(S[1, R(m)]), which requires a predecessor query among k elements (i.e.
the number of children of root(SL)) from a universe of size N . The data structure uses
O(n) space, as there is a bijection between nodes in SL and vertices in F , and we only
spend constant additional space per node in SL and vertex in F . This concludes the
proof of Theorem 3.1(ii).

3.6 Finger fingerprints in Linear SLPs

The O(log logN) running time of a FINGERPRINT(1, i) query is dominated by having to
find the predecessor R(m) of i among R(0), R(1), . . . , R(k). Given R(m) the rest of the
query takes constant time. In the following, we show how to improve the running time
of a FINGERPRINT(1, i) query to O(log log |j − i|) given a finger for position j. Recall that
a finger f for a position j is a pointer to the node rm producing S[j]. To achieve this, we
present a simple linear space finger predecessor data structure that is interchangeable
with any other predecessor data structure.
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3.6.1 Finger Predecessor

Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of size N . Given a
finger f ∈ R and a query point q ∈ U , the finger predecessor problem is to answer finger
predecessor or successor queries in time depending on the universe distance D = |f − q|
from the finger to the query point. Belazzougui et al. [14] present a succinct solution for
solving the finger predecessor problem relying on a modification of z-fast tries. Other
previous work present dynamic finger search trees on the word RAM [9,65]. Here, we
use a simple reduction for solving the finger predecessor problem using any predecessor
data structure as a black box.

Lemma 3.3 Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of
size N . Given a predecessor data structure with query time t(N,n) using s(N,n) space,
we can solve the finger predecessor problem in worst case time O(t(D,n)) using space
O(s(N, n

logN ) logN).

Proof Construct a complete balanced binary search tree T over the universe U . The
leaves of T represent the integers in U , and we say that a vertex span the range of U
represented by the leaves in its subtree. Mark the leaves of T representing the integers in
R. We remove all vertices in T where the subtree contains no marked vertices. Observe
that a vertex at height j span a universe range of size O(2j). We augment T with
a level ancestor data structure answering queries in constant time. Finally, left- and
right-neighbour pointers are added for all nodes in T .

Each internal node v ∈ T at height j store an instance of the given predecessor data
structure for the set of marked leaves in the subtree of v. The size of the universe for the
predecessor data structure equals the span of the vertex and is O(2j)1.

Given a finger f ∈ R and a query point q ∈ U , we will now describe how to find
both SUCC(q) and PRED(q) when q < f . The case q > f is symmetric. Observe that f
corresponds to a leaf in T , denoted fl. We answer a query by determining the ancestor
v of fl at height h = dlog(|f − q|)e and its left neighbour vL (if it exists). We query for
SUCC(q) in the predecessor data structures of both v and vL, finding at least one leaf in
T (since v spans f and q < f). We return the leaf representing the smallest result as
SUCC(q) and its left neighbour in T as PRED(q).

Observe that the predecessor data structures in v and vL each span a universe of
size O(2h) = O(|f − q|) = O(D). All other operations performed take constant time.
Thus, for a predecessor data structure with query time t(N,n), we can answer finger
predecessor queries in time O(t(D,n)).

The height of T is O(logN), and there are O(n logN) vertices in T (since vertices
spanning no elements from R are removed). Each element from R is stored in O(logN)
predecessor data structures. Hence, given a predecessor data structure with space usage
s(N,n), the total space usage of the data structure is O(s(N,n) logN).

We reduce the size of the data structure by reducing the number of elements it stores
to O( n

logN ). This is done by partitioning R into O( n
logN ) sets of consecutive elements Ri

of size O(logN). We choose the largest integer in each Ri set as the representative gi for
that set, and store that in the data structure described above. We store the integers in
set Ri in an atomic heap [40,56] capable of answering predecessor queries in O(1) time
and linear space for a set of size O(logN). Each element in R keep a pointer to the set
Ri it belongs to, and each set left- and right-neighbour pointers.

Given a finger f ∈ R and a query point q ∈ U , we describe how to determine PRED(q)
and SUCC(q) when q < f . The case q > f is symmetric. We first determine the closest
representatives gl and gr on the left and right of f , respectively. Assuming q < gl, we

1The integers stored by the data structure may be shifted by some constant k · 2j for a vertex at height j,
but we can shift all queries by the same constant and thus the size of the universe is 2j .
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proceed as before using gl as the finger into T and query point q. This gives p = PRED(q)
and s = SUCC(q) among the representatives. If gl is undefined or gl < q < f ≤ gr, we
select p = gl and s = gr. To produce the final answers, we perform at most 4 queries in
the atomic heaps that p and s are representatives for.

All queries in the atomic heaps take constant time, and we can find gl and gr in
constant time by following pointers. If we query a predecessor data structure, we know
that the range it spans is O(|gl − q|) = O(|f − q|) = O(D) since q < gl < f . Thus, given
a predecessor data structure with query time t(N,n), we can solve the finger predecessor
problem in time O(t(D,n)).

The total space spent on the atomic heaps is O(n) since they partition R. The number
of representatives is O( n

logN ). Thus, given a predecessor data structure with space usage
s(N,n), we can solve the finger predecessor problem in space O(s(N, n

logN ) logN).

Using the van Emde Boas predecessor data structure [81, 104, 107] with t(N,n) =
O(log logN) query time using s(N,n) = O(n) space, we obtain the following corollary.

Corollary 3.3 Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of
size N . Given a finger f ∈ R and a query point q ∈ U , we can solve the finger predecessor
problem in worst case time O(log log |f − q|) and space O(n).

3.6.2 Finger Fingerprints

We can now prove Theorem 3.2. Assume wlog that we have a finger for i, i.e., we are
given a finger f to the node rm generating S[i]. From this we can in constant time get
a pointer to rm+1 in the doubly linked list and from this a pointer to R(m + 1) in the
predecessor data structure. If R(m+1) > j then R(m) is the predecessor of j. Otherwise,
using Corollary 3.3 we can in time O(log log |R(m + 1) − j|) find the predecessor of j.
Since R(m+ 1) ≥ i and the rest of the query takes constant time, the total time for the
query is O(log log |i− j|).

3.7 Longest Common Extensions in Compressed Strings

Given an SLP S, the longest common extension (LCE) problem is to build a data structure
for S that supports longest common extension queries LCE(i, j). In this section we show
how to use our fingerprint data structures as a tool for doing LCE queries and hereby
obtain Theorem 3.3.

3.7.1 Computing Longest Common Extensions with Fingerprints

We start by showing the following general lemma that establishes the connection between
LCE and fingerprint queries.

Lemma 3.4 For any string S and any partition S = s1s2 · · · st of S into k non-empty
substrings called phrases, ` = LCE(i, j) can be found by comparing O(log `) pairs of
substrings of S for equality. Furthermore, all substring comparisons x = y are of one of
the following two types:

Type 1 Both x and y are fully contained in (possibly different) phrase substrings.

Type 2 |x| = |y| = 2p for some p = 0, . . . , log(`) + 1 and for x or y it holds that

(a) The start position is also the start position of a phrase substring, or

(b) The end position is also the end position of a phrase substring.
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Proof Let a position of S be a start (end) position if a phrase starts (ends) at that position.
Moreover, let a comparison of two substrings be of type 1 (type 2) if it satisfies the first
(second) property in the lemma. We now describe how to find ` = LCE(i, j) by using
O(log `) type 1 or 2 comparisons.

If i or j is not a start position, we first check if S[i, i+ k] = S[j, j + k] (type 1), where
k ≥ 0 is the minimum integer such that i+k or j+k is an end position. If the comparison
fails, we have restricted the search for ` to two phrase substrings, and we can find the
exact value using O(log `) type 1 comparisons.

Otherwise, LCE(i, j) = k+ LCE(i+ k+ 1, j + k+ 1) and either i+ k+ 1 or j + k+ 1
is a start position. This leaves us with the task of describing how to answer LCE(i, j),
assuming that either i or j is a start position.

We first use p = O(log `) type 2 comparisons to determine the biggest integer p such
that S[i, i + 2p] = S[j, j + 2p]. It follows that ` ∈ [2p, 2p+1]. Now let q < 2p denote the
length of the longest common prefix of the substrings x = S[i + 2p + 1, i + 2p+1] and
y = S[j + 2p + 1, j + 2p+1], both of length 2p. Clearly, ` = 2p + q. By comparing the first
half x′ of x to the first half y′ of y, we can determine if q ∈ [0, 2p−1] or q ∈ [2p−1+1, 2p−1].
By recursing we obtain the exact value of q after log 2p = O(log `) comparisons.

However, comparing x′ = S[a1, b1] and y′ = S[a2, b2] directly is not guaranteed to
be of type 1 or 2. To fix this, we compare them indirectly using a type 1 and type 2
comparison as follows. Let k < 2p be the minimum integer such that b1 − k or b2 − k is a
start position. If there is no such k then we can compare x′ and y′ directly as a type 1
comparison. Otherwise, it holds that x′ = y′ if and only if S[b1 − k, b1] = S[b2 − k, b2]
(type 1) and S[a1 − k − 1, b1 − k − 1] = S[a2 − k − 1, b2 − k − 1] (type 2).

Theorem 3.3 follows by using fingerprints to perform the substring comparisons. In
particular, we obtain a Monte Carlo data structure that can answer a LCE query in
O(log ` logN) time for SLPs and in O(log ` log logN) time for Linear SLPs. In the latter
case, we can use Theorem 3.2 to reduce the query time to O(log ` log log `+ log logN)
by observing that for all but the first fingerprint query, we have a finger into the data
structure.

3.7.2 Verifying the Fingerprint Function

Since the data structure is Monte Carlo, there may be collisions among the fingerprints
used to determine the LCE, and consequently the answer to a query may be incorrect. We
now describe how to obtain a Las Vegas data structure that always answers LCE queries
correctly. We do so by showing how to efficiently verify that the fingerprint function φ is
good, i.e., collision-free on all substrings compared in the computation of LCE(i, j). We
give two verification algorithms. One that works for LCE queries in SLPs, and a faster one
that works for Linear SLPs where all internal nodes are children of the root (e.g. LZ78).

SLPs

If we let the phrases of S be its individual characters, we can assume that all fingerprint
comparisons are of type 2 (see Lemma 3.4). We thus only have to check that φ is
collision-free among all substrings of length 2p, p = 0, . . . , logN . We verify this in logN
rounds. In round p we maintain the fingerprint of a sliding window of length 2p over
S. For each substring x we insert φ(x) into a dictionary. If the dictionary already
contains a fingerprint φ(y) = φ(x), we verify that x = y in constant time by checking
if φ(x[1, 2p−1]) = φ(y[1, 2p−1]) and φ(x[2p−1 + 1, 2p]) = φ(y[2p−1 + 1, 2p]). This works
because we have already verified that the fingerprinting function is collision-free for
substrings of length 2p−1. Note that we can assume that for any fingerprint φ(x) the
fingerprints of the first and last half of x are available in constant time, since we can
store and maintain these at no extra cost. In the first round p = 0, we check that x = y
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by comparing the two characters explicitly. If x 6= y we have found a collision and we
abort and report that φ is not good. If all rounds are successfully verified, we report that
φ is good.

For the analysis, observe that computing all fingerprints of length 2p in the sliding
window can be implemented by a single traversal of the SLP parse tree in O(N) time.
Thus, the algorithm correctly decides whether φ is good in O(N logN) time and O(N)
space. We can easily reduce the space to O(n) by carrying out each round in O(N/n)
iterations, where no more than n fingerprints are stored in the dictionary in each iteration.
So, alternatively, φ can be verified in O(N2/n logN) time and O(n) space.

Linear SLPs

In Linear SLPs where all internal nodes are children of the root, we can reduce the
verification time to O(N logN log logN), while still using O(n) space. To do so, we
use Lemma 3.4 with the partition of S being the root substrings. We verify that φ is
collision-free for type 1 and type 2 comparisons separately.

Type 1 Comparisons. We carry out the verification in rounds. In round p we check
that no collisions occur among the p-length substrings of the root substrings as follows:
We traverse the SLP maintaining the fingerprint of all p-length substrings. For each
substring x of length p, we insert φ(x) into a dictionary. If the dictionary already contains
a fingerprint φ(y) = φ(x) we verify that x = y in constant time by checking if x[1] = y[1]
and φ(x[2, |x|]) = φ(y[2, |y|]) (type 1).

Every substring of a root substring ends in a leaf in the SLP and is thus a suffix of a
root substring. Consequently, they can be generated by a bottom up traversal of the SLP.
The substrings of length 1 are exactly the leaves. Having generated the substrings of
length p, the substrings of length p+ 1 are obtained by following the parents left child to
another root node and prepending its right child. In each round the p length substrings
correspond to a subset of the root nodes, so the dictionary never holds more than n
fingerprints. Furthermore, since each substring is a suffix of a root substring, and the
root substrings have at most N suffixes in total, the algorithm will terminate in O(N)
time.

Type 2 Comparisons. We adopt an approach similar to that for SLPs and verify φ
in O(logN) rounds. In round p we store the fingerprints of the substrings of length
2p that start or end at a phrase boundary in a dictionary. We then slide a window of
length 2p over S to find the substrings whose fingerprint equals one of those in the
dictionary. Suppose the dictionary in round p contains the fingerprint φ(y), and we
detect a substring x such that φ(x) = φ(y). To verify that x = y, assume that y starts at a
phrase boundary (the case when it ends in a phrase boundary is symmetric). As before,
we first check that the first half of x is equal to the first half of y using fingerprints of
length 2p−1, which we know are collision-free. Let x′ = S[a1, b1] and y′ = S[a2, b2] be the
second half of x and y. Contrary to before, we can not directly compare φ(x′) = φ(y′),
since neither x′ nor y′ is guaranteed to start or end at a phrase boundary. Instead, we
compare them indirectly using a type 1 and type 2 comparison as follows: Let k < 2p−1

be the minimum integer such that b1 − k or b2 − k is a start position. If there is no
such k then we can compare x′ and y′ directly as a type 1 comparison. Otherwise,
it holds that x′ = y′ if and only if φ(S[b1 − k, b1]) = φ(S[b2 − k, b2]) (type 1) and
φ(S[a1− k− 1, b1− k− 1]) = φ(S[a2− k− 1, b2− k− 1]) (type 2), since we have already
verified that φ is collision-free for type 1 comparisions and type 2 comparisions of length
2p−1.
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The analysis is similar to that for SLPs. The sliding window can be implemented
in O(N) time, but for each window position we now need O(log logN) time to re-
trieve the fingerprints, so the total time to verify φ for type 2 collisions becomes
O(N logN log logN). The space is O(n) since in each round the dictionary stores at most
O(n) fingerprints.
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Abstract

We present a new algorithm for subsequence matching in grammar compressed
strings. Given a grammar of size n compressing a string of size N and a pattern
string of size m over an alphabet of size σ, our algorithm uses O(n+ nσ

w
) space and

O(n + nσ
w

+ m logN logw · occ) or O(n + nσ
w

logw + m logN · occ) time. Here w
is the word size and occ is the number of minimal occurrences of the pattern. Our
algorithm uses less space than previous algorithms and is also faster for occ = o( n

logN
)

occurrences. The algorithm uses a new data structure that allows us to efficiently find
the next occurrence of a given character after a given position in a compressed string.
This data structure in turn is based on a new data structure for the tree color problem,
where the node colors are packed in bit strings.

4.1 Introduction

Subsequence matching is a variant of string pattern matching where an occurrence of
the pattern in the text must contain all the characters of the pattern, but not necessarily
contigously. If there is such an occurrence we say that the pattern is a subsequence of a
substring of the text. A pattern string P is a subsequence of another string S (the text) if
P can be obtained by deleting characters in S. Just answering if P is a subsequence of S
is easily solved in linear time by scanning S from left to right looking for the characters
of P . In the subsequence matching problem the goal is to find and report the positions of
all minimal substrings of S that contain P as a subsequence. A substring is said to be
minimal if shortening it implies that P is no longer a subsequence of that substring. More
formally, if P is a subsequence of the substring S[i, j], then i, j is a minimal occurrence if
P is not a subsequence of S[i+ 1, j] or S[i, j − 1].

If the text is large and sufficiently repetetive, it might be useful to compress it. In this
paper we consider the compressed subsequence matching problem where we are given a
grammar S of size n compressing a string S of size N and a pattern string P of size m
over an alphabet of size σ. We present a new algorithm for compressed subsequence
matching which is space efficient and is faster than the previously fastest algorithm for a
bounded number of occurrences. Our algorithm relies on a method that is different from
the ones used by previous algorithms.

37
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Subsequence matching is useful when searching sequential log data for a sequence of
events that may be separated by other events. Say for instance that we are running a
webserver and we want to know how often a visitor has found her way to subpage C
through page A and then B. We then set P = ABC and apply a subsequence matching
algorithm to the contents of the log file. Many applications will automatically compress
log data to save space, and so the bottleneck of the procedure becomes decompression
of the data. In this case, processing the data without fully decompressing it, is crucial.
Subsequence matching was also considered in relation to knowledge discovery and data
mining [78].

Several algorithms have been presented for uncompressed strings [11,22,25,33,34,
78,101]. The fastest of these is due to Das et al. [34]. Since it is an online algorithm we
may apply it to the compressed version without having to store the entire decompressed
string, and we get an algorithm with running timeO( Nm

logm ) that usesO(n+m) space. The
first algorithm with time complexity independent of the size of the string was presented
by Cegielski et al. [24] in 2006. Its runnning time is O(nm2 logm + occ) time and it
uses O(nm2) space. Using a different approach, Tiskin improved the running time to
O(nm1.5 +occ) [98] and later even further to O(nm logm+occ) [99]. The space usage of
his algorithms is O(nm). The most recent improvement is due to Yamamoto et al. [108]
who present an algorithm based on the ideas of Cegielski et al. that runs in O(nm+ occ)
time and O(nm) space. All results are summarized in Table 1.

Time complexity Space complexity Author(s)
O( Nm

logm ) O(n+m) Das et al. [34]
O(nm2 logm+ occ) O(nm2) Cegielski et al. [24]
O(nm1.5 + occ) O(nm) Tiskin [98]
O(nm logm+ occ) O(nm) Tiskin [99]
O(nm+ occ) O(nm) Yamamoto et al. [108]
O(n+ nσ

w +m logN logw · occ)
O(n+ nσ

w ) This paper
O(n+ nσ

w logw +m logN · occ)

Table 4.1: Time and space complexities of algorithms for compressed subsequence matching.

Our algorithm assumes that the input grammar is a Straight Line Program (SLP). An SLP
is an acyclic grammar in Chomsky normal form, i.e., each nonterminal production rule
expands to two other rules and generates one string only. Any grammar producing a
single string can be transformed to an SLP with linear overhead so our results hold for
grammar-compressed strings in general. Moreover, SLPs are widely studied because they
model many well-known compression schemes, such as LZ77 [109], LZ78 [110], and
Re-Pair [73] with little overhead [26,88]. The following theorem is the main result of
this work.

Theorem 4.1 Given an SLP S of size n compressing a string S of size N and a pattern
P of size m over an alphabet of size σ, compressed subsequence matching can be solved
in O(n+ nσ

w ) words of space and time

(i) O(n+ nσ
w +m logN logw · occ), or

(ii) O(n+ nσ
w logw +m logN · occ)

in the word RAM model with word size w ≥ logN , and where occ is the number of
minimal occurrences of P in S.

Our new algorithm uses less space (linear in n if σ ≤ w) and is also faster than the
previously fastest algorithm for few occurrences when σ ≤ m. Particularly, solution
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(ii) is faster if the number of occurrences is bounded by o( n
logN ). Note that we in

O(n+m) expected time or O(n logm+m) time and using O(m) additional extra space
can guarantee that σ ≤ m always holds1.

The algorithm is based on the idea of a simple algorithm for subsequence matching in
uncompressed strings which basically scans the string for occurrences of the pattern. We
speed up the scanning on compressed strings by introducing the first data structure for
SLPs that supports labelled successor queries. The answer to a labelled succesor query
LS(i, c) on a string is the index of the first character c occurring after position i in the
string. An essential part of this data structure is a new data structure for the tree color
problem. This problem is to preprocess a tree where each node is colored by zero or
more colors, such that given a node v and a color c, we may efficiently answer a first
colored ancestor query, i.e., compute the lowest ancestor of v with color c. Additionally,
this data structure also supports a new type of query we call the last colored ancestor.
Here the query is two nodes u and v and a color c, and the answer is the highest node on
the path from u to v with color c. These results may be of independent interest.

This paper is organized such that we start by describing our new result for the tree
color problem (after a section of preliminaries), then move on to the labelled successor
data structure, and finally describe the algorithm for subsequence matching.

4.2 Preliminaries

Bit Strings. We will use bit strings to represent sets. In a bit string B = b1b2 . . . bu
representing a set B of elements from a universe of size u, bi = 1 iff element i is in B.
B = [0]u denotes the empty set. The operators ∧, ∨, and ⊕ denote the bitwise AND,
OR, and exclusive OR (XOR) of two bit strings. The negation of a bit string B is B. A
summary Bs of k bit strings B1, B2, . . . , Bk of equal length is Bs = B1 ∨ B2 ∨ . . . ∨ Bk.
For a bit string of length w we assume that the mask of any constant can be computed in
O(1) time. Given a bit string B = b1b2 . . . bw, b1 is the most significant bit. The index of
the least significant set bit can be found in O(1) time from log2((B + 1) ∧ B). Finding
the most significant set bit is more elaborate, but can also be done O(1) time [?]. An
n×m bit matrix may be transposed in O(w logw) time if n ≤ w and m ≤ w [97].

Trees. In this paper all trees are rooted, ordered, and have labels on the nodes. The
number of nodes in a tree T is t. We denote by T (v) the subtree rooted at v containing
all descendants of v. The size |T (v)| is the number of nodes in the subtree T (v) including
v. If u is a node in the subtree T (v) we write u ∈ T (v). If T is a binary tree we denote
the left and right child of a node v by left(v) and right(v).

A heavy path decomposition [90] decomposes T into disjoint paths. Nodes are
classified as either heavy or light and the decomposition is defined as follows. The root
is light. For each internal node v, its heavy child w is the node for which T (w) is of
maximum size among the subtrees rooted at children of v. The other children of v are
light. Edges are also classified as heavy or light. An edge going into a heavy node is heavy
and likewise for light nodes. The heavy path decomposition ensures the property that
1
2 |T (v)| > |T (u)| for any light child u of v. This means that there are O(log t) light edges
on any path from the root to a leaf. The heavy path decomposition can be computed in
O(t) time and space.

Given a binary tree T rooted at a node r, t > 1, and a parameter 1 ≤ x ≤ t, we
may partition T into at most t/x clusters such that for a fixed constant c, the size of any
cluster is at most cx [3,5] (see also [1] for a full proof). Two clusters overlap in at most

1The trick is to replace every character with the rank of its first occurrence in the pattern. To do this in
O(n + m) expected time we use hashing and to get O(n logm + m) time the ranks are stored in a binary
search tree.
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one node, and a node is called a boundary node if it is part of more than one cluster.
Any cluster has at most two boundary nodes, and a boundary node is either a leaf or
the root in the subtree that is the cluster. The sum of nodes in all clusters is O(t). The
tree obtained by repeatedly contracting edges between two nodes if one of them is not
a boundary node is called the macro tree. In other words, the macro tree is the tree
consisting only of boundary nodes. A cluster partition can be found in O(t) time.

The answer to a level ancestor query LA(v, d) on T is the ancestor of v with depth d.
A linear space data structure that answers an LA query in O(1) time can be computed for
T in O(t) time [35] (see also [2,16,17]).

Straight Line Programs. A Straight Line Program S is a context-free grammar in
Chomsky normal form with n production rules that produce a single string S of length
N . We represent the SLP as a rooted, ordered, and node-labelled directed acyclic graph
(DAG) with outdegree 2 and we will refer to production rules as nodes in the DAG. A
depth-first left-to-right traversal starting from a node v in the DAG produces the string
S(v) of length |S(v)|. The tree that emerges from the traversal we call the derivation
tree. We denote the left and right children of v for left(v) and right(v), respectively.
Furthermore, the height of the SLP is the length of the longest path going from the root
to a terminal node and is denoted by h.

We may access a character S[i] in O(h) time by storing |S(v)| for each node v in the
SLP, and simulate a top-down search of the derivation tree. Doing so yields a unique path
from the root of S to the terminal node labelled S[i]. There is also a linear space data
structure that supports random access in SLPs in O(logN) time [21]. A key technique
used in this data structure is the extension of the heavy path decomposition of trees to
SLPs which we will also use in our data structure. For each node v ∈ S, we select the
child of v that derives the longest string to be a heavy node. The other child is light.
Heavy and light edges are defined as in the decomposition of trees. Whereas applying
this technique to a tree results in a decomposition into disjoint paths, it will result in a
decomposition into disjoint trees when applied to an SLP (see Figure 4.1). We denote
this set of trees by the heavy forest H of the SLP. This decomposition ensures that the
number of light edges on any path from the root to a terminal node is O(logN). Hence,
on any path from the root of the SLP to a terminal node, we visit at most logN trees
from H. When accessing a character using the data structure of [21] we may also report
the entry and exit nodes for each tree visited on the unique root-to-terminal path that
emerges from the query.

v w

S(v) S(w)

i j k i j k

Figure 4.1: An example of the heavy path decomposition of SLPs. (Left) A node in S with children
v and w where the edge to w is selected as heavy because S(w) ≥ S(v). (Right)
The heavy forest obtained by removing light edges from S. The trees are rooted in
terminals of S and can therefore be seen as growing upwards.
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4.3 Packed Tree Color Problems

In a colored tree, each node is colored by zero or more colors from the set {1, . . . , σ}.
A packed colored tree is a colored tree where the colors of each node v are given as
a bit string C(v) where C(v)[c] = 1 iff v is colored c. In this section we consider the
packed tree color problem which is to preprocess a packed colored tree T to support
first and last colored ancestor queries. The answer to a first colored ancestor query
FIRSTCOLOR(v, c) is the lowest ancestor of v with color c, and the answer to a last colored
ancestor query LASTCOLOR(u, v, c) is the highest node with color c on the path from u to
v, where we always assume that u is an ancestor of v. Throughout this section we will
use the following notation to distinguish results. If a data structure requires p(t) time
to build, uses s(t) space, and supports FIRSTCOLOR and LASTCOLOR queries in q(t) time,
then the the triple 〈p(t), s(t), q(t)〉 refers to the solution.

Solutions to the tree color problem for trees that are not packed may be applied
to packed trees. All known solutions focus entirely on supporting FIRSTCOLOR queries
[4,35,38,83]. A simple solution that supports FIRSTCOLOR queries in O(1) time is to store
the answer for every color in every node. This yields a 〈O(tσ), O(tσ), O(1)〉 solution. The
currently best known trade-off for the tree color problem is 〈O(t+D), O(t+D), O(logw)〉
[83], where D =

∑
v∈T

∑σ
i=1 C(v)[i] is the accumulated number of colors used.

Our motivation for revisiting this problem is twofold. First we have that D = O(tσ)
in our application and we are striving for a space bound that is in o(tσ). Second we want
to support LASTCOLOR queries.

In this section we present three solutions to the packed tree coloring problem and
combine them to a data structure with a new and desireable time-space trade-off.

4.3.1 A 〈O(tσ), O(tσ), O(1)〉 Solution

We store the result of a FIRSTCOLOR(v, c) query for every node and color. For each color,
let the induced c-colored subtree be the tree obtained by deleting all nodes that are
not colored by color c except the root. Build a levelled ancestor data structure for each
induced colored subtree.

The result of a FIRSTCOLOR query is precomputed. A LASTCOLOR(u, v, c) query is
answered as follows. If FIRSTCOLOR(v, c) = FIRSTCOLOR(u, c) then there is not a node
with color c on the path from u to v. If FIRSTCOLOR(v, c) 6= FIRSTCOLOR(u, c) then let
v′ and u′ be the nodes corresponding to FIRSTCOLOR(v, c) and FIRSTCOLOR(u, c) in the
induced c-colored subtree. The answer to LASTCOLOR(u, v, c) is then the answer to
LA(v′, depth(u′)− 1) in the induced c-colored subtree.

The results of FIRSTCOLOR queries can be found and stored using O(tσ) time and
space. The induced colored subtrees can be computed in O(tσ) time and use O(D) =
O(tσ) space. A FIRSTCOLOR query clearly takes O(1) time. For a LASTCOLOR query, we
perform two FIRSTCOLOR queries and one LA query, each of which takes constant time.

Lemma 4.1 The packed tree color problem can be solved using O(tσ) preprocessing
time and space, and O(1) query time.

4.3.2 A 〈O(t+ tσ
w ), O(t+ tσ

w ), O(log t)〉 Solution

We fix a heavy path decomposition of T . For each path p in the heavy path decomposition
of T we build a balanced binary tree Tp having the nodes of p as leaves. For each node
v in Tp we store a summary B(v) of the colors of its children. For each heavy path
p = v1, v2, . . . , vk, where v1 is the highest node on the path, we store a summary P (vi)
of colors on the path prefix v1 . . . vi for every vi on p.

For answering a FIRSTCOLOR(v, c) query, let p = v1, v2, . . . , vk be the heavy path
containing v and let vi = v for some 1 ≤ i ≤ k. If P (vi)[c] = 1 we find the lowest
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ancestor x of vi in Tp for which B(left(x))[c] = 1 and vi /∈ Tp(left(x)). The answer to the
query is then the rightmost leaf in Tp(left(va)) with color c. If P (vi)[c] = 0 we repeat the
procedure with vi = parent(v1), i.e., we jump to the previous heavy path, until we find
the first colored ancestor or we reach the root of T .

A LASTCOLOR(u, v, c) query is handled in a similar way. We first find the highest light
node w on the path from u to v for which P (parent(w))[c] = 1. Let p be the heavy path
containing parent(w). Now there are three cases. If u is not on p, the answer to the
query is the leftmost leaf in Tp that has color c. If p contains u, the answer is the leftmost
leaf with color c to the right of u in Tp, if such a node exists. If it does not exist, we
repeat the first step for the second highest light node w′ between u and v for which
P (parent(w′))[c] = 1.

The heavy path decomposition of T can be found and stored in O(t) time and space.
Since the paths of the heavy path decomposition are disjoint, the total number of leaves
in the binary summary trees is t, so the total number of nodes in the trees is O(t).
We store O(t) summary bit vectors of size O( σw ) using a total of O( tσw ) space. We use
O( tσw ) bitwise OR operations to create the summaries in a bottom up fashion. In total,
preprocessing time and space usage is O(t+ tσ

w ).
For both queries we visit at most log t heavy paths. When the path with the answer

has been found we walk up the binary tree and then down again. Since the tree is
balanced and has at most t leaves, this takes O(log t) time. For LASTCOLOR queries we do
this at most twice. The query time for FIRSTCOLOR and LASTCOLOR queries is therefore
O(log t) time.

Lemma 4.2 The packed tree color problem can be solved using O(t+ tσ
w ) preprocessing

time and space, and O(log t) query time.

4.3.3 A 〈O(t+ tσ logw
w + t2

w ), O(t+ tσ
w + t2

w ), O( tw )〉 Solution

Let v1, . . . , vt be the nodes of T in pre-order. We will represent T as a σ × t bit matrix
M . Let c be a color from the set of colors {1, . . . , σ}. In row c of M we store a bit string
where bit i is 1 iff vi has color c. For each node vi we also store a bit string A(vi) where
bit j is 1 iff vj is an ancestor of vi.

We construct this data structure from a packed colored tree as follows. Assume that
the bit strings representing the node colorings form a t × σ matrix where row i is the
colorings of node vi. We transpose this matrix to get M . To do this we partition the
matrix into a t

w ×
σ
w matrix (assume w.l.o.g. that w divides t and σ), transpose each

w × w submatrix as described in [97], and transpose the t
w ×

σ
w matrix to get M . To

compute the ancestor bit strings first set A(root(T )) = [0]t. For all other nodes vi, where
vj is the parent of vi, set A(vi) = A(vj) ∨ 2j .

We answer a FIRSTCOLOR(v, c) as follows. Let R = M [c] ∧A(v). Now R is a bit string
representing the set of ancestors of v with color c. Since the nodes have pre-order indices,
the answer to the query is vi, where i is the index of the least significant set bit in R.

To answer a LASTCOLOR(v, u, c) query we start by computing R the same way as
above. We then set the first i− 1 bits of R to 0, where i is the index of u. The answer to
the query is the most significant set bit of R.

The σ × t bit matrix M can be packed in words and therefore uses O( tσw ) space.
Similarly, the ancestor bit strings use O( t

2

w ) space. Transposing a w × w matrix takes
O(w logw) time, and since there are tσ

w2 submatrices of this size in the color bit matrix,
the total time spent for all submatrices is O( tσ logw

w ). Transposing the t
w ×

σ
w matrix takes

O( tσw ) time. Computing the ancestor bit strings takes O( t
2

w ) time.
The size of R is O( tw ), so finding the first non-zero word takes O( tw ) time. Determin-

ing the least or most significant set bit of a word is done in O(1) time. Thus, the query
time for both a FIRSTCOLOR and a LASTCOLOR query is O( tw ).
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Lemma 4.3 The packed tree color problem can be solved using O(t + tσ logw
w + t2

w )

preprocessing time, O(t+ tσ
w + t2

w ) space, and O( tw ) query time.

4.3.4 Combining the Solutions

We now show how to combine the previously described solutions to get 〈O(t+ nσ
w ), O(t+

nσ
w ), O(logw)〉 and 〈O(t+ tσ logw

w ), O(t+ tσ
w ), O(1)〉 trade-offs. This is achieved by doing

a cluster partioning of the tree.
First we convert T to a binary tree T ′. Then we partition T ′ into O( tw ) clusters, i.e.,

each cluster has size O(w). For each cluster C, where one boundary node is a leaf in the
cluster and the other is the root of the cluster, we make a summary of the colors of the
nodes on the path from the root to the leaf. The summary is stored in the macro tree
node that corresponds to the leaf boundary node of C. Apply the 〈O(tσ), O(tσ), O(1)〉
solution to the macro tree, and apply either the 〈O(t+ tσ

w ), O(t+ tσ
w ), O(log t)〉 solution or

the 〈O(t+ tσ logw
w + t2

w ), O(t+ tσ
w + t2

w ), O( tw )〉 solution to each cluster using the original
colors.

Here is how we answer a FIRSTCOLOR(v, c) query. Let Cv be the cluster containing v.
First we ask for FIRSTCOLOR(v, c) in Cv. If the answer is a node in Cv, we are done. If it
is undefined, we find the node r in the macro tree corresponding to the root of Cv. We
check if r has color c in the macro tree and otherwise ask for w = FIRSTCOLOR(r, c) in
the macro tree. In the cluster Cw having w as a leaf boundary node we then check if w
has color c and otherwise ask for FIRSTCOLOR(w, c) in Cw.

We answer a LASTCOLOR(u, v, c) query as follows. Assume that u 6= v and let Cu and
Cv be the clusters containing u and v. If Cu = Cv then the answer is LASTCOLOR(u, v, c)
in the cluster containing u and v. If Cu 6= Cv, let w be the leaf boundary node of Cu
where v ∈ T (w). We now proceed in three steps. First, we ask for LASTCOLOR(u,w, c) in
Cu. If the query returns a node, this is also the answer to the LASTCOLOR(u, v, c) query.
If the answer in the first step is undefined we ask for z = LASTCOLOR(w, root(Cv), c) in
the macro tree to locate the highest cluster with a node with color c between u and v.
The answer to the query is then LASTCOLOR(root(Cz), z, c) on Cz. If the first two steps
fail, the answer to a query is LASTCOLOR(root(Cv), v, c).

The cluster partition can be computed in linear time, and the cluster path summaries
are computed in O( tσw ) time. Since the macro tree has O( tw ) nodes the preprocessing
time and space to apply the 〈O(tσ), O(tσ), O(1)〉 solution becomes O( tσw ). To answer
a query we perform a constant number of FIRSTCOLOR and LASTCOLOR queries on the
macro tree and clusters. Therefore the total time to perform queries on the macro tree
is O(1) time. To get (i) we apply the 〈O(t+ tσ

w ), O(t+ tσ
w ), O(log t)〉 solution to clusters.

Since a cluster has size O(w) we use a total of O(logw) time performing queries on
clusters. To get (ii) we apply the 〈O(t+ tσ logw

w + t2

w ), O(t+ tσ
w + t2

w ), O( tw )〉 solution to
clusters. Again, since clusters have size O(w) we use a total of O(1) time performing
queries on clusters. Preprocessing time and space for the cluster data structures follow
because the sum of the sizes of clusters is O(t).

Theorem 4.2 The packed tree color problem can be solved using O(t+ tσ
w ) space,

(i) O(t+ tσ
w ) preprocessing time, and O(logw) query time, or

(ii) O(t+ tσ
w logw) preprocessing time, and O(1) query time.

4.4 Labelled Successor Data Structure for SLPs

The answer to a labelled successor LS(i, c) query on a string S is the index of the first
occurrence of the character c after position i in S. More formally, the answer to LS(i, c)
is an index j such that S[j] = c, j > i, and S[k] 6= c for k = i+ 1, . . . , j − 1.
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In this section we present a data structure that supports LS(i, c) queries on an SLP.
This is the first data structure dedicated to solving this problem on SLPs. Alternatively,
we may build the random access data structure of [21] and then answer an LS(i, c) query
by doing a random access query for position i followed by a linear scan to find the first
occurrence of c. This yields a query time of O(logN + j − i) while using O(n) space for
the data structure.

Our data structure combines the random access data structure of [21] with a new
way of navigating the SLP based on the characters of substrings. For the latter we will
utilize our result for the packed tree color problem described in the previous section.

The basic idea is to store a bit string for each node v ∈ S that summarizes which
characters are generated by S(v). We first seach for position i in S and let p be the
unique path in S defining S[i]. We then walk up p until reaching a node u where right(u)
generates a string that contains c and right(u) is not on p. Then we walk down from
right(u) using the summaries to locate the leftmost terminal descending from right(u)
that generates c. This algorithm requires O(n+ nσ

w ) space and O(h) time to find LS(i, c).
To speed things up we fix a heavy path decomposition of the SLP to get a heavy forest

and build the random access data structure of [21]. Now p is a sequence of entry and
exit points in the trees of the heavy forest. When we walk up p we enter a tree in an exit
node and have to walk away from the root to the first node whose right child generates a
string that contains c before reaching the entry node. This is equivalent to a LASTCOLOR

query. When we walk down to find LS(i, c) we enter a tree and have to walk towards the
root to find either the first ancestor whose left child generates a string that contains c or
the highest ancestor whose right child generates c. This is equivalent to a FIRSTCOLOR

and a LASTCOLOR query, respectively.
In the remainder of this section we give the details of the data structure.

Theorem 4.3 There is a data structure supporting labelled successor (and predecessor)
queries on a string of size N over an alphabet of size σ compressed by an SLP of size n in
the word RAM model with word size w ≥ logN using O(n+ nσ

w ) space and

(i) O(n+ nσ
w ) preprocessing time, and O(logN logw) query time, or

(ii) O(n+ nσ
w logw) preprocessing time, and O(logN) query time.

Proof We first apply the construction of [21], and let H be the heavy forest obtained
from the heavy path decomposition of S. For each node v in S with children left(v)
and right(v) we store two bit strings L(v) and R(v) summarizing the characters in
S(left(v)) and S(right(v)). Specifically, L(v) summarizes the characters in S(left(v)) if
the edge from v to left(v) is light. If the edge is heavy then L(v) = [0]σ. R(v) is defined
analogously. These summaries are used for determining where to exit a heavy tree when
searching for some character. When following a heavy edge, say from v to left(v), we
do not exit a tree, so therefore L(v) is set to [0]σ. For each tree in H we build two data
structures for the packed tree color problem. One where the L bit strings serve as colors
and one where the R bit strings serve as colors.

We answer an LS(i, c) query as follows. First we access the character S[i] using the
random access data structure. We now have the entry and exit points of the heavy
trees in H on the unique path p describing S[i]. Let T1, . . . , Tk ∈ H be a sequence of
trees on p in the order they are visited when starting from the root and ending in the
terminal generating S[i], and let (v1, u1), . . . , (vk, uk) be the entry and exit nodes for
each tree in the sequence. Using the packed tree color data structure for the R colors, we
repeat LASTCOLOR(ui, vi, c) for i = k down to some j until LASTCOLOR(uj , vj , c) is not
undefined. Let w = right(LASTCOLOR(uj , vj , c)). We now search for the first occurrence
of c in S(w). Let Ti be the tree in H that contains the node w, then the search proceeds
in three steps. First, we ask for v = FIRSTCOLOR(w, c) in Ti in the data structure for L
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colors and restart the search from left(v). If the query FIRSTCOLOR(w, c) is undefined we
continue to the next step. In the second step we check if root(Ti) generates c. If it does,
we now have a unique set of entry and exit nodes in the trees of H that constitutes a
path to a terminal that generates the first c after position i. The answer to the LS(i, c)
query is the index of this c which we retrieve using the random access data structure.
Finally, if root(Ti) does not generate c we ask for v = LASTCOLOR(w, root(Ti), c) in Ti in
the data structure for R colors, and restart the search from right(v).

The data structure uses O(n+ nσ
w ) space because the random access data structure

uses linear space and the bit strings L and R use O(nσw ) space. The random access data
structure, including the heavy path decomposition, takes O(n) time to compute and
the L and R values are computed using O(nσw ) OR operations in a bottom up fashion.
Therefore, this part of the data structure is computed in O(n+ nσ

w ) time.
To get Theorem 4.3 (i) we use the packed tree color data structure of Theorem 4.2

(i) for the trees in H and likewise for (ii). Since the trees are disjoint, the preprocessing
time and space becomes as in the Theorem 4.3.

For the query, we first do one random access query that takes O(logN) time, then
we perform at most logN LASTCOLOR queries walking up the SLP and at most 2 logN
FIRSTCOLOR and LASTCOLOR queries locating the labelled successor. Finally, retrieving
the index also takes O(logN) time using the random access data structure.

4.5 Subsequence Matching

We will now use the labelled successor data structure to obtain a subsequence matching
algorithm for SLPs. Our algorithm is based on the folklore algorithm for subsequence
matching which works as follows (see also [34,78]). First we find the minimal prefix
S[1..j] that contains P as a subsequence. This is done by reading S left to right while
searching for the characters of P one at a time. We then find the minimal suffix S[i..j] of
the prefix S[1..j] that contains P . Similarly, this is done by scanning the prefix right to
left. Now S[i..j] is the first minimal occurrence of P . To find the next minimal occurrence
we repeat this process for the suffix S[i+ 1..N ]. It can be shown that this algorithm finds
all minimal occurrences of P in O(Nm) time.

By using our labelled successor data structure described in the previous section we
speed up the procedure of finding some specific character of P . Assume we have matched
P [1..k] to S[1..j] such that P [k] = S[j]. Instead of doing a linear scan of S[j + 1..N ] to
find P [k + 1] we ask for the next occurrence of P [k + 1] using LS(j, P [k + 1]).

For each occurrence of P we perform O(m) labelled successor (and labelled prede-
cessor) queries, and we also have to construct the data structures to support these. By
applying the results of Theorem 4.3 we get Theorem 4.1.
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Abstract

The random access problem for compressed strings is to build a data structure that
efficiently supports accessing the character in position i of a string given in compressed
form. Given a grammar of size n compressing a string of size N , we present a data
structure using O(nτ logτ

N
n

logN) bits of space that supports accessing position i
in O(logτ N) time for τ ≤ logO(1)N . The query time is optimal for polynomially
compressible strings, i.e., when n = Θ(N1−ε).

5.1 Introduction

Let S be a string of length N compressed into a context-free grammar S of size n. The
random access problem on grammar-compressed strings is to build a data structure that
efficiently supports accessing S[i]. In this paper we present a new random access data
structure for grammar-compressed strings with a new trade-off between the time and
space complexity. The data structure also facilitates decompression of a substring S[i, j].

Assume w.l.o.g. that S is a Straight Line Program (SLP), i.e., a context-free grammar
where a rule has either two variables or a terminal on its right-hand side. We regard an
SLP as a rooted directed acyclic graph (DAG) with outdegree 2 and we refer to rules as
nodes and terminals as leafs when appropriate.

If we store the size of the string generated by each node in the SLP we may access
the i-th character in O(h) time by doing a top-down search. Here, h is the height of the
grammar and the data structure requires O(n) space. The concept of balance generalizes
from binary trees to SLPs. A balanced SLP has height h = O(logN). We may apply
the algorithm by Rytter [88] or Charikar et al. [26] to balance the SLP and then access
S[i] in O(logN) time. The culprit is that the number of nodes in the SLP resulting
from applying either algorithm is O(n log N

n ). A major breakthrough was done when
Bille et al. [21] published a data structure using O(n) space and supporting access in
O(logN) time and decompression of the substring S[i, j] in O(logN + j − i) time. Their
work introduced many new techniques and did not rely on the algorithms by Rytter
and Charikar et al. Later, Verbin and Yu [105] proved that if n = Ω(N1−ε) any data

47
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structure of size O(n logN) must use Ω(log n/ log log n) time to access S[i]. For other
compression ratios, they also show a lower bound of Ω(n1/2−ε) query time for any ε > 0
and any data structure of polynomial size. In the wake of this, Belazzougui, Puglisi, and
Tabei [15] presented a data structure where O(logN/ log logN) access time is achieved
using O(n log2

N
n log1+εN) bits of space which is matching the lower bound by Verbin

and Yu for polynomially compressible strings.
Note that for the most recent result by Belazzougui et al., the space bound is in bits

and not words of memory. In the remainder of this paper all space bounds will be in bits to
comply with their work. Furthermore, all results assume the RAM model of computation
with a word size w ≥ logN . We present a data structure using O(nτ logτ

N
n logN) bits

of space that supports access to S[i] in O(logτ N) time and decompression of S[i, j] in
O(logτ N + j − i) time. The time bound optimal for polynomially compressible strings,
i.e., n = Θ(N1−ε), when we set τ = logεN .

The key idea behind our data structure is to increase the out-degree of a balanced
SLP, exactly as done in the work by Belazzougui et al. This decreases the height of
the grammar, and we use the basic top-down search to perform access queries. To get
fast navigation in each node we use fusion trees. Pivotal to our improvement over
Belazzougui et al. in terms of space usage is that we exploit some properties resulting
from applying Rytter’s [88] algorithm to balance the SLP.

5.2 Preliminaries

A string S = S[1, |S|] is a sequence of |S| = N characters. S[j] is a single character.
An SLP S is a context-free grammar in Chomsky normal form that we represent as

a node-labeled, directed acyclic graph. Each leaf in S is labelled with a character and
corresponds to a terminal grammar production rule. Each internal node in S is labeled
with a non-terminal rule from the grammar. We call a node that is reachable from v in
one step a child of v.
S(v) is the subgraph rooted in v producing the string S(v). S(v) is produced by a

depth-first left-to-right traversal from v and consists of the characters on the leafs in the
order they are visited. The tree that emerges from this we call the parse tree for S(v). Let
root(S) denote the start rule of S, and left(v) and right(v) denote the left and right child
of an internal node v ∈ S, respectively. The height of a node v is the length of the longest
path from v to a leaf reachable from v. We denote this by height(v). We sometimes
use S as shorthand for root(S) when used as parameter in any of the definitions. As a
shorthand for |S(v)| we use |v|.

An SLP is AVL-balanced if |height(left(v)) − height(right(v))| ≤ 1 for all v ∈ S. In
[88], Rytter presents an approximation algorithm for the smallest grammar problem.
The SLP produced by his algorithm is AVL-balanced and has O(z log N

z ) nodes, where z
is the number of factors in the LZ77 [109] parse of S. Let n′ be the size of the smallest
grammar. We will use his algorithm to balance an SLP, and since z ≤ n′ ≤ n for any
given SLP of size n, the number of nodes is O(n log N

n ) after applying it.
In addition, to accomplish our goal, we employ Fredman and Willard’s fusion

tree [40], where predecessor queries can be performed in O(log t/ logw) time for t
w-bit integers.

5.3 Access data structure for balanced grammars

In this section, the setting is that we are given a balanced grammar producing one string
only, and we will show how to construct a random access data structure with fast query
time. The general idea is to increase the outdegree of all non-terminals of the grammar.

For every non-terminal v we generate a new right-hand side that contains at most
logεN variables by iteratively expanding the right-hand side of v down ε log logN levels
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(or less if we reach a terminal). We then store in a fusion tree the prefix-sum of the
lengths of the strings generated by each variable in the right-hand side. More precisely,
assuming that the expanded right-hand side of v is v1v2 . . . vt with t ≤ 2ε log logn, the
prefix sums are s1, s2 . . . st, where si =

∑i
j=1 |vj |. The height of the resulting grammar

is O(logN/ log logN) since the original grammar is balanced and thus have height
O(logN). Every fusion tree uses O(log1+εN) bits of space and the expanded grammar
has O(n) nodes, so we use O(n log1+εN) bits of space.

To access a specific character S[i] we do a top-down traversel of the grammar and use
the prefix-sums for navigation. Suppose we have reached a rule v producing the string
S[i′, j′] (where i′ ≤ i ≤ j′). To find the child of v to continue the search from, we ask for
the predecessor of i− i′ among the prefix-sums stored in v. The values for i′ and j′ are
not unique to a node, so we must keep a counter indicating what i′ is at every step. The
counter is initially zero and when the search exits a node v in child vk, we add sk−1 to
the counter (or 0 if k = 1).

The fusion tree allows predecessor searches on a set of t integers of w bits in
O(log t/ logw). Since in our case, we have t = logεN and w ≥ logN , the query
time is constant. The traversal therefore takes O(logN/ log logN) time.

This data structure also supports fast decompression of the string S[i, j]. When
accessing S[i] we obtain a path from the root of the grammar to the terminal vi generating
S[i]. Let u be the lowest common ancestor on the paths from the root to vi and vj obtained
from accessing S[i] and S[j]. To decompress S[i, j] we expand the part of the parse tree
that corresponds to all nodes to the right of nodes on the path from vi to u and to the left
on the path from u to vj . The part of the parse tree that we expand has m = j − i leaves,
and therefore we visit O(m) nodes in the parse tree in the process, so decompression of
S[i, j] takes O(logN/ log logN +m) time.

Theorem 5.1 Given a balanced grammar of size n generating a string S of length N , we
can build a data structure of O(n log1+εN) bits (for any constant ε), that supports ran-
dom access to any character of S in O(logN/ log logN) time, and access to m consecutive
characters in O(logN/ log logN +m/ logσ N) time.

Our upper bound for access matches the lower bound of Verbin and Yu [105] who
have shown that for “not-so-compressible” strings — those that have a grammar of length
n such that N ≤ n1+ε for some constant ε — the query time cannot be better that
O(log n/ log log n) = O(logN/ log logN) if the used space is not more than O(n logc n)
for some constant c.

5.4 Fast queries for unbalanced grammars

For unbalanced grammars we may use the results of Charikar et al. [26] or Rytter [88]
to generate a balanced grammar that produces the same string as the unbalanced,
but is of size larger by a factor O(log(N/n)). This immediately gives a data struc-
ture that uses O(n log(N/n) log1+εN) bits (for any constant ε) supporting access to
m consecutive characters in O(logN/ log logN + m/ logσ N) time, and a data struc-
ture using O(nσ log(N/n) log1+εN) bits of space that supports rank and select in
O(logN/ log logN) time. In this section we show the following theorem.

Theorem 5.2 Given any grammar of size n generating a string S of length N , we can
build a data structure of O(nτ logτ (N/n) logN) bits that supports random access to any
character of S inO(logτ N) time, and access tom consecutive characters inO(logτ N+m)
time.

Our data structure relies on Rytter’s algorithm to generate a balanced grammar and
the data structure described in the previous section. Rytter’s algorithm generates the
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LZ77 parse of the string and builds an AVL-balanced grammar by processing the factors
of the parse left to right. It maintains an AVL-balanced grammar of the string generated
by all factors preceeding some factor fk. Then it builds an AVL-balanced grammar of the
string generated by fk by selecting a logarithmic number of non-terminals and joining
them. By carefully choosing the order in which these are joined, this step can be done
in time linear in the height of the tallest grammar, which is bounded by O(logN). The
grammar for fk is then joined with the existing grammar. The algorithm produces a
grammar of size O(z log N

z ) where z is the size of the greedy LZ77 parse. Rytter then
shows that z ≤ n′ where n′ is the size of the smallest grammar generating S, so if
the input is a grammar of size n, the resulting balanced grammar has size O(n log N

n ).
One of the key observations in the analysis of Rytter’s algorithm is that when joining
two AVL-balanced grammars we add only a number of new rules proportional to the
difference in their heights, as stated below.

Lemma 5.1 ([88]) Given two AVL-balanced grammars S1 and S2, we can create an
AVL-balanced grammar S generating the concatenation of the strings produced by S1

and S2 by adding O(|height(S1)− height(S2)|) new non-terminals. When doing so, we
add a constant number of non-terminals with height h for min(height(S1), height(S2)) ≤
h ≤ max(height(S1), height(S2)).

A closer look at the algorithm will reveal the following useful property.

Lemma 5.2 Let S be an arbitrary grammar of size n and S ′ an AVL-balanced grammar
generated by Rytter’s algorithm producing the same string as S. The number of non-
terminals with height h in S ′ is O(n) for any h.

Proof The key observation needed for this proof is Lemma 5.1. First, recall that Rytter’s
algorithm processes the LZ77 factorization f1, . . . , fz of S from left to right, such that,
before processing fi, we have an AVL-balanced grammar Gi−1 for the string produced by
f1, . . . , fi−1. We refer to the processing of fi as round i of the algorithm.

We will prove that the number of rules added with height h in each round is con-
stant. Rytter’s algorithm picks rules v1, . . . , vj , j = O(logN), from Gi−1 such that the
concatenation of the strings produced by these is the string represented by fi. For
some k, it holds that height(v1) ≤ height(v2) ≤ . . . ≤ height(vk) and height(vk) ≥
height(vk+1) ≥ . . . ≥ height(vj). In addition, it holds that if height(vl) = height(vl+1)
then height(vl+1) 6= height(vl+2). The algorithm joins the grammars from lowest to
tallest, i.e., we first join the grammar rooted in v1 with the grammar rooted in v2 up to
vk and then vj with vj−1 down to vk.

We will prove by induction that joining the grammars from v1 to vk only adds a
constant number of rules with height h for any h. For the base case we have that
height(v1) ≤ height(v2). If height(v1) < height(v2) we know from Lemma 5.1 that the
number of rules added at any depth is O(1). If height(v1) = height(v2) the two are joined
by adding at new rule with two children, and clearly only one new rule is added.

For the inductive step, let L be the result of joining v1, . . . , vl−1. It follows from the
aforementioned properties that height(L) ≤ height(vl)+1. If height(L) < height(vl) then
we will add a constant number of rules with height h for height(L) ≤ h ≤ height(vl). No
new rules were previously added to vl in this round and the induction hypothesis says
that only O(1) rules with height 1 ≤ h′ ≤ height(L) were added to L, so only O(1) rules
are added at any height in the resulting grammar. If height(L) ≥ height(vl) then we add
one new node as a root.

We know from Lemma 5.1 that when joining Gi−1 with the grammar obtained from
joining the grammars rooted in v1, . . . , vj we add only a constant number of new rules at
each height. Since there are z ≤ n factors we conclude that the number of rules added
at each depth of the grammar produced by Rytter’s algorithm is O(n).
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Suppose we are given a grammar balanced by Rytter’s algorithm. We want to expand
the right-hand sides of rules to be of size O(τ). Because the grammar is AVL-balanced,
we may find a set of rules where each rule has height h− 1 or h for some h such that S
can be partitioned into substrings of size 1.6h−1

√
5

< τ ≤ 2h produced by these rules. We
expand the right-hand sides of these rules and proceed to a higher level. We then have
the following corollary.

Corollary 5.1 Given a string of size N compressed by a grammar of size n. After
applying Rytter’s algorithm to balance the grammar and expanding the right-hand sides
of rules to size 1.6h−1

√
5

< τ ≤ 2h for some h, the resulting grammar has O(n logτ N) rules.

Proof The grammar is balanced by Rytter’s algorithm so after it is expanded its height
is O(logN/(h − 1)) which in terms of τ is O(logτ N). We select rules with a height
difference of at most one in every iteration, so from Lemma 5.2 we know that O(n) rules
is selected at each level. Therefore the resulting grammar has O(n logτ N) rules.

We now have seen how to obtain an expanded, balanced grammar with O(n logτ N)
rules and we proceed to describe the data structure for access, rank, and select queries.

First we balance the grammar using Rytter’s algorithm. Due to the way the balanced
grammar is constructed we can select k ≤ n rules v1, . . . , vk such that S can be written
as the concatenation of the string produced by v1, . . . , vk, where for each vi, |vi| ≤ N

n

and height(vi) = O(log N
n )1. We store these in a linked list. For the access data structure

we store the prefix sums of the number of characters |v1|, . . . , |vk| and a predecessor data
structure containing these values (using the y-fast trie due to Willard [107]). We then
expand the grammar and build the data structures described in the previous section.

Queries are handled the same way as before when we reach the part of the grammar
that has been expanded. All we have to do is to specify where to start the query among
the rules v1, . . . , vk. For an access query we first ask for the predecessor among the prefix
sums of the length of the strings produced by v1, . . . , vk.

Querying the predecessor data structure takes O(log logN) time which is dominated
by the O(logτ N) time it takes to search the grammar using the data structure described
in the previous section.

The y-fast trie requires O(n logN) bits of space. For the expanded grammar we pick
O(n logτ (N/n)) rules with Θ(τ) variables on each right-hand side. We use O(τ logN)
bits of space per rule to store the fusion trees, so the total space usage becomes
O(nτ logτ (N/n) logN) bits. This concludes the proof of Theorem 5.2.
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Abstract

We consider the problem of storing a Straight Line Program S of size n compressing a
string of size N , and a set of positions {i1, . . . , ib} such that any substring of length l
starting from one of the positions can be decompressed in O(l) time. Our solution
requires space

O

(
min

1≤τ≤log∗ N

{
τ(n+ b) + min{n, b} log(τ)N

})
.

6.1 Introduction

A bookmark in a compressed string S is a position i from which the substring S[i, i+ l]
can be decompressed in O(l) time. For the bookmark problem, we are given S of length
N compressed into a Straight Line Program S of size n and a set of positions {i1, . . . , ib},
and we want to construct a data structure that supports linear time decompression from
any of the b positions. We present a bookmarking data structure giving the following
theorem.

Theorem 6.1 Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in S, we can
store S in space

O

(
min

1≤τ≤log∗N

{
τ(n+ b) + min{n, b} log(τ)N

})
such that later, given i ∈ {i1, . . . , ib} we can extract S[i, i+ l] in O(l) time.

In the case where b = Θ(n) the best trade-off is obtained by setting τ = log∗N and
the space becomes O(n log∗N).

Bookmarking of compressed strings is useful when we for instance want to compress
a collection of documents in to one file. For this scenario, we may store a list of document
titles or IDs on the side, and define a bookmark in the beginning of each document. Now
we can decompress a document without any time overhead.

53



54 ALGORITHMS AND DATA STRUCTURES FOR GRAMMAR-COMPRESSED STRINGS

Gagie et al. [42] presented a bookmarking data structure that uses O(n+ b log∗N)
space for balanced SLPs1. When the input is unbalanced, we may use an algorithm to
balance it at the cost of adding nodes [26,88], and as a result the space usage of their
data structure becomes O(n log N

n + b log∗N).
If we allow a “kick-off” time of O(logN) when decompressing a string, we may use

the O(n)-space data structure of Bille et al. [21] to decompress substrings. This does
not require any bookmarks to be predefined. If the string that we want to decompress is
longer than l then this solution is sufficient to get O(l) decompression time. We will use
the data structure of Bille et al. for τ slightly modified copies of S to exploit the same
idea for values of l smaller than logN .

6.2 Preliminaries

Let S be a string of length |S| consisting of characters from an alphabet of size σ. We
use S[i, j], 1 ≤ i ≤ j ≤ |S|, to denote the substring starting in position i and ending in
position j of S.

A Straight Line Program (SLP) is a context-free grammar in Chomsky normal form
with n production rules that derives a single string S of size N . We represent the SLP
as a rooted, ordered, and node-labelled directed acyclic graph (DAG) with outdegree
2 and we will refer to production rules as nodes where it is appropriate. A depth-first
left-to-right traversal starting from a node v in the DAG produces the string S(v). As
a shorthand we sometimes use |v| instead of |T (v)|. The tree that emerges from the
traversal we call the parse tree. We denote the left and right children of v by left(v) and
right(v), respectively, in both the SLP and the parse tree.

All logarithms in this paper are base 2. As a shorthand to denote the logarithm
applied i times to a number n we write log(i) n, e.g., log(3) n = log log log n. The iterated
logarithm log∗ n is equal to the number of times the logarithm can be applied to n before
the result is less than 1, i.e., log∗ n = arg mini{log(i) n ≤ 1}.

6.3 A Simple Solution

As backbone in our data structure we use a data structure by Bille et al. [21] summarized
in the next lemma.

Lemma 6.1 ([21]) Let S be a string of length N compressed by an SLP of size n. There
is data structure of size O(n) that supports decompression of a substring S[i, i + l] in
O(logN + l) time.

The key observation given this data structure is that when l ≥ logN the decompres-
sion time is dominated by the l term, and we therefore only need to focus on the case
where l < logN .

To obtain a data structure using O(n+ b logN) space for the bookmarking problem
we store the substring S[i, i+ logN ] for each bookmark i ∈ {i1, . . . , ib} along with the
data structure of Lemma 6.1. When we need to decompress a string we use the data
structure of Lemma 6.1 if l ≥ logN and otherwise we just read form the stored substring.

In the case where n < b it is sufficient to store n substrings of length O(logN) to get
O(l)-time decompression from bookmarks. For this data structure we need the property
given in the following lemma. The observation was first used for compressed pattern
matching [82] and later it appeared in other variations for other purposes [52, 75].
However, we will give a proof using our terminology for the sake of completeness.

1The bound is in fact O(z + b log∗N), where z is the size of the LZ77 parse of S. Since it is known that
z ≤ n′ ≤ n [88], where n′ is the size of the smallest SLP generating S, we replace z by n for clarity.
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Lemma 6.2 Let S be a string of length N compressed by an SLP of size n. Let r(v) =
S(u)[max{1, |u| − k}, |u|] ◦ S(w)[1,min{1, k− 1}] be the relevant substring with respect to
k of a node v = uw in S. Then any substring of S of length at most k is also a substring
of at some string in the set {r(v) | v ∈ S ∧ |v| ≥ k}.

Proof The proof is by induction. For the base case, consider a node v = uw where
|v| ≤ 2k − 2 and |u| < k and |w| < k. Since r(v) = S(v) this obviously contains every
substring of length k. For the inductive step we again consider some node v = uw and we
know that S(v) = S(u) ◦ S(w). Assume that |u| ≥ k and |w| ≥ k, then by the induction
hypothesis it holds that the set of strings {r(u′) | u′ ∈ S(u) ∧ |u′| ≥ k} ∪ {r(w′) | w′ ∈
S(w) ∧ |w′| ≥ k} contains all substrings of length k in S(u) and S(w). The substrings
of length k starting in S(u) and S(w) are not guaranteed to be in this set, but since r(v)
contains exactly all these, they will be after adding r(v) to the set. For the cases when
|u| < k or |w| < k the same argument holds.

For our data structure set k = logN and store the strings r(v) for all v ∈ S. For each
bookmark i we store the node that generates the string S[i, i+logN ] and store the “local”
index in r(v). Furthermore, we build the data structure of Lemma 6.1 for use for the
case where l ≥ logN .

Since k ≤ |r(v)| ≤ 2 logN −2 and we store a constant number of words (pointers) for
each bookmark, and the data structure of Lemma 6.1 uses O(n) space, our data structure
uses O(n logN + b) space in total. To summarize, we have shown the following theorem.

Theorem 6.2 Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in S, we can
store S in O(n+ b+ min{n, b} logN) space such that later, given i ∈ {i1, . . . , ib} we can
extract S[i, i+ l] in O(l) time.

6.4 Generalized Solution

We now describe a data structure that seeks to reduce the logN factor of the space usage
in Theorem 6.2. The time to decompress a string S[i, i+ l] for some bookmark i is still
O(l). Key to the solution is a technique due to Gawrychowski [47] captured by the
following lemma.

Lemma 6.3 ([47]) Let S be a string of length N compressed into an SLP S of size n. We
can choose an arbitrary ` and modify S in O(N) time adding O(n) new variables such
that we can write S as S = S(v1) ◦ . . . ◦ S(vm) with m = O(N/`) and |S(vi)| ≤ 2` − 2.
Among the nodes v1, . . . , vm there are O(n) distinct nodes.

A proof of the lemma is given in the appendix. The lemma tells that we can restructure
the given SLP such that for any substring S[i, i + `] we can find O(1) nodes whose
concatenation has length O(`) and contains S[i, i+ `]. We now describe how to apply this
result to get a bookmarking data structure using almost linear space. In the description
we use the parameter τ which is later to be minimized subject to n and b.

First we make τ copies of S, denoted by S1, . . . ,Sτ . Apply the restructuring algorithm
for ` = logN, log(2)N, . . . , log(τ)N to the τ copies of S to get S ′1, . . . ,S ′τ . Build the data
structure of Lemma 6.1 for each SLP S ′1, . . . ,S ′τ . For each copy of the SLP S ′i, let a block
node be a node v for which |S(v)| = Θ(log(i)N). For each bookmark i we store the O(1)
block nodes generating the string containing S[i, i+ `] for each SLP S ′1, . . . ,S ′τ . We also
store the relative index of position i in the string generated by the first block node. On
the lowest levest, i.e., for S ′τ , we apply the technique from the previous section that
requires the least space. Specifically, if b < n we store the substrings of length log(τ)N
starting in each bookmark, and if n < b we set k = log(τ)N in Lemma 6.2 and store the
relevant substrings subject to this k-value.
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To decompress a substring of length l from a bookmark position i ∈ {i1, . . . , ib} we do
the following. Suppose that log(j+1)N < l ≤ log(j)N for 1 ≤ j < τ . We locate the block
node that contains i in S ′j and starts decompressing the string starting in the relative
position stored for the current bookmark using the data structure of Lemma 6.1. If we
reach the end of the string generated by the current block node, we move on to the next
one stored and repeat the process from relative position 1.

When we decompress from a block node v in S ′j , the query time of Lemma 6.1
becomes O(log log(j)N + l) = O(l) since log(j+1)N < l. We visit O(1) block nodes so
the totalt time to decompress S[i, i+ l] becomes O(l).

If l < log(τ)N we use the solution chosen for the bottom level, which according to
Theorem 6.2 yields a decompression time of O(l).

Our data structure creates τ copies of S. Each have size O(n) after the restructuring
of Lemma 6.3 and the application of Lemma 6.1, i.e, this requires O(τn) space. For each
bookmark we store references to O(1) nodes in each copy totalling O(τb) space. For
S ′τ we need O(min{n, b} log(τ)N) space as stated in Theorem 6.2. In conclusion we get
Theorem 6.1.

Notice that this is a generalization of Theorem 6.2. If we set τ = 1 the two are
equivalent.

6.4.1 Getting Linear Space

There are certain values of n and b for which our data structure uses linear space.
Obviously, if n = O(N) or b = O(N) we can afford to store the entire uncompressed
string, and decompression becomes equivalent to reading contiguous memory. Moreover,
if b = O(1) the space usage of our simple solution (Theorem 6.2) becomesO(n+logN) =
O(n) because logN ≤ n for SLPs. In some cases, we may get O(n + b) space for non-
constant values of b, as seen here.

Corollary 6.1 Given an SLP for T [1, N ] with n rules and positions i1, . . . , ib in T . If
b ≤ n

log(c)N
or n log(c)N ≤ b for some constant c, we can store T in space O(n+ b), such

that later, given i ∈ {i1, . . . , ib} we can extract T [i, i+ l] in O(l) time.

Proof Set τ = c in Theorem 6.1 and it follows.

Our solution also yields linear space if the alphabet is sufficiently small.

Corollary 6.2 Given an SLP for T [1, N ] with n rules, where the characters are drawn
from an alphabet of size σ, and positions i1, . . . , ib in T . If σ ≤ 21+max{n/b,b/n}, we can
store T in space O(n+ b), such that later, given i ∈ {i1, . . . , ib} we can extract T [i, i+ l]
in O(l) time.

Proof Consider Theorem 6.2. To store the set of strings we needO(n+b+min{n, b} logN log σ
w )

space, where w is the word size. Since w ≤ logN in our model we set w = logN .
By manipulation of the expression we see that the space becomes linear when σ ≤
2(n+b)/min{n,b} = 21+max{n/b,b/n}.
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Proof of Lemma 6.3

For completeness of this work, we give a proof of Lemma 6.3 (alternative to the one
given in [47]).

Before the proof we introduce some notation. We consider rooted, ordered, binary
trees and forests with labels on both nodes and edges. As with SLPs, we denote the
left and right child of a node v by left(v) and right(v). The depth of a node v is the
number of edges on the path from the root to v. The nearest common ancestor nca(v, u)
of two nodes v and u is the deepest node that is an ancestor of both v and u. Let
p = v1, v2, . . . , vk be a path in a forest F such that v1 is an ancestor of vk. The left forest
of p is composed of the subtrees F (left(vi)), where 1 ≤ i < k and left(vi) is not on p. The
right forest of p is defined similarly.

For the proof we will describe an algorithm that transforms the SLP and show that
the resulting SLP obeys the specifics of the lemma. On a high level, the algorithm selects
all the nodes that generate strings of size Θ(`). This partitions S into a substrings where
some are covered by the selected nodes and some are not. Suppose for simplicity that a
substring S[i, j] that is not covered by a selected node has a substring of size Θ(`) on its
left and on its right. We then use the path going from the selected node on the left to the
selected node on the right to construct new grammars generating strings of length O(`)
that generate S[i, j].

Proof Let B be the set of nodes that generate strings of length greater than or equal to
` and whose children generate strings of length less than `. The nodes in B generate
strings of length at most 2`− 2. Let u′, v′ be an occurrence of u, v ∈ B in the parse tree
of S such that u′ is to the left of v′ and no other node from B occurs in the right forest of
the path from v′ to nca(v′, u′) or in the left forest of the path from u′ to nca(v′, u′). For
all such pairs u′, v′, the forest Fl contains the path from u′ to nca(u′, v′) and the forest
Fr contains the path from v′ to nca(u′, v′).

The two forests are labelled as follows. In Fl, if there is an edge {left(v), v} then we
assign it the primary label p({left(v), v}) = right(v) and secondary label s({left(v), v}) =
ε. Labels for Fr are defined conversely: If {left(v), v} is an edge then p({left(v), v}) = ε
and s({left(v), v}) = right(v), if {right(v), v} is an edge then p({right(v), v}) = left(v)
and s({right(v), v}) = ε.

The size of Fl and Fr is O(n). We prove this by arguing that a node only occurs X
times in Fl (and Fr). Let v be a node in Fl. There can be at most two paths ending in v,
because v can only be the nearest common ancestor of one specific pair of nodes in B, so
v occurs at most twice as a leaf in Fl. The node v also occurs at most twice as an internal
node in Fl. Let w be a node in S(v) that is also in B. Let u ∈ B be any node occuring to
the left of w in the parse tree of S without any other node from B occurring between
them. If u ∈ S(v) the the path from w to nca(w, u) does not contain v. If u /∈ S(v), the
path from w to v is the same for any u. Hence, v occurs only once in Fl for this case.
Similarly, v only occurs once in Fl for the case where u occurs to the right of w in the
parse tree without any other nodes from B between them.

Finding B takes O(n) time. Finding the ancestors of each pair can be done in one
pass of the parse tree by marking the highest node visited when going from one node in
B to the next. One pass takes O(N) time. The paths between nodes in B can be found in
O(N) time, so the construction of Fl and Fr can also be done in O(N) time.

In the following we show how to use Fl and Fr to restructure the SLP. The algorithm
proceeds in two rounds. First we compute Fl and use it to restructure the SLP. Then we
compute Fr from the new SLP and use it to restructure the SLP once again.

Starting from the roots of Fl (or Fr in the second round of the algorithm), we partition
the trees greedily into edge-disjoint clusters s.t. the length of the string generated by the
concatenation of primary edge labels is at most ` on any root to leaf path in a cluster.
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Consider a cluster rooted in v ∈ Fl with leaves v1, . . . , vk. For every root-to-leaf path in
the cluster we build a tree over the primary and secondary labels on the path2. Let vi be
the current leaf and tp the root of the tree over primary labels and ts the root of tree over
secondary labels. Replace vi by vi = tsvtp in S. In the second round, when we consider
clusters in Fr, the node is replaced by vi = tpvts. The nodes of the trees rooted in tp and
ts are the new nodes of the SLP.

When a node in S is replaced it generates the same string, so the resulting SLP also
generates S. This concludes the proof of Lemma 6.3.

2To efficiently reuse subtrees when building the trees, they should be constructed from the root of Fl and
down. This ensures that there is a tree representing the edges of any path from the root to an internal node in
Fl.
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