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Abstract

Due to increasing fuel prices and focus on the environmental impact of shipping, there is
greater need for control and evaluation of ships’ actual propulsion energy performance.
The objective was to develop an improved method for evaluation of ship propulsion
performance based on both noon reports and full-scale measurements using machine
learning methods.

The fuel efficiency is expected to decrease gradually due to fouling of the hull and
propeller. This effect on the propulsion performance can be difficult to determine
because the ship is rarely sailing in the same condition or state at two points of time,
and the difference in the fuel efficiency cannot be directly compared at two arbitrary
points of time.

Empirical ship hydrodynamic methods can estimate a theoretical energy consump-
tion that is comparable with the actual energy consumption, but the methods show
significant discrepancies without proper tuning and require several ship-specific data
that are often unavailable.

The machine-learning methods Artificial Neural Network (ANN) and Gaussian
Process Regression (GPR) were used to illustrate the possibility of using purely data
driven methods, without any other information on the ship, for prediction of the energy
consumption in order to generate a trend of the propulsion performance.

ANN and GPR showed similar prediction performance, but GPR was selected
as the primary method due to its ability to predict the variance and determine the
influence of the input variables separately.

Data from two different ship types were studied: A product tanker, Torm Marie,
and five sister containerships. A customized logging system was installed on board
Torm Marie in order to sample measured data for a period of two months. Using these
data it was possible predict the energy consumption (EC) with a prediction error of
less than 1%. Using noon report (NR) data from the same vessel over a two-year

period, the prediction error increased to 4.4%.
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Noon report data from the five container ships were collected over a period of about
ten years and included dry-dockings. The relative prediction errors from these data
were similar to the ones for the product tanker and are thus not ship type specific.

Data from the container ships showed that 50-60 or one year of valid noon reports
are sufficient for determining long-term trends of the performance.

By introducing hindcast weather information data, the prediction errors were sig-
nificantly reduced for all of the tested data sets.

The prediction error from the regression methods was used to find the long-term
performance trend (VPT) between external hull events such as dry-dockings and to
evaluate the effect of these. The trends were in general in correspondence with what
has been found by others, although on the smaller side.

It was attempted to use a similar method to detect events that affected the perfor-

mance, this was found to be more difficult and resulted in several mis-detections.



Resumé

Et skibs effektforbrug til fremdrivning forventes at forgges gradvist over tid som fglge
af begroning af skrog og propeller. For at kunne bestemme @sndringen i fremdrivn-
ingseffekten er det ngdvendigt at sammenligne denne effekt ved en bestemt tilstand
af skibet, dvs. dybgang, temperaturer, vind, fart, bglger, med effekten for skibet i
ngjagtig den samme tilstand, men ved et andet tidspunkt (reference). Dybgange, fart,
vind og vejr skal veere identiske ved de to forskellige tidspunkter for at givet palidelige
sammenligningsgrundlag; men et skib er sjeldent eller maske aldrig i praecis samme
tilstand ved to forskellige tidspunkter. Der er derfor ngdvendigt at udvikle metoder,
der kan korrigere for dette.

En velkendt metode er at sammenligne den aktuelle fremdrivningseffekt med én,
der er estimeret ved hjalp af f.eks. empiriske metoder eller ved brug af modelforsggsre-
sultater. Men empiriske metoder er mest velegnede til bestemmelse af fremdrivningsef-
fekten i projekteringsfasen og for designkonditionen af skibet, og det er ikke altid, at
modelforsggsresultater er til radighed i forngdent omfang.

I naerveerende projekt er der derfor brugt statistiske regressionsmodeller, der forudser
fremdrivningseffekten i en given tilstand baseret pa tidligere data for skibet.

Tre forskellige szt af data blev brugt til at evaluere disse metoder: automatisk
opsamlede data over en periode pa 2 maneder fra en produkttanker, manuelle dagsrap-
porter fra en produkttanker i periode pa ca. 2 ar og dagsrapport-data fra fem sgster-
containerskibe indsamlet i en periode pa omkring 10 ar.

Den ikke-parametriske regressionsmetode Gaussisk Proces-Regression viste sig at
give de bedste resultater. Datadrevne modeller er afhaengige af palidelige og hyppige

data, og datasaettet med automatiske opsamlede data viste sig ogsa at give de bedste
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forudsigelser.

Langtidseffekter blev undersggt med data fra de fem containerskibe. Resultaterne
viser, at der er stor forskel skibene imellem; men fremdrivningseffekten kan estimeres
med en usikkerhed pa omkring 5%. Ved hjzlp af beregningerne blev det forsggt at

eftervise begivenheder som dokning med skrogpolering, maling og propellerpoleringer.
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Chapter 1
Introduction

The propulsion performance of a ship in service is an expression of the energy con-
sumption to drive the ship through the water at a certain state (speed, loading and
weather condition), relative to a previous state or a reference state.

Over a ship’s lifespan, the energy consumption is generally expected to increase as
the ship’s performance efficiency declines which means that the fuel consumption will
increase for a certain speed or the speed will be reduced for a certain fuel consumption.
This performance reduction is mainly due to fouling of the hull and propeller, but can
also be attributed to other irregularities of the hull and propeller surface caused by
damages or erosion. Fouling can be cleaned off the hull during dry-docking, however
damages and erosion are almost impossible to repair, so the ship never returns to the

same performance condition as, in the original state.

1.0.1 Motivation

Evaluation of ship propulsion performance attracts the attention of ship owners mainly
because the bunker expense is becoming an increasingly part of the total service costs
of a ship. The performance deterioration or increase in energy consumption can vary
from a few percent a year to a dramatic 30-40% in a short time (Carlton (1994)). For
example, the fuel consumption of a large containership is about 250 tonnes (metric)

per day, and if the price of fuel oil is 534USD /tonne (2008), a modest 5% decrease in
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performance will result in a 6,675 USD daily penalty or, if the ship is sailing 200 days
per year in a substantial 1,355,000 USD annually.

In addition to fuel consumption, the discussion of global climate change has forced
ship owners as well as customers of ship transportation to consider their environmental
image. It is estimated that the shipping industry accounted for 3.3% of the global
C'O4 emissions in 2007(IMO (2009)). A better understanding of ship performance can
show that ship owners care and are actively working to reduce their footprint on the
environment.

The International Maritime Organization, IMO, states that more than 90% of
global trade is carried by sea, and the total trade in tonnage is expected to increase as
evidenced by the increase from 2,500 mil. tonnes in 1970 to 8,400 mil. tonnes in 2010,
although with a short stagnation during 2009 (IMO (2012)). In order to transport
these goods, it is estimated that 339 mil. tonnes of bunker fuel was consumed in 2008
(IMO (2009)).

A great deal can be saved by optimizing the logistics of shipping operations. The
ship speed is a governing factor for energy consumption, and by optimizing the voyage
by travelling at optimal speed for the entire duration of the journey, energy consump-
tion can be minimized. Optimal planning of the route due to weather and water depths
are also relevant parameters in this optimization.

Another short-term energy consumption factor is the trim of the vessel defined as
the draught aft subtracted by the draught forward. The effect of the trim on energy
consumption varies among different ship types, where e.g. containerships are rarely
loaded to maximum draught and are often able to change the trim by moving ballast
water. Other ships such as bulk carriers and oil tankers are often in close to full
load or in ballast loading condition. Furthermore the design speed of the vessel has an
important effect on how sensitive it is to changes in the trim. Trim is thus of increasing
interest to ship owners and operators (Larsen et al. (2012)).

The effect of fouling varies significantly depending on the ship, operation profile,
anti-fouling paint, etc. Knowledge of the fouling growth rate makes it possible to
determine if or when a propeller or hull cleaning is economically beneficial, or if it is

profitable to conduct a premature dry-docking, rendering it very useful information



for a ship operator.

Another trend in the maritime industry is the growth in fuel saving methods and
devices that are being installed, and tested in order to reduce the energy consumption
by only a few percent. The final stage in the development of these methods is often
based on model test experiments or CFD studies, but when a device like a newly
designed propeller is installed it may be hard to identify small improvements in the
energy consumption of the real ship due to the large scatter of existing performance
evaluation methods. An improved method that can detect small percentage changes
would give the supplier and customer of fuel saving products better confidence in how
the ship performs in real life. A good example of this is given in Andersen et al.
(2005), where the performances of two sister ships (product tankers) one equipped
with the new KAPPEL propeller and the other one with the a conventional propeller,
are described. The reduction in power was anticipated to be 6%, and a 4.4% reduction
was shown by over two years of sea trials.

Similarly manufacturers of anti-fouling paint are also keen to document the effi-

ciency of a new product in a service condition.

1.0.2 Performance evaluation methods

Generally ship propulsion performance is an expression of how well a ship performs ver-
sus how well it should perform. Evaluation by comparison of the energy consumption

can be described in the following ways:

1. By comparing the actual measured or reported energy consumption ECj at time

to with the energy consumption EC4 at another time t; for the exact same state.

2. By using a model based on empirical methods, model test or CFD to estimate the
theoretical energy consumption of the vessel in the present state and comparing

it with the actual energy consumption.

A ship is sailing at different draughts and speeds, and furthermore it is exposed to
many external effects that influence the energy consumption, i.e. wind speed, temper-

atures, waves. Although the first method is the ideal method, it is difficult to apply,
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as the exact state where all factors are identical is unlikely to occur more than once.
All the parameters have to be identical at two different times in order to give a reliable
picture of the performance of the ship, e.g. the measured difference in the propulsion

power.

The second method is based on empirical methods which, apart from the general
operational and environmental properties (i.e. speed, draught, wind, waves), also rely
on many input parameters of the hull shape and propeller. Empirical propulsion pre-
diction methods are mostly used in the design phase of ship design projects where they
are a useful tool for comparing designs and estimating engine and propeller properties.
They are partially based on statistics from model tests at the design draught. This
makes them vulnerable to other loading conditions. However, it is possible to tune the

empirical methods with reliable full scale measurements or model test data.

Instead of evaluating the performance effect on energy consumption, different propul-
sion related variables can be used. For example by evaluating the measured speed at a
certain power compared with a reference speed, a so-called speed index, as described
by e.g. Hansen (2011). In Eefsen (1996), many different indices are established by

comparing the theoretical values with the actual values.

Instead of comparing the energy consumption at a certain state, other measures can
be used for performance evaluation such as "Added resistance” by Propulsion Dynamics
Inc. Munk (2006) or the average hull roughness by Malone et al. (1980).

The predicted energy consumption EC can be compared with the actual reported or
measured energy consumption £C, and the relative difference w as presented in (1.1) is
then an expression of how well the ship performs compared to how it "should” perform
- also referred to as a Vessel Performance Index, VPI. The trend of the development in
performance over time ¢ can be defined as the Vessel Performance Trend, VPT, which

is assumed to be linear with a slope o and a constant .

Figure 1.1 shows a typical decrease in performance over time where the performance
is determined by the relative difference or prediction error w. The dashed vertical lines

are the dates of hull cleanings, and the solid vertical lines indicate dry-dockings.



EC — EC
VPT(t) = at + B (1.2)

EC-EC
EC
vertical lines represent dry-docking and the dotted hull cleanings. The solid trend lines

illustrate the VPT

Figure 1.1: Example of performance decrease (w = ) over time where the solid

Large abrupt changes in w indicate the occurrence of an event that affect the
performance. Performance relevant events such as a dry-dockings are often known
to the shipowner and crew, but unknown events such as propeller damage are also

possible.

1.0.3 Roughness

In order to understand the effect of fouling on the propulsion power, the roughness of
ships is introduced, and a common approach used is presented in Chapter 2

The roughness of the hull skin has a significant effect on the frictional resistances
of a ship because it affects the boundary layer and boundary layer development over
the hull. Carlton (1994) suggest to view the roughness in two separate components,
so that the hull surface roughness consists of the sum of permanent roughness
and temporary roughness. The permanent roughness relates to the base surface

conditions from a newly launched ship where the surface is clean, but still has an uneven
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skin due to e.g. welding seams, bowing of plates and "hungry horse” phenomena,
which in total is estimated by Carlton (1994) to increase the energy consumption by

approximately 1.75%.

Permanent roughness can also include damage, corrosion or old paint as described
by Carlton (1994). These "scars” are impossible or difficult to remedy which explains
why ships’ propulsion performance most likely never will return to the same level as
at the launching. The temporary roughness relates to the additional roughness that

can be removed such as fouling.

Roughness has traditionally been defined as the diameter of a sand grain k,, but
is in practice substituted by measurements with a Hull Roughness Analyser from e.g.
BMT (British Maritime Technology) where the maximum difference in height of the
surface is found within a length of 50mm, also defined as R;(50) in King (1982).
International Marine Coatings (International (2004)) recommends performing 10-15
measurements over a length of 750-1000mm. This is performed at about 100 locations
on the submerged hull surface, and ultimately the Average Hull Roughness (AHR) can
be determined, which represents the overall hull surface roughness. AHR is used to

find the frictional resistance coefficient for the actual hull surface condition.

The frictional part of the total resistance varies among different ship types, where
the friction fraction (Cr/Ciy) is higher for blunt hull forms than slender hulls. Num-
bers of 0.67 for a product tanker and 0.62 for a containership are suggested in Carlton
(1994), where a ULCC can reach a frictional resistance fraction of about 0.85. Fur-
thermore, the local speed of the flow varies significantly from different areas on a ship
hull, and consequently the local frictional resistance also varies. Walderhaug (1986)
performed a series of measurements on plates with different roughness and a range of
speeds and established a more detailed frictional resistance coefficient based on the

ship hull form where the hull is divided into local frictional speeds and roughness.

A simple formula for evaluating the increase in propulsion power (P, — P;) due to
the change in roughness is presented in Townsin et al. (1980) as in (1.3) where A = 5.8
is proposed based on a series of roughness measurements, and Py;cpr is the maximum

continuous power rate of the main engine.
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The effect of the propeller roughness can also contribute significantly to the propul-

sion efficiency and has been evaluated in Townsin et al. (1985) where measurements

of the propeller blade roughness were taken at several different locations. This led

to an increase of 3.4% over a year compared with a newly polished propeller. It was

estimated that the payback period of a propeller polish at 1985 prices would be five

weeks assuming the ship is at sea 200 days per year.

1.0.4 (Bio)-Fouling and the effect on the resistance

Hull and propeller fouling are general terms to describe marine growth that attaches
to a ship and can include anything from slime to shells. Biologically the fouling can be
divided into micro-fouling and a macro-fouling where examples of micro fouling are the
algae attachments such as “slime” and macro fouling refers to barnacles and seaweed
(Callow and Callow (2002)). The development of fouling starts the moment an object
is immersed into seawater with micro fouling, developing to finally include shells and
seaweed.

This build-up of fouling varies over time and depends on many factors such as the
geographical area and climate of the operation (tropical or arctic), the ship’s service
speed and type of anti-fouling paints (Carlton (1994)). In Bertram (2000), an added
resistance of 3-5% in 40 days due exclusively to slime was reported.

The amount and type of fouling also varies for different locations on the hull surface,
and evaluations of the effect from fouling measurements should treat different areas
separately as in Townsin et al. (1981).

The increase in roughness from fouling varies not only as an effect of the speed
and operation profile of the ship, but also due to use of different anti-fouling paints
as described by Carlton (1994) where modern self-polishing paints increase by 10-30
p/year and traditional paints 40-60 pum/year.

Townsin et al. (1980) demonstrates how the rate of roughness increases with higher
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initial roughness, so for a relatively high initial roughness the roughness increases with
20 pum/month and for a very smooth surface with an initial roughness of 60 pm is
argued to have no increase in roughness over time and to be maintenance free.

A thorough study was performed by Townsin et al. (1986) where ship roughness
measurements from 47 different ships over ten years were collected resulting in 147
measurements. The data show a trend of 40um/year, although the latter part of the
period had a lower rate due to better paints applied, and it is shown that fouling has
dropped to about 20 pm/year. Initial roughness from new buildings was reported
by three different data sets, one including 13 ships reporting a mean value of 129
um/year (1976-79), one including 111 datasets reported 113pum/year (1983-85), and
measurements based on 6 new buildings reported a mean value of 107um/year (1980-
85)

Using (1.3) and knowing the roughness increase, the effect on the propulsion power
has been estimated to increase 3.5% over 2.5 years by Eefsen (1996), assuming a growth
rate 20um/year.

Other examples are given by Willsher (2007) where slime is reported to increase

the resistance by 1-2%, seaweed up to 10% and shells up to 40%.

1.1 Existing methods for vessel performance moni-

toring

As previously outlined the ship propulsion performance can be estimated by com-
paring the actual measured or reported energy consumption FC with the theoretical
determined value given the same conditions.

In Carlton (1994), a comprehensive overview and discussion of ship performance
monitoring methods are presented. A crude method is to evaluate the Admiralty
coefficient, Ac ((1.4)), where A is the displacement of the ship, U is the ship speed
and P is the shaft propulsion power. P can alternatively be replaced by the fuel
consumption. The method does not account for wind and sea and should only be used

for comparative loading conditions.
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A2/3U3
Ao == (1.4)

Carlton (1994) furthermore describes a procedure that finds the theoretical values
for the hull and propeller, and by including theoretical effects from the weather and

sea, ratios of different performance variables can be evaluated.

An example of empirically based ship performance monitoring is demonstrated by
Eefsen (1996) where performance evaluation was carried out on six product tankers
and one bulk carrier. The sea trial data was compared with estimates from Holtrop
and Mennen (1984) and Harvald (1983) in order to determine which of the two meth-
ods was most suitable for the present ship (Product tanker). The Holtrop and Mennen
(1984) method showed the best results and was used exclusively. The air and wind re-
sistance coefficients were determined by Blendermann (1990), and the added resistance
in waves was estimated by the tabular values in Bhattacharyya (1978). Furthermore,
the wave heading correction factors from Townsin et al. (1993) were used. Using these
methods, it was found that the influence of the weather on the test ship in Beaufort
5 increased the resistance by approximately 17%, with 13% due to wind and 4% to
waves. Many other factors were also included in the model, e.g. temperatures and
fuel calorific values. With the final model it was possible to establish different ratios
between the calculated values and the measured values, e.g. resistance, power, daily
fuel consumption. Linear regression was used to evaluate the long-term trend based
on the data with a significant scatter. Due to the empirical resistance calculation, the
method is very sensitive to changes in the draught and trim, but if the model is sup-
ported by e.g model tests, it can be a robust tool to use without having any previous

data.

A detailed study of the effect of the hull roughness was carried out by Malone
et al. (1980) where the main focus was on planning hull cleanings and dry-dockings.
Empirical methods were used to estimate the effective propulsion power due to the
hull roughness, the wind and waves. By isolating the hull roughness, the change in

the roughness was used to establish a "Ship Economic Model” based on the change in
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propulsion power and fuel consumption. Simulations using the model made compar-
isons between dry-docking and hull cleanings for a containership, a bulk carrier and a
tanker. For the scenarios in the study the optimum docking intervals were respectively
2.1, 2.05 and 2.0 years. Sensitivity analyses were performed to evaluate the effect of

changes in oil prices, port fouling severity, time at sea and cargo load.

In Andersen et al. (2005), results from model tests were used to establish a model
that found the propulsion power at a reference speed. Linear interpolation between
the tested conditions was used to find the still water resistance for the actual loading
conditions, and wind and wave effects were accounted for using the methods by Isher-
wood (1972) and Gerritsma and Beukelman (1972), respectively. The main objective
was to detect the performance difference of two sister ships, one fitted with a normal
propeller and the other with a KAPPEL propeller®. The trend due to fouling was
found to 34kW/month corresponding to 0.47%/month or 5.68%/year relative to the

normal continuous power rate of the machinery.

A recent work by Logan (2011) studied the hull performance of two sister tankers
from the US Navy with controllable pitch propellers. On-board data collection made it
possible to make a propeller model which was compared with later measurements, and
the relative comparison is refereed to as the Key Performance Index. The comparison
was only carried out for two loading conditions but illustrated how the effect of being

at berth for a few months can increase the energy consumption of up to 35%.

J.M.J. Journée has used his experience in ship routing and heavy weather guidance
(in Journée (1976) and Journée and Meijers (1980)) to use full scale measurements
for performance surveillance in Journée et al. (1987). The method is based on tradi-
tional ship propulsion theory where the essential coefficients, the residual resistance
coefficient Cg, thrust coefficient K, torque coefficient K, wake fraction w and thrust
deduction t are fitted to polynomial expressions based on the full scale measurements.
The wind resistance is based on Isherwood (1972), and wave resistance is calculated
by Gerritsma and Beukelman (1972) for head seas and Boese (1970) for beam and fol-

lowing seas. Different variations of the system were also used to post-process full scale

2The KAPPEL propeller concept design developed by JJ Kappel
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measurements carried out earlier in Journée (2003a) and Journée (2003b). The analy-
ses and measurements show very good agreement and give valuable insight into the fuel
consumption depending on different operations, e.g. trimmed conditions or operating
a twin screw ship with only one propeller, but no long trends of the performance have
been evaluated.

Recently Hansen (2011) showed how detailed simulations could be used for per-
formance monitoring, using automatically sampled data collected from many sources
on a containership over a period of a year. Within this period a propeller polish was
performed, and through the relative change in roughness, speed and power the ef-
fect from this and the linear trends were studied using different filtering. The model
demonstrated a 2% reduction in the power due to the propeller polish, and the slopes
of the power trend varied from 3.1%/year and 3.8%/year increase in the propulsion
power before and after the propeller polish.

A data-driven approach is described in Petersen et al. (2011) where a Neural Net-
work model trained with measured data from one of DS Norden’s product tankers
was used to predict the energy consumption with an accuracy of about 1.5%. Leifur
b. Leifsson et al. (2008) explored the difference between empirical models White-boz,
a Neural Network Black-box and a combination of an empirical and a Neural Net-
work Grey-box. There is no clear indication of a superior model, but it indicates that
the Grey-boz is better in unusual environmental conditions. The data analysed were
gathered over 5 months and no long-term effect is expected to be detected.

The recently finished Ph.d. thesis Petersen (2012) also explores different statistical

approaches for estimating the energy consumption using measured data.

1.2 Motivation for an improved vessel performance

evaluation method

As shown in Eefsen (1996), a scatter of £10% in added resistance from fouling is
not uncommon, using simulations with automatically sampled data the method as

described by Hansen (2011) reveals a scatter of only about +2% although very few
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Figure 1.2: Example of the relative change in the fuel consumption of a tanker 300,000
dwt crude oil tanker evaluated by SeaTrend®

points are available for the linear trend.

Using noon report data demonstrates significant scatter as also illustrated in Fig-
ure 1.2 where an extract from the performance monitoring system Seatrend® developed
by FORCE Technology is shown. Noon reports are by far the most common method
for collecting performance data and hence have a larger market potential, so support-
ing noon reports data is desirable. Reducing the scatter would result in a more reliable
trend and make it possible to use less data to detect a reliable trend and thus give the

ship operator an earlier warning of significant changes in the performance.

1.3 Data-driven models

Data-driven models, also referred to as "Machine learning” or "Pattern recognition”,
are being used in an increasing number of applications in many different fields. Sev-
eral different machine learning methods exist and can be used for problems such as
speech recognition and multivariate regression models for prediction of weather fore-

casts. Data-driven methods train or learn the data to estimate if parts of a dataset or
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grouped allocations of a dataset are related. The methods are often grouped into su-
pervised learning and unsupervised learning. In supervised learning problems, an input
vector (x) has corresponding target outputs (y). When the model is trained to match
certain discrete categories, e.g. recognition of hand written digits, it is called "classifi-
cation” and when training the model with respect to a continuous output variable is
referred to as regression.

In unsupervised learning, no targets are available, and it is attempted to find groups
of similar data in the input data (x), called clustering, or to find distributions of
different clusters (density estimations).

Until recently, maritime applications of data-driven methods have mostly included
manoeuvring analysis and predictions as demonstrated by Hess et al. (2009) and Pe-
tersen and Lauridsen (2000). However, they have also been used by Hess et al. (2006)
for interpolation of propeller open water coefficients using Artificial Neural Networks
(ANN).

1.4 Objective of the thesis

The objective of this thesis is to establish an improved method for evaluation of propul-
sion performance. The method should be adaptive and able to adjust to measured and
collected vessel performance data. In this context we will investigate how so-called
data-driven methods can accommodate this. The data-driven method should be based
partly or entirely on data which includes the traditional noon report data supported
by automatically collected data that is comparatively of a much higher data density
and varies more over time.

The weather information from hindcast data will be evaluated and implemented
alone or as a supplement to the existing weather data collected in noon reports or by
automatic measurements.

In order to predict the energy consumption (EC) for a given state of the ship, a
suitable regression model has to be determined. Multivariate non-linear models such
as Artificial Neural Networks (ANN) which are expected to be appropriate will be

tested as well as linear models.
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Regression models with different input datasets will be evaluated to clarify their
effect on the energy consumption, e.g. the effect of using hindcast data versus observed
data and automatically sampled data versus noon report data.

When a suitable prediction method is established, it is possible to compare the
predicted energy consumption EC with the actual reported or measured energy con-
sumption EC, and the relative difference or prediction error w of those is then an
expression of how well the ship performs compared to how it "should” perform at a
given state and time as defined in (1.1). This reveals that if the actual energy con-
sumption is higher than the predicted, the relative prediction error w decreases and
indicates a negative change in the ship propulsion performance compared with the
period of the training set.

The prediction method can be trained with a dataset representing a sufficient vari-
ation of states. Ideally it should be independent of time. However, this is not possible
using full scale sampled data, so the shortest suitable time for a reliable training should
be estimated. Using a training like this, based on training of e.g. the first year after
launching of a ship, prediction can be made for any actual state of the ship and com-
pared with the actual value, and the development over time can be evaluated. The
trend of the relative prediction error w thus represents the total performance of the
ship and can be expressed as a function of the time ¢ and be defined as the Vessel
Performance Trend VPT. The VPT can only be found for periods where a continuous
trend of the performance is expected, so for every abrupt change such as a dry-docking
or a hull cleaning, an individual VPT must be found as illustrated in Figure 1.1. The
VPT is assumed to be linear based on previous studies such as Carlton (1994) and
Munk (2006).

also be tested.
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Summary of sub-objectives includes:
1. Evaluate dataset
2. Find the best regression method

3. Evaluate predictions by using different training sets: automatic, noon reports

with or without hindcast weather information.

4. Determine the best combinations of input variables and what variables are most

important for the predictions
5. Understanding the effect of the length of input training data

6. Use the initial training to predict the energy consumption of the actual states at

a certain time and detect the trend of the relative prediction error w over time

7. Detection of abrupt changes in the performance trend

1.5 Structure of the thesis

An outline of how the thesis is structured is given below.

Chapter 2 - METHODS FOR PREDICTING SHIP PROPULSION ENERGY CONSUMPTION

This chapter describes the background and basic principles of hydrodynamics
and empirical methods for estimating the resistance and propulsion power. The
overall assumptions and individual components of these methods are described
which introduce the basic background of the physics which will be used in the
regression models. A basic multivariate linear regression model is described,
and a custom non-linear method is derived which incorporates the fundamental

features of the empirical models.

Due to the previous models’ limited performance for complex problems, an Arti-
ficial Neural Network (ANN) is introduced. The structure of ANN is described

to give an understanding of the models’ governing parameters.
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Chapter 3

Chapter 4

Gaussian Process Regression (GPR) is introduced due to its flexibility and ability
to predict the variance for each prediction, along with the characteristic length-
scales. A description of GPR is given to explain the basic mechanics of GPR as

well as the advantages and disadvantages of this method.

The data filtering of the three input data sources and a description of the subdi-
vision of the data sets input training and test sets. Furthermore, special training
techniques for ANN and GPR are described.

- DATA COLLECTION AND EVALUATION

This chapter presents the three data set sources: measured data from Torm Marie
(MDTM ), noon report data from Torm Marie (NRTM) and noon report data
from five container ships (NRCS 1-5). A short presentation of the desired data
for the evaluation and the data collection obstacles encountered for the basic

input variables is given.

Installation and data sampling of the on-board logging system is described with
channel lists, logging intervals and data sources, together with a statistical pre-

sentation of the four measured data sets.

Similarly, the collection and statistical representation of noon report data from

Torm Marie are presented.

The data from the five containerships is collected over a longer period of time

and also includes dry-dockings.

The quality of hindcast weather information is described and compared with the

observed and measured data.

- ANALYSES USING DIFFERENT PROPULSION PREDICTION METHODS

The chapter shows the prediction performance by the relative prediction errors
w for various combinations of input variables using the methods and procedures
described in Chapter 2. The outcome of different lengths of the datasets are
evaluated, and the variance of the prediction models are found by GPR. Anal-
ysis of the relevance of each of the available input variables by ANN and GPR

regression methods are presented.
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Chapter 5 - TREND DETECTION OF THE PROPULSION PERFORMANCE

In this chapter, post-processing of the prediction errors from Chapter 4 is used
to find the trends of w over time or Vessel Performance Trend (VPT), which is
an expression of the performance development. This trend shift is abrupt after
events like a dry-docking or hull cleaning, and the effect of this can be evaluated

between these events.

Chapter 6 - DETECTION OF PERFORMANCE EVENTS

This chapter attempts to predict abrupt changes in the performance trend as

described in the previous chapter using a piecewise trend analysis.

Chapter 7 - CONCLUSIVE DISCUSSION

Chapter 7 presents a summary of the main conclusions and discusses how it is
possible to use data-driven models for performance monitoring and the benefits
and disadvantages of the methods. Suggestions for further development and

exploration of the topic are discussed.

The following publications have been produced during this thesis:
Pedersen and Larsen (2009a) and Pedersen and Larsen (2009b)
They can be found in Appendix A and B
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Chapter 2

Methods for predicting ship

propulsion energy consumption

The objective of this chapter is to describe traditional ship propulsion theory and the
background assumptions on which this theory is built. In order to establish a data-
driven approach for performance evaluation, four regression models are presented as
plausible methods to predict the energy consumption (EC') for an arbitrary "state” of a
vessel: linear, custom non-linear, Artificial Neural Networks (ANN) and Gaussian Pro-
cess Regression (GPR). The prediction errors of the regression models will ultimately

be used to evaluate the instantaneous or long-term performance of the vessel.

The energy needed to drive a ship at a certain speed in certain conditions depends
on several variables as illustrated in Figure 2.1. The term state refers to a certain set

of input variables that influence the ship propulsion energy consumption.

Historically, energy consumption has been defined by empirical resistance and
propulsion methods that require many ship specific parameters such as the length,
breadth, propeller diameter, wetted surface, etc. This information is not always avail-
able or assessable. For example, shipyards may be reluctant to hand out details about
hull form to the ship owner. If the parameters are unknown, many assumptions must
be introduced to the models, and the predictions become uncertain. A different ap-

proach is obtained by focusing on the collection of data for different states. This is
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Figure 2.1: Variables of the propulsion performance

referred to as a data-driven approach. Using data-driven predictions, the fixed param-
eters and information about the ship are irrelevant. The only necessary variables are

those that affect the ship propulsion performance.

This chapter first introduces the general principles and assumptions of ship propul-
sion and hydrodynamics and how it is possible to estimate the resistance and propulsion

power by both traditional empirical and data-driven methods.

Two specific empirical methods, Harvald (1983) and Holtrop and Mennen (1984),
have been used extensively in the past decades and are regarded as industry standards.
These methods are based on ship models and full scale tests, primarily in design loading
conditions, or sea trial conditions to give estimates based on a design loading condition.
This is useful in the design phase of the shipbuilding process and in situations where the
ship is sailing in loading conditions close to the design draught. However, the methods
have greater uncertainty in off-design conditions. Both methods offer some flexibility,
and experienced users can tune them with experimental data to improve the results,
but using the methods without any adjustment can lead to large discrepancies in
certain conditions. One of the central issues with the empirical methods is accounting
for the effect of the bulbous bow in off-design conditions where the bulbous bow is e.g.
slightly out of the water. This creates unpredictable effects on the resistance and can
only be found by model tests or CFD simulations. In recent years, ship owners have
shown an interest in the resistance and power needed in many other loading conditions
which has led to several trim model tests at FORCE Technology such as the tests
evaluated in Larsen et al. (2012).
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The still water ship resistance can be determined reasonably well by Computational
Fluid Dynamics, CFD, Simonsen et al. (2008). However, it is both time consuming
to build a grid of the hull and computationally demanding to solve the numerical
problem, although faster hardware and software are seen as an increasing threat to
tank model tests. Tank model tests are often still preferable for their reliability and
when a ship model is already in the tank, it can also be faster to test another speed
or loading condition, where CFD only finds the resistance for one speed and draught

per simulation.

Data-driven models were introduced because they were believed to be able to model
many of the non-linearities of ship hydrodynamics which is difficult when empirical
models are used. Naturally, data-driven methods are data based, and the amount and
quality of the data is important for proper modeling.

The data consist of a number of different input variables and a single output -
the energy consumption represented either by the measured fuel consumption or the

propeller propulsion power.

Every data point represents a certain state of the input variables and has a cor-
responding output. The data sets are collected by a number of data points from the
same stationary period, i.e. that the variables do not vary with time during that pe-
riod. The use of stationary datasets gives the opportunity to make predictions for an
arbitrary state of the vessel, given all the input variables are within the boundaries of
the data. The predicted output can then be compared with the actual measured value
for the same state, and the relative difference subsequently represents the change in
energy performance between the present time and time of origin of the dataset used
for training.

Assuming that the fouling affects the propulsion power linearly over time, the time
as a linear variable, increase 1 per day, was included for some predictions in order to
evaluate the influence of the time variable on the prediction results. A lower prediction
error by using time would then indicate the effect of the linear fouling trend over time.
Inclusion of time as a variable makes the dataset non-stationary over the training data
period, and it cannot be used for predictions outside the range of the input variables

and thus cannot be used for predicting in the future and comparing with actual values
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previously described.

Different regression models have been used in an attempt to find the best model to
predict the output y (EC) based on the continuous input variables x = (z1---,xp)
where D is the dimension of the input variables. The methods applied in this thesis

are presented in the following sections.

2.1 Empirical methods

The traditional way of predicting the propulsion power is described below in order to
give an overview of the main components and assumptions in the empirically based
methods. The advantages and disadvantages of empirically based methods are dis-

cussed and compared with data-driven methods.

2.1.1 Resistance

Different methods for calculating ship resistance and propulsion power are available. It
is generally accepted that the ship resistance in calm water (Rgy ) can be found based
on the ship speed U, the wetted surface S, the seawater density psy and the total
resistance coefficients C},; as shown in (2.1) Pedersen et al. (2002). Adding resistance
components from the environmental effects such as the wind Ry and waves R
leads to the total resistance Ry (2.3).

1
Rew = Ctot§PSWSU2 + Raap (2.1)
where Cipy = Cy, + Cr+ ACr +Cy + Cuaa + Cuaus (2.2)
Riot = Rsw + Ruyina + Raw (2.3)

The coefficient C,; consists of the following ITTC (2011):

C, Viscous resistance coefficient

Cr Residual resistance coefficient
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ACF Roughness allowance coefficient

C'4 Allowance resistance coefficient

C4s Allowance resistance coefficient for the effect of steering
C'44 Air allowance resistance coefficient

Raap Allowance resistance for appendages

Viscous resistance coefficient, C,,,

The Viscous resistance coefficient, ', represents resistance components related to the
friction C'r of the hull surface. The skin friction coefficient for a flat, smooth surface
with a turbulent flow can be found by the ITTC 1957 (ITTC (2011)) procedure:
Cy = %, where R, is the Reynolds number defined as: R, = % In
order to account for the different pressure distributions of a 3D flow around a ship
hull, the the form factor k is introduced to obtain the wiscous frictional resistance,
Cy, = C¢ (1 + k). k normally has values in the region of 0 — 0.25.

The frictional resistance is dependent on the roughness of the surface, and the

calculation of the frictional resistance coefficient above is based on a ship with a smooth

surface.

Residual resistance coefficient, C'y

The residual resistance coefficient C'gr mainly accounts for the energy radiated by waves
made by the ship. The shape of the hull form is governing this energy dissipation, and
in order to analyse it, several different coefficients have been established to describe
the hull form. As some modern ships have more complex hull forms including bulbous
bows and submerged transoms, the shape must be described by simple measures in
order to compare ship resistances.

Cr can be estimated empirically by methods described by Harvald (1983) and
Holtrop and Mennen (1984). Harvald (1983) method is based on the ship length, dis-

placement and the speed of the vessel, whereas Holtrop and Mennen (1984) uses a
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more detailed description of the hull form as e.g. the prismatic and midship section
coefficient and waterline angle entrance at the bow. The latter method also includes
both bulbous bows and submerged transoms. The bulbous bow contribution is based
on three measures: the transverse area of the bulb at the forward perpendicular Agr ,
the height of the centroid of Agy above the keel and the draught at forward perpendic-
ular (Holtrop and Mennen (1982)). The effect of the submerged transom is described
by the submerged transom area. Despite using a detailed hull description, Holtrop and
Mennen (1984) lacks reliability in off design conditions.

In Larsen et al. (2012), trim tests of a large cargo ship with a bulbous bow have
been investigated, and a reduction in Cr of 70% was found by trimming the vessel
2m forward compared to an even keel trim and an increase of about 30% by 2m trim
aft. Summing up other contributions from a trimmed loading condition, i.e. change
in waterline length and wetted surface, the change in the effective power is -8.9% and
16.2% for 2m forward trim and 2m aft trim, respectively. This change is assumed to
be related to the change of the flow around the bulbous bow. Larsen et al. (2012) also
finds that trimmed simulations by RANS (Reynolds Average Navier-Stokes Solver)
CFEFD and model tests show good correlation as opposed to the potential flow theory

CFD which deviates considerably from the model tests.

Roughness allowance coefficient, ACr

The skin roughness has been investigated by gluing sand grains with the diameter k;
on a plate with a smooth surface and measuring the frictional resistance due to the

difference in roughness (Wadskjaer (2001)). ITTC (ITTC (2011)) proposed use of the

frictional resistance coefficient:

k., 1/3
AOF:0.044[(L ) —10- Re™5 | +0.000125 (2.4)

wl

where k; is the equivalent sand grain diameter, L, is the waterline length and Re the
Reynolds number.

If measured data is not available, k; = 150 - 10~%mn is assumed for a new ship.
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In practice the sand grain diameter £ is substituted by measurements with a Hull
Roughness Analyser from e.g. BMT (British Maritime Technology) where the maxi-
mum difference in height of the surface is found within a length of 50mm also defined
as R;(50) in King (1982). It is recommended by International Marine Coatings (In-
ternational (2004)) to do 10-15 measurements over a length of 750-1000mm. This is
performed at about 100 locations on the submerged hull surface, and ultimately the
Average Hull Roughness (AHR) can be determined which represents the overall hull
surface roughness. AHR is thus used to find the frictional resistance coefficient for the

actual hull surface condition.

Allowance resistance coefficient, Cy

The allowance resistance coefficient, C'4, accounts for differences in the hull roughness
between the model and the ship. In ITTC (2011), the following formula is recom-

mended:

C4 = (5.68 — 0.6logRe) - 1073 (2.5)

Air allowance resistance, C 44

The air resistance is represented by the air allowance resistance coefficient C'44 that
accounts for the air drag the hull and superstructure induce in windless conditions.

The following formulation can be used to describe the air resistance coefficient:

Pair AT

Cya=0C
AA * pswS

(2.6)

where C, is the air resistance coefficient, pu;,. is the density of air and Ap is the

transverse frontal area above the water line.
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Steering resistance allowance, Cyg

The allowance coefficient of the steering resistance, C'4g, accounts for the resistance due
to the continuous rudder motions that are necessary to keep the ship on a steady course.
Unless rudder motions are available, it can be estimated to 0.004 - 1073 according
to Pedersen et al. (2002) and is thus insignificant compared to the other resistance

coefficient components.

Allowance resistance for appendages, Ra4p

Raap, represents the resistance contribution of the appendages such as e.g. rudder,
open shafts, bilge keel, stabilizing fins, etc.

The resistance from appendages is by Holtrop and Mennen (1982) found by sum-
ming up the wetted area of each of the components with a weight factor (1 + ko)
and finding the total resistance from appendages by using the frictional resistance

coefficient for the ship Cp as in (2.7):

RAPP = 0.5pV25App(1 + kIQ)CF (27)

2.1.2 Wind resistance

In almost all conditions, the presence of hull and superstructure of the ship will result
in a resistance component from the relative wind (the resistance can be negative in

case of strong following winds!). The wind resistance is calculated by (2.8)
1 2
Rwind - Ca: §pai7"ATVR (28)

The wind resistance coefficient C, is determined empirically, by e.g. Isherwood
(1972) or by model tests, and vary with the relative wind direction, yz. Az is the
transverse projected area above the waterline, and V5 is the relative wind speed. The
wind coefficient C, is based on a wind speed measured at a certain level above the

water, often 10m. Corrections of the wind measurement height can be applied by
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the method described in Blendermann (1990). Furthermore, it is assumed that the
wind speed and direction is of the free wind, i.e. undisturbed by the presence of the
ship. Naturally this is impossible to acquire by on-board measurements where the
anemometer(s) will never be in the free wind. Corrections for this can be made, but
it is ship specific, and no general model has been developed for this, therefore the
measured wind is generally used without corrections. Wind force from observations as
the Beaufort scale which is defined by the condition of the sea are measures of the free
wind, but on the other hand the resolution is smaller and can suffer from human error

and different interpretations.

2.1.3 Added resistance from waves

The added resistance R4y from the sea waves is difficult to determine, and no accurate
empirical method is available. It has been shown by many (e.g. in Pedersen (2007a))
that the added resistance in waves scale with the significant wave height squared (H32)

and can be expressed as in (2.9) Faltinsen (1990) for a stochastic sea state.

Raw = oawpg (B*/L) Hg (2.9)

where g,y is the average added resistance coefficient from waves, B is the beam of
the ship, L is the length of the ship, ¢ is the gravitational acceleration.

The added resistance coefficient 4317 depends on many parameters, e.g. ship speed,
wave period and direction, weight distribution of the ship and hull shape. In Bhat-
tacharyya (1978), the added resistance R4p can be calculated for many variations
of the standard ship model (Serie 60), and tabular values from this can be used to
estimate the added resistance for a specific ship by interpolation. In Moor and Murdey
(1968) and Moor and Murdey (1970), a statistical model was developed of the propul-
sion power in waves based on a number of model tank tests of mostly naval ship hull
shapes. A number of numerical methods have been developed and are reviewed in
Pedersen (2006) and Jorgen Strom Tejsen (1973).

Due to complicated estimation, the added resistance in waves data from heavy

weather observations, usually Beaufort 5 or Hg 2m, is often omitted for performance
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monitoring evaluation.

2.1.4 Propulsion

The effective power, Pg, needed to drive the vessel through water is defined as:
Pp=U"- R (2.10)

When applying a propeller to the ship, a number of efficiency ratios are introduced
in order to determine the "delivered power” Pp that is the power needed to be delivered
by the main engine to the propeller of the ship at a certain speed.

The total efficiency of the ship power delivered by the main engine np is defined as
in (2.11) and can be split into the components in (2.12),

Pg
= 2.11
D Pr ( )
Np = N " MRR * 1o * 1S (2.12)

where:

Ny is the hull efficiency defined as 11_;5}, t is the thrust deduction factor defined as

_ T—-Rr
t= T

, and w is the wake fraction w = % The thrust deduction factor
t is an increased resistance component, due to the suction from the propeller on
the aft part of the hull. The wake fraction w is an expression of the reduced flow

velocity in the aft body of the hull relative to the ship speed.

Nrr is the relative rotative efficiency or the propeller efficiency behind the ship relative

to the propeller efficiency in open water.
1o is the efficiency of the propeller in open water
ns is the mechanical efficiency of the propeller shaft line.

If resistance and self propulsion model tests are not available, the values can be

estimated using Harvald (1983) or Holtrop and Mennen (1984).
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According to Pedersen (2007b), it is reasonable to calculate the propulsion in waves

by using the still water propulsive efficiencies together with the added resistance.

2.2 Data-driven regression models

In contrast to the traditional empirical model based approach described in Section 2.1,
different data-driven approaches that rely exclusively on accumulated ship data and
not detailed knowledge about a ship’s physics, have been suggested. In the quest to
find the relation between the energy consumption of a ship and its related variables,
different regression models have been suggested to generate the best prediction model.
The input comprises a number of different variables that are expected, according to
empirical methods to influence the output variable, energy consumption (EC'), which
is represented by the propulsion power or fuel consumption. All the regression models
used herein are based on the assumptions in (2.13) where the training error €, is

assumed to be Gaussian distributed.

y = £(x) + €t (2.13)

Common for the regression models tested is the attempt to minimize the error ¢,
which is the difference between the model value (f(x)) and the corresponding output
data y for a given set of training input variables x and is optimized by adjusting
different control parameters or weights w depending on the type of model. This
optimization of the model is also called called "learning”, or as referred to in this
thesis "training”, where a set of input/output variables are used to find the best model.

In order to evaluate the model, a test set is used which only includes data that has
not been used for training, resulting in a test error ¢;. To accommodate an efficient use
of the data, the data sets are split into K training and test sets, so that the data in
each test set is only used for test once. This leads to K test errors €, and the average
of these is referred to as the cross-validation error. Training and testing is described

in depth in Section 2.4.
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The following subsections will describe the four different regression models that

were tested.
1. Linear
2. Custom Non-linear

3. Artificial Neural Network - ANN

4. Gaussian Process Regression - GPR

2.2.1 Linear regression

The linear model is the simplest method used. Assuming that the output y(x) is a
function of weights w and the input variable vector x = (z, 9, ....z4)7, the linear
combination can be expressed as in (2.14). The optimum combination of weights are

found by minimizing the sum-of-squares error in (2.16).

d
y(x) = wo + Z wir; = wo+ WX, (2.14)
i=1

where w is a weight vector, and d is the dimension of the input vector x.

Bw) = 3 3 fybsw) — 4’ (2.15)
IS e 210

where y,, is the target output value
(2.16) can be transformed into matrix format, and deriving F(w) with respect to

w gives the optimum weight vector w' which can be found as in (2.17)
W = (){_T)()_1 XTytr = XTyh«. (217)

where X7 = (x! x? ...x") and the vector y;, = (v}, y2.,...,yN)" is the target output.
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The linear regression method is a very fast method and for some problems, espe-

cially simple problems, it shows good results.

2.2.2 Custom non-linear regression

This section describes the non-linear method that was attempted in the initial investi-
gation and was only developed and tested for the four measured data sets from Torm
Marie. The data sets are based on four individual voyages and show very little variance
in draught, trim and sea water temperature. It originates from the assumption that
the propulsion power can be expressed by the ship speed U, the ship resistance R
and a total efficiency np which includes propeller, shaft and hull efficiency. The total
resistance can be divided into the following three parts as described in (2.3). Since
there is no simple, reliable approximation for the added resistance in waves, this part
has been left out in further analysis. To justify this, only measurements with a neg-
ligible sea state (Hs < 2m) have been included in the model. Usually the still water
resistance is expressed as in 2.8. Applying the wind resistance R,;,q to the still water

resistance, the propulsion power can be written as in (2.18) or rewritten to (2.19)

Pp = n;'U (Rsw + Ruina) oOr (2.18)
P=np'U (f(U2 + Ev};) (2.19)

where K = Caw1/2pswS and L = Cy3puir Ar.

For this model, the ship speed U and the relative wind speed Vg are the input
variables. 7751, K and L are constants that can be estimated by empirical methods as
described in Section 2.1. The variation between the empirically determined values and
the training data can be modelled by adjusting these parameters with an additional
variable part: n;' + Anpt, K + AK and L + AL respectively. (2.19) can now be

rewritten as:

P = (iip + Aiipt) (K + AK) U + (5" + Aiip') (E+AL) VAU (2:20)
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This expression can be divided into two main parts, one related to the empirical
estimates model Basic Power, Py, and another part related to the data fitting problem
Restdual power, P,.s.

Pp = i, KU® + 7' LVRU (2.21)

J/

Basic power Py

+ A (KU + LVRU) + Ay (AKU + ALVEU ) + i (AU + ALVE) U

J

Vv
Resisual power Pres

(2.21) can be rewritten as:

PD,n - Pbas,n + wy (Anml,n + Bnml,n> + W1W2T1,n + W1 W3T2n

+ angl’l,n -+ angl’gm (222)

where w; = Aﬁgl, Wy = A[N(, wy = AL are the "weights” of the model. n is the index
of the measurement parameters; x;, = U3 and Top = VAU are the input variables,
and A=K, B=L and C = 77]31 are derived parameters for the actual condition.
Detailed mathematical derivations are found in Pedersen (2008).
The model described in (2.21) is non-linear due to A7, that appears in terms
containing the AK and AL. The solution to (2.22) can be found by minimizing the

sum of the error squared

2
1

N

E(w) = 3 ; P(x,;w) — P, (2.23)
Error e

where N is the total number of measurements, x,, is a n X ¢ matrix containing all the

input parameters, and w is a vector with the ¢ weights.

The optimization (minimization) of this problem was done using the ” Levenberg-
Marquardt” method described by Hans Bruun Nielsen in Nielsen (2004) and Nielsen
et al. (2004). This method needs the error function and the Jacobi matrix J as input
in (2.24)

The model was trained using a cross-validation scheme with K training/test sets,
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and the weights w; for the final solution were taken as the average of the weights w;(n)

from the K solutions.

Oer Oex Py P
owy T Ow; owy T Ow;
J=1 =] (2.24)
den Oen Py Py
8”&)1 e Bwi 811)]_ e (911)2
op,
= Anxl,n + anQ,n + WoT1,n + W3Ton (225)
awl
op,
=Chx1pn +uT1n 2.26
an 1, 141, ( )
op
" = CLxon + wWiTe, 2.27
a’LUg 2, 142, ( )

Linear approximation

The variation of the propulsion efficiency is in many cases limited and can thus be

regarded as constant. This implies that Afj,’

can be neglected, and the model will
become linear in the form of (2.28). This linear model can now be solved by Least
Square in the form of w = (XTX)"!1X"t = XIt.

The linear model was solved by the "Leave One Out” routine (described in Sec-

tion 2.3.1) where the final weights have been taken as the mean of the N weights.

Pp = i KU? +ip LVEU +iip  AKU? + i, ALVEU (2.28)

Basic power Py

2.2.3 Artificial Neural Network, ANN

An Artificial Neural Network ANN is a non-linear mathematical system where the so-
called hidden layer(s) with a number of hidden neurons or units is the non-linear link
between the inputs and output(s) as described in Larsen (1999) and Bishop (2006).
This is illustrated in Figure 2.2 with multiple outputs. A single hidden layer Neural
Network as described below is a universal approximator, i.e. it can approximate any

continuous function arbitrarily close by increasing the number of hidden units. It can
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Bias

Input Hidden Output

Figure 2.2: Illustration of the structure of artificial neural network

be described mathematically as in (2.29) and (2.30).

M
2
y(@) = wz (2.29)
=0

d
% =9 (Z wﬁ)xi) (2.30)
1=0

where x are the input variables, y(x) is the output, in this case the propulsion
power, z; are the non-linear basis functions, w;; and wy; are the weights for the hidden
units and output respectively, and ¢ is the so-called activation function which is a
non-linear function with an output of 0 to 1.

There are no specific rules or guidelines on how to find the optimal number of
hidden units and layers for an ANN. However as a rule of thumb, networks for simple
problems, e.g. input/output variables that have a linear relation, need less hidden
units, and more complicated problems with more input variables not related linearly
to the output variable need more hidden units (Hess et al. (2006)).

An ANN that is too simple or too complicated can result in a non-optimal solution,
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so a number of different hidden units have to be tested.

The network used for this analysis is a flexible non-linear regression model with
additive Gaussian noise and is trained with a Bayesian learning scheme. It has a tan-
gent hyperbolic sigmoidal activation function and is trained using a BFGS (Broyden-
Fletcher-Goldfarb-Shanno) optimization algorithm with a soft-line search to determine
step lengths. The Hessian matrix is evaluated using the Gauss-Newton approximation.

More details into the specific neural network used here can be found in the following
references: DTU-toolbox (2002), Larsen (1993), MacKay (1992), Pedersen (1997) and
Svarer et al. (1993) . A basic description of neural networks can be found in Bishop
(2006) and Larsen (1999).

ANN are well known methods and are regarded as robust for many applications
for regression and classification problems. However, they do not give any information
about how the input variables influence the model, and the models can not necessarily
be reproduced by a new training because they are connected by randomly chosen

weights.

2.2.4 Gaussian Process, GP

The theory and underlying philosophy which motivates the use of Gaussian processes
(GP) for regression analysis is an important and interesting topic, but due to the
mathematical and statistical complexities, a complete derivation of the mathematical
framework is out of scope for this work. For a complete and thorough description
and derivation of the framework, we refer to the key founding text by Rasmussen
and Williams (2006). In this work we will focus on one of the important results and
applications of the use of GP as one of the main motivations for this thesis.

A Gaussian process (GP) can be described as a generalization of the Gaussian prob-
ability distribution. Where the Gaussian probability distribution describes the random
variables which are scalars or vectors, the Gaussian process describes a probability dis-
tribution over functions f(z) where the values of f(z) evaluated for an arbitrary set
of input points (z; - - - 2x) have a jointly Gaussian distribution. A Gaussian stochastic

process like this can be defined completely by the mean (m) and the covariance (k)
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which leads to the general form which can be described in (2.31) where m(x) is the

mean function, and k(z,2’) is the covariance function.

f(x) ~ GP (m(x), k(x,x")) (2.31)

Rasmussen and Williams (2006) have defined GP as: "a collection of random vari-
ables, any finite number of which have a joint GGaussian distribution.” GP has also
been described, by Neal (1994) as the most flexible class of non-parametric function

estimators and can be interpreted as an infinite ANN.

GP for regression, GPR

Gaussian process regression is performed by making a joint distribution of the training
output y and the test output y,, given a set of training input x and test input variables
X;. The test output functions are found by a conditional joint distribution on the
training data to find the predictive distribution: y;|x;, x,y v N (m(x;), cov(x;))
Given a single test x; point, the predictive mean and variance are derived as in
Rasmussen and Williams (2006) to 2.32 and 2.33. Where the mean can be described

as a linear combination of n kernel functions k(x;,x;) for the n training points.

yi = Zaik:(xi,xt), where a = (K + o21)" 'y (2.32)

i=1

op = K(x¢, %) — K(x;, x)aK (x,%;) + 0,

n

(2.33)

where:
K is the covariance function of the training input
K (xy,%;) is the covariance of the test input

K(x,%;) / K(x;,x) are the covariance matrix between the training and the test

input.

o2 is the noise variance
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G'PR finds the predictive distribution of the Gaussian distribution functions defined
by the mean value y; in (2.32), and the predictive variance o2 in (2.33). o7 can thus
be interpreted as the uncertainty of the prediction of y,. This is a unique feature of
GPR that is not readily available in other regression analysis and this "extra” outcome
will be used later in Section 2.5 to assist the long-term performance trend.

A natural development of the prediction variance is that it increases in areas with
less information. This is illustrated in Figure 2.3a with a series of predictions where
all the variables are kept constant except the significant wave height Hg. The average
of the relative predicted propulsion power is plotted together with error bars corre-
sponding to plus and minus two times the predicted standard deviation o, and it is
noted how the error bars increase significantly in magnitude for higher wave heights
where less or no data of Hg are available as shown by the distribution of the Hg in
Figure 2.3b

N
o

Occurences
w
o

N
o

lative predicted propulsion power

Hs [m]

(b)

Figure 2.3: Illustration of the variation in the predicted variances due to the number
of input.

In order to find the predictive mean y; (2.32) and predictive variance (2.33), the
algorithm in (2.34) to (2.38) has been applied. First a Cholesky decomposition of
(2.34) is performed which is used to determine «, for finding the predictive mean and
to calculate the predictive variance in (2.37). For more than one test point, (2.36) to

(2.38) are repeated.
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L = cholesky(K + o21) (2.34)
a=L"\(L\y) (2.35)
f(x) =kla (2.36)
v=L\k¢ (2.37)
of = k(xy,x) —viv (2.38)

Determining the covariance functions K is central in GP and different models are
available. In this problem the Squared Ezponential (Kgg) (2.39) has been used. Kgp
is easy to incorporate into an optimization routine and has been found to be useful for

a range of regression applications of Gaussian Processes as discussed in Bishop (2006).

D 2
1 -
Ksp(x,x') = o} exp [—5 E (Id P xd) + 0’1 (2.39)

d=1

where UJ% is the predictive variance, o2 is the noise variance, and [ is the length-scale,

D is the dimension of the input variables x.

Ksg has three free parameters or hyperparameters that can be varied: the charac-

teristic length-scales, [, the signal variance oy and the noise variance o,.

In the present problem, the input x is multi-dimensional and thus there is one
length-scale for each of the input variables, and the hyperparameters are thus defined
as: © = {I,1?,---1%,07,0%}. The estimation of the hyperparameters is the crucial

point in using the method for prediction and regression.

The model is trained by optimizing the covariance function with respect to the
hyperparameters by marginal likelihood also referred to as Automated Relevance De-
termination, ARD routine Nabney (2002). This leaves one optimum [length-scale for

each of the input variables {xl, x2, - ~Xd}

ARD determines the optimal values of the hyperparameters, and the variance of

the signal or prediction UJ% is thus determined along with variance of the noise level
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o2. The predicted distribution of the noisy test data is thus found by adding the

n
noise variance o2 and the predicted variance aj% to the predictive mean f(x). The
characteristic length-scale is a measure of the relevance of the feature or input variable
d and can then be used for evaluation of the input variables.

When performing ARD, it is important to be aware of scaling the input variables.
Not scaling or incorrect scaling will result in erroneous outputs and values of the
hyperparameters. This issue is discussed extensively in Neal (1995). The normalization
for the GPR will be described in Section 2.4.2.

GPR is a fast method for solving the present problem, but the complexity increases
with the number of inputs by O(n?) for the training and O(n?) for each prediction, so
it is not appropriate for training of large data sets. This is in contrast to predictions
with ANN that is independent of the length of training dataset.

One of the strengths of GPR is that from the Automatic Relevance Determination,
ARD, the length-scale is found which determines how relevant each input variable is

for the regression.

2.3 Training and testing of the regression models

Following is a description of how the training and testing of the regression methods
were performed and definitions of the training and test data used for the methods

described in the previous part of this chapter.

2.3.1 Training/test sets

The available data was partitioned into training and test/validation sets in order to
validate the trained models.

First training was performed using a part of the data to build the regression - the
training set - and afterwards the model was used to find the predicted test output
y; based on the remaining test data input variables x;, the test set. Comparing the
predicted output and the actual test output g, for the test set generates a prediction

error €; — gt — Y.
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Prediction error(s) were calculated for each training/test set, and the mean value
of the test error from all the test sets is referred to as the ”Cross-validation error” €x
as in (2.41).

1
=5 ; Ve, — Yty | (2.40)
1 K
"= > e (2.41)
k=1
1
2
= | — Y 2.42
Ok N, ; (6 Gk) ( )
1 K
oK =7 > o (2.43)
k=1

where:
Yz, is the prediction value
Y, 1s test value

Ny, is the number of data points within each subset (V=1 for LOO, which is described

in the following section)
K is the number of subset
€x is the mean prediction error of the subsets &
€x is the cross-validate prediction error

In the present study, the relative prediction error of the energy consumption, w and
the cross-validation error of the relative prediction error Wy is used for evaluation.
In order to utilize the available data most efficiently, it was divided into more

training/test sets. The most efficient use is by training with all the data except one,
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N — 1, and testing with the single set of input variables and the output variable
not used for training. This can be done alternately N times so all data points are
used. This is referred to as "Leave-One-Out” (LOQO). Since Leave-One-Out requires N
trainings, it is often too computationally slow for practical use, and other subdivisions
of training/test sets are used.

The LOO was not feasible for training of the Artificial Neural Networks so the
data was split into 5 training/test sets based on the recommendation of Rasmussen and
Williams (2006). First the complete data set was randomized, and then 80% of the data
was used for training and 20% for testing. This ratio has been shuffled alternately in

order to create 5 training/test sets per complete data set. The subdivision is illustrated
in Table 2.1.

Training/test set Data set
1 20% 80%
2 20% | 20% 60%
3 40% 20% 40%
4 60% 20% | 20%
5 80% 20%

Table 2.1: Cross-validation scheme of 5 training/test data set, the shaded cells indicates
test-part of the data and the clear cells the training part

For training the GPR, LOO training/test was used, and analogous to the cross
validation error €, cross-validation values were found for the hyperparameters.

When direct comparison of the GPR and ANN methods were needed, training
was also performed with the 20/80 test/training ratio for the GPR with the same

permutations for both methods.

2.4 Training

2.4.1 Training ANN

The structure of the ANN used consisted of a single hidden layer with Ny hidden

units. The optimal number of hidden units had to be found by testing, and initial
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testing showed that the results did not improve with more than 20 hidden units. In
order to determine the best setup of the ANN model, the network was trained with
5,10,15 and 20 hidden units to facilitate both complex models (where more hidden
units would be best) and more simple problems with few hidden units being optimal.

To avoid the training getting stuck into local minima, multi start (MS) was in-
troduced allowing the training to begin with a new random set of initial values 10
times for each analysis, and the network setup with the lowest training error was then

selected.

2.4.2 Training GPR

Large variations in the standard deviations between the different input variables could
lead to large differences in the length-scales and consequently affect the model and
predictions. In order to avoid this, the input variables x¢ were linearly rescaled by
the mean and standard deviation: 7¢ = (sfjl(;ﬁ_;i) In the definition of GPR, the output
variables are assumed to have a zero-mean, thus they were centred around 0 with the

following normalization:y; = y; — ¥.

The initial guess of the hyperparameters tended to result in local minima depend-
ing on the data length. This was discovered by the prediction variance becoming very
small or zero. To overcome this, the training/test set was also split up into parts
accumulating to the full dataset (2.44). Each training was restarted with the final hy-
perparameters from the previous run in total MS-times as described in (2.44). After a
few tests, it was concluded that it was sufficient to restart the training twice depending

on the data size, i.e. three trainings of the GPR.

O (Ximsiyy) = O (Xims;) (2.44)

Xpms; € X (0 : z%) (2.45)

where:

x the total input data set
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Xms, the input data multi start subset ms;

2.5 Data-driven performance evaluation method

As mentioned in the introduction, the propulsion efficiency is expected to decrease over
time, mainly due to fouling of the hull and propeller. This deterioration of performance
can be measured by comparing the actual measured energy consumption EC' in a
certain state with one from a reference state.

The relative difference between the predicted energy consumption (EAC’) and the
actual measured energy consumption (EC') is a measure of how well the vessel performs
compared to how it should perform. Due to fouling, EC is expected to increase,
while £C will maintain the same level since it is based on a stationary input for all
predictions. This change leads to a decrease in the relative prediction error w (defined
in (1.1)) over time as illustrated in Figure 1.1.

The trend of this development is assumed to be linear between interruptions that
affect the performance. Linear trends have been used as “best practice” in the industry
although it is acknowledged by Munk (2006) that the slope of the hull resistance penal-
ties due to fouling may be different in the first part of a period after a dry-docking, but
will asymptotically reach a certain level with a more restricted change in the hull foul-
ing penalty. It is stated that a linear slope is a good approximation for determining the
future development of hull fouling. Munk (2006) uses the ratio F' between "the added
frictional resistance coefficient” and “the total resistance coefficient”, (F' = ACE/Ciy),
as a measure of the fouling penalty. A linear trend of the performance development is
also assumed for the present work.

There may be other variations, but it is very difficult to make a better general
assumption since the hull and propeller fouling can differ from ship to ship and is also
largely dependent on the operational area and profile.

After the tests and comparison of the different regression models, GPR has been
used exclusively for post-processing, and the linear trend as a function of time is thus
established from the relative prediction errors of the energy consumption w. According

to Faraway (2002), weighted least square regression (WLS) can be useful if the errors

3
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are uncorrelated and have unequal prediction variance which is the case for the pre-
diction results. Herein the reciprocal 0% variance as weight is recommended, so input
with low variability should get a higher weight than input with high variability.
Weighted least square regression is similar to normal least square methods, but
the residual (w — f (x,«)) is multiplied by the weights, w;; in the sum of square errors

(2.46) which is minimized with respect to a.

E(a) = Z w; (wi — f (4, @))? (2.46)

where:

t is the time

w; is input weights: U%Ri, which are determined from the GPR predictions
« is the slope of the function

w the relative prediction error

To solve this problem, the MatLab® function 1scov was used.

The linear trend of the prediction errors thus follows the form described in (1.2).

2.6 Summary of propulsion prediction and perfor-

mance methods

The basic principles and methods of ship resistance and propulsion were presented to
give an overview of what input variables are important for creating a good propulsion
prediction. The empirical methods are expected to be less reliable for off-design con-
ditions. Different regression methods ranging from simple linear models to complex
non-linear models such as ANN and GPR were described in this section. The decision
to use the long-term development of the propulsion prediction error has been used to
create a performance trend definition by means of a weighted least square model to

form a linear trend based on the results from the GPR results.



Chapter 3
Data collection and evaluation

This section describes the data needed for propulsion performance evaluation of ships
with the purpose of identifying the important input variables and how they affect
propulsion power. As the aim of this thesis was to explore the feasibility of partly
or entirely data-driven propulsion performance monitoring, sufficient and high-quality
data from different independent sources over a long period of time was paramount.

Traditionally, performance evaluation is based on noon report (NR) input data
and/or speed trials which result in one or two data points per day. Furthermore,
NR often consists of a mix between instantaneous values such as the weather at the
report time and the average speed and fuel consumption over the previous 24 hours.
Increasing the number of data points per day would give a higher resolution and more
points for the regression models. To accommodate this, automatically sampled data
was used. The shipowner Torm allowed us to equip the product tanker Torm Marie
with a data logging system and also delivered noon reports from the ship for a two-year
period beginning with the launch in 2006.

Additionally, in the autumn of 2009, noon report data from five container ships

over a ten-year period was acquired from an anonymous shipowner.
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The data consisted of three individual sources:

MDTM Measured performance data on board Torm Marie in February and
March 2008.

NRTM Noon report data from Torm Marie

NRCS Noon report data from five container ships

3.1 Desired data

In order to predict the propulsive energy consumption of a ship, all the separate com-
ponents that have an influence must be represented by a variable. Figure 2.1 is an
illustration of how the draught and trim, speed and environmental properties affect
the resistance and consequently the propulsion power needed.

Based on the basic ship resistance and propulsion theory described in Chapter 2,
certain variables were expected to have a higher influence than others. A measure of
energy consumption is necessary as it is the output that has to be predicted. Ship
speed through the water and the draught/trim are essential input variables that have
direct physical effects. According to ship resistance theory, the power increases with
the speed cubed, and the draught influences the wetted surface and residual resis-
tances. Wind speed and direction can also have a significant effect on the resistance
depending on the ship type, loading conditions wind speed and wind direction. Air and
seawater temperature are relatively easy to measure, and the effects are easy to define
as described in the methods section. Wave height, period and direction are significant
factors for resistance, but they are more difficult to measure and are therefore usually
based on estimates. Furthermore it is difficult to quantify the effect of sea resistance.
The following list shows the main input variables ordered by expected importance.

The variables will be discussed further in the subsequent section.
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1. Draught midship [m| and Trim Ta-Tf (Draught aft - draught fore) [m]|
2. Ship speed |knots]

3. Relative wind speed [m/s]

4. Relative wind direction [°|

5. Wave height [m]

6. Relative wave direction [°|

7. Water temperature [°C]

8. Air temperature |°C]

3.2 General data sources and influence

This section gives an overview of the origin of the input/output variables and how they

affect the propulsion power and resistance.

3.2.1 Draught and trim

The draught fore and aft are usually only observed before departure, and the accuracy
of the readings are approximately £ 10-20cm. In comparison, the design draught on
Torm Marie is 12.0 m, i.e. the accuracy will be +3%. This means that the accuracy
of the trim will be twice the inaccuracy of draughts which is #20-40cm. The accuracy
can be improved by reading the draught amidships although this is usually difficult at
berth.

The on-board loading computer also writes out the draught which is based on in-
formation about the cargo load and fuel and ballast tank levels, but as the draught, is
a derived source in this case it can be problematic. Some ships are equipped with pres-
sure gauges fore and aft to measure draught by the hydrostatic pressure. This method
requires very sensitive pressure measurements, and yet the same gauges should be able

to cope with high-pressure measurements from rapid wave elevations in rough weather.
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This combination usually makes the draught determination by pressure measurements
unreliable.

The static trim and draught midship are among the main parameters for basic ship
resistance in calm water and thus the propulsion power. A change in the draught/trim
will change the wetted surface and consequently the viscous resistance, as is well doc-
umented in general ship resistance theory. Furthermore the resistance due to wave
making (Cr) will change, but this effect is more complicated to predict. The draught
and trim will change dynamically due to the ship speed, but this is not measured or
reported and cannot be used as input.

Due to fuel consumption during a voyage, the draught and possibly the trim will
change, subsequently resulting in a power consumption change. This variation in the
ship’s draught is limited and will affect the still water resistance as a change in frictional
resistance due to the new wetted surface.

The wind resistance will also change slightly due to the change of the projected
area above the waterline. A simple estimate has been made in order to evaluate this
effect for Torm Marie. Given that her fuel consumption is approximately 50 tons/day,
the change in draught and wetted surface is found from interpolating the hydrostatic
tables. The residual resistance coefficient C'z and total efficiency 7, is assumed to be
constant due to the limited change in draught. Table 3.1 shows an example of a 20-day
voyage travelling at a speed of 15 knots which resulted in a reduced power of 29kW
or about 0.29% of the initial power. The change in power due to fuel consumption is
minuscule in this case and can be neglected.

For fast ships, the fuel consumption is higher,, and the hull shape might also be
more vulnerable to changes in the displacement and therefore the draught is reported

more carefully during voyages in the containership datasets #1-5.

3.2.2 Ship speed

The speed through the water (U) is usually measured by a speed log, based on the
Doppler principle, mounted in the bottom of the forward part of the ship. This is a

relatively accurate device, but it has to be checked regularly because experience shows
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Service speed 15 knots
Initial draught 12 m
Still water shaft power 10029 kW
Fuel consumption per day 50 ton/day
Tons to change draught 1.12107*  m/tons
Draught change per day —5.6173  m/day
Change in wetted surface per day 2.95 m?/day
Voyage duration 20 days
Total efficiency 0.693 -
Change in power due to friction resistance per day 1.5 kW/day
Change in power due to friction resistance per voyage 29 kW /day

Table 3.1: Changes in the propulsion power due to the fuel consumption

that data collected tend to drift over time. The ship speed over the ground (SOG) is
measured by the GPS navigator, and together with sea current information, this could
lead to another measure of the speed through the water, but sea current information
is not readily available and is thus not an option.

Ship speed has an essential effect on propulsion power because resistance defined
by basic propulsion theory is proportional to the speed squared, and consequently the
power is proportional to the speed cubed.

Speed also has a minor effect on the dynamic draught and trim, but this is difficult

to determine empirically or measure.

3.2.3 Wind speed and direction

The relative wind speed (3) and direction (4) are present in almost any condition,
since the ship speed will create a relative wind from its own speed. The most common
way to report the wind speed is still by the Beaufort Wind Force Scale (BF) presented
by e.g. Bhattacharyya (1978) where the wind "Force” is estimated based on visual
observations of the seawater surface conditions. The relation between the Beaufort
Wind force and the wind speed in m/s 10m above the water surface can be described
as: uyp = 0.836(BF)%*?3 according to Blendermann (1990). The wind direction is also
estimated by observations and/or a wind vane. Most ships are equipped with cup

anemometers that can be used to assess the relative wind speed.
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Although the relative wind speed and direction can be measured on board with
reasonable accuracy, the relative wind will always be affected by the presence of the
ship.

Wind speed and direction can also be found from hindcast weather information
and are thus not available in all areas as will be described in Section 3.2.8.

The wind resistance of the ship has been defined in Chapter 2, but aside from
giving rise to a resistance directly related to the longitudinal component of the wind,
any wind direction off the longitudinal will give rise to a turning moment. This will
indirectly result in a response from the rudder and hence steering resistance. This was

not directly accounted for due to lack of rudder angle information.

3.2.4 Sea waves

It is difficult to measure wave height, period and direction. Traditionally visual obser-
vations are used, but different methods for measuring or estimating the wave properties
exist. It is possible to measure the relative wave height based on microwave reflections
as described in Nielsen et al. (2006). These are measurements close to the hull and will
consequently suffer from hull reflected wave interference. A wave radar gives a more
detailed picture of the wave pattern in the area around the ship, but is, as described by
Nielsen (2005), a complex and costly system that needs careful calibration and main-
tenance. Based on ship motions, estimates of the wave height were also performed in
Nielsen (2005); this requires a transfer function which is based on the hull shape and
the weight distribution and measurements of the motions. We considered it but were
unable to add accelerometer measurements to the measured data from Torm Marie.
It would have added information about ship motion which would have been a useful
variable to represent the effect from the waves.

Wave rider buoys determine the wave height and period on a specific location and
are often used for research purposes and in field development for offshore structures.
There are various types of wave buoys designed for different purposes, and they gener-
ally give good estimates of wave properties. Wave buoys are often used for adjusting

meteorological hindcast models as will be described in Section 3.2.8
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Sea waves are often described as a combination of swells and wind-driven waves.
Swells are so-called "old waves” created in the past or waves that have dissipated from
another area with e.g a storm and can thus be present in calm water. Swells are
generally longer waves that have a limited effect on the added resistance (Pedersen
(2006)) and contain less energy than the wind-generated waves.

Wind-generated waves are thus the most important factor for the added resistance
in waves. Consequently, wind speed and direction are also reasonable variables to
represent wave properties.

Ideally the height and period of the swell and wind-generated waves should be
reported separately. Although this is a difficult task, it would make it possible to
estimate the added resistance from the swell and wind waves individually.

A ship’s added resistance from waves cannot be accurately estimated empirically
and is difficult to determine numerically. Moreover, the added resistance in waves
depends on the weight distribution of the specific loading conditions of the ship which
in most cases have to be estimated.

The added resistance from the waves is assumed to be proportional with the wave
height squared which is documents by e.g. Gerritsma and Beukelman (1972). The
direction has significant influence on wave resistance, and the maximum added resis-
tance is, according to Salvesen (1978), usually found in the region of +30° around the
head sea (0°) condition.

Research and experience show that the added resistance from waves less than signif-
icant wave heights (Hg) of 2m (Beaufort 5) has an insignificant effect on ship resistance
for large cargo ships like the ones in Pedersen (2006). As sea waves less than Hg 2m in
e.g. the North Atlantic and North Pacific occur more than 50% of the time (Faltinsen
(1990)) and in the Indian Ocean about 60% of the time (Hogben et al. (1986)), the

probability of "good” weather is dominant on most common shipping routes.

3.2.5 Water and air temperature

Changes in seawater and air temperatures affects the densities and viscosities and thus

the resistance.
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It is acknowledged that the ship resistance can be expressed as in (2.3) so that the
density of water has a linear effect on the resistance. Furthermore the changes in the
viscosity affects the Reynolds number (R.) and subsequently the frictional resistance
coefficient (C}) as described in Section 2.1.1. The density decreases with increasing
seawater temperature and the kinematic viscosity increases, which leads to a higher
R, and a lower CY.

To illustrate the effect of the changes in sea water temperature an example is
carried out for realistic extreme temperatures for Torm Marie. The density of sea
water (salinity of 3.5%) at 0 and 30 °C is 1028.1 and 1021.7 kg/m?® respectively, i.e. a
difference of approximately 0.6%. Changes in the viscosity has a significantly higher
impact due to the increase from 1.83 - 10°n?/s to 8.50 - 10"m?/s for 0 and 30 °C
respectively, resulting in C; of 1.530 - 107% and 1.394 - 1073 or a reduction of 8.9%.

The frictional resistance accounts for approximately 65% (for the present ship at
15 knots) of the total resistance and altogether the reduction in propulsion power can
be estimated to 7.5% or approximately 0.05% per degree.

The air temperature also has a significant effect on the air density and is affecting
the resistance linearly. Furthermore, the range of air temperatures is larger than the
range of water temperatures, maybe -30 °C (1.45 kg/m?) - +50°C (1.09kg/m?), which
results in a difference in the density and thus air resistance of 33%. On Torm Marie,
the air resistance was approximately 215kN out of 1168 kN in the total resistance at
10 m/s and 0 °C headwind, and 199kN in the same conditions with 10°C resulting in a
total resistance of 1152 kN . The difference in air density thus has a relative influence
on total resistance of approximately 1.4% per 10°C or 0.14% per °C for this vessel in
the current conditions.

The sea and air temperatures both have well documented influences on the still
water resistance. The sea water temperature has a smaller effect per change in°C and
is less likely to fluctuate, although entering a sheltered area or a river could lead rapid
changes. Furthermore the frictional resistance is a dominant and consistent factor of
the total resistance so even small changes will accumulate over time, and is expected

to have a noticeable effect on the performance evaluation.

An ocean going vessel is often travelling in a relative head wind condition due to
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its own speed, so changes in air temperature is certainly important, but since both the
wind speed and temperature can change significantly during one day it is thus difficult
to get data of this with a high resolution.

Air and sea water temperatures are easy access data and measurements can be
performed by relative simple and reliable devices making automatic sampling relatively

easy to setup.

3.2.6 time as an input variable

Fouling of the hull and propeller can be due to various marine growths that are expected
to increase the resistance and decrease propulsion efficiency over time. The effect of
fouling is expected to vary continuously over time, and often the trend is assumed to
be linear. The time as a linear continuous variable, e.g. 1 per day, can thus be used

as a variable to represent the effect of fouling.

3.2.7 Selection of the most significant input variables

After listing all the relevant parameters, we will assess the importance of variables.
Ocean-going cargo ships travelling on the most common trade routes are sailing more
than 50% of the time in what can be regarded as good weather, i.e. Beaufort 5 or
below. The significant wave height in this wind force is Hs=1.25-2.5 m, where the
added resistance for a ship with a length of «~200m, corresponds to less than 2% of
the total resistance. By neglecting all measurements and observations in stronger wind
forces, it is possible to neglect the wave parameters.

Since changes in air temperature have a minor effect on total resistance, the tem-
perature can be neglected in datasets with little temperature variance.

The variation in sea water temperature have some influence, but many ships travel
in an area where the sea water temperature is relatively stable. Therefore it is possible
to neglect it if the seawater temperature has only minor variations.

For conditions in good weather and with minor changes in temperature, the most

important variables are the draught and ship speed.
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3.2.8 Hindcasts

Hindcast (HC) information has been used as a supplement to the reported observed
and measured data. Hindcasts are weather information at a certain time and position
in the past. The was data collected by a tool developed for Seatrend®?* at FORCE
Technology based on weather information from the NOAAP database. This database
is based on observations by wave buoys, anemometers and meteorological data. For
a given position, the tool returns wind speed and direction, significant wave height,
peak period and direction. Some areas are not included in the database, e.g. the
Mediterranean, the North Sea and areas close to the coast, thus using hindcast data
usually reduces the original dataset.

The hindcast data obtained for the present work were:
Wind speed [m/s]
Wind direction [°]
Significant wave height [m]
Wave peak period [s]
Wave direction [°]

Since hindcasts and observed values are both instantaneous, it is easy to compare
the observed and measured data at any given time and available position. A compar-
ison of the hindcast data and the measured tanker data is presented in Figure 3.6. It
shows that the wind speed from the ship anemometer has a fair agreement with the

hindcast wind speed, but wind direction tends to show larger discrepancies.

3.3 Data from Torm Marie

Torm Marie is a 110,000 dwt product tanker built in 2006 as part of a series of five

sister ships. The vessel was mainly operating (in the test period) on voyages longer

aPerformance Monitoring tool developed at FORCE Technology, www.force.dk
PNational Oceanic and Atmospheric Administration, United States Department of Commerce
http:/ /www.noaa.gov/
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than a week with a service speed of approximately 14.5-15.0 knots in calm weather
conditions. Torm Marie was originally equipped with a torsiometer and a vessel per-
formance system delivered by KYMA that measured and recorded shaft torque, thrust
and power together with other parameters making it an obvious candidate for data
collection.

As many tank ships, the most common operational profiles were ballast condition
or fully loaded which are further described later in this section.

The vessel was fitted with pneumatic draught gauges fore and aft, but these were
not, connected to the system and were regarded as unreliable due to the considerable
variations in the measured draughts compared with the manual readings from the
noon reports which is illustrated in Figure 3.1. The observed draughts are thus the
best available data for this input.

Torm Marie’s main particulars are listed in Table 3.2

Length overall 244.60 m
Length between perpendiculars 233.0 m
Breadth 42.0 m
Depth 22.2 m
Design draught 12.0 m
Scantling draught 15.5 m
Deadweight 109.637 ton
Cargo capacity 121.655 m3
Propeller diameter 7.05 m
Number of propeller blades 5 -

Main engine power (85%MCR) 15260 kW@IO5RPM

Table 3.2: Main particulars of Torm Marie

3.3.1 On-board measured data

Torm Marie was permanently equipped with a torsiometer from KYMA® to measure

the shaft torque and thrust. KYMA integrated measurements of the specific fuel

‘KYMA as. - A Norwegian manufacturer of shaft power measurements
http://www.kyma.no/products/
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Figure 3.1: Measured mean draught from KYMA compared with the noon report
draught

consumption, the speed through the water (logged speed), shaft rate of revolutions
together with torque and thrust into a monitoring system.

The logged speed was measured by a Doppler speed log mounted in the bottom of
the ship in the bow, and the specific fuel consumption was measured by flow meters
on the main engine. This system had a readout-display on the bridge where all the
instantaneous values were available together with derivatives such as shaft power. The
data were collected on a logging PC in the engine control room, but due to unfortunate
data logging methods, the logged speed was sampled with steps of 1.2 knots which was
too sparse for this analysis. The data sampling was implemented using a customized

logging system (GPSwin) based on NMEA 01839 standard data strings.
Specific data logging equipment was installed that combined the KYMA readout

dNMEA 0183 is a combined electrical and data specification for communication between marine
electronic devices controlled by, the U.S.-based National Marine Electronics Association
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Figure 3.2: Airmar mounted on Monkey Island

with an Airmar®) weather station®. The unit was a combined wind anemometer, com-
pass, GPS receiver, thermometer, barometer, accelerometer and humidity sensor. The
main argument for choosing the Airmar®) unit was that it was a combined anemome-
ter and GPS tracker, furthermore it was relatively easy to install and had no moving
parts. It was mounted on the railing of "Monkey Island” as shown in Figure 3.2.

Specific installation instructions for the KYMA system were delivered by KYMA
a.s. and made it easy to access the data. The customized logging software developed
by FORCE Technology GPSwin combined the two datasets into one log file. Figure
3.4 shows an example of the logging window during a test run.

An overview of the logged signals is given in Figure 3.3 and Table 3.3. The sampling
frequency in GPSwin of the time series was one second, but many of the measurements
had inconsistent and missing signal values and were not necessarily updated every
second. All signals from KYMA were sent one string at a time every second, given 13
strings were sent; each signal was updated every 13 seconds. GPSwin sampling was

split into time series of ten minutes with ten-minute intervals.

eWeatherStation?™ PB100
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Figure 3.3: GPSwin sensor diagram
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Figure 3.4: Screen shot of the GPSwin logging window

After the installation, the system was observed for one voyage, and parallel manual
observations were conducted. The system seemed to work flawlessly at departure, but
after two months it broke down and was unable to be recovered by the crew on board.
It resulted in continuous reliable time series results in the period January 30th - March
27th 2008, which corresponds to four voyages: two in loaded conditions and two in

ballast conditions.

3.3.2 Observations during voyage

Manual observations were made on board Torm Marie in the period January 237

2008-February 5 2008 in order to assess the quality of the measured data and the
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Description Unit Method Device  Sampling frequency
frequency

Ship Speed over ground knots GPS Airmar 1 Hz
Ship Course over ground deg GPS Airmar 1 Hz
Longitude deg. HHMM  GPS Airmar 1 Hz
Latitude deg. HHMM  GPS Airmar 1 Hz
Relative wind direction deg Ultrasonic Airmar 1 Hz
Relative wind speed m/s Ultrasonic Airmar 1 Hz
Air temperature °C Thermometer  Airmar 1 Hz
Pitch deg Accelerometer  Airmar 1 Hz
Roll deg Accelerometer Airmar 1 Hz
Heading deg Compass Airmar 1 Hz
Shaft revolutions Tacho rpm KYMA 1/13 Hz
Shaft Torque Strain Gauge kNm KYMA 1/13 Hz
Shaft Power derived kW KYMA 1/13 Hz
Propeller thrust Strain gauge kN KYMA 1/13 Hz
M/E fuel consumption Flow meter  kg/hr KYMA 1/13 Hz
Ship speed by Log Doppler log  knots KYMA 1/13 Hz
Fuel oil specific gravity at 15.6 A°C - - KYMA 1/13 Hz
Fuel oil lower calorific value kJ/kg KYMA derived 1/13 Hz
Ship overall efficiency, actual kg/mile KYMA derived 1/13 Hz
Ship overall efficiency, corrected kg/mile KYMA derived 1/13 Hz
M/E specific fuel rate, actual g/kWhr KYMA derived 1/13 Hz
M/E specific fuel rate, corrected g/kWhr KYMA derived 1/13 Hz
Propulsion efficiency m/kWhr KYMA derived 1/13 Hz

Table 3.3: List of measurements *p/nm: pulses per Nautical miles **p/1: pulses per liter

noon reports made by the crew. Naturally some of the measured and observed param-

eters are more reliable than others. GPS derived parameters, Lat, Long, Speed Over

Ground, Course Over Ground, are assumed to be both reliable and precise. Measure-

ments taken in a controlled environment are also reliable, or the error can be estimated.

This includes: Shaft torque/thrust, shaft revolutions and fuel flows.

The most difficult measurements to take are of the surrounding environment: wind

speed, wind direction, speed through the water and wave height/sea state and direc-

tion.

The anemometer was able to measure the horizontal wind speed and direction ac-

curately where the anemometer was mounted, however, how well the wind around the
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anemometer represented the general relative wind was uncertain. By manual obser-
vation with wool threads, the wind direction was checked, and a significant vertical
component was observed as illustrated in Figure 3.5. This indicates, as expected, an
increase in the wind speed over the superstructure. The wind direction is not expected

to be affected to the same degree, but this is more difficult to assess.

A comparison of the wind speeds during the test period from three different sources
is shown in Figure 3.6. The Airmar®) wind speed was explained in Section 3.3.1, the
"Ship anemometer” is a cup anemometer mounted on the antenna mast illustrated
in Figure 3.2, and the "Wind speed from hindcast” originates from hindcast data
extracted from the NOAA ' database. The Airmar® wind speed seemed to measure
much higher values than the ship anemometer and hindcasts which are rather close
to each other and show the same trends. This might be due to the relatively low
position of the Airmar®) sensor on the deck and exposure to higher wind speeds. The
wind direction was analysed in the same manner, also presented in Figure 3.6, and
gives a more scattered picture for some periods. This might be caused by a local
weather system not captured by the hindcast analysis or due to unfortunate relative
wind directions that twist the wind at the positions of the measurements. During the
manual observation on board, several simple manual wind direction assessments with a
wool thread on a stick were conducted on different locations on the vessel. The general
experience was that large variation was found between observations on e.g. starboard
side and port side of the bridge wing and near the bow. This confirms the difficulty of

making on-board wind measurements.

The speed through the water was measured by a Doppler log mounted in the
forward part of the ship and measured the relative water speed ten meters below the

keel with an accuracy of 1.0% or 0.1 knots whichever is greatest.

For further analysis, the measured dataset was divided into four datasets each rep-
resenting one voyage/loading condition. Table 3.4 gives an overview of the period,

loading condition, speed range, power range, how many data points and how many

"National Oceanic and Atmospheric Administration, United States Department of Commerce
http:/ /www.noaa.gov
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Figure 3.5: AIRMAR vertical wind profiles
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Figure 3.6: Comparison of wind speed and direction during the test period. Airmar
and ship anemometer measurements are subtracted from the hindcast values

noon reports are available within the period, of each dataset, and in Figure 3.7 his-
tograms of the ship speed and true wind are shown in order to give an overview of the

speed variations and the weather conditions for each of the measured datasets.

To justify using the mean and standard deviation of each time series as input, the

governing variables were evaluated, i.e. ship speed U, propulsion power P and the
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Data Start date- No. of valid Trim Unnin- Pin-
set  Nsamples End date NR T, Ty—Tp Unnaz Pox
M - - [m] [m] |knots] [kW]|
1 236 09.02-14.02-08 3 7.4 2.4 14.2-16.2  7573-11283
2 109 22.03-27.03-08 4 7.85 2.7 13.6-15.1  7750-9248
3 301 30.01-06.02-08 7 12.15 0 13.4-16.0 8138-11216
4 555 01.03-11.03-08 9 13.0 0 13.0-15.9  9741-12096

Table 3.4: Measured dataset division

relative wind speed V.

The relative average value (7, ,,) and the relative standard deviation (7, 5s) which
are defined Eq. (3.1) and (3.2), of the value were used to evaluate how much variation
is within one dataset (voyage).

As seen in Table 3.5, ji, ), for U and P are fairly small compared to Vz which varies
considerably within each time series.

The relative standard deviation was used for filtering the data, and furthermore
Iip gives an estimate of the accuracy of the output variable.

M Ny mp o Ry,

- % %N %
236 0.64 0.69 18.0
109 055 049 9.1

301 056 0.88 9.5
955 0.61 0.57 11.4

= W DN =

Table 3.5: Average of the relative standard deviation

ToMt = %i (U‘”’”)2 (3.2)

where:

o, is the standard deviation of the n'th time series,
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iz s is the mean value of the n'th time series and

x indicates the input/output variable
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Figure 3.7: Ship speed and true wind speed distribution for dataset #1-#4

3.3.3 Heading variation

The variance of the heading is one of the governing variables on the variation of the
propulsion power in MDTM data. Even small changes (less than 1°) in the heading

have a significant influence on the measured propulsion power. This is illustrated in
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Figure 3.8b where a change in heading of 5deg to starboard results in a shaft power
increase of approximately 400kW out of 9900kW or 4%, similarly the port side turn
will result in a decrease of the shaft power as illustrated in Figure 3.8a. This asymmetry
is assumed to be due to the propeller rotational direction as a right-handed (clockwise
rotation looking from astern) propeller tends to turn the vessel to the port side if the
rudder is in the center line and no corrections are made. Therefore it will consume
more power by turning starboard than to port side. Since even small variations are
detectable, measurements with a standard deviation in the heading of more than 0.6°
were excluded.

It was not possible to explore this phenomenon in depth due to the lack of rudder
motion samples. Data with rudder motions were analysed by Petersen (2012), and
relevance determination shows that the rudder motions actually have a higher influence

than the draught for that vessel and dataset.
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Figure 3.8: Variation in propulsion power due to turns
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3.3.4 Noon report data from Torm Marie

Noon reports are part of the daily procedure on board any commercial vessel where
all information regarding the vessel’s general condition is documented. They contain
information regarding the main and auxiliary engines as well as the vessel’s position
and weather observations. The data in the noon reports are obtained manually once
a day, usually around noon, and thus represent the past 23-25 hours, (depending on
change in the time zone and reporting time). Part of the data are readings that need
to be reported, e.g. temperatures, average speed, and fuel consumption, where others
are simply observations, e.g. wave height and direction, wind speed and direction, and
also some are in between, e.g. draught fore and aft that has to be taken from the
marks on the ship side, which can be difficult to do on board the ship. The draught is
consequently only taken at departure and arrival. The noon report data is also a mix
of average values, e.g. average speed and fuel consumption, and instant values, e.g.
temperatures and weather conditions.

Noon reports are subject to human error due to the manual reporting system.
The most common errors are typing errors or plus/minus errors which are usually
identifiable, and subsequently deleted or altered. Other issues can be more difficult
to identify such as outlying observations. This issue was addressed by purging the
dataset of outliers as described in Section 3.5.2.

Table 3.6 shows a list of relevant variables from the noon reports.
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Description Unit
Latitude deg
Longitude deg

Report date and time of the day -
Time zone at report position -

Heading at report time deg
Hours of continuous steaming in report period HR
Distance over ground nm
Distance through the water nm
Average speed over ground knots
Average speed through the water knots
Wind force Beaufort BF
Wind direction (absolute) deg
Sea state Beaufort BF

Sea direction (absolute) deg

Air temperature deg C
Seawater temperature deg C
Rate of propeller shaft revolutions rpm
Arrival draught on forward perpendicular m
Arrival draught on aft perpendicular m
Main engine fuel consumptions per day tons/day
Main engine fuel consumptions per hour tons/hr

Table 3.6: Torm Marie noon report variables

Date Neamplies T Trim, U Tow SFOC

UTC [m]  Ta-Tf [m] [knots] [°’]  HFO [tons/day]
09-12-2006 - 323 7.35- 0-3.4 9.9-17.5 12-32 1.1-3.9
05-12-2008

Table 3.7: Torm Marie noon report dataset



3.4 Containership data 67

3.4 Containership data

Noon reports from five sister ships were systematically collected for a period of up to
10 years. These datasets are significantly different than the previous ones for several
reasons. The logging period is long and includes both dry-dockings and hull cleanings,
which gives interesting insight into how these operations influence performance. The
data is well organized, purged of irrelevant data and seems to be very consistent, espe-
cially the manual observations of the wave height/direction and wind speed /direction.
Since the ship type is different from Torm Marie, many of the values differed greatly,
the service speed was significantly higher, and consequently the propulsion power was
also higher.

Unfortunately the dimensions and ship names had to be kept confidential, and only
the performance data was available. This made it impossible to make comparisons with
traditional performance evaluation methods.

An overview of the datasets are given in Table 3.8 where the logging period is
presented together with the total number of data points, number of dry-dockings and

hull cleanings within the period.

Ship Period Total nr. NR w. filter No. DD No. HCL

ID Year NR NR

1 0-9.3 2337 1010 2 7
2 0-9.1 2283 1092 2 2
3 0-8.8 2268 1014 1 3
4 0-10.5 2679 1311 2 3
5 0-10.0 2564 1249 2 4

Table 3.8: Noon reports from containerships

Figures 3.9a - 3.9e show the distribution of the logged speed and shaft power of
containership 1-5, they indicate a narrow speed profile with a mean around 23 knots
and with almost no occurrence of speeds out of the range of 20-25 knots. The power
distribution was much broader which indicates that the power was adjusted to meet
the speed.

A comparison with hindcast data was performed for the container ships, the error of

the observed /hindcasted data has been reported. In Table 3.9 the observed wind speed
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is generally about 2m /s higher than the hindcast value, or 20-28 % higher. The mean
values and standard deviations between the ships are very consistent. Table 3.10 shows
the error between observed and hindcast significant wave height where, generally, the
observed values are consistently underestimated for all of the ships with the exception
of ship 1. The consistency in the estimates between the ships indicates that they

operated in the same conditions and most likely on the same routes.

Ship ID Vips = Vire 0w, -vire)  Vobs Ve O O(vue)  “5—C
1 2.45 138 884 6.39 495 344 271.7%
2 2.14 445 865 6.51 4.8 348  24.8%
3 1.68 394 809 6.41 444 338  20.7%
4 1.97 423 866 6.70 4.98 3.60  22.7%
5 1.60 408 818 6.59 4.65 344  19.5%

Table 3.9: Comparison of hindcast and observed wind speed, V[m/s] for the contain-
ership data

Hsops—Hsuco
Hsop

Shlp ID Hsobs - HSHC O(Hsops—Hspc) Hsobs HSHC’ O(Hsos) 9(Hspe)

1 0.05 1.27 1.72 1.66 1.49 1.20 3.1%
2 -0.23 1.31 1.59 1.81 1.32 1.30 -14.4%
3 -0.25 1.19 1.43 1.68 1.26 1.27 -17.3%
4 -0.20 1.30 1.67 1.87 1.42 1.39 -12.0%
bt -0.25 1.51 1.60 1.85 1.57 1.30 -15.4%

Table 3.10: Comparison of hindcast and observed significant wave height, Hg[m/| for
the containership data

Since the weather observations are instantaneous values, usually taken around the
reporting time, and other important variables are average values from the previous
noon report time, it is not correct to use them together. It would have been ideal to
have "noon reports” for every hour to increase the accuracy of the hindcast weather
information. As this was not possible, hindcasts were made between every noon report,
but with one-hour intervals and equivalent positions, and then the average of the values
between the present and the previous noon report were found. Similarly, the variance
of the hindcasts for every noon report period was determined and made available for

input to give more detailed weather information. The goal was to find weather that
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is equivalent to the effect spent in the same period, but since this is not possible, it is
believed to be better than using only one observation (noon report time) to represent

the past 24 hours.

3.5 Filtering

The three datasets were filtered differently due to the significant differences in data
quality. They were filtered first to capture data logging errors, then to ensure a station-
ary state during the logging period and finally to exclude data with excessive impact
from the environment.

The noon report data was generally purged for erroneous notations of the latitude
and longitude which seemed to be a common problem.

A summary of the filtering described below is listed in Table 3.11.

3.5.1 Measured data from Torm Marie

Since the measurements were logged as 10-minute time series, most of the data is of
a good quality. As mentioned in Chapter 3, the time series with variations in the
heading of more than 0.6°were excluded since the effect of this was noticeable in the
propulsion power. Furthermore, only measurements with a mean shaft power P of
more than 6000kTV and a relative wind speed Vi between 0 — 50knots were included

in samples.

3.5.2 Noon report data from Torm Marie

By matching the noon reports from Torm Marie with the hindcast data, much filtering
was eliminated since the hindcasts were generally only available on the ocean where
the vessel was steaming. Although the length of the datasets were reduced significantly
(=~ 50%), hindcast data added a number of new consistent and relevant input variables
to the datasets.

To avoid excessive changes in the heading within the noon report period, the head-

ing difference between two noon reports was limited to 30°. Error in speed readings
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were purged by only including noon reports within 5-25 knots.

3.5.3 Containership noon reports

Although the container ship data were of good quality, only some of the noon reports
were valid for training and testing, usually because the ship was not operating in a
stationary condition within the noon report period or e.g. was travelling in shallow
water.

Aside from the basic information, the noon reports also included performance code
parameters that indicated the operational profile of the ship during the reported time.
Ten different codes indicated if the ship was steaming, manoeuvring, in harbour,
stopped due to technical problems etc. This is very useful information when filter-
ing the data for the most stationary operation.

Filtering thus only consisted of the performance code criteria ("Performance test”,
"Normal Cruising”, "Power test”) and minimum water depth of 100m.

Different parts of the full dataset with variable lengths was used to evaluate the
effect of the dataset lengths, and subsequently the minimum logging period needed for
reliable predictions could be determined.

Due to the geographical limitations of the hindcast data the training/test sets
including hindcast data HC, were reduced by approximately 50% (for containership #
1). The training/test sets including only noon report data, and thus about twice the

amount of data, were also tested with the same setup.

Measured dataset NR from Torm Marie  NR from container ships

Heading std(¢)<0.6° COG<30 between NR  COG<30°between NR
Speed - 5kn<SOG<25kn 5kn<SOG<35kn
Power P=6000kW - -

Wind speed  0kn<V3z>50kn - -

Water depth - - Waterdepth<<100m

Table 3.11: Input data filters
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3.6 Input dataset for the regression model analysis

The following section presents input variables for the three data set in Table 3.12 -

3.14 that are used in the regression analyses presented in Chapter 4.

X Data variable ID Unit
1 Speed through water KYMA U knots
2 Relative wind speed Airmar Vrel knots
3 Relative wind direction Airmar grel °

4 Air temperature Airmar Tair °C

5  Sea water temperature NR Tsw °C

6  Air temperature NR Tair °C

7 True wind speed HC Ws  m/s
8  True wind direction HC g °

9  Significant wave height HC Hs m

10 Wave period HC Tp s

11 True wave direction HC Td °

12 Relative wind speed HC Vrel m/s
13 Relative wind direction HC grel °

- Shaft power KYMA P kW

Table 3.12: Data variables for the measured dataset analysis from Torm Marie
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X  Data variable ID Unit
1 Average ship speed through the water NR U knots
2  Air temperature NR Tair °C

3 Sea water temperature NR Tsw °C

4 Mean draught (Ta+Tf)/2 NR Tm m

5  Trim, Ta-Tf NR Trim m

6  Average significant wave height during NR period HC mean(Hs) m

7 Average wave period during NR period HC mean(Tp) s

8  Average relative wave direction during NR period HC mean(Tdrel) ©

9  Variance of the significant wave height during NR period HC var(Hs) m

10 Variance of the wave period during NR period HC var(Tp) S

11 Variance of the wave direction during NR period HC var(Td) ©

12 Average relative wind speed HC mean(Vrel) m/s
13 Average relative wind direction HC mean(gammarel) °

14  Wind force (Beaufort) NR WindBF BF
15  Wind direction NR  WindDir ©

16 Report date and tim (Matlab numeric value) NR UTC -

- Average HFO consumption per hour NR HFOME tons/hr

Table 3.13: Data variables for the NR dataset analysis from Torm Marie
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X  Data variable ID Unit
1 Speed through water NR Ulog knots
2 Speed over ground NR Uobs knots
3 Sea water temperature NR Tsw deg
4 Mean draught (Ta+Tf)/2 NR Tm m
5  Trim, Ta-Tf NR Trim m
6  True wind speed NR WindSpeed m/s
7  Relative wind direction NR  WindDir deg
8  Average relative winds speed during NR period HC mean(Vrel) m/s
9  Average relative winds direction during NR period HC mean(gammarel) deg
10 Average significant wave height during NR period HC mean(Hs) m
11 Average wave period during NR period HC mean(Tp) s
12 Variance of the significant wave height during NR period HC var(Hs) m
13 Variance of the wave period during NR period HC  var(Tp) s
14 Variance of the wave direction during NR period HC var(Td) deg
15 Variance of the winds speed during NR period HC var(Ws) m/s
16  Variance of the winds direction during NR period HC var(gamma) deg
17  Report date and time (Matlab numeric value) NR UTC -
18 Average winds speed during NR period HC mean(Ws) m/s
19  Average winds direction during NR period HC mean(gamma) deg
27 Sea state NR SeaState m
28 Relative sea direction NR TrueRelSeaDir deg
- Average shaft power NR PropPower kW

Table 3.14: Data variables for the container ship noon report dataset analysis
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3.7 Data summary

This chapter outlined the variables needed for determining the propulsion power of a
ship as well as the effect of each of the variables on propulsion power and how they
were obtained in practice. Hindcast weather information and the installation of the
on-board measurement system on Torm Marie was described. Manual observations
made on board Torm Marie were compared with data measured during the test period
and a discussion of how the high data resolution of the measured data facilitated a
detailed study of how changes to the heading affected instantaneous propeller power,
is given.

A detailed account of data sampling and how the measured data was split into four
datasets, each one for a single voyage with a constant loading condition, is given.

The acquisition and quality of Noon report data from Torm Marie over a two year
period was described.

The noon report data from five sister containerships are presented. These datasets
were collected in a period of up to 10 years and include dry-dockings, hull cleanings
and propeller polishings. The wind speed and significant wave heights from the noon
reports were compared with the corresponding hindcast values and showed surprisingly
consistent differences across the five ships with the observed wind speed generally being
higher than the HC' and the observed wave height generally being lower than the HC
values.

Finally a summary of the filtering used for the three sources of data (MDTM,
NRTM and NRCS) is given.
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Chapter 4

Analyses using the different

propulsion prediction methods

This chapter presents and compares the results from the methods described in Chap-
ter 2. The available data allowed for different types of analysis that enabled us to
analyse different aspects of the data-driven methods. The measured data from Torm
Marie (MDTM) had a very high resolution with many variables although no variation
in the loading conditions were included, furthermore the measurements ensured more
consistent data and are regarded as the best datasets which were therefore used for
comparing the regression models. The noon report data from Torm Marie (NRTM)
and containerships 1-5 (NRCS 1-5) featured a significantly lower data density, but they
included many different loading conditions over a long period of time. This offered the
possibility of including time as a variable and since all weather data was obtained
manually, the effect from introducing additional weather information from hindcast
data could also be analysed.

First the four measured datasets from Torm Marie were used to evaluate the predic-
tion errors with the empirical methods (EMP) and the four regression models: linear
(LIN), custom non-linear (NONLIN), Artificial Neural Network (ANN) and Gaus-
sian Process Regression (GPR). This analysis allowed us to compare the prediction

performance of the different methods.

Generally the non-linear models ANN and GPR were superior in performance
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time input included | without time input
Including hindcast | HCtime HCNotime
Without hindcast | NoHCT NoHCNotime

Table 4.1: Selecting the best model of Input Variable Combinations (IVC) for each of
the four given variable

and were used for the predictions of the noon report data from Torm Marie and
Containerships 1-5. The prediction errors for ANN and GPR regression were similar,
but due to the dataset sizes and feature availability, the GPR was primarily used for
further investigation. Initially the comparisons for the containerships were performed
on dataset 1 in the period from launching until the first dry-docking, and the best

combinations of the input variables were found in this period.

The large amount of data from the containerships allowed more possibilities for
training and evaluations. Five sister ships were available, each with a history of ap-
proximately 10 years and some with several dry-dockings. The weather data from the
noon reports are consistent and of reasonable quality, and as discussed in Section 3.2.8,

it was thus possible to use the data without introducing hindcast data.

The input dataset from the noon reports had additional data from hindcast weather
information as described in Chapter 3, but including them limited the amount of input
data because hindcast data was not available in all areas. The inclusion of hindcast
data added weather and sea information. However, it also reduces the input dataset
by approximately 50%. This effect was investigated by direct comparison between

datasets with only noon report data and datasets including hindcasts.

Four combinations of the input variables (IVC) were of particular interest: best
IVC only including noon report data and best IV including hindcast data, both with
and without time as a variable. Results defined these optimal IVC for containership
1, and the datasets from containerships 2-5 were subsequently trained with these IVC.

The matrix for testing the optimum /VC for containership 1 is presented in Table 4.1.

In order to evaluate the length of a training period needed for obtaining reliable
results, containerships 1-5 were trained with data from the first year, then data from

the first two years, accumulating one year at a time until the first dry-docking that
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occurred after approximately 5 years as illustrated in Table 4.2

Training period | Year 1 Year 2 Year 3 Year 4 Year 5
L |

Ot = W N

Table 4.2: Accumulation of the training year for containerships 1-5

The LIN, NONLIN and ANN models were evaluated by cross-validated relative
prediction errors Wy as defined in Section 2.3.1. They were based on a dataset subdi-
vision into 5 subsets (K = 5), and the GPR was trained and tested with LOO, but for

comparative purposes a subdivision of 5 subsets was used for the GPR as well.

An overview of the combinations between method and dataset are given in Ta-
ble 4.3.

By evaluating all of the datasets with both ANN and GPR using different combi-
nations of input variables, the prediction errors produced can be used to evaluate the
effect of specific variables. The characteristic length-scales in the GPR model represent
the influence of every input variable as described in Section 4.5. Length-scales are a
more direct way to evaluate which variables are most important. The length-scales
reported are average values based on the LOO training and test procedure. The mag-
nitudes of the length-scales often vary significantly, and for presentation purposes it is

given on a logarithmic scale.

Prediction Methods
Data EMP LIN NONLIN ANN GPR LT trend
Torm measured data 1-4 X X X X X
Torm NR X X
Containership NR 1-5 X X X

Table 4.3: Applied methods and dataset combinations tested, including Long-term
Trend evaluations (LT Trend)
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4.1 Evaluation of empirical methods for the measured

data

Results from the empirical methods are mainly included to illustrate how they can
result in significant discrepancies if used without any adjustments to the model from
experience with similar ships. Furthermore, the lack of fixed ship parameter data made
it impossible to test the containership data using the empirical methods.

The propulsion power was estimated using the empirical methods Harvald (1983)
(GH) and Holtrop and Mennen (1984) (HM) described in Chapter 2. The models
were used with all the hydrostatic parameters given as well as the propeller open water
data from the model test. The wind resistance was based on Isherwood (1972). All
other parameters were estimated by the models without modification. As illustrated in
Figures 4.1a and 4.1b, both methods show significant error, up to above 50%, compared
to the measured values or as found in Pedersen and Larsen (2009a) cross validation
errors up to 28%. GH generally over-predicts and HM under-predicts the measured
propulsion power. In Figure 4.1b, the errors from both methods seem to have linear
trends, GH with a higher slope than HM. This indicates that both methods put too
much weight on the speed, or that the wind resistance could be overestimated.

Both methods could be improved by adjustments to model test data, sea trial data,
or practical experience from sister ships. However, because this thesis is seeking solu-
tions based on a minimum number of manual adjustments, the errors of the empirical

methods have mainly been presented for illustration purposes.

4.2 Comparison between prediction methods based

on logged data

The four datasets consisted of samples of measurements on board the product tanker
Torm Marie (MDTM) and have been used as a benchmark between the prediction
methods and to show how measured data can improve the prediction performance. As

described in Chapter 3, the datasets are measured data from four individual voyages
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Figure 4.1: Prediction errors for the empirical methods: Guldhammer & Harvald and
Holtrop-Mennen

where the loading conditions are assumed to be fixed, and therefore the data cannot
be directly compared with the noon report data from Torm Marie. (NRTM)

ANN and GPR regression models facilitate an infinite number of input variables
and thus combinations of input variables. ANN can be vulnerable to excessive vari-
ables that might mislead the predictions. It is therefore recommended that different
combinations of the input variables are tested. G'PR is less sensitive to excess variables.

The input combinations are given in Table 4.4.

4.2.1 Results using the linear and the custom non-linear meth-

ods with the measured data from Torm Marie

The linear and custom non-linear methods were developed to predict the trend within
the measured data, and since ANN and GPR showed significantly better results, fur-
ther development was discarded.

Based on linear and non-linear regression methods described in Section 2.2.1 and
2.2.2, the cross-validated prediction errors were calculated. The linear and non-linear
methods were trained like the ANN and GPR with five cross-validation training/tests
(80%/20%)-set for the measured data. For each dataset, the average of the relative

prediction errors is shown in Table 4.5.
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Input variable setup - IVC

X 1D Data variable 2 8 10 11 12 15
1 U Speed through water X X X X X X
2 Vrel Relative wind speed X X b
3  grel Relative wind direction x x X
4 Tair Air temperature X X b
5 NR.Tair Air temperature X X X b
6 NR.Tsw Sea water temperature x x X X X b
7 HC.Ws  True wind speed X X X
8 HCg True wind direction X X X
9 HC.Hs  Significant wave height X X X X
10 HC.Tp Wave period X X X X
11 HC.Td True wave direction X X X X
12 HC.Vrel Relative wind speed X X b
13 HC.grel Relative wind direction X X X
Y P Shaft power X X X X X X

Table 4.4: Input variable setup combinations (IVC) for the measured data from Torm
Marie ("NR” indicates that the data originates from the noon reports and "HC” indi-
cates that the data originates from hindcasts)

The linear model performed best with three simple input variables: the ship speed
U, the relative wind speed Vg and the wind direction 5. In Table 4.5, it is evident that
the linear model is superior to the non-linear model. This indicates that the dynamics
of the model are not necessarily related to the propulsion power with the speed cubed
and wind speed squared as previously assumed for the present speed range. Table 4.5
also shows that there is a large difference between the results of the datasets, and there
is the same tendency for both the linear and non-linear methods. This may be due to
the variability in the datasets. In Figure 3.7, datasets 2 and 4 have slightly smaller
speed ranges that are more uniformly distributed than in datasets 1 and 3. This is
not consistently reflected by the standard deviation of the power and ship and wind
speeds in Table 3.5, but it is noted that dataset 2 with the smallest prediction error

also has the smallest variations here.

It is emphasized that the measured dataset does not include variations of draught

and trim since they are measurements from four different loading conditions.

Figures 4.2a to 4.2d show that the error distribution for the linear regression
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models is only normally distributed in dataset 2. In dataset 4, the distribution is a bit

skewed, and both 1 and 3 are multiply distributed and significantly skewed.

M Linear Non-linear

WK WK

% %

1 9.35 11.36
2 1.59 3.58
3 7.85 10.79
4 3.39 5.98

Table 4.5: Cross-validation errors wxof the linear and non-linear methods for the
measured dataset
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Figure 4.2: Histograms of the relative prediction errors from the measured dataset
(MDTM 1-4) using the linear method
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4.2.2 Evaluation of ANN regression of the measured dataset

from Torm Marie

This section presents the results from the ANN method on the measured dataset from
Torm Marie (MDTM) for comparison with the other regression models. Initial tests
in Pedersen and Larsen (2009b) of the measured dataset show that the model with
the high number (20) of hidden units had the lowest error, and for computational
efficiency, the network was subsequently only trained with 5 and 20 hidden units.

The network was trained with 80% of the dataset and tested with the remaining
20% of the dataset alternately five times so all parts of the dataset were used.

Table 4.6 shows that the network with 20 hidden units is consistently better than
the one with 5 hidden units for all the measured datasets. As discussed in Section 4.7,
datasets 2 and 4 had very little variance in the input and output variables which makes
regression more simple. This is also evident in Table 4.6 where the results of dataset
2 are similar for 5 and 20 hidden units.

For the two remaining datasets, the tendency is that the lowest prediction errors
are found with input variable set 72 which consists of the logged ship speed, sea and
air temperature and hindcast data for wind and waves, and 20 hidden units.

The values in Table 4.6 are generally very small, but since they are based on the
mean values of the time series, it cannot be expected that they can reach values below
the relative standard deviation of the measured output variable (the propulsion power)
presented in Table 3.5.

Figures 4.3a-4.3d show histograms of the relative prediction errors together with a
normal distribution fitted to this. All the histograms have higher peaks than the normal
distribution, but all are around zero. For dataset 2 in Figure 4.3b, the histogram has

a few outliers; it should be noted that these still have small prediction errors.

4.2.3 Results from GPR with measured datasets from Torm

Marie

The measured datasets were trained using the same IVC used for testing the ANN
and all available input variables equivalent to IVC 15 in Table 4.4. The training and
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testing was performed as described in Section 2.4.2 with cross-validation of the same
five training/test sets as for the ANN.

In Table 4.7, a collection of the cross-validation errors together with the mean of
the predicted standard deviations are presented. As in the previous analysis with the
MDTM data, it is also evident that datasets 2 and 4 both have smaller prediction

errors and also smaller prediction standard deviations.

The distributions of the relative prediction errors are presented in Figure 4.4a-
4.4d, and the cross-validation error for each dataset is shown in Table 4.7. Comparing
with the ANN prediction errors in Section 4.2.2, the prediction errors are smaller.
Furthermore the average predicted standard deviations are presented and show that
the standard deviation tends to increase with the increase of the corresponding cross-

validation error.

In the two columns to the right, the average of the relative prediction errors and
the relative standard deviation for datasets 1-4 are shown for each IVC. IVC 8, 10, 12
and 15 all have similar prediction errors, but IVC 15 has a smaller relative prediction

standard deviation.

Figures 4.5a- 4.5d show the relation between the prediction errors w; and the
predicted standard deviation o,. Generally the MDTM 2 and 4 have a lower level

of o, with a more confined distribution, whereas MDTM 1 and 3 have more outliers.

Dataset 1 Dataset 2  Dataset 3  Dataset 4 Average 1 — 4

NH 5 20 5 20 5 20 5 20 5 20
Ux Wk | Wg Wk | Wg Wk | Wg Wk | WOk UK
Ve % % % % % % % % % %

2 3.93 292 | 1.07 0.81]3.07 237|172 1.30 | 245 1.85
8 263 1971097 089|221 165|149 1.04]|1.83 1.39
10 214 1.6510.99 095|217 1.65|1.52 094 | 1.71 1.30
11 3.77 2791 1.10 0.90 | 2.45 1.88|1.42 1.02 ] 2.19 1.65
12 225 1.65]099 094|175 140 |1.28 0.90 | 1.57 1.22

Table 4.6: Cross-validation errors, wg, of the ANN for the measured data from Torm
Marie for different Input Variable Combinations (IVC) and Number of Hidden units
(NH)
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Figure 4.3: Histograms of the relative prediction errors from the measured datasets
(MDTM 1-4) using ANN, with 20 hidden units and IVC 12 for all datasets, except
dataset 2 where IVC 2 is used.

4.2.4 Comparison of regression models for the measured data

from Torm Marie

Comparison of the results from four different regression methods was conducted with
the four measured datasets (MDTM) from Torm Marie in order to evaluate the pre-
diction performance. Figure 4.6 gives an overview of the lowest prediction errors, and
it clearly shows that ANN and GPR both reveal significantly smaller prediction errors
than the remaining methods. Both ANN and GPR are very similar in performance,

and they are consistent across the datasets. The measured datasets are, as mentioned
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Dataset 1  Dataset 2  Dataset 3 ~ Dataset 4 Average 1 —4

IVC| wx Ok | Wk OK| Wk Ok | Wk OK| Wk oK
% % %N %N % N % K| % %

2 233 2991077 0.63|1.89 2.76 0.88 1.24|1.47 1.91
8 1.35 1.7510.74 0.75]0.91 1.24{0.52 0.73 ] 0.88 1.12
10 0.89 1.28  0.82 0.87]1.16 1.75 | 0.57 0.82 ] 0.86 1.18
11 1.79 3.06 | 0.97 1.24 | 134 1.79| 280 3.65]| 1.73 2.44
12 0.85 1.28 1 090 1.05]1.01 1.39 | 0.54 0.79 ] 0.83 1.13
15 1.00 1.37 1 0.78 0.68 | 1.10 1.25| 0.56 0.74 | 0.86 1.01

Table 4.7: Crossvalidation errors wx of the GPR for the measured dataset for different
Input Variable Combinations 1VC
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Figure 4.5: The relative prediction errors vs. the predicted standard deviation from
the GPR analysis with the measured datasets (MDTM 1-4)

before, without variation in draught and trim. Introducing the draught and trim as
additional variables, as with the noon report data, is not expected to change these
trends, and the ANN and GPR models are expected to perform equally well or better
than the linear and non-linear methods for any performance input dataset. This led

to the decision to only use ANN and G'PR for analysis of the remaining datasets.
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Figure 4.6: Comparison of the relative prediction errors between all the regression
methods: linear, non-linear with and without modifications and the best input variable
combinations of ANN and GPR methods of measured datasets 1-4

4.3 Analysis of noon report data from Torm Marie
using ANN and GPR

This section collects the results found by training and testing the noon report data
from Torm Marie (NRTM) with the ANN and GPR models. Using this data allowed
evaluation of prediction methods for the same vessel as for MDTM, but for a longer
duration which includes changes in loading conditions. Unfortunately the data was
based on noon reports and was not directly comparable with MDTM due to the sparse

data density.

The training and test procedure for the noon report data from Torm Marie was
similar to the one for the MDTM data, but due to the different input-output data,
different input variable combinations (IVC) had to be used. Table 4.8 specifies 8
different IV C selected in order to evaluate the effect of the different parts of the data,
for example with and without the weather data. For this reason four of them included

the time as a variable.
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X
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NR.Tair
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mean(HC.Hs)
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HC Vrel X X X
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Table 4.8: Input variable combinations (/VC') for noon report data from Torm Marie

4.3.1 Evaluating the prediction errors of the NRTM using ANN

The relative prediction errors (wx) from the ANN regressions in Table 4.9 show how
they are related to the number of hidden units (5, 10, 15, 20) in the ANN and IVC.
It is noted that the prediction errors are consistently smaller for the simplest network
with 5 hidden units compared with more complex networks with more hidden units.
This is in contrast to the findings in Section 4.2.2 where the ANN with 20 hidden units
performs best. The best result is obtained by input variable combination 7, which is
one of the simpler IVC' with five hidden units giving a relative prediction error of
7.18%, but all the IVC' that include the time (IVC 7,9, 10 and 13) have considerably
lover Wi than the ones without. A simpler network with only 5 hidden units with few
input variables indicate that the problem is less complicated, and a more complicated
network, Figure 4.7, shows the error histograms and an estimated normal distribution

for this combination which has a reasonable fit regardless of some outliers.
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IVC Number of hidden units, NH

3 10 15 20

% % % %
1 8.68 - - 9.51
4 8.70 10.00 11.22 13.78
6 8.18 850 9.07 9.05
7 718 774 9.28 10.06
8 8.46 9.06 9.60 9.18
9 7.26  8.47 10.58 9.25
10 7.21 850 10.89 12.46
13 707 - - -

Table 4.9: 20/80 cross-validation errors wx from ANN for the noon report data
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Figure 4.7: Histogram and normal distribution of the relative prediction errors from
ANN with 5 hidden units and IVC 7, using the noon report dataset from Torm Marie
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4.3.2 Evaluating the prediction performance of the NRTM with
GPR

In Table 4.8a, the summary of the cross-validation prediction errors wx and standard
deviations ox shows that there is not much variation between the best input variable
combinations (7,9,10,13). Furthermore, the results are shown in Figure 4.8b illustrat-
ing that the cross-validation errors and standard deviations are positively correlated.

IVC 15 has the lowest prediction error and a reasonably low prediction standard
deviation. As with the measured dataset, the GPR method managed to identify the
best results by using all the available input variables, including the time input. The
distributions of the prediction errors and the predicted standard deviations from IVC
15 are presented in Figure 4.9a. The prediction error histogram is offset to the left
whereas the normal distribution is well centred around zero but does not fit the his-
tograms very well.

Figure 4.9b gives a picture of how the relative prediction errors (wy) and the relative
predictive variance (oy) are related. This shows a narrow distribution of wy and that
the standard deviation oy is only partially correlated to wy, meaning that for w; until
0.2 it is not given that oy increases, but for higher errors, the standard deviation seems
to increase, except at one point. High o for low wy is not regarded as a problem
because it is a conservative estimate, and in post-processing, this is more important
than having large errors with small o,. The standard deviations are relatively low with
the majority of the occurrences below 5%. Both figures suffer from a few outliers that

could be purged by the high prediction standard deviation.
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4.3.3 Comparison of ANN and GPR for the NRTM dataset

The comparisons between the ANN and GPR shown in Figure 4.9 indicate that the
GPR method generally performs better than the ANN for the noon report data from
Torm Marie.

The prediction error was reduced by approximately 2% with GPR for IVC that
included the time (7,9,10,13), which was not captured as well by the ANN method.

B ANN ||
[IGPR

Relative prediction error [%]

o = N W Hh OO O N 0 ©
B e A e e

1 4 6 7 8 9 10 13
Input variable combination

Figure 4.9: Comparison of the relative prediction errors between ANN and GPR
methods of the noon report data from Torm Marie for different IVC. IVC 7,9,10
and 13 include the time as a variable.

4.4 ANN and GPR applied to long-term anonymous

noon report data

The anonymous noon reports from containerships 1-5 (NRCS 1-5) were very interesting
for our analysis as they contained consistent data for a very long period and due to
the anonymity the data provided an interesting case as it was not possible to apply
classical empirical analysis but only allow data-driven analysis as the knowledge of the

individual vessels resistance data was not available.
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Initially only the data from containership 1 was trained for the period from the
launching to the first dry-docking in order to compare the results from the ANN and
GPR regression models. As in the previous section different combinations of the input

variables (IVC') as in Table 4.10 were trained and tested to find the best setup.

ANN was only trained with 5 cross-validation training/test whereas the GPR was
primarily trained by the Leave One Out (LOO), but in order for direct comparison

the training was performed with 20/80 cross-validations.

As discussed in Chapter 3 the introduction of hindcast data limits the quantity of
data due to the limited geographical coverage from the NOAAH data. The pros and

cons of datasets with and without hindcast information are evaluated.

X 1vC 1 2 3 4 7 8 9 10 11 14 15 17 18 20 21
1 NR.Ulog X X X x X X X X X X X
2 NR.Uobs ble X X X X
3 NR.Tsw X X X X X X X X X X X X X X X
4 NR.Tm X X X X X X X X X X X X X X X
5 NR.Trim X X X X X X X X X X X X
6 NR.True wind speed X X X X X X X X
7 NR.True rel wind dir X X X X X X X X
8 HC.Vrel X X X X X X X
9 HC.gammarel X X X X X X X
10 HC.mean.Hs X X X X
11 HC.mean.Tp X X X X
12 HC.var.Hs X X X X
13 HC.var.Tp X X X X
14 HC.var.Td X X X X
15 HC.var.Ws X X X X X
16 HC.var.gamma X X X X X
17 NR.UTC X X X X X X
18 HC.mean.Ws X X

19 HC.gamma X X

27 NR.Sea state X X X X
28 NR.True rel sea dir X X X X

Table 4.10: Input variable setup combinations for Noon Report data from container-
ships 1-5
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4.4.1 Optimization of ANN regression for the noon report dataset

from the containerships

The containerships were not studied as thoroughly as Torm Marie with ANN because
it became evident at an early stage that the Gaussian Process Regression (GPR) was
superior in speed and had a comparable prediction accuracy. Furthermore GPR had
the advantage of the extra features length-scale and prediction variance. Consequently
only containership 1 was trained with ANN, for the period from the launching until
the first docking and only including datasets with hindcasts.

The cross-validation errors presented in Table 4.11 show that the lowest error for
ANN is found by IVC 2 with five hidden units. The error distribution of this solution
is shown in Figure 4.10 and has a fair fit to the normal distribution. /VC 2 include

the time as a variable as seen in the previous section.

IVC Number of hidden units
5 10 15 20

% % % %

6.07 6.82 6.99 7.04

5.50 7.12 6.16 8.38

5.87 6.97 6.57 7.54

6.57 7.24 9.00 12.35

6.32 6.66 6.33 7.02

6.28 6.57 6.47 6.53

5.77 6.96 6.14 5.98

0 5.87 6.13 6.78 6.34
1 6.21 6.73 6.63 8.47

== O 00 =1 B W N

Table 4.11: Relative cross-validation errors from ANN for the containership noon
report data, wx trained with 20/80 cross-validation.

4.4.2 Comparison of ANN and GPR using the containership
data

For comparison between the ANN and GPR containership 1 was trained with cross-

validation 20/80. This dataset included hindcasts for the period from launching until
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Figure 4.10: Histogram and normal distribution of the relative prediction errors from
ANN using the noon report dataset from containership 1 and IVC 2 (Described in
Table 4.10) and five hidden units.

the first dry-docking, approximately four years after, resulting in 251 data points.
Figure 4.11 show that the cross-validation prediction errors are comparable, but
for different IVC ANN and GPR differ from one another. ANN seems to be slightly
better for IVC 1,2,3 and 11 and GPR performs slightly better for IVC 7-9. IVC 10
results in a very similar solution, but for IVC 4, Wi for GPR is approximately 2%
higher than for ANN. The only difference between IVC 4 compared to IVC 2 is that
the first includes the variance of the hindcast wind speed and direction. It is surprising
to see that adding these two variables that are expected to be of little importance can
result in such a change. This confirms that the inclusion of the variation in the hindcast

data during the report period is relevant for the model.

4.4.3 Optimization of GPR regression method for noon report

dataset from containership 1

In the previous Section the training with GPR of the NRCS 1 was performed using

the 20/80 cross-validation in order to make direct comparison with the ANN analysis.
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Figure 4.11: Comparison of the relative cross-validation prediction errors (x) between
ANN and GPR methods of the noon report data from containership 1 trained with
20/80 cross-validation scheme

GPR is relatively faster than ANN for smaller training sets as the ones analysed in
the thesis. This allowed LOO training for GPR analyses with different input variable
combinations I'VC.

Table 4.12a and Figure 4.12b shows the relative cross-validation errors (wg) and
standard deviations (wg) trained for the same period as in Section 4.4.2; but trained
with LOQO. The best IVC is 21 that includes all the input variables.Figure 4.12b shows
a significant correlation between the wx and ok identified by the analysis of NRTM
data in Section 4.3.2

In Figure 4.13a, the histogram of the relative prediction errors (wy) of IVC 21
shows a nice fit to the normal distribution which indicates reliable predictions for this
input combination and confirms the assumption of the GPR that the error is normal
distributed.

Figure 4.13b illustrates the predicted standard deviations (oy) as a function of wy.
This shows a similar pattern As the NRTM data with the highest wy having a high
ok, but there is less scatter for NRCS 1.
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Figure 4.12: Relative cross-validation errors Wy and predictive standard deviation oy
of the GPR for the noon report dataset from containership 1, using LOO training/test
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Figure 4.13: GPR prediction results for containership 1 using IVC 21
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4.5 Analysis of long-term data using GPR

Since the GPR method’s prediction performance was comparable to or better than the
results from ANN, as was demonstrated in the previous Section 4.4 it was decided to
work exclusively with GPR.

Initially, containership 1 was used to evaluate the input variable combinations
(IVC), trained for the period between the launching and the first dry-docking. This
period was approximately 4.5 years and a change in the hull propeller/performance
was expected.

The first evaluation of the input dataset with and without the hindcast data was
made using containership 1 from launching until the first dry-docking. This resulted
in 251 and 515 data points for the hindcast and pure noon reports input respectively.
Direct evaluation of the amount of data can only be performed for input variable
combinations including the noon report data alone, e.g. input variables 3, 9, 11,
17, 18. A similar analysis was made of the length-scale in the variable analysis in
Section 4.7.3.

The prediction errors are presented in Figure 4.14, and the definitions of input
variable setups are given in Table 4.10. Apart from IVC 11, the IVC that includes
hindcast data has smaller prediction errors than those without. For IVC 11, the
prediction errors using the hindcast input data are slightly higher than the ones using
the pure noon report data, and the general trend is that the use of hindcast data
significantly improves the prediction despite limiting the amount of data.

Based on the results from Figures 4.11 and 4.14 the focus is kept on input variable

setups 9, 18, 20, 21, for representing the following input variable setup and dataset:

9 has the best performance of the I'VC without time input for the exclusive noon

report, data.

18 has the best performance for the IVC including time input for the exclusive noon

report data.

20 has the best performance for the IVC without the time input for the noon report
data and hindcast dataset.
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21 has a similar performance to input variables 13 and 1/ for the IVC including the
time input, the noon report data and hindcast dataset, but 21 also includes the

reported sea states and can thus be regarded as more robust.
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Relative prediction error [%]
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Figure 4.14: Comparison of the relative prediction errors found by GPR for datasets
of containership 1, including hindcast (251) and without (515).

4.5.1 Evaluation of the effect of the data length

Training and testing of containerships 2-5 was performed in a similar manner to the
training and testing of containership 1. The four different IVC 9, 18, 20, 21 were used
together with datasets including both noon reports and hindcasts. In order to evaluate
the influence of the length and period of the datasets, each dataset was trained for
different periods of time. All the periods started from the launch and accumulated in
one-year increments until the first docking (year 0-1, year 0-2, year 0-3, year 0-4, year
0-first dry docking).

The relative prediction errors are shown in Figures 4.16a- 4.16e and do not indicate
dependence on the quantity of data. For containerships 1, 2 and 3, there is a general
trend of decreasing errors with time for the average input setup variables, yet the
best input variable combination, 21, is increasing slightly with increasing number of

data points in Figure 4.16a. The amount of data varies between the containerships
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from 44-71 data points for the one-year period and 234-297 data points for the longest
period from the launch to the first dry-docking. This does not seem important as the
lowest error for (21) is 3.7% with 234 data points, and the highest error (6.9%) for 21
is found with 297 data points available.

Across the containerships, the lowest prediction errors are generally found by IVC
21. Although the errors from input variable setup 20 is in many cases very good or

slightly better, it is not as consistent as IVC 21.

The predictive standard deviations describe the uncertainty of the predictions.
Around well defined areas with high number of consistent input data the predictive
standard deviation will be small. The further you get from dense regions of consistent
input data the higher the predictive standard deviation is. Assuming that the training
set of data is indeed representative of the test dataset then one can expect that the error
in predictions for the test set will correlate well with the predictive standard deviation.
The ability to make a direct comparison between the GPR methods predicted standard

deviation and the observed standard deviation is a unique feature of GPR.

The cross-validated predictive standard deviations (k) for the accumulated train-
ing periods are shown as a function of the corresponding cross-validated prediction
errors (wr) in Figure 4.15. Here the containerships are not distinguishable, but only
the IVC and the training period is marked differently, where the marks ”1-5” indicated
the training period (-1 year, (-2 year and so forth. This plot shows a general correla-
tion between Wy and 7%, in particular for the region where wx and o are below 6%.
For a group of trainings of IVC 9 shows slightly higher -wy ratio than the remaining
IVC, this might be due to the relatively simple input combination that only includes
the ship speed, the mean draught and the sea water temperature. It is difficult to see
if and how the results depend on the training period length from this. Looking at wg

exceeding 8% all training periods are represented.

Generally it can be concluded that when using the right /VC, the relative prediction
error depends on the quality of the input data. For the best input dataset, the relative
prediction error is a consistent 4% independent of the data length (containerships 1 and
2 IVC 21). It is confirmed that the input from hindcast data improves the prediction
(IVC 20 and 21), and the time variable (IVC 18 and 21) also improves the prediction
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for IVC 21.

The relation between the prediction errors and prediction standard deviations are

consistent for all the datasets and IVC' and is thus very useful in the prediction.
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Figure 4.15: Summary of the five containerships together. Trained accumulative for
0-1, 0-2,... 0-5 years, which is indicated by numbered markers. The coloured asterisk

indicate the IVC.
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Figure 4.16: Relative prediction errors from containerships 1-5 (NRCS 1-5) trained
with IVC 9,18,20,21 for five different periods of time starting at the launch with
one-year intervals accumulating until the first dry-docking
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4.6 Discussion of the results of the prediction methods

The previous chapter demonstrated how the non-parametric data-driven regression
methods, Artificial Neural Network, ANN, and Gaussian Process Regression, GPR,
improve the prediction performance significantly compared with the custom non-linear
and linear regressions. For most combinations of datasets and IVC, GPR had slightly
smaller prediction errors than ANN. GPR was chosen for further analysis because of its
ability to find the predictive variance and for its computational efficiency with dataset
sizes used (max = 500 data points). Furthermore, the option of using length-scale for
evaluation of the input parameter’s relevance, is an interesting feature which is not

readily available in ANN as discussed in Section 4.7.

Four IVC have been selected, 9, 18, 20 and 21. Where 20 and 9 are the best
1VC for datasets with and without hindcast weather information, respectively. IVC
20 and 21 are similar to 9 and 18, but they include tizme as an additional variable.

Table 4.12 gives a schematic overview of the IVC.

The time as an input should not be used for predictions beyond the time frame
of the input, because the time has a constant linear slope and thus will act as an
extrapolation out of the region from where it has been trained. It has mainly been used
to demonstrate its strong effect on the prediction errors, and it is thus representative
of the long-term deterioration of the ship and is assumed to represent the propeller

and hull fouling.

As also stated in Section 4.7 when using hindcast input data to replace or support
the noon report data, the prediction errors are reduced by approximately 1% even

though the hindcast data limits the amount of data by up to 50%.

There was no general trend between the prediction errors and length of the dataset
as illustrated in Figures 4.16a- 4.16e, and for most of the datasets for the containerships
(1-5) the shortest periods have similar prediction errors as the longest. The relative
predictive standard deviations in Figures 4.15 show a similar pattern for different

periods of training/test data.

For all the datasets, the average of the relative predictive standard deviation, 7 is

of the same magnitude as the cross-validated relative prediction errors wy. This gives
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X Input combination ID 9 18 20 21
1 NR Logged speed X X X X
2 NR Observed speed X X
3 NR Seawater temperature X X X X
4 NR Draught midship X X X X
5 NR Trim X X X
6 NR True wind speed X X X
7 NR True relative wind direction X X X
8 HC mean relative wind speed X X
9 HC mean relative wind direction X X
10 HC mean significant wave height X X
11 HC mean peak wave frequency X X
12 HC variance of significant wave height X X
13  HC variance of peak wave freaquency X X
14 HC variance of wave direction X X
15 HC variance of the true winfd speed X X
16 HC variance of the wind speed X X
17 NR UTC time variable X X
27 NR Observed sea state X X X
28 NR Observed true relative wave direction X X X

Table 4.12: The best input variable combinations for Noon Report data from the
containerships

a picture of the average predictive confidence interval, CI, for each of the predicted

values, but does not indicate how the prediction errors are distributed.

By looking at the estimated normal distributions of the relative prediction errors,
the estimated variance can be used to determine a confidence interval, CI. A 95% CI,
which is approximately p + 2 -0 (Larsen (2000)) was calculated for the best setups
for ANN and GPR in each of the evaluated datasets.

Table 4.13 shows that the CI for the measured datasets predicted with ANN and
GPR are similar, and are in the range of £0.2 — £0.57 or % — % relative to the cross-
validation error . Prediction of the measured datasets using GPR are thus able,

with 95% certainty, to predict the energy consumption within 0.76 — 1.5%.

For the Torm Marie noon report data, there is a reduction of 0.5% of the 95% CI
(and p,,) using GPR compared with ANN. Prediction with GPR makes it possible to
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make a prediction within 6.15%. The lowest cross-validation error and 95% CI is also

found by GPR for containership 1 and results in a prediction probability of 5.08%

Vessel Var. IVC  pu, o2 o, 95% CI maz(95%CI+ )

% % % % %
Torm Marie 1 12 ANN 1.66 0.08 0.28 +0.57 2.23
Torm Marie 2 12 ANN 0.83 0.04 0.20 +0.40 1.23
Torm Marie 3 12 ANN 1.45 0.05 0.22 +0.45 1.90
Torm Marie 4 12 ANN 0.80 0.02 0.14 +0.28 1.08
Torm Marie 1 15 GPR 1.00 0.03 0.17 +0.35 1.35
Torm Marie 2 15 GPR 0.78 0.03 0.17 +0.35 1.13
Torm Marie 3 15 GPR 1.10 0.04 0.20 +0.40 1.50
Torm Marie 4 15 GPR 0.56 0.01 0.10 +0.20 0.76
Torm Marie NR 7 ANN 721 128 113 +2.26 9.47
Torm Marie NR 15 GPR 441 076 087 £1.74 6.15
Containership 1 NR 2 ANN 551 064 080 +£1.60 7.11
Containership 1 NR 21 GPR 398 0.30 0.55 +1.10 5.08

Table 4.13: A summary of the cross-validated relative prediction error, variance, stan-
dard deviation and 95% confidence interval, based on the estimated normal distribu-
tions.

4.7 Evaluation of input variables using ANN and
GPR

In this section it is shown how Artificial Neural Networks (ANN) and Gaussian Process
Regression (GPR) can be used to evaluate the influence of separate input variables.
The results from the regression models could be used to quantify the influence of
each of the specific input variables. GPR was a unique and powerful tool for this
because of the characteristic length-scales found during the optimisation routine: Au-
tomatic Relevance Determination (ARD) as described in Chapter 2. ANN does not
give information about how the input variables influence the output and it was only
possible to make more qualitative investigations where the results from different input
variable combinations IVC were evaluated to give estimates of how the results of a

certain IVC would be affected by including different variables, for example the trim.



108 Analyses using the different propulsion prediction methods

Three different sets of input variable combinations were used to define the three
datasets. Table 3.12 presents the input variables for the measured dataset from Torm
Marie (MDTM), Table 3.13 presents the input variables for the noon report dataset
from Torm Marie (NRTM), and Table 3.14 presents the input variables for the noon
report dataset from the five containerships (NRCS 1-5).

In Gaussian Process Regression GPR, the hyperparameters from the solution con-
sist of one length-scale (1) for each of the input variables, the standard deviation of the
process, oy and the standard deviation of the learned noise o0,,. Short length-scale’s
indicate that input x; is relevant for the solution, and a longer length-scale [; indicates
a less relevant or noisy input x; as described in Section 2.2.4. The GPR was trained
with Leave-One-Out (LOO) (described in Chapter 2), and the prediction errors and
the hyperparameters presented are average values of the N test results. A detailed

description can be found in Chapter 2.

4.7.1 Evaluating the input variables from the measured dataset

from Torm Marie

The data was sampled over a short period of time, thus variations of time and draught /trim
are not included among the input variables. It is a good example for investigating the
difference between the measured data, noon report and hindcasted data. Histograms

of all input/output variables are available in Appendix C.1.2.

Evaluating the input variables by ANN with the measured datasets from

Torm Marie

The selected combinations of input variables are shown in Table 4.4. The prediction
errors are presented in Figure 4.17 and show that datasets 2 and 4 have similar errors,
because these datasets were mostly stationary, mainly due to good weather. Datasets
1 and 3 showed more variation making them more appropriate for method evaluation.
In general the prediction errors are small for IVC 8, 10 and 12, with approximately
1% lower error than IVC 2 and 11, which indicates that the hindcast wave properties

are important variables as they are not included in IVC 2 and 11.



4.7 Evaluation of input variables using ANN and GPR 109

The wave properties (wave height, period and direction) are the only differences
between input variable combinations 71 and 12, and the prediction errors indicate that
introducing the wave properties improved the model.

The only difference between 10 and 12 is that the latter includes the relative wind
opposed to the absolute wind as in 70. This indicates that the relative wind direction

has little influence.
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Figure 4.17: Mean errors for the measure datasets (MDTM) analysed with ANN for
different IVC

Evaluating the input variables of the measured datasets using GPR

Gaussian Process Regression was performed with the measured data using a LOO
training/test set . The input dataset included all of the available input variables, i.e.
IVC 15 in Table 4.4.

The length-scales are plotted in Figure 4.18 and show little agreements between the
datasets. The ship speed 1, relative measured wind direction 2 and the wave direction
11 all have length-scales in the same range.

The sea water temperature 6 is generally very low, but particularly low for dataset

2 and 4 which is almost a calm water condition.
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Datasets 1 and 3 which show most variance in wind and waves as described in the
previous section have noticeably low length-scales for input 9 which is the significant
wave height and indicates that the presence of small waves of up to 2m according to
Figure C.10a and C.10a in Appendix C.1.2 has a considerable influence on the solution.
Even though so small waves are not expected to induce significant resistance (less than
%2 Eefsen (1996)) it is in these cases enough in order to be relevant for the solution.

Some input variables represent the same element, e.g. the wind is represented by 2
Vrel, 7 HC. Ws and 12 HC. Vrel, the wind direction by 8 grel, 8 HC.g and 13 HCgrel,
and the air temperature by 4 Tair and 5 NR.Tsw. This is apparent in dataset 1 where
the average length-scales of the input variables 2,7 and 12 is 2.1, and for dataset 3 it
is 2.0, i.e. the wind speed is equally important for the two datasets.

Dataset 2 shows the greatest variance in length-scales, with many variables rela-
tively high and some very low such as the measured relative wind speed 2, the measured
air temperature 4, the sea water temperature 6 and relative wind direction 73. This
can be explained by the input/output variables having little variance and are thus easy

to predict without many variables.
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Figure 4.18: Logarithmic length-scales of GPR evaluation of the four measured datasets
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Discussion on variable analysis of the measured datasets

The input variable analysis of the measured dataset confirms that the wave conditions
have a significant influence on the results except in completely calm conditions (input
datasets 2 and 4). The ship and wind speed were important factors as was expected
based on the propulsion theory, whereas the sea water temperature was found to be the
most significant variable. This might be explained by the good weather and relatively

steady speed that govern all the measured datasets.

4.7.2 Evaluating the input variables from the noon report data

from Torm Marie

The noon report data from Torm Marie (NRTM ) was collected over a two-year period
and under several different loading conditions which introduced the variables’ mean
draught and trim. Time was also introduced as a variable in numeric format as in
MatLab®), which is an accumulated value of I per day starting at year 0. Table 4.8

shows a schematic overview of the input variable combinations.

Evaluating input variables of NRTM data using ANN

Asin Section 4.7.1, the ANN was trained for different selected IVC' in order to evaluate
the influence on the prediction error. All input combinations included ship speed, air
temperature, sea water temperature, mean draught and trim, since these variables
were assumed to be fundamental to the propulsion performance.

Figure 4.19 shows that the lowest prediction errors are found with IVC 7, 9 and
10. The main difference between these inputs (except IVC 13) is the inclusion of time
(as an input). This can be illustrated by comparing IVC 6 and 7 where the only
difference is the time input. Here the prediction error is reduced by 1% or relatively
12%. The same phenomenon occurred between 8 and 13, with a reduction of 0.7%
and 8% relatively.

The wave properties do not seem to have the same influence on the noon report
data as on the measured data. They actually have a negative effect as seen when
comparing IVC 1 and 4, 6 and 8, 7 and 13.
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The relative wind properties, on the other hand, had a significant positive effect
which is seen by comparing IVC 1 and 6, 4 and 8 Substituting the hindcast wind
properties with the reported wind properties, input variables 19 and 20 as in IVC 10,
only results with a slightly negative effect compared with IVC 7 which is the best

combination.
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Figure 4.19: Mean error for different /VC using ANN with NR data from Torm Marie
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Evaluating the input variables NRTM data using GPR

The length-scales of the GPR hyperparameters from IVC 15 and 16 are presented
in Figure 4.20, where it is confirmed that the ship speed 1, mean draught 4 and
trim 5 were relevant to the solution, due to the short length scales, although the
draught 4 show a higher length-scale for IVC including time (15). The air and sea
water temperature had a weaker but consistent relevance. The wave height 6 was
moderately relevant which was unexpected since it showed a poorer performance with
the ANN method. The variation in sea direction 11 is consistently low together with
the hindcasted wind speed and direction (12 and 13). For IVC 15 the time input 16

is the governing variable which indicates a strong linear trend in the EC over time.
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Figure 4.20: Logarithmic length-scales of IVC 15 and 16, of the noon report data from
Torm Marie.

From the variable analysis of the Torm Marie noon report data using both ANN
and GPR, it can be concluded that the most significant input variables are: ship speed,
mean draught and trim, wind direction and wind speed, and that the most important

variable might be time.

4.7.3 Evaluation of the input variables of the containership

noon report dataset

As previously described, training was performed with different combinations of input
variables for containership 1 (NRCS 1) listed in Table 4.10. Since the datasets span
almost 10 years, including events such as docking, hull cleanings and propeller polish-
ing, the main focus of the analysis was the period up to the first docking (29-2-2004).

The events within this period were assumed to have only minor effects.
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Evaluating the input variables of NRCS 1 using ANN

In Figure 4.21, the relevance of the time input 17 is again confirmed by comparing
IVC 1 and 2, and 3 and 11. In both cases the prediction error was reduced noticeably
by about 0.4%. Furthermore, it is noted that the second best combination (9) has
the simplest /VC, only the ship speed, mean draught and sea water temperature are
included. Tt is superior to the combination that included the trim (8). In general,
the variation in prediction errors between the different input combinations is not very
large, for the most part less than 1%, and the results will be evaluated together with
GPR analysis of the same data.
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Figure 4.21: Mean error for different IVC, given in Table 4.10 from training with NR
data from containership 1
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Evaluating the input variables of NRCS 1-5 using GPR

IVC 21 and 20 include most of the significant input variables with and without the
time (NR.UTC), which gives a good picture of the influence of each variable. The
hindcast data are included here which explains the high number of variables but lower
number of training/test data. The training was performed on containership 1 for a

five-year period until the first docking.
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Although there are some discrepancies between the two IVC in Figure 4.22, there
are also common tendencies. The logged speed (1), the GPS speed (2) and the mean
draught (4) are relatively short compared to the other variables for both IVC and
confirm the theory that the speed and draught are the governing input variables. The
relative wind speed (8) and direction (9) and significant wave height (10) from the
hindcast data also have a consistent relevance. There are some discrepancies between
the two input variable sets which are due to the important role of the time input 17.
The training is performed over a long period of time, the time input thus represents
the state changes over time which is mainly due to fouling of the hull and propeller.
The time length-scale (17) is relatively small which explains why the length-scales of
many of the other variables are longer for IVC 21, than 20. The least relevant input
variables are input variables 13 — 16 which is no surprise since they are the variance

of the hindcast wave and wind properties during the noon report period.
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Figure 4.22: Logarithmic length-scales of input variable combinations 20 and 21, with
and without time as a variable (251 input dataset) for containership 1 (Launching 1%
dry-docking)

IVC 17 and 18 only include data from noon reports but have approximately twice
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the amount of data (515) for the same period of time. The trained data originates
from the same period of time (launch to first docking).

Figure 4.23 again shows that the speed (1) is a ruling variable, and the draught
and trim are relevant input variables for the IVC not including time as a variable. The
seawater temperature is also significant in this setup. In general all the length-scales
are short and thus relevant to the solution. Note that input variables 1 and 3 for setup

17 and 28 for setup 18 are not noticeable because they are close to zero.
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Figure 4.23: Logarithmic length-scales of IVC 17 and 18, with and without time as a
variable. Using only noon report data, with and without time as a variable (515 input
dataset) for containership 1 (Launching 1% dry-docking)

Figures 4.24 and 4.25 show the accumulated length-scales using three different
periods of time all starting at the launch, at one year and two years, until the first
docking at year «~ 4.5 after launching, for input setups 20 and 21 respectively.

Both IVC 20 and 21 show significant differences between the longest training period
(0-4.5 years) and one and two shorter training periods (0-1 year, 0-2 year). This
indicates that some input variables are more relevant to shorter periods of time, and
that some first become important after a certain period of time.

The accumulated bars give an impression of the general relevance of each variable
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which seems to have the same tendency as seen in Figure 4.23 with low length-scales
for the ship speed(1), draught(4) and significant wave height (10). The time also had
a significant relevance. Surprisingly the wind properties, observed and hindcast, both
have higher length-scales for the one and two year periods, for input setup 20 (without

time-input).
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Figure 4.24: The accumulated length-scales of IVC 20 (without time), trained for
three periods of time: 0-1, 0-2, 0-4.5 years (1% dry-docking)

4.8 Discussion of variable analysis

The data driven evaluation of the input variables confirms many of the hypotheses
stated in Section 3 about the governing input variables. Even for the datasets with
small variations, such as the measured datasets, it is clear how the ship speed, relative
wind speed and direction, and also the sea water temperature are the most important
variables.

When looking at the noon report data, it can be concluded that the speed, draught

and trim are the most relevant input variables for the model. For noon report data
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Figure 4.25: The accumulated length-scales of TVC 21 (including time), trained for
three periods of time: 0-1, 0-2, 0-4.5 years (15" dry-docking)

from containership 1, the relative wind speed and direction from the hindcast data
together with the significant wave height are important as well.

For all three data sources, the introduction of hindcast weather data improves the
relative prediction errors by up to 1%.

The time as an input variable shows a strong relevance to all IVC and reduces the
relative prediction error also by approximately 1%, which confirms the hypothesis that

the time is representing the decrease in performance over time or the effect of fouling.



Chapter 5

Propulsion performance trend

detection

The ability to estimate trends in the propulsion performance is the key motivation
for working with regression methods. In this chapter we explore how the regression
methods treated in previous chapters can be used to detect the performance trend.
The analysis in this chapter is only performed using the dataset from the five
containerships (NRCS 1-5) due to their long data period and known events, which

qualifies them for the long-term performance evaluations.

5.1 Performance trend detection method

In the analysis, the relative prediction error w (Eq.1.1) was used to evaluate the be-
haviour of the performance. The actual energy consumption EC'is expected to increase
over time due to the fouling, while w is expected to decrease since the predicted values
are based on the training data which are not assumed to be affected by fouling. It
is thus desirable to train on the shortest possible period of time in order to limit the
effect of a trend in the training data. Yet the training set should include a reasonable
variation of input variables.

As described in Chapter 2 the trend of w is assumed to be linear and is referred to as
the Vessel Performance Trend, VPT and is described in (1.2). The coefficients, « and
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B are found by Weighted Least Squared Regression, WLS as introduced in Section 2.5.

VPT is only continuous in periods without external disturbances that change the
propulsion performance. External disturbances can be known or unknown. The known
disturbances are e.g. dry-docking and hull and propeller cleaning, and unknown dis-
turbances could e.g. be unknown damage to the propeller or rudder.

All known disturbances or events are available for the containerships, and in Chap-
ter 6, the detection of known events are used to attempt to simulate unknown distur-
bances.

In the following section, VPT was found in between the known events (V PT;),
including dry-docking DD, hull cleaning HCL and propeller cleaning PCL for the con-
tainership. All these events are expected to increase the relative prediction error w,
because the energy consumption is expected to drop. But for the hull and propeller
cleaning, this effect can sometimes be difficult to detect due to its limited impact on
the relatively large data scatter. In the Chapter 4 it was shown that there was limited
but noticeable variations in the prediction errors due to training with different length
datasets. It has thus been decided to perform the initial training for two periods: The
first year and the first two years after the launching.

The time variable in input variable combinations (IVC) 18 and 21 increases lin-
early with time. This means that if ##me has a relevance for the regression model,
it will be dominant for prediction far into the future. Input combinations including
the time were thus inapplicable for the trend detection. As found in Section 4, the
best IVC's without time were 9 and 20, with 9 based exclusively on noon report data,
and 20 includes the hindcast data. Although omitting the use of hindcast reduced
the cross-validation prediction errors for the training period it resulted in about twice
the number of input for the predictions. Using data without hindcasts should thus be
taken into consideration for the detection of trends due to the larger amounts of data.

Due to the considerations described above, EC for the five containerships were
predicted based on two training periods, one and two years from launching, two IVC,
9 and 20, including all noon report data and only noon report data including hindcasts,
respectively. This results in four different variations of training and test, as illustrated

in Table 5.1. The trends were detected only between all the known events and the
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dry-dockings.

NR | NR+ HC
IVC 9 20
One year initial training | x X
Two year initial training | x X

Table 5.1: VPT test variations for containerships 1-5

5.2 Performance trend detection results

In the following, trend detection results are presented for the selected combinations of
ship, data length, input variable combinations etc. as described above. Results from
all the analyses can be found in Appendix D.

The main results from the analysis is the slopes of the VPT within the intervals («a;)
between the events and the change between the final value of VPT (V PT;(max(t)))
before an event and first value (V PT;1(min(t))), AV PT; after an event. AV PT,
quantifies the jump in the trend lines across an event, and hence illustrates the imme-

diate effect of the event.

Trend detection for containership 1

Containership 1 has the most complicated pattern of the five containerships with many
minor events such as hull and propeller cleanings and weak general trends and will be
used as an example. Figure 5.1 gives the trend based on training on the first two years
with IVC 20 which is among the best representations. The many events result in
short trend regression periods with few data points that make realistic trend detection
difficult, but for the longer periods e.g. between year «~2-3 and year ~~4.5-7.5, the
trend slopes show the expected tendencies. After the first hull and propeller cleaning,
the prediction error increased indicating that these events had the intended effect: to
increase the performance level. The trend slopes were positive after the first events,
this was unexpected and might be due the relatively low number of input for trend

for the short periods. Moreover, as expected there is a noticeable change in prediction
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error and trend slope after the first dry-docking. A certain level of instant increase
in performance due to the dry-docking is anticipated, because blasting and reapplying
anti-fouling paint is expected to lower friction compared to the previous roughness of
the hull.

Figure 5.2 shows the trends between the dry-dockings only, with the same prediction
errors as seen in Figure 5.1. This shows two noticeably decreasing trend slopes, the
last steeper than the first. This may seem surprising at first glance but it is well
known that dry-dockings, blastings and paint jobs can be of varying quality and can
sometimes increase the hull fouling rate (Townsin et al. (1980)).
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Figure 5.1: Performance trend between all events of containership 1 using IVC 20
with data including hindcasts, trained with the first two-year period

5.2.1 Summary of trend detection results

Similar analyses were performed for all the containerships. In order to evaluate the
results in a comprehensive way a summary of the VPT slopes « and the effect from
events AV PT is given. A summary of the findings from containerships 1-5 is given in

Table 5.2 for the IVC 20 and in Table 5.3 for IVC 9.
Figure 5.3 shows the slopes of the VPT « which represents the rate of change
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Figure 5.2: Performance trend between dry-dockings of containership 1 using IVC 20
with data including hindcasts, trained with the first two-year period

in performance, which can also be interpreted as the fouling rate. The left figure
shows VPT slopes for the first trend interval (ay), from the launching to the first
dry-docking and the right the VPT slopes for the second interval (aw), from the first
dry-docking until the second. For the first trend interval oy range from -6.6% to 0.5%
in relative change in E'C per year (w/year). There are significant differences between
the four training variations (Table 5.1) used for the detection and no general tendency
of what method is the best or the correlation between the methods are found. For the
2nd trend interval, Figure 5.3 right, the methods show smaller discrepancies and all
methods show less steep slopes and range from -3.8%/year to 3.7% /year. The latter
number originates from containership 4 and all the methods for this vessel show a
consistent, although small, positive trend. as for containership 2 is around zero and
this indicates together with containership 4 that a better anti fouling paint was applied
after the dry-docking that and that no change in roughness was detected as described
in Townsin et al. (1980). For containership 4 a third trend interval was analysed
because sufficient data was available after the second dry-docking, this reveals a3 of
-8.7% to -2.1% depending on the method used.

Figure 5.4 illustrates the effect of dry-docking in percent change in the relative
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Figure 5.3: VPT slopes, oy and ay for the VTP interval 1 and 2, being trained for 1
and 2 years with IVC 20 and 9

energy consumption. The predictions are fairly consistent, ranging from 0-5% change
to 7-13% for a dry-docking, except for an outlier point for IVC 20 trained for one
year with a large negative value. It is noted that containership 2 and 4, both have
the lowest increase in VPT, but they also both had the smallest decrease in VPT ()
after the dry-docking. The third dry-docking had a consistent positive effect ranging
from 3.7% to 7.4% depending on the method used.

In general minor events such as hull and propeller cleaning had little effect and the
intermediate trends relied on too little data for a reliable trend detection, and thus
blurred the picture of the general trend between the dry-dockings. For containership
5 the effect from hull cleanings was much more distinct and therefore it was used as

an example here and will also be used to detect events in the next chapter (6).

5.2.2 Trend detection of containership 5

The best performance trend representation was found by training on noon report data

including hindcasts for the two first years using input variable 20. This data includes
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Figure 5.4: The effect of the first dry-docking AV PT

IVC 20 g AVPTl (6%) AVPTQ a3
Ship TD Tr  No.Tr w/year w/year w/year
years data % % % % %

1 1 54 -1.0 9.1 -4.0

2 1 54 -0.6 0.0 1.2

3 1 71 -2.2 9.1 -1.0
4 1 44 -2.8 -9.5 3.7 3.4 -2.1

5) 1 a0 -1.1 6.9 -3.8

1 2 114 -0.8 9.3 2.7

2 2 113 -3.0 5.2 0.1

3 2 147 -2.0 12.4 -2.3
4 2 98 -6.6 3.6 1.2 7.4 -2.8

5] 2 112 0.1 7.8 -3.8

Table 5.2: Key figures from VPT analysis of containerships 1-5 using data including
hindcast
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IVC 9 1 AVPTl (6% AVPTQ a3
Ship ID  Tr  No.Tr w/year w/year w/year
years data % % % % %

1 1 107 0.5 7.2 -2.9

2 1 94 -0.4 1.7 -0.6

3 1 135 -1.0 7.3 -1.3
4 1 117 -3.2 1.4 0.8 6.2 -4.1

) 1 122 -1.0 7.8 -2.9

1 2 264 -2.3 11.9 -3.9

2 2 214 -3.5 4.7 -0.3

S 2 293 -0.3 6.4 -1.2
4 2 264 -4.4 2.6 1.0 6.1 -8.7

B 2 262 -0.7 6.9 -2.5

Table 5.3: Key figures from VPT analysis of containerships 1-5 using data including
noon report only

four hull cleanings and two dry-dockings of which the last can be neglected because it
was at the very end of the dataset.

Figure 5.5 shows the performance trends between all the events. The trend is
almost constant until the second hull cleaning at year «~ 4.2 where VPT shifts up
and the slope decreases rapidly, resulting in VPT just before dry-docking that is less
than if the previous trend continued. This indicates that even if a hull cleaning has
an instant positive effect, it might damage the long-term performance which may be
caused by a rough cleaning job that has damaged the anti-fouling effect of paint and
increases the fouling rate.

After the dry-docking, the shift up in VPI is evident, and the the negative trend
is slightly steeper than for the previous period. The last two hull cleanings at year
8.4 — 8.6 do not improve the trend or the level of the VPIL

5.2.3 Discussion of Performance trend detection

Using the methods described above, it is possible to detect the general trends in per-
formance change over time.

As illustrated, the dry-docking, hull and propeller cleanings do not always have the
intended effect.
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Figure 5.5: Performance trend between all events of containership 5 using IVC 20
with data including hindcasts, trained with the first two-year period

The decrease in performance ranges from -6.6 to 3.9 and if average values from
across the four methods are used the slope ranges from -4.2 to 1.6 %. A negative
slope was expected and the ranges found here correspond with what has been found
in similar research: 5.7% /year found in Andersen et al. (2005), 2.5-8.7% /year given by
Eefsen (1996) both representing a tanker and 3.1-3.8%/year by Hansen (2011) which
used containership comparable to the one used in this study.

The data suggested that the hull cleanings may have a positive immediate effect,
but the long-term effect can be negative. This could be due to an excessive hull cleaning
that has increased the permanent roughness and thus result in a higher fouling rate
as discussed by Carlton (1994). Tt might also be that the event has no immediate
effect, but the long-term effect can be beneficial. In order to evaluate this, detailed
information about the event is needed such as what part of the ship was cleaned and
what equipment was used. Having such information would make it possible to better
categorize the events and for example use the events as discrete variables in the training
of the methods.

In general, the dry-dockings had a more consistent effect with a positive change

in VPT after the docking, but the slope afterwards varied from being steeper than
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before, seen in containership 1, to being flatter than the previous trend, as seen with
containership 4. This is in accordance with findings by Townsin et al. (1980) where
the different paint types result in very different fouling rates.

The instantaneous effect from events, primarily dry-dockings, was, except for at
one point, positive and using average values of the four methods reveals a range of
-0.5 to 9.4%. This is slightly less than what was found in the literature, where Eefsen
(1996) shows a reduction of «» 10 — 20% and Munk (2006) is reporting numbers in
the order of 20-30% reduction. This might be due to vessel type e.g. tankers used in
Eefsen (1996) have a relatively higher frictional component of the total resistance and

thus are more vulnerable to roughness .



Chapter 6
Detection of events

Whereas in the previous Chapter (5) the objective was to determine the trend of the
relative prediction errors w between known events, primarily dry-dockings, the present
chapter attempts to identify the events based on the changes to w alone.

The main focus of the thesis is not event detection and therefore a rather simple
method developed for this purpose has been used.

In most cases, detection exercises are not necessary for the detection of known
events as the ship operator is responsible for ordering the external events of the ship.
Unknown events that may have an immediate effect on the performance of the ship
can be detected and evaluated, such as minor propeller blade damage which will show
a negative effect given the method is sufficiently sensitive. Furthermore detection of
abrupt changes is also the ultimate test for propulsion performance system because
most systems will always suffer from a certain extent of scatter and the challenge is
thus detection of "real” changes, such as dry-dockings, in this scatter.

Knowledge of event detection is also fundamental for establishing a performance
“alarm” that will trigger and inform the ship operator in case sudden changes in propul-
sion performance occur.

The data set consists of noon reports and hindcast data from five different "sister”
containerships, as described in Chapter 3. The same data was used in the previous
Chapter 5 to find the Vessel Performance Trends (VPT). During this time, the ship

hulls and propellers have been cleaned and polished as part of the regular maintenance
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program. These events naturally influence the propulsion performance although it can

dry-dockings.

6.1 Event detection method

Due to the scatter in the prediction errors, any changes can be difficult to detect. The
error trend is expected to sustain its value or gradually decrease over time due to hull
and propeller fouling. One way to detect this change is by comparing the mean values
and the trend of the relative prediction error w at two different time steps.

For each prediction time step ¢;, the average value of the prediction errors was
found by looking back on a period of time 7, to E (6.8) and by looking forward at

the same period of time wTF (6.7) as illustrated in Figure 6.1.

| | | | |

1
=T, t; t;+7T,

Figure 6.1: Backward-Forward average

Similar to the method described in Chapter 5, a weighted linear square regression
can be performed on the same periods: f‘lfPTj (t; —T,) and f‘lfPTj (t; +T,).

The function values fypr (t;) and the slope a; found by LWS (6.10), (6.9) can be
used to evaluate the changes in the trend. They can be used as their original values
or as the difference in the forward-backward time step.

The following measures were used to derive the forward-backward average:

The forward-backward (FB) difference of the average prediction error dwf” (6.11)

gives a good and simple picture of the performance level over the time step period 7},
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and the general shift in this level will be detected by it.

The forward-backward (FB) difference of the function values of ¢ f‘leTj (6.12) com-
pares the first and the last value of each trend line V' PT}; and thus includes the trend

and mean values.

The forward-backward (FB) difference of the trend slopes da} ” (6.13) shows when
general changes in the trend occur, e.g. if an event did not have an instant effect but
changes the future trend line. The values will be negative in the case of an upward

change in performance level.

The governing control parameters for the detections are: the upper and lower
threshold values for the detection (confidence interval CI), the time period for the

moving average and the length of the training dataset.

t; =t(t; <t;+ 1) (6.1)
th=t(t; - T, <t (6.2)
wiew(t; <t;+T,) (6.3)
wl ew(t;—T,>t;) (6.4)
N = |y (6.5)
NP = o] (6.6)
Ny
o = S, (6.7)
J =1
i
of = 5 Do (6.8)
J =1
] 8] = fvpr (8] w)  w)) (6.9)
[P BP) = fvpr (87, w? w?) (6.10)
dwf? = wl —wP (6.11)
6fvpr, = (af t(V)] +B]) — (aFt(N7) + 57) (6.12)
safP =al —af (6.13)
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where:

NJF the number data within one time step forward of ¢;
NJB the number data within one time step backward of ¢;
w; vector of input weights corresponding to w;

T, the time step length

7 index for each time step

6.1.1 Detection tests

Containership 5 was used to tune the control parameters, time step length T, and
threshold levels, because it showed the most consistent changes in prediction errors
due to known events as illustrated in Section 5.2.2.

Figure 6.2 shows an example of the three measures noted as: dw/”, dfFp and
daf'P, for a selected time window of containership 5 trained for the first two years with
input variable combination IVC 20. A time step period T}, of 120 days, was found
suitable for finding significant shifts and detecting events. The change in the mean
error 5wa is shown by blue circles and indicates a shift in average level. Average
periods that are too long may hide real changes. ¢ 5§Tj pictured as triangles is the
difference between the last value of the performance trend (VPT) for the period looking
back and the first value of the (VPT) looking forward, and thus takes into account the
slope of the trend. It is equivalent to the changes of an event detected in the previous
Chapter 5. The combined level o 5}§Tj and 0wf”? indicates a event right after the first
dry-docking.

The difference in the VPT slope looking forward and backward 5osz is evaluating
events that do not necessarily have an instantaneous impact but change the fouling
rate as seen in Chapter 5. This is evident after the second hull cleaning, where a large
negative change is detected and is the only indication of an event. This change is also

noted by the V PT} plotted with dotted lines.
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Figure 6.2: A selected view of the event prediction of containership 5, used for deter-
mining the detection limits. Initial training was 2 years with IVC' 20 and the detection
time step period

Note that dw!® increases just after the dry-docking (year «~ 4.9) and a little before
the second hull cleaning (year «~ 4.1), which indicates the largest shift in the prediction

error level. In both instances, the values of ¢ 51§T]- are high.

Furthermore, the piece-wise trends VPT illustrate (with some scatter) the general
trends found in Section 5.2.2. The change in the trend slope is most significant at
the second hull cleaning HCL which is illustrated by the piece-wise weighted linear

regression lines, VPT.

An appropriate level for detection of the events was found when: (5wa > op *

0.66 A0 5}§Tj > o % 0.66 or for changes in level daf Pop + 1.65- 107, where o is the

GPR predictive standard deviation.
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6.1.2 Event detection for containerships 1-5

The procedure determined above has been applied to the five containerships (CS 1-
5) trained with the same four training combinations as used for the trend detection
in Chapter 5, IVC 9 and 20 trained for one and two years. This resulted in four
different series of "guess” event dates for every CS. For every ship they were reported
and summarized in Table 6.1 together with the best training period and IVC. The
number of encounters of mis-predictions and false-positive far from an event varies
significantly between the ships. For CS 4 the first prediction is the nearest and CS 3
has three mis-predictions ahead of the nearest to the dry-docking. The amount and
positions of mis-prediction are best illustrated by the individual ships in Figure 6.3-6.7
and will be discussed separately.

Table 6.1 shows that the first dry-docking can be detected with accuracy 4+ a month
(-0.8 - 0.9 months). IVC 20 has the majority of best performances and IVC 9 is only
better for CS 1. One year of training is sufficient for CS 1-4 while CS 5 performs
better with two years of initial training.

In the section below the event detection performed with the best training combi-

nations as described above for CS 1-5 are presented and discussed.

Training procedure 1% DD ND Detection delay

CS IVC Training years | year  year months
1 9 1 4.42  4.46 0.6
2 20 1 4.47  4.50 0.4
3 20 1 490 498 0.9
4 20 1 498  5.04 0.7
5 20 2 5.03  4.97 -0.8

Table 6.1: Summary of the event detections nearest ND to the first dry-docking DD,
both given in years from the launching of the vessel.

Event detection from containership 1

As illustrated in Figure 6.3 containership 1 has only one mis-detection prior to the first

dry-docking. Then there are a few detections right after and a few at around year 9.
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Figure 6.3: Event prediction of containership 1, trained with the first one years of noon
report data including hindcasts, with IVC 9.

Event detection from containership 2

Figure 6.4 shows that three mis-prediction are encountered before the one at the first
dry-docking. After year «~ 5.5 of mis-predictions are found but also one positive for

the second hull cleaning which is detected at « 8.

Event detection results from containership 3

Figure 6.5 shows a significant amount of mis-detections prior and after the first dry-
docking, which is detected 0.9 month after the occurrence. The following hull cleanings

are detected along with some mis-detections.

Event detection results from containership 4

This configuration has no mis-detections before the first dry-docking as illustrated in

Figure 6.6. After that a series of mis-detections are detected.
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Event detection results from containership 5

This was the data that the method was tuned by, and Figure 6.7 shows the same data
as Figure 6.2 in its entirety. It is illustrated how both the second hull cleaning and the
first dry-docking are captured well.

0.8
0.6

04

I
|
|
I
|
|
I
|
0.2 J
1

0.2

Relative prediction error ®
o
T

04F

-0.6

DD
08F — — —HeL
ED

-1 1 1 1 1 1 1 1 1 1

Year from launching

Figure 6.7: Event prediction of containership 5, trained with the first two years of data
for noon reports with hindcast data, with IVC 20.

6.2 Discussion of event detection

In this chapter it was demonstrated that it is possible to use results from GPR predic-
tions to detect abrupt changes in the propulsion performance. However, the method
detects a number of mis-predictions or false positive detections and in practice it must
only be used as a guide rather than a fixed indicator of an event.

The effect from different events (dry-docking, hull and propeller cleaning) varies
considerably and consequently the method had to be tuned to find the events assumed
to be most significant, hence the dry-dockings. As illustrated in Table 6.1 it was

possible to detect dry-dockings within a month, which is regarded as being adequate.
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It should be taken into consideration that only a limited amount of data is available
and within this period the data density varies from 0.14 per day (using HC only)
to 0.4 per day (using all NR). A month subsequently results in a maximum « of 12
data points. Furthermore, using a certain time step period 7T}, looking forward and
backwards, the number of time points in each direction will not necessarily be the
same. Due to the varying number of data points within each time step, the scatter in
the trend and the mean values can also vary.

The present method requires adjustment of the time step length, detection limits
and consistent data quality, and is thus dependent on reliable information of prior
events or from a similar ship to tune the method.

In order to improve event detection more sophisticated methods can be used as
e.g. rendering it as an un-supervised learning problem a cluster analysis or by density
estimations to find distributions of different clusters (Bishop (2006)). Another ap-
proach is introducing adaptive filtering as investigated by Hansen (2011) for a similar
problem where it was attempted to detect the change in propulsion performance due
to a propeller cleaning based on measured data. Here a CUSUM (Gustafsson (2000))
function was used to identify changes in the performance. The signal to noise ratio was
considerably smaller for the problem in Hansen (2011) and thus very different from
the data in this thesis. Evaluating e.g. Figure 72 in Hansen (2011) it is not expected
that the CUSUM function would perform better than the present method.
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Chapter 7
Conclusion

In this thesis, two data-driven methods - Artificial Neural Network ANN and Gaussian
Process Regression GPR - were applied to the ever more important question of moni-
toring and analysing propulsion performance of ships. The data-driven methods have
been compared to traditional empirical model methods. It has been demonstrated how
data-driven methods can be used for evaluation of the propulsion performance without
any ship-specific information, but only using operational data.

Regression models were used to determine energy consumption by first comparing
the predicted energy consumption for a certain state of the vessel with the actual
measured energy consumption for the same state. The relative prediction difference or
error between these values represents the relative difference of how the ship performs
compared with the expected propulsion performance based on the initial training. The
linear trend of the relative prediction error over time represents the development of

the propulsion performance.

Data evaluation
Three datasets were used to evaluate the regression models:
1 A dataset consisting of automatically measured data collected on a product

tanker over a two-month period. The data was subsequently split into four

subsets.
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2 Noon Report data from the same product tanker from a 2-year period

3 Noon Report data from five containerships over a period of up to 10 years

All datasets were used with and without hindcast weather data which reduced the
amount of data by approximately 50% due to the limited availability of hindcast in

certain areas.

The data quality and density vary significantly between the three datasets, as do

the available input variables.

Regression methods

Artificial Neural Networks (ANN) and Gaussian Process Regression (GPR) were found
to be superior to linear and customized non-linear models that were tested with the
measured dataset. ANN and GPR showed similar prediction performance, but GPR
was chosen for the further analysis due to its additional features of finding the hyperpa-
rameters that included the characteristic length-scales and prediction variances. The
length-scales gave valuable information about what input variables were most relevant
to the output and were used to confirm general assumptions about the input variables.
The predictive variance was found for every prediction and was later used to determine

the performance trend.

Data-driven evaluation of the datasets

The results from the GPR analyses of the three different datasets were compared.
The measured dataset showed prediction errors of 0.76-1.5%, the NR from the tanker
revealed 6.15%, and NR from one containership resulted in 5.08%, all errors included
a 95% confidence interval. Adding hindcast had a beneficial effect by reducing the
prediction error by 1% although the amount of data was reduced. The best results

from the noon report data were found by including ¢time as a variable.
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Determination of the input variable combinations

Different combinations of input variables were used to find the best combination. In-
cluding the time as a linearly increasing variable resulted in a significant and consistent
reduction of the prediction errors by approximately 1%. It was suggested that the time
variable could represent the effect of hull and propeller fouling, because it was the only
variable having a linear trend over time.

Analysis of the length-scales from the GPR models confirmed that the #ime had a
significant influence. Furthermore, it was seen, as expected, that the speed and draught
had a high relevance, and also the hindcast wind speed, direction and significant wave
heights had a high influence.

For the data including hindcasts, the best combination was found using all available
variables. However, without hindcast data the best variable combination was simpler.
When analysing the data from one containership without the time variable, the best
combination only included the logged speed, seawater temperature and draught mid-

ship.

Understanding the length of the training set

The length of the training set is important for performance evaluation, because it gov-
erns when the data-driven predictions can be imitated. The best combinations of input
variables were tested using difference length test sets. The results varied between the
containerships, however longer datasets did not perform better than shorter datasets.
Generally the input combinations that included hindcast data showed more consistent

results across the different lengths of training data.

Predicting performance trend

The prediction errors from the regression models were used to form a linear trend to
represent the performance decrease (VPT). In order to utilize the feature of predictive
variance from GPR the trend was determined by using "weighted least square” where
the reciprocal predictive variances were used as weights.

This is a unique feature of GPR which is not feasible or even impossible with
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other methods. Fundamentally it enables taking into account that the predictions in
certain states of the ship are not as well determined due to scarce data for those states.
Consequently the method for extracting trends will rely less on poor data and more

on sound data.

The VPT was split into sections so that the trend would not be affected by hull
“events” such as dry-docking. The average of the linear trend slopes representing the
decrease in performance over time varied from -4.2% to 1.6% in relative propulsion
power per year. -4.2% is a realistic but small number in comparison with what is
found by others, but a positive trend of 1.6% indicates that the ship performance
is improving over time which is surprising. No increase in roughness over time has
been reported by Townsin et al. (1980) so VPT close to zero is not unheard of, but
a positive trend is unusual. A physical explanation for this could be that after a
dry-docking where self-polishing anti-fouling or fouling release paint was applied, the
vessel was at berth for a period, so that fouling would have time to adhere, and after
starting service again, it would take some time for this growth to be polished off. No
examples of similar trends are found by others, so there might be other explanations

to this development.

The effect from external events was determined by evaluating the difference between
the VPT right before an event and right after. This resulted in improvements of -0.5
to 9.4%. This is less than reported by others (e.g. Eefsen (1996)), but maybe due
to the smaller decrease in performance detected over time and thus less is gained by
a dry-docking. Having a small negative effect is not alarming if the VPT slope after
dry-docking has a smaller magnitude than before as this indicates that a dry-docking
may have instantaneously made the performance a bit worse, but the performance will
not deteriorate as fast, and consequently the performance will be overall better viewed

over a longer period of time.

The data-driven method presented for predicting VPT using only operational data
is thus regarded as comparable with traditional methods using noon report input
data. The regression analyses of automatically sampled data showed significantly lower
prediction errors than the traditional methods, and long-term performance trend of

such data is thus expected to be considerably better.
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Predicting abrupt changes

Event detection was not the main objective of the thesis, but it has been used as a
test of how well the method can perform. The method used for detection is a simple
test of the shift in mean and function values looking forward and backwards. One
set of data from a containership was used as a test case to find the best length of
the piecewise mean values and the threshold values for detection. Testing on the
remaining dataset for containerships showed varying results as the first dry-docking
was generally detected within a month, but some datasets had a significant number of
false positive detections. It is thus only recommended to use the method as a guide
for the ship operator in order to make a qualified judgement regarding need for further

investigations.

Economic perspective

When estimating the economic aspects of vessel performance monitoring and control,
several factors have to be taken into account. In Townsin (2003), an example of finding
the global savings due to better anti-fouling paints is divided into the four groups: 1
related to the fuel cost of increased frictional resistance, 2 related to the cost of changes
in docking intervals, 3 savings due to lower cost of dry-docking and 4 indirect savings
due to for example lower costs for transport of fuel oil.

The economic benefits of the present work were only evaluated with regard to the
direct savings or penalties incurred due to changes in propulsion power and conse-
quently fuel consumption.

The ship performance decreased by up to 4% per year between dry-dockings. If
the propulsion efficiency is assumed to be constant; the fuel consumption will increase
similarly. The daily fuel consumption of a containership (60,000kWh, 170g/kWh)
is estimated to be 250 tonnes/day, and assuming 200 days of operation per year, an
annual consumption of 50,000 tonnes of fuel results. The estimated price of bunker fuel
(IFO380cSt) in 2013 is 630% per tonne* which gives an annual increase of 1,260,000%

and the annual accumulated increase in fuel consumption is therefore estimated to

awww.bunkerworld.com
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Figure 7.1: Accumulated increase in fuel consumption

630,000%. So for the first year, the increased fuel consumption will represent 630,000%
and after that increase by 1,260,000$ per year as illustrated in Figure 7.1.

7.0.1 Suggestions for further development

The current work can lead to improvements and exploration in several directions.

Data quality improvement

In data-driven models, an increased amount and/or better quality of data is expected
to increase the prediction performance. Subsequently, it will be possible to develop
a reliable trend of the prediction error (VPT) in less time, and the operator can be
warned earlier in case of bad performance.

One of the reasons why the introduction of hindcast data reduces the data sets is
that they are not available in all areas. Receiving data from more areas would give
access to more data and improve the predictions.

More detailed hindcast weather information could also eliminate the need for some
of the reported data, such as e.g. logged speed if the sea current was available. Ul-
timately, the report values could be limited to the speed over ground and the energy

consumption as all weather information is covered by the hindcasts.
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Since the noon report data are average values over about 24 hours, the variables
may vary within this period without the variations being registered which is a major
source of uncertainty. Much better data for performance evaluation can be collected
on "speed-runs” which are data collections from shorter periods of time where the ship

is travelling at a constant speed or power, preferably in fair weather conditions.

Method improvements and exploration

The detection of events could be studied as a problem of classification, and dividing the
events into more detailed categories may offer a better solution because the effect of
different events, such as dry-dockings, vary significantly. This variation is most likely
due to different treatments during the dry-docking, such as different paint qualities or
blasting procedures.

A major drawback of the data-driven methods is that the data has to be collected
before the initial training can begin. Using synthetic produced data from model tests
or sea trials could potentially “speed up” learning of the initial training, so that the
active performance monitoring could start closer to the launching of the vessel. It may
also be possible to filter out the effect of time in the initial training set to avoid any
linear effect expected from the fouling. This may make it possible to use longer initial
training periods without being biased by the effect of fouling.

Introduction of an "unsupervised” data-driven approach, such as a cluster or density
estimation, could be tested for detection of events. These methods attempt to find
patterns in data without any previous information, and potentially it would be possible
to detect the different regimes of the prediction errors due to the events. Adaptive
filtering methods as described by Gustafsson (2000) could also be tested as in Hansen
(2011) in order identify changes in the data trend.

It should be studied how the length-scales can be used more actively. The length-
scale of the time variable could for example be evaluated for many accumulative train-
ings over time in order to evaluate the trend of the length-scale of time and subsequently
be used as a measure for the fouling.

Artificial prediction, where the development of different variables are evaluated

given that all other variables are held constant was briefly presented in Section 2.2.4
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to illustrate the predictive variance found by GPR. This could also be used to evaluate
the development of the input variables separately. It would, for example, be possible
to develop at speed-power curve by keeping all constant except the speed.

In the trainings that include time as a variable, development of the time as a
function of the relative predicted EC should represent the fouling effect. An example
of this given in Figure 7.2 for a containership, where all the input data is constant

except the time input that varies from 1 to 5 years.
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Appendix A

Modeling of Ship Propulsion

Performance

Presented at the World Maritime Technology Conference, WMTC, January 21-24 2009

in Mumbai, India.

Full scale measurements of the propulsion power, ship speed, wind speed and direc-
tion, sea and air temperature, from four different loading conditions has been used to
train a neural network for prediction of propulsion power. The network was able to
predict the propulsion power with accuracy between 0.8-2.8%, which is about the same
accuracy as for the measurements. The methods developed are intended to support the
performance monitoring system SeaTrend ® developed by FORCE Technology (FORCE
(2008)).
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Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature,
from four different loading conditions has been used to train a neural network for prediction of propulsion power.
The network was able to predict the propulsion power with accuracy between 0.8-2.8%, which is about the same
accuracy as for the measurements. The methods developed are intended to support the performance monitoring
system SeaTrend® developed by FORCE Technology (FORCE (2008)).
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INTRODUCTION

As part of the Industrial PhD project "Ship Performance
Monitoring" automatic data sampling equipment was installed
on the tanker "Torm Marie" in January 2008 and so far data
from four different loading conditions are available.

Modeling of these loading conditions are fundamental to
achieving accurate prediction of propoulsion power. In the
future, the variation in draught and trim will be added as
variables.

Ship propulsion performance (referred to as the performance) is
a measure of the energy consumption at a certain state, i.e.
speed, loading condition, weather condition and other factors.
During the lifetime of the ship the performance will decrease
e.g. the fuel consumption will increase at a certain state or the
speed will decrease at a certain power setting. This is mainly
due to fouling of the hull and propeller. A typical trend of the
speed reduction is illustrated in Figure 1.

Hence, performance evaluation is about comparing the fuel
efficiency or propeller power at one time to another time, in
other words to compare the ship at one state with another state.
Since a ship is subjected to external factors such as wind, waves,
shallow water, change in sea water temperature, etc. as
illustrated in Figure 2, it is unlikely that the ship will ever be in
the exact same situation more than once. Furthermore these
external factors can be difficult to measure accurately and thus
the detection of a a similar situation is problematic.

This deterioration is only a few percent and is therefore difficult
to detect with traditional performance monitoring methods.

Speed Index due to Fouling of Hull and Propeller

0 L } i }
maj-2008 jun-2008 jul-2008 aug-2008
Date

Figure 1: Increase of the fuel consumption as an effect the
fouling

Traditionally, the problem has been solved by calculating a
theoretical propulsion power for the actual condition using
standard empirical resistance and propulsion methods, for
example Harvald, S. A. (1983) or Holtrop, J. (1984) methods.
For the estimation of the wind resistance a method proposed by
Isherwood, R. (1972) can be used if no wind resistance
coefficients are available for the ship.

WMTC 2009 Pedersen
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Figure 2: Performance variables

These empirical methods are derived from model tests and sea
trials, and since most model test are carried out in a design
condition (even keel) and speed, this is the region where it
should be applied. In operation the ship will travel in many other
conditions i.e., ballast draught and trimmed conditions.

Consequently, these methods give a rough estimate of the
propulsion power rather than an accurate reference point. If
some measured values from model tests or sea trials are
available, they can be used to adjust the empirical data and thus
give a more accurate result.

Another part of the problem is to have sufficient input data for
the analysis in order to capture the dynamics of the propulsion
power. This is relevant for the traditional method and any other
method that can be used. A short description of the input is
given below:

Draught and trim - usually these fundamental variables for the
power estimation are found from visual observation or from the
loading computer before departure; sometimes the arrival
condition is determined by observations, but usually only from
the loading computer. Some ships are equipped with dynamic
draught measuring devices, but these are very sensitive devices
which deliver a signal with a significant variance. Draught and
trim have approximately an accuracy of 0.2m, as that is the
usual scale for draughts marks.

Power measurement - the power can be measured in different
ways. Measuring the propeller shaft torque with a torsiometer,
and the rate of revolution with a tachometer will give the direct
power delivered to the propeller and is thus the preferable
method.

The main engine fuel consumption is also a fairly good
measurement, but it is necessary to have sufficient information
of the fuel quality. A change in the main engine performance
will also show a change in the fuel consumption, so it can be
difficult to determine the propeller and hull performance from
the fuel performance alone.

Speed through the water - is measured by the speed log that is
based upon the Doppler principle. Experience shows that the
signal from the speed logs has a tendency to drift and hence
many ship officers do not trust the speed logs. It is also possible
to estimate the speed through the water from the sea current
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determined by a meteorological prognosis and from the speed
over ground given by the GPS navigator. Although the speed
log can drift it is expected to give more reliable results than the
one estimated from the sea current and GPS speed.

Relative wind speed and direction - is measured by a doppler
anemometer Airmar” Weatherstation™ PB100 mounted on top
of the superstructure. At this position the wind speed and
direction is altered from the free stream wind due to the
presence of the ship. Traditional methods for estimating the
wind resistance is based on wind tunnel tests and hence assumes
that the wind speed and direction is undisturbed. Since the
undisturbed wind speed and direction is unknown from
measurements, the measured (disturbed) values are used directly
in the empirical model, although this is not correct. Furthermore,
the wind resistance coefficients are in this case determined
empirically, which induce additional uncertainty.

Air temperature - is also measured by the Airmar”
Weatherstation™ PB100 unit. The air temperature can vary
significantly within a few hours, which has a direct effect on the
air density and consequently on the ship resistance, e.g. for the
ship traveling with a speed of 15 knots in 10 m/s and 0°C
headwind the air resistance will be 215kN and total resistance
9534215 = 1168 kN, for the ship and wind speed, but with an air
temperature of 10°C the wind resistance is 199kN and the total
resistance 953+199 = 1152 kN. The difference in air density has
a relative influence on total resistance of (1168-1152) / 1168 =
1.4%. For the present measurement the air temperature varies
between 24.5-28.8°C and has a variance of ~0.47.

Sea water temperature - is usually measured once daily by the
engine crew. The seawater temperature has a significant impact
on the sea water density and viscosity, and consequently on the
resistance. The difference between sailing in 0°C and 30° C
seawater results in a frictional resistance around 7%, and for the
present type of ship the frictional resistance accounts for 90% of
the total resistance.

Traditional Performance Evaluation
Traditionally the performance has been evaluated by rather
simple procedures, where the daily fuel consumption has been
reported in the "Noon Report" together with distance traveled
over the last 24 hours, the corresponding average observed
speed and a single weather observation.

This method gives a limited number of observations since there
is a maximum of 365 observations per year. Then the days in
port are deducted, together with observations including
maneuvering, shallow water and significant changes in speed or
heading. This might leaves 200 observations per year, each with
only one weather observation which introduces a significant
uncertainty, since the weather can change considerably during
24 hours.

SHIP PROPULSION THEORY
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Classical ship propulsion procedures can be used as a reference
point for the model. In these models the effects of ocean waves
have been neglected due to the uncertainty of both the estimate,
the added resistance from the waves and measuring the actual
wave height and period.

The total resistance thus consists of the still water resistance
Rgsw and the wind resistance Ry;ing.

Resistance
First, the still water resistance is found using the following
equation:

Ry :%CmtpSWSUZ (1)
The coefficient C,, is defined as:
Ctot: Cv + CR + CA+ CAA (2)

where. C,, is the viscous resistance coefficient defined as C,=Cy
(1+k). Here the the frictional part Cj, is determined from the
formula:

0.075

- (lOgIO (Re ) - 2)2
R, = M 4)
14

(©)

= R, is the Reynolds

=k is the form factor that accounts for 3D flow effects
around the hull, usually in the region 0-0.25.

= (Cy Residual resistance coefficient is mainly
accounting for the energy radiated by waves made by
the ship. Cr can be estimated empirically by e.g.
Harvald, S. A. (1983) or Holtrop, J. (1984), but the
discrepancies can be up to 50% possibly making Cy the
most difficult variable to determine in ship resistance.

= (C,, Incremental resistance coefficient, accounts for
differences in the hull roughness of the model and the
ship. It is usually constant and in the region of 0.15-
0.55-10°
Caa, Allowance includes air and steering resistance.

Wind Resistance

In almost all conditions the hull and superstructure of the ship
will result in a resistance component from the relative wind (the
resistance can be negative, in case of strong following winds!).
The wind resistance is calculated by

R = %C'XlOair‘ATI/R2 (5)

wind "~

Where the wind resistance coefficient C,, is determined
empirically, by e.g. Isherwood, R. (1972), or by model tests, and
vary with the relative wind direction, yz. A7 is the transverse
projected area above the waterline and V% is the relative wind
speed. The wind coefficient C, assumes that the wind speed and
direction is undisturbed by the ship, which naturally is
impossible for the on-board measurements.
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Propulsion

The efficiency of the propeller 7, behind the ship is found by
combining the results from model tests of the propeller alone,
the so called open water test and model tests of the ship, with
and without the propeller. If model tests are not available the
values, wake fraction, w, thrust deduction, #, and relative rotative
efficiency can be estimated by e.g. Harvald, S. A. (1983) or
Holtrop, J. (1984). This results in the overall propulsion
efficiency #p.

Using the above described methods with the empirical method
by Harvald, S. A. (1983) and Holtrop, J. (1984) the propulsion
power has been calculated for each of the measurements
described in the section Test Data Set . show the results of the
two empirical power prediction methods for one of the four
conditions measured. It is obvious that the accuracy of both of
the empirical methods are insufficient for a reliable performance
analysis.

Propulsion Power at Tm=12.4m and Tr=0m
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Figure 3: Propulsion calculation by empirical calculations, for
data set #1 (Table 1), where Tm is the mean draught and 77 is
the trim.

LINEAR AND NON-LINEAR METHOD

Assuming that the ship is sailing in calm and deep water
(depth/draught>8), the propulsion power can thus be written as:

P, = UBIU(RSW + Rwind) Q)

A non-linear and a linear method has been developed based on
the relation in (6), which can be written as:

P, =n, UKU? +LV}) %
Where:

K =Cgy )5 psyS ®)

L=Cy )P A; )

Is it now possible to adjust the three parameters, 5,” K and L,
by introducing the additional weights, A5, ", AK and AL.

Py =y +An, (K +AK YU +(L+ALWE)  (10)
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By adjusting the weights a predicted power 13D will appear and

a minimization of the of the sum of errors between the measured
and predicted power gives the optimal set of weights that
defines the model. The optimization (minimazation) has been
done using a “Levenberg-Marquardf” method (Madsen, K.;
Nielsen, H.B. & Tingleft, O. (2004) and Nielsen, H. B. (1999)).

The method above is non-linear since Az, is represented in the
two independent terms (K+ 4K and L+A4L). If the overall
efficiency is regarded constant (45,'=0) a linear model is
obtained.

The non-linear model was slightly improved by adding the wind
speed squared and the wind direction as additional linear terms.
Similarly the linear model was improved by adding the wind
direction as a linear term.

Figure 4 show the prediction errors for the linear and non-linear
models. The data corresponds to the ones in Figure 3. The
summarized cross validation errors for these methods are
presented in Table 6.

Both the linear and the non-linear method resulted in a error of
approximately 10%, except for data set #4 which is a rather
sparse representation of the problem with only 63 data points.
The non-linear method showed only slightly better results than
the linear method. This rather poor accuracy was the driving
factor for discarding these methods in the further development.

The accuracy can be improved by using a “Leave One Out”
(LOO) routine for training of the linear and non-linear models
and subsequently use the mean of the N weights from the LOO
training as the final weights. But in order ensure consistency
with the ANN models the data has been split into test and
training sets as described in section Training.

Prediction error (Ppred-P) of the Linear and Non-Linear at Tm=12.4m and Tr=0m
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Figure 4: Prediction errors for the linear and non-linear models
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ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) is an advanced form of non-
linear regression that can be used to model complex
relationships between input and output variables. ANN can be
described as linear combinations of nonlinear regression models,
with nonlinear basis functions, z;.

M
y(x) =2 w2, (11)
=0
2 d
z,= g[Z wf})xij (12)
i=0
Where:

x are the measured input data.
y are is the output, in this case the propulsion power

The network being used for this problem is a so called one
hidden layer (z;-z),). Figure 5 illustrates an equivalent network
with multiple output variables, whereas the present method only
uses one output (yi).

Input Hidden Output

Figure 5: A single hidden layer artificial neural network, with
multiple outputs.

The network is a flexible non-linear regression model with
additive Gaussian noise and trained with a Bayesian learning
scheme. It has a tangent hyperbolic sigmoidal function and is
trained using a BFGS (Broyden-Fletcher-Goldfarb-Shanno)
optimization algorithm with a soft line search to determine step
lengths. The Hessian matrix is evaluated using the Gauss-
Newton approximation.

More details in the specific neural network used here is can be
found in following references: DTU toolbox (2002), Larsen, J.
(1993), MacKay, D. J. C. (1992), Pedersen, M. (1997), Svarer,
C.; Hansen, L. & Larsen, J. (1993).

A basic description of neural networks can be found in Bishop,
C. M. (20006).
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After different attempts of modeling the propulsion power by
using the physical and empirical relation, a neural network was
tested and immediately showed surprisingly good results. Using
a neural network efficiently thus requires sufficient input
variables, hidden units, as well as a sufficient amount of data to
train with. We do not believe the structural details of the training
method are critical to obtain the reported capability.

From the physical relations of the ship propulsion theory the
most important variables for the propulsion power, P, can be
deducted to: ship speed, U, wind speed, ¥ and direction, yg, air
temperature, 7,;. and seawater temperature, 7.

Consequently the input and output variables are defined as:

xz[U Ve 7x T TSW]
y=P

The relationship between the different variables and the
propulsion power is also known to a certain extent, e.g. the
power is expected to be proportional to the ship speed cubed.

TEST DATA SET

Four independent data set, with different loading conditions, has
been used for the analysis. During each data sampling period
factors related to the ship performance including the hull and
propeller fouling, were assumed to be constant, consequently
this influence will not affect the analysis.

The data has been collected onboard the 110,000 dwt tanker
“Torm Marie” where a number of measurement were
continuously logged, from where only the relevant data for this
problem has been taken. The sampling was split into intervals of
10 minute time series with 10 minutes intervals. The sampling
frequency of the times series was 1 second, but many of the
measurements had inconsistent signals, i.e., sometime more than
10 second intervals. Power and speed were more or less
consistently updated every 13 seconds.

Naturally the recorded data included samples from non-
stationary situations as well as situations with zero forward
speed. One significant variable to the variations in the samples
was the change of heading. Even small changes (less than 1°) of
the heading, had significant influence on the measured
propulsion power. Samples with excessive variance in the
heading have thus been excluded.

The sea state has a significant influence on the ship resistance
and hence the propulsion power. No direct measurements of the
sea state have been made, but the wind driven waves can be
represented by the true wind speed to a certain extent. Making
this assumption the swell is not included.

In Table 1 the key figures for each dataset are outlined. It is
noted that the ship speed intervals are approximately in the same
region for each sample. The distributions of the ship and true
wind speed are illustrated in Figure 6-Figure 9. It should be
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noted that the Beaufort wind force (BF) 5 starts at
approximately /6 knots wind speed. In this condition the wind
driven waves are around 2 m high, which is when the sea state
starts to influence the added resistance. From Figure 6 and
Figure 7 it is noted that only a few occurrences are above this
level and thus data sets #1 and #2 can be regarded as calm water
conditions. Data set #3 and #4 on the other hand has a more
significant contribution of measurements above BF 5 and the
added resistance must be regarded as an extra contribution.

Table 1: Trained data sets, where N represents the number of 10
minute recording windows

Data | Number | Mean | Trim | Ug,- Pnin-Pmax
set of draught, | Ta- U nax
Samples T Tf
M N [m] [m] | [knots] [kW]
13.6-
1 238 12.4 0.0 152 8139- 11111
14.3-
2 236 7.4 24 16.2 7574- 11283
13.6- 7750-
3 142 7.85 2.7 152 9248 5
4 63 12.15 | 0.0 1136'41' 9764- 11216

The input data are the mean values of the 10 minutes time
series. In order to justify this, spreading of the signal has been
analyzed, for the ship speed, U, propulsion power, P and
apparent wind speed, V. The air temperature has been neglected
since it is very stable. For every 10 minute period the relative
standard deviation, (o, ,,/u.,) has been found and for every

dataset the average of the relative standard deviation, &,, has
been determined:

(13)

Where:
0., 1 the standard deviation for the n 'h time series
L., 18 the mean value for the n 't time series
x indicate the input input/output variable (U, P, Vg, yr)

Similarly the average of the relative standard deviation
L, ,l_lx’ v » can be found.

(14)

The average of the relative standard deviation £ ,, and the

average of the relative standard deviation & _,, are shown for

every dataset in Table 2 and Table 3. It is noted that both the
measured power and ship speed are all less than 1, but for the
wind speed there are significant variations.
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Table 2: The average of the relative standard deviation
M N ﬁU ,L_lp ﬁVR
1 238 0.6% 0.8% 10.0%
2 236 0.6% 0.7% 18.0%
3 142 0.6% 0.6% 12.4%
4 63 0.6% 1.0% 7.9%

Table 3: The standard deviation of the relative standard
deviation

M N oy, EP EVR

1 238 0.2% 0.4% 5.9%

2 236 0.3% 0.2% 13.7%

3 142 0.2% 0.2% 7.2%

4 63 0.3% 0.5% 4.8%
40
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Figure 6: Ship speed and true wind speed distribution of sample
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TRAINING

The training and test has been performed by a neural network
(DTU toolbox (2002) Larsen, J. (1993), MacKay, D. J. C.
(1992), Pedersen, M. (1997), Svarer, C.; Hansen, L. & Larsen, J.
(1993))

The training procedure has been restarted 10 times in order to
ensure that the network found the best possible solution for that
particular case.

In order to cross validate, each data test set (1-4 in Table 1) has
been divided into 5 training and test subsets, where 20% of the
data set has been left only for testing and the remaining part for
training. Before the subdivision the data set was permutated
randomly.
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In order to find the best number of hidden units the network has
been trained with respectively 5, 10, 15 and 20 hidden units.

RESULTS

Due to the nature of the input data which is the mean values of
the time series of 10 minutes, the resulting network is able to
predict the mean propulsion power for a period of 10 minutes.

The results of each network have been evaluated by the relative
sum of the errors squared, o:

N o, 2
!
Z (Ptest,n - Ptest,n )

=2 (15)

N
p 2
test,n
n=1

The mean of the relative error,w, has also been found in order to
give number of expected accuracy.

1 & Pte?t n _Pt;?t n
wo=—> P— (16)
N n=l1 test.,n
Where: P, , are the predicted values of the test data
Pt:m , are the test samples from the cross validation set

N is number of test set

Every dataset set has been trained with a network with 5, 10, 15
and 20 hidden units. Each of these networks has been trained
five times in order to alternately use 20% of the data set for
testing. In order to validate the results the cross validation error

@ and the cross validation error squared & :

1 K=5

O=—) ® a7
KT

_ 1 K=5

o =E o (18)

-
L

Where K is the total number training/test set (5).

In Table 4 these two quantities are shown for each of the data
sets. It is noted that data set #3 and #4 are much better results
than #1 and #2, this is most likely because the limited dataset
(142 and 63), are sampled around the same time, and thus have
very little variation in the input variables. This is particularly
pronounced in Figure 8 where the ship speed has been /4.5-5
knots about 90% of the time.

Taking this into account one should be careful using this
network for ship speeds out of this range!

In the error plots of the best solutions, shown in Figure 10-
Figure 13, the majority of the predictions are within an error of
500 kW. The prediction error distribution is illustrated in Figure
14-Figure 17, in the same plot a Gaussian distribution (shown as
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a blue line) has been generated using the mean value and the Error plot of the best testset/hidden unit combination (3/4) Tm=12.4 Trim=0

variance of the predicted errors. For #1 and #2 the normal 1500 5 Prediction of the tolal data set
distribution fits the histograms very well. For #3 the distribution & Prediction of the test set
is skewed due to a few outliers and for #4 the data set is most 1000F
likely too small to be used, for this purpose, both #3 and #4 have
a small spread, thereby justifying their use. S 500!
Table 4: Best ANN results and related errors. g . :
. Cross s
Trim No L Cross 3
M| N | Mean b n ) Hidden | YAHdAton | okdation 2 o
draught . error a -500
Tf Units error
squared
[m] [m] & o -1000} o o
1 | 238 12.4 0.0 20 0.13% 2.56%
2 | 236 74 2.4 15 0.15% 2.69% -1500, - ” 145 15 15.5
3 1142 ] 785 2.7 20 0.03% 0.82% Ship speed [knots]
4| 63 12.15 0.0 20 0.04% 1.24% Figure 10: Prediction errors for sample #1

Furthermore the cross validation error @ and the cross

Error plot of the best testset/hidden unit combination (3/3) Tm=7.4 Trim=2.4

= 1500 : .
validation error squared 0" have been calculated for the two N o Prediction of the total data set
empirical performance evaluation methods, Harvald, S. A. & _Prediction of the test set
(1983) and Holtrop, J. (1984). The results are shown in Table 5 1000¢ N
and as expected these methods gives rather poor results °
compared with the data driven methods. g 500 W OA
= °© %99% g o
< o0
Table 5: Cross validation errors for the empirical methods. s R é%% 5%%%@8@@% g
Harvald, Harvald, S o o&o
S A 3 A Holtrop, J. | Holtrop, J. 2
. . . . (3} o
(1983) (1983) (1984) (1984) & -500 o@ °
Cross Cross Cross Cross
i i -1000+
M| N validation validation validation validation *
error error
d error squared error -1500 ‘ ‘ :
Square — quar — 14 15 15.5 16 16.5
5 w 5 w Ship speed [knots]
1 | 238 3.63% 17.92% 6.13% 23.74% Figure 11: Prediction errors for sample #2
2 | 236 7.47% 26.48% 8.18% 27.78%
3 142 5.68% 22.35% 7.93% 27.41% 1IZE(r)lg)r plot of the best testset/hidden unit combination (1/3) Tm=7.85 Trim=2.7
4 63 10.75% 23.14% 9.70% 28.14% o Prediction of the total data set
4 Prediction of the test set
1000}
Table 6: Cross validation errors for the linear and non-linear
models 800+
g 600+
Linear Linear Non-linear | Non-linear 5 o
S 400
cross cross cross Cross §
M| N validation validation validation validation E 2001
error error error error 0, ¥ Q%\ﬁ?&% 6 0080
squared squared o °5 0‘6 ‘b&@ 28 b ’
o w o @ 2001 = o3 ]
1 | 238 1.47% 10.09% 1.40% 10.06%
2 | 236 1.67% 10.66% 2.49% 9.54% s 142 144 146 148 15 152
3| 142 1.94% 11.39% 1.87% 11.14% Ship speed [knots]
4 | 63 0.21% 3.46% 0.07% 1.98% Figure 12: Prediction errors for sample #3
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Error plot of the best testset/hidden unit combination (5/1) Tm=12.15 Trim=0
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Figure 16: Relative distribution of the predicted errors for
Error of the Predicted measured propulsion power Tm=12.4 Tr=0 sample #3
0.251 -
[JReltaive occurence
— Normal distribution Error of the Predicted measured propulsion power Tm=12.15 Tr=0
- 2
0.2t [JReltaive occurence
0.18{ —— Normal distribution 1 M
8 M 0.16
c
© 0.15¢
3 |
3 AR o 014
© 2
2 \ 8 0.2
T 0.1f Q
© S [
¢ . _
=
_ T 0.08F =
0.05 & A
0.06
1] [111 ] D04
%00 1000 -500 0 500 1000 1500 0,02k
Prediction error [kW]
Figure 14: Relative distribution of the predicted errors for oo -200 1000 100 200 300
sample #1 Prediction error [kW]
Figure 17: Relative distribution of the predicted errors for
Error of the Predicted measured propulsion power Tm=7.4 Tr=2.4 sample #4. ,Tm is the mean draught and 77 is the trim.
0.25,
[JReltaive occurence
—— Normal distribution M
0.2
@ —
o
c
© 0.15
=3
8 a8
o
[
=
T 0.1F
[0}
4
0.05+

—1%00 -1000 -500 0 500 1000 1500
Prediction error [kW]

Figure 15: Relative distribution of the predicted errors for
sample #2

WMTC 2009 Pedersen 9



Appendix A
CONCLUSIONS

It is possible to predict the mean propulsion power during a
period of 10 minutes with a relative error of less than 2.7%,
using a single hidden layer neural network. This is significantly
better than empirical or datadriven methods based on hydro-
mechanical relationships.

The prediction was carried out for four different states with the
following input variables: ship speed, relative wind speed and
direction, air temperature and sea water temperature. It should
be emphasized that each of the four different trained neural
networks are trained for the specific ship, time and condition
only. The network parameters can thus not be used or
extrapolated for any other ship or condition. Similarly the
variables in the prediction should be within boundaries of the
trained variables.

It is believed that the prediction is not critical to the specific
structure of the neural network model, provided that proper
training is performed.

The current neural network model can be used to determine a
performance benchmark of the ship for the specific condition,
which will be valuable for the performance evaluation or make
easier to compare performance of sister ships.

Although the sea state is not measured directly, the ANN model
using the wind speed as a measure of the sea state seems to give
reasonable results. It should be noted that most of the wind
speed measurement are below ~/6 knost and thus the effect very
of the waves is minimal.

As more data is collected onboard the vessel the model will
gradually be extended and further work will focus implementing
the trim and draught as variables which will lead to a model that
predict the propulsion power in any realistic situation. This can
e.g. be used to evaluate the hull and propeller performance or
determine what trim is the most efficient in a certain condition.
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Appendix B

Prediction of Full Scale Propulsion
Power Using Artificial Neural
Networks

Presented at the "Conference on Computer Applications and Information Technology
in the Maritime Industries”, COMPIT, 10-12 May 2009 in Budapest, Hungary.

Full scale measurements of the propulsion power, ship speed, wind speed and di-
rection, sea and air temperature from four different loading conditions, together with
hindcast data of wind and sea properties; and noon report data has been used to train
an Artificial Neural Network for prediction of propulsion power. The model was opti-
mized using a double cross validation procedure. The network was able to predict the
propulsion power with accuracy between 0.8-1.7% using on-board measurement system

data and 7% from manually acquired noon reports.
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Abstract

Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea
and air temperature from four different loading conditions, together with hindcast data of
wind and sea properties; and noon report data has been used to train an Artificial Neural
Network for prediction of propulsion power. The model was optimized using a double cross
validation procedure. The network was able to predict the propulsion power with accuracy
between 0.8-1.7% using onboard measurement system data and 7% from manually acquired
noon reports.

1 Introduction

As part of the Industrial PhD project "Ship Performance Monitoring” automatic data sampling
equipment was installed on the tanker "Torm Marie" in January 2008 and presently data from four
different loading conditions are available.

By considering the ship as a dynamical system which can be modelled as a general nonlinear state-
space model, the ship propulsion performance (referred to as the performance) is a measure of energy
consumption which depends on the current state of the ship and a large number of external
factors/variables such as speed, loading conditions, ship conditions, weather and sea conditions.
Figure 1 shows some factors influencing propulsion performance.

Engine Efficiency Efficiency Hull Efficiency
— l— i« >

« Wind
I 10CIAAL I I I
Fuel Power 88 Theust = Resistance
=1 I
1

Tt Tt FFT AN

Poor Propeller Draught \yater Hull
Maintenance Fouling Shallow &TAM  Temp/  royjing
Water Density

I Propeller

Figure 1: Variables influencing propulsion performance.

The variables have different properties. Some of the variables are observable (and measurable with
high reliability) whereas others are difficult to observe, e.g. the fouling. Some variables are largely
controllable, whereas others are almost incontrollable. For instance, heading is controllable whereas
wind conditions and fouling are almost incontrollable. The first goal in performance measurement is
to provide a reliable estimation of performance as a function of the state and external variables. The
second goal is to optimize performance by manipulating the controllable variables. This paper will
focus on the first goal.

During the lifetime of the ship the performance will decrease. As an example the fuel consumption
will increase at a certain state, or the ship speed will decrease at a certain power setting. This is
mainly due to fouling of the hull and propeller. A typical trend of the speed reduction is illustrated in
figure 2.
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Figure 2: Increase in fuel consumption as consequence of fouling

This work will not consider a full dynamical model of the ship but merely focus on a model which
predicts propulsion power in a specific state based on the measurements of a set of significant input
variables, which are:
e Ship speed through the water
Wind speed and direction
Seawater temperature
Air temperature
Water depth
Wave height and direction

The model can be based on a classical physical/empirical model, e.g. Harvald, S. A. (1983) or
Holtrop, J. (1984) or a datadriven (non-parametric) approach e.g. an artificial neural network.
Previous work suggests that a datadriven approach is preferable (see e.g. Pedersen & Larsen 2009),

The empirical methods are derived from model tests and sea trials, and since most model tests are
carried out in the design condition (even keel) and speed, this is the region where it should be applied.
In operation the ship will travel in many other conditions i.e., ballast draught and trimmed conditions.
Consequently, these methods give a rough estimate of the propulsion power rather than an accurate
reference point. If measured values from model tests or sea trials are available, they can be used to
adjust the empirical data and thus give a more accurate result. Figure 3 shows the measured power
together with estimated power using respectively Harvald, S. A. (1983) and Holtrop, J. (1984), with a
standard setup i.e., without any adjustment. It is obvious that a change in a few percent, which is
realistic performance deterioration over a year, is impossible to detect.

Furthermore the traditional methods are based on “Noon Reports” data, which are reports containing
information of the ship speed, travelled distance, position, heading, and a number of other
measurements and readings. One problem with noon reports are that only one sample is collected per
day, excluding days in harbour and e.g. travelling in areas with limited water depth. This might leave
out 200 observations per year. Many noon reports data are mean values over time from the last noon
report, e.g. average logged ship speed, and others are observations at the report time, e.g. current wind
speed. This makes it difficult to analyse relations e.g., between the average ship speed and the
instantaneous wind speed.
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Figure 3: An example of empirical power prediction using the Harvald,
S. A. (1983) and Holtrop, J. (1984) methods, compared with measure
values for a single loading condition (Mean draught: 12.0m, even keel).

If sufficient data is available it is possible to make a partial or fully data driven model. The first step
of such a model is to capture the dynamics of the fastest changing variables, e.g. ship speed, wind
speed, etc. where the slowest changing variables are draught and trim. Initially, this leads to a
prediction model for data sets where draught and trim are kept constant.

Adequate quality of input data is fundamental to get reliable results from the prediction model. This is
a problem for sea and weather information data due to the difficulty of measuring these quantities, but
especially to noon report data which are collected manually hence human factors and errors can play a
significant role.

2 Data sources

Three data input sources have been used to train and predict the propulsive power:
1. Onboard measured data (4 conditions)
2. Noon report data
3. Hindcast weather and sea information

An overview of all the relevant data set variables is listed in Table 4.

2.1.1 Onboard measured data

The data was collected onboard the 110,000 dwt tanker “Torm Marie” where a number of
measurements were continuously logged. Only the relevant data for this problem has been taken. The
sampling was split into time series of 10 minutes with 10 minute intervals. The sampling frequency of
the time series was 1 second, but many of the measurements had inconsistent and missing signal
values. Power and speed were updated consistently, every 13 seconds. Four independent data sets,
with different loading conditions have been sampled so far.

The data include samples from non-stationary situations as well as situations with zero forward speed,
which are deleted. The variance of the heading is one of the governing figures on the variation of the
propulsion power in particular. Even small changes (less than 1°) in the heading, had significant
influence on the measured propulsion power. Samples with excessive variance in the heading have
thus been excluded.

During each data sampling period factors related to the ship performance including the hull and
propeller fouling, were assumed to be constant, consequently this effect will not be accounted for in
the analysis
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2.1.2 Noon report data

The noon reports contain a long array of data and basically the same variables as the measured ones,
but with differences in quality and resolution. Due to their nature, noon reports are usually only
collected once a day, which gives a smaller resolution and a mix of data with different origins, e.g.
logged average speed over ~24 hours and one weather observation at the report time. Noon reports are
usually filled in manually and are thus also subject to human factors and errors.

In this analysis the noon reports are important for obtaining the draught and seawater temperature.

2.1.3 Hindcast data

Hindcast data has been received from a tool developed for SeaTrend®' at FORCE Technology based
on weather information from NOAAH?. For a given position and time this tool returns wind speed and
direction, significant wave height, peak period and direction. Some areas, e.g. the Mediterranean are
not included in this database.

2.2  Dataset for training and test
Two different configurations of the dataset were used for the analysis. One based on the measured
values and one based on noon report data.

2.2.1 Onboard measured dataset
The dataset based on measured values has a high density of data (approx. 72 per day), but there is
only a limited amount of this data available: in total around 27 days (see Table 1).

Table 1: Onboard measured data sets. /V represents the number of 10 minute recording

windows.
Data set Number of Start date Number of Mean Trim  Umin-Umax Pmin=Pmax
Samples End date valid noon  draught,  Ta-Tf

reports Tw
M N [m] [m] [knots] [kW]
09-02-2008 7573-
1 236 14-02-2008 3 7.4 2.4 14.2-16.2 11283
22-03-2008 7750-
2 109 27-03-2008 4 7.85 2.7 13.6- 15.1 9248
30-01-2008 8138-
3 301 06-02-2008 7 12.15 0 13.4-16.0 11216
01-03-2008 9741-
4 555 11-03-2008 9 13.0 0 13.0- 15.9 12096

All the measured input data are the mean values over 10 minutes of the time series. In order to justify
this, variance of the signal has been analyzed for the ship speed, U, propulsion power, P and apparent
wind speed, V. The air temperature has been neglected since it is very stable. For every 10 minute
period the relative standard deviation, (o, .,/i.,) has been found and for every dataset the average of
the relative standard deviation 4, , has been determined, see Eq. (1) .

) (M

where,
0., 1s the standard deviation for the n 'th time series, u,, is the mean value for the n 'th time series, and
x indicates the input/output variables (U, P, Vi, yr)

! Performance Monitoring tool developed at FORCE Technology, www.force.dk
? National Oceanic and Atmospheric Administration, United States Department of Commerce
http://www.noaa.gov/
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It should be noted that the relative standard deviation of both the measured power and ship speeds are
all less than 1, whereas the wind speed has a significantly high variance.

Table 2: The average of the relative standard deviation
M N @ @ m,

236  0.6% 0.7% 18.0%

109 0.6% 0.5%  9.1%

301 0.6% 09%  9.5%
555 0.6% 0.6% 11.4%

EENUS I N

From Table 2 it is noted that the ship speed intervals are approximately in the same region for each
sample. However inspecting the distributions of the ship and true wind speed illustrated in Figure 4-7,
it is noted that the actually ship speed range is different. Especially for dataset #2 where most of the
ship speeds is in a band of around 14.7 knots.

It should be noted that the Beaufort wind force (BF) 5 starts at approximately /6 knots wind speed. In
this condition the wind driven waves are around 2 m high, which is when the sea state starts to
influence the power increase in waves. From Figure 4 and 5 it is noted that only a few occurrences
are above this level and thus datasets #1 and #2 can be regarded as calm water conditions. Datasets #3
and #4 on the other hand have a more significant contribution of measurements above BF 5 and the
power increase in waves must be regarded as an extra contribution.
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The sea state has a significant influence on the ship resistance and hence the propulsion power. No
direct measurements of the sea state have been made, but the wind driven waves can be represented
by the true wind speed to a certain extent. Making this assumption the swell is not accounted for.

Hindcast information gives an estimate of the sea state, including significant wave heights, peak
period and direction, at the specific position and time, and has been found for all the relevant data.
Furthermore the hindcasts also give the true wind speed and direction.

2.2.2 Noon report dataset

The time density of the dataset based on noon reports is much less than for the measure based dataset.
There is a maximum of one sample per day and many are invalid due to e.g. anchoring, alongside in
harbour. But the time span is much longer, approximately 2 years and the variation in draught and
trim has to be taken into account, and possibly also the time (see Table 3).

In order to give a more representative value of the sea state and wind condition for the noon report
data, hindcast has been made for every hour in between each noon report. Afterwards the mean value
and variance of the time series (approximately 24 hours) prior to the report time, has been found and
are thus ready to use for the analysis.

Table 3: Noon report dataset for analysis

Numb-e rof Mean Trim, Ta-Tf Ship Seawater  Specific HFO
Date UTC valid draught [m] speed [°C] [tons/day]
samples [m] [knots] P Y
09-12-2006 - 323 7351535 034 99175  12:32 1.1-3.9

05-12-2008
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Table 4: Propulsion performance variables

191

Data Unit Data source

Speed through water U [knots] Measured onboard
Relative wind velocity Vrel [knots] Measured onboard
Relative wind direction grel [deg] Measured onboard

Air temperature Tair [degC] Measured onboard
Propulsion power P (kW] Measured onboard
Logged mean speed NR.U [knots] Noon report

Sea water temperature NR.Tsw [degC] Noon report

Air temperature NR.Tair [degC] Noon report

Arrival draught fore Tr [m] Noon report

Arrival draught aft Ta [m] Noon report

Specific fuel consumption SpHFO [ton/hour]  Noon report

Report time, UTC NR.UTC [hh:mm:ss]  Noon report

True wind speed HC.Ws [m/s] Hindcast

True wind direction HC.g [deg] Hindcast

Significant wave height HC.Hs [m] Hindcast

Wave period HC.Tp [s] Hindcast

True wave direction HC.Td [deg] Hindcast

Mean arrival draught Tm [m] Derived from noon reports
Arrival trim, Ta-Tf Trim [m] Derived from noon reports
Relative wind speed HC. Vrel [knots] Derived from hindcasts
Relative wind direction HC.grel [deg] Derived from hindcasts

3 Regression models for propulsion power prediction
Three different regression models have been tested and evaluated: a linear model, a (custom) non-
linear model and a Artificial Neural Network model

3.1 Linear and Non-linear models

Both a linear and non-linear method based on the general assumption of relation between the ship
speed, wind speed and power was developed and presented in Pedersen, B.P. and Larsen J. (2009). In
short the methods are based on the relation presented (2) which can be developed to the form
presented in (3) and (4) where 45, AK and AL. are adjustable parameters that are optimized using a
“Levenberg-Marquardt” (Madsen, K., Nielsen, H.B. & Tingleff, O. (2004) and Nielsen, H. B. (1999))
optimization routine. If A5, is zero the model is regarded as linear.

P, = UZ)IU(RSW + med) (2)
Py = UKU? +L7;) 3)

Is it now possible to adjust the three parameters, 7, K and L, by introducing the additional weights,
Anp”, AK and AL.

Py =y + Anp WK + AR + (L + ALY ) @
where,

K =Cg Y5 pswS &)
L = CX %pairAT (6)
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Both the linear and non-linear methods resulted in a cross validation error (9) of 3-12%. This could be
improved a bit by using a “Leave One Out” (LOO) routine for training of the linear and non-linear
models and by subsequently using the mean of the N weights from the LOO training as the final
weights. But in order to ensure consistency with the ANN models the data has been split into test and
training sets as described in section 5.

3.2  Artificial Neural Network (ANN)

After a brief test of regression with an ANN this method appeared superior to the previously
described methods which lead to a thorough exploration of the ANN methods. An ANN is a non-
linear method where the so called hidden layer with hidden units is the non-linear link between input
and output, as illustrated in Figure (shown with multiple outputs) or described in (7) and (8).

M
Hx)=2 Wz, (7
=0

d
z, = g[ wﬁ.}’xl-], (3)

where,

x is the measured input data.

y is the output, in this case the propulsion power.
z; are the nonlinear basis functions.

w are the weights for the hidden units and output.

The network used for this analysis is a flexible non-linear regression model with additive Gaussian
noise and is trained with a Bayesian learning scheme. It has a tangent hyperbolic sigmoidal function
and is trained using a BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization algorithm with a soft
line search to determine step lengths. The Hessian matrix is evaluated using the Gauss-Newton
approximation.

More details into the specific neural network used here can be found in the following references: DTU
toolbox (2002), Larsen, J. (1993), MacKay, D. J. C. (1992), Pedersen, M. (1997), Svarer, C.; Hansen,
L. & Larsen, J. (1993). A basic description of neural networks can be found in Bishop, C. M. (2006).

Input Hidden Output

Figure 8: A single hidden layer artificial neural network,
with multiple outputs.
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4  Training and testing

In order to test and validate different variations of input variables and the number of hidden units and
to select the best combination it is necessary to split the data set into three parts: a test set, validation
set and a training set. A double cross validation method has been used in order to find the best
combination of number of hidden units and the input variable. Double cross validation consists of two
steps.

First training is performed on the training set and tested on the validation set, referred to as the inner-
loop, the optimum set input parameters and number of hidden units is decided from the cross
validation error of the mean relative error @, (9). Using the optimum setup training is performed on
the validation set and training set, and then tested on the test set, referred to as the outer-loop . This
procedure is called double cross validation.

From the dataset 20% was used for test data and 80% validation and training. The validation and
training set was then split into 20% for validation and 80% training, corresponding to respectively
(20%-80%) 16% and (80%-80%) 64% for validation and training of the entire dataset. This separation
is illustrated in Table 5.

The best combination of input parameters was selected manually.

All the training of the ANN has been carried out using the above mentioned routine where training
has been started 10 times to ensure capturing the best solution.

Table 5: Double cross validation illustration

Total data set
Test set 20% Val set 20%- 80% Training set 80%:- 80%
Val set 20%- 80% Test set 20% Training set 80%:- 80%
Training set 80%- 80% / Val set 20%- 80% Test set 20% Training set 80%- 80% / Val set 20%- 80%
Training set 80%- 80% Test set 20% Val set 20%- 80%
Training set 80%- 80% Val set 20%- 80% Test set 20%

4.1 Selection of input parameters

Due to limited computational time, it was not possible to train and test all combinations of input
variables. The selection was made manually based on initial testing and basic physical assumptions.
Table 6 shows the different input combinations for the analysis of the measured dataset. Note that
draught and trim are missing, as the analysis is performed for each loading condition separately. The
output variable, propulsion power P, is naturally present in all combinations.

Table 6: Input variable setup for the measurement based dataset

ID | U | Vrel | grel | Tair | NR.Tsw | NR.Tair | HC.Ws | HC.g | HC.Hs | HC.Tp | HC.Td | HC.grel | HC.Vrel | P
2 | x| X X X X X
8 | x| x X X X X X X X X X

10 | x X X X X X X X X
11| x X X X X X

12 | x X X X X X X X X

Table 7 shows the combination scheme of the input variables for noon report analysis. All the
hindcast data are mean values of hindcast data produced for the last steaming time period with one
hour intervals. That makes all the input data mean values of the steaming time period, instead of
instant values at the report time. Note that no propulsion power is available and thus the specific fuel
consumption, SpHFO, is used as an output variable

Table 7: Input variable setup for the noon report based dataset
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Mean value of 1 hour intervals during steaming time

ID | NR.U | NR.UTC | NR.Tair | NR.Tsw | HC.Ws | HC.g | HC.Hs | HC.Tp | HC.Td | HC.grel | HC.Vrel | Tm | Trim | SpHFO
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2 X X X X X X X X
3 X X X X X X X X X X X
4 X X X X X X X X X
5% x X X X X X X X X X X
6 X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X X X
9 X X X X X X X X X X X X
* The variance of HC.Ws, HC.g, HC.Hs, HC.Tp and HC.Td over the steaming time has also been included as

input variables.

5  Evaluation
In order to make a consistent evaluation of the ANN training and testing two cross validation errors
have been introduced. One for the inner-loop of the double cross validation, testing on the validation

set, Wy (9) and one for the outer-loop of the double cross validation, testing on the test set, ®,, .
1 K
Oy =— D 0, 9)
K=

Where K is the number of cross validation set for the inner-loop and wy is the mean of the relative
error for each of the cross validation sets (10).
N, | D '
a)k =sz Ptest,n'_Best,n , (10)
Nk n=1 Best,n

A

where P

test,n

are the predicted values of the test data, P|_, are the test samples from the validation set,

test,n

and N is number of test data.

The outer-loop cross validation ®,, error is equivalent to @, (9) except that the test set has been
used for the mean relative error opposed to the validation set.

6  Results

6.1 Results from measured input/output data

Due to lack of computation time the ANN was only trained for 5 and 20 hidden as these are the
extremes. This can be justified by Pedersen, B.P and Larsen,J (2009), where training/test were
performed with 5,10,15 and 20 hidden units, it was concluded than the number of hidden units are not
critical to the solution, although in general 5 hidden units were too little.

Table 8 shows the cross validation errors of the inner-loop @, for the input variable combinations

defined in Table 6 and 5 and 20 hidden units.

Looking at all the cross validation errors for each of the datasets in Table 8 it is clear that some
datasets in general have smaller errors. Particularly in dataset #2 and to some extent #4 it is noted that
the cross validation errors do not vary no matter what input data variables or number of hidden units
are used. In these datasets it is thus difficult to detect what input variables have the most influence on
the solutions.

The cross validation errors of the outer-loop are presented in Table 9, together with respectively the
best combination of hidden units and input variable combinations. Datasets #2 and #4 have rather low
cross validation errors, which must be due to the nature of the dataset. What is more interesting is to
see how the error drops by introducing hindcast sea state information and the best solutions in general
are where only the hindcast information has been used for the sea and wind property inputs.

Table 8: Table of inner-loop cross validation errors, @,

Dataset #1 Dataset #2 Dataset #3 Dataset #4
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Number of hidden

. 5 20 5 20 5 20 5 20
units
Input variable 7 7 7 7 7 > 7 7
combination K K K K K K K K
2 3.93% 2.92% 1.07% 0.81% 3.07% 2.37% 1.72% 1.30%
8 2.63% 1.97% 0.97% 0.89% 221% 1.65% 1.49% 1.04%
10 2.14% 1.65% 0.99% 0.95% 2.17% 1.65% 1.52% 0.94%
11 3.77% 2.79% 1.10% 0.90% 2.45% 1.88% 1.42% 1.02%
12 2.25% 1.65% 0.99% 0.94% 1.75% 1.40% 1.28% 0.90%

Table 9: Table of outer-loop cross validation errors, ©,,

Dataset #1 Dataset #2 Dataset #3 Dataset #4

Optimum number of hidden units 20 20 20 20
Optimum input variable combination 10/ 12 2 12 12
w,, 1.63%/1.74% 0.83% 1.46% 0.80%

Figures 9 - 16 show the test errors for the best combination of the number of hidden units and input
variables. The plots on the left show the test errors as a function of the ship speed; it is noted that
there is no apparent correlation between ship speed and the error, which indicates that the ship speed
has integrated properly into the model.

The plots on the right are a relative histogram of the errors together with a normal distribution based
on the mean and the variance of the test errors. Except for dataset #2 all the error distributions are
centered approximately around 0 and have a nice distribution. Dataset #2 is a sparser dataset so each
bar represents 1-4 counts, but the errors are relatively small.
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6.1.1 Results from the linear and non-linear models
Training and testing was performed as described above using a similar cross validation although not
double since the input variables are specified by the model.

Table 10: Table of cross validation errors, @ for the dataset based on measurement
using a linear and non-linear method.

Cross validation error Dataset #1 Dataset #2 Dataset #3 Dataset #4
11.58% 3.63% 12.04% 5.98%
11.36% 3.58% 10.79% 5.98%

Linear method 7
Non-linear method 7]

6.2 Results from noon report data
From the inner-loop cross validation errors listed in Table 10 it is noted that the model in general is
less sensitive to the number of hidden units. The dependency on certain variables seems not very
strong since most errors are in the same region. It is interesting to see the error drop significantly
when the time is introduced as a variable for input variable combination 7 and 9. Furthermore
combination 5 might have been over trained since it has the highest number of input variables but one
of the highest errors.

The outer-loop cross validation error is presented in Table 12 and is based on the input variable
combination 7 which does not even take into account the sea state.

Table 11: Table of inner-loop cross validation errors, @, for the noon report dataset

Number of hidden units 5 10 15 20
Input variable combination Wy Wy Wy Wy
2 9.05% 9.57% 891% 9.13%
3 8.84% 991% 10.26% 10.82%
4 8.70% 10.00% 11.22% 13.78%
5% 9.79% 11.13% 8.95% 8.38%
6 8.18% 8.50% 9.07%  9.05%
7 7.18% 7.74%  9.28%  10.06%
8 8.46% 9.06% 9.60%  9.18%
9 7.26% 8.47% 10.58% 9.25%

Table 12: Table of outer-loop cross validation errors, @,, for the noon report dataset

Optimum number of hidden units 5
Optimum input variable combination 7
w,, 7.02%
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Error plot of the best combination of Noon report analysis. InputVar=7, Nh=5 Error histogram for the Noon report analysis, best inputvar=7, Nh=5
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Figure 17: Prediction errors of the noon report Figure 18: Relative distribution of the predicted
analysis errors from the noon report analysis

6.3 Comparison of the results

It is only possible to compare the dataset based on measured values, since it is the only one tested by
other methods. In Figure 19 the cross validation error is shown for every condition and predicted by a
linear, non-linear or ANN method. As previously mentioned dataset #2 gives significantly lower
prediction errors for all methods due to the rather narrow ship speed band, the low wind speed and
low number of samples.

14.00% 7 cross validation errors of the measured dataset
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m Linear
10.00% - O Non-linear
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4.00% -
2.00% A
0.00% -
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Figure 19: Comparison of different prediction methods.
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7  Conclusion

Artificial Neural Networks (ANNSs) can successfully be used to predict propulsion power, given that
sufficient data are available. They have a significantly better performance than the linear and non-
linear models tested. The propulsion power was predicted with an accuracy of less than 2% for the
measured dataset. This accuracy is although of the same order of magnitude as the standard deviation
of the propulsion power, so if a confidence interval analysis is introduced it is questionable if the
method can get better.

ANNSs can also be used with noon report data to predict the specific fuel consumption with an
accuracy of about 7%, which is a bit surprising considering the rather rough input/output data. It is
noted that this accuracy was obtained using “time” as an input variable, this indicates that it is
possible to detect a trend of the fuel consumption over time.

It is shown that by introducing sea states and wind property information from the hindcast, the ANN
solutions can be improved significantly, in the best case, from 2.97% to 1.65%. This eliminates the
need for onboard measured wind speed and direction.

Unfortunately it was not possible to compare the solutions of the four different measured datasets with
a solution using the noon report data from the same time, simply because of the lack of a sufficient
number of noon reports for each dataset (there is only 3,4,7 and 9, see Table 1). Since the ship is not
usually sailing in a single loading condition more that three weeks (21 noon reports), it will always be
a problem to acquire enough data for making a reliable comparison of manual data acquisition (noon
report) and automatic.

If measured data for more loading conditions were available it would be possible to make an analysis
similar to the one made for the noon reports.
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Appendix C

Input/output variable data

C.1 Histograms of measured data measured data

Histogram distribution of the the measured data sets.

C.1.1 Input variable

Histograms of the output variables e.i. measured propulsion power, from the 4 mea-

sured dataset.

C.1.2 Output variable

Histograms of the measured power as output variable.
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Input/output variable data

X Data variable Source ID Unit
1 Speed through water KYMA U knots
2 Relative wind speed Airmar Vrel knots
3 Relative wind direction Airmar grel °

4  Air temperature Airmar Tair °C

5  Air temperature Noon report NR.Tair °C

6  Sea water temperature Noon report NR.Tsw °C

7 True wind speed Hindcast HC.Ws m/s
8  True wind direction Hindcast HC.g °

9  Significant wave height Hindcast HC.Hs m

10 Wave period Hindcast HC.Tp s

11 True wave direction Hindcast HC. Td °

12 Relative wind speed Hindcast HC.Vrel m/s
13 Relative wind direction Hindcast HC.grel °

Y  Shaft power KYMA P kW

Table C.1: Date variables for the measured data set analysis’

Figure C.1: Histograms of measured data set 1-4 of out variable Y as defined in

Table C.1 as Y
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Figure C.2: Histograms of measured data
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Figure C.3: Histograms of measured data
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set. 1-4 of input variable X2 as defined in
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Input/output variable data
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Figure C.6: Histograms of measured data set 1-4 of input variable X5 as defined in
Table C.1
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Input/output variable data
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Figure C.8: Histograms of measured data
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Figure C.9: Histograms of measured data
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Input/output variable data
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Figure C.12: Histograms of measured data
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Input/output variable data

C.2 Histograms of the noon report data from Torm

Marie

C.2.1

Input variable

Histograms of the input variables of the noon report data set.

X Data variable Source 1D Unit
1 Average ship speed through the water Noon report Avg(U) knots
2 Air temperature Noon report NRxls.Tair @l

3 Sea water temperature Noon report NRxls. Tsw °C

4 Mean draught (Ta+Tf)/2 Noon report Tm m

5 Trim, Ta-Tf Noon report Trim m

6 Average winds speed during report period Hindcast mean(HC.Ws) m/s
7 Average winds direction during report period Hindcast mean(HC.gamma) °

8 Average significant wave height during report period Hindcast mean(HC.Hs) m

9 Average wave period during report period Hindcast mean(HC.Tp) s

10 Average wave direction during report period Hindcast mean(HC.Td) ©

11 Variance of the winds speed during report period Hindcast var(HC.Ws m/s
12 Variance of the winds direction during report period Hindcast var(HC.gamma) ©

13 Variance of the significant wave height during report period Hindcast var(HC.Hs) m

14 Variance of the wave period during report period Hindcast var(HC.Tp) s

15 Variance of the wave direction during report period Hindcast var(HC.Td) °

16 Relative average wind speed Hindcast HC Vrel m/s
17 Relative average wind direction Hindcast HC gammarel °

18 Relative average wave direction Hindcast HC.Tdrel ©

19 Wind force (Beaufort) Noon report NRxls. WINDCONDITIONATNOONBF(II) BF
20 Wind direction Noon report NRxIs. WINDCONDITIONATNOONDEG ©

21 Report date and tim (Matlab numeric value) Noon report NRxls.UTC numeric
Y Averag HFO consumption per hour Noon report CONS_OFHFOME_SPEC tons/hr

Table C.2: Date variables for the

C.2.2 Output variable

noon report data set analysis’

Histograms of the output variable i.e. fuel consumption per hour.
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Figure C.15: Histograms of noon report data from Torm Marie output variable Y as

defined in Table C.2 as Y
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Noon report input variables from Torm Marie

Noon report input variables from Torm Marie
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Figure C.17: Histograms of the noon report data set 5-8 of input variable as defined

in Table C.2
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Input/output variable data
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Figure C.18: Histograms of the noon report

in Table C.2
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Figure C.19: Histograms of the noon report data set 13-16 of input variable as defined

in Table C.2
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Figure C.20: Histograms of the noon report data set 17-20 of input variable as defined
in Table C.2

Noon report input variables from Torm Marie
09-12-2006-05-12-2008

33 7.3317.3327.3337.3347.335 7,336 7.337 7338
Noon report X 21

Figure C.21: Histograms of the noon report data set 21 of input variable as defined in
Table C.2
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Histograms of the input variables from the container ship datasets in the period

from the launch until the first dry-docking

C.3 Input variable

X Data variable Source 1D Unit
1 Speed through water Noon report NR.Ulog knots
2 Speed over ground Noon report NR.Uobs knots
3 Sea water temperature Noon report NR.Tsw deg

4 Mean draught (Ta-Tf)/2 Noon report NR.Tm m

5 Trim, Ta-Tf Noon report NR.Trim m

6 True wind speed Noon report NR.WindSpeed m/s
7 Relative wind direction Noon report NR.WindDir deg
8 Average relative winds speed during report period Hindcast HC.mean.Vrel m/s
9 Average relative winds direction during report period Hindcast HC.mean.gammarel deg
10 Average significant wave height during report period Hindcast HC.mean.Hs m

11 Average wave period during report period Hindcast HC.mean.Tp s

12 Variance of the significant wave height during report period Hindcast HC.var.Hs m

13 Variance of the wave period during report period Hindcast HC.var.Tp s

14 Variance of the wave direction during report period Hindcast HC.var.Td deg
15 Variance of the winds speed during report period Hindcast HC.var.Ws m/s
16 Variance of the winds direction during report period Hindcast HC.var.gamma deg
17 Report date and tim (Matlab numeric value) Noon report NR.UTC numeric
18 Average winds speed during report period Hindcast HC.mean.Ws m/s
19 Average winds direction during report period Hindcast HC.mean.gamma deg
27 Sea state Noon report NR.SeaState m

28 Relative sea direction Noon report NR.TrueRelativeSeaDirection deg
36 Average shaft power Noon report NR.PropPower kw

Table C.3: Date variables for the noon report data set analysis’

C.3.1 Output variable

The output variable is fuel consumption per hour.

Noon report output variables from Container ship no:1
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Figure C.22: Histograms of noon report data from Torm Marie output variable Y as

defined in Table C.3 as Y
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Figure C.23: Histograms of the noon report data set from Container ship #1 (17-9-
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1999 - 29-2-2004) of input variable 1-4 as defined in Table C.3
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Figure C.24: Histograms of the noon report data set from Container ship #1 (17-9-
1999 - 29-2-2004) of input variable 5-8 as defined in Table C.3
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Figure C.25: Histograms of the noon report data set from Container ship #1 (17-9-
1999 - 29-2-2004) of input variable 9-12 as defined in Table C.3
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Figure C.26: Histograms of the noon report data set from Container ship #1 (17-9-
1999 - 29-2-2004) of input variable 13-16 as defined in Table C.3
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Figure C.27: Histograms of the noon report data set from Container ship #1 (17-9-
1999 - 29-2-2004) of input variable 17-27 as defined in Table C.3
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Figure C.28: Histograms of the noon report data set from Container ship #1 (17-9-
1999 - 29-2-2004) of input variable 28 as defined in Table C.3
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Appendix D

Trend detection results of Container
ship 1-5

This appendix presents the full results from Chapter 5.
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Figure D.1: Performance trend between all events of Container ship 1 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.2: Performance trend between dry-dockings of Container ship 1 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.3: Performance trend between all events of Container ship 1 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.4: Performance trend between dry-dockings of Container ship 1 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.5: Performance trend between all events of Container ship 1 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.6: Performance trend between dry-dockings of Container ship 1 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.7: Performance trend between all events of Container ship 1 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.8: Performance trend between dry-dockings of Container ship 1 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.9: Performance trend between all events of Container ship 2 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.10: Performance trend between dry-dockings of Container ship 2 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.11: Performance trend between all events
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Figure D.12: Performance trend between dry-dockings of Container ship 2 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.13: Performance trend between all events of Container ship 2 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.14: Performance trend between dry-dockings of Container ship 2 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.15: Performance trend between all events of Container ship 2 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.16: Performance trend between dry-dockings of Container ship 2 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.17: Performance trend between all events of Container ship 3 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.18: Performance trend between dry-dockings of Container ship 3 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.19: Performance trend between all events of Container ship 3 using input

variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.20: Performance trend between dry-dockings of Container ship 3 using input

variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.21: Performance trend between all events of Container ship 3 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.22: Performance trend between dry-dockings of Container ship 3 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.23: Performance trend between all events of Container ship 3 using input
variable setup 20 with data including hindcasts, trained with the first two-year period

Trend between events for Container ship #3
Input combination 20, year 0.003-2
number of training data
147

Relative prediction error ®

061 O o
Weighted LS
-0.8 1 DD DD
— — —HCL
_1 1 1 1 1 1 1 Al 1
0 1 2 3 4 5 6 7 8

Year from launching

Figure D.24: Performance trend between dry-dockings of Container ship 3 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.25: Performance trend between all events of Container ship 4 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.26: Performance trend between dry-dockings of Container ship 4 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.27: Performance trend between all events of Container ship 4 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.28: Performance trend between dry-dockings of Container ship 4 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.29: Performance trend between all events of Container ship 4 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.30: Performance trend between dry-dockings of Container ship 4 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.31: Performance trend between all events of Container ship 4 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.32: Performance trend between dry-dockings of Container ship 4 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.33: Performance trend between all events of Container ship 5 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.34: Performance trend between dry-dockings of Container ship 5 using input
variable setup 9 with all Noon report data, trained with the first one-year period
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Figure D.35: Performance trend between all events of Container ship 5 using input
variable setup 9 with all Noon report data, trained with the first two-year period

Relative prediction error o

0.8

0.6

0.4

0.2

Trend between events for Container ship #5

Input combination 9, year 0.003-2
number of training data
262

Year from launching

OO+
[ [ I
[ [ I %%
[ [ e
o}
[ [ I IS
[ [ O I @
[ [ I @
| | 38 o o I
o o | | O
%y, O | O
|
* @)
[¢ [@3) o) s
10 () \
e} 0 o
T ° 98D
[ [ e
[ [ I
o o | | I
Weighted LS
bD [ [ oD I oD
— — —HcL [ [ Il
T T il Ll 1 1 L1y 1
1 2 3 4 5 6 7 9 10

Figure D.36: Performance trend between dry-dockings of Container ship 5 using input
variable setup 9 with all Noon report data, trained with the first two-year period
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Figure D.37: Performance trend between all events of Container ship 5 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.38: Performance trend between dry-dockings of Container ship 5 using input
variable setup 20 with data including hindcasts, trained with the first one-year period
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Figure D.39: Performance trend between all events of Container ship 5 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Figure D.40: Performance trend between dry-dockings of Container ship 5 using input
variable setup 20 with data including hindcasts, trained with the first two-year period
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Appendix E

Prediction results

The full accumulated histograms from the results in Chapter 4 are presented in this

appendix.
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Figure E.1: Relative prediction errors from container ships #1-#5 trained with IVC
9,18,20,21 for five different periods of time starting at the launch with one-year inter-
vals accumulating until the first dry-docking



246 Prediction results

Relative prediction std [%]

Relative prediction std [%]

0
1(54) 2 (114) 3(177) 4(227)  45(251) 1(54) 2 (113) 3(170) 4(212)  4.5(234)
Number of accumulated years from launching Number of accumulated years from launching

(a) (b)

Relative prediction std [%]
Relative prediction std [%]

0
1(71) 2 (147) 3 (206) 4(257) 4.9 (295) 1(44) 2(98) 3(164) 4 (236) 5(294)
Number of accumulated years from launching Number of accumulated years from launching

(c) (d)

Relative prediction std [%]

1(50) 2(112) 3(174) 4 (235) 5(297)
Number of accumulated years from launching

()

Figure E.2: The relative standard deviation from container ships #1-#5 trained with
1VC 9,18,20,21 for five different periods of time starting at the launch with one-year
intervals accumulating until the first dry-docking









