

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Availability by Design
A Complementary Approach to Denial-of-Service

Vigo, Roberto

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vigo, R. (2015). Availability by Design: A Complementary Approach to Denial-of-Service. Technical University of
Denmark. DTU Compute PHD-2014 No. 353

https://orbit.dtu.dk/en/publications/d1ea8614-836f-4f8e-a6e8-f594f316aaab

Availability by Design
A Complementary Approach to Denial-of-Service

Roberto Vigo

Kongens Lyngby 2014
PHD-2014-353

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, Building 324,
DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk PHD-2014-353

I have laid no claim to genius,
none to infallibility; but I have
endeavoured to be accurate,
and aspired to be useful.

Goold Brown, The Grammar
of English Grammars

Summary

In computer security, a Denial-of-Service (DoS) attack aims at making a re-
source unavailable. DoS attacks to systems of public concern occur increasingly
and have become infamous on the Internet, where they have targeted major
corporations and institutions, thus reaching the general public. There exist var-
ious practical techniques to face DoS attacks and mitigate their effects, yet we
witness the successfulness of many.

The need for a renewed investigation of availability gains in relevance when
considering that our life is more and more dominated by Cyber-Physical Sys-
tems (CPSs), large-scale network of sensors that interact with the physical en-
vironment. CPSs are increasingly exploited in the realisation of critical infras-
tructure, from the power grid to healthcare, traffic control, and defence appli-
cations. Such systems are particularly prone to DoS attacks: in addition to
classic communication-based attacks, their components can be subject to physi-
cal capture. Moreover, sensors are often powered by batteries, and time-limited
unavailability is usually a stage planned to prolong their life span.

This dissertation argues that techniques rooted in the theory and practice of
programming languages, language-based techniques, offer a unifying framework
to deal with the consequences of DoS, thereby encompassing inadvertent and
malicious sources of unavailability in a uniform manner.

In support to this claim we develop a family of process calculi, the Quality
Calculi, where availability considerations are promoted to be first-class objects
of the language domain. Moreover, these modelling tools are complemented by
static analyses that pinpoint where and why unavailability may occur, levering
the enhanced expressiveness of the language.

The ultimate aim of the framework is to foster the development of systems
resilient to DoS by means of a principled design process, in which formal models
allow, and verification tools enforce, the production of such robust code.

ii

Resumè

Denial-of-Service (DoS) er betegnelsen for et angreb, der sigter efter at gøre en
ressource utilgængelig. DoS angreb på samfundssystemer sker stadig oftere, og
de er berygtede på Internettet, hvor de for nylig blev rettet mod store virksom-
heder. Der er forskellige metoder til at imødegå DoS angreb og nedsætte deres
effekt, men mange angreb er alligevel successfulde.

Fornyet fokus på tilgængelighed er også påkrævet for systemer, som kaldes
Cyber-Physical Systems (CPS’er). CPS’er er store netværk af sensorer og aktu-
atorer som interagerer med det fysiske miljø. CPSs’er bliver brugt til at byg-
ge vigtig infrastruktur for ledningsnettet, sundhedsvæsenet, færdslen, forsvaret
osv. Disse systemer er særligt følsomme overfor til DoS. Foruden de klassiske
kommunicationsbaserede angreb, er deres komponenter underlagt fysisk angreb.
Ydermere er komponenterne ofte drevet af batterier, og derfor kan de blive util-
gængelig for at spare energi og forlænge deres levetid.

Formålet med denne afhandling er, at bevise at sprog-baserede teknikker, der
har deres rod i det teoretiske og praktiske fundament for programmeringssprog,
udgør et samlet udgangspunkt for at klare konsekvenserne af DoS både for
utilsigtede årsager og angreb.

For at understøtte denne påstand er der udviklet en familie af proceskalkuler,
de Quality Calculi, hvor tilgængelighed er et førsteklasses element i domænespro-
get. Desuden er disse modelleringsprog suppleret med statiske analyser, der kan
fastslå hvilke komponeneter kan blive ikke tilgængelig og hvorfor, takket være
kalkulernes udtryksfuldhed.

Hovedformålet med vores begrebsramme er at støtte udviklingen af systemer
som er immune overfor DoS ved hjælp af en styret design process, hvor formelle
modeller tillader, og verifikationsværktøjer håndhæver, fremstillingen af sådan
robust kode.

iv

Preface

This thesis was prepared at DTU Compute, the Department of Applied Mathe-
matics and Computer Science of the Technical University of Denmark, in partial
fulfilment of the requirements for acquiring the Ph.D. degree in Computer Sci-
ence.

The Ph.D. study has been carried out under the supervision of Professor
Flemming Nielson and Professor Hanne Riis Nielson in the period from Decem-
ber 2011 to November 2014. The Ph.D. project is funded by IDEA4CPS, a
project granted by the Danish Research Foundations for Basic Research (nr.
DNRF86-10).

Most of the work behind this dissertation has been carried out indepen-
dently and I take full responsibility for its contents. A substantial part of the
scientific work reported in this thesis is based on joint work with my supervi-
sors [RNV12, VNR13, VNR14a, VNR14b, VNR14c], which is in part currently
under submission. Within the framework of IDEA4CPS, my supervisors also
fostered a collaboration with Alessio Di Mauro, Davide Papini, and Nicola Drag-
oni [DPVD12] (at that time all affiliated with the Technical University of Den-
mark), and they inspired and stimulated me to further investigate those ideas,
leading to [Vig12]. Finally, we collaborated with Alessandro Celestini, Francesco
Tiezzi, Rocco De Nicola [VCT+14] (at that time all affiliated with the Institute
for Advances Studies - IMT Lucca, Italy). The relevance of those publications
to this thesis shall be clarified in each chapter.

Beyond what mere bibliography tells, the work presented in this dissertation
greatly benefited from a prolonged and fruitful interaction with a number of ex-
cellent researchers affiliated with the Technical University of Denmark, Aalborg
University, and the IT University of Copenhagen, all involved in the MT-LAB
research centre. Similarly, during my stay at IMT Lucca as guest scholar I
had the opportunity to discuss with and learn from a great many exquisite re-
searchers affiliated with IMT Lucca, the University of Florence, as well as a
number of established and well-known computer scientists that were visiting

vi

IMT at that time. The same applies to a number of researchers that visited
the Technical University of Denmark during my study. Among them, Nikolaj
Bjørner had a determining role in directing my investigation towards SAT and
SMT techniques, thanks to a Ph.D. course organised by my supervisors and
featuring him as invited professor.

Kongens Lyngby, November 2014
Roberto Vigo

Acknowledgements

First and foremost, I should like to thank my supervisors Flemming and Hanne.
As much as I strove, I could not make up for the energy, the passion, and the
dedication they put in their guidance. Let this line bear witness to my most
sincere appreciation.

I would have never come to Denmark if it had not been for Gilberto Filè, who
first introduced me to formal methods and since then never ceased challenging
me to undertake a Ph.D. My gratitude is second only to the number of hours
he devoted to my first scientific upbringing.

Thanks must go to Rocco De Nicola, who hosted me in the SysMA group at
IMT Lucca, where I found a bracing environment which fostered my interaction
with a handful of accomplished scientists and young brilliant researchers. In
particular, I should like to mention here Alessandro Celestini, Michele Loreti,
and Francesco Tiezzi, who have all proven gifted sparring partners, and whose
versatility I appreciated in professional as well as in personal discussions.

I am grateful to the members of my thesis assessment committee, Alberto
Lluch Lafuente, Björn Victor, and Luca Viganò for accepting to read and review
this manuscript, for their valuable comments, and for they fostered a challenging
yet constructive discussion during the examination.

I should like to thank current and former members of the Language-based
Technology section at DTU. Ender, Kebin, and Nataliya for being my mentors
in pectore. Alessandro, Marieta, and Zaruhi for trading in my productivity for
memorable moments. For better or for worse, this work is dedicated to them,
without whom this dissertation would have taken half of the time and would
be twice as thick. Zaruhi for starting my writing days with a motivational
session before spending hers painstakingly correcting my drafts. Alessandro,
Lars, Laust, and Sebastian for endless, pointless, and nonetheless irresistible
discussions spanning all branches of human knowledge. Lars and Laust for
uncovering some of the enigmas of the Danish mentality, creating some new,

viii

and never giving up on the idea that I could mumble some Danish. Omar for
he has always had a sincere smile. Sebastian for proving talk after talk that
passion does not necessarily water down with time. Christian for he has always
been silently available. Cathrin for sorting out all bureaucratic bothers – the
rabbit survived the trial. Alejandro, Carroline, Erisa, Fuyuan, Lijun, Michal,
Piotr, and Ximeng for contributing each in their manner to creating a friendly
and stimulating environment. José for he essentially had a part in all of the
above: hard work and leisure, otia et negotia.

Finally, my most heart-felt thoughts are for my parents, whose example is
a light unto my path, and for my siblings, who have always had the tact, the
wisdom, and the fortitude to convey their sympathy in tough times through
witty persiflage. I hope this tome will eventually explain to them what I have
been up to for the last three years – I give up.

18.XI.2014
Roberto

Contents

Summary i

Resumè iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Challenge . 1
1.2 Contribution . 2
1.3 Synopsis . 4

2 Setting the Scene 7
2.1 Process Calculi . 8

2.1.1 Programming abstractions: a linguistic fascination 9
2.2 Reasoning on Abstract Representations 11
2.3 SAT and SMT . 12

2.3.1 Theoretical complexity versus performance 14

3 Denial-of-Service 17
3.1 A Bird’s Eye View . 18

3.1.1 Availability in theory . 18
3.1.2 Denial-of-Service in practice 19
3.1.3 Countermeasures . 20

3.2 Formal Approaches to DoS . 23
3.2.1 Early steps . 23
3.2.2 From qualitative to quantitative considerations 25

3.3 DoS in Cyber-Physical Systems 26

x CONTENTS

3.4 Ready Set Sail . 28

4 The Quality Calculus: Modelling Availability 29
4.1 The Quality Calculus . 31
4.2 Reduction Semantics . 33
4.3 Expressiveness . 36
4.4 A Robust Base Station . 38
4.5 An Explicit Substitution Semantics 40

4.5.1 Directed structural rules 41
4.5.2 The transition relation . 44

4.6 Robustness: Absence of Communication 45
4.6.1 Robustness analysis . 45
4.6.2 Analysing the base station 48
4.6.3 Formal correctness . 49

4.7 Concluding Remarks . 52

5 From Network to Application Level 55
5.1 The Quality Calculus with Patterns 56
5.2 Reduction Semantics . 59
5.3 The Base Station, Revised . 61
5.4 Availability of Communication 64

5.4.1 Availability analysis . 64
5.4.2 Formal correctness . 67

5.5 Implementation of the Analysis 67
5.5.1 SMT-LIB encoding . 67
5.5.2 Analysing the smart meter 69
5.5.3 Results . 70

5.6 Concluding Remarks . 71

6 A Broadcast Scenario 73
6.1 The Applied Quality Calculus . 74
6.2 Exploting Rewrite Rules . 76

6.2.1 Cryptographic reasoning 76
6.2.2 Quality guards . 80

6.3 Semantics . 81
6.4 Key Update through Secret Sharing 85
6.5 Concluding Remarks . 88

7 Quantifying Protection 93
7.1 The Value-Passing Quality Calculus 96

7.1.1 Syntax and semantics . 96
7.1.2 Confidentiality labels . 97
7.1.3 Security model . 99

7.2 A Login System with Password Recovey 99

CONTENTS xi

7.3 Discovering Attacks . 102
7.3.1 From processes to flow constraints 102
7.3.2 Modelling the attacker . 104
7.3.3 A SAT-based solution technique 105

7.4 Quantifying Attacks . 107
7.4.1 From qualitative to quantitative considerations 107
7.4.2 Optimisation Modulo Theories 109
7.4.3 Complex cost structures 113

7.5 The Quality Tool . 115
7.6 Concluding Remarks . 115

8 Generating Attack Trees 119
8.1 The NemID System . 121
8.2 From Processes to Propositional Formulae 123
8.3 Synthesising Attack Trees . 125

8.3.1 From formulae to attack trees 125
8.3.2 Attacking NemID . 127

8.4 Assessing Attack Trees . 128
8.5 Implementation . 130

8.5.1 Comparing the protection analysis with attack trees . . . 130
8.5.2 The Quality Tree Generator 131

8.6 First-Order Attack Trees . 132
8.7 Concluding Remarks . 134

9 Conclusion 137
9.1 Contribution . 138
9.2 Future Directions . 139

A Proofs for Ch. 4 141
A.1 Correctness of the Robustness Analysis 141
A.2 Semantic Equivalence . 148

B Proofs for Ch. 5 161
B.1 Correctness of the Availability Analysis 161

C Proofs for Ch. 7 167
C.1 Correctness of the Protection Analysis 167

D Properties of Attack Trees 171
D.1 Properties of [[P]]tt and of [[l]] . 171

Bibliography 173

xii CONTENTS

List of Tables

4.1 The syntax of the Quality Calculus. 32
4.2 The structural congruence ≡ of the Quality Calculus. 33
4.3 The evaluation � of terms into data and expressions into optional

data. 34
4.4 The reduction semantics −→ of the Quality Calculus. 35
4.5 Quality predicates q and their semantics [{q}]. 36
4.6 The directed structural rules V of the Quality Calculus. 43
4.7 The transition relation −→ of the Quality Calculus with explicit

substitutions. 45
4.8 The robustness analysis ` ϕ@P of the Quality Calculus. 47

5.1 The syntax of the Quality Calculus with patterns. 56
5.2 The evaluation � of terms into values and of expressions into

optional values. 59
5.3 The value-pattern matching relation ./. 60
5.4 The reduction relation −→ of the Quality Calculus with patterns. 62
5.5 The availability analysis ` ξ@P of the Quality calculus with

patterns. 65
5.6 The matching judgement ` e IJ p : ψ. 67

6.1 The syntax of the Applied Quality Calculus. 75
6.2 A conditional rewrite theory for cryptographic reasoning. 79
6.3 The evaluation W ` e � o of expressions into optional values. . . 82
6.4 The transition relation =⇒ of the Applied Quality Calculus. . . . 84
6.5 The relations for synchronisation and binder evaluation. 86

7.1 The syntax of the Value-Passing Quality Calculus. 96
7.2 A broadcast value-passing semantics with replication. 98

xiv LIST OF TABLES

7.3 The translation [[P]]tt from processes to flow constraints. 104

8.1 Synthesising the propositional formula [[l]] for the attack tree Tl. . 127

B.1 The transition relation −→ of the Quality Calculus with patterns
with explicit substitutions. 162

Chapter 1

Introduction

Besides, it has all the charm of
inventing the science of navigation
while already on board ship.

Robin Milner on the foundations of
informatics [Mil06]

1.1 Challenge
Availability is “the property of being accessible and usable upon demand by an
authorised entity” [ISOb], and its absence is termed Denial-of-Service (DoS) or
unavailability. Typical instances of DoS occur when the resources of a server are
exhausted, preventing a given service to be offered to clients and often leading
to the paralysis of an entire system, with a domino effect.

Availability is numbered among security properties, together with confiden-
tiality and integrity, forming the so-called CIA properties. Nonetheless, it is
manifest how the corpus on availability cannot compare to the literature on
other security properties, neither in terms of size, nor practical effectiveness,
nor theoretical insight. Despite this lesser attention, DoS attacks to systems of
public concern occur increasingly and have become infamous on the Internet,
the distributed system par excellence, where they cause enormous damages (cf.
Figs. 1.1,1.2). Besides active attackers, limited resources or optimistic assump-
tions about the environment can be source of unavailability, suggesting that
cryptography is not the ultimate solution to all security problems.

2 Introduction

Figure 1.1: Ranking DoS damages [Pon12].

Existing literature on availability zeroes in on mechanisms to detect and
avoid DoS attacks on the target side. This is a challenging task, as the detection
process itself can be frustrated by the ongoing attack: to coin a provocative
slogan we could say that a detected DoS attack is a successful attack. Moreover,
the majority of techniques developed so far for confronting DoS aims at making
attacks more costly (or, dually, at increasing the resource to the defender), and
are oriented to facing cyber attacks such as SYN flooding. Whilst these are
surely the most common availability attacks, other sources of DoS escape the
protection range of this cost-based methods, and no systematic back-up solution
seems to have been advanced.

Among the systems that demand for a novel, formal investigation of avail-
ability, Cyber-Physical Systems [VNR14c] (CPSs) stand out as they are more
and more dominating our every-day life. These systems consist of a network
of sensors and actuators that interact with the physical environment and ex-
change information on a cyber layer. CPSs are increasingly exploited in the
realisation of critical infrastructure, from the power grid to healthcare, traf-
fic control, and defence applications [STCE14]. Such systems are particularly
prone to DoS: being composed by a great number of sensors, it is not always
possible to protect their components physically. Furthermore, such components
have computational and power limitations that dissuade from resorting to the
cost-based approach mentioned above: it is not always feasible to increase the
resources of a node. Finally, unavailability can be a legal operating status of a
component, due to its duty cycle or simply to its life cycle.

1.2 Contribution

In order to tackle the challenge of developing intrinsically robust systems, we
propose to pass from a muscular approach that blindly confronts DoS hazards, to

1.2 Contribution 3

Figure 1.2: Down-time cost per minute [Pon12].

smarter unavailability-aware components, which follow alternative paths when
their partners do not cooperate. The focus is thus lifted from a self-centred
approach, wondering how do I survive to an availability attack?, to a perspective
that considers the overall system, wondering what do I do if my partners are
unavailable?, perhaps because they are undergoing a DoS attack. Hence, the
spirit of our proposal is to cope with the effect of DoS, instead of confronting
attacks directly, and thus aims at stopping the domino effect mentioned above.

In order to ensure availability, we advocate for a defensive programming style
that avoids making benign assumptions about the surrounding environment:
this pragmatic view suggests to admit the existence of DoS and try to circumvent
its effects. This approach proves useful to handle availability concerns in a wide
range of application domains, including software, physical, and cyber-physical
systems – whatever the source of unavailability may be.

In order to support such a shift in paradigm, in this dissertation we study
process calculi that promote availability concerns to be first-class citizens of
a programming framework, thereby allowing to devise automated verification
techniques able to detect where and why DoS may occur.

In particular, we start from the assumption that in a distributed system DoS
reduces to absence of expected data, due to missing or corrupted communication,
and consequential need for enforcing a default behaviour, a problem tackled
by the introduction of the Quality Calculus. Then, we extend the original
intuition behind the Quality Calculus and explore its implications in various
scenarios, providing versions of the calculus for point-to-point and broadcast
communication models, cryptographic reasoning, and cost considerations. Our
Quality Calculi are complemented by a number of static analyses that exploit
their peculiarities. The analyses we present are implemented as satisfiability
problems, taking advantage of the efficiency and scalability of modern off-the-
shelf solvers.

Obviously, full-resilience against DoS attacks cannot be achieved but combin-

4 Introduction

ing the two views mentioned above, that is, looking at attacks directed against
single components as well as to the impact of unavailability of components on
the entire system. For this reason, we investigate a cost-aware version of the
Quality Calculus and a corresponding static analysis able to estimate the cost to
an attacker to interact with a system, so as to set bridges between our proposal
and the cost-benefit analysis that informs actual countermeasures.

The ultimate goal of this dissertation is to support the following claim.

Language-based technologies offer a unifying approach to deal with the con-
sequences of DoS, by means of a framework for facilitating the development of
programs that follow a planned behaviour when expected information is unavail-
able. The modelling language can be supplemented by formal analyses enforcing
such robust code to be produced.

The developments in this dissertation validate this claim as outlined in § 1.3
below.

1.3 Synopsis

In order to understand the organisation of this dissertation, a brief account of
the chapters and of their connections is illustrated in the following.

Chapter 2 briefly surveys the three cardinal points of this dissertation –
process calculi, static analysis, satisfiability – and explains how such weapons
are combined in order to tackle the problem of unavailability.

Chapter 3 reviews existing literature on DoS, focusing in particular on
formal attempts to give a foundational characterisation of unavailability, as op-
posed to practical solutions engineered to fight specific instances of the problem.
Moreover, the chapter briefly presents CPSs and argues that they fall outside
the range of existing methods for coping with DoS, and instead benefit from
the defensive, availability-aware programming style developed in the subsequent
chapters. Our discussion of CPSs is based on [Vig12].

Chapter 4 introduces the Quality Calculus, which we are to develop through-
out the dissertation. We argue how the absence of expected communication can
be explicitly addressed already at the syntactic level, thus allowing to specify a
syntax-driven SAT-based static analysis to solve availability queries. The ro-
bustness analysis tackles DoS at the network level, where unavailability is caused
by lack of expected communication. The chapter is based on [RNV12] and other
work currently under submission.

Chapter 5 shows how the basic calculus can be lifted to reason about
DoS caused by improper information, and lift the analysis to encompass the
more complex task of pinpointing where absence of availability is due to the
semantics of the communication, ideally addressing DoS at the application level
of the Internet protocol suit (TCP/IP). The chapter is based on work under

1.3 Synopsis 5

submission.
Chapter 6 builds on Chs. 4,5, which delineate the paradigmatic features of

availability, and instantiates those ideas to more concrete scenarios, presenting
them in a broadcast communication model where cryptographic reasoning is
implemented by means of equational theories; the broadcast model is to be
exploited in the developments of Chs. 7,8. The chapter is based on [VNR13].

Chapter 7 explores how quantitative considerations enhance the develop-
ments of Chs. 4,5,6 so as to overcome theoretical qualitative answers in favour
of more realistic estimate of the likelihood of DoS or of the cost of enforcing
availability. The underlying intention is to reconcile the Quality Calculus ap-
proach and existing cost-based techniques discussed in Ch. 3. The chapter is
based on [VNR14c].

Chapter 8 levers the intuition behind Ch. 7 to provide graphical represen-
tations of the attacks detected by the analysis (attack trees). The ultimate aim
is to set bridges between the formal developments of previous chapters and the
community of professionals that need appealing ways to convey security-related
information. The work is based on [VNR14a].

Chapter 9 presents some concluding remarks and outlines open questions
to be investigated in future work.

On the whole, Chs. 2 and 3 give the essential background to position this
dissertation, while Chs. 4 to 8 contain the technical developments supporting
our thesis.

6 Introduction

Chapter 2

Setting the Scene

Everything in computer science is a
fixpoint. If something is not a fixpoint,
then it is not worth studying.

Flemming Nielson

This chapter aims at introducing the basics upon which the subsequent tech-
nical developments rest. Chapters 4,5,7,8 are heavily informed by a tripartite
structure, according to which

1. a formal modelling language is introduced, able to describe a given class
of systems (§ 2.1);

2. an abstract representation of such systems is produced, limited to capture
some key behavioural traits (§ 2.2); and,

3. an automated reasoning technique is relied on to answer queries about
such behaviours (§ 2.3).

These three elements take the form of a process calculus (1), a translation into
logic formulae (2), and an application of SAT or SMT to such formulae (3).

Given a modelling language, the abstract representation and the reasoning
technique define a static analysis on it in the style of flow logic. In Ch. 6 we
shall explore a language supporting the subsequent developments, and therefore
we deviate from this structure restricting to point (1).

8 Setting the Scene

2.1 Process Calculi

The phrase process calculi denotes a diverse family of formal languages for the
description of concurrent systems. With “formal language” we mean a set of
strings that obeys precise syntactic rules, often given in terms of a Context-Free
Grammar [HMU06], and that are associated a rigorous semantics [RN07]. A
popular perspective on process calculi suggests to look at them as a model of
computation for concurrency, as much as the λ-calculus can be regarded as a
model of computation for recursive functions.

One main difference between these two worlds is already suggested in the
plural “calculi”: while with the λ-calculus Church aimed at the fundamental
structure of recursive computation, and thus at identifying the smallest set of
primitives able to capture recursive functions, there exists a seizable number
of process calculi. According to Milner [Ber05], this difference is justified if
we construe a process calculus as a modelling language for concurrency. The
emphasis on modelling triggers a state of tension between the quest for the foun-
dations of concurrency (“the smallest set of primitives”) and the capability of
expressing real world behaviours in a natural manner, avoiding the intricacies
of encoding in lower-level, artificial formalisms. Notwithstanding this, calculi
such as CCS [Mil80] and the π-calculus [Mil99] have provided profound insights
into the nature of concurrent computation. The two ends of the spectrum are
summarised by Milner himself in his Turing Award lecture [Mil93b]:

I reject the idea that there can be a unique conceptual model, or one preferred
formalism, for all aspects of something as large as concurrent computation [...].
We need many levels of explanation: many different languages, calculi, and the-
ories for the different specialisms. The applications are various [...]. We surely
do not expect the terms of discussion and analysis to be the same for all of these.
But there is a complementary claim to make, and it is this: Computer scien-
tists, as all scientists, seek a common framework in which to link and to organize
many levels of explanation; moreover, this common framework must be seman-
tic, since our explanations (including programs) are typically in formal language.

As a matter of fact, since the seminal work of Milner and Hoare [Hoa85],
over the last 40 years process calculi have proven useful languages for studying
a great many real-world features that are crucially related to concurrency, in-
cluding mobility, distribution, composition, discrete and real-time computation,
stochastic interaction, and security. Moreover, orthogonally to the investiga-
tion of such foundational issues, process calculi have been applied to modelling
a set of strikingly varied application domains well beyond software systems,
including for instance the study of business organisations [Puh06] and biol-
ogy [PPQ05, DB12].

Among the reasons that foster such a wide adoption of process calculi, we
would like to stress their affinity to programming languages, the compositional

2.1 Process Calculi 9

nature of process-algebraic models, and their mathematical elegance. Modelling
a system in a process calculus is an experience similar to programming a piece of
software exhibiting the behaviour of interest, thanks to the operational mind-set
customary to these calculi. Moreover, such programming experience is essen-
tially compositional, for the overall target model emerges from the interaction
of smaller constituents according to well-defined composition rules.

As for the mathematical foundations, process calculi enjoy a largely-algebraic
structure, to the point that the phrase “process algebra” is perceived as a syn-
onym of “process calculus” and often used interchangeably (the chief example
is the Algebra of Communicating Processes, by Bergstra and Klop [BK86]).
[Bae05] contains an algebraic introduction to process calculi, and we refer the
reader to this work also for a brief history of the discipline with a rich chrono-
logical account of the historically-relevant bibliography.

This dissertation embraces the modelling approach to the development of
process calculi, as opposed to the study of the universality of calculi such as
the π-calculus, which is know to be Turing complete. The former approach,
besides its relevance in Milner’s own words, has led to recent calculi such as
COWS, SOCK, SCC, and CaSPiS (all surveyed in [CDP+11]) for understanding
service-oriented computation, and has suggested several novel paradigms for
dealing with increasingly-important notions, such as quality-of-service. As we
will discuss below, programming abstractions are central to the cognitive process
that leads to understand complex behaviours. The other approach focuses on
mapping more specialised languages into the π-calculus or its generalisations:
in the Psi-calculus framework [BJPV11], for example, insightful extensions of π
can be formulated in a uniform manner, such as the applied π-calculus [AF01],
the Spi-calculus [AG98], the fusion calculus [PV98], and counting.

2.1.1 Programming abstractions: a linguistic fascination

The principle of linguistic relativity, popular as the Sapir-Whorf hypothesis,
claims that the structure of a language affects the conceptualisation of the world
by its native speakers. In its strongest formulation, the principle suggests that
cognitive categories are shaped after linguistic categories. While such form of
linguistic determinism is generally agreed to be false, there is still much debate
about weaker perspectives according to which language influences thought to
some extent.

For the way we control computers is still chiefly linguistic, we are offered
ground to test linguistic relativity in the realm of computer science. Eminent
scientists have indeed provided inspiring arguments in this direction, though not
referring explicitly to the Sapir-Whorf hypothesis. We should like to mention
here Kenneth Iverson’s Turing Award lecture [Ive80], “Notation as a Tool of
Thought”, as a general peroration on the centrality of language in science, and
some works by Robin Milner, closer to the technical subject of this dissertation.
Comparing the “levels of description” that one can exploit to understand con-

10 Setting the Scene

cepts in computing, such as routine, parametric procedure, etc., Milner found it
natural to relate them to linguistic notions, such as parts of speech, metaphors,
etc., to the point that

the best of these parts of speech and the best of these metaphors become
accepted modes of thought; that is, they become concepts. [Mil06]

In this respect it is crucial to underline how the linguistic relativity hypothesis
focuses on the syntactic categories of a language rather than on its vocabulary,
contrary to what seems to be commonly understood [Pul89]. This attention to
syntactic categories matches a substantial line of research sponsored by Milner
and concerned with the investigation of programming primitives that model
given aspects of the real world seamlessly, as mentioned above.

Designing a language where the syntax helps the essential traits of a problem
to emerge to the surface, invites designers and developers to realise the problem,
to reason about it in a natural way, and to offer solutions that can be understood
and communicated easily. As an example, one can try to explain encapsulation
and inheritance out of the object-oriented paradigm, and perhaps even succeed,
but the effort necessary to grasp the missing conceptual superstructure is likely
to kill the most pedantic attempter (along the lines of saying that everything
can be done in assembly).

When it comes to process calculi, we could provocatively attack the in-
discriminate use of the π-calculus to modelling and analysing higher-level be-
havioural features as a practice that leads to modelling and analysing jumbles,
thus loosing grip on the essence of the problem that one is facing without pro-
viding any practical advantage.

As for unavailability, the topic of this dissertation, we observe the increasing
severity of the problem, and we notice that no programming language offers
first-class constructs supporting DoS considerations. The linguistic relativity
hypothesis just outlined not only supplies a fascinating conjecture connecting
these facts, but also suggests a potential way through. Relying on the affinity of
process calculi with programming languages, this work can holistically be under-
stood as an attempt to capture the essence of availability through programming
abstractions, which should facilitate devising a new generation of programming
languages that compel developers to consider DoS hazards.

To conclude this digression, let us remark that it is not meant to justify
the publication of yet more slight variations of existing calculi. We firmly be-
lieve that new primitives must be introduced with due parsimony and on well-
documented ground, and we deem this the case of the Quality Calculus. Finally,
we acknowledge that the linguistic relativity hypothesis is nothing more than
a trenchant conjecture extraneous to exact science, but we hope that evoking
such an imaginative comparison will prove stimulating and fruitful.

2.2 Reasoning on Abstract Representations 11

2.2 Reasoning on Abstract Representations

Besides facilitating and supporting our understanding of complex artefacts, for-
mal models allow to state precisely the properties such objects are expected to
enjoy, eventually enabling to devise tools for checking such expectations in an
automated manner.

The Turing-complete expressive power of a great many process calculi men-
tioned in § 2.1 is not a mere adjunct, but rather a requirement imposed by the
complexity of the scenarios they aim at capturing. This feature also suggests
that in some cases the properties we would like to investigate cannot be decided
in finite time and with finite memory. Even when such properties are decid-
able in theory, they might not be so in practice, some instances of the problem
demanding for example an amount of time that exceeds a human life.

In order to reconcile our desiderata with theoretical and practical limits,
different approaches have been developed which revolve around the concept of
abstraction. One viable class of techniques relies on the idea of simulating a
system to verify whether a given condition is met in all executions. Whenever
the number of executions is infinite, however, sampling must replace exhaustive
investigation, and thus probabilistic results are provided as opposed to formal
qualitative assurances. In this sense we can think of simulation as an abstraction
method. Among such techniques we can number model checking [BK08], which
explores transition systems expressing the behaviour of programs in terms of
transition between states. Whenever the state space is finite and has tractable
size, exhaustive exploration is possible; in case the state space is infinite or
intractable, statistical techniques are relied on [LD10].

Another class of techniques tackles the problem by producing a less con-
strained version of a given model, hence a more abstract object and ultimately
simpler to reason about. The basic tenet is that a loss in precision often makes
a property decidable in practice. Static program analysis [NRH99] techniques
embrace this view and aim at providing safe approximations to the dynamic be-
haviour of a program by inspecting its syntactic structure, hence statically. Here
“safe” means that the approximation computed by the analysis is a superset of
the correct answer to the problem (possibly not too large a superset).

There are two classical approaches to the design of static analyses. Semantics-
directed techniques calculate the analysis result from a semantic specification:
this the approach of abstract interpretation [CC77]. Semantics-based techniques
focus instead on specifying the analysis and rely on a posteriori validation:
formal soundness and (sometimes) completeness theorems are formulated that
allow understanding to which extent the results on the abstract model (anal-
ysis) carry to the original model of the system (semantics). Semantics-based
approaches include type systems, monotone frameworks, and flow logic.

Among the arrows in the quiver of static analysis, we adopt a flow logic [RN02,
RNP12] perspective, for it offers a clear separation of concerns between (i) the
specification of the analysis (abstract domain), (ii) its soundness with respect to

12 Setting the Scene

the semantics of the language (correctness theorems), and (iii) the computation
of the best analysis result (implementation). In Ch. 7, for instance, the analysis
is specified in terms of an optimisation problem, which can be solved resorting
to any of the available techniques, each suiting a particular context. Moreover,
flow logic overcomes the rigid separation between data flow and control flow
analyses, that does not fit process-algebraic models.

Our framework rests on static analysis developments as those of Chs. 4,5,7,8.
In order to abstract some details of the original process-algebraic models, we
resort to encodings into propositional or first-order logic, where the aspects of
interest are reduced to sets of logic formulae (sometimes also referred to as
constraints). The robustness analysis of Ch. 4, for instance, is concerned with
what input variables are bound on the way to a program point, and thus all
the information characterising output actions and creation of new objects is
disregarded in the abstract domain. The basics of propositional and first-order
logic are covered, e.g., in [Sch89].

The analyses we develop are to be understood as enforcement mechanisms
guiding the programmers, as envisioned by Dijkstra [DDH72, § I.7]:

In my life I have seen many programming courses that were essen-
tially like the usual kind of driving lessons, in which one is taught
how to handle a car instead of how to use a car to reach one’s des-
tination.

Borrowing this trenchant metaphor, we would say that a calculus prescribes “how
to handle the car”, that is, what systems are legal and what are not, whilst an
analysis suggests meaningful routes to “reach one’s destination”, i.e., facilitates
identifying systems that enjoy the property of interest, e.g., robustness against
unreliable communication.

Once more, this point of view corroborates the usefulness of proposing a
new calculus, although remaining in the range of the π-calculus. Promoting
the paradigmatic behaviour of interest as a first class citizen enables to develop
more precise analyses, and to interpret the outcome of the verification in terms
of the same behavioural categories.

2.3 SAT and SMT
Once an abstraction of a process-algebraic model is obtained, we aim at estab-
lishing the properties of interest in an automated manner. Among automated
reasoning methods for logic problems, the satisfiability approach is gaining in-
creasing relevance thanks to the capability of modern solvers to cope with real-
world instances and to their broad range of applications.

Propositional satisfiability (SAT) is the problem of determining whether
there exists an assignment of Boolean values to the variables of a given proposi-
tional formula, such that the formula evaluates to true (tt) [MZ09]. Whenever

2.3 SAT and SMT 13

this is the case, the formula is said to be satisfiable (or consistent), otherwise
the formula is said to be unsatisfiable (or inconsistent). Given a formula ϕ,
we call model an assignment of values to its variables such that ϕ evaluates to
tt, and we write m |= ϕ (m models ϕ, m satisfies ϕ, or m is a model for ϕ).
Otherwise, we write m 6|= ϕ if the assignment m is not a model for ϕ. If a given
formula is satisfied by every model it is said to be valid. If ϕ is valid, then ¬ϕ
is unsatisfiable. The problem can be generalized to non-Boolean logics.

As an example, consider the formula ϕ defined as

(x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ xl

which we will encounter again in § 4.4, where ∧,∨,¬ denote propositional con-
junction, disjunction, and negation, respectively. The formula is satisfiable but
not valid. An assignment m such that m |= ϕ is

[x1 7→ tt;x2 7→ ff;xt 7→ tt;xl 7→ tt;xr 7→ ff]

where m is here written as a map from the variables occurring in ϕ to truth
values. Flipping x1 to ff in the model m, for instance, we obtain an assignment
that does not satisfy ϕ. For the sake of brevity, sometimes we shall adopt a
functional notation and writem(x) = tt whenevermmaps x to tt, andm(x) = ff
otherwise. Moreover, it is worthwhile noticing that we call the propositional
symbols (atomic formulae) “variables”, in order to stress that we are somehow
free to decide their values, but also the term “constant” is widely used.

The formula ϕ′ defined as

(xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

is instead unsatisfiable, as xr, xl are required to be ff by the second and third
conjuncts, respectively, entailing the impossibility of satisfying the first conjunct.

SAT was the first problem to be shown NP-complete [Coo71], and since then
a substantial effort has been devoted to devise efficient SAT-solving techniques.
In the last decade SAT gained a renovated attention, for the advancements in
software and hardware technologies allow solvers to deal with real industrial
problems, whose dimensions can scale up to millions of variables. Moreover,
such improvements widened the scope of applications and thereby of research,
enabling to consider problems whose constraints are interpreted in theories not
limited to propositional logic.

Satisfiability Modulo Theory (SMT) extends the SAT problem consider-
ing a number of background theories (e.g., first-order logic, the theories of
equality with uninterpreted function symbols, integers, real numbers, arrays),
thus enriching the grammar of formulae and capturing more complex scenar-
ios [dMB11]. SMT solving combines SAT solving with dedicated solvers for the
theories. First, the atoms of a theory, e.g., linear inequality constraints over
the reals, are mapped to fresh propositional variables. If the so-obtained SAT

14 Setting the Scene

abstraction of the original SMT problem is unsatisfiable, then the SMT prob-
lem is unsatisfiable, too. Otherwise, if there exists a SAT model m, the theory
solver is used to check whether m is compatible with the theory, e.g., if those
inequalities mapped to tt can indeed be satisfied in the domain of reals, hence
obtaining a model for the SMT formula; if not, the SMT solver backtracks and
a new SAT model is sought.

In the following, we shall focus on SMT formulae where the theories in
question are first-order logic and the theory of Equality with Uninterpreted
Functions (EUF). The latter is also known as the empty theory or the free
theory, as it contains no equation other than those implied by equality being an
equivalence relation and by the definition of function (identical pre-images are
mapped to identical images, in this context also called “congruence property”).
Consider the following SMT formula ϕ:

a 6= b ∧ f(a) = a ∧ f(a) = b

where a, b range over Boolean values and f maps Boolean to Boolean. While
the SAT abstraction of ϕ is satisfiable, as all the conjuncts are mapped to fresh
propositional variables, the formula is unsatisfiable in the theory of EUF, as the
axiom that f behaves like a mathematical function is violated.

The SAT or SMT problem can be formulated in different ways. The decid-
ability version focuses on the existence of a satisfying assignment, the construc-
tive version computes it, and diverse optimisation versions rank models with
respect to given parameters such as the number of clauses that can be satisfied
(e.g., MAX-SAT) or the weight of satisfied clauses (e.g., Weighted MAX-SAT).

A number of SMT solvers has been proposed, developed both by univer-
sities and private companies, and they compete in periodic contests. Among
those, we chose to build our framework on top of Z3 [dMB08, dMB], by Mi-
crosoft Research, as it supports the theories we need, its performance stands
out in a number of categories, and because APIs are available for a handful of
programming languages.

2.3.1 Theoretical complexity versus performance

In the last few years the feeling that SAT problems are feasible in practice has
gained momentum, despite the unappealable complexity result. Such feeling is
witnessed by the organisation of a panel on this subject at Vienna Summer of
Logic 2014, featuring some of the most active experts in the field of automated
reasoning. Commenting the question Why SAT solving is working in practice
much better than Cook’s theorem would expect us to believe?, Karem Sakallah
reported some statistics drawn from recent SAT and SMT competitions that
help shed light on the riddle. Facts and figures show that the largest instances
of successfully-solved industrial SAT problems are of the order of 10 millions

2.3 SAT and SMT 15

Figure 2.1: The clause/symbol ratio for n = 50 and its relationship to prob-
ability of satisfiability (a) and running time measured in num-
ber of recursive calls to DPLL (b) for random 3-CNF formulae,
from [RN09].

variables, whereas in case of randomly generated problems the horizon is at
about 50 thousand variables. Moreover, the size of solved industrial problems
is increasing much faster than the size of solved random problems. Thus, it
seems that “real” instances of SAT problems tend to enjoy a structure that can
be efficiently exploited by solvers. Details on these considerations are discussed
in [SMS11].

Earlier discussions of the same phenomenon are in [Lip09, Ch. 9,13] and
in [RN09, § 7.6.3]. The latter, in particular, briefly reports on research on the
so-called “satisfiability threshold conjecture”, which relates the probability of
random formulae to be satisfiable to the clause/symbol ratio m/n. For small
values of m/n a problem is under-constrained, hence the probability of satisfia-
bility is close to 1, as one would expect. Interestingly, it has been observed that
such a probability drops sharply around m/n = 4.3, as summarised in Fig. 2.1.
For recent work on the subject the curious reader may refer to [Ach09, COP13].
Even more interesting is to observe how the ratio m/n impacts performance:
the running time of different SAT algorithms seems to follow a Gaussian-shaped
distribution with mean at m/n = 4.3, for which the running time is the high-
est, while for smaller (under-constrained problems, likely satisfiable) and for
greater values (over-constrained problems, likely unsatisfiable) the running time
decreases.

16 Setting the Scene

Chapter 3

Denial-of-Service

Virgil Gligor: “Do you agree that
in an open network fundamentally
denial of service cannot be
prevented, but that if the attack cost
exceeds the gain from the attack it is
unlikely that a denial of service
attack would take place?”
Tuomas Aura: “Yes. That is
precisely the goal here, that the cost
of the attack should be greater than
the damage caused.”
Ross Anderson: “Presumably this
does not apply to an attack for glory
or revenge?”

[Aur01]

The dramatic changes undergone by the technological landscape in the last
decade have led to a situation where almost every service, despite its critical-
ity for individuals or the entire society, is deployed in an interconnected single
infrastructure, making DoS a central issue. Ensuring availability is nowadays
as important as guaranteeing confidentiality and authenticity, or even more,
for it is meaningless to protect unavailable services. Nonetheless, while we are
cleverer and cleverer at mastering confidentiality, integrity, and authenticity,
our ability to counter availability attacks did not advance alike. Moreover, the
cryptographic solutions that address some security properties cannot be relied
on solely to achieve availability: one can provocatively argue that the more we
instrument a system with cryptographic mechanisms, the more we leave it wide
open to DoS attacks – substantiating the idea that DoS is a fundamental prob-
lem. A similar conclusion is drawn by Gollmann [Gol11, § 1.1.5], who comments

18 Denial-of-Service

upon flooding attacks as follows: “There is a distinctive lack of security mech-
anisms for handling this problem. As a matter of fact, too restrictive security
mechanisms can themselves lead to denial of service”.

In this chapter, we shall review some definitions of availability, present some
practical traits of DoS attacks together with the countermeasures that have been
proposed, discuss formal attempts to characterising the problem, and finally look
into the new challenges arising in the realm of CPSs.

3.1 A Bird’s Eye View

Ideally, availability concerns span every branch of engineering, building depend-
able computer systems being just one such branch. Before turning our attention
to computer science, it is worthwhile reviewing briefly the traditional engineer-
ing perspective on the subject. For a thorough treatment of the topic the reader
is referred to [KK07].

3.1.1 Availability in theory

Traditionally, in engineering disciplines, availability is just one of the metrics
that characterise the broader notion of dependability, often a synonym for fault-
tolerance. As such, availability enjoys a precise mathematical definition: the
fraction of time that a system is operational over a fixed interval. This defini-
tion is put in contrast with that of reliability, characterised as the probability
that a system has worked continuously in a fixed interval. Hence, reliability and
availability fit different purposes: the former is suitable for applications where
continuous operation is crucial, while the latter is appropriate for applications
where momentary disruption can be tolerated, average behaviour being what
matters. In this sense, an on-line booking system is concerned with high avail-
ability, for brief interruptions are not catastrophic, whereas we would require
an aircraft to enjoy high reliability!

A neighbouring concept is that of graceful degradation, the capability of a
system to continue operating even in the event of failure of some of its compo-
nents, perhaps reducing the expected quality of the outcome that it is supposed
to yield. Clearly, any form of degradation can be made systematically grace-
ful only if great care is exercised at design-time, so that graceful lower-quality
alternative plans are provided for. As we shall see in Ch. 4, this idea is the
conceptual cornerstone upon which the Quality Calculus rests.

As for computer science, the concepts of reliability and availability have a
direct counter-part in the study of computer networks. The notions of node
and line connectivity, used to describe the number of nodes or edges that needs
be taken down to disconnect two sub-networks, respectively, corresponds to
reliability. Connectivity only distinguishes whether the network is connected or
disconnected, as reliability is mainly concerned with the occurrence of a failure

3.1 A Bird’s Eye View 19

in a given time interval. A pool of measures for estimating the robustness
of a network corresponds instead to availability, such as average or maximum
distance between nodes.

The network example, however, is still chiefly in the realm of traditional en-
gineering. When it comes to information technology, and security in particular,
availability takes on a different and somewhat less precise, broader meaning.
The International Standard ISO 7498-2 [ISOb], which defines the ISO/OSI ar-
chitecture for communication security, states the following

Definition 3.1 (ISO/OSI Availability) Availability is the property
of being accessible and usable upon demand by an authorised entity.

Unsurprisingly, DoS is then defined as “the prevention of authorised access
to resources or the delaying of time-critical operation”. Similarly, the Common
Criteria for Information Technology Security Evaluation [ISOa], which super-
seded a number of former standards such as CTCPEC, ITSEC and TCSEC
(better known as the Orange Book), relates the notion of availability to the one
of authorisation, and also mentions the relevance of availability metrics, without
specifying any.

It is crucial to note that both standards refer to authorisation. On the one
hand, it is quite obvious that the unavailability of a service to a party not
entitled to use it does not amount to DoS. On the other hand, authorisation
suggests authentication, which is usually implemented in terms of cryptography,
and we have already put forward that this may be a hook for DoS attacks,
cryptographic operations being in general computationally expensive. Already
at this high level of discussion we appreciate how challenging and intriguing a
problem we face.

3.1.2 Denial-of-Service in practice

There exists a rich corpus of taxonomies for the categorisation of DoS attacks
and countermeasures; we refer the reader to [RC11] for a brief survey of pro-
posed nomenclatures. Nevertheless, moving from theory to practice, it is at first
surprising how narrow the picture becomes when considering everyday applica-
tions of computer security to DoS. Here unavailability becomes often a synonym
for network-flooding attacks: the generation of an amount of traffic that exceeds
the capacity of the target server, which consequently cannot serve legal requests
for a given period of time. This is an instance of resource-exhaustion attack,
where the resources in question are the server memory and bandwidth.

Even though network flooding is just one potential source of DoS, it is evident
how in the last decade this sort of attacks has occurred increasingly and caused
increasing damage, to the point that major attacks have been reported even
by mainstream media. This trend culminated in the distributed DoS (DDoS
– carried out by a number of agents) campaigns coordinated by the activists

20 Denial-of-Service

collectively known as Anonymous and related to the ongoing political and eco-
nomic turmoil in Western countries (e.g., the WikiLeaks and Occupy Wall Street
cases). Anonymous’s activities led to defacing web-sites belonging to major cor-
porations such as PayPal, Visa, MasterCard and to government bodies of various
countries (e.g., those involved in the so-called Arab Spring). The press coverage
is too vast for being systematically cited. Selected references include [Som, Lav]
(single cases) and the rich time-line of events associated with Anonymous fea-
tured on Wikipedia [Wikb] and the references provided therein.

The spread of network-based DDoS attacks is greatly facilitated by the ex-
istence of automated tools [GJM12] that allow flooding a target address with
communication packets (TCP, UDP, ICMP, or a combination of them) requiring
almost no technical skill to the attacker: Low Orbit Ion Cannon-like tools [Wika]
run on a variety of operating systems and come with an intuitive graphical user
interface.

Existing techniques for countering DoS, briefly surveyed in the following
section, mainly focus on the network segment. On the contrary, little attention
is paid to attacks exploiting the semantics of the communication or physically
tampering with the target. Whilst we acknowledge the importance of improving
our capability of actively defending systems against network-level attacks, at the
same time the successfulness of great many DDoS attacks raises the question
whether there exists a systematic approach to designing systems that degrade
gracefully when some components become unavailable. Besides addressing the
problem of successful flooding attacks, the idea to cope with the consequences
of DoS tackles the diverse sources of unavailability in a uniform manner.

3.1.3 Countermeasures

Countermeasures to DoS can be categorised into proactive and reactive methods.
As it is often the case, the best resilience guarantees cannot be obtained but
combining the two approaches.

Reactive techniques are dynamic, in the sense that they try to detect on-
going attacks and react upon detection. These methods, mainly developed
for network-level attacks, aim at telling legitimate from malicious traffic by
analysing patterns (e.g., [IB02, YPS04]). Their main shortcoming consists in
that an attack may target the detection process itself, thus compromising the
defence architecture. On the formal methods side, statistical model check-
ing [LD10] has been used to verify quantitative properties of some typical defence
patterns formally modelled in Maude [AGG+05, EMA+12]. Categorisation tech-
niques typical of information retrieval applications have been used to learn how
legitimate traffic looks like [KAv14].

Proactive approaches are static, in the sense that they try to prevent attacks
from taking place, and are usually based on cost-benefit considerations over
attacks, as highlighted in the vibrant discussion quoted at the beginning of
the chapter. For the formal considerations of § 3.2.2 are shaped around these

3.1 A Bird’s Eye View 21

techniques, it is worthwhile briefly reviewing some applications that fall in this
group.

SYN cookies. One of the first examples of a proactive cost-based technique
is given by SYN cookies [Ber96], available for instance in the implementation of
TCP/IP shipped with Linux (but not enabled by default).

In the three-way handshake mode of TCP (Fig. 3.1(a)), with SYN flood-
ing (Fig. 3.1(b)) we refer to an attack in which the attacker(s) floods a target
TCP server with connection requests (known as SYN packets in TCP), without
engaging in the protocol any further. In this way, a number of connections is
hanging on the server side, which has to keep resources allocated for some time
in case the client replies. As the server resources are limited, at some point the
server will stop accepting new requests, until some of the old ones expire, hence
becoming unavailable over a given time frame. This is perhaps the widest-known
flooding attack, and is documented since 1996 [Edd06].

The idea behind SYN cookies reduces to exploit the TCP sequence numbers,
used by the server to rebuild the packet stream, as light-weight authenticators.
These smart sequence numbers are such that the server does not need to record
the connection request (SYN packet) of a client: it instead replies with a SYN-
ACK packet whose sequence number n is a function of the server and client
IPs and ports as well as of a timestamp. The client is then expected to reply
with a packet (ACK) whose sequence number is n + 1, so that the server can
check its validity. The key-point is that pure SYN flooding is ineffective, for the
server does not store any information about incoming requests, and therefore
its memory is unaffected by such an attack.

SYN cookies offer a great example of a quantitative answer to DoS hazards,
both for attackers and defenders. On the attacker side, before being able to
forge a valid connection and flood the server, a malicious agent must guess a
valid sequence number, and this is considered to be difficult due to the use
of cryptography (the sequence number is hashed) and to the requirement of
freshness (the timestamp is incremented every 64 seconds). On the defender
side, there is a price to be paid in terms of efficiency, as the server has to spend
some CPU time checking the sequence number of the client reply, but such time
is assumed to be negligible.

Client puzzles. The root of most unavailability resource-exhaustion attacks
lies in the disparity between the server and the client load. Consider TCP:
SYN flooding is possible because the server has to commit some of its resources
without the client sharing the burden. In order to address this incongruity,
some techniques require the client to solve a computational expensive problem
before the server accepts a service request. Such methods, collectively referred
to as client puzzles, have been proposed both for TCP/IP [JB99] and for higher-
level protocols [ANL01, WJHF04]. At the highest level of the application stack,

22 Denial-of-Service

Client Server

Connection established

SYN

SYN-ACK

ACK

(a) TCP three-way handshake.

Client Server

Client leaves Server waits

SYN

SYN

SYN

SYN-ACK

SYN-ACK

SYN-ACK

(b) SYN flooding.

Figure 3.1: TCP three-way handshake and SYN flooding.

CAPTCHA tests (Completely Automated Public Turing test to tell Comput-
ers and Humans Apart) are a now-common technique to fight DoS (as well as
other threats). Game-based analysis has been proposed as an effective formal
verification technique for client puzzles [MS05].

Availability by Design. Proactive methods include the development of soft-
ware which is robust by design against unavailability attacks according to qual-
itative considerations as opposed to cost-based reasoning. The same view of the
Quality Calculus about planning alternative behaviours is applied to engineering
a network-level defence strategy in [KPYK13], where the system enters differ-
ent states depending on the traffic load. Differently from the Quality Calculus,
that work proposes an applicative solution rather than a principled approach to
software design.

Unavailability due to the semantics of the communication is investigated
in [CJI+09], where several static analysis techniques are combined to detect
inputs that activate costly executions. Still, the focus is on resource exhaustion
caused by algorithmic complexity, while our notion of semantic DoS targets the
application level and coincides with Gligor’s concept of misbehaved service (cf.
§ 3.2.1).

It is worth observing how in the Quality Calculus acceptation availability by
design can be construed as being both reactive and proactive. At the component
level we are reactive: if expected information is not arriving, thus jeopardis-
ing the ideal behaviour, then we enforce an alternative plan – only when we
detect that some other component is unavailable, for it is not responding in
due time. At the system level we are instead proactive: each component be-
ing able to perform its duty even in the absence of expected information, we

3.2 Formal Approaches to DoS 23

prevent the overall system from entering an unavailability state. Again, notice
how the focus is shifted from reactivity/proactivity with respect to attacks to
reactivity/proactivity with respect to unavailability in general.

3.2 Formal Approaches to DoS

We have briefly argued how existing work on DoS is skewed towards network-
level vulnerabilities. This restriction allowed to develop practical solutions to
specific cases, but their proliferation hampered the isolation of general principles
applicable to the problem per se. In the following, we shall turn our attention
to the efforts put in characterising the nature of DoS, irrespective of the source
or of the technological carrier of an attack.

3.2.1 Early steps

Virgil Gligor is usually credited with the first attempt to give a foundational
and systematic treatment of DoS in computer science [Gli83, Gli84, Gli86].

According to Gligor, DoS is a security problem because it can result in unau-
thorised disclosure of information (e.g., the operational status of a sub-system).
Moreover, integrity problems are a potential source of DoS, for it is not always
possible to operate on compromised data. Therefore, DoS is a distinct secu-
rity problem for it is related to two problems usually regarded as distinct ones,
namely, secrecy and integrity. Finally, “if one defines as ‘fundamental’ a prob-
lem which remains when the cost of technology decreases to zero, then DoS is a
fundamental problem” [Gli86, § 2].

However, according to Gligor, DoS is of secondary importance with respect
to other security properties, for some instances of the problem (though not all)
can be solved by ensuring integrity and authenticity. Whilst this was possibly
reasonable in 1986, it is not any more, for the reasons stated in the introduction
to the chapter.

This being said, Gligor attempts to formalise availability as guaranteed ac-
cess:

Definition 3.2 (Guaranteed access) No authorised user is able to
deny the access of any other authorised user to a shared service.

The key entities are thus a shared service and some authorised users enti-
tled to accessing such service. It is implicit in the problem that the service is
characterised by a Maximum Waiting Time (MWT) an authorised user has to
wait before being granted access to the service: if no finite time bound exist,
then DoS cannot take place, because the service is not promised to any user. If
MWT is 0, then again DoS cannot take place, as the service becomes private
(or local).

24 Denial-of-Service

Definition 3.3 (Denial-of-Service) A group of authorised users G of
a given service S is said to deny S to another group G′ of authorised users if
G makes S unavailable to G′ for a period of time which exceeds the intended
MWT of S.

This formulation is said to encompass all the definitions proposed in the liter-
ature until then, as surveyed in [Gli83, App. B]. The first implication of Def. 3.3
is that DoS can in some cases be eliminated by merely increasing the MWT.
Second, it emphasises that DoS occurs when S is made unavailabile: Gligor
observes that this happens not only when S is unreachable, but also when S
responds within the MWT but does not behave as expected. DoS can indeed
take place at the transport layer (S unreachable), or at the application layer (S
misbehaved) of the Internet protocol suit stack. It is worthwhile observing that
DoS at one level can be caused by actions occurring on other levels, e.g., phys-
ical destruction of the machine hosting S makes it unreachable, or selectively
jamming a wireless signal can make S misbehaved.

Notice that the definition considers authorised users accessing and preventing
access to S, while DoS occurs even if it is an unauthorised party who inhibits ac-
cessing S to authorised users (as in malicious flooding attacks). Gligor [Gli84]
acknowledges that Anderson [And72] considers the possibility of an intruder
causing DoS, but assumes that standard protection mechanisms can be used
to rule out this threat. However, this seems to conflict with the intuition that
cryptography can introduce new sources of DoS. Later in [Gli86], where the
peculiarities of unavailability in networks are explored, the importance of mali-
cious DoS gains more centrality, based on considerations that recall the coeval
intruder model proposed by Dolev and Yao [DY83]. Most interestingly, Gligor
concludes that “most intruder-based DoS attacks cannot be prevented”, but only
be detected.

Levering these definitions and detailed case studies, undesirable inter-user
dependencies, according to which a group of users becomes dependent upon the
behaviour of another group of users, are identified as common denominator of
DoS. Without analysing the conditions in detail, let us just note that Gligor
himself acknowledges that such dependencies have no uniform nature or cause,
even if a relationship to inadequate service-sharing policies and mechanisms can
be tracked.

In later work, Yu and Gligor [YG90] tackle the problem of formally spec-
ifying user agreements, addressing those instances of DoS that occur even in
absence of failures and of integrity violations. They identify unavailability as a
property with both liveness and safety features. When DoS is caused by some
users preventing other users from making progress it is construed as a liveness
problem, whereas when some users cause other users to receive incorrect ser-
vice it is construed as a safety problem. Most interestingly, we find again the
distinction between what above has been characterised as network-level and
application-level DoS.

3.2 Formal Approaches to DoS 25

One of the main contributions of the work of Yu and Gligor is the conceptual-
isation of a resource allocator as the nodal component to prevent unavailability,
whose properties and policies are stated with temporal formulae. Subsequent
work by Millen (cf. [Mil93a] and other versions) elaborates on the subject pre-
senting more refined models for resource allocators, substantially agreeing with
the definitions of [Gli83, Gli84, Gli86].

3.2.2 From qualitative to quantitative considerations

The early work surveyed so far suffers from a qualitative approach to avail-
ability, despite the awareness of mathematical characterisations of quantities
strongly related to DoS. Nonetheless, Gligor had already foreseen the difficulty
of preventing DoS attacks, comment which directly leads wondering to which
extent unavailability can be prevented in a given system. This perspective, to-
gether with a more modern protocol-oriented mind-set, heavily informs Mead-
ows’s work on DoS [Mea99, Mea01], which remained a touchstone for most of
the subsequent publications on the subject (in spite of the partial oblivion that
affects earlier work).

Meadows starts out observing that there exists a number of practical ap-
proaches that fight DoS on the basis of cost considerations (cf. § 3.1.3), “cost”
being very generally construed as any relevant quantity for the involved players.
One option is to reduce the cost to the victim of engaging in a protocol and/or
to increase the cost to the attacker; another is to increase the resources to the
victim; a third is trying identifying the source of the attack (a particular case in
which the cost to the attacker is identity disclosure). Whilst a naive approach to
the latter may introduce new DoS risks, some cost-effective solutions have been
proposed, such as combining weak authentication when a protocol initiates to
strong authentication as it completes [SK97, AN04].

In a sense, Meadows’s work offers a unifying formal framework where the
different drivers of these techniques fit naturally. “Besides, it has all the charm of
inventing the science of navigation while already on board ship”, as Robin Milner
happened to say about laying down logical foundations of informatics [Mil06].

In a nutshell, Meadows’s framework aims at characterising unavailability
as a cost-determined condition. In a realistic execution of a communication
protocol, there is a cost attached to processing each message, both for legiti-
mate participants and for attackers. Such costs include for instance generating
nonces, storing received information, performing equality checks and crypto-
graphic computations. Moreover, there is a budget that limits the resources
available to each player. Hence, DoS occurs when the resources of a player
are exhausted. A tolerance relation for a system can thus be defined in terms
of pairs (cs, ca), where the attacker spends at most ca for having the system
wasting at most cs cost units. All interactions yielding costs that exceed such
threshold are potential source of DoS.

The central technical developments sustaining the main idea consists in an

26 Denial-of-Service

annotated protocol narration language, and in an elegant definition of the cost
structure characterising the players’ operations. In particular, a map from ac-
tions to costs is required where costs are partially ordered elements of a monoid,
thus allowing full generality in describing the resources available to the players
(including developing distinct cost sets for the defender and the attacker and
time-dependency via non-commutative monoids). We shall build on this idea in
Chs. 7,8.

A message exchange in Meadows’s annotated narrations has the following
form:

A −→ B : T1, . . . , Tk︸ ︷︷ ︸
cost(A)=

⊕
i cost(Ti)

||M || O1, . . . , On︸ ︷︷ ︸
cost(B)=

⊕
j cost(Oj)

where the Ti’s are the actions principal A must perform before sending the
messageM and the Oj ’s are the actions principal B must perform upon receiving
the message, and ⊕ is the monoid operator used to combine costs. For instance,
sending the message M = αXA requires exponentiating and storing terms on
A’s side, and storing the message on B’s side. Interestingly, in the case of
SYN flooding a malicious initiator A needs to perform no pre-action T , while
the server B has to store the incoming request and thus performs at least one
O: the notation gives an immediate and formal account of the issue behind
the problem, i.e., load unbalance. In general, costs determine the presence of
unavailability threats: if cost(A) � cost(B), then the protocol is potentially
subject to resource-exhaustion attacks.

The generality of the cost structure encompasses a number of notions of
costs, from numeric ones (e.g., money, energy, time) to symbolic ones (e.g.,
“low” or “high” risk of post-action forensics), and thus lends itself to describe
the ever-growing taxonomy of DoS attacks and countermeasures.

Meadows’s cost-based framework inspired a number of theoretical and prac-
tical developments. Among the former, Lafrance and Mullins [LM03] develop a
bisimulation-like interference-based method to detect DoS. The idea is to char-
acterise a DoS-robust system as a program that does not change his behaviour
when running in a hostile environment: in particular, if the presence of an adver-
sary triggers new costly traces, then the system may be subject to DoS attacks.
Pilegaard et al. [PHS03] combine Paulson’s inductive approach to protocol ver-
ification with Meadows’s framework, in order to automate the computation of
the analysis. On the practical side, Meadows’s framework has been used to
study protocols such as IKE [Ram02] and JFK [SGNB06].

3.3 DoS in Cyber-Physical Systems

Before delving into the presentation of the Quality Calculus, let us briefly review
the class of systems that inspired its development, i.e., Cyber-Physical Systems
(CPSs). In particular, we shall concentrate on the security-related features of

3.3 DoS in Cyber-Physical Systems 27

such systems, and show how their vulnerability to DoS advocates reconciling
graceful degradation and cost-based reasoning.

CPSs are complex systems that monitor physical processes by means of in-
terconnected networks of sensors, whose measures are exploited for acting on
the sensed environment in order to optimise an operational goal [Lee08, XRK08,
SWYS11]. Such systems can be logically organised in two coupled layers:

• a physical layer, consisting of sensors and actuators that interact with
given facets of the environment (e.g., physical parameters like tempera-
ture, humidity, etc.),

• and a cyber layer, in charge of transforming the sensed data into infor-
mation, to be exploited for driving the environment toward a given goal,
possibly by means of the actuators.

Typically CPSs consist of a significant number of devices (up to tens of thou-
sands of nodes), each one capable of sensing and/or actuating, computing, and
transmitting data. Such systems are increasingly exploited in the realization
of critical infrastructures (e.g., power grid, healthcare, traffic control, defence)
as well as general-purpose personal applications (e.g., home automation, enter-
tainment) [STCE14].

A fruitful starting point for discussing the security of CPSs is to observe that
both the physical and the cyber layer are subject to threats, and that an attack
on one level may compromise the operation of the other level. On the cyber
layer all classic communication-based attacks are viable. On the other hand,
physical attacks include destroying a component, removing it temporarily from
the network, tampering with it in order to read or modify the storage or re-
program the control software. Whenever components are powered by batteries,
communication-based attacks impact their life-span determining a cross-layer
effect. Similarly, accessing the storage of a node grants an attacker the knowl-
edge of its cryptographic identity (if any, including session keys), and therefore
allows to take full control of the component also on the cyber layer.

We have shown in [Vig12] how such a cyber-physical attacker encompasses
and generalises a great many attacker models used in protocol verification. Basin
and Cremers [BC10] already observed that it is unclear whether any protocol
would be correct with respect to an adversary who can get all the cryptographic
material of the participants. From a verification point of view, we are thus
fostered moving from a qualitative perspective to a quantitative perspective, as
it does not make sense to wonder whether or not a system would be secure in
face of such an attacker, but only to which extent the system is protected, or
what is the cost an attacker incurs to achieve a given goal.

Orthogonal to the question whether an attack targets cyber or physical traits
of a system, is the question whether unavailability is caused by an attack at all.
There are at least other two sources of DoS: misfortune and design. A typical
example of misfortune are unfavourable environmental conditions. As a matter

28 Denial-of-Service

of fact, some applications require to deploy components in a vast geographical
region, where they cannot be physically protected, neither from attackers nor
from nature. By design we mean instead that unavailability may be a planned
stage in the life-cycle of a node, with the aim, for instance, to optimise battery
consumption.

Hence, CPSs push for reconciling graceful degradation and quantitative tech-
niques in a uniform framework. On the one hand, unavailability may be a legal
status of some components in a given time-frame, on the other hand the ways
for achieving malicious DoS are plentiful. Full resilience against DoS cannot be
achieved without being aware of the former and countering the latter.

3.4 Ready Set Sail
The overview of unavailability attacks and countermeasures we have presented,
though brief, establishes some useful categories to position the developments of
Chs. 4,5,6,7.

First of all, all the definitions of availability that we have reported include
a demand for authorisation/identification. This seems to go hand in hand with
the reactive approach to countering DoS, for it requires to tell legitimate from
malicious operations, e.g., traffic analysis. Furthermore, different components
may rely on different authorisation databases, suggesting that those definitions
are well-suited for a self-centred perspective, in which the component takes care
of its own availability. We shall instead work in distribution-aware settings
and address unavailability as a system concern, allowing single components to
become unavailable and working for graceful degradation.

What is more, dealing with the consequences of unavailability is agnostic
with respect to the source of DoS (malicious, planned, inadvertent) and cope
with resource-exhaustion, semantic, and physical attacks uniformly.

For presentation purposes, we shall follow the phylogenesis of the literature,
presenting our distribution-aware approach to DoS first in a qualitative frame-
work – both for network (Ch. 4) and application-level (Ch. 5) unavailability –
and then extending it to encompass quantitative considerations (Ch. 7), with
the ultimate aim of reconciling graceful degradation and cost-based approaches.

Chapter 4
The Quality Calculus:
Modelling Availability

It typically takes at least 10 to 20
years for a good idea to move from
initial research to final widespread
practice.

[OGKW08]

Absence of communication is one chief consequence of the unavailability of
communicating components in a distributed system. As we have argued in Ch. 3,
focusing on the effects of unavailability accounts for coping with all sources of
DoS, including faulty components or communication medium, unfavourable en-
vironmental conditions causing physical disruption, and active attackers. At
system level, one of the most prominent effects of DoS is the absence of ex-
pected data due to missing communication. Hence, a main challenge in the de-
velopment of distributed systems is to ensure that the distributed components
continue to behave in a reasonable manner even when communication becomes
unreliable, thereby stopping the domino effect induced by denying service to
other components.

Computer science techniques can help ensure that software systems are hard-
ened against the unreliability of communication. This calls for programming
software components of distributed systems in such a way that a default be-
haviour is enacted when the ideal behaviour is denied due to the absence of
expected communication. To this end, in this chapter we develop

30 The Quality Calculus: Modelling Availability

• a process calculus, the Quality Calculus, for programming software compo-
nents and their interaction, natively equipped with the notion of absence
of communication, and

• a SAT-based analysis to determine the vulnerability of processes against
unreliable communication.

The Quality Calculus is developed in §§ 4.1,4.2 and clearly inherits from
calculi such as CCS and the π-calculus. Its main novelty consists in coupling
non-blocking input binders with option data type, exploited to distinguish syn-
tactic elements that carry actual data from elements that carry potential (op-
tional) data. In order to fully exploit the capability of progressing without all
the expected information, that is, without all the prescribed input to be satis-
fied, quality binders are used that range over a number of sub-binders, and can
proceed when a given combination of them is satisfied. Finally, the language
obliges to check whether or not an input variable carries actual data, allowing
to act accordingly in the continuation.

The expressiveness of the Quality Calculus is considered in § 4.3 and an
example in the context of a wireless sensor network is presented in § 4.4.

The SAT-based robustness analysis is developed in § 4.6. It is based on the
view that processes must be coded in such a way that error configurations are
not reached due to unreliable communication; rather, default data should be
substituted for expected data in order to provide meaningful behaviour in all
circumstances. Of course, this is not a panacea – default data is not as useful
as the correct data, but often better quality-of-service can be obtained when
basing decisions on default or old data, rather than simply stopping in an error
state. As an example, if a braking system does not get information about the
spinning of the wheels from the ABS system, it should not simply stop braking,
rather it should continue to brake – perhaps at reduced effect to avoid blocking
the wheels.

The analysis attaches propositional formulae to all points of interest in the
processes; such formulae characterise the combinations of optional data that
could be missing. This is useful for showing that certain error configurations
cannot be reached; indeed, if a propositional formula is unsatisfiable, then the
corresponding program point cannot be reached. The availability of extremely
efficient SAT-solvers makes this a very precise analysis method with excellent
scalability.

We present two equivalent semantics for the calculus, a standard reduction
semantics (§ 4.2) and a semantics with explicit substitutions (§ 4.5). While the
elegance of the former is superior for presentation purposes, the latter is nec-
essary to formally prove the correctness of the robustness analysis. Moreover,
the latter defines a novel way of integrating explicit substitutions in a process
calculus, promoting the treatment of the environment to a directed set of struc-
tural rules. The equivalence of the two semantics (§ A.2) supports the claim
that our approach to explicit substitutions can be seamlessly inherited by other

4.1 The Quality Calculus 31

π-like calculi.

This chapter is mainly based on [RNV12], where the Quality Calculus has
been first introduced. The explicit substitution semantics of § 4.5 and the formal
proof of § 4.6.3 are contained in work currently under submission.

4.1 The Quality Calculus

A system consists of a number of process definitions and a main process:

define A1(x1) , P1

...
An(xn) , Pn

in P∗

Here Ai is the name of a process, xi is its formal parameter, Pi is its body
and P∗ is the main process. The syntax of processes is given in Table 4.1. A
process can have the form (νc)P introducing a new constant c and its scope
P , it can be the parallel composition P1|P2 of two processes P1 and P2, and
it can be the terminated process, denoted 0. An input process is written b.P ,
where b is a binder specifying the inputs to be performed before continuing with
P . An output process has the form t1!t2.P , specifying that value t2 should be
communicated over channel t1. A(e) is the recursive call to one of the processes
defined in the system, e being the actual parameter of the call. Finally, a process
can be a case construct whose explanation we defer to later. In the following,
we shall feel free to dispense with trailing occurrences of the process 0.

The main novelty of the calculus is the binder b specifying the inputs to
be performed before continuing. In the simplest case it is an input guard t?x
describing that some value should be received over the channel t and bound
to variable x. Increasing in complexity, we may have binders of the form
&q(t1?x1, · · · , tn?xn), indicating that n inputs are simultaneously active, the
quality predicate q determining when sufficient inputs have been received to
continue. For the sake of readability, we shall use some abbreviations: q can
be ∃ meaning that one input is required, or it can be ∀ meaning that all in-
puts are required; these and other examples are summarised in Table 4.5. More
complex cases arise when binders are nested, as in &∀(t0?x0,&∃(t1?x1, t2?x2))
that describes that inputs must be received over t0 as well as one of t1 or t2 (or
both). If we assume that our quality predicates can express all combinations
of arguments, then nested binders can always be linearised without changing
the overall semantics; as an example, &∀(t0?x0,&∃(t1?x1, t2?x2)) has the same
effect as &q(t0?x0, t1?x1, t2?x2) if q(r0, r1, r2) amounts to r0 ∧ (r1 ∨ r2).

As a consequence, when continuing with the process P in b.P some variables
might not have obtained proper values, as the corresponding inputs might have

32 The Quality Calculus: Modelling Availability

Table 4.1: The syntax of the Quality Calculus.

P ::= (νc)P | P1 |P2 | 0 | b.P | t1!t2.P | A(e)
| case e of some(y) : P1 else P2

b ::= t?x | &q(b1, · · · , bn)

t ::= y | c | g(t1, · · · , tn)

e ::= x | some(t) | none | f(e1, · · · , en)

not been performed. In order to distinguish between successful and unsuccess-
ful inputs we resort to a distinction between data and optional data, inspired
by option data types in programming languages like Standard ML [MTHM97].
In the syntax we use terms t to denote data and expressions e to denote op-
tional data; in particular, the expression some(t) signals the presence of some
data t and none the absence of data. Returning to processes, the construct
case e of some(y) : P1 else P2 will test whether e evaluates to some data and
if so, bind it to y and continue with P1 and otherwise continue with P2. It
is worthwhile observing that since input channels and output range on terms
(data), the calculus syntactically obliges to inspect the content of an input vari-
able before using it. In this sense, at any point of the computation we know
what information is certainly available and what is not, and the analysis shall
exploit such syntactic perks.

The distinction between data and optional data copes with the potential
unreliability of communication, allowing to proceed even when expected infor-
mation is not arriving, perhaps using default values in else branches and thus
degrading the quality of the outcome yielded by the process, hence the name of
the calculus. As we have already put forward in Ch. 3, the framework defines a
principled approach to graceful degradation.

In order to insist on the syntactic categories of terms/data and expres-
sions/optional data, in the following we shall use the sets X of variables x
that stand for expressions, Y of variables y that stand for terms, C of names c
that stand for constant data, O of constant optional data o.

Clearly, more elaborate choices of syntax for expressions and terms are possi-
ble, including the possibility of distinguishing between them using a type system.
However, for the sake of simplicity we have opted for two syntactic categories
and therefore we also distinguish between functions g returning data values and
functions f returning optional data values. We assume that such functions are
total. In Ch. 6 we shall instead rely on a single syntactic category and distin-
guish between data and optional data by means of a simple type system.

A case construct for expressions similar to the one for processes, defined in
the calculus of [RNV12], is omitted for the sake of simplicity for it does not

4.2 Reduction Semantics 33

Table 4.2: The structural congruence ≡ of the Quality Calculus.

P ≡ P (Ref) P |0 ≡ P (Nil) P1 |P2 ≡ P2 |P1 (Com)

P1 |(P2 |P3) ≡ (P1 |P2) |P3 (Ass)

(νc1) (νc2)P ≡ (νc2) (νc1)P (New1)

(νc)P ≡ P if c /∈ fc(P) (New2)

(νc) (P1 | P2) ≡ ((νc)P1) | P2 if c /∈ fc(P2) (New3)

P1 ≡ P2

P2 ≡ P1

(Sym)
P1 ≡ P2 P2 ≡ P3

P1 ≡ P3

(Tra)
P1 ≡ P2

C[P1] ≡ C[P2]
(Cnt)

increase the expressive power of the calculus.
We need to impose a few well-formedness constraints on systems. We write

fc(P) to denote the set of free constants in P , fx(P) to denote the set of free
variables ranging over expressions, and fy(P) to denote the set of free variables
ranging over terms. For a system of the form displayed above we require that
fx(Pi) ⊆ {xi}, fy(Pi) = ∅, fx(P∗) = ∅, fy(P∗) = ∅ (processes are closed), and
put no restrictions on fc(Pi) and fc(P∗). Finally, for the sake of simplifying
the technical developments, we assume that a variable is defined exactly once
in the system – a renaming step can be enforced on systems not fulfilling this
constraint before executing the analysis.

4.2 Reduction Semantics

The semantics consists of a structural congruence and a transition relation. The
structural congruence P1 ≡ P2 is defined in Table 4.2 and expresses when two
processes, P1 and P2, are congruent to each other. It enforces that processes
constitute a commutative monoid with respect to parallel composition and the
empty process and it takes care of scope laws for names. Finally, it allows
replacement in contexts C given by:

C ::= [] | (νc)C | C |P | P |C

As usual, we apply α-conversion whenever needed in order to avoid accidental
capture of names during substitution, and we assume that processes are equal
up to α-renaming.

For the sake of simplifying the technical proofs, we deviate from the original
presentation of the calculus and move the unfolding of recursive calls from the

34 The Quality Calculus: Modelling Availability

Table 4.3: The evaluation � of terms into data and expressions into optional
data.

c � c
t1 � c1 · · · tn � cn

g(t1, . . . , tn) � c
if [{g}](c1, . . . , cn) = c

none � none
t � c

some(t) � some(c)

e1 � o1 · · · en � on

f(e1, . . . , en) � o
if [{f}](e1, . . . , en) = o

structural congruence to the reduction rules (cf. § 4.5).

The transition relation
P −→ P ′

describes when a process P evaluates into another process P ′. It is parametrised
on the relation t � c describing when a term t evaluates to a constant c and the
relation e � o describing when an expression e evaluates to a constant optional
data o that either has the form some(c) or is none; the definitions of these
relations are in Table 4.3, where we write [{g}](c1, . . . , cn) for the application of
function g to actual parameters, and likewise for functions f. Furthermore, we
make use of two auxiliary relations

c1!c2 ` b→ b′

for specifying the effect on the binder b of matching the output c1!c2, and

b ::v θ

for recording (in v ∈ {tt,ff}) whether or not all required inputs of b have been
performed as well as information about the substitution (θ) that has been con-
structed. To formalise this we extend the syntax of binders to include substitu-
tions

b ::= · · · | [some(c)/x]

where [some(c)/x] is the substitution that maps x to some(c) and leaves all other
variables unchanged. We write id for the identity substitution and θ2 ◦θ1 for the
composition of two substitutions (θ2 after θ1), so that (θ2 ◦ θ1)(x) = θ2(θ1(x))
for all x.

The first part of Table 4.4 defines the transition relation P −→ P ′. Clause
(In-ff) expresses that a synchronisation replaces a binder b with a new binder
b′ recording the output just performed; this transition is only possible when
b′ ::ff θ holds, meaning that more inputs are required before proceeding with

4.2 Reduction Semantics 35

Table 4.4: The reduction semantics −→ of the Quality Calculus.

t1 � c1 t2 � c2 c1!c2 ` b→ b′ b′ ::ff θ

t1!t2.P1 | b.P2 −→ P1 | b′.P2

(In-ff)

t1 � c1 t2 � c2 c1!c2 ` b→ b′ b′ ::tt θ

t1!t2.P1 | b.P2 −→ P1 | P2θ
(In-tt)

e � some(c)

case e of some(y) : P1 else P2 −→ P1[c/y]
(Case-tt)

e � none

case e of some(y) : P1 else P2 −→ P2

(Case-ff)

A(e) −→ P [e/x] if A(x) , P (Rec)

P1 ≡ P2 P2 −→ P3 P3 ≡ P4

P1 −→ P4

(Cng)
P1 −→ P2

C[P1] −→ C[P2]
(Cnt)

t1 � c1

c1!c2 ` t1?x2 → [some(c2)/x2]

c1!c2 ` bi → b′i

c1!c2 ` &q(b1, · · · , bi, · · · , bn)→ &q(b1, · · · , b′i, · · · , bn)

t?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::r1 θ1 · · · bn ::rn θn

&q(b1, · · · , bn) ::r θn ◦ · · · ◦ θ1

where r = [{q}](r1, · · · , rn)

the continuation P2. Clause (In-tt) considers instead the case where no further
inputs are required; this is expressed by the premise b′ ::tt θ. In this case the
binding is performed by applying the substitution θ to the continuation process.
The subsequent clauses are straightforward; they define the semantics of the
case construct, the unfolding of recursive calls, how the structural congruence is
embedded in the transition relation, and how transitions take place in contexts.

It is worthwhile observing that the synchronising prefixes in rules (In-) are
explicitly mentioned, and this allows to take care of transitions under restrictions
in rule (Cnt). Another interpretation of this rule puts the focus of the calculus
on closed systems as opposed to open systems, where in the latter possible
interactions with the environment are taken care of by a labelled semantics.

The second group of clauses in Table 4.4 defines the auxiliary relation c1!c2 `

36 The Quality Calculus: Modelling Availability

Table 4.5: Quality predicates q and their semantics [{q}].

[{∀}](r1, · · · , rn) = (|{i | ri = tt}| = n) = r1 ∧ · · · ∧ rn
[{∃}](r1, · · · , rn) = (|{i | ri = tt}| ≥ 1) = r1 ∨ · · · ∨ rn
[{∃!}](r1, · · · , rn) = (|{i | ri = tt}| = 1)

[{m/n}](r1, · · · , rn) = (|{i | ri = tt}| ≥ m)

b→ b′. We have one clause for each of the two syntactic forms of b and the idea
is simply to record the binding of the value received in the appropriate position.

The auxiliary relation b ::v θ is defined in the final group of clauses in Table
4.4. Here we perform a pass over the (extended) syntax of the binder b, evaluat-
ing whether or not a sufficient number of inputs has been performed (recorded
in v) and computing the associated substitution θ. Table 4.5 gives examples of
quality predicates q to be used in the sequel together with their semantics; here
we write |X | for the cardinality of the set X.

Flexible vs. rigid semantics. The semantics of Table 4.4 is a rigid seman-
tics: The first time the top-level quality predicate holds the remaining inputs
are no longer of interest and the computation can proceed. An alternative would
be to use a flexible semantics and replace rules (In-ff) and (In-tt) of Table 4.4
with

t1 � c1 t2 � c2 c1!c2 ` b→ b′

t1!t2.P1 | b.P2 −→ P1 | b′.P2

b ::tt θ

b.P −→ Pθ

The first clause expresses that we may continue accepting inputs even when
b ::tt θ holds, that is, after the top-level quality condition is met the first time.
The second clause ensures that at any point where the quality condition is met
we can decide to proceed with the continuation process. Hence, there is a non-
deterministic choice as to how many inputs are accepted beyond the minimum
number. This becomes a bit tricky when using quality predicates that do not
satisfy a monotonicity requirement, meaning that the quality condition may go
from true to false once more inputs have been accepted; this is for example the
case for ∃! in Table 4.5. On top of this important difference between the rigid
and the flexible semantics, they also differ in their “speed”; as an example, in the
rigid semantics a single step is needed to perform the binding of a single input,
whereas two steps are needed in the flexible semantics. Clearly, the flexible
semantics admits all the behaviours of the rigid semantics as well as additional
ones.

4.3 Expressiveness
The binding operator &q(b1, · · · , bn) is surprisingly powerful. In the following,
we shall show how the primitives of the Quality Calculus can be used to define

4.3 Expressiveness 37

a number of other constructs known from process calculi. In the other direction
the Quality Calculus can be encoded into the π-calculus, but it would seem that
some binding operators would require an exponential expansion; as an example,
&n/2n(b1, · · · , b2n), indicating that half of the 2n arguments are needed, would
seem to require that the π-calculus encoding would need to enumerate subsets
of {1, · · · , 2n} with at most n elements.

Guarded sum. Let us consider the guarded sum Σni=1ti?xi.Pi of input-guarded
processes. It can easily be encoded in our calculus using the binding construct:

Σni=1ti?xi.Pi , &∃(t1?x1, · · · , tn?xn).
(case x1 of some(y1) : P1 else 0 |

...
| case xn of some(yn) : Pn else 0)

Here the quality predicate ∃ expresses that only 1 of the n inputs is required
and we assume that no xi occurs free in Pj when i 6= j.

Generalised input binder. We now introduce a version of the binding op-
erator that always honour all its sub-inputs, even though it does not need all
of them, thereby ensuring that other processes will not become stuck for they
cannot synchronise. The new binding operator is written &?

q(t1?x1, · · · , tn?xn)
and is defined by

&?
q(t1?x1, · · · , tn?xn).P , &q(t1?x1, · · · , tn?xn).

(P | case x1 of some(y1) : 0 else t1?x1

...
| case xn of some(yn) : 0 else tn?xn)

The idea is to spawn processes in parallel to the continuation P taking care of
the inputs that were not necessary according to the quality predicate.

Internal non-deterministic choice. We now show how to encode a version
of the general sum

⊕n
i=1 Pi of processes modelling internal non-deterministic

choice between the alternatives. The idea is to introduce n fresh channels di
over which a fresh constant d is communicated and bound to fresh variables xi
and yi, and then to select one of the summands:⊕n

i=1 Pi , (νd1) · · · (νdn) (νd)
(d1!d | · · · | dn!d
| &∃(d1?x1, · · · , dn?xn).

(case x1 of some(y1) : P1 else d1?x1 |
...

| case xn of some(yn) : Pn else dn?xn))

38 The Quality Calculus: Modelling Availability

The difference from the ordinary CCS sum is that the choices are not made
according to the availability of inputs; rather, an internal non-deterministic
choice is performed as in CSP. We use the symbol d instead of c to stress that
such channels are introduced by the encoding.

Generalised output prefix. Finally, we introduce an operator that allows a
process to learn which outputs have been delivered and then use a quality pred-
icate to determine when to proceed. The idea is to introduce new channels that
can be used for internal communication when the outputs have been accepted.
The new operator is denoted by &!

q(t1!t′1, · · · , tn!t′n) and it is defined using the
binding operator &?

q(· · ·) introduced above:

&!
q(t1!t′1, · · · , tn!t′n).P , (νd1) · · · (νdn) (νd)

(t1!t′1.d1!d | · · · | tn!t′n.dn!d
| &?

q(d1?x1, · · · , dn?xn).P)

Here we assume that the new constants and variables do not occur in the terms
ti and t′i nor in the process P . This operator will ensure that the continuation
process P can start when some of the outputs have taken place (as determined
by the quality predicate q) and it will also ensure that remaining outputs are
still ready to be performed so that other processes do not get stuck because of
missing communication possibilities.

We could term this behaviour “stateful transfer”, as opposed to the concept
of oblivious transfer formulated in computer security.

4.4 A Robust Base Station
We consider a fragment of a Wireless Sensor Network application inspired by
[AIL05], where a base station BS communicates with a sensor node SN to obtain
the value of a physical parameter, which has to be forwarded to a central aggre-
gating unit CU. In order to ease the presentation, we shall take the liberty to
use a polyadic version of the calculus and we shall rely on the derived operators
just defined in § 4.3.

The sensor node SN is defined by

SN , 0⊕ (sn?(xi, xm).
case xi of some(yi) :

case xm of some(ym) : yi!value(ym).SN else 0
else 0)

A basic node is equipped with a sensor able to measure one or more physical
parameters (e.g., temperature, radioactivity) and a transceiver. As a node is
typically powered by batteries, at some point in time it will die: this behaviour is
captured by the possibility of evolving to 0 non-deterministically in the first line.

4.4 A Robust Base Station 39

While the node is alive, it waits for a request from the base station on channel
sn, expecting the identity xi of the sender and the name xm of the parameter to
be measured. The subsequent case constructs are necessary to extract the actual
data, and then the measure is taken and communicated to the base station; the
two else branches are in fact not reachable. The function value (which takes
data as input and returns data) produces the result of measuring the intended
parameter.

The base station will ask the sensor node to measure a physical parameter,
and in the interest of its robustness we extend it with a process representing
a local computer, able to estimate such a value. The local estimate will be
communicated to the central unit and used whenever the sensor node does not
respond. The local computer is defined by

LC , lc?xe.case xe of some(ye) : lc!guess(ye).LC else 0

and it uses the function guess (taking data and returning data) to estimate the
value of the intended parameter; again, the case construct is used to extract the
actual request and the else branch is not reachable.

The base station will put a limit on how long it will wait for a measure. In
order to model this behaviour we make use of a time counter defined by

Clock , set?xt.tick!X.Clock

where channel set is used to set a time-out, and the output of the constant X
signals that the prescribed amount of time has passed.

Finally, the base station is defined by the process

BS , (νid) (νm) (νt) &!
∃(lc!m, sn!(id,m)).set!t

&∀(tick?xt,&
?
∃(lc?xl, id?xr))

case xr of some(yr) : 1cu!yr.BS else
case xl of some(yl) : 2cu!yl.BS else 30

where we have added labels 1,2,3 for later reference. In the first line, the base
station issues a request for measuring a parameter m to the local computer and
to the sensor node, identifying itself as id. The timer is set to the constant t
as soon as one of the recipients has received the request. The second line waits
for the deadline and for at least one value among the local estimate and the
real measure. This behaviour is determined by the top-most quality predicate
∀, which requires that both inputs are successful, and by the inner quality
predicate ∃, which insists that at least one of its two sub-inputs be successful.
As we are using the binding operator &?

∃(. . .), the other input will be handled
when (and if) it arrives. It is important to note that it is also possible that both
values arrive before the time has passed. The third line tests whether or not the
sensor node responded; if this is the case (label 1) the value is communicated
to the central unit, otherwise (label 2) the local estimate is sent. Observe that

40 The Quality Calculus: Modelling Availability

in this formalisation the final else branch (labelled 3) is not reachable, for the
requests built by the base station correctly match the inputs of SN and LC, and
the latter is assumed to respond always, the component being local.

The main process of the system is defined as

P∗ = (νsn) (νlc) (νset) (νtick) (νX) (BS |SN | LC |Clock)

Discussion. Let us conclude by discussing two alternative choices for the bind-
ing construct in the second line of BS. One possibility is to use the binder

&2/3(tick?xt, lc?xl, id?xr)

and this would require that at least one entity among the sensor network and
the local computer has communicated a value before proceeding. Observe that
we may proceed before the deadline has expired. Another possibility is to use

&∃(tick?xt,&
?
∃(lc?xl, id?xr))

and in this case we might end up having no value at all.

4.5 An Explicit Substitution Semantics
So far we have traced the original presentation of the Quality Calculus, resort-
ing to a standard reduction semantics (§ 4.2) where substitutions are applied
directly, in a form that is customary for process algebras. A reduction seman-
tics clearly retains a superior elegance for presentation purposes, but induces
a rather byzantine formulation of the correctness statement of the robustness
analysis, which is fundamentally informed by the notion of substitution. A se-
mantics with explicit substitutions is required to formally capture the intention
of the analysis, which rests on a precise relation between logical formulae de-
scribing program points (analysis) and substitutions that arise at those points
(semantics).

In the following, we present a semantics of the Quality Calculus with explicit
substitutions, and in A.2 we shall show its equivalence to the reduction seman-
tics of § 4.2. The usefulness of an explicit substitution semantics is two-fold: on
the one hand, it simplifies the correctness proof of the robustness analysis, since
substitutions are not directly applied to processes, thus preserving the syntac-
tical identity of a program point through an execution; on the other hand, the
new semantics mimics the execution of the calculus on an abstract machine, and
thus it is closer to an implementation. Observe that the new semantics with
explicit substitutions is of the reduction kind too, being not labelled, but for
the sake of clarity we shall refer to it as “the explicit substitution semantics”,
retaining the phrase “reduction semantics” for the one of § 4.2.

The overall structure in terms of semantic relations is inherited from the
reduction semantics, whereas some judgements are updated in order to keep

4.5 An Explicit Substitution Semantics 41

substitutions distinct from processes. First of all, the syntax of processes is up-
dated with a new syntactic category S for explicit processes, denoting processes
active under given substitutions:

S ::= {ρ}P | (νc)S | b.S | t1!t2.S | S1|S2 | case e of some(y) : S1 else S2

where in {ρ}P process P is active under substitution ρ, and we write fc({ρ}P) for
the names that are free in P or in ρ, that is, fc({ρ}P) = fc(P)∪dom(ρ)∪ rng(ρ).
The definition of system is thus updated as

define A1(x1) , P1

...
An(xn) , Pn

in {id}P∗

(recall that id denotes the identical substitution). In the following, we shall
assume that substitutions are total and behave like the identity if not otherwise
specified.

A substitution ρ maps variables x ∈ X to constant optional data o ∈ O,
variables y ∈ Y and names to names c ∈ C. Given a substitution

ρ = [o1/x1, . . . , om/xm, c
′
1/y1, . . . , c

′
n/yn, c

′′
1/c1, . . . , c

′′
p/cp]

we call range of ρ the set rng(ρ) = {o1, . . . , om, . . . , c
′
1, . . . , c

′
n, c
′′
1 , . . . , c

′′
p} and

domain of ρ the set dom(ρ) = {x1, . . . , xm, . . . , y1, . . . , yn, c1, . . . , cp} of variables
and names which are not identically mapped by ρ.

As for terms, (ρt) denotes the application of a substitution ρ to a term t.
Similarly we write (ρe) for expressions, and (ρb) for binders, where the substi-
tution is applied to the terms contained in b. For the sake of simplifying the
technical developments, in the following we assume that the application of a
substitution to a term t or expression e takes care of evaluating every func-
tion g or f occurring in t or e, that is, (ρt) and (ρe) embed the deterministic
evaluations t � c and e � o, displayed in Table 4.3.

4.5.1 Directed structural rules

The structural rules for the explicit substitution semantics are displayed in Ta-
ble 4.6, and consist of directed equations on explicit processes. We write S V S′,
to stress that the usual symmetry of structural congruences is not part of our
axiomatisation, meaning that S is structurally reducible to S′, but not neces-
sarily S′ is reducible to S. The relation makes use of contexts C on explicit
processes, defined as follows:

C ::= [] | (νc)C | C |S | S |C

42 The Quality Calculus: Modelling Availability

Again, we apply α-conversion whenever needed in order to avoid accidental
capture of names during substitution, and we assume that explicit processes are
equal up to α-renaming.

The rules in Table 4.6 can be grouped in two categories. The first group
includes standard rules for reflexivity of the congruence (Ref), for defining pro-
cesses as a commutative monoid with respect to parallel composition (Nil, Nil’,
Com, Ass), for reordering restrictions (New1), for redundant restrictions (New2,
New2’), for scope reduction and extension (New3, New3’), for the transitivity
of the congruence (Tra), and for the preservation of the congruence in contexts
(Cnt). Observe that this set of rules forms an equivalence relation: all the rules
are either self-symmetric, or symmetric versions are explicitly provided or can
be derived.

The second group of rules handles substitutions, pushing them to sub-processes
ready to execute (S-par, S-new, S-case) as well as mimicking the look-up of
bindings in an environment (S-bin, S-out). This is slightly different from other
approaches where the look-up procedure is taken care of by the semantics ex-
plicitly, but yields a cleaner proof strategy for the correctness of the robustness
analysis. Observe that this set of rules does not form an equivalence relation,
and in particular we do not want symmetric versions of such rules, that would
correspond to “de-istantiate” variables, executing a program in reverse. This
is one potential reason why explicit substitution semantics are often presented
without a congruence. Nonetheless, observe that omitting symmetry compels
taking care of scope extension in some other way. Ferrari et al. [FMQ94] simply
assume that no communication is performed on names that are not globally
known. Other authors resort to labelled semantics that allow a bound output
to communicate with an input and carry the restriction of the communicated
name to the continuation processes: this is the case of the rule CLOSE of the π-
calculus [Par01], followed for instance in [BJPV11]. A set of directed structural
rules facilitates to overcome the assumption of global names while retaining a
superior elegance over a transitional scope extrusion, as the semantics is fac-
tored in a compact set of reduction rules, governing the executions of processes,
and an intuitive set of rewriting rules ruling their structure. We ought to ac-
knowledge, however, that preferring such an approach over labelled transitions
is largely a matter of personal taste.

Even if it is improper to call V a structural congruence, nonetheless we
retain this phrase to stress that V and the standard ≡ fulfil similar roles.

In the wake of [EG04], we say that structural rules are in charge of expressing
static features of processes, while the semantics accommodates their dynamic or
behavioural features. This being said, a general consensus sustains the opinion
that some features can be regarded as either static or dynamic [Par01, EG04],
the choice being mainly a matter of taste, mathematical elegance, and conve-
nience in proofs. This is chiefly the case of replication or unfolding of recursive
calls, regarded as static by some authors and as dynamic by others. We delegate
recursion to the transition system, thus embracing the dynamic point of view.

4.5 An Explicit Substitution Semantics 43

Table 4.6: The directed structural rules V of the Quality Calculus.

S V S (Ref) S|{ρ}0V S (Nil)

S V S|{ρ}0 (Nil’) S1|S2 V S2|S1 (Com)

S1|(S2|S3)V (S1|S2)|S3 (Ass)

(νc1) (νc2)S V (νc2) (νc1)S (New1)

(νc) {ρ}P V {ρ}P if c 6∈ fc({ρ}P) (New2)

{ρ}P V (νc) {ρ}P if c 6∈ fc({ρ}P) (New2’)

(νc) ({ρ1}P1|{ρ2}P2)V ((νc) {ρ1}P1)|{ρ2}P2if c 6∈ fc({ρ2}P2) (New3)

((νc) {ρ1}P1)|{ρ2}P2 V (νc) ({ρ1}P1|{ρ2}P2)if c /∈ fc({ρ2}P2) (New3’)

S1 V S2 S2 V S3

S1 V S3

(Tra)
S1 V S2

C[S1]V C[S2]
(Cnt)

{ρ}(P1|P2)V {ρ}P1|{ρ}P2 (S-par)

{ρ}((νc)P)V

{
(νc){ρ}P if c 6∈ fc({ρ}P)
(νc′){ρ ◦ [c′/c]}P if c ∈ fc({ρ}P) ∧ c′ 6∈ fc({ρ}P)

(S-new)

{ρ}case e of some(y) : P1 else P2 V case (ρe) of some(y) : {ρ}P1 else {ρ}P2

(S-case)

{ρ}(b.P)V (ρb).{ρ}P (S-bin) {ρ}(t1!t2.P)V (ρt1)!(ρt2).{ρ}P (S-out)

This choice facilitates the formal proofs of A.2, as a structural rule for unfolding
of recursion would share traits with both groups in Table 4.6, and giving more
than one structural rule to deal with recursion seems not natural.

On directed rules. It is worthwhile observing that the notion of structural
congruence has its roots in the directed heating and cooling rules of the Chem-
ical Abstract Machine of Berry and Boudol [BB90]. For instance, S|0 V S
models the evaporation of 0 upon heating the component, and its not revert-
ible. Inspired by these rules, Milner presented a π-calculus whose semantics is
parametrised on structural rules [Mil90] that are symmetric, hence yielding an
equivalence relation.

44 The Quality Calculus: Modelling Availability

Recently, a few works recovered the original directed fashion of structural
rules (e.g., [PNR08, RNKP11]), omitting a general law for symmetry and in-
troducing specific clauses for the cases where symmetry is required (e.g., scope
laws), while the mainstream approach follows Milner’s presentation. We say
that the rules of the former approach are directed (or oriented) exactly because
of the absence of a general rule for symmetry.

A full historical account of the evolution of the usage of structural congru-
ences in process calculi is far beyond the scope of this dissertation. We limit
here to observe that directed rules may be convenient for a number of reasons.
First, directing some rules matches more closely our intuition of how the com-
putation evolves: for instance, 0 can be thought of the result of a terminated
computation, and allowing the introduction of a terminated parallel component
by reading (Nil) from right to left (by virtue of symmetry) seems to contra-
dict this intuition. This implementation viewpoint is thoroughly investigated
in [GLP04], which introduced the idea of operational effectiveness criteria for
structural rules. Secondly, as we have mentioned above, considering directed
rules allows retaining some kind of structural relation among processes even in
presence of explicit substitutions, thus avoiding strong assumptions on bound
names or moving to labelled semantics.

This being said, we could not devise an operational effective version of the
structural rules, as one of our task was to establish the equivalence of the new
semantics and the original reduction semantics, which is parametrised on the
standard congruence of the π calculus. It is worthwhile noticing, however, that
given an operational effective version of the structural rules it would still be
possible to prove the equivalence of the two notions of congruence, up to pre-
liminary and final rewriting of processes by means of the standard rules of ≡.
However, this would significantly complicate the technical developments, there-
fore we limit to point the reader to [SW01, Ch. 1] for a similar proof strategy.

4.5.2 The transition relation

The transition relation with explicit substitutions, presented in Table 4.7, de-
scribes how an explicit process S = {ρ}P evolves into another explicit process
S′ = {ρ′}P ′. Like in the reduction semantics case, we rely in the relation
c1!c2 ` b → b′ for specifying the effect on the binder b of matching the output
c1!c2, and on the relation b ::r θ for evaluating binders and recording substitu-
tions. Observe that in general substitutions ρ differ from substitutions θ, in that
the latter only map variables x ∈ X to optional data.

The rules in Table 4.7 define the transition relation S −→ S′ retracing closely
the reduction semantics. Observe that terms and expressions are now evaluated
when pushing substitutions inside a process by means of structural rules, hence
the premises of base cases are simplified. Moreover, note that in rule (Rec)
x is the only variable free in P , and thus the substitution on the right-hand
side is simplified so as to consider only x. Finally, rule (Cng) embeds the new

4.6 Robustness: Absence of Communication 45

Table 4.7: The transition relation −→ of the Quality Calculus with explicit
substitutions.

c1!c2 ` b→ b′ b′ ::ff θ

c1!c2.{ρ1}P1 | b.{ρ2}P2 −→ {ρ1}P1 | b′.{ρ2}P2

(In-ff)

c1!c2 ` b→ b′ b′ ::tt θ

c1!c2.{ρ1}P1 | b.{ρ2}P2 −→ {ρ1}P1 | {θ ◦ ρ2}P2

(In-tt)

case some(c) of some(y) : {ρ1}P1 else {ρ1}P2 −→ {[c/y] ◦ ρ1}P1 (Case-tt)

case none of some(y) : {ρ2}P1 else {ρ2}P2 −→ {ρ2}P2 (Case-ff)

{ρ}A(e) −→ {[(ρe)/x]}P if A(x) , P (Rec)

S1 V S2 S2 −→ S3 S3 V S4

S1 −→ S4

(Cng)
S −→ S′

C[S] −→ C[S′]
(Cnt)

structural congruence in the transition relation.
The relation between output and binders and the evaluation of binders is

left unchanged and inherited from Table 4.4.

Flexible vs. rigid semantics. Like in the case of the reduction semantics, a
more flexible explicit substitution semantics is obtained by replacing rules (In-ff)
and (In-tt) of Table 4.7 with

c1!c2 ` b→ b′

c1!c2.{ρ1}P1 | b.{ρ2}P2 −→ {ρ1}P1 | b′.{ρ2}P2

b ::tt θ

b.{ρ}P −→ {θ ◦ ρ}P

The robustness analysis of § 4.6.1 is expressive enough to capture the richer
flexible semantics, but the correctness proof concerns the more robust rigid
semantics. Hence, in the following we shall limit our discussion to the rigid
semantics.

4.6 Robustness: Absence of Communication

4.6.1 Robustness analysis
The Quality Calculus provides the means for expressing due care in always
having default data available in case the real data cannot be obtained, but –
recall Dijkstra’s quote in § 2.2 – it does not enforce it.

46 The Quality Calculus: Modelling Availability

Our enforcement mechanism will be a SAT-based robustness analysis for
characterising whether or not variables over optional data do indeed contain
data. The analysis attaches propositional formulae to all points of interest in
the processes; the formulae characterise the combinations of optional data that
could be missing. At key places one would like to demand that such formulae
would always require default data to be available; this translates into demanding
that certain logical formulae are unsatisfiable as determined by a SAT-solver.

The formulae generated by the analysis encode optional data as Boolean
values in the following manner. A value of the form some(·) is coded as tt and
none is coded as ff. In the following, we shall write o to denote the Boolean
encoding of the optional data o, i.e., some(·) = tt and none = ff. As an example,
the formula x1 ∨ (x2 ∧ x3) indicates that either x1 is available or both x2 and
x3 are available, the variables ranging over Boolean values.

The judgements. The main judgement of our analysis takes the form

` ϕ@P

and the idea is that the formula ϕ describes the program point immediately
before P . This is ambiguous in case there are multiple occurrences of the same
sub-process in the system: the traditional solution is to add labels to disam-
biguate such occurrences, but we dispense with this in order not to complicate
the notation. The intended semantic interpretation of this judgement is that

if ` ϕ@P and {id}P∗ −→∗ {ρ}P then ρ |= ϕ

where ρ is the mapping obtained by point-wise application of the encoding ·,
ρ |= ϕ denotes the truth of ϕ under the interpretation ρ (the notation is defined
formally in A.1), and −→∗ denotes the reflexive and transitive closure of −→.
In a nutshell, the correctness result states that reachability of program points
entails satisfiability of the corresponding formulae, and by contra-position that
unsatisfiability entails unreachability.

We shall make use of two auxiliary judgements. One is for bindings

` b I ϕ

and the idea is that the formula ϕ describes the bindings of the variables that
correspond to passing the binder b successfully. The intended semantic inter-
pretation of this judgement is that

if ` b I ϕ and b ::tt θ then θ |= ϕ

(cf. Lemma A.1.2 in A.1). The other auxiliary judgement is for expressions; it
takes the form

` e . ϕ
and the idea is that the formula ϕ describes the result of evaluating the expres-
sion e. The intended semantic interpretation of this judgement is that

4.6 Robustness: Absence of Communication 47

Table 4.8: The robustness analysis ` ϕ@P of the Quality Calculus.

` tt @P∗ ` tt @P1 · · · ` tt @Pn

` ϕ@ (νc)P

` ϕ@P

` ϕ@ (P1 | P2)

` ϕ@P1

` ϕ@ (P1 | P2)

` ϕ@P2

` ϕ@ (b.P) ` b I ϕb
` ϕ ∧ ϕb @P

` ϕ@ (t1!t2.P)

` ϕ@P

` ϕ@ (case e of some(y) : P1 else P2) ` e . ϕe
` ϕ ∧ ϕe @P1

` ϕ@ (case e of some(y) : P1 else P2) ` e . ϕe
` ϕ ∧ ¬ϕe @P2

` ϕ@P

` ϕ′@P
if ϕ⇔ ϕ′

` t?x I x
` b1 I ϕ1 · · · ` bn I ϕn

` &q(b1, · · · , bn) I [{q}](ϕ1, · · · , ϕn)

` x . x ` some(t) . tt ` none . ff

` e1 . ϕ1 · · · ` en . ϕn
` f(e1, · · · , en) . [{f}](ϕ1, · · · , ϕn)

if ` e . ϕ and e � o then o |= ϕ

(cf. Lemma A.1.1 in A.1).

The detailed definition. The formal definition of ` ϕ@P is given by the
inference system in the top-most part of Table 4.8. It operates in a top-down
manner (as opposed to a more conventional bottom-up manner) and gets started
by an axiom ` tt @P∗ for the main process, stating that it is reachable. More-
over, we have an axiom for each of the processes defined in the system under
study; they have the form ` tt @Pi, thereby ensuring that the process definitions
are analysed in all contexts.

The first inference rule expresses that if ϕ describes the program point just
before a process of the form (νc)P , then it also describes the program point
just before P . Then we have two rules for parallel composition: if ϕ describes
the program point before P1|P2, then it also describes the program point just
before each of the two processes. The rule for bindings is more interesting; here

48 The Quality Calculus: Modelling Availability

we make use of the auxiliary analysis judgement ` b I ϕb, explained below,
for analysing the binder b. The information ϕ describing the program point
before b.P is transformed into ϕ ∧ ϕb in order to describe the program point
before P , accounting for the satisfaction condition of the binder b. The rule
for output should now be straightforward. The two rules for the case construct
make use of the auxiliary analysis judgement ` e . ϕe, explained below, for
analysing expression e; this gives rise to a formula describing the outcome of
the test being performed and this information is added to describe the program
point just before the selected branch.

In the case of binders the formula ϕ produced by the judgement ` b I ϕ
characterises the availability of data as provided by the binder upon consuming
it. In the detailed definition of ` b I ϕ, presented in the second part of Table
4.8, we rely on the formula schemes [{q}](r1, · · · , rn) of Table 4.5 for encoding
the effect of quality predicates q.

The last part of Table 4.8 defines the judgement ` e . ϕ for expressions
and, as already mentioned, the idea is that the formula ϕ characterises the
availability of data used in e. Also here we rely on formula schemes of the form
[{f}](r1, · · · , rn) for encoding the effect of functions f and we assume that they
satisfy the following soundness and completeness property:

[{f}](o1, · · · , on) = o whenever f(o1, · · · , on) � o

With respect to the original robustness analysis of [RNV12] we dispense with
existential quantifiers in formulae to capture the scope of variables, as justified
by the restriction to processes where variables are bound exactly once.

4.6.2 Analysing the base station

Let us return to the base station BS of § 4.4 where we now want to compute the
analysis results for the program points identified by the three labels. Starting
with ` tt @ BS we obtain the following formulae at the labels:

1 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ xr
2 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ xl
3 : (x1 ∨ x2) ∧ xt ∧ (xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

where we used the same variable names used in the process in order to stress the
relationship between the formulae produced by the analysis and the program
points they describe, even if here the variables range over the Boolean encoding
of optional data. Observe that (x1 ∨ x2) refers to the generalised output prefix
&!
∃(lc!p, sn!(id, p)) encoded as shown in § 4.3, (xt ∧ (xl ∨ xr)) is the condition

for passing the quality binder in the second line, and the remainder identifies
the condition for reaching the given label. We can then ask whether or not the
process points decorated with labels may be reachable, that is, whether or not

4.6 Robustness: Absence of Communication 49

the corresponding formulae are satisfiable. We obtain the following satisfying
substitutions:

1 : [x1 7→ tt;x2 7→ ff;xl 7→ tt;xr 7→ tt;xt 7→ tt]
2 : [x1 7→ tt;x2 7→ ff;xl 7→ tt;xr 7→ ff;xt 7→ tt]
3 : unsatisfiable

This shows that the occurrence of process 0 in BS at label 3 will never be
executed.

Let us conclude by considering the variants of the base station discussed at
the end of § 4.4. Using the binder &?

2/3(tick?xt, lc?xl, id?xr) we get slightly dif-
ferent formulae but the satisfiability results are the same as above: the formula
for the process labelled 3 is unsatisfiable whereas the others have satisfying as-
signments. Using the binder &∃(tick?xt,&

?
∃(lc?xl, id?xr)) we get the following

formula for the process labelled 3:

3 : (x1 ∨ x2) ∧ (xt ∨ xl ∨ xr) ∧ (¬xr) ∧ (¬xl)

which is satisfiable using the substitution:

3 : [x2 7→ ff;x1 7→ tt;xl 7→ ff;xr 7→ ff;xt 7→ tt]

The occurrence of process 0 labelled 3 might thus be reachable. The above
substitution gives us an indication of when this may happen: the binder

&∃(tick?xt,&
?
∃(lc?xl, id?xr))

will be successful when xt = tt meaning that the time has passed but it does
not need to be the case that any of the schedules are available as reflected by
xl = ff and xg = ff. In this case the terminated process 0 at label 3 will in fact
be reached and BS will terminate.

We have implemented this analysis by writing a program in Standard ML
for computing the formulae at the program points of interest, and used the SAT
and SMT solver Z3 (cf. § 2.3) to determine whether or not the formulae are
satisfiable. For the examples we have studied the answer is obtained in less than
a second on an ordinary laptop computer.

4.6.3 Formal correctness

The proof of correctness is organised as follows:

1. the robustness analysis of § 4.6.1 is proven sound with respect to the
explicit substitution semantics;

2. the explicit substitution semantics is proven equivalent to the reduction
semantics of § 4.2.

50 The Quality Calculus: Modelling Availability

In this section we present the key statements of the correctness result. Aux-
iliary lemmata and proofs are deferred to A.1, while A.2 proves the semantic
equivalence.

For the sake of easing the presentation, we shall first introduce some nota-
tion and then two main results concerning the structural congruence and the
transition relation of the semantics, from which the correctness theorem follows
immediately.

It is worthwhile observing that the rules of the analysis being deterministic,
if two different formulae are derived for a given process, then it must be the case
that such formulae are in a bi-implication relation.

Fact 4.6.1 (` ϕ@P ∧ ` ϕ′@P) ⇒ (ϕ⇔ ϕ′)

Therefore, we can define the formula ΦP that characterises the reachability
of process P as follows:

ΦP =

{
ϕ if ` ϕ@P

undef if @ϕ . ` ϕ@P

where it does not matter which ϕ we choose in the first case, as all formulae
derived for P are equivalent, whereas the second case only occurs when P is not
a sub-process of the main process P∗ of the system under study. It is worthwhile
observing that restricting our attention to ΦP is sound, since the equivalence of
ϕ and ϕ′ in Fact 4.6.1 entails their equisatisfiability, and truth models is all the
robustness analysis is concerned with.

Moreover, in the proofs we shall deal with step-wise evaluation of binders.

Definition 4.1 (θ � b) Let θ be a substitution and b a binder. Function
θ � b computes the binder obtained by instantiating b according to θ:

θ � t?x =

{
t?x if x 6∈ dom(θ) or (θx) = none
[(θx)/x] otherwise

θ � [some(c)/x] = [some(c)/x]

θ � &q(b1, . . . , bn) = &q(θ � b1, . . . , θ � bn)

In particular, notice that θ � b gives rise to a binder, which can be eval-
uated by means of ::v according to the semantic rules of Table 4.4. Moreover,
observe that variables are mapped to none only when a binder is satisfied and
the continuation process is thus ready to execute, therefore θ � t?x never maps
input variables to none.

As a consequence of evaluating binders step-wise, we need to extend the
judgement ` b I ϕb of the analysis to the case of partially-evaluated binders:

` [some(c)/x] I x

4.6 Robustness: Absence of Communication 51

where this choice conforms with the formula that is produced for t?x, that is,
the non-instantiated version of the same binder.

As an inspection of Table 4.6 and 4.7 highlights, the interplay between the
directed congruence and the explicit substitution semantics yields explicit pro-
cesses with a very precise shape, formalised as follows.

Definition 4.2 (Goodness) Let S be an explicit process. S is good, de-
noted good(S), if

((∃C.S = C[{ρ}P])⇒ ρ |= ΦP)∧
((∃C.S = C[t1!t2.{ρ}P])⇒ ρ |= ΦP)∧
((∃C.S = C[case some(c) of some(y) : {ρ}P else {ρ}P2])⇒ [c/y] ◦ ρ |= ΦP)∧
((∃C.S = C[case none of some(y) : {ρ}P1 else {ρ}P])⇒ ρ |= ΦP)∧
(∀Θ∀θ.((∃C.S = C[b.{ρ}P] ∧ (Θ� b) ::tt θ)⇒ θ ◦ ρ |= ΦP)).

The main correctness result is stated in Theorem 4.6.1 below, the core idea
being that goodness is preserved in a semantic evaluation: if a process P is
active under substitution ρ in the semantics and its reachability is described by
ΦP in the analysis, then ρ is a model for ΦP . Equivalently, by contraposition,
if a formula is unsatisfiable then there is no derivation in the semantics leading
to the corresponding program point.

Theorem 4.6.1 (Correctness of the robustness analysis) For
all systems

define A1(x1) , P1

...
An(xn) , Pn

in {id}P∗

it holds that
∀S . ({id}P∗ −→∗ S ⇒ good(S))

Proof. The proof is organised by induction on the length k of the deriva-
tion sequence {id}P∗ −→∗ S.

Basis. If k = 0, then it is S = {id}P∗ and ΦP∗ = tt, from which the result
follows since id |= tt.

Step. Assume that the result holds for k ≤ k0; we shall prove it for k0 + 1.
The whole derivation sequence can be written as

{id}P∗ −→k0 S′ −→ S

52 The Quality Calculus: Modelling Availability

The inductive hypothesis applies to the first k0 steps of the derivation, leading
to

good(S′)

Therefore, we shall now show

S′ −→ S ∧ good(S′) ⇒ good(S)

that is, the last derivation step in the sequence preserves the goodness of the
system. The result follows directly from Lemma 4.6.2. �

The main technical results on which the theorem rests establish that the
structural congruence and the explicit substitution semantics of the calculus
preserve goodness of explicit processes, starting from {id}P∗ which is indeed
good, as ΦP∗ = tt and id |= tt.

Lemma 4.6.1 (V preserves goodness) For all explicit processes S and
S′ it holds that

good(S) ∧ S V S′ ⇒ good(S′)

The proof is organised by induction on the shape of the inference tree for the
congruence step S V S′.

Lemma 4.6.2 (−→ preserves goodness) For all explicit processes S and
S′ it holds that

good(S) ∧ S −→ S′ ⇒ good(S′)

The proof is organised by induction on the shape of the inference tree for the
transition S −→ S′, exploiting Lemma 4.6.1 for accommodating transitions of
congruent processes.

4.7 Concluding Remarks

Many of the errors in current software are due to an overly optimistic program-
ming style. Programmers tend to think of benign application environments and
hence focus on getting the software to perform as many functions as possible.
To a much lesser extent they consider malign application environments and the
need to focus on avoiding errors that can be provoked by outside attackers.

This is confounded by the fact that key software components are often de-
veloped in one context and then ported to another. The Simple Mail Transfer
Protocol (SMTP) is a case in point. Originally developed in benign research or
development environments, where few would be motivated to misuse the proto-
col and could easily be reprimanded if doing so, it has become a key constituent
of the malign environment provided by the global Internet where many users

4.7 Concluding Remarks 53

find an interest in misusing the protocol, and where it is extremely difficult to
even identify offenders.

Future programming languages and programming environments need to sup-
port a more robust (pessimistic) programming style: what conceivably might go
wrong probably will go wrong. A major cause of disruption is due to the commu-
nication between distributed software components. Hence, our focus considers
how to mitigate the consequences of attacks, nature, or misfortune preventing
expected communication from taking place – whatever source of unavailability.
This calls for a very robust way of programming systems where there are always
default data available for allowing the system to continue its operation as best
as it can (rather than simply terminate with an error or get stuck in an input
operation).

We believe that the Quality Calculus presents the core ingredients of a pro-
cess calculus supporting such defensive (robust) programming. To assist in
analysing the extent to which robustness has been achieved, we have developed
a SAT-based robustness analysis that indicates the places where errors can still
arise in spite of robust programming, and where additional hardening of the
code may be called for.

The calculus embraces the modelling approach to the development of process
algebras. As a matter of fact, a number of papers has already studied process
calculi for modelling unreliable communication due to faults in the underlying
network [Ama97, RH98, BH00, RH01, Ber04, FH05]. However, previous inves-
tigations differ from ours in that they are based on a fairly low-level model of
the network topology and of the properties of the nodes, and do not focus on
enforcing alternative behaviours when data are unavailable.

From a technical point of view, observe that one of the two intuitions behind
the Quality Calculus, i.e., non-blocking binders, had been already proposed in
Linda with predicate inputs [ACG86], and then inherited in several versions of
Klaim [BBD+03]. Linda advocated for a programming style where the inten-
tion was to check the Boolean result of such an input operation so as to split the
continuation process in two branches, and use input variables only in the branch
related to a successful input [AAV95, pg. 2-25]. Nonetheless, no enforcement
mechanism is provided, while in the Quality Calculus case clauses compel to
inspect the content of input variables already at the syntactic level, and the ro-
bustness analysis completes the picture taking advantage of the new primitives.
In the literature on Linda, on the contrary, inp and readp are studied in relation
to their expressiveness with respect to other communication primitives and to
the efficiency of their implementations, e.g., in terms of polling (cf. the intro-
duction of [BWA94] and the reference therein). Recently, we have commented
on a similar issue in [VCT+14], where security policies might prescribe to skip
some actions and thereby the definition of some variables.

54 The Quality Calculus: Modelling Availability

Chapter 5
From Network to Application

Level

In the previous chapter we have developed a calculus to model network-level
DoS, that is, absence of communication, and complemented the formalism with
a static analysis that pinpoints where the absence of data might lead to undesir-
able situations. Building on the same idea, we lift now the approach to reason
about application-level DoS: even if the communication takes place, incorrect
or corrupted data might be delivered. As a matter of fact, whether we receive
nothing or something we cannot use, the effect is the same.

In order to encompass both these traits of unavailability, we extend the
Quality Calculus with input patterns dictating what sort of messages an input
is willing to accept. Such patterns seamlessly integrate with quality binders.
A novel SMT-based availability analysis takes advantage of the additional in-
formation instrumenting the input binders, relating the reachability of program
points to the availability of data with given shape.

It is worthwhile observing that the availability analysis subsumes the robust-
ness analysis of Ch. 4. Nevertheless, besides fulfilling pedagogical and presenta-
tion purposes, there are technical reasons for choosing to present the robustness
analysis first, as being propositional it is always decidable, whereas the avail-
ability analysis resorts to a first-order encoding where function symbols may
range over infinite domains. Even though the analysis we carried out is static,
hence a finite bound to these domains can be determined if we restrict to closed
systems, still it is more expensive to compute.

The organisation of this chapter follows closely the structure of Ch. 4. First,
we extend the calculus with patterns in § 5.1 and present its reduction semantics

56 From Network to Application Level

Table 5.1: The syntax of the Quality Calculus with patterns.

P ::= 0 | (νcτ)P | P1|P2 | b.P | t1!t2.P | A(e)
| case e of some(p) : P1 else P2

b ::= t?x[p] | &q(b1, . . . , bn)

t ::= c | c+ | c− | y | g(t1, . . . , tn)
| enc(t1, t2) | aenc(t1, t2) | sign(t1, t2) | hash(t)

e ::= x | some(t) | none | f(e1, . . . , en)

p ::= c | c+ | c− | y | g(t1, . . . , tn) | _ | p%y
| enc(p, t) | aenc(p, t) | sign(p1, p2) | hash(t)

p ::= c | c+ | c− | y | g(t1, . . . , tn) | _
| enc(p, t) | aenc(p, t) | sign(p, p) | hash(t)

in § 5.2. Then, we revise the WSN example of the previous chapter to take
advantage of the enhanced expressiveness (§ 5.3). The availability analysis is
developed in § 5.4 and its implementation is discussed in § 5.5, where also
some results on the example are reported and commented upon. Finally, the
formal statements concerning the correctness of the analysis are presented in
Appendix B.

5.1 The Quality Calculus with Patterns

The Quality Calculus with patterns extends the Quality Calculus of Ch. 4 in-
strumenting binders with patterns for selective input. Moreover, patterns allow
to implement cryptographic reasoning with little effort, offering a framework
where a novel treatment of availability coexists with the standard approach to
confidentiality and authenticity. As far as application-level DoS is concerned,
however, cryptographic constructs are just a meaningful example of structured
data type, useful to illustrate pattern matching.

The syntax of the extended calculus is displayed in Table 5.1, and includes
the constructs of Table 4.1 enhancing some of them with patterns and crypto-
graphic operations.

From network to application level. As we have seen in Ch. 4, the core
mechanism that enables to tackle DoS at the network level in the Quality Cal-
culus is the interplay between data and optional data on one side, and quality
binders and case clauses on the other side. For we want now to lift the treat-
ment of unreliable communication from a “received/not received” view to a more

5.1 The Quality Calculus with Patterns 57

elaborate perspective, where the content of the communication matters, we shall
distinguish between values and optional values.

A term t denotes values: names, variables y ∈ Y, or function applications.
A name is either a plain name c (e.g., a symmetric key), a public key c+, or a
private key c−. Names are now introduced by the qualified restriction (νcτ)P ,
where the qualifier τ is either the empty string ε, yielding a standard restric-
tion, or the key pair generator ± introducing the pair (c+, c−) of names in
P . Qualified names are inspired by [BRN04], where they have been studied in
relation to pattern matching mechanisms. A function application is either a
function g from terms to names, or the application of a cryptographic construc-
tor. Constructors enc(t1, t2) and aenc(t1, t2) denote symmetric and asymmetric
encryption, respectively, where the first term is the plain-text and the second
term the cryptographic key. Similarly, sign(t1, t2) is the signature of term t1
under the private key t2, while hash(t) represents hashing term t. The set C,
denoting constant data in Ch. 4, is now extended to range over constant values.

An expression e denotes instead optional values and can be a variable x ∈ X ,
the empty expression none denoting no information, the expression some(t) from
values to optional values denoting that e carries an actual value, or a function f
from optional values to optional values. The set O, denoting constant optional
data in Ch. 4, is now extended to range over constant optional values.

As for binders b, the input t?x[p] waits for a message on channel t, and binds
x to the message if the latter is matched by the pattern p, according to the
procedure explained below. Simple input binders can be organised in quality
binder as in the basic calculus. The process &∃(t1?x1[p1], t2?x2[p2]).P , evolves
to P as soon as at least one the input of the quality binder is honoured. As a
consequence, it might be that an input variable xi has not been bound to any
message in the continuation process. Lifting the idea of the basic calculus, an
input variable always carries optional values: it is bound to some(v) if v is the
values received by the input, or to none if the input is not honoured but we are
proceeding anyway.

The construct case e of some(p) : P1 else P2 is then used to check whether
an expression (e.g., an input variable) is indeed carrying values, evolving to P1

if the expression e carries a value matched by the pattern p, or to P2 if it is
none. When the matching is successful a substitution from variables defined
in p to terms in corresponding positions of e is generated and applied to the
continuation process P1. It is worthwhile observing that input channels and
outputs range over terms, meaning that before using a received optional value
we are obliged to extract the value payload (if any) – just as in the basic calculus.

The distinction between values and optional values copes with the potential
unreliability of communication, allowing to proceed even when information is
not arriving or not complying with the expected format, thus addressing the
semantics of the communication, climbing the Internet protocol suit abstraction
stack.

58 From Network to Application Level

Reasoning with patterns. The usefulness of patterns is two-fold: they are
used to select input messages with a given structure, thus attaching “contracts”
to inputs, and to implement cryptographic reasoning.

Intuitively, a pattern matches a term if they are syntactically identical. In
addition to this, the grammar introduces the wild-card pattern _, which matches
everything, and the binding pattern p%y, which binds a term t to the variable
y if the pattern p matches t, so that this is a defining occurrence of variable y.

Input patterns allow selecting messages with a given structure. As an ex-
ample, the input process t1?x[enc(_, k)].P is willing to receive any term (i.e.,
_) symmetrically encrypted under key k. However, patterns p used in input
cannot define new variables. This restriction facilitates obtaining an elegant se-
mantics, since quality binders may allow to proceed with the computation even
if some inputs have not been honoured. For the sake of discussion, suppose that
we were to allow p to contain a binding pattern. In the event that an input
t?x[enc(_%y, c)] does not arrive, and nonetheless we are allowed to proceed, in
the continuation process both x and y should be mapped to none. Syntactically,
this would require to replace y with a variable x1 in p%y, but this is in contrast
with the intuition that cryptographic constructors work on values and return
values.

As for cryptographic patterns, observe that symmetric and asymmetric en-
cryption require the key to be matched by a term t, symbolically expressing the
perfect cryptography assumption: decryption is successful only when the cryp-
tographic key is known (in particular, no wild-card _ is allowed). Similarly, the
pattern hash(t) expresses that a hash can only be compared to another hash, and
thus the term on which the hash is built must be known. As for signature, we
allow the key to be matched by _ accounting for the possibility that a message
is accepted without verifying the signature.

Patterns in case clauses allow binding new variables to matching (sub-)terms.
This mechanism plays a central role in inverting encryption constructors, as in

t?x[enc(_, c)].case x of some(enc(_%y, c)) : P1 else P2

where the input selects a term encrypted with the key k, and the case clause
computes the decryption binding the plain-text to y.

As usual, in the following we shall restrict to closed processes (no free vari-
able), and assume that processes are α-renamed so that variables are defined
exactly once. This assumption simplifies the availability analysis without im-
pairing the expressiveness of the framework, as processes are considered equal
up to α-renaming. Finally, a variable cannot be defined and then applied in the
same pattern. This restriction rules out harmful processes like

case x of some(enc(_%y, y)) : P1 else P2

which is semantically incorrect since we cannot obtain the plain-text without
knowing the key.

5.2 Reduction Semantics 59

Table 5.2: The evaluation � of terms into values and of expressions into op-
tional values.

c � c
t1 � v1 · · · tn � vn

g(t1, . . . , tn) � v
if [{g}](v1, . . . vn) = v

t1 � v1 t2 � v2

enc(t1, t2) � enc(v1, v2)

t1 � v1 t2 � v2

aenc(t1, t2) � aenc(v1, v2)

t1 � v1 t2 � v2

sign(t1, t2) � sign(v1, v2)

t � v

hash(t) � hash(v)

none � none
t � v

some(t) � some(v)

e1 � o1 · · · en � on

f(e1, . . . , en) � o
if [{f}](o1, . . . on) = o

5.2 Reduction Semantics
The semantics of the calculus with patterns retraces that of the basic calcu-
lus: it consists of a transition relation P −→ P ′, parametrised on a structural
congruence relation and on some auxiliary relations for terms and expressions
evaluation and pattern matching.

Terms and expressions evaluations. The relation t � v defines how terms
are evaluated into values v. According to this relation, defined in the first section
of Table 5.2, a value is either a name or the application of a cryptographic
constructor to values.

v ::= c | enc(v1, v2) | aenc(v1, v2) | sign(v1, v2) | hash(v)

Hence, the structure of a cryptographic term is maintained by the evaluation,
symbolically expressing the possibility of inverting an encryption, checking a
signature or a hash, which would not be possible if everything reduced to flat
names, as in the basic calculus. As before, [{g}](. . .) denotes the application of
function g to actual parameters.

Similarly, expressions evaluate to optional values, an optional value o being
either some(v) or none. The evaluation e � o from expressions to optional values
is displayed in Table 5.2, second section.

Pattern matching. Pattern matching is defined by the matching relation
` v ./ p : σ between a value v and a pattern p, which produces a substitution σ,

60 From Network to Application Level

Table 5.3: The value-pattern matching relation ./.

` c ./ c : id ` v ./ _ : id

` c+ ./ c+ : id ` c− ./ c− : id

` v ./ p : σ

` v ./ p%y : σ[y 7→ v]

` v1 ./ p : σ ` v2 ./ v : id

` enc(v1, v2) ./ enc(p, v) : σ

` hash(v) ./ hash(v) : id

` v1 ./ p1 : σ ` c− ./ v2 : id

` aenc(v, c+) ./ aenc(p1, v2) : σ

` v ./ p1 : σ ` c+ ./ p2 : id

` sign(v, c−) ./ sign(p1, p2) : σ

that is, a map from variables y to values. The judgements defining the matching
relation are presented in Table 5.3. A (qualified) constant c matches itself, and
the wild-card pattern matches any value. In these cases no binding takes place,
and thus the matching produces the identical substitution. Binding patterns
are the only case where the matching produces a non-trivial substitution. As
for cryptographic terms, observe that terms for keys are now replaced by val-
ues, for our processes are closed and substitutions applied directly, hence when
a matching takes place variables are replaced by values (cf. rule (Case-tt) of
Table 5.4). As a consequence, pattern matching involving keys yields id. The
correspondence of private and public keys is obtained by demanding an asym-
metric matching between qualified names in the rule for aenc(·, ·): asymmetric
cryptography uses the public key for encryption and the private key for signa-
ture, and the corresponding patterns have to match the private and public key,
respectively. Finally, observe that a hash is not invertible and thus it can only
be compared to another hash. When a value v is not matched by a pattern
p, we write 6` v ./ p, meaning that a substitution which induces the matching
cannot be produced (@σ. ` v ./ p : σ).

Transition relation. As regards the structural congruence, the rules retrace
closely those of the congruence for the basic calculus, limiting to replace restric-
tions with qualified restrictions. Similarly, contexts C now include (νcτ)C.

Table 5.4 defines the transition relation, extending the reduction semantics
of the Quality Calculus by integrating pattern matching at the input and case
level. The first part of the table displays the transition rules, the second part
shows the relation between outputs and binders, and the the third part updates
the Boolean evaluation of binders.

The meaning of rules (In-ff) and (In-tt) is left unchanged. Three rules are
now needed to accommodate the treatment of case e of some(p) : P1 else P2. If

5.3 The Base Station, Revised 61

e evaluates to some(v) and v is matched by pattern p, then the test is successful
and the substitution σ produced by the matching is applied to P1, as dictated
by rule (Match); otherwise, if v is not matched by p – rule (Mismatch)– or the
expression evaluates to none – rule (Case-ff) –, then the else branch is followed.

It is worthwhile noticing that substitutions σ differ from substitutions θ, in
that the latter map variables x ∈ X to optional values o ∈ O, as they orig-
inate from binders. When a case clause or an input is successful, the related
substitution is applied to the continuation process. Therefore, as we consider
closed processes, whenever a term t is matched against a pattern p in an actual
execution, all the variables in t have already been replaced with values. This
behaviour justifies the restriction to values in the definition of the pattern match-
ing relation of Table 5.3. Likewise, when a matching is evaluated, all applied
occurrences of variables in the pattern have been replaced with constants.

Finally, like in the basic calculus, we have a rule for the unfolding of recursive
calls, a rule linking the transition relation to the structural congruence, and
a rule for transition in contexts, which takes care of interleaving and leading
restrictions.

The relation c!v ` b→ b′ describes the effect of an output on a binder, whose
syntax is extended to include simple substitutions like [some(v)/x], denoting a
satisfied input. Given an output and an input synchronising on the same chan-
nel, if the input pattern matches the received value v, then the input variable is
bound to the optional value some(v). The matching yields no substitution, as
input patterns cannot define variables. This behaviour is seamlessly embedded
into quality binders. Observe that the output term is allowed to be a value v,
while we still require the channel to be a name (cf. the rules for input).

b ::r θ establishes whether binder b is sufficiently instantiated (r = tt) or needs
more input (r = ff), recording in θ the bindings of input variables. With respect
to the corresponding relation of Table 4.4 we need only to update the syntax,
accounting for patterns and replacing optional data with optional values.

5.3 The Base Station, Revised

Let us revise the example of § 4.4 in a more security-oriented mind-set. Con-
sider a Home Area Network where a smart meter SM (base station) is in
charge of scheduling connected appliances in order to optimise the energy bud-
get [VYD12]. As the network includes a domestic photovoltaic system, SM relies
on an external wireless sensor WF (sensor node) for weather forecasting, so as
to estimate the amount of energy that will be produced in-house. Due to the
insecurity of the wireless medium, the communication between WF and SM is
symmetrically encrypted. Moreover, due to the unreliability of the connection
and of the sensor itself, which is placed outdoor, SM relies on a local computer
to provide an estimate based on historical data whenever WF is not responding
in due time, as dictated by a local clock.

62 From Network to Application Level

Table 5.4: The reduction relation −→ of the Quality Calculus with patterns.

t1 � c1 t2 � v2 c1!v2 ` b→ b′ b′ ::ff θ

t1!t2.P1|b.P2 −→ P1|b′.P2

(In-ff)

t1 � c1 t2 � v2 c1!v2 ` b→ b′ b′ ::tt θ

t1!t2.P1|b.P2 −→ P1|P2θ
(In-tt)

e � some(v) ` v ./ p : σ

case e of some(p) : P1 else P2 −→ P1σ
(Match)

e � some(v) 6` v ./ p
case e of some(p) : P1 else P2 −→ P2

(Mismatch)

e � none

case e of some(p) : P1 else P2 −→ P2

(Case-ff)

A(e) −→ P [e/x]
if A(x) , P (Rec)

P1 ≡ P2 P2 −→ P3 P3 ≡ P4

P1 −→ P4

(Cng)
P1 −→ P2

C[P1] −→ C[P2]
(Cnt)

t � c ` v ./ p : id

c!v ` t?x[p]→ [some(v)/x]

c1!c2 ` bi → b′i

c1!c2 ` &q(b1, · · · , bi, · · · , bn)→ &q(b1, · · · , b′i, · · · , bn)

t?x[p] ::ff [none/x] [some(v)/x] ::tt [some(v)/x]

b1 ::r1 θ1 · · · bn ::rn θn

&q(b1, · · · , bn) ::r θn · · · θ1

where r = [{q}](r1, · · · , rn)

5.3 The Base Station, Revised 63

In the following formalisation we shall use some operators derived from qual-
ity binders as shown in § 4.3; the extension to the syntax with patterns is
straightforward.

The sensor is specified in the calculus as the following process:

WF , 0⊕ (sm?x[enc(_, k)]).
case x of some(enc(_%ym, k)) : sm!enc(estimate(ym), k).WF else 0.WF

The top-level choice specifies that WF either dies (physical attack, depleted
battery, . . .) or operates as expected. In the ideal case, the sensor waits for a
forecast request from SM on channel sm, encrypted under a shared key k and
containing the time-point to forecast. If such a message is received, then the
plain-text is extracted in ym and the estimate estimate(ym) (a function g) is
encrypted and returned. Observe that there is no need for testing whether or
not the content of the encrypted term is other than none, as an encryption can
only be built on values.

As for the smart meter, we obtain the following process:

SM , (νm) (νt) &!
∃(lc!m, sm!enc(m, k)).set!t.

&∀(tick?xt[_],&?
∃(lc?xl[_], sm?xr[enc(_, k)])).

case xr of some(enc(_%yr, k)) : 1store!yr.SM else
case xl of some(_%yl) : 2store!yl.SM else 30

First, the smart meter sends the request for a new measure m to the local
computer on channel lc and to the sensor node. When at least one request is
accepted, SM sets a deadline t starting the local clock, and then starts waiting.
The quality binder in the second line is consumed as soon as (i) the deadline
has expired (input from the clock on channel tick), and (ii) either the local
computer or the sensor node has responded. After the binder is consumed the
smart meter extracts the received value and stores it locally: in case WF replied,
then the message has to be decrypted, otherwise if the local computer responded
the value is assumed to be in clear.

It is worthwhile observing that when the binder in the second line of SM is
consumed, it must be the case that either the local estimate or the more reliable
one computed by the remote sensor is available, the implicit assumption being
that local components will always respond. In other words, the program points
instrumented with labels 1, 2 must be reachable, and they are so under a precise
characterisation for the expected inputs, while label 3 is not. We will show in
§ 5.4 how the analysis confirms such intuition.

The processes defining the clock and the local computer essentially retrace
those of § 4.4 to the smart meter requests and thus we omit them for the sake
of brevity, as the analysis will only concern SM.

64 From Network to Application Level

5.4 Availability of Communication

The robustness analysis of Ch. 4 is limited to consider whether or not an input
is received, whereas patterns enable to inspect the structure of messages, con-
sidering what is to be received. The language of § 5.1 allows indeed to record
whether or not a given binder has been satisfied, as well as the optional values
its variables may assume according to the input patterns, and thus yields a more
precise analysis.

5.4.1 Availability analysis

The availability analysis, defined in Table 5.5 on the structure of processes, is
based on the judgement

` ξ@P

denoting that the first-order formula ξ describes the reachability condition of
the program point just before P , the idea being that if P is reachable then ξ
is satisfiable and, by contra-position, if ξ is unsatisfiable then P is unreachable.
We assume that the occurrence of P in the main process P∗ can be uniquely
identified – labels or tree addresses can be used to solve ambiguities, but in
the following we shall dispense with them to simplify the notation. Moreover,
we assume that all the variables are existentially quantified at the outermost
level: scope confusion cannot occur thanks to the assumption that processes are
α-renamed. Though this choice yields more readable formulae, clearly superior
for presentation purposes, an efficient implementation would introduce explicit
existential quantifiers instead of using fresh constants, letting the SMT solver
perform Skolemisation.

Our first-order formulae ξ use the uninterpreted function symbol some(·)
and the constant none to model optional values, and relate expressions to the
optional values they carry by means of the equality symbol, as in x = some(c).

In the first part of Table 5.5 we assume that each process defined in the
system may be executed. Then, in the second part, rules (A-new), (A-par1),
(A-par2), (A-out) express that restriction, parallel composition, and output do
not require additional information to proceed with the computation nor impose
shape constraints on information received so far.

Binders and case constructs determine instead the shape of ξ, as they rule
the content of accepted messages and account for their availability. Rule (A-bin)
abstracts the behaviour of binders resorting to the judgement

` b I ϕ,ψ

defined in the last section of Table 5.5. A binder is modelled by two formulae:

• ϕ, recording the combination of inputs that allow passing the binder (suc-
cess condition); and,

5.4 Availability of Communication 65

Table 5.5: The availability analysis ` ξ@P of the Quality calculus with pat-
terns.

` tt @P∗ ` tt @P1 · · · ` tt @Pn

` ξ@ (νc)P

` ξ@P
(A-new)

` ξ@ (P1 | P2)

` ξ@P1

(A-par1)
` ξ@ (P1 | P2)

` ξ@P2

(A-par2)

` ξ@ (t1!t2.P)

` ξ@P
(A-out)

` ξ@ b.P ` b I ϕb, ψb
` ξ ∧ ϕb ∧ ψb @P

(A-bin)

` ξ@ (case e of some(p) : P1 else P2) ` e IJ p : ψe

` ξ ∧ ψe @P1

(A-case)

` ξ@ (case e of some(p) : P1 else P2) ` e IJ p : ψe

` ξ ∧ ¬(∃bv(p).ψe) @P2

(A-else)

` x IJ p : ψx

` t?x[p] I x = some(y), (ψx ∨ x = none)

` b1 I ϕ1, ψ1 · · · ` bn I ϕn, ψn
` &q(b1, . . . , bn) I [{q}](ϕ1, . . . , ϕn), (ψ1 ∧ · · · ∧ ψn)

• ψ, which describes the optional values that the input variables may assume
according to the input patterns (strongest post-condition).

Consider a simple input t?x[p]. The success condition ϕ simply records that x
has to be received in order to pass the input, disregarding the received optional
value, which can be built on any y, where y ∈ Y is a fresh variable that does not
appear elsewhere in the formulae generated so far. The strongest post-condition
ψ is a disjunction of two sub-formulae: ψx, which records the structure of the
optional value to which a successful input binds x, and x = none, recording the
possibility that the input is not performed. The component ψx of the strongest
post-condition is produced according to a judgement for pattern matching, ex-
plained below.

Quality binders build on the same intuition: the success condition is obtained
by applying the quality guard q to the success condition of the sub-binders, as
much as in the robustness analysis of § 4.6.1; the strongest-post condition is
instead obtained as the conjunction of the strongest post-conditions of the sub-
binders.

The analysis of case constructs relies on a judgement for pattern matching,

66 From Network to Application Level

as it is the case for input binders. In the successful branch of the test, rule (A-
case), it must be that the expression e complies with the shape dictated by the
pattern p, described by a strongest post-condition formula ψe. As for a failing
case test, rule (A-else), we state the negative knowledge we have acquired on
the shape of e by negating an existential quantification over the variables bound
in p: there is no value for bv(p) such that the matching is successful.

The judgement ` e IJ p : ψ is presented in Table 5.6, and produces the
strongest post-condition generated by a successful pattern matching, that is, a
formula that describes the shape with which an expression e has to comply in
order to match a pattern p. Ideally, this is achieved by imposing e = some(p),
but due care has to be paid to wild-cards and defining occurrences of variables
appearing in p.

Before computing the analysis, we replace each occurrence of the wild card
_ with a fresh variable yi ∈ Y. For defining occurrences of variables do not
contribute to describe the shape of e, we get rid of them applying strip(p),
which produces a copy of p without variable definitions. Nonetheless, as the
definition of a variable y may carry information about the structure of the term
to which y is bound, a conjunct recording every definition is generated by exp(p).
Observe that the definition of strip(·) and exp(·) on cryptographic constructors
takes advantage of the perfect cryptography assumption: patterns in position
of keys or hashed terms cannot bind variables. Finally, observe that patterns
p are a subset of patterns p, hence the definition of the matching judgement is
straightforward.

As an example, consider the clause

case xr of some(enc(yr%yr, k)) : . . .

of process SM, where yr is a fresh variable replacing the wild-card. The for-
mula generated by the analysis to describe the strongest post-condition in the
successful branch of the test is

` xr IJ enc(yr%yr, k) :
(
xr = some(enc(yr, k)) ∧ tt ∧ (yr = yr)

)
All the variables are assumed to be existentially quantified. The first conjunct
records the shape that xr must have in order for the flow to pass the test
successfully, that is, the variable must carry an encryption under key k. The
second conjunct is obtained by exp(yr); this is useful in case nested patterns
occur that define the format of a bound variable, but in this case can be safely
ignored. The third conjunct imposes that variable yr, defined in the pattern, has
the format of the term matched by the pattern; being such term another fresh
variable, also this conjunct can be safely ignored. As for the formula describing
a failed matching, we obtain

¬∃yr (xr = some(enc(yr, k)))

stating that whatever value xr is carrying, if any, it is not an encryption under
key k (trivial conjuncts are omitted).

5.5 Implementation of the Analysis 67

Table 5.6: The matching judgement ` e IJ p : ψ.

` e IJ p :
(
e = some(strip(p)) ∧ exp(p)

)
strip(c) = c strip(y) = y strip(p%y) = strip(p)

strip(enc(p1, p2)) = enc(strip(p1), p2) strip(aenc(p1, p2)) = aenc(strip(p1), p2)

strip(sign(p1, p2)) = sign(strip(p1), p2) strip(hash(p)) = hash(p)

exp(c) = tt exp(y) = tt exp(p%y) = exp(p) ∧ (y = strip(p))

exp(enc(p, t)) = exp(p) exp(aenc(p, t)) = exp(p)

exp(sign(p1, p2)) = exp(p1) exp(hash(t)) = tt

5.4.2 Formal correctness

The correctness statement is phrased as follows:(
` ξ@P ∧ (P∗ −→∗ C[Pϑ])

)
⇒

(
ϑ |= ξ

)
that is, if ξ describes the reachability of P in a system and P∗ reaches a context
where P is instantiated under substitution ϑ for input variables and variables
defined by patterns, then ϑ is a model for ξ. The full-fledged formal proof resorts
to a semantics with explicit substitution and mimics closely the correctness proof
of the robustness analysis. Appendix B.1 contains the main statements that are
needed in order to lift the proof of the robustness analysis to the availability
analysis.

5.5 Implementation of the Analysis
In the following, we show how to encode the analysis as an SMT problem in
SMT-LIB [BST10], using Z3 to decide the satisfiability of the resulting formulae
and demonstrating the procedure on the example of § 5.3.

5.5.1 SMT-LIB encoding

The theory with respect to which we seek satisfiability is given by the combina-
tion of first-order logic and the theory of equality with uninterpreted function
symbols, together with some first-order axioms described below. The theory
makes use of the types Value and OpValue, for values and optional values, re-
spectively. Moreover, we define the function symbols enc : Value×Value→ Value

68 From Network to Application Level

(same sort for aenc(·, ·), sign(·, ·)), hash : Value → Value, some : Value →
OpValue, and the constant none of type OpValue.

When computing a model, Z3 is free to choose a definition for uninter-
preted function symbols (in our case the cryptographic constructors and some).
Nonetheless, we need to limit the confusion allowed in a model, for example re-
quiring that encryptions computed on different values produce distinct results.
From the theory of equality with uninterpreted functions we inherit that the
functions we have defined indeed behave like mathematical functions (congru-
ence property). Additionally, we require that these functions are injective, that
in the case of symmetric encryption translates into

∀y1, y2, y3, y4 : Value . (enc(y1, y2) = enc(y3, y4))⇒ (y1 = y3 ∧ y2 = y4) (5.1)

thus ensuring that enc(c1, c) 6= enc(c2, c) whenever c1 6= c2 (and similarly for
the other functions). Moreover, we need to distinguish between optional values
computed by some and the optional value assigned to the constant none, thus
we state:

∀y : Value . some(y) 6= none

Analogously, all the constants in the system under analysis must be kept distinct,
but in our example we have only the constant k.1

It is worth noticing that enc requires two arguments of type Value as input
and produces Value as output. As a consequence, the injectivity axiom (5.1)
can only be satisfied if Value contains one element or it is infinite. Since the
presence of more than one element in Value will usually be required in meaning-
ful applications (e.g., inputs receiving distinct optional values), it follows that
Value must be infinite. Hence, the injectivity axiom can only be satisfied by an
infinite model, leading to non-termination in the satisfiable case (jeopardising
the decidability result for the satisfiability of term algebras via quantifier elim-
ination). In order to overcome this limitation, we restrict the implementation
to consider a fixed number v1, . . . , vn of elements of type Value, and we model
a finite fragment of the term algebra where elements can be uniquely decom-
posed. The restriction is achieved thanks to the introduction of a predicate
dom : Value→ Bool, such that

∀y : Value .

(
dom(y)⇔

(
n∨
i=1

(y = vi)

))

This cardinality constraint is then enforced by requiring that each variable y
occurring in a formula generated by the analysis is in the domain induced by

1Observe that these axioms would not be needed if the analysis were implemented via
resolution-based theorem proving, as we would operate on the initial algebra (Herbrand uni-
verse). Refer to [JW09] for a brief comparison of the two approaches.

5.5 Implementation of the Analysis 69

dom. The injectivity axiom is thus relaxed as follows:

∀y1, y2, y3, y4 : Value .(∧4
i=1 dom(yi)

)
∧ (enc(y1, y2) = enc(y3, y4))⇒ (y1 = y3 ∧ y2 = y4)

This is an effective choice as we analyse finite processes exchanging finite-depth
terms: n can be statically over-approximated by looking at the number of vari-
ables y and at the maximum depth of an encrypted value.2 Furthermore, we
also need to state that the encryption function enc computes within the domain,
and analogously for the other functions.

Finally, it is reasonable to require that the codomains of different functions
are mutually disjoint:

∀y1, y2, y3, y4, y5, y6, y7 : Value
distinct(enc(y1, y2), aenc(y3, y4), sign(y5, y6), hash(y7))

so as to distinguish between different objects.

5.5.2 Analysing the smart meter
Let us now apply the analysis to our example. According to the rules, we
start with ` tt @ SM. The program point after the generalised output prefix
&!
∃(lc!m, sm!enc(m, k)) is described by

ξ1 = (x1 = some(y1) ∨ x2 = some(y2)) ∧
(x1 = some(y1) ∨ x1 = none) ∧
(x2 = some(y2) ∨ x2 = none)

where the first line expresses the success condition imposed by quality guard,
asking that at least one input acknowledging an output is received, while the
second and third lines consist in the conjunction of the strongest post-conditions
of the two inputs into which the output prefix is transformed. Similarly, the
analysis of the quality binder

&∀(tick?xt[_],&?
∃(lc?xl[_], sm?xr[enc(_, k)]))

produces the formula

ξ2 = (xt = some(y3) ∧ (xl = some(y4) ∨ xr = some(y5))) ∧
(xt = some(yt) ∨ xt = none) ∧
(xl = some(yl) ∨ xl = none) ∧
(xr = some(enc(yr, k)) ∨ xr = none)

where the first line expresses the success condition as determined by the nested
quality binders: the deadline has to expire (xt is received and thus bound to some

2An alternative approach consists in limiting the depth of nested encryptions to a given
bound explicitly, perhaps using a more elaborate type system.

70 From Network to Application Level

value), and either the local computer or the remote sensor has to respond (xl or
xr is bound to some value, or both). The last three lines describe the strongest
post-conditions of three inputs, showing for instance that if xr is received, then
it must carry an encryption under k. Finally, at the three labels we obtain the
formulae

1 : ξ1 ∧ ξ2 ∧ (xr = some(enc(yr, k)))

2 : ξ1 ∧ ξ2 ∧ ¬∃yr (xr = some(enc(yr, k))) ∧ (xl = some(yl))

3 : ξ1 ∧ ξ2 ∧ ¬∃yr (xr = some(enc(yr, k))) ∧ ¬∃yl(xl = some(yl)

For the sake of readability we have omitted tt conjuncts and conjuncts of the
form (yr = yr) generated by input of the form t?x[_] and binding patterns such
as _%yr, for they do not add any information about the variable y carried by
the optional value to which x is possibly bound. At label 1 we have passed
the binders (ξ1 ∧ ξ2), xr must be available and carry an encryption. At label 2
instead xr is not available – either because it nothing has been received at all or
nothing of the expected shape – but xl is carrying some value. Finally, at label
3 we have passed the binders but neither xr nor xl is available, which leads to
a contradiction.

5.5.3 Results

When studying a process, we need to feed the SMT solver with the formulae
generated by the analysis, instrumented with the domain restriction, where all
the input variables are declared as constants of type OpValue and all the variables
y are introduced with type Value. The complete SMT-LIB code of the motivating
example is available at www.imm.dtu.dk/~rvig/quality-smt.z3 (observe that
the implementation contains also some redundant conjuncts we have omitted in
the discussion above).

Running Z3 on our example (with the option -smt2 for the SMT2 input
format), we obtain that labels 1 and 2 may be reachable (the formulae are
satisfiable) while label 3 is not (the formula is unsatisfiable). The conditions
under which labels 1 and 2 may be reachable are derived from the definition
that Z3 provides for enc(·, ·), some(·), and by the assignment computed for the
input variables, which can take the optional value none or optional values in the
codomain of some(·). Studying label 2, for example, we have that xr = none,
stating that xr is not available, while xl = some(·): we are in the case in which
only the local estimate is available. Moreover, if we were to force that xr is
other than none, we would realise that label 2 would not be reachable any more,
for the branching structure of SM would lead to label 1. Finally, the analysis
provides us with information about the structure of the messages: at label 1,
for instance, we have xr = some(enc(yr, k)), highlighting that xr is received and
carries an encryption. Again, by stating that xr carries something else than an

www.imm.dtu.dk/~rvig/quality-smt.z3

5.6 Concluding Remarks 71

encryption under k, we would realise that label 1 would not be reachable any
more.

It is worthwhile observing that an under-estimate of the cardinality of the
domain dom may result in unsatisfiability, hence due care is required by this
step. In particular, any change to the model demands to re-compute the size of
the domain.

The SMT-LIB implementation models the analysis as faithfully as possible.
In practice, it is possible to use a different representation of the problem in
order to obtain remarkably better performance. First of all, it is possible to
introduce a new type Key and to re-define cryptographic functions as working
on keys, like for instance in enc : Value×Key→ Value. Since the number of keys
is in general much smaller than the number of exchanged messages, this choice
considerably improves scalability (i.e., reduces the cardinality of domain). In
addition, this approach mimics modern cryptosystems, where keys must fulfil
precise conditions, and thus they are distinguishable from other objects. Sec-
ondly, introducing existential quantifiers in formulae and letting Z3 perform the
Skolemisation step also improves the performance.

Our example set is not sufficient for an extensive discussion of performance
issues, but still it is interesting to note that the original formalisation of the
example discussed above leads to verify the reachability of label 2 in about 3
minutes when the domain contains 6 elements (on an ordinary laptop), while
the improved version (dedicated type for keys and no preliminary Skolemisation)
takes about 0.12 seconds. Both the improvements seem to yield a significant
gain. The implementation is available at

www.imm.dtu.dk/~rvig/quality-smt-efficient.z3

5.6 Concluding Remarks

We have now concluded our paradigmatic treatment of unavailability, which led
to factoring the sources of DoS into unreliable communication and improper
information and devise a process calculus where these concepts are first-class
citizens. This characterisation can be justified with reference to the layers of
the Internet protocol suit, and is implemented by means of programming ab-
stractions that address atomically the behaviours of interest. Levering such new
primitives, we propose a static analysis that uncovers where and why DoS may
occur, fostering an availability-oriented mind-set from the very first stage of the
design.

The centrality of the semantic unavailability treated in this chapter is cor-
roborated by the SYN cookies technique discussed in § 3.1.3, which avoids SYN
flooding exactly because packets with incorrect format are discarded without
further processing. Due to the non-blocking nature of output actions over TCP,
however, the formalisation of that example requires a broadcast version of the

www.imm.dtu.dk/~rvig/quality-smt-efficient.z3

72 From Network to Application Level

calculus like those presented in the following.

The exploitation of patterns for expressing cryptographic reasoning is com-
mon in the literature on security protocols, also in those frameworks that rely
mainly on rewriting systems. Our usage of patterns is in the wake of [BRN04],
where they are used in association with input actions. In this sense, the novelty
of our developments consists in the interpretation of input contracts for deter-
mining availability condition imposed by the semantics of an application.

Chapter 6

A Broadcast Scenario

In Chs. 4,5 we have presented our paradigmatic approach to enforcing availabil-
ity, focusing on the primitives that allow modelling DoS at the transport and
application level. We shall now turn our attention to applied scenarios, where
unavailability threats coexist with broadcast communication and security de-
mands.

In this chapter we present a calculus of broadcasting processes, the Applied
Quality Calculus (AQC), instrumented with a theory that allows modelling and
reasoning about cryptographic primitives, and equipped with explicit notions
of communication failure and unwanted communication, encompassing the de-
velopments of Ch. 5. The calculus is to be understood as a modelling effort on
which the subsequent developments are based.

With respect to the calculus of Ch. 5, the AQC is equipped with a single
syntactic category for messages, and distinguish between value and optional
values by means of a simple type system. On the semantic side, the AQC relies
on an asynchronous instant communication model, where a process is always
allowed to perform an output (broadcast) and continue, while an input is allowed
only when a matching output is being performed. Similarly to the Quality
Calculus with patterns, inputs are parametrised so as to accept only messages
with specific properties (e.g. format), ignoring unwanted communication and
thus cutting down the confusion generated by broadcasting over a few (often
just one) wireless channels.

Equational reasoning is implemented in the AQC by means of term rewriting,
and leveraged for modelling both selective inputs and cryptographic operations.
A rewrite theory for cryptographic primitives is presented, which relies on a

74 A Broadcast Scenario

simple yet powerful approach for defining cryptographic material, closer to real
cryptosystems than other signature-based calculi, without the burden of an
explicit type system. Furthermore, conditional rewrite rules allow to specify
more complex quality guards, which can relate the behaviour of distinct quality
binders.

Finally, the modelling expressiveness of the framework is illustrated on a
meaningful case study, where two nodes of a wireless sensor network perform a
key update exploiting asymmetric cryptography and secret sharing in order to
hamper the work of an attacker. The example highlights how the calculus facili-
tates dealing with denial-of-service (expected information is not received), flood-
ing generated by broadcast communication (receiving messages non-pertinent to
the protocol), and cryptographic reasoning at the same time.

The chapter first presents the AQC, focusing on its syntactic novelties in
§ 6.1, on rewrite rules in § 6.2, and on the broadcast semantics in § 6.3. The
expressive power of the calculus is demonstrated on the example of § 6.4. An
account of related works both in the area of broadcasting calculi and in the area
of equational reasoning is presented in § 6.5.

This chapter is based on [VNR13].

6.1 The Applied Quality Calculus

The AQC is a statically-typed process calculus. According to the syntax dis-
played in Table 6.1, a process P consists of actions that range over expres-
sions. An expression e can be a variable x, a name c, or a function application
f(e1, . . . , en). The syntax assumes to have a sorted signature Σ containing ele-
ments of the form (f :sf), where f is a function symbol and sf = t1×· · ·×tn → t
is its sort, defining f as a function of arity n, the types t1, . . . , tn of its arguments,
and the type t of the expression computed by f . Constants are represented as
functions of arity 0.

Values and optional values. The AQC insists on the distinction between
values and optional values peculiar to Quality Calculi. This distinction is here
formalised by means of a simple type system: the type V identifies expressions
that convey information (values), whereas the type V ? identifies expressions that
possibly do not carry information (optional values). A name c has type V , a
function f is typed according to its sort, none has type V ?, while some :V → V ?

takes an expression of type V and returns an expression of type V ?. A variable
x could have either type V or V ?; for the sake of consistency with previous
chapters, in the following we shall write x to denote variables of type V ? and
y for variables of type V . Similarly, we use c to denote names (type V), v to
denote values (type V), and o to denote optional values (type V ?).

6.1 The Applied Quality Calculus 75

Table 6.1: The syntax of the Applied Quality Calculus.

P ::= (ν−→c ;W)P | P1|P2 | 0 | b.P | e1!e2.P | A(e)
| case e of some(y) : P1 else P2

b ::= e1?x[e2] | &f(e1,...,em)(b1, . . . , bn)

e ::= x | c | f(e1, . . . , en) | none | some(e)

Equational reasoning. The behaviour of a function application is defined
by a set F of conditional rewrite rules of the form

f(e1, . . . , en)→ e if cond

where f and all the function symbols occurring in the ei’s belong to Σ, the
ei’s contain all the variables occurring in the result e and in the side condition
cond. Valid constraints in the condition are limited to testing whether or not
a list of names is in a given relation, e.g., whether or not two names form
an asymmetric key pair, or checking whether a parameter e evaluates to an
expression e′, according to the following syntax:

cond ::= −→c ∈ R | e � e′ | cond ∧ cond | cond ∨ cond | ¬cond | ∃z.cond

where z has either type D or D? in ∃x.cond. The keyword otherwise is a short-
hand notation used in place of if cond to denote a rule which applies when no
other rule can be applied for the given function symbol. A rewrite theory con-
taining otherwise can always be re-rewritten into an equivalent theory without
such keyword [CDE+11, § 4.5.4]. We assume that e and the ei’s are typed co-
herently with the sort of the function f . Finally, we require that the rewrite
system specified by F is confluent and terminating [BN98].

The restriction operator (ν−→c ;W)P declares the names −→c = (c1, . . . , cn) as
fresh in P and states a set of beliefs W on them. A belief w ∈W has the form
(ci, . . . , ci+k) ∈ R, asserting that the tuple (ci, . . . , ci+k) is in the relation R.
Given a restriction (ν−→c ;W), we require that fc(W) ⊆ fc(−→c). In § 6.2 relations
will be introduced that contain symmetric keys (unary) and asymmetric key
pairs (binary). In the following, W will denote the set of beliefs stated in
a system so far, and we will call it world. A regular restriction is obtained
specifying no belief on the restricted term, and it will be denoted by (ν−→c).

The worldW plays a key role in evaluating function applications, as the side
condition of a rewrite rule can test whether or not some parameters are in a
relation R. Such a condition holds if the given relation is in W , as required by
the semantics of § 6.3. It is worthwhile noting that a function application may
have different evaluations in different worlds.

Processes and quality binders. As for the remaining operators, e1!e2 rep-
resents an asynchronous output of an expression e2 on channel e1. The input

76 A Broadcast Scenario

e1?x[e2] waits for a message on channel e1 and binds it to variable x if the
expression e2 evaluates to some(v). When e2 is a constant other than none
we obtain the standard input operator e?x; when e2 contains x we obtain an
input operator able to select messages with specific properties: e?x[fst(x)], for
example, accepts only pairs whose first component is not none. This is a very
useful feature in a broadcast calculus, in particular when modelling system com-
municating over a single channel, as we will see in § 6.4. P1|P2 is the parallel
composition of two processes, and A(e) is a call to a process defined in the
system, with e being the actual parameter.

Finally, quality binders &q(e1?x1[e′1], . . . , en?xn[e′n]) behave as in the previ-
ous versions of the calculus, the main novelty being that the quality guard q
is now a place-holder for a function application f(e1, . . . , em), as explained in
§ 6.2.

Well-formedness. As for typing, we require that

• in e1!e2 the channel e1 and the outputted value e2 have type V ;

• in e1?x[e2] the channel e1 has type V , the input expression (or condition)
e2 has type V ?, and the input variable x has type V ?;

• in the call A(e) the expression e has type V ?;

• in case e of some(y) : P1 else P2 the expression e has type V ?, and the
variable y has type V .

As the syntax is overly liberal in a number of respects, some restrictions help
design well-formed processes. First, we will assume that expressions and pro-
cesses are well-typed and that processes are closed (no free variable). Secondly,
we assume that input expressions and quality guards contain only variables that
have been defined prior to the binder in which they occur (i.e., in the syntactic
prefix). for instance, the process &q(e1?x1, e2?x2[f(x1)]) is not well-formed, as
the input on e2 may arrive before the input on e1, and in this case we would not
be able to evaluate the input condition f(x1). Finally, limitations apply also to
quality guards, as discussed in the following section.

6.2 Exploting Rewrite Rules

6.2.1 Cryptographic reasoning

In the literature about security protocols, since the introduction of the Spi-
Calculus [AG97], a popular approach suggests to represent secret cryptographic
keys as fresh names. This is for example the case of a symmetric key, or of
a private key in an asymmetric cryptosystem. A public key pub can then be
represented as a function application generated over a free algebra of terms,

6.2 Exploting Rewrite Rules 77

and the connection with the private key prv is achieved by letting the latter
be an argument of the function representing pub. This technique, pioneered in
the applied π-calculus [AF01], has been used as a successful best practice for
encoding security protocols in the verifier ProVerif [Bla09], where cryptographic
primitives are implemented as rewrite rules. For example, the rule

adec(aenc(y1, pk(y2)), y2)→ y1

states that the decryption of a term y1 encrypted under the public key pk(y2) is
successful only if the third argument is the private key y2, whose correspondence
to pk(y2) is automatically handled via pattern matching. The main advantage
of this approach is that an implementation can directly rely on syntactic unifica-
tion, that is an efficient procedure. As a main drawback, however, this paradigm
fails to express how real cryptosystems work: unless a type system is enforced,
any term can be used as key, while in the real world precise constraints apply
to keys and to the key generation process. In the following, we overcome this
limitation introducing explicit relations between keys, to be exploited in side
conditions of rewrite rules. This is achieved without overly complicating the
type system of the AQC.

Two simple relations are used to state that a name is a key:

• c1 ./ c2, meaning that (c1, c2) ∈./ is a pair of keys in an asymmetric cryp-
tosystem; we assume that c1 is the private key and c2 is the corresponding
public key;

• cn, meaning that c is a key in a symmetric cryptosystem.

For instance, the process (νc1, c2; c1 ./ c2)P declares c1, c2 as a new key pair
in P , and in the trailing process every function application will be evaluated
in the world W = {c1 ./ c2}. It is worthwhile observing that we could design
a process which relies on various cryptosystems simply introducing different
relation symbols. On the basis of these relations, a theory for cryptographic
primitives is displayed in Table 6.2, in the wake of [Bla02], that pioneered the
rewriting approach to the symbolic modelling of cryptographic primitives (in
turn inspired by the applied π-calculus). The main novelty of our approach is
the use of conditions in rewrites for identifying keys.

Symmetric cryptography. Shared-key encryption can be represented with
the symbol (enc : V × V → V) ∈ Σ, the first parameter being the message
to encrypt and the second one being the key. The corresponding decryption
operator is represented by the symbol (dec :V × V → V ?) ∈ Σ, which takes an
encrypted message as first parameter and a key as second parameter. Observe
that a decryption may fail, as dec is allowed to return none. The behaviour of

78 A Broadcast Scenario

these operators is modelled by the following rewrite rules in F :

dec(enc(y1, y2), y2)→ some(y1) if y2n
dec(y1, y2)→ none otherwise

These rules state that an encryption is successful only if the key y2 is in n,
i.e., if it is a symmetric key. This approach is coherent with the majority of
modern cryptosystems, where keys are required to have particular properties,
and thus are distinguishable from random names. In the Advanced Encryption
Standard (AES), for example, a valid key must have a predefined dimension
(128, 192, or 256 bits). Observe that the second rule applies when at least one
of the following condition is met: (i) the first argument is not an encrypted
term; (ii) the second argument is not a symmetric key; (iii) the keys used for
encryption and decryption do not match. Intuitively, the second rule is applied
only if the first rule cannot be applied. The formal treatment of otherwise relies
on a transformation that translates a theory containing this keyword into a
semantically equivalent theory without this attribute, as explained in [CDE+11,
Sec. 4.5.4] . Perfect cryptography is realised if no more rule is provided which
deals with encrypted expressions.

Rules can be defined to one’s liking. We could be even more restrictive about
encryption, requiring enc(x, y) to be generated with a valid y:

enc(y1, y2)→ some(enc(y1, y2)) if y2n
enc(y1, y2)→ none otherwise

and then use enc(y1, y2) in the decryption rules (the sort of enc should be
changed to allow returning none). In this way we could attain a more precise
modelling of a particular cryptosystem.

Asymmetric cryptography. Asymmetric encryption and decryption can be
represented with the symbols (aenc : V × V → V), (adec : V × V → V ?) ∈ Σ,
related by the following rewrite rules in F :

adec(aenc(y1, y2), y3)→ some(y1) if y3 ./ y2

adec(y1, y2)→ none otherwise

again, this encoding realises perfect cryptography. The side condition of the
first rule requires that the keys y2 (public) and y3 (private) come from a valid
key pair, i.e., are in the relation defined by ./. As for the symmetric case, in
fact, asymmetric cryptosystems lay down precise conditions that a key pair has
to fulfil.

Signature. A message signed under a secret key is represented with the func-
tion (sign : V × V → V) ∈ Σ, and we have two corresponding functions for
manipulating the generated signed message: (getmessage :V → V ?) ∈ Σ returns

6.2 Exploting Rewrite Rules 79

Table 6.2: A conditional rewrite theory for cryptographic reasoning.

Σ F
enc :D × V → V dec(enc(y1, y2), y2)→ some(y1) if y2n
dec :V × V → V ? dec(y1, y2)→ none otherwise

aenc :V × V → V adec(aenc(y1, y2), y3)→ some(y1) if y3 ./ y2

adec :V × V → V ? adec(y1, y2)→ none otherwise

sign :V × V → V getmessage(sign(y1, y2))→ some(y1)
getmessage :V → V ? getmessage(y)→ none otherwise
checksign :V × V → V ? checksign(sign(y1, y2), y3)→ some(y1) if y2 ./ y3

checksign(y1, y2)→ none otherwise

hash :V → V

pair :V × V → V fst(pair(y1, y2))→ some(y1)
fst :V → V ? snd(pair(y1, y2))→ some(y2)
snd :V → V ? fst(y)→ none otherwise

snd(y)→ none otherwise

the message without verifying the signature, while (checksign :V ×V → V ?) ∈ Σ
performs the check. The rewrite rules follow which relate these symbols:

getmessage(sign(y1, y2))→ some(y1)
getmessage(y)→ none otherwise
checksign(sign(y1, y2), y3)→ some(y1) if y2 ./ y3

checksign(y1, y2)→ none otherwise

observe that we will always be able to retrieve the original message when we do
not verify the signature, thus the rule for getmessage has no side condition and
behaves identically in every world. In contrast to this, checksign requires that
(y2, y3) is a a valid private-public key pair.

It is worth noting that we are assuming ./ to exhibit a particular property:
the private key can be used for encryption, as in RSA. We could model asym-
metric cryptosystems which do not have this property, like the Digital Signature
Algorithm (DSA), introducing a different symbol for relating keys.

Hash. An hashing function can be represented with the symbol (hash : V →
V) ∈ Σ, without related rule in F , for an hashed message cannot be inverted in
our ideal world.

Table 6.2 summarises the rules presented so far and gives pairing and pro-
jections constructs that we shall use in the example of § 6.4.

80 A Broadcast Scenario

6.2.2 Quality guards

Quality guards decide when a quality binder is satisfied and the trailing process
can be executed. Let B be a sub-type of V representing Booleans, where the
truth values {ff, tt} are constants defined in the signature Σ. A quality guard
q(e1, . . . , em) for a binder &q(e1,...,em)(b1, . . . , bn) is a function (q : t1×· · ·× tm×
Bn → B) ∈ Σ which takes as parameters

• m expressions e1, . . . , em with types t1, . . . , tm (either V or V ?),

• n Boolean parameters, each one stating whether or not a bi has been
satisfied,

and returns tt, in which case the binder is satisfied and its continuation is
evaluated, or ff otherwise. A simple input evaluates to tt if it is performed, i.e.,
it transforms into a substitution, while it gives ff if at the time of the evaluation
it has not been performed yet. As the n parameters related to the sub-binders
are always present, we omit them for the sake of brevity.

In the Quality Calculus guards involve only the status of the sub-binders and
are specified with predicates, denoted by ∀, ∃, ∃!, m/n, requiring to perform all
the inputs, one input, exactly one input, or m out of n possible inputs before
passing a binder, respectively. Rewrite rules can express predicates but allow
to design also more elaborate guards. We can legally write, for example,

P , &∃(c1?x1, c2?x2).&q(x1,x2)(c1?x3, c2?x4)

where the guard q is defined by the rule

q(x′1, x
′
2, y
′
1, y
′
2)→ (issome(x′1) ∧ y′1) ∨ (issome(x′2) ∧ y′2)

The first two formal parameters of q are the input variables on which the first
quality binder in P ranges, while the latter correspond to the Boolean inter-
pretation of the inputs of the second quality binder in P . The quality guard
q states that the condition for consuming the second quality binder depends
on the outcome of the first quality binder: if only the input concerning x1 was
performed, then x3 must be bound to some(c), that is, y1 must be tt, and con-
versely x4 must be some(c) if only the input involving x2 was received. In this
sense, we may speak of q as a relational quality guard, which allows to write
even more compact specifications.

The use of function issome(·), checking whether its argument is none, is
crucial, as we can ask whether or not an input has been performed, but we
should not inspect its content in a quality guard. For the sake of discussion,
assume that a guard decides whether or not to pass a quality binder inspecting
the content of received inputs: in this case we might end up in a situation in
which all the inputs have been performed but the binder cannot be consumed
due to what we received, and the process would be stuck since we have no means

6.3 Semantics 81

to re-bind an input. Input expressions are entrusted of selecting inputs on the
basis of their content, and such a test should be carefully avoided in quality
guards. As a matter of fact, we can model the desired behaviour in a safe way
relying on input conditions, rewriting the second quality binder of P as follows:

&q(x1,x2)(c1?x3[x1 = x3)], c2?x4)

where the equality between the two inputs on c1 is enforced by the input ex-
pression x1 = x3, formally defined in the following section.

6.3 Semantics
The semantics of the AQC is defined by a structural equivalence ≡ and a labelled
transition relation =⇒. The standard structural congruence is adapted to the
new restriction operator, hence condition on restricted names are replaced by
condition on list of names. Likewise, in the syntax of contexts C the format
(ν−→c ;W)C replaces (νc)C. As usual, we assume to apply α-conversion whenever
needed, in order to avoid accidental captures.

Auxiliary relations. The semantics is parametrised on some auxiliary rela-
tions. The first two, defined formally in Table 6.5, are the standard relations
for I/O synchronisation and binder evaluation common to Quality Calculi:

• W ` e1!e2|b→ b′, specifying the effect of the output e1!e2 on the binder b
in the world W ; technically, the syntax of binders has to be extended to
consider substitutions of the form [e/x];

• b ::r θ, for recording in r ∈ {ff, tt} whether or not the binder b has been
satisfied by the received inputs, that led to the substitutions recorded in
θ. Observe that r has type B, and thus can be passed as argument to a
rewrite rule specifying a quality guard (Boolean interpretation of binders);

• W ` e � e′, describing how an expression e evaluates to a constant ex-
pression e′ (either a v or an o) in the world W , according to the rules
displayed in Table 6.3

Finally, Table 6.3 shows how expressions are evaluated in a given world. A
name c and the constant none always evaluate to themselves in every world. A
world W supports a rewrite step applied to the actual parameters e′1, . . . , e′n if
the side condition holds in W . A function application f(e′1, . . . , e

′
n) is evaluated

applying rewriting steps until a non-reducible expression u is produced (i.e., a
normal form). Observe that a rewrite step is viable only if there exists a rule
f(e1, . . . , en) if cond in F such that (i) the leftmost symbol corresponds to f
(and arity and sort match), (ii) the formal parameters unify with the actual
parameters under a most general unifier θ, (iii) the side condition (if any) holds

82 A Broadcast Scenario

Table 6.3: The evaluation W ` e � o of expressions into optional values.

` c � c ` none � none

(f(e1, . . . , en)→ e if cond) ∈ F W ` θ(cond)

W ` f(θ(e′1), . . . , θ(e′n))→ θ(e)

W ` f(e1, . . . , en)→∗ u @u′.W ` u→ u′

W ` f(e1, . . . , en) � u

in W after having undergone the substitutions in θ. If one of these conditions
does not hold, then the evaluation fails and the process is stuck (the condition
otherwise helps design robust function specification). →∗ denotes the reflexive
transitive closure of the rewriting relation →, and W ` t →∗ t′ if W supports
all the side conditions of at least one rewrite path that reduces t to t′. Since
we require the rewrite system to be confluent and terminating, the evaluation
strategy supporting the computation does not affect the result – that is, normal
forms are unique –, even if it can heavily impact the performance.

We can now define issome :V ? → B formally :

issome(x)→ tt if x � some(v) issome(x)→ ff if x � none

The expression evaluation relation � allows also to define equality modulo
rewriting, represented by the symbol (=:V ?2 → V ?) ∈ Σ:

= (x1, x2)→ some(tt) if x1 � o ∧ x2 � o
= (x1, x2)→ none otherwise

In the following we will use the infix notation for the sake of simplicity.

Transition relation. The transition relation P =⇒ P ′ describes when a pro-
cess P evolves into another process P ′. P =⇒ P ′ is based on the relation
W ` P α−−−→

i
P ′, which is instrumented with a label α and an integer i. The

label α is either the silent action τ or an output action c1!v2, while the integer
i is either 0 (passive action) or 1 (active action). The relations are defined ac-
cording to rules displayed in Table 6.4. An active step α−−−→

1
enables a transition

=⇒, as explained by rule (Sys), which also takes care of pulling restrictions to
the outer-most level by means of the structural congruence. The setW contains
the beliefs accumulated with restrictions, and the second rule allows to evaluate
rewrite conditions. As the world W affects expression and binder evaluation, it
is a key component in determining the path followed by the computation: the

6.3 Semantics 83

possibility to execute a step α−−−→
i

may depend on W . In order to stress this

relationship, we write W ` P α−−−→
i

P ′.

The second group of clauses defines α−−−→
i

. Rule (Self) states that a process
can silently evolve to itself, and it is central in enabling non-communicating
processes to interleave. It is worthwhile observing that such a rule corresponds
to an unguarded recursion and therefore results in divergent behaviour [Hoa85,
§ 3.8]. Nonetheless, as the action is passive, such a step never gives rise to a
global transition =⇒, hence divergence is filtered out by the semantics. Rule
(Brd) describes how performing an output is possibly an asynchronous active
action (and thus can directly turn into a step =⇒). As in Ch 5, we require the
output channel to be a name c and we let the broadcast message by a value
v. The following two rules describe how an output affects a process guarded
by a binder: if the output does not satisfy the binder (In-ff), then the related
substitution is recorded and the binder modified accordingly; otherwise, if the
output satisfies the binder (In-tt), the substitution computed so far is applied
to the continuation process and the binder consumed. Observe that in both
cases the action is passive, and therefore cannot directly enable a =⇒ transi-
tion. This happens only when a synchronisation step takes place, as described
by rule (Par). The composition of two processes that can make a transition
α−−−→
i

evolves only if the processes share the label α and the transitions are not
both active. This implies that two input processes waiting for a value on the
same channel can evolve together, as well as two processes that can synchronise:
the synchronisation with an output process is actually the only case in which an
input transition transforms into an active action, giving rise to a transition =⇒.
Thanks to this behaviour, the semantics realises broadcast communication: a
binder accumulates expected outputs and the related substitutions, and when
the synchronisation finally takes place with a matching output all the involved
binders evolve at the same time. Observe that two outputs cannot evolve simul-
taneously, as they both are active actions. Rules (Case-) describe the evaluation
of a case construct: the else branch is taken whenever the expression evaluates
to none, otherwise the computation proceeds binding to the variable y the value
to which the expression evaluates. Observe that a case transition is always la-
belled with τ , and thus cannot be mixed with input or output actions when
composing two processes. Finally, rule (Rec) accommodates recursive calls.

In particular, observe that no rule is given to perform transitions under
a restriction, therefore restrictions must be pulled at the outer-most level by
means of structural rules, as dictated by rule (Sys). Again, we focus on closed
systems, the semantic being defined by =⇒.

Table 6.5 presents the usual auxiliary relations for synchronisation and binder
evaluation. The clauses in the first group present how I/O substitutions are
computed. An output affects an input binder only if they are performed on
the same channel (which must be a name) and the input condition evaluates to

84 A Broadcast Scenario

Table 6.4: The transition relation =⇒ of the Applied Quality Calculus.

P1 ≡ (ν−→a ;W)P2 W ` P2
α−−−→
1

P3 (ν−→a ;W)P3 ≡ P4

P1 =⇒ P4

(Sys)
w ∈W
W ` w

` P τ−−−→
0

P (Self)
W ` e1 � c1 W ` e2 � v2

W ` e1!e2.P
c1!v2−−−→

1
P

(Brd)

W ` c1!v2|b→ b′ b′ ::ff θ

W ` b.P c1!v2−−−→
0

b′.P
(In-ff)

W ` c1!v2|b→ b′ b′ ::tt θ

W ` b.P c1!v2−−−→
0

Pθ
(In-tt)

W ` P1
α−−−→
i

P ′1 W ` P2
α−−−→
j

P ′2

W ` P1 | P2
α−−−→
i+j

P ′1 | P ′2
i+ j ≤ 1 (Par)

W ` e � some(v)

W ` case e of some(y) : P1 else P2
τ−−−→
1

P1[v/y]
(Case-tt)

W ` e � none

W ` case e of some(y) : P1 else P2
τ−−−→
1

P2
(Case-ff)

A(e)
τ−−−→
1

P [e/x]
if A(x) , P (Rec)

6.4 Key Update through Secret Sharing 85

values when the outputted value is substituted to the input variable; otherwise
it has no effect.1 Observe how broadcasting is realised within a single quality
binder: sub-binders can be affected by the same output. This behaviour is co-
herent with the intended semantics of the quality binder, which states that n
inputs are simultaneously active in &q(e1?x1[e′1], . . . , en?xn[e′n]), and therefore
a number of them can synchronise with a single matching output.

The second group of clauses shows how a binder is evaluated, complementing
the input clauses of the second group. In particular, a substitution evaluates
to tt, since it is the result of a successful input, while a non-performed input
evaluates to ff and maps the input variable to none. A quality binder is evaluated
computing the function specified by the quality guard.

Finally, we require that a process is always in a stable configuration, accord-
ing to which all the internal (silent) actions are performed before the possibility
to synchronise with an external output vanishes. This implies that the process

c1!c2 | case some(c1) of some(y) : y?x.P else Q

will always evolve to P [some(c2)/x]. Intuitively, by imposing this restriction we
assume that internal actions are always processed faster than communicating
actions (an on-board processor is faster than a transceiver).

6.4 Key Update through Secret Sharing
We demonstrate the flexibility of the AQC modelling a hierarchical WSN where
secret sharing is exploited to communicate security-critical information to a base
station, as studied in [SLK10].

In such a scenario, each message is broadcast over a single wireless channel
and can thus be eavesdropped by an attacker. A (k,m)-threshold-scheme can
be applied to security-critical messages in order to hamper the work of the
adversary, who is required to intercept at least k shares (or shadows) before
obtaining a message (and trying to break an encryption scheme). Moreover,
we assume that the communication may fail, due to environmental conditions,
hardware failures, or the attacker’s intervention, and we exploit quality binders
in order to design processes robust against DoS. Finally, the base station is
periodically receiving data from sensor nodes in its range, which measure some
physical parameters of the environment. Nonetheless, when updating the session
key, the base station ignores messages sent by the sensors, in order to accomplish
this critical task as quickly as possible. As all the communications take place on
a single channel, we make use of input conditions to distinguish among messages.

1Note that only for the purpose of evaluating the input condition we temporarily bind the
input variable x to the value v2: all the input conditions we devise in this chapter takes values
as input and therefore demand for this choice. The alternative choice of optional values would
work likewise. Observe that if the matching is not successful than such binding has no effect
on the continuation.

86 A Broadcast Scenario

Table 6.5: The relations for synchronisation and binder evaluation.

W ` e1 � c1 W ` e2[v2/x] � some(c3)

W ` c1!v2|e1?x[e2]→ [some(v2)/x]

W ` e1 � c1 W ` e2[v2/x] � none

W ` c1!v2|e1?x[e2]→ e1?x[e2]

W ` e1 � c′1

W ` c1!v2|e1?x[e2]→ e1?x[e2]
c′1 6= c1

W ` c1!v2|b1 → b′1 · · ·W ` c1!v2|bn → b′n

W ` c1!v2|&q(b1, . . . , bn)→ &q(b
′
1, . . . , b

′
n)

e1?x[e2] ::ff [none/x] [some(v)/x] ::tt [some(v)/x]

b1 ::r1 θ1 · · · bn ::rn θn

&q(e1,...,em)(b1, . . . , bn) ::r θn · · · θ1

q(e1, . . . , em, r1, . . . , rn) � r

Secret sharing. A shadow is represented by function (share :V 3 → V) ∈ Σ,
the first parameter being the secret, the second the number of shares needed
for reconstructing it, and the third an identifier that helps distinguish different
shares. The reconstruction step is modelled with function (combine : V k →
V ?) ∈ Σ, which takes k shares and returns the secret only if they are all different.
For fixed k = m = 3, we obtain the following implementation:

combine(share(y1, 3, y
′
1), share(y1, 3, y

′
2), share(y1, 3, y

′
3))→ some(y1)

if y′i � vi ∧ i 6= j ⇒ vi 6= vj

combine(y1, y2, y3)→ none otherwise

We omit the parameterm for the sake of succinctness, but it could be included to
capture the fact that shadows of a same secret s belonging to different schemes
cannot be used to rebuild s.

The protocol. Consider now a WSN in which a central unit CU has to com-
municate a new symmetric session key to a base station under its control. CU
generates a new symmetric key k, signs it with its secret key skCU, computes 3
shares, encrypts the shadows under the base station public key pkBS, and finally
communicates the shares on a wireless channel c after having notified the base

6.4 Key Update through Secret Sharing 87

station that an update transaction is starting:

CU , (νk; kn)c!start_transaction
c!pair(aenc(share(sign(k, skCU), 3, 1), pkBS), 1)
c!pair(aenc(share(sign(k, skCU), 3, 2), pkBS), 2)
c!pair(aenc(share(sign(k, skCU), 3, 3), pkBS), 3)
set1!t1.&∃(c?xe[dec(xe, k) = some(end_transaction)], tick1?xt1)
case xe of some(ye) : set2!t2.tick2?xt2.CU else CU

The process CU makes use of numbers (constants) to represent integers (threshold-
scheme parameters and share identifiers). After having issued the new key
(signed and then split in three encrypted shadows), the central unit sets a local
timer to t1 and waits for a notification from the base station to arrive within the
prescribed time. The time expires when a message is received from the timer
on channel tick1. Observe that the first input is instrumented with a condition
that tests whether or not the received message corresponds to end_transaction
encrypted under the new key k. At this point the central unit is enabled to check
which input triggered passing the binder, and thus decide if the key update was
successful or not: in the event the key has been updated, the central unit waits
for t2 unit of time and then starts a new update transaction, otherwise the new
transaction is started immediately. A new timer is used to avoid message con-
fusion. Observe that there is no need to decrypt xe since its content has already
been tested in the input condition: we only need to check that it is not none.

It is worth noting that the central unit is robust with respect to the event
that the base station does not respond, thanks to the use of the existential
quality guard and of the local clock, which always responds.

The base station is defined by a process BS, which waits for three shares and
then sends an acknowledgement back to CU, encrypted under the new key.

BS , c?x.case x of some(y1) :
case y1 = end_transaction of some(y2) : set3!t3

&∃(&∀(c?z1[snd(z1) = some(1)], c?z2[snd(z2) = some(2)]
c?z3[snd(z3) = some(3)]),

tick3?xt3) . . . (extract the shares in y′1, y′2, y′3) . . .
case combine(y′1, y

′
2, y
′
3) of some(ys) :

case checksign(ys, pkCU) of some(yk) :
c!enc(end_transaction, yk).BS else 0

else 0
else 0 . . . (if share extraction fails then shut down) . . .

else store!y1.BS
else 0

If BS receives a reading from a sensor, the value is stored in the base station
memory (simulated by channel store). If an update instruction is received, then
the base station waits for three shares. BS must wait for all the shadows to

88 A Broadcast Scenario

arrive, and thus uses a quality binder instrumented with the ∀ guard. Further-
more, in order to discard messages from the sensors, the inputs within the binder
rely on a condition matching only a fixed pattern. For the sake of brevity, we
have omitted a number of case constructs needed to compute projections and to
decrypt the result. When three messages are received within time t3, the base
station tries to compute the original secret: if the operation succeeds then the
signature is verified using the public key pkCU of CU, and then an acknowledge-
ment is sent back to the central unit.

Observe that the base station continues to behave in a planned manner even
if the information expected from the central unit does not arrive. If the shares
are not received within time t3, their combination or the verification of the
signature fail, then BS is automatically switched off for security reasons.

6.5 Concluding Remarks

The characteristics of typical components of CPSs and the nature of the envi-
ronment in which they are deployed demand for designing software that is both
robust against lacking communication and able to ignore unwanted information.
This is a complex task per se, and it is even harder in those applications that
require some degree of security and need a broadcast communication model,
where everyone hears everyone.

The framework we have presented facilitates the design of CPSs by providing
a calculus that is naturally equipped with the notion of absence of communi-
cation and selective inputs. Denial-of-service is addressed by resorting to the
distinction between values and optional values introduced by the Quality Calcu-
lus. A single mechanism based on rewrite rules is leveraged to implement both
selective inputs and cryptographic reasoning, and it is also exploited to design
elaborate quality guards, more expressive than propositional predicates. More-
over, a simple yet powerful approach to the definition of cryptographic material
has been introduced. The expressiveness of the framework has been discussed
on a meaningful example, in which all its features have been stressed.

Future work includes further investigation of verification techniques based
on term rewriting. It seems promising to study abstraction approaches for
analysing infinite state systems beyond bounded reachability, in the wake of
studies carried out in the Maude community. Moreover, it would be interesting
to consider a wider class of CPSs with component mobility, thus enriching the
framework with a notion of network topology and spatially-bounded broadcast.

Equational reasoning. Various approaches have been studied in the litera-
ture in order to enrich a process calculus by means of equational reasoning, and
a relevant line of work is devoted to equip process calculi with cryptographic
primitives.

6.5 Concluding Remarks 89

In the Spi Calculus [AG97] cryptographic functions are represented as func-
tion applications on terms, while the corresponding inverse functions are mod-
elled with dedicated clauses in the syntax of processes. Even though this
approach is clear and simple, it lacks of flexibility: the syntax of terms and
processes have to be modified every time a new function or inverse is added
to the calculus. This main drawback has been overcome in the applied π-
calculus [AF01], where a general notion of composite terms (function applica-
tions) is presented, together with a general mechanism for term manipulation.
In particular, an algebraic signature is used to generate composite terms. The
inverse relation is then obtained instrumenting the signature with an equiva-
lence relation over terms (i.e., an equational theory). A single conditional clause
if t1 = t2 then P else Q in the grammar of processes is thus evaluated according
to the equational theory: if t1 = t2 in the theory, then P is executed, otherwise
the process evolves to Q. Note that the = symbol represents equality mod-
ulo the theory rather than syntactical identity. A further generalisation of the
applied-π calculus is given in the Psi-calculi framework [BHJ+11]. Obviously,
the flexibility issue which affects the Spi Calculus is partly lifted from the gram-
mar of processes to the equational theory, but the latter can be maintained as
an external component: different versions of the calculus are obtained modifying
the signature and the equational theory, while syntax and semantics remain un-
changed. Moreover, once a verification procedure is devised for such a calculus,
it will generally work independently from the signature and the theory.

The process calculus introduced with ProVerif [Bla09] stems directly from
the applied π-calculus, from which it differs mainly in the approach to the un-
derlying equational theory, in which equations are replaced by rewrite rules from
terms to terms, embedded into processes by a single clause, called destructor
application. This technique allows to express the theory in a more compact way:
there is no assumption about the closure of the set of equations, and equality is
checked computing a substitution that matches the actual parameters of a de-
structor with the formal parameters of the corresponding rewrite rule. On the
one hand, the choice of rewrite rules leads to a very efficient verification proce-
dure, since the evaluation of destructors relies on standard unification [BAF08];
on the other hand, the categorisation of functions into constructors (function
applications) and destructors exhibits some limitations that equational theo-
ries do not: there exist equational theories which cannot be described in this
model, e.g., theories containing associative symbols like the exclusive or (XOR).
This limitations can be avoided shifting from syntactic unification to unifica-
tion modulo theories (paramodulation), with an increase in complexity [AB05,
Sec. 8].

LySaNS [BRN04] exploits a different technique for building and manipulat-
ing complex terms, based on pattern matching. A composite term (function
application) can be matched against a pattern, which can be used in a process
to test syntactical identity and bind sub-terms to variables, extracting values of
interest. Syntactically, each composite term and the related patterns must be

90 A Broadcast Scenario

introduced explicitly, like in the Spi Calculus. The reader had a sample of the
approach in Ch. 5.

Our conditional rewrite rules are inspired by Maude [CDE+11], which unlike
ProVerif is a pure rewriting logic tool. For an extensive bibliography about
rewriting logic refer to [MOPV12]. In particular, [MOPV12, § 2] lists some
works that pioneered the approach we undertake in the paper on which this
chapter is based, i.e., complementing the modelling language with an executable
specification of the operational semantics by means of an implementation in
Maude. Among these, [VMO02, TSMO04, VMO06] are relevant to process
calculi. Finally, it is worth mentioning Maude-NPA [EMM09], an extension of
Maude targeted to the analysis of security protocols, where backward narrowing
is exploited to search for possible attacks in the Dolev-Yao model.

Finally, as for the way cryptographic keys are treated, alternatives to pure
restriction have been explored [CGG05, GlPT07]. In the secret π-calculus, for
example, an ad hoc operator is introduced which declares secrets with static
scope. In Ch. 7 we shall briefly relate some of our developments to this line of
research.

Broadcast calculi. The Calculus of Broadcasting Systems (CBS) [Pra95] is
the ancestor of a number of modern broadcasting calculi. In the subsequent
studies, two main strands have flourished: on the one hand, theories for node
mobility and dynamic topologies have been investigated; on the other hand, a
number of calculi have been proposed that deal with low level characteristics of
broadcast communication, such as transmission interference and range.

The calculus presented in [NH06] extends CBS with the notion of topology
and presents an analysis for checking its consistency, but does not discuss the
representation of cryptographic primitives in detail. Mobility in ad hoc networks
is considered in [Mer09], where a labelled characterisation of reduction barbed
congruence is proposed. In [GFM10], the dynamics of the topology is implicitly
modelled in the semantics of the calculus. Different mobility models are studied
in [NG09], together with their relationship to real applications.

The Calculus of Wireless Systems (CWS) [LS10] gives a lower-level represen-
tation of communication, modelling transmission interference in the semantics.
CWS is extended in [MBS11], where a timed scenario is considered which al-
lows to study communication collisions and CSMA protocols. Interference is
also considered in [BGM+12], where a notion of interference-sensitive preorder
is introduced for mobile ad hoc networks.

Node mobility is studied together with limited transmission range in [SRS10],
combining the two lines of research mentioned above. A similar perspective is
adopted in [SG10], which proposes a calculus where node mobility impacts on
the reliability of transmissions in a probabilistic fashion. Finally, the calculus
of [KP11] investigates different abstraction levels for describing dynamic net-
works, and considers the possibility of broadcasting at multiple transmission

6.5 Concluding Remarks 91

ranges.
Except for [NH06], none of the calculi mentioned so far provide any kind

of equational reasoning on the messages that communicating parties exchange.
In [God07] a calculus for mobile ad hoc networks (CMAN) is devised, encom-
passing node mobility, spatially-oriented broadcast, and an implementation of
cryptographic primitives via equations à la applied π-calculus. Recently, [MM12]
has proposed a timed process calculus with fixed transmission ranges, where
equational reasoning is parametrised on an inference system (our approach based
on rewrite theories is similar, but allows a more expressive treatment of cryp-
tographic primitives). Moreover, the calculus is equipped with a simulation
theory, and the authors envision a possible mechanisation via Isabelle/HOL or
Coq.

As for the analysis of reachability properties in wireless settings, [BHJ+11]
presents a broadcast version of the psi-calculi framework with an application to
a routing protocol for mobile ad hoc networks.

92 A Broadcast Scenario

Chapter 7

Quantifying Protection

So far we have explored how availability can be construed in terms of reachability
in a qualitative mind-set. We shall now move towards a quantitative framework,
so as to bridge the gap with existing methods for countering DoS, mainly based
on cost considerations (cf. § 3.1.3). Remaining in the realm of the Quality
Calculus, we compute the cost of reaching a given program point for an attacker
by means of a protection analysis that can be seen as a quantitative counter-part
of the robustness analysis of Ch. 4.

Even though the urgency of this investigation stems from our interest in
quantifying the resilience of a system to unavailability, still the developments
lead to tackle naturally the ampler problem of guaranteeing multi-level security
assurances, and we shall present them in this light for the sake of generality.

In order to compute the cost of reaching a target location l in a given system,
we need to first discover all paths leading to l, i.e., all attacks, and then to
quantify the cost of following such paths. The Quality Calculus offers an elegant
framework for reasoning about systems where the same functionality can be
triggered in multiple ways, and thus enjoy a branching control flow. Taking
a process-algebraic point of view, moreover, is suitable for describing software
systems but also organisations or physical infrastructure in a uniform manner.

In the study of security, the compromise for obtaining such broad domain
coverage while retaining a reasonable expressive power takes place at the level
of attack definition. At a high level of abstraction, an attack can be defined as a
sequence of actions undertaken by an adversary in order to make unauthorised
use of a target asset. In a process-algebraic world, this necessary interaction
between the adversary and the target system is construed in terms of com-

94 Quantifying Protection

municating processes. Input actions on the system side can be thought of as
security checks, that require some information to be fulfilled. In particular,
the capability of communicating over a given channel requires the knowledge of
the channel itself and of the communication standard. This could include, for
example, the knowledge of some cryptographic keys used to secure the commu-
nication. Hence, we can think of a compound attack as a set of channels needed
to activate the desired behaviour on the target system side, that is, to reach a
particular location that should be secured from unauthorised access.

Whilst the correctness of such secure channels [MV09] is investigated in the
realm of protocol verification, any system with a substantial need for security is
likely to have standardised mechanisms to achieve various degrees of protection,
and modelling them with secure channels is a coarse yet reasonable abstraction.

Given a system P and a location l of interest, the protection analysis com-
putes the information an adversary needs in order to drive P to l, considering all
possible paths leading to l. This is achieved by translating P into a set of propo-
sitional formulae describing the dependency between channels and reachability
of locations: each satisfying assignment of such a set of formulae describes a
way in which l can be attained in terms of communication over channels (§ 7.3).
In order to match the abstraction to secure channels, the analysis is developed
on a value-passing version of the calculus (§ 7.1).

Nonetheless, secure channels allow modelling a great many domains. In IT
systems, a channel can be thought of as a wired or wireless communication link
over which messages are encrypted, and its knowledge mimics the knowledge
of a suitable encryption key. In the physical world, a channel can represent
a door, and its knowledge the ownership of the key, a pin code, or the capa-
bility of bypassing a retinal scan. This urges to acknowledge the variety of
protection mechanisms and devise attack metrics by assigning costs to channels,
thus quantifying the effort required to an attacker for obtaining the channel
or, equivalently, the protection guarantees ensured by the security mechanism
represented by the channel. As a consequence, attacks can be ordered according
to their cost. Finally, a conservative approach to security demands to look for
attacks that are optimal in the cost ordering (that is, minimal or maximal, ac-
cording to the notion of cost we adopt – in the following we shall focus without
loss of generality on minimality).

The protection analysis is then lifted to a quantitative setting (§ 7.4), where
the quest for minimal models (i.e., the cheapest attacks) is implemented on
top of an SMT solver, where minimality is sought with respect to an objective
function defined on a liberal cost structure in which both symbolic and non-
linearly-ordered cost sets can be represented.

The ultimate goal of the framework is to check whether the protection en-
sured by the implementation, that is, the cheapest way for reaching l, matches
the specification requirements, formalised as a map from locations to desired
confidentiality levels. Narrowing the picture down to DoS, the protection anal-
ysis would allow to estimate the cost an attacker incurs to drive a system to

95

an unavailability condition, e.g., the terminated process 0 of the base station
formalised in § 4.4.

The novelty of the protection analysis is many-fold. First of all, the problem
of inferring attacks and quantifying the protection offered by security checks is
interesting per se and poorly addressed in the literature. In particular, we devise
a comprehensive approach, from modelling systems and their security architec-
ture to mechanising the verification of how this architecture has been realised in
the implementation. Moreover, the extension from qualitative to quantitative
settings can be mimicked in a great many contexts, and it is seamlessly applica-
ble to other formal specifications that resort to encoding into logic formulae. In
connection with this, our SMT-based solution procedure can be applied to all
problems requiring to rank models of a logic formula according to given criteria.

The quest for optimal attacks can cope with arbitrary cost structures and
objective functions, whose shape is only limited by the expressiveness of modern
SMT solvers. Whilst our SMT approach to optimisation is not entirely novel,
non-linearly-ordered and symbolic cost structures have not been addressed so
far in connection with this technique.

Finally, the analysis set bridges between the qualitative approach to DoS
developed so far and the quantitative mind-set of Meadows’s unifying framework
(cf. 3.2.2). In particular, observe that in Meadows’s work the target threshold
relation defining potential DoS consists of pairs of costs to the defender and to
the attacker of a system with respect to a given program point (in Meadows’s
formalisation, the end of a protocol). Whilst in Meadows’s work the attacker
is fully-specified, being a legal participant to the protocol, we only require to
specify the defender (i.e., the system of interest), and automatically synthesise
a set of “cheapest attackers” as the co-processes that can drive the system to
a given point (also known as catalysers). On the contrary, we do not compute
the cost of operating the system on the defender side, assuming that this ought
to be a simpler job the system being under control of the designer. However, it
seems to us that an identical technique could be exploited to come up with an
estimation of the cost to the defender.

The usefulness of the framework is demonstrated on the study of password
recovery systems, formulated in § 7.2 and then studied throughout the chapter.
We consider the Microsoft account system, where a challenge is sent to a pre-
viously registered e-mail or phone number, and the Yahoo!Mail system, which
allows resetting a password upon answering previously selected questions. The
results we present are obtained through an implementation of the analysis freely
available.

This chapter is based on [VNR14c] and on material currently under submis-
sion.

96 Quantifying Protection

Table 7.1: The syntax of the Value-Passing Quality Calculus.

P ::= 0 | (νc)P | P1 |P2 | lb.P | lc!t.P | !P |
| lcase x of some(y) : P1 else P2

b ::= c?x | &q(b1, · · · , bn)

t ::= c | y
e ::= x | some(t) | none

7.1 The Value-Passing Quality Calculus
In the following, we shall rely on a broadcast value-passing version of the Quality
Calculus, namely, a subset of the calculus of Ch. 4 where channels are fixed
names c as opposed to generic terms t. Thus, in this fragment of the calculus,
a name received by an input cannot be used as a channel in the subsequent
computation. Though the development of the protection analysis carries to
a full-fledged version of the calculus (hence a quantitative counter-part of the
availability analysis could in principle be devised), the price for the additional
technicalities is not matched by major insights onto the idea, and thus we shall
limit to comment upon such an extension in § 8.6.

7.1.1 Syntax and semantics
The Value-Passing Quality Calculus is displayed in Table 7.1, and consists of a
fragment of the syntax of the Quality Calculus. In particular, channel positions
in the broadcast c!t and in the input c?x are instantiated with plain names as
opposed to terms (in particular, no variable y). Moreover, case clauses have
now the main purpose of testing whether or not an input coming from a quality
binder has been performed, and thus limit to check whether or not an optional
data indeed contain data. Consistently with this simplification, terms t and ex-
pressions e do not include functions. For convenience in developing the analysis,
recursive calls are now replaced by the replication operator !P .

As usual, in the following we consider closed processes (no free variable),
and we make the simplifying assumption that processes are renamed apart so
that names and variables are bound exactly once.

The semantics inherits some features of the basic calculus as well as the
approach to broadcast communication of Ch. 6. The structural congruence ≡
(cf. 4.2) is updated adding the classic rule for replication !P ≡ P |!P .

The transition relation inherits the two-layer structure of Table 6.4: we
distinguish between local (α−−−→) and global transitions (=⇒), and we identify
the semantics with the latter as dictated by rule (Sys) in Table 7.2, where (ν−→c)
denotes the restriction of a list of names.

7.1 The Value-Passing Quality Calculus 97

The transition relation simplifies Table 6.4 taking advantage of the restricted
syntax and reasoning about replication. As terms and expressions contain no
function symbol, the evaluations t � c and e � o are no more necessary: for
the calculus directly applies substitutions to the continuations, terms and ex-
pressions in inputs, broadcasts, and case clauses have always been replaced with
ground data or optional data when they are ready to execute. Quality binders
are evaluated to Boolean as in the basic calculus, while the synchronisation
relation is modelled after the one of Ch. 6 and is given in the last section of
Table 7.2.

Restrictions are taken care of as in the previous chapter: no rule for transi-
tion under restriction is provided, therefore rule (Sys) must be applied to pull
restrictions to the outer-most level. Rules (Par-) take care of interleaving. In
particular, rule (Par-brd) takes care of interleaving broadcast, and applies in
two situations.

First, if the parallel component P2 is a replicated process, the broadcast has
precedence over any action of instances of P2. This means that when P2 has
the form !c1?x.P , the number of input performed by its replicated instances
will depend on the unfolding performed using the structural congruence as per
rule (Sys). Note that this “freedom” issue does not arise in the semantics of
Ch. 6.Observe, however, that the encoding of replication into recursion would
lead to the same problem, since replication is essentially an unguarded recursion.
The nodal point is that in the AQC recursive calls induce active τ transitions,
while here replication is taken care of by structural rules. Finally, observe that
a similar rule for unfolding replication in the semantics would lead to divergence
due to rule (Par-tau).

It seems therefore that recursion matches more closely than replication our
intuition of broadcast communication in presence of iterative or arbitrary long
behaviour. Nonetheless, as far as the protection analysis presented in the fol-
lowing is concerned, we are only interested in possible behaviours, and therefore
the more liberal replication operator is preferred as it admits all the behaviours
recursion would allow and it is more convenient for specifying the analysis.

Second, if the parallel component P2 is broadcast-prefixed, such a broadcast
is delayed until the current one has exhausted its synchronisation opportunities.
If none of the above applies, then either a synchronisation rule (In-) or an
interleaving with a silent action (Par-tau) must take place.

7.1.2 Confidentiality labels

As argued in the introduction to this chapter, different points in a system have
to be protected according to the value of the information they process. This
idea can be formalised introducing a simple, non-functional extension to the
calculus, where a program point of interest is instrumented with a unique label
l ∈ L. This is the case of input binders, outputs, and case clauses in Table 7.1.
In the following, we will denote labels with the numerals , ,

98 Quantifying Protection

Table 7.2: A broadcast value-passing semantics with replication.

P1 ≡ (ν−→c)P2 P2
α−−−→ P3

P1 =⇒ P3

(Sys)

lc1!c2.P
c1!c2−−−→ P (Brd)

P1
c1!c2−−−→ P ′1 c1!c2 ` b→ b′ b′ ::ff θ

P1 | lb.P2
c1!c2−−−→ P ′1 | lb′.P2

(In-ff)

P1
c1!c2−−−→ P ′1 c1!c2 ` b→ b′ b′ ::tt θ

P1 | lb.P2
c1!c2−−−→ P ′1 | P2θ

(In-tt)

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y] (Then)

lcase none of some(y) : P1 else P2
τ−−−→ P2 (Else)

P1
τ−−−→ P ′1

P1|P2
τ−−−→ P ′1|P2

(Par-tau)

P1
c1!c2−−−→ P ′1

P1|P2
c1!c2−−−→ P ′1|P2

if P2 = !P ′2 ∨ P2 = lc′1!c′2P
′
2 (Par-brd)

c1!c2 ` c1?x→ [some(c2)/x] c1!c2 ` c3?x→ c3?x if c1 6= c3

c1!c2 ` b1 → b′1 · · · c1!c2 ` bn → b′n

c1!c2 ` &q(b1, . . . , bn)→ &q(b
′
1, . . . , b

′
n)

We say that a label l is reached in an actual execution when the sub-process
following l is ready to execute. Moreover, we assume to have a confidentiality
lattice (Σ = {σ1, . . . , σn},vΣ), with greatest lower bound operator

d
Σ, and

a function security : L → Σ that maps labels into confidentiality levels. In
particular, security(l1) vΣ security(l2) denotes that the confidentiality (i.e., need
for protection) of the program point indicated by l2 is greater than or equal to
the confidentiality of the program point indicated by l1.

As an example of a confidentiality lattice, consider the military lattice given
by Σ = {unclassified, confidential, secret, top-secret}, with the ordering unclassified
<Σ confidential <Σ secret <Σ top-secret. More complex lattices, in particular
non-linearly-ordered ones, are discussed in [Amo94, Ch. 7].

7.2 A Login System with Password Recovey 99

7.1.3 Security model

On top of the standard operational semantics of the calculus, our process-
algebraic specifications rely on a security interpretation of communication ac-
tions. As binders are blocking actions, they can be thought of as security checks
that require the knowledge of some information to be fulfilled. This knowledge
is abstracted here by resorting to the notion of secure channel and disregarding
the messages actually communicated, in line with the value-passing nature of the
calculus. This idea is refined by quality binders: the existential quality guard
∃ describes scenarios in which different ways of fulfilling a check are available,
e.g., different ways of proving one’s identity. In contrast to this, the universal
quality guard ∀ describes checks that require a number of sub-conditions to be
met at the same time, and can be used to refine a security mechanism in terms
of sub-checks.

On the other hand, an output represents the satisfaction of the security
check specified by the corresponding channel. As the semantics is broadcast,
all the input waiting on the given channel will be satisfied, that is, all the
pending security checks will be fulfilled and the system will proceed until another
blocking check is met. As a consequence, if the adversary can trigger a system
component to make an output on a given channel c, it is as if c were under
the control of the attacker, for all inputs on c in other components would be
satisfied.

Finally, case clauses allow to inspect how a given security check, that is,
a preceding binder, has been satisfied, by inspecting which input variables are
bound to some values, that is, on which channels the communication took place.

As a result, an attack can be construed as a set of channels, namely, those
channels needed to fulfil the security checks on a path to the target. We assume
that a system P is deployed in a hostile environment, simulated by an adversary
process Q running in parallel with P . The ultimate aim of the protection analy-
sis is to compute what channels Q has to communicate over in order to drive P
to a given location l, i.e., P |Q =⇒∗ C[lP ′], where C[lP ′] denotes a sub-process
of P |Q that has reached label l and =⇒∗ denotes the reflexive and transitive
closure of =⇒.

In order to compute the channels that Q needs to reach a program point l,
this security model is translated into an attacker model where Q can guess every
required channel, that is, whenever a security check on the way to l cannot be
avoided, Q can fulfil it.

7.2 A Login System with Password Recovey

We demonstrate the channel-based approach of the framework on the problem
of password recovery. As defined in the Common Weakness Enumeration [Mit],
“it is common for an application to have a mechanism that provides a means

100 Quantifying Protection

for a user to gain access to their account in the event they forget their pass-
word”. It is then crucial to ensure that the protection to the account offered
by the recovery mechanism is comparable to the protection provided by the
password, otherwise we would have two paths leading to the same resource but
performing a different amount of security checks. As noted by the Open Web
Application Security Project [OSW]: “Weak password recovery processes allow
stronger password authentication schemes to be bypassed. Non-existent pass-
word recovery processes are expensive to support or result in denial-of-service
conditions.”

We focus on a formalisations of the system such that authentication does not
take place unless some interactions with the environment take place. In other
words, we specify the security checks but not their fulfilment by the user who is
supposed to be logging in, so as to rule out the legal way to authenticating and
focus on malicious behaviours.

Below we encode a login system with possibility to recover a password in the
Value-Passing Quality Calculus.

System , (νaccess) (νok) (νpwd) (!(Login|Recover))

Login , &∀(id?xid, pwd?xp).
access!ok

Recover , &∀(id?x′id,&∃(mail?xm, pin?xc)).
4case xm of some(ym) : pwd!ok else

6case xc of some(yc) : pwd!ok else 0

Process System is modelled after Microsoft account login mechanism, in charge
of granting access to services such as mailboxes and technical forums. The
main process is composed by two parallel sub-processes, running an unbounded
number of times: the first one models the normal login procedure, while the
second one abstracts the password recovery mechanisms.

According to process Login, in order to be granted access a user has to
provide their own id and the corresponding password. This is mimicked by the
two inputs expected by the quality binder at label , which are simultaneously
active. The quality guard ∀ prescribes that both inputs have to be satisfied
before proceeding, in any order. These inputs simulate two security checks: a
party willing to authenticate into the system has to possess proper credentials,
i.e., being able to communicate over id, pwd, and thus know such channels.

In the event a user forgot their password, the recovery mechanism comes into
play. Microsoft offers two ways to recover a lost password: (i) a reset link is sent
to an e-mail address previously registered by the user, or (ii) a 7-digit pin is sent
to a phone number previously registered by the user. This behaviour is modelled
by the quality binder at label in process Recover. The binder is consumed as
soon as the user has provided a valid id (e.g., an Outlook.com e-mail address),
and proven their identity either through option (i) or option (ii). In the first
case, the user needs to access a mailbox, simulated by an input on channel mail,
while in the second case they have to provide the correct pin: the alternative is

7.2 A Login System with Password Recovey 101

implemented by the existential guard ∃ instrumenting the inner quality binder.
The case clauses at labels , determine what combination of inputs triggered
passing the binder. In both cases, the user gets a valid password for the account
in question, simulated by the outputs at label and , and thus will be able to
fulfil the check enforced by process Login.

Observe how case constructs are used to determine what combination allowed
passing the binder: at label we check whether the recovery process took place
through another e-mail account, and if this is not the case then we check that
the other condition, i.e., the phone challenge, is fulfilled. The main abstraction
of our approach takes place at this level, as we can only test whether something
is received on a given channel, but we cannot inspect the content of what is
received. In other words, the knowledge of channel mail mimics the capability
of accessing a given account, and thus we say that the semantic load of the
communication protocol is shifted onto the notion of secure channel. Observe
that this perspective seamlessly allows reasoning about the cost of attacking the
system: to communicate over mail, an adversary has to get hold of a valid set
of credentials, e.g., bribing the service provider or brute-forcing a cryptographic
scheme, and this might prove more expensive than guessing the pin necessary
to achieve authentication along the alternative path.

The key point of the example is indeed that no matter how strong a user’s
password is, an attacker can always try to guess a 7-digit sequence1. In particu-
lar, the requirement for a password is having at least 8 characters and contain-
ing different cases, numbers, or symbols, which (almost) automatically makes a
password stronger than the pin! In terms of confidentiality levels, this suggests
that the desired security architecture security(2) = security(5) = security(7) is
not necessarily met, as the protection offered by the three paths leading to au-
thenticating, i.e., to label , might not be uniform, depending on the cost notion
we adopt. In the following, we shall demonstrate this violation relying on the
simple security lattice unrestricted <Σ restricted, where the highest level is as-
signed to labels and to , while the lowest level is assigned to label and ,
which represent public interfaces.

Whilst in this simple case a convincing conclusion can be drawn after careful
investigation of the system, there is a general need to develop automated tech-
niques to cope with more complex scenarios. In the remainder of the chapter
we shall see how the protection analysis confirms the findings of our informal
reasoning.

1As of Oct. 2013 there seemed to be no limit to the number of attempts one could try –
we stopped our experiment at about 30. Some of our findings have been communicated in
a number of situations and now we observe that they enforced both such limit and a daily
threshold. Whilst this mutation does make it more difficult to quantify the strength of the
mechanism (cf. § 7.4.2), it does not affect the relevance of the framework.

102 Quantifying Protection

7.3 Discovering Attacks

The first challenge we tackle is discovering all the attacks leading to a given
target. Given a process P modelling the system of interest and a label l in P
identifying the target of the attack, the task of the analysis is to find all the
sets of channels fulfilling the inputs occurring in P on the paths to l. In other
words, we look for the knowledge that allows an adversary Q driving P to reach
l.

To this end, P is translated into a set of propositional formulae (§ 7.3.1),
termed flow constraints, describing how the knowledge of channels relates to
reachability of locations, and how given a set of channels some other channels
can be derived by the attacker. Then, the constraints are extended to consider
the capabilities of the attacker (§ 7.3.2). Each model of the final set of constraints
P l⇔ contains a set of channels that under-approximates the knowledge required
to reach l.

7.3.1 From processes to flow constraints

The call [[P]]tt of the recursive function [[·]]·, defined in Table 7.3, translates a
process P into a set of constraints of the form ϕ; p, where ϕ is a propositional
formula and p a positive literal. The intended semantics of a constraint states
that if Q knows (enough information to satisfy) ϕ, then Q knows p, i.e., p = tt.
As we shall see below, the antecedent ϕ accounts for the checks made on the path
leading to disclosing p, namely input binders and case clauses. The consequent
p can either stand for a channel literal c, meaning that Q controls c, an input-
variable literal x, meaning that the attacker can satisfy the related input (i.e.,
x = some(c)), or a label literal l, meaning that l is reached.

At each step of the evaluation, the first parameter of [[·]]· corresponds to the
sub-process of P that has still to be translated, while the second parameter is
a logic formula, intuitively carrying the hypothesis on the knowledge Q needs
to reach the current point in P . The translation function is structurally defined
over processes as explained below.

If P is 0, then there is no location to be attained and thus no constraint is
produced. If P = !P ′ or P = (νc)P ′, then it spontaneously evolves to P ′, hence
Q does not need any knowledge to reach P ′ and gains no knowledge since no
communication is performed. A parallel composition is translated taking the
union of the sets into which the components are translated.

Communication actions have instead an impact on the knowledge of Q: in-
puts represent checks that require knowledge, outputs fulfil those checks, and
case clauses determine the control flow. Assume that an action π is reached
in the translation under hypothesis ϕ, that is, [[lπ.P ′]]ϕ. Then, a constraint
ϕ ; l is generated: if the attacker fulfils the security checks on a path to l,
then l is reached. In the logic interpretation of the constraints, this happens
when ϕ evaluates to tt under a model given by the knowledge of the attacker,

7.3 Discovering Attacks 103

forcing l to be tt (as standard implication would do). Moreover, the nature of
action π determines whether or not other constraints are produced and how the
translation proceeds.

Consider a simple input lc?x.P ′: whenever the action is consumed, it must
be that the attacker controls the communication channel c, hence we translate
P ′ under the hypothesis ϕ∧ c. Moreover, if the input is consumed, then x must
be bound to some(c′), hence we produce a constraint (ϕ ∧ c) ; x. These two
steps respectively accommodate the hypothesis we need for passing a binder
(success condition), and the conclusion we can establish whenever a binder is
passed (strongest post-condition), in analogy with the availability analysis of
§ 5.4. In Table 7.3 functions hp and th take care of formalising this intuition,
that seamlessly applies to quality binders, where the hypothesis is augmented
accounting for the combinations of inputs that satisfy the binder, as dictated
by the quality guard q. The last section of Table 7.3 shows two cases for q, but
any Boolean predicate can be used.

Note the profound symmetry between the precondition generated by the
protection analysis for a label l and the formula that the robustness analysis
of Ch. 4.6 would attach to the same program point. The combination of input
variables of the latter is essentially replaced in the former by the combination
of channels over which those input variables must be received.

The execution of an output lc!t satisfies all the security checks represented
by inputs waiting on c. Therefore, if Q can trigger such output, it obtains the
knowledge related to c without having to know the channel directly, and thus a
constraint ϕ; c is generated. It is worthwhile observing that this behaviour is
justified by the broadcast semantics, and by the fact that the calculus is limited
to testing whether or not something has been received over a given channel,
shifting the semantic load on the notion of secure channel. Moreover, note that
the asymmetry between input and output is due to the fact that outputs are
non-blocking.

A case construct is translated by taking the union of the constraints into
which the two branches are translated: as the check is governed by the content
of the case variable x, we record that the then branch is followed only when x is
bound to some(c) by adding a literal x to the hypothesis, as we do for inputs,
and we add ¬x if the else branch is followed.

The set of constraints [[P]]tt computed according to Table 7.3 can be nor-
malised so as to produce a compact representation of P . Whenever two rules
ϕ; p and ϕ′ ; p are in [[P]]tt, they are replaced with a single rule (ϕ∨ϕ′) ; p.
This simplification is intuitively sound for if ϕ leads to obtain p and ϕ′ leads
to obtain p, then p is available to the attacker under the condition that ϕ ∨ ϕ′
is known. In the following, we assume to deal with sets of constraints in such
format.

104 Quantifying Protection

Table 7.3: The translation [[P]]tt from processes to flow constraints.

[[0]]ϕ = ∅
[[!P]]ϕ = [[P]]ϕ

[[P1|P2]]ϕ = [[P1]]ϕ ∪ [[P2]]ϕ

[[(νc)P]]ϕ = [[P]]ϕ

[[lb.P]]ϕ = [[P]](ϕ ∧ hp(b)) ∪ th(ϕ, b) ∪ {ϕ; l}
[[lc!t.P]]ϕ = [[P]]ϕ ∪ {ϕ; c} ∪ {ϕ; l}

[[lcase x of some(y) : P1 else P2]]ϕ = [[P1]](ϕ ∧ x) ∪ [[P2]](ϕ ∧ ¬x) ∪ {ϕ; l}

hp(c?x) = c

th(ϕ, c?x) = {(ϕ ∧ c) ; x}
hp(&q(b1, . . . , bn)) = [{q}](hp(b1), . . . , hp(bn))

th(ϕ,&q(b1, . . . , bn)) =
⋃n
i=1 th(ϕ, bi)

[{∀}](c1, . . . , cn) =
∧n
i=1 ci [{∃}](c1, . . . , cn) =

∨n
i=1 ci

7.3.2 Modelling the attacker

A rule ϕ ; p in [[P]]tt describes how Q can attain p playing according to the
rules of the system, namely fulfilling the checks described by ϕ. Nonetheless,
when p is a channel, an attacker can always try to obtain it directly, for instance
guessing some cryptographic keys or bursting a gate. In order to account for
this possibility, we enrich each rule ϕ; c by replacing the antecedent with the
disjunction gc ∨ ϕ, where literal gc (for “guess c”) represents the possibility of
learning c directly. For each channel c such that no rule ϕ ; c is in [[P]]tt, we
add to [[P]]tt a constraint gc ; c, expressing that Q has no option but guessing
the channel.

Finally, observe that having added the literals gc, which tell how the attacker
can get hold of a channel in any other way than those legal in P , interpreting the
relation ; as the propositional bi-implication ⇔ preserves the minimal models
of the system of constraints. A constraint ϕ ∨ gc ⇔ c states that c is only
obtained by guessing or by making P disclose it and, on the other hand, that if
c is known to the attacker it must be because they have guessed it or because
they made P disclose it.

In the following, given a label l of interests, we shall write P l⇔ to denote
the conjunction of constraints [[P]]tt which have undergone the transformations
mentioned above. In particular, in P l⇔

• l is a fact, expressing the query we want to study:

7.3 Discovering Attacks 105

• there is exactly one conjunct ϕ⇔ l;

• for each channel c occurring in P , there is exactly one conjunct ϕ ⇔ c,
and ϕ has the form gc ∨ ϕ′ where gc does not occur elsewhere in P l⇔;

Intuitively, we assume that l is reached and we look for the consequences in terms
of truth values of channel literals (i.e., we look for implicants of l [DM94]). In
the following, we present a SAT-based solution to this problem.

Translating the example login system. The translation of the log-in sys-
tem of § 7.2 returns the following flow constraints, augmented as explained
above. For the sake of simplicity we omit the occurrences of tt as a conjunct in
all left-hand sides.

id⇔ xid
pwd⇔ xp
id ∧ pwd⇔ gaccess ∨ (id ∧ pwd)⇔ access

 from
[[Login]]tt

id⇔ x′id
mail⇔ xm
pin⇔ xc
id ∧ (mail ∨ pin)︸ ︷︷ ︸

ϕ

⇔

ϕ ∧ xm ⇔
ϕ ∧ ¬xm ⇔ ϕ ∧ (¬xm) ∧ xc ⇔

gid ⇔ id
gmail ⇔ mail
gpin ⇔ pin
gpwd ∨ (ϕ ∧ xm) ∨ (ϕ ∧ (¬xm) ∧ xc)⇔ pwd

from
[[Recover]]tt

where the only way for Q to know id,mail, pin is to guess them. Observe that
the capability of using the password channel (last constraint) is obtained either
by satisfying the recovery mechanism or by guessing pwd.

7.3.3 A SAT-based solution technique
A model of P l⇔ can be represented as a function mapping the literals in P l⇔,
denoted by dom(µ), to truth values {ff, tt}. Now, denoted by Names the set of
names (channels) occurring in the process P under study, then the set

attack(µ) = {c ∈ dom(µ) | c ∈ Names ∧ µ(gc) = tt}

identifies a set of channels that, if guessed, satisfies the constraints in P l⇔. In
the semantics, attack(µ) under-approximates a set of channels that fulfil the

106 Quantifying Protection

security checks on a path to l in P , i.e., a way for Q to drive P to l. Denoted
by M l the set of all models of P l⇔, the corresponding set of sets of channels
attack(M l), obtained by point-wise application of attack to the elements of M l,
contains under-approximations to all the attacks leading to l.

Hence, in order to solve the analysis we need essentially to compute all the
models M l of the propositional constraints P l⇔, that is, we have to solve the
ALL-SAT problem for the input formula P l⇔. If no solution is found, i.e., P l⇔
is unsatisfiable, then the program point indicated by l is not reachable.

It is worthwhile observing that the translation into flow constraints over-
approximates the behaviour of a process, giving rise to more executions than
those actually arising in the semantics. Such spurious executions correspond
to attacks that under-approximate the sets of channels required to reach the
target l, and therefore the overall analysis results in an under-approximation.
This intuition is formalised in the following correctness statement:

if P |Q =⇒∗ C[lP ′] then ∃N ∈ attack(M l) .N ⊆ fc(Q)

i.e., for all the executions in which Q can drive P to l, the analysis computes
a set of channels N ∈ Names that under-approximates the knowledge required
of Q. The formulation of the actual theorem requires to establish some addi-
tional notation, and therefore is deferred to Appendix C.1. In the following, we
shall focus instead on an example process that pinpoints the imprecision of the
analysis.

A main source of over-approximation in the translation to flow constraints
is the treatment of replication and restriction, whose interplay is simply disre-
garded by the analysis. As a matter of fact, a name restricted under replication
is a different name in all the instances of the replicated process. Consider the
following example:

P , (νc) ((!(νa) a?xa.
c!c) |c?xc.c?x′c. . . .)

Let label be the location of interest and consider the following translation of
P into flow constraints, conveniently simplified for the sake of conciseness:

(ga ⇔ a) ∧ (gc ∨ a⇔ c) ∧ (c⇔) ∧ (tt⇔)

According to the translation, an attacker can reach label either by knowing a
or by knowing c, that is, attack(M) = {{a}, {c}, {a, c}}.

Whilst it is clear that if the attacker guesses c then the security checks at
labels , can be satisfied, it is less obvious what it means for the attacker to
guess a. In fact, if the adversary makes an output on a twice, then two outputs
on c are triggered, and thus the checks on the path to the goal are fulfilled.
According to the semantics this may happen in all traces in which the replication
is unfolded at least twice. Nonetheless, the two instances of a in the two copies of
the process are different: α-renaming applies producing names a and a′. Hence,
claiming that can be reached by guessing a, the analysis under-approximates
the knowledge required of the attacker, who needs a and a′.

7.4 Quantifying Attacks 107

7.4 Quantifying Attacks
In the previous section we have presented a SAT-based solution technique, where
each model of P l⇔ contains a set of channels that are necessary to fulfil an attack.
Not all security mechanisms, however, offer the same protection guarantees, that
is, not all channels are equal. A retinal scan can prove more difficult to bypass
than a pin lock, and thus offer more protection. This is not the case, however, of
an insider who is authorised to enter the corresponding room. A cost structure
over channels facilitates formalising these considerations, and assigning costs to
channels naturally leads to quantify sets of channels, that is, attacks.

The characterisation of attacks in terms of cost allows to order them, and
ultimately to focus on those which are deemed the most likely given our un-
derstanding of the candidate attacker profiles. Moreover, the minimal cost of
reaching a given location l identifies the protection deployed to guard l in the
implementation, which can be contrasted with the desiderata of the specifica-
tion. The higher the cost for the attacker, the higher the protection guarding
the target.

In the following, we extend the qualitative analysis of § 7.3 to a quantitative
setting. In particular, we should follow a modular approach according to which
cost considerations are developed on top of the structure of the original analysis.
The benefit of a layered strategy is two-fold: on the one hand, we present a
technique that can be exploited to transform a great many qualitative analyses
into quantitative analyses; on the other hand, whenever quantitative information
about the entities in question is not available, we can resort to the qualitative
solution.

7.4.1 From qualitative to quantitative considerations
Let cost be a function from channels c ∈ Names to costs k ∈ K. Formally, we
require (K,⊕) to be a commutative monoid (also known as Abelian monoid),
that is, ⊕ is an associative and commutative binary operation on the set K and
has an identity element. Moreover, we require K to be equipped with a partial
order vK, such that (K,vK) is a lattice, and ⊕ to be extensive, that is, the sum
of two elements always dominates both the summands:

∀k1, k2 ∈ K . k1 vK (k1 ⊕ k2) ∧ k2 vK (k1 ⊕ k2) (7.1)

Finally, we assume that ⊕ is monotone and the least element ⊥ ∈ K is its
identity element, that is, ⊕ is an upper bound operator of the lattice (K,vK),
and therefore satisfies condition (7.1). For the sake of simplicity, we assume
that the costs of channels are independent.

For the sake of simplifying the notation, in the following we shall feel free to
apply the function cost to sets of names, according to the following definition:

cost : P(Names)→ K
cost({c1, . . . , cn}) =

⊕n
i=1 cost(ci)

108 Quantifying Protection

Likewise, we extend the function cost also to sets of sets of names by point-wise
application:

cost : P(P(Names))→ P(K)

cost({c11, . . . , c1n1
}, . . . , {cm1 , . . . , cmnm

}) ={
cost({c11, . . . , c1n1

}), . . . , cost({cm1 , . . . , cmnm
})
}

Therefore, given a model µ of P l⇔, the corresponding set attack(µ) = {c1, . . . , cn}
can be quantified as

cost(attack(µ)) =
⊕

c∈attack(µ)

cost(c)

As we mentioned above, however, a conservative approach to security would
consider the attacks of minimal cost. Hence, given two attacks, i.e., two distinct
models µ, µ′, we would discard µ′ in case cost(attack(µ)) <K cost(attack(µ′)).
We can thus restrict the set of modelsM l to the ones bearing attacks of minimal
cost:

minimal(M l) =
{
µ ∈M l | ∀µ′ ∈M l.cost(attack(µ′)) 6<K cost(attack(µ))

}
It is worthwhile noticing that minimal(M l) may contain more than one model,
as (i) we consider all the attacks with same cost and (ii) some attacks may have
incomparable costs in case the cost set is not linearly ordered.

Now, we can relate an attack to the corresponding security level σ ∈ Σ
required to counter it by means of a function level : K → Σ, compressing cost
regions into security levels:

level(k) =

σ1 if k ∈ {k1

1, . . . , k
1
h1
}

...
σm if k ∈ {km1 , . . . , kmhm

}

where level is a well-defined function if the sets of costs {ki1, . . . , kihi
} are pair-

wise disjoint and their union is K. Moreover, it is natural to require that level
is monotone. A simple example in the cost set (N,+) and security lattice low <

medium < high is given by the choice

level(k) =

low if k ≤ 1024

medium if 1024 < k ≤ 2048

high if 2048 < k

where numbers could represent the length of cryptographic keys, and we state
for instance that a program point is poorly protected if no more than 1024 bits
are necessary to attain it (for a fixed cryptosystem).

7.4 Quantifying Attacks 109

Finally, we extend level to work on sets of costs so as to encompass all the
sets of channels produced by the analysis at once:

level : P(K)→ Σ
level({k1, . . . , kn}) = {level(k1), . . . , level(kn)}

where the input {k1, . . . , kn} is the set of costs of all minimal attacks, computed
as

cost(attack(minimal(M l)))

Finally, the greatest lower bound
d

Σ is used to derive the greatest security level
compatible with all attacks in minimal(M l), that is, the protection of a program
point corresponds at most to the cost of the weakest path leading to it.

A graphical illustration of the various components of the analysis is dis-
played in Fig. 7.1, where it is apparent how the quantitative analysis is built
on top of the qualitative analysis. Intuitively, function security is the spec-
ification expressing the target security architecture of a system with respect
to a given security lattice, while level(cost(attack(minimal(M l)))) captures (an
under-approximation of) how this architecture has been realised in the imple-
mentation.

The overall aim of the analysis, i.e., checking whether the deployed protection
lives up to the required confidentiality, can thus be expressed by the property

∀l ∈ L . security(l) vΣ level(cost(attack(minimal(M l))))

A violation of this condition is referred to as a potential inversion of protection.
The overall under-approximation of the analysis is the results of minimising over
the costs of under-approximating sets of channels, as we we have seen for the
qualitative analysis in § 7.3.3.

Turning our attention again to availability considerations, it is worthwhile
observing that the protection analysis can be used to quantify the minimal cost
an attacker incur to cause DoS, thereby validating cost-based proactice strategies
as those surveyed in §3

7.4.2 Optimisation Modulo Theories
In order to compute the set of sets of channels attack(minimal(M l)) that allow
reaching l incurring minimal costs, we need to solve an optimisation problem
subject to the Boolean constraints P l⇔. There exist various techniques to cope
with such problems, each suitable for particular choices of cost sets and objective
functions. One solution is to first compute M l and then minimise it by compar-
ing models as explained above. Nonetheless, cost information can be levered to
skip non-optimal models during the search, hence improving the performance.
In the following, we show how to exploit an SMT solver to tackle the problem
in its most general form. We limit to mention that linear programming tech-
niques such as Pseudo-Boolean optimisation [BH02] are efficient alternatives for
dealing with the monoid (Z,+) and linear objective functions.

110 Quantifying Protection

L

?
vΣ

P l⇔

M l

P(K)

P(Σ)

σ′σ
s
p
e
c
if

ic
a
t
io

n

im
p
le

m
e
n
t
a
t
io

n

security

[[P]]tt

ALL-SAT

cost ◦ attack ◦ minimal

level

d
Σ

Figure 7.1: The quantitative protection analysis at a glance.

An SMT-based solution. In a nutshell, our task reduces to compute models
of P l⇔ (containing attacks) of minimal cost in the lattice K. In other words, we
are looking for prime implicants of l [DM94], where primality is sought with
respect to the given cost set.

Such an optimisation problem can be tackled by computing models for a list
Π1, . . . ,Πn of SMT problems, where Πi is a more constrained version of Πi−1

that requires to improve on the cost of the current solution. The initial problem
Π1 consists of the propositional constraints P l⇔ and of the objective function,
whose value on the current model is stored in variable goal.

The objective function is essentially the cost of the current model. In order
to compute cost(attack(µ)) into variable goal as part of µ itself we define:

goal :=

n⊕
i=1

(if gci then cost(ci) else ⊥)

where we combine the costs of all the channels that must be guessed, that is,
the channels ci’s such that the corresponding guessing literal gci is found to be
tt. Otherwise, if a gci is ff, then the corresponding ci needs not be guessed
and its cost does not contribute to the cost of the attack. Recall that the least
element ⊥ of the cost lattice K does not contribute any cost, for it is the neutral
element with respect to the cost combinator ⊕. Hence, by construction we have
µ(goal) = cost(attack(µ)).

7.4 Quantifying Attacks 111

Data: The problem Π , P l⇔ ∧ (goal :=
⊕n

i=1(if gci then cost(ci) else ⊥))
Result: the setM of pairs (µ, cost(attack(µ))) such that

µ ∈ minimal(M l)
M← ∅;
while Π satisfiable do

µ ← get-model(Π);
k ← µ(goal);
forall the (µ′, k′) ∈M | k <K k

′ do // µ outperforms µ′

M ←M\ {(µ′, k′)}
end
M ←M∪ {(µ, k)};
Π ← Π ∧ ¬(

∧n
i=1(ci = µ(ci))) ∧ ¬(goal =K k);

end
Algorithm 1: The SMT-based solution procedure.

Then, while the problem is satisfiable, we improve on the cost of the current
model by asserting new constraints which tighten the value of goal, until unsat-
isfiability is reported. Algorithm 1 displays the pseudo-code of the procedure.
In particular, observe that when a new problem Πi is generated, additional con-
straints are asserted that ask for (i) a different model and (ii) a non-greater
cost: the former condition speeds up the search, while the latter explores the
cost frontier.

The termination of the algorithm is ensured by the finiteness of possible
models to the propositional variables of the Πi’s, whose propositional structure
does not change throughout the loop, and by the fact that the same model
cannot occur twice as solution due to the new constraints we generate in each
iteration. At most, we need to solve as many Πi’s as there are models of P l⇔,
which coincide with the qualitative analysis (ALL-SAT). The correctness of
the procedure stems from the fact that when unsatisfiability is claimed, by
construction of the Πi’s there cannot exist further models that comply with the
cost constraints.

It is worthwhile noticing how resorting to propositional logic integrates with
the overall under-approximating nature of the analysis: a channel can either
be learnt or not, and its cost contribute or not to the cost of an attack. This
means that we do not keep track of the number of attempts made to guess some
information, and always assume that guessing c is successful whenever gc is found
to be true. In order words, for a fixed cost set, we are considering the luckiest
or cleverest attacker. As for the cost set (comparing and combining costs),
SMT solvers offer native support for numeric costs and common mathematical
functions, while more complex cost sets have to be encoded manually.

Finally, observe that the procedure above is not dependent on our analysis,
but can be generally exploited to find optimal models of arbitrary logic formulae

112 Quantifying Protection

and for arbitrary cost sets, and can be seamlessly extended to more complex
logics.

Attacking the example login system. Consider the login system discussed
in § 7.2, and assume to work in the cost set (N,+). The engineering of a sensible
cost map is a delicate task that involves cryptographic arguments and falls out-
side the scope of this dissertation. For the time being let us make the simplistic
assumption that costs to channels are given by the number of bits to be guessed:
cost(pin) = 28 (7 digits, 4 bits each) and cost(pwd) = 56 (8 symbols, 7 bit per
ASCII symbol). We assume that the user id is known (the target e-mail itself,
for instance), and that the password of the third-party mailbox is comparable
to pwd (as the constraints put by Microsoft are customary also to other e-mail
providers). Finally, we disregard channel access as it is only used after the label
of interest is reached.

The problem is thus to minimise∑
c∈Names

(if gc then cost(c) else 0)

under the constraints given by P ⇔. Instructed with this input, our procedure
finds that the formula is satisfiable and the single cheapest model µ contains
the assignments

gid 7→ tt gpwd 7→ ff gmail 7→ ff gpin 7→ tt

with cost given by cost(id)+cost(pin) = 28, and entailing attack(minimal(P ⇔)) =
{{id, pin}}.

As for the desired security levels, we observed in § 7.1 that security() =
security() = security() = restricted should hold, for we want the account to
be equally protected on all the paths leading to granting access. As the cost of
accessing an account in normal condition is 56, it is reasonable to set

α(k) =

{
restricted if k ≥ 56
unrestricted otherwise

We would like to verify that restricted vΣ

d
Σ level(28), which is false. Hence, it

is the case that the implementation potentially guarantees less protection than
the amount required by the specification, and therefore we shall issue a warning
to the designer of the system.

Obviously, costs are central in determining the outcome of the analysis. For
example, we could consider to choose pwd from a password dictionary, for it is
unrealistic to assume randomly generated bits: the size of such dictionaries is
usually less than the number of sequences of 7 digits, and thus with this cost map
the analysis might say that the recovery mechanism offers enough protection.

7.4 Quantifying Attacks 113

Likewise, a limit to the number of attempts – as later enforced by Microsoft on
its platform – can equalise the protection of the two mechanisms or make the
one offered by the recovery procedure even stronger.

Finally, it is worthwhile noticing that the framework can be exploited to
measure the distance between the implementation and the specification, and
not only their qualitative compliance.

A semantic interpretation of guessing. It would be possible to formulate
a neat semantic interpretation of the guessing capability of the attacker. Assume
to deal with processes of the form ((ν−→c)P)|Q, where the first component is the
system under study, in which all restrictions are at the outer-most level, and
Q is the attacker. Now, for Q to interact with P , the attacker needs to move
inside the scope of some restrictions so as to share some channel names with
P . Whenever Q enters the scope of a restriction (νc), the name c is guessed.
In order to account for the cost k ∈ K of guessing a name, we can instrument
each restriction with the corresponding cost, writing (νkc), and then augment
the scope extension rule (New3) of Table 4.2 so as to accumulate the cost of
names that are guessed. The standard semantics of restriction used in security
applications of process calculi, according to which a new name c is only known
to legal participants unless leaked (P , in our case), is encompassed by assigning
c an infinite cost.

Though possible, such an extension of the semantics is not necessary to prove
the correctness of the analysis. Every assignment that satisfies the propositional
constraints leads Q to reach the location l of interest, hence also the ones of
minimal costs. Nonetheless, it is worthwhile noticing that such a quantitative
point of view on restrictions generalises the distinction between the operators
new and hide introduced in the secret π-calculus [GPV12]. The operator hide c,
which introduces a name c inhibiting its scope extension, would correspond to
(ν∞c), while we would have a more fine-grained view on plain scope extension.

7.4.3 Complex cost structures

So far we have worked with an example in the cost set (Q,+), for it is natively
encoded into SMT solvers and matches a first intuition of the notion of cost.
Nonetheless, it is often difficult to provide an absolute estimate of the strength
of a protection mechanism: sometimes different mechanisms are even incompa-
rable, as cryptography and physical security might be. In such cases, it is more
natural to describe the relative strength of a set of mechanisms with respect
to each other. This is achieved by computing the analysis over symbolic and
partially-ordered cost structures.

As a basic example, consider the cost lattice displayed in Fig. 7.2: we could
characterise the cost of obtaining given information as cheap, if it does not re-
quire a specific effort, as cpu, if it requires significant computational capabilities

114 Quantifying Protection

cheap

cpu enrg

expensive

Figure 7.2: The Hasse diagram of a partially-ordered cost structure.

(e.g., breaking an encryption scheme), as enrg, if it requires to spend a consid-
erable amount of energy (e.g., engaging in the wireless exchange of a number
of messages), or as expensive, if it requires both computations and energy. In
order to combine such costs, a suitable choice is to take as monoid operator ⊕
the least upper bound t of two elements in the cost lattice.

Observe that Algorithm 1 is already equipped to cope with the general prob-
lem of optimising on partially-ordered cost sets. An interesting case of non-linear
cost sets is offered by the study of security in Cyber-Physical Systems, where
components combine both software and physical features [Vig12]. In particular,
in such systems an attack could require to assemble cyber actions with physi-
cal tampering, whose costs can either be comparable or not depending on the
nature of the quantities we are interested in (for instance, energy and memory
are not directly comparable).

In conclusion, three elements push independently for the comprehensive
SMT-based approach: the non-linearity of the cost set, its symbolic nature,
and the non-linearity of the objective function.

A mundane approach to password recovery. Yahoo!Mail password re-
covery mechanism differs from the one provided by Microsoft account in that
it is (also) possible to recover a password by answering two personal questions
chosen upon the registration of the mailbox. The user needs hence to provide an
id and to answer two questions like “What is your mother’s maiden name?”. It
is unclear how to quantify the difficulty of such questions in terms of numbers.
Nonetheless, a substantial consensus of opinion sustains the feeling that it is
simpler for an attacker to get hold of such secrets than guessing a randomly
generated pin [GJ05] – often the answers to such questions can be uncovered
exploiting social media [Rab08]

A symbolic quantification of the two paths leading to logging into the mail-
box can then be modelled in the cost set ({cheap, expensive},⊕), where the
cost of answering a question is cheap and the cost of guessing the password is
expensive. As for the monoid operator, a suggestion is to use (the least-upper
bound) max(·, ·), since asking one, two, or three questions will annoy an attacker
but does not really make their task much harder.

The SMT implementation of this example requires to encode the cost struc-

7.5 The Quality Tool 115

ture, that is, declaring its elements and defining the ordering relation as well as
the monoid operator. Running the analysis in this cost set, we verified the exis-
tence of a cheap path leading to authenticating, namely the path that exploits
the question-based recovery mechanism. The framework thus suggests that such
an option should not be offered, otherwise we would not provide uniform security
on all paths guarding the protected region.

7.5 The Quality Tool
A proof-of-concept implementation of the framework is available in Java at

www.imm.dtu.dk/~rvig/quality-tool.html

The Quality Tool takes as input an ASCII representation of a Value-Passing
Quality Calculus process P and generates the set [[P]]tt. This set is then nor-
malised as explained in § 7.3.1, and the constraints are generated. Finally, given
the costs to channels and a label of interest, the tool computes all the cheapest
assignments satisfying the problem Π defined in § 7.4.2.

As for the engine, we have implemented the translation from processes to
backward constraints, and the loop discussed above on top of Z3 (Java API).
The tool resorts on Z3 for numerical cost sets, optimising the sum of the costs.
As for symbolic and non-linearly-ordered cost sets, a finite lattice can be fed
into the tool, and the least upper bound is used as monoid operator. Costs can
be specified in two ways: numeric costs can be directly fed to the tool, while
before specifying symbolic costs the finite lattice (K,v) has to be loaded. In
order to specify a lattice, one as to declare > and ⊥, and then operator ⊕ as
a list of entries x ⊕ y = z. The names of the elements of the lattice and the
partial order v are automatically inferred from the graph of ⊕.

7.6 Concluding Remarks
Awareness of vulnerabilities and of their exploitation costs is an essential ingre-
dient for developing robust systems while facing unavoidable budget considera-
tions. In the design of software, physical, and cyber-physical systems, security
is often perceived as a qualitative need, but can only be attained quantitatively.
Especially when physical components are involved, it is simply impossible to
predict and confront any possible attack. Even if it were possible, it would be
unrealistic to have an unlimited budget to implement security mechanisms.

This perspective has found rich soil in the study of countermeasures to DoS,
as witnessed by the discussion in § 3.1.3, and therefore needed to be integrated
in our investigation of unavailability. The protection analysis we presented has
both the merit of automatically inferring the attacks to which a system is sub-
ject, among those accountable for in the framework, and to estimate the effort
required of a lucky attacker for bypassing the protection mechanisms in place.

www.imm.dtu.dk/~rvig/quality-tool.html

116 Quantifying Protection

Hence, the approach enables to identify potential weak paths and compare de-
sired with actual protection. In terms of resilience to unavailability, the analysis
facilitate estimating the cost an adversary incur to carry out a successful DoS
attack.

Moreover, the framework allows reasoning with symbolic and non-linearly or-
dered cost structures, as it is often more natural and informative to describe the
relationships between different protection mechanisms instead of assigning them
absolute numbers. We showed how the analysis applies to real scenarios giving
meaningful insights on the problem of password recovery. Finally, the SMT-
based optimisation technique proposed for computing the analysis is exploitable
in all the contexts where propositional models have to be ranked. Therefore, on
the practical side, a stand-alone version of the solution engine would be highly
desirable, even if recently a number of solvers are being developed.

Finally, it would be interesting to elaborate on the notion of cost set, passing
from the current view, essentially static, to a dynamic setting in which costs to
channels are dependent on each other and on the order in which channels are
guessed. Moreover, as already highlighted by Meadows [Mea01], the monoid of
the cost set needs not be commutative, as the order in which costs are paid
might influence their combination. It would be interesting to investigate mech-
anisms for re-determining costs dynamically, as a process is evaluated.

Our work is inspired by a successful strand of literature in protocol verifi-
cation, where a protocol is translated into a set of first-order Horn clauses and
resolution-based theorem proving is used to establish security properties [Pau98,
Wei99], and by the flow logic approach to static analysis. In particular, the
translation from processes to propositional formulae is inspired by ProVerif
[Bla09] translation of protocols into first-order Horn clauses, but can be more
formally understood as a flow logic where the carrier logic is not the usual
Alternation-free Least Fixed Point Logic, since it cannot express optimisation
problems.

In order to formalise the “need for protection” of a location we resort to
confidentiality lattices, that are widely used for describing levels of security in
access control policies. An excellent introductory reference is [Amo94, Chs. 6,7].

Co-processes have been in studied, e.g., in [CDM14] in connection with prob-
lem of lock-freedom and progress.

As for the solution technique we exploit, different approaches have been
presented to solve optimisation problems via SMT. In particular, Nieuwenhuis
and Oliveras [NO06] proposed to modify the DPLL(T) procedure inherent to
SMT solvers so as to look for optimal assignments, while Cimatti et al. [CFG+10]
developed the search for an optimal assignments on top of an SMT solver, as we
do in § 7.4.2. Nonetheless, both these works focus on numeric weights, which
in our settings are represented with linearly ordered cost structures. Our more
general notion of weight is modelled after Meadows’s cost sets, formalised as
monoids in [Mea01]. At the time of submitting this dissertation, a new version

7.6 Concluding Remarks 117

of Microsoft Z3 for optimisation purposes is available [BAD14].
Finally, another perspective on the technical developments underpinning the

analysis points to computing prime implicants of a given formula [DDMA12],
where in our case primality is sought with respect to the cost set.

118 Quantifying Protection

Chapter 8

Generating Attack Trees

The protection analysis of Ch. 7, moving from the urgency of quantify DoS-
resilience, defines a general framework for inferring attacks. Building on the
same intuition, we shall develop a systematic way to characterise graphically
how an attack is achieved, in terms of composition of sub-goals and information
required to attain them. We shall use attack trees as the graphical formalism
for representing attacks. Like those of the previous chapter, the following de-
velopments overcome the boundaries of the problem of unavailability, and are
strongly motivated by the necessity of devising effective way of communicating
security information.

Attack trees are a widely-used graphical formalism for representing threat
scenarios, as they appeal both to scientists, for it is possible to assign them
a formal semantics, and to practitioners, for they convey their message in a
concise and intuitive way. In an attack tree, the root represents a target goal,
while the leaves contain basic attacks whose further refinement is impossible or
can be neglected. Internal nodes show how the sub-trees have to be combined
in order to achieve the overall attack, and to this purpose propositional con-
junction and disjunction are usually adopted as combinators. On top of this
basic model, a number of extensions and applications of attack trees have been
proposed, demonstrating how flexible and effective a tool they are in practice.
Figure 8.1 displays a simplistic attack tree, where the overall goal of entering a
bank vault is obtained by either bribing a guard or by stealing the combination
and neutralising the alarm.

Historically, attack trees are produced manually by teams of experts, known
as Red Teams. When considering complex and sizeable systems, however, the

120 Generating Attack Trees

∨
enter vault

∧ bribe guard

steal
combination

disable
alarm

Figure 8.1: How to enter a bank vault, for dummies.

manual construction of attack trees becomes error-prone and necessarily not
exhaustive. Automated techniques are therefore needed to infer complete and
succinct attack trees from formal specifications. Existing approaches, surveyed
in § 8.7, all suffer from focusing on computer networks, and thus suggest speci-
fication languages tailored to this domain. Moreover, the model-checking tech-
niques that have been proposed recently for generating attack trees lead to an
exponential explosion of the state space, limiting the applicability of automated
search procedures.

In order to overcome these drawbacks, we develop a static analysis approach
where attack trees are automatically inferred from process algebraic specifica-
tions in a syntax-directed fashion. The advantage of resorting to process calculi
is many-fold. First, a process algebraic specification requires focusing on the
structural and functional definition of a system, and from this deriving the
threat scenario automatically, rather than thinking of it from the start, as it
seems necessary with existing approaches. Second, the affinity of process calculi
with programming languages established their usefulness in the formal design of
complex systems, that are described in terms of interacting components. In turn,
formal specifications enable the automated verification of behavioural proper-
ties at design time, hence before the actual system is produced, matching an
ever-growing need for deploying software that lives up to given requirements in
terms of security, safety, and performance. Finally, and most importantly, pro-
cess calculi have proven useful formal languages for describing software systems,
organisations, and physical infrastructure in a uniform manner.

As in the previous chapter, we define attacks as set of channels and we
assume that a system P is deployed in a hostile environment, simulated by an
adversary process Q running in parallel with P , resorting to the same attacker
model.

Technically, we start from the translation into propositional formulae of
§ 7.3.1 and we obtain a tree by means of a backward reasoning procedure (§ 8.3)
that connects required channels to other channels leading to them. Again, we
temper the essentially qualitative nature of the translation with a quantification
of the cost Q incurs to learn a channel, i.e., the effort related to obtaining some
information. Therefore, after having computed an attack tree Tl for l, our ques-

8.1 The NemID System 121

tion will be what are the attacks of minimal cost among those described by Tl.
In this sense, our attack trees encompass both the qualitative and quantitative
analyses of Ch. 7.

On the complexity side, being syntax-driven, static analysis often enjoys
better scalability than model-checking approaches. Even though the theoretical
complexity of our analysis is still exponential in the worst case, such a price de-
pends on the shape of the process under study, and is not incurred systematically
as when a model checker generates the state space.

In general, the interplay between static analysis and model checking had a
key role in advancing the community’s knowledge on the foundations of formal
verification, and therefore it is interesting to complement the existing studies
on the attack tree generation problem with static analysis tools.

A Java implementation of the framework, briefly described in § 8.5.2, is
available, which takes as input a process in the Value-Passing Quality Calculus
and a location of interest, and displays graphically the corresponding attack
tree. Levering the cost map, the tool also computes the cheapest sets of atomic
attacks leading to l, exploiting the procedure introduced in Ch. 7. The useful-
ness of the framework is demonstrated on the study of the NemID system, a
national-scale authentication system used in Denmark to provide secure Inter-
net communication between citizens and public institutions as well as private
companies.

This work is mainly based on [VNR14a] and on work currently under sub-
mission.

8.1 The NemID System

NemID (literally: EasyID)1 is an asymmetric cryptography-based log-in solu-
tion for on-line banking and public on-line services in Denmark, used by virtu-
ally every person who resides in the country. Most service providers rely on a
Java applet log-in application distributed by a national contractor, and through
which their customers can be authenticated. For technological and historical
reasons, the applet allows proving one’s identity with various sets of creden-
tials. In particular, private citizens can log-in with their social security number,
password, and a one-time password, or by exhibiting an X.509-based certificate.
Moreover, on mobile platforms that do not support Java, a user is authenticated
through a classic id-password scheme.

The system is modelled in the Value-Passing Quality Calculus as follows:

NemID , (νlogin) . . . (νaccess)(!Login | !Applet | !Mobile)

1https://www.nemid.nu/dk-en/

https://www.nemid.nu/dk-en/

122 Generating Attack Trees

Applet ,
&∃(cert?xcert,&∀(id?xid, pwd?xpwd, otp?xotp)).
case xcert of some(ycert) : login!ok else

case xid of some(yid) :
case xpwd of some(ypwd) :

case xotp of some(yotp) : login!ok else 0
else 0

else 0

Mobile , &∀(id?x′id, pin?xpin).
case x′id of some(y′id) :
case xpin of some(ypin) : login!ok else 0

else 0

Login , login?x.access!ok

The system consists of three processes running in parallel an unbounded number
of times. For the sake of brevity, we have omitted to list all the restrictions in
front of the parallel components, that involve all the names occurring in the
three processes.2

Process Login is in charge of granting access to the system: whenever a user
is authenticated via the applet or a mobile app, an output on channel login is
triggered, which is received at label leading to the output at label , which
simulates a successful authentication.

Process Applet models the applet-based login solution, where login is granted
(simulated by the outputs at label and) whenever the user exhibits a valid
certificate or the required triple of credentials. The quality binder at label
implements such a security check: in order to pass the binder, either (∃) a
certificate has to be provided, simulated by the first sub-binder, or three inputs
have to be received (∀), mimicking the knowledge of an id (id), a password
(pwd), and a one-time password (otp).

Finally, process Mobile describes the intended behaviour of the mobile login
solution developed by some authorities (e.g., banks, public electronic mail sys-
tem), where an id and a password or pin have to be provided upon login.

In the following, we shall see how an attack tree is inferred automatically
given a process P and a label l, according to the following plan:

1. P is translated into a set containing propositional formulae stating the
dependency between the knowledge of channels and expressing the rela-
tionship between such knowledge and the reachability of locations (§ 8.2);

2Though this formulation is slightly imprecise, as for instance the mobile app is not in the
scope of the password used by Java applet, we have already seen in Ch. 7 how restrictions are
ignored by the analysis.

8.2 From Processes to Propositional Formulae 123

2. backward chaining the formulae representing P , a formula [[l]] is synthe-
sised, stating what channels have to be in the knowledge of Q so as to
drive P to l; a parse tree of such formula is an attack tree showing the
combinations of channels that allow reaching l (§ 8.3);

3. given a map from channels to costs, we compute the set of minimal-cost
attacks that allow reaching l among those described by the tree.

Each step will be demonstrated on the NemID example introduced above.

8.2 From Processes to Propositional Formulae

In the following, we shall rely on the translation [[P]]tt devised in Table 7.3 but
embrace a slightly different interpretation so as to allow explicitly generating
trees. In particular, we replace bi-implications in P l⇔ with implications, obtain-
ing a set of constraints denoted by P l⇒, and we do not introduce guessing literals.
For the sake of simplicity, we again assume that same names and variables are
defined only once.

Translating NemID. The translation of the NemID system of § 8.1 returns
the following flow constraints, augmented as explained above. For the sake of
simplicity we omit the occurrences of tt as a conjunct in all left-hand sides.

cert⇔ xcert

id⇔ xid

pwd⇔ xpwd

otp⇔ xotp

cert ∨ (id ∧ pwd ∧ otp)︸ ︷︷ ︸
ϕ

⇔

ϕ ∧ xcert ⇔
ϕ ∧ (¬xcert)⇔
ϕ ∧ (¬xcert) ∧ xid ⇔
ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp ⇔

from
[[Applet]]tt

id⇔ x′id
pin⇔ xpin

id ∧ pin⇔

id ∧ pin ∧ x′id ⇔

id ∧ pin ∧ x′id ∧ xpin ⇔

from
[[M

obile
]]tt

login⇔ x

login⇔

gaccess ∨ login⇔ access

from
[[Login

]]tt

124 Generating Attack Trees

glogin ∨ (ϕ ∧ xcert)︸ ︷︷ ︸
[[Applet]]tt

∨ ((ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp))︸ ︷︷ ︸
[[Applet]]tt

∨
((

id ∧ pin ∧ x′id ∧ xpin

))︸ ︷︷ ︸
[[Mobile]]tt

⇔ login

where the last formula combines the constraints that show the various ways
to trigger an output on channel login. Notice how each formula models the
checks on a given path: for being granted access, i.e., reaching label , a
communicating process has to know channel login, as specified by the constraints
derived from [[Login]]tt. In turn, the last formula describes what is needed in
order to get hold of login, giving rise to a backward search procedure formalised
in § 8.3.

Modularity and refinement. It is worthwhile highlighting the modularity
of process algebraic specification, which results in a high degree of flexibility
when analysing complex systems. In the example above, for instance, while the
Java applet is developed by a national contractor, and hence is common to all
service providers, each company offers its own mobile app. Assume that a new
way to access the system were offered by a bank, which would authenticate a
user via a phone number:

Phone ,
phone?xph.

case xph of some(yph) : login!ok else 0

NemID ′ , (νlogin) . . . (νphone)
(!Login | !Applet | !Mobile | !Phone)

Then we have [[NemID ′]]tt = [[NemID]]tt∪ [[Phone]]tt, that is, the translation of
a new top-parallel process is independent from the formulae that have already
been generated. Obviously, due care has to be paid to names, e.g., name login
in Phone has to be the same used in NemID. However, while restrictions play a
crucial role in the semantics, they are simply ignored by the translation.

Besides being flexible with respect to the analysis of new components, the
translation suitably integrates in a refinement cycle, where we start from a coarse
abstraction of the system and then progressively refine those components that
are revealed as candidates for being attacked, by replacing the corresponding set
of formulae with a finer one. The constraint on names translates to a constraint
on the interface of the component: if process A is replaced by process B, then
B must be activated by the same inputs that activate A, and vice-versa, it
must produce the same outputs towards the external environment that A is
producing.

8.3 Synthesising Attack Trees 125

8.3 Synthesising Attack Trees

Once a process has been translated into propositional formulae, it is possible
to build an attack tree for each program point automatically, showing what
information has to be obtained and how it has to be combined in order to
attain the desired goal. In order to obtain attack trees as commonly defined in
the literature, in the following we assume that all the quality guards q in the
process under study are linear.

Given a process P and a label l occurring in P , we generate a formula [[l]]
representing the attack “l is reached” by backward chaining the formulae in
P l⇒ so as to derive l. It is central to observe that the procedure re-establish
the original system of bi-implications thus guaranteeing the correctness of the
analysis in terms of compatibility with the developments of Ch. 7.

Before explaining the algorithm, it is worthwhile discussing the nature of the
backward chaining-like procedure defined in the following. Standard backward
chaining [RN09, Ch. 7] combines Horn clauses so as to check whether a given
goal follows from the knowledge base. Instead, we are in fact trying to derive all
the knowledge bases that allow inferring the goal given the inference rules P l⇒,
which are not strict Horn clauses as they can contain more than one positive
literal. The backward-chaining point of view stresses the relationship of our
problem to the quest for implicants of l, as we have already observed.

8.3.1 From formulae to attack trees

The rules for generating [[l]] are displayed in Table 8.1. For our formulae are
propositional, there is no unification other than syntactical identity of literals
involved in the procedure. Notice that the algorithm only applies valid inference
rules.

Rule (Sel) selects the antecedent of the formula leading to the goal l: since
there is a unique such rule, in order to derive l we have to derive the antecedent
ϕ of ϕ ⇒ l. Observe that we are not interested in deriving l in any other
way: for l is derived assuming ϕ, the original bi-implication format ϕ ⇔ l is
re-established.

Rule (Pone-c) encodes either a tautology (if c has to be inferred then c is
in the knowledge base) or applications of modus ponens (c is derived assuming
ϕ, thanks to ϕ ⇒ c): the whole rule is an instance of disjunction introduction.
Observe that putting c itself in the knowledge base is equivalent to considering
literals g but keep the number of symbol – hence the tree – smaller.

This is the point where our algorithm differs from plain backward chaining:
since we are building the knowledge bases that allow inferring l, whenever we
encounter a literal c we need to account for all the ways of deriving c, namely by
placing c itself in the knowledge base or by satisfying a rule whose consequent
is c. Similarly, rule (Pone-x) encodes an application of modus ponens, taking
advantage of the uniqueness of ϕ⇒ x (cf. Lemma D.1.1).

126 Generating Attack Trees

Rules (Tolle-) collect applications of modus tollens, in the classic backward
fashion (i.e., when considering the derivation from the leaves to the root such
steps would encode that modus). Rules (DM-) encode De Morgan’s laws. Fi-
nally, rules (Comp-) simply state the compositionality of the procedure.

It is worthwhile observing that in classic backward chaining loops are avoided
by checking whether a new sub-goal (i.e., a literal to be derived) is already on
the goal stack (i.e., is currently being derived). Component D in Table 8.1 is in
charge of keeping track of the current goals, but this is done on a local basis as
opposed to the traditional global stack, that would result if D were treated as
a global variable. As shown below, in our setting the global stopping criterion
would lead to unsound results. Moreover, observe that using the local environ-
ment D we lose the linear complexity in |P l⇒| typical of backward chaining, and
incur an exponential complexity in the worst case. Nonetheless, observe that
this theoretical bound is not incurred systematically.

Notice that we do not need to keep track of literals x in D, as we cannot
meet with a cycle for a variable cannot be used prior to its definition (in virtue
of Lemma D.1.1).

Finally, observe that a parse tree Tl of [[l]] is an attack tree, showing how
l can be attained by combining the knowledge of given channels. The internal
nodes of the tree contain a Boolean operator in {∧,∨}, while the leaves contain
literals representing the knowledge of channels. As De Morgan’s laws are used
to push negations to literals of [[l]], negation can only occurs in the leaves of Tl.
This approach is in line with the literature, where propositional formulae are
interpreted as denotations of attack trees (e.g., see [RSF+09]). In the following,
we shall manipulate attack trees always at their denotation level.

For the sake of discussion, it is worthwhile noticing that the procedure for
generating [[l]] can be used to generate a tree explicitly during the computation,
or even an And-Or graph [RN09, Ch. 4]. It is unclear to us, however, whether
the more compact graph representation would be simpler to understand.

Finally, observe that [[l]] only contains literals c corresponding to channels,
that is, the backward chaining-like procedure described above and formalised
in Table 8.1 eliminates all the literals x. Therefore, the reachability of l is
only expressed in terms of knowledge of channels. This result is formalised in
Lemma D.1.3, and will be levered in § 8.4 in order to guarantee that a map from
channels to cost suffices to quantify an attack.

The global stopping criterion. Let us briefly discuss why the global stop-
ping criterion is unsound for the procedure of Table 8.1. Consider the following
set of formulae:

a⇒ b b⇒ a a ∧ b⇒

which stems from a conveniently simplified translation of the process

P , a?xa.
b!b | b?xb.a!a | a?x′a.

b?x′b.
c!c

8.3 Synthesising Attack Trees 127

Table 8.1: Synthesising the propositional formula [[l]] for the attack tree Tl.

[[l]] = [[ϕ]]∅ where (ϕ⇒ l) ∈ P l
⇒ (Sel)

[[c]]D = c ∨
{

[[ϕ]](D ∪ {c}) if c 6∈ D, where (ϕ⇒ c) ∈ P l
⇒

ff otherwise
(Pone-c)

[[¬c]]D =

{
[[¬ϕ]](D ∪ {¬c}) if ¬c 6∈ D, where (ϕ⇒ c) ∈ P l

⇒
tt otherwise

(Tolle-c)

[[x]]D = [[ϕ]]D where (ϕ⇒ x) ∈ P l
⇒ (Pone-x)

[[¬x]]D = [[¬ϕ]]D where (ϕ⇒ x) ∈ P l
⇒ (Tolle-x)

[[¬(ϕ1 ∧ · · · ∧ ϕn)]]D = [[¬ϕ1]]D ∨ · · · ∨ [[¬ϕn]]D (DM-1)
[[¬(ϕ1 ∨ · · · ∨ ϕn)]]D = [[¬ϕ1]]D ∧ · · · ∧ [[¬ϕn]]D (DM-2)

[[ϕ1 ∧ · · · ∧ ϕn]]D = [[ϕ1]]D ∧ · · · ∧ [[ϕn]]D (Comp-1)
[[ϕ1 ∨ · · · ∨ ϕn]]D = [[ϕ1]]D ∨ · · · ∨ [[ϕn]]D (Comp-2)

[[tt]]D = tt [[ff]]D = ff

The generation of [[]] unfolds as follows:

[[]] = [[a ∧ b]]∅ = [[a]]∅ ∧ [[b]]∅

where, in particular, it is

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b
[[b]]∅ = b ∨ [[a]]{b} = b ∨ a ∨ [[b]]{b, a} = b ∨ a ∨ ff = b ∨ a

leading to [[]] = a ∨ b, which is consistent with the reachability of label in P .
Assume now to carry out the generation of [[]] applying a global stopping

criterion, that is, to keep track of derived goals in a global environment, initially
empty. We would obtain:

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b

at this point, however, the environment contains a, b, and thus the generation
of [[b]] leads to b, resulting in [[]] = (a∨b)∧b, which is not satisfied by the model
where only a is tt, and thus is wrong. Analogously, we would obtain a wrong
result if we chose to unfold [[b]] before [[a]].

8.3.2 Attacking NemID
Consider the process NemID discussed in § 8.1 and its translation NemID⇒.
Label marks the point where a user is authenticated into the system, and

128 Generating Attack Trees

therefore is a location of interest for our analysis. Figure 8.2(a) shows the
attack tree T, as generated by our implementation, presented in § 8.5.2. The
backward-chaining procedure takes about 1 second on an ordinary laptop. The
denotation of T is given by the following formula:

[[]] = login ∨(
(cert ∨ (id ∧ pwd ∧ otp)) ∧ cert

)
∨(

(cert ∨ (id ∧ pwd ∧ otp)) ∧ (¬cert) ∧ id ∧ pwd ∧ otp
)
∨(

id ∧ pin
)

As a matter of fact, the algorithm tends to generate simple but redundant
formulae, that can be simplified automatically, e.g., via a reduction to a normal
form. The following formula, for instance, is equivalent to [[]] but highlights
more clearly the ways in which an attack can be carried out:

login ∨ (id ∧ pin) ∨ (id ∧ pwd ∧ otp) ∨ cert

Observe that the formula above is in Disjunctive Normal Form (DNF). Such
normal form has the merit of providing an immediate intuition of the alternative
conditions that lead to attain the program point under study, as displayed in
Fig. 8.2(b). However, the conversion to DNF may cause an exponential blow-up
in the number of literals, and compact translations require to introduce fresh
atoms, garbling the relation between the tree and the original system. Therefore,
we did not implement such conversion in the tool.

Finally, notice that the disjunct login encodes the possibility of obtaining a
login token in any other way not foreseen in the system, and thus accounts for
all the attacks not explicitly related to the shape of our formalisation. Such
component can be disregarded by assigning it the maximum possible cost, as
we shall see in the next section.

8.4 Assessing Attack Trees
A number of quantitative problems have been defined on attack trees and their
extensions [KMS12]. Once a tree is characterised as a logical formula, however,
a great many of them can be reduced to the problem of computing a satisfying
assignment that is minimal (or, dually, maximal) with respect to a given notion
of cost, hence the SMT-based solution technique presented in § 7.4.2 can be
exploited.

As in Ch. 7, we resort to a map from channels to a cost set. For [[l]] only
contains literals related to channels, this is enough to quantify an attack trees.
Finally, observe that the quest for assignments of minimal cost integrates with
the backward-chaining procedure of § 8.3, that avoids deriving a literal twice
in the same sub-tree. In this sense, our analysis is qualitative with respect to
the number of attempts are made to guess a channel: whenever the adversary

8.4 Assessing Attack Trees 129

(a) T as displayed by the Quality Tree Generator, presented in § 8.5.2.

∨

T

∧ login cert ∧

id pin id pwdotp

(b) The simplified DNF attack tree.

Figure 8.2: The attack tree T of the running example.

decides to incur the corresponding cost, a channel is disclosed. Afain, this is in
line with the protection analysis.

There are several techniques for quantifying the cost of guessing secret in-
formation. Quantification of information leakage [BLMW13] is an information
theory-based approach for estimating the information an adversary gains about
a given secret s by observing the behaviour of a program parametrised on s. If s
is quantified in bits, then the corresponding information leaked by the program
is quantified as the number of bits learnt by the adversary by observing one ex-
ecution of the system. For instance, consider a test program T parametrised on
a secret password. T inputs a string and answers whether or not the password is
matched. Under the assumptions that the adversary knows the program and the
length of the secret (no security-by-obscurity), we can estimate the knowledge

130 Generating Attack Trees

gained by the adversary after one guessing attempt.
We leverage QUAIL [BLT13], a freely-available tool for quantifying informa-

tion leakage, for determining costs to channels. Denoted λT (s) the leakage of T
on a secret s, we quantify the strength of a channel c of n bits as

cost(c) =
n

λT (c)

where we assume the security offered by c to be uniformly distributed over the
n bits. In this settings we are thus working in the cost monoid (Q,+).

In our running example, the secrets to be guessed are pwd, otp, cert, pin, while
we assume that id is known to the attacker and thus has cost 0 (in particular,
in the NemID system is not difficult to retrieve such id, corresponding to the
social security number of an individual). Moreover, we know that pwd contains
between 6 and 40 alphanumeric symbols and it is not case sensitive: assuming
an average length of 10 symbols, given that there are 36 such symbols, we need
5.17 bits to represent each symbol, for a total length of 52 bits. Analogously, we
determine the length of otp as 20 bits, while the length of the pin depends on the
service provider: in case of a major bank it is just 14 bits. As for the certificate,
the authority is following NIST recommendations, using 2048-bit RSA keys for
the time being, and for the sake of simplicity we assume that guessing an RSA
key cannot be faster than guessing each of the bits individually. Finally, we
disregard login by assigning it the least upper bound of the costs of all the
other channels. Exploiting QUAIL and the formula defined above, we obtain
the following cost map:

cost(pwd) = 4.4× 1015 cost(pin) = 1.5× 104

cost(otp) = 106 cost(cert) = 3.4× 10616

Fed to the SMT-based optimisation engine, the problem is found to be satisfiable
with cheapest attack {id, pin}, whose cost is 1.5×104 bits, meaning that the most
practicable way to break the authentication protocol is attacking the mobile app,
as long as we believe that our cost map is sensible.

We have shown one elegant way of quantifying the cost of guessing a channel
in the monoid (Q,+), but any cost map suitable to a specific application can be
used. As a matter of fact, however, a cryptographer would deem the assump-
tions above unrealistic for estimating the strength of RSA keys, hence again a
symbolic approach might prove more advisable.

8.5 Implementation

8.5.1 Comparing the protection analysis with attack trees
Let us briefly comment on upon the relationship between the protection analysis
of Ch. 7 and the generation of attack trees. An attack tree displays all the attacks

8.5 Implementation 131

leading to the given target, and thus corresponds to the qualitative analysis of
§ 7.3. However, the SMT-based optimisation procedures of § 7.4.2 can be used
to compute minimal models of [[l]], hence implementing the quantitative analysis
of § 7.4. In this sense, the developments on attack trees encompass fully the
protection analysis.

More in detail, since the backward-chaining procedure on P l⇒ re-establishes
bi-implications and only applies valid inference rules, [[l]] and P l⇔ are equisatis-
fiable. They are not equivalent, i.e., in general their models do not coincide, as
[[l]] only contains channel literals, but they contain the same attacks, in terms of
sets of channels. Hence, we can solve the quantitative version of the protection
analysis in either way:

• generate P l⇔, compute the models bearing minimal attacks, and extract
the corresponding attacks; or,

• generate P l⇒, derive [[l]], and compute its minimal models,

finally relating the result to the security lattice by means of the function level.
It is worthwhile observing that while the procedure for generating trees is

exponential in the worst case, the size of [[l]] is much smaller than the size of
P l⇔, and therefore it is not necessarily the case that the overall running time
would increase when undertaking the tree generation. Though our example set
is not extensive enough for supporting any final claim, still it is interesting to
comment briefly how the analyses on P l⇔ and on [[l]] behave in terms of running
time.

Consider the NemID system. The translation to P l⇔ takes about one fourth
of the time the computation of [[l]] takes. Solving the optimisation problem on
P l⇔ takes about 1.25 the time it takes on [[l]]. Nonetheless, the second step is
much more demanding in terms of performance, so that on average the two ap-
proaches take the same amount of time. The same applies to the login system
of § 7.2. Increasing the size of the process under study it seems that the gen-
eration of attack trees, while exponential in general, tends to outperform the
overall analysis on P l⇔.

It is worthwhile noticing that comparing the two approaches reduces to es-
tablishing whether it is faster to find models of P l⇔ or [[l]], for the translation
time is negligible as the size of processes increases. Even limiting to the core
propositional structure of the problem, there is no conclusive answer to the
question, as we have mentioned in § 2.3.

8.5.2 The Quality Tree Generator
A proof-of-concept implementation of the framework has been developed in Java
and is available at

http://www.imm.dtu.dk/~rvig/quality-trees.html

http://www.imm.dtu.dk/~rvig/quality-trees.html

132 Generating Attack Trees

together with the code for the NemID example described in the text.
The Quality Tree Generator extends the Quality Tool of Ch. 7 by imple-

menting the backward-chaining procedure. The tool takes as input an ASCII
representation of a Value-Passing Quality Calculus process P and generates the
set P l⇒. Moreover, given a label l occurring in P , the tool generates the formula
[[l]], and given the cost to channels computes the cheapest assignments to [[l]].

As for the engine, we have implemented the backward-chaining procedure
of § 8.3, defining our own simple infrastructure for propositional logic, as avail-
able libraries tend to avoid the explicit representation of implications, that is
instead handy in our case during the backward-chaining computation. Once the
backward-chaining procedure is executed, and thus [[l]] has been derived, the
tool can graphically represent the corresponding tree Tl, thanks to an encoding
in DOT3 and using ZGRViewer4 for displaying it.

All these components are glued together thanks to a simple graphical inter-
face.

8.6 First-Order Attack Trees
We present in this section an extension to the framework whose detailed de-
velopment deserves to be deepened in future work. The ideas discussed in the
following have not been implemented in the tool of § 8.5.2.

The notion of knowledge needed to perform an attack adopted so far shifts
the semantics load on the concept of secure channel. Besides its simplicity, this
abstraction proves useful to model a great many different domains and lead to a
sensible notion of attack tree. Nevertheless, it seems interesting to explore less
abstract scenarios, where messages exchanged over channels do enjoy a structure
and their content is exploitable in the continuation. There is a substantial corpus
of literature on how to extend a process calculus to handle reasoning on terms
(e.g., via equational theories or pattern matching, cf. [VNR13]), but at the
semantic heart of such calculi lies the capability of testing if what is received
matches what was expected.

In order to fully encompass the original Quality Calculus we should intro-
duce both testing capabilities and structured messages. We limit here to show
how to deal with the first extension, as it has a wider impact on the technical
developments. As a matter of fact, distinguishing between a term t and an ex-
pression some(t) we are already dealing with a (very simple) signature, and this
gives the necessary insight onto our idea.

The syntax of the Value-Passing Quality Calculus, introduced in § 7.1, is
enhanced as follows. First of all, we allow now input and output channels to
range over terms t, writing t?x and t1!t2. In particular, t can be a variable y,
realising name-passing. Second, we update the case clause as lcase x of some(t) :

3http://www.graphviz.org/
4http://zvtm.sourceforge.net/zgrviewer.html

http://www.graphviz.org/
http://zvtm.sourceforge.net/zgrviewer.html

8.6 First-Order Attack Trees 133

P1 else P2, allowing to check the data payload (if any) of an input variable x.
The semantics of the calculus is modified accordingly:

lcase some(c) of some(c) : P1 else P2
τ−−−→ P1

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y]

lcase some(c) of some(c′) : P1 else P2
τ−−−→ P2 if c 6= c′

lcase none of some(c) : P1 else P2
τ−−−→ P2

lcase none of some(y) : P1 else P2
τ−−−→ P2

The translation from processes to formulae of § 8.2 is lifted from propositional
to first-order logic, so as to account for the richer expressiveness of the case
clause:

[[lcase x of some(t) : P1 else P2]]ϕ = [[P1]](ϕ ∧ ∃fv(t).(x = some(t)) ∪
[[P2]](ϕ ∧ ¬(∃fv(t).(x = some(t))) ∪
{ϕ⇒ l}

where some(·) is a unary predicate, fv(t) denotes the variables free in t, and we
write x instead of x for now x ranges over a set of optional data. Similarly, the
translation of binders has now to record the term to which an input variable is
bound when the corresponding binder is satisfied:

th(ϕ, t?x) = {∃y.(ϕ ∧ t⇒ (x = some(y))}

where t ranges over a set of data (the translation of output has to be updated
similarly).

Finally, for building the tree some unification is needed in the backward-
chaining search of § 8.3:

[[∃fv(t)(x = some(t))]]D = [[ϕσ]]D
where (∃fv(t′)(ϕ⇒ (x = some(t′)))) ∈ P l⇒ ∧ ∃σ.t = t′σ

[[¬∃fv(t)(x = some(t))]]D = [[¬ϕσ]]D
where (∃fv(t′)(ϕ⇒ (x = some(t′)))) ∈ P l⇒ ∧ ∃σ.t = t′σ

where σ is a most general unifier.
We have thus shown how to lift all levels of the framework to name-passing

calculi with full testing capabilities. From a high-level perspective, the extension
allows inspecting how security checks are performed, while the basic develop-
ments consider checks as atomic entities, distinguishing between them through
the cost map. Hence, we can think of the extension as lifting the protection
analysis from being a counter-part to the robustness analysis to mimicking the
more sophisticated availability analysis.

Though such an extension may sound interesting to the scientist, it is unclear
to us whether the more detailed “first-order” trees would benefit their intended

134 Generating Attack Trees

users, the main risk consisting in that additional information would decrease
readability drastically. In addition to this, whenever a finer-grained investiga-
tion is needed, we could take advantage of the modularity of the propositional
framework, as discussed in § 8.2.

Finally, in order to carry the extension to the Quality Tree Generator of
§ 8.5.2, the main obstacle would be to introduce unification of terms in the
backward-chaining procedure.

8.7 Concluding Remarks

The increasing complexity of IT systems demands for a formal investigation of
their security properties, able to quantify the threats to which they are subject
and to treat cyber and physical features in a uniform manner. Attack trees have
proven a useful tool to study threat scenarios and convey them in an intuitive
way, but any manual construction is doomed to be incomplete whenever the size
of the tree exceeds a few hundred nodes.

In order to tackle this problem, we have presented a novel method for the
automated generation of attack trees. In particular, our technique improves on
the existing literature by resorting to a process-algebraic specification of the sys-
tem. This choice allows to model a great many scenarios, beyond the standard
network security domain, and enables designing syntax-directed static analy-
ses, avoiding the systematic state space explosion suffered by model checking
algorithms, even if retaining an exponential worst-case complexity. Moreover,
process calculi have proven useful notations for the formal design of complex
systems, embracing the need for analysing vulnerabilities at design time, and
thus before the actual system is produced.

As far as this dissertation is concerned, this and the previous chapter show
how Quality Calculi can be used to express highly-branching systems in a concise
manner. This is a feature that stems from the approach to availability that
informs the calculi but at the same time overcomes it, just as the developments
in these chapters apply but are not limited to DoS.

The feasibility of the approach is witnessed by a freely-available implemen-
tation, and has been demonstrated on the study of a real system used for au-
thentication purposes on a national scale.

As future work, besides consolidating the proof-of-concept implementation,
it would be worth investigating in details the intuitions discussed in § 8.6 to
encompass the full calculus. Finally, a direct performance comparison with
existing tools based on model checking would be interesting, even though the
usefulness of our approach partly lies in the capability of dealing with scenarios
not encodable in those tools.

8.7 Concluding Remarks 135

Attack trees and the like. Graphical representations of security threats are
often used to convey complex information in an intuitive way. Formalisation of
such graphical objects are referred to chiefly as attack graphs [PS98, JSW02,
SW04, MBZ+06] and attack trees [Sch99, SHJ+02, MO06, RSF+09, JW10]. In
this work we prefer the phrase “attack trees”, but our procedure can be adapted
to generate attack graphs.

While different authors have different views on the information that should
decorate such objects, instrumental to the analysis that the tree or the graph is
supporting, all definitions share the ultimate objective of showing how atomic
attacks (i.e., the leaves) can be combined to attain a target goal (i.e., the
root). This perspective is enhanced in the seminal work of Schneier [Sch99],
that found a great many extensions and applications. In particular, Mauw and
Oostdijk [MO06] lay down formal foundations for attack trees, while Kordy et
al. [KMRS10] and Roy et al. [RKT12] suggest ways to unify attacks and coun-
termeasures in a single view. Even though Schneier’s work is mostly credited
for having introduced attack trees, and it had certainly a crucial role in making
attack trees mainstream in computer security, the origin of this formalism can
be traced back to fault trees, expert systems (e.g., Kuang [Bal87]), and privilege
graphs [DDK96].

Automated generation of attack trees. As for the automated generation
of attack graphs, the literature is skewed towards the investigation of network-
related vulnerabilities: available tools expect as input rich models, including
information such as the topology of the network and the set of atomic attacks
to be considered. The backward search techniques of Phillips and Swiler [PS98]
and Sheyner et al. [SHJ+02] have proven useful to cope with the explosion of the
state space due to such expressive models. However, the search has to be carried
out on a state space that is exponential in the number of system variables, whose
construction is the real bottle-neck of these approaches, and the result graph
tends to be large even if compact BDD-based representations are used, as argued
in [AWK02]. In particular, in [SHJ+02] a model checking-based approach is de-
veloped, where attack graphs are characterised as counter-examples to safety
properties; a detailed example is discussed in [SW04]. Similarly to Phillips and
Swiler, we adopt an attacker-centric perspective, which cannot simulate benign
system events such as the failure of a component, as in [SHJ+02]. Directly ad-
dressing the exponential blow-up of [SHJ+02], Ammann et al. [AWK02] propose
a polynomial algorithm, but the drop in complexity relies on the assumption of
monotonicity of the attacker actions and on the absence of negation. On the
same line, Ou et al. [OBM06] present an algorithm which is quadratic in the
number of machines in the network under study.

Analysing attack trees. As for the analyses developed on top of attack
trees, we present a reachability analysis which computes the cheapest sets of

136 Generating Attack Trees

atomic attacks that allow attaining a location of interest in the system, as it is
standard in the attack tree literature. This approach seamlessly encompasses
the probabilistic analysis of [SHJ+02, SW04] (costs to atomic attacks would
represent their likelihood and the objective function would compute the overall
probability) and offers a uniform framework to address other quantitative ques-
tions [BDP07, KMS12]. The NP-completeness of out SMT-based approach is in
line with the complexity of the minimisation analysis of [SHJ+02, SW04]. It is
worthwhile noticing that the correctness of the analysis with respect to the se-
mantics corresponds to the exhaustiveness of attack trees as defined in [SHJ+02]:
[[l]] covers all possible attacks leading to l.

Finally, Mehta et al. [MBZ+06] present a technique for ranking sub-graphs
so as to draw attention to the most promising security flaws. Whilst we do not
directly tackle this issue, for condensing an entire tree into a formula we gain in
performance but we lose the original structure, a post-processing step could be
undertaken to compute the value of the internal nodes (sub-formulae).

Chapter 9

Conclusion

There are more things in heaven and
earth, Horatio, / Than are dreamt of
in your philosophy.

Hamlet I:5, 167–8

In this dissertation we have explored how robustness against DoS can be
enforced by means of a principled design process supported by static analysis
techniques, and we have devised process-algebraic languages that facilitate spec-
ifying such analyses in a natural manner, thanks to the promotion of availability
concerns as first-class objects of the discourse domain. The thesis we initially
claimed was that

language-based technologies offer a unifying approach to deal with the con-
sequences of DoS, by means of a framework for facilitating the development of
programs that follow a planned behaviour when expected information is unavail-
able. The modelling language can be supplemented by formal analyses enforcing
such robust code to be produced.

We shall now summarise the contributions of this dissertation, so as to facil-
itate eliciting how our developments support, and perhaps overcome, the claim
above. Finally, we shall survey briefly how this work is placed in the wider
landscape of formal approaches to system development, thereby highlighting
promising directions for future investigation, as opposed to the technical treat-
ment of future work presented at the end of each chapter.

138 Conclusion

9.1 Contribution

Let us briefly review the main contributions of our work on availability and
arrange them orthogonally with respect to the exposition in chapters.

Coping with the consequences of unavailability. Our starting point was
the observation that DoS attacks are increasingly damaging and frequent, de-
spite a plethora of clever techniques for countering them. As a consequence, a
rigorous approach is needed to cope with the effects of DoS. Besides patching the
vulnerability to successful attacks and thus complementing existing approaches,
addressing the consequences of unavailability encompasses all potential sources
of DoS, whether they be cyber or physical, inadvertent or malicious.

Availability of data can be expressed by formal languages. The main
effect of DoS in distributed systems is the unavailability of data to some com-
ponents. Adopting into a process-algebraic world the well-established notion
of option data type, the Quality Calculus addresses the distinction between
available and unavailable data. Moreover, by means of input contracts we have
further refined the source of unavailability in lacking of expected communication
and mismatch between expected and received data, giving formal dignity to an
intuition already advanced in early literature. In turn, capturing availability
allows to reason about unavailable data and act accordingly, enforcing the most
suitable behaviour given the actual information and resorting to default data
when information gaps have to be filled. When it is possible to provide each
component with a plan for every possible situation, then full resilience to DoS
is achieved and its typical domino effect is banished.

Static analysis can pinpoint unavailability threats. Static analysis is
the tool by means of which we can ensure that the most is gotten out of the
expressiveness of the language. The suite of analyses we have devised addresses
the various unavailability-related phenomena we can account for in a number of
Quality Calculi, and it does so in an efficient way, thanks to the implementation
in terms of satisfiability problems and relying on the performance of modern
solvers.

Qualitative and quantitative perspectives can be reconciled. Quality
Calculi allow to present graceful degradation and cost-based considerations in
a common framework. First, we devised a language for enforcing the former;
then, we showed how the latter can be integrated seamlessly, inducing a natural
evolution in the tools that complement the language. Ideal robustness against
DoS cannot be achieved without combining existing quantitative solutions and
the Quality Calculus way: we should exploit the former for avoiding unavail-
ability conditions, and rely on the latter for facing actual unavailability of some

9.2 Future Directions 139

components, which the cost-based techniques cannot rule out completely. As
a result, the essentially qualitative demand for availability and the inevitable
quantitative guarantees that practical solutions offer can be reconciled in a co-
herent language-based framework.

9.2 Future Directions

The reader is referred to the concluding remarks that follow each chapter for
a discussion of the technical developments that seem to deserve further explo-
ration. We shall adopt now a higher-level perspective and peep out through
the fence into which we restricted our own investigation in Ch. 2. Reflecting on
what we do not do can prove useful to highlight some neighbouring topics from
which our discourse would benefit.

Attempting a negative definition in a rich discipline such as computer science
is an overwhelming task, inevitably bound to left some readers dissatisfied.
Nevertheless, it is worthwhile mentioning some research lines concerned with
questions directly arising from the overall approach illustrated in Ch. 2.

There are two situations in which the exploitation of process calculi for for-
mal verification typically takes place. Sometimes we want to know whether an
existing system enjoys given properties, and to this end a model of the system
is produced and analysed. This is mainly the case of legacy systems that no one
would ever dare re-engineer and re-deploy, but which we are required to investi-
gate to some extent. Another (perhaps utopian) situation is the development of
a new system from scratch, where we have the possibility to start from a formal
model and only after having analysed it thoroughly produce the real system “in
its own image”.

It is evident how our framework captures only a portion of the development
cycle, and in particular lacks a connection with the real system in both the use
cases depicted above. In other words, we start from a process-algebraic model
P , we abstract it into a simpler model P ′ that enjoys a precise relationship with
P , we analyse P ′ and lift the verification results to P . Now, what about the
relationship between P and the original system? Nothing can be formally stated
about its properties. To quote Dijkstra [DDH72, § I.5]:

If one proves the correctness of a program assuming an idealised, perfect
world, one should not be amazed if something goes wrong when this ideal pro-
gram gets executed by an “imperfect” implementation.

What is worse, we do not even know whether P is an idealised model of
reality or just a wrong one. Whilst it seems virtually impossible to establish
such connection in case of existing systems, refinement techniques cope with the
challenge of deriving an actual implementation from a formal model in a semi-
automated manner (cf. [Wir71] for a seminal work on program development by

140 Conclusion

refinement).
As for the usefulness of defining programming abstractions that account for

real world behaviours, another issue we do no tackle is the porting of such ab-
stractions to real programming languages. This is for example the case of the
Java implementation [BDP02] of Klaim [BBD+03]. Other significant experi-
ences are those of LOTOS and CADP (see [INR]) and JSCL [FGS06].

All these themes would be certainly worth exploring, and we shall consider
examining them in depth in future work.

Finally, we do not claim to have devised “the ultimate process calculus”.
Instead, we studied one paradigmatic and foundational aspect of communication
in distributed systems that has received little attention from the formal methods
community so far. In order to better focus on this single feature, we deliberately
chose to disregard a great many interesting traits tackled by other domain-
specific calculi and by unifying frameworks. A good many of these features are
worth studying within Quality Calculi.

With regards to this, it is worthwhile mentioning that a handful of Quality
Calculi has been developed that are not covered in this dissertation. Proba-
bilistic considerations about the trustworthiness of input are at the heart of the
relational analysis devised in [RN13a], leading to a quantitative understanding of
the quality of the various program points. The interplay between the essentially
safety-oriented mind-set of the calculus and security requirements of real systems
is investigated in [RN13b]. Real-world scenarios also motivate [WNR14], where
unavailability of components is studied with respect to the continuous evolution
of the physical world. The stochastic and true-concurrent behaviour of com-
municating distributed components is the topic of [ZNR14], where the semantic
models induced by various probabilistic distributions are characterised.

Appendix A

Proofs for Ch. 4

This appendix contains the proof of correctness of the robustness analysis pre-
sented in § 4.6 with respect to the explicit substitution semantics of § 4.5, and
the equivalence of the latter and the reduction semantics discussed in § 4.2.

A.1 Correctness of the Robustness Analysis

Let us formalise some notation introduced in § 4.6.1.

Definition A.1 (· notation) Let ρ be a substitution. Then, ρ is a sub-
stitution from variables x ∈ X to Boolean values, defined as follows:

dom(ρ) = {x ∈ X |x ∈ dom(ρ)} (ρx) =

{
tt if (ρx) = some(c)
ff otherwise

Moreover, since dom(ρ) ⊆ X , the following fact holds immediately.

Fact A.1.1 Let ρ1, ρ2 be substitutions, such that dom(ρ2) ∩ X = ∅. Then,
ρ2 ◦ ρ1 = ρ1 ◦ ρ2 = ρ1.

Finally, let us recall the definition of propositional satisfiability, which is
essential to the correctness statement.

Definition A.2 (Propositional satisfiability |=) Let ρ be a sub-
stitution and ϕ a propositional formula, such that the variables occurring in ϕ

142 Proofs for Ch. 4

are a subset of dom(ρ). We say that ρ satisfies or models ϕ, denoted ρ |= ϕ, if
ϕ evaluates to tt under ρ, and we write ρ 6|= ϕ otherwise:

ρ |= tt for all ρ ρ |= ϕ1 ∧ ϕ2 if ρ |= ϕ1 and ρ |= ϕ2

ρ 6|= ff for all ρ ρ |= ϕ1 ∨ ϕ2 if ρ |= ϕ1 or ρ |= ϕ2

ρ |= x if (ρx) = tt ρ |= ¬ϕ if ρ 6|= ϕ

ρ 6|= x if (ρx) = ff

Before proving Lemmata 4.6.1,4.6.2 we shall establish some auxiliary results
for accommodating the relationship between substitutions and formulae gener-
ated for expressions and binders, and for dealing with good processes.

Lemma A.1.1

(1) ∀e∀ρ ((∃c.(ρe) = some(c)) ∧ ` e . ϕe ⇒ ρ |= ϕe)

(2) ∀e∀ρ ((ρe) = none ∧ ` e . ϕe ⇒ ρ |= ¬ϕe)

Proof. By induction on the structure of expressions e. The result is im-
mediate for the cases some(c), none, x, while the inductive step stems from the
assumption of soundness and completeness of the evaluation of functions f with
respect to the · notation, as postulated in § 4.6.1 above:

[{f}](o1, . . . , on) = o whenever f(o1, . . . , on) � o

�

Lemma A.1.2 Let Θ, θ be substitutions from variables x ∈ X to constant
optional data, and b be a binder. It holds:

∀Θ∀θ∀b
(
(Θ� b) ::tt θ ∧ ` b I ϕb ⇒ θ |= ϕb

)
Proof. By induction on the structure of binder b, observing that θ is

constructed according to the semantics of ::tt. �

Lemma A.1.3 For all contexts C and explicit processes S1, S2 it holds that

good(C[S1]) ∧ good(S2) ⇒ good(C[S2])

Proof. By induction on the structure of contexts C. �

Lemma A.1.4 For all contexts C and explicit processes S it holds that

good(C[S]) ⇒ good(S)

A.1 Correctness of the Robustness Analysis 143

Proof. By induction on the structure of contexts C. �

Lemma A.1.5 For all explicit processes S1, S2 it holds that

good(S1|S2) ⇔ (good(S1) ∧ good(S2))

Proof. (⇒) The result follows as a corollary of Lemma A.1.4.
(⇐) Assume good(S1) and good(S2). The result follows immediately by

definition of goodness, observing that S1|S2 can be written as a context of
processes that are good, i.e., C[S1] and C[S2]. �

We can now show Lemma 4.6.1: the structural congruence preserves good-
ness of explicit processes.

Proof.[of Lemma 4.6.1] Let us first recall the statement of the lemma:

∀S, S′ . (good(S) ∧ S V S′ ⇒ good(S′))

The proof is organised by induction on the shape of the inference tree T for the
congruence step S V S′.

Basis. The basis of the induction consists of the case analysis of all the
axiom schemas in Table 4.6.

(Ref) Assume that T consists of an application of rule (Ref), and assume
good(S). The thesis follows immediately.

(Nil) Assume that T consists of an application of rule (Nil), and assume good(S|{ρ}0).
The thesis good(S) follows directly from Lemma A.1.4.

(Nil’) Assume that T consists of an application of rule (Nil’), and assume
good(S). The thesis good(S|{ρ}0) follows observing that S|{ρ}0 can be
written as a context of either component, that ΦP1|P2

= ΦP1
= ΦP2

, and
by the hypothesis good(S).

(Com) Assume that T consists of an application of rule (Com), and assume
good(S1|S2). The thesis follows directly from Lemma A.1.5.

(Ass) Assume that T consists of an application of rule (Ass), and assume
good(S1|(S2|S3)). The thesis good((S1|S2)|S3) follows observing that ΦP1|(P2|P3) =
Φ(P1|P2)|P3

and by Lemma A.1.4, which ensures good(Si) for i ∈ [1, 3].

(New1) Assume that T consists of an application of rule (New1), and assume
good((νc1) (νc2)S). Then, by Lemma A.1.4 good(S) holds, and the thesis
good((νc2) (νc1)S) follows directly from the definition of goodness as the
restriction are absorbed in a context surrounding S (i.e., Φ(νc1) (νc2)P =
Φ(νc2) (νc1)P = ΦP).

144 Proofs for Ch. 4

(New2) Assume that T consists of an application of rule (New2), and assume
good((νc) {ρ}P) with c 6∈ fc({ρ}P). Then, the thesis good({ρ}P) follows
directly from Lemma A.1.4.

(New2’) Assume that T consists of an application of rule (New2’), and assume
good({ρ}P) with c 6∈ fc({ρ}P). Then, the thesis good((νc) {ρ}P) follows
observing that (νc) {ρ}P can be written as a context of {ρ}P and that
Φ(νc)P = ΦP .

(New3) Assume that T consists of an application of rule (New3), and assume
good((νc) ({ρ1}P1|{ρ2}P2)). The thesis good(((νc) {ρ1}P1)|{ρ2}P2) fol-
lows observing that Φ((νc)P1)|P2

= Φ(νc) (P1|P2) = ΦPi
, for i ∈ [1, 2], and

that (νc) ({ρ1}P1|{ρ2}P2) can be written as Ci[{ρi}Pi] for proper C1, C2.

(New3’) Analogous to the previous case hence omitted.

(S-par) Assume that T consists of an application of rule (S-par), and assume
good({ρ}(P1|P2)), from which ρ |= Φ(P1|P2). Since Φ(P1|P2) = ΦPi

, for
i ∈ [1, 2], and S′ = C[{ρ}Pi], the thesis good({ρ}P1|{ρ}P2) follows.

(S-new) Assume that T consists of an application of rule (S-new), and assume
good({ρ}(νc)P), from which ρ |= Φ(νc)P . Observe that Φ(νc)P = ΦP and
recall that ρ ◦ [c′/c] = ρ. Then, the result follows since S′ has the form
C[{ρ}P] and ρ |= ΦP .

(S-case) Assume that T consists of an application of rule (S-case), and assume

good({ρ}case e of some(y) : P1 else P2)

from which ρ |= Φcase. Since S is closed, in S′ the expression (ρe) is either
some(c) or none. Assume (ρe) = some(c) and ` e . ϕe: by Lemma A.1.1
it follows ρ |= ϕe. Moreover, observe that ΦP1 = Φcase ∧ ϕe, therefore
by definition of satisfaction relation it holds that ρ |= ΦP1 , and thus the
thesis follows since [c/y] ◦ ρ = ρ.
The same reasoning applies to the case (ρe) = none.

(S-bin) Assume that T consists of an application of rule (S-bin), and assume
good({ρ}(b.P ′)), from which ρ |= Φb.P . Moreover, assume (Θ� b) ::tt θ
and ` b I ϕb, from which ΦP = Φb.P ∧ ϕb. Since the domains of ρ
and θ are disjoint and ρ |= Φb.P , proving θ ◦ ρ |= ΦP is equivalent to
proving θ |= ϕb, which follows from Lemma A.1.2. Finally, the result
follows observing that S′ = C[(ρb).{ρ}P].

(S-out) Assume that T consists of an application of the rule (S-out), and as-
sume good({ρ}(t1!t2.P)), from which ρ |= Φt1!t2.P . The thesis follows
observing that ΦP = Φt1!t2.P , and that S′ = C[(ρt1)!(ρt2).{ρ}P].

A.1 Correctness of the Robustness Analysis 145

Step. The inductive step consists of the case analysis of the composite rules
in Table 4.6.

(Tra) Assume that T consists of an application of rule (Tra), where S1 V S3

is derived thanks to S1 V S2 and S2 V S3, and assume good(S1). By
inductive hypothesis, we have

good(Si) ∧ Si V Si+1 ⇒ good(Si+1)

for i ∈ [1, 2], from which the result follows immediately.

(Cnt) Assume that T consists of an application of rule (Cnt), where C[S1] V
C[S2] is derived thanks to S1 V S2, and assume good(C[S1]). As observed
in Lemma A.1.4, good(S1) follows. Then, by inductive hypothesis, it holds

good(S1) ∧ S1 V S2 ⇒ good(S2)

and the result follows directly by Lemma A.1.3. �

It remains to show the proof of Lemma 4.6.2. In order to ease the pre-
sentation, we first show an auxiliary lemma linking the step-wise evaluation of
binders to their satisfiability properties.

Lemma A.1.6 Let Θ, θ be substitutions from variables x ∈ X to constant
optional data, and b be a binder. It holds:

∀Θ∀θ (` b I ϕb ∧ (Θ� b) ::tt θ ⇒ θ |= ϕb
)

(A.1)

⇓

∀Θ∀θ∀c1∀c2 (c1!c2 ` b→ b′ ∧ ` b′ I ϕb′ ∧ (Θ� b′) ::tt θ ⇒ θ |= ϕb′
)

Proof. By an immediate induction on the inference c1!c2 ` b→ b′ it follows
b′ = Θ′ � b, for some substitution Θ′.
By induction on the judgement ` b I ϕb it follows ` (Θ� b) I ϕb, for all
substitutions Θ. In particular, this is the case because the judgement produces
the same formula x for the binders t?x, Θ� t?x, and [some(c)/x], and because
[none/x] is never produced.
Now suppose c1!c2 ` b → b′, ` b′ I ϕb′ , (Θ� b′) ::tt θ, and that assumption
(A.1) holds. Since b′ = Θ′ � b, we can write ((Θ ◦Θ′)� b) ::tt θ, for some
Θ′. Moreover, by hypothesis we have θ |= ϕb, where ` b I ϕb. Finally, since
ϕb = ϕb′ , the conclusion θ |= ϕb′ follows. �

Proof.[of Lemma 4.6.2] Let us first recall the statement of the lemma:

∀S, S′ . (good(S) ∧ S −→ S′ ⇒ good(S′))

146 Proofs for Ch. 4

The proof is organised by induction on the shape of the inference tree T for the
transition S −→ S′.

Basis. The are five possible cases to be considered, corresponding to rules
(In-), (Case-), and (Rec) in Table 4.7.

(In-ff) Assume that T consists of an application of rule (In-ff), and assume
good(c1!c2.{ρ1}P1 | b.{ρ2}P2). The following two cases are possible:

• S = C[c1!c2.{ρ1}P1] with ρ1 |= ΦP1
. Hence, for S′ = C ′[{ρ1}P1] it

follows good(S′), since ΦP1
= Φc1!c2.P1

.
• S = C[b.{ρ2}P2] with S′ = C ′[b′.{ρ2}P2]. Then, from the hypothesis

good(S), it follows

∀Θ∀θ
(
(Θ� b) ::tt θ ⇒ θ ◦ ρ2 |= ΦP

)
and we shall show

∀Θ∀θ′
(
(Θ� b′) ::tt θ

′ ⇒ θ′ ◦ ρ2 |= Φ′P
)

where, assuming ` b I ϕb, we have ΦP = Φ′P = (ϕ ∧ ϕb) for some
ϕ, since we have already observed in Lemma A.1.6 that ` b′ I ϕb.
Moreover, since the domain of ρ2 is disjoint from the domains of θ
and θ′ (variables are bound exactly once), it must be ρ |= ϕ. Finally,
as b′ = (Θ′b) for some Θ′, from Lemma A.1.6 it follows θ′ |= ϕb, and
the thesis follows by definition of satisfaction relation.

(In-tt) Analogous to the previous case hence omitted.

(Case-tt) Assume that T consists of an application of rule (Case-tt), and as-
sume good(case some(c) of some(y) : {ρ1}P1 else {ρ1}P2), from which ρ1 |=
ΦP1 . Then, we have S′ = C ′[{[c/y] ◦ ρ1}P1], and the thesis follows since
[c/y] ◦ ρ1 = ρ1 |= ΦP1 .

(Case-ff) Analogous to the previous case hence omitted.

(Rec) Assume that T consists of an application of rule (Rec), where A evolves
to its definition P . Now, P must be one of the Pi’s defined in P∗, thus we
have ΦP = tt, and the result follows trivially since S′ = C[{[(ρe)/x]}P]
and id |= tt.

Step. There are two remaining cases, corresponding to the composite rules
of the semantics.

(Cng) Assume that T consists of an application of rule (Cng):

S1 V S2 S2 −→ S3 S3 V S4

S1 −→ S4

A.1 Correctness of the Robustness Analysis 147

and assume good(S1). By Lemma 4.6.1, it holds

good(Si) ∧ Si V Si+1 ⇒ good(Si+1)

for i ∈ {1, 3}, and in particular we have good(S2). Moreover, by inductive
hypothesis we have

good(S2) ∧ S2 −→ S3 ⇒ good(S3)

from which the result good(S4) follows by Lemma 4.6.1.

(Cnt) Assume that T consists of an application of rule (Cng), where C[S1] −→
C[S2] is inferred from S1 −→ S2, and assume good(C[S1]). As observed
in the proof of Lemma A.1.5, good(S1) follows. Then, by inductive hy-
pothesis we have good(S2), and the result follows by Lemma A.1.3. �

148 Proofs for Ch. 4

A.2 Semantic Equivalence
It remains to be be shown the equivalence between the reduction semantics of
§ 4.2 and the explicit substitution semantics of § 4.5, on which the correctness
of the robustness analysis has been proven.

In the following we shall thus relate explicit processes S produced by the
explicit substitution semantics to processes P produced by the reduction se-
mantics. This is obtained by applying the substitution under which an explicit
process is active to the process itself, thereby obtaining a process compatible
with the reduction semantics. The following definition establishes such a corre-
spondence, where due care has to be paid to avoid accidental capture of bound
names.

Definition A.3 (· notation) Let S be an explicit process. Then, the
instance P of S, denoted P = S, is structurally defined as follows:

{ρ}0 = 0

{ρ}(νc)P =

{
(νc){ρ}P if c 6∈ fc({ρ}P)

(νc′){(ρ ◦ [c′/c])}P if c ∈ fc({ρ}P) ∧ c′ 6∈ fc({ρ}P)

{ρ}case e of some(y) : P1 else P2 = case (ρe) of some(y) : {ρ}P1 else {ρ}P2

{ρ}b.P = (ρb).{ρ}P {ρ}t1!t2.P = (ρt1)!(ρt2).{ρ}P

S1|S2 = S1|S2 {ρ}(P1|P2) = {ρ}P1|{ρ}P2

t1!t2.S = t1!t2.S (νc)S = (νc)S

b.S = b.S {ρ}A(e) = A((ρe))

case e of some(y) : S1 else S2 = case e of some(y) : S1 else S2

Observe that we have {id}P∗ = P∗, thus relating the starting point of a
semantic evaluation in the two semantics. In the following, we shall use the
symbol ≡−→ to denote the reduction semantics and the symbol V−→ to denote
the explicit substitution semantics, stressing in particular the two notions of
congruence they are parametrised on.

Theorem A.2.1 (≡−→=
V−→) For all systems

define A1(x1) , P1

...
An(xn) , Pn

in {id}P∗

A.2 Semantic Equivalence 149

it holds that

(1) ∀S .
(
{id}P∗ V−→∗ S ⇒ P∗

≡−→∗ S
)

(2) ∀P .
(
P∗

≡−→∗ P ⇒ ∃S .
(
{id}P∗ V−→∗ S ∧ S = P

))
Clause (1) in the theorem claims that the reduction semantics can simulate

the explicit substitution semantics, while clause (2) states that the explicit sub-
stitution semantics can simulate the reduction semantics. The equivalence of
≡−→ and V−→ then follows.

For the sake of readability, we shall separate the two results in Lemmata A.2.2,
A.2.5 below. Each of these lemmata relies on an auxiliary result linking the
directed structural congruenceV on explicit processes to the structural congru-
ence ≡ on processes.

Lemma A.2.1 (V⊆≡)

∀S, S′ .
(
S V S′ ⇒ S ≡ S′

)
Proof. The proof is organised by induction of the shape of the inference

tree T for the congruence step S V S′.

Basis. The basis of the induction consists of the case analysis of all the
axiom schemas in Table 4.6.

(Ref) Assume that T consists of an application of rule (Ref). Then, it holds
that S ≡ S and the thesis follows.

(Nil) Assume that T consists of an application of rule (Nil). Then, it holds
that S|{ρ}0 = S|{ρ}0 = S|0 ≡ S, and the thesis follows.

(Nil’) Analogous to the previous case hence omitted.

(Com) Assume that T consists of an application of rule (Com). Then, it holds
that S1|S2 = S1|S2 ≡ S2|S1 = S2|S1, and the thesis follows.

(Ass) Assume that T consists of an application of rule (Ass). Then, it holds
that S1|(S2|S3) = S1|(S2|S3) ≡ (S1|S2)|S3 = (S1|S2)|S3, and the thesis
follows.

(New1) Assume that T consists of an application of rule (New1). Then, it
holds that (νc1) (νc2)S = (νc1) (νc2)S ≡ (νc2) (νc1)S = (νc2) (νc1)S,
and the thesis follows.

150 Proofs for Ch. 4

(New2) Assume that T consists of an application of rule (New2) and assume
c 6∈ fc({ρ}P). Then, it holds that (νc) {ρ}P = (νc) {ρ}P ≡ {ρ}P , and the
thesis follows.

(New2’) Analogous to the previous case hence omitted.

(New3) Assume that T consists of an application of rule (New3) and assume
c 6∈ fc({ρ2}P2). Then it holds that

((νc) {ρ1}P1)|{ρ2}P2 = [def. of ·]

((νc) {ρ1}P1)|{ρ2}P2 = [def. of ·]

((νc) {ρ1}P1)|{ρ2}P2 ≡ [rule (New3′)/(New3)]

(νc) ({ρ1}P1|{ρ2}P2) = [def. of ·]

(νc) ({ρ1}P1|{ρ2}P2) = [def. of ·]

(νc) ({ρ1}P1|{ρ2}P2)

(New3’) Analogous to the previous case hence omitted.

(S-par) Assume that T consists of an application of rule (S-par). Then, it
holds that {ρ}(P1|P2) = {ρ}P1|{ρ}P2 = {ρ}P1|{ρ}P2, and thesis follows.

(S-new) Assume that T consists of an application of rule (S-new). Then, it
holds that

{ρ}((νc)P) =

(νc){ρ}P = (νc){ρ}P if c 6∈ fc({ρ}P)

(νc′){(ρ ◦ [c′/c])}P = if c ∈ fc({ρ}P) ∧ c′ 6∈ fc({ρ}P)

(νc′){(ρ ◦ [c′/c])}P

and thesis follows since processes are equal up to α-renaming, we can safely
push/pull substitutions beyond the restriction undertaking the necessary
renaming.

(S-case) Assume that T consists of an application of rule (S-case). Then,
it holds that {ρ}case e of some(y) : P1 else P2 = case (ρe) of some(y) :

{ρ}P1 else {ρ}P2 = case (ρe) of some(y) : {ρ}P1 else {ρ}P2, and thesis fol-
lows.

(S-bin) Assume that T consists of an application of rule (S-bin). Then, it holds
that {ρ}b.P = (ρb).{ρ}P = (ρb).{ρ}P , and the thesis follows.

(S-out) Assume that T consists of an application of rule (S-out). Then, it
holds that {ρ}t1!t2.P = (ρt1)!(ρt2).{ρ}P = (ρt1)!(ρt2).{ρ}P , and the the-
sis follows.

A.2 Semantic Equivalence 151

Step.

(Tra) Assume that T consists of an application of rule (Tra), where S1 V S3

is inferred thanks to S1 V S2, S2 V S3. By inductive hypothesis, we have

Si V Si+1 ⇒ Si ≡ Si+1

for i ∈ [1, 2], from which the result follows immediately by transitivity of
≡.

(Cnt) Assume that T consists of an application of rule (Cnt), where C[S1] V
C[S2] is inferred thanks to S1 V S2. By inductive hypothesis, it holds

S1 V S2 ⇒ S1 ≡ S2

and the result follows according to the preservation of ≡ in contexts, for
the application of · to contexts for explicit processes produces contexts for
processes (and is deterministic). �

Lemma A.2.2 (V−→⊆ ≡−→) For all systems, it holds that

∀S .
(
{id}P∗ V−→∗ S ⇒ P∗

≡−→∗ S
)

Proof. The proof is organised by induction on the length k of the deriva-
tion sequence {id}P∗ V−→∗ S.

Basis. Assume k = 0. Then we have {id}P∗ = S, from which the thesis
follows since P∗

≡−→0 P∗ = {id}P∗.

Step. Assume that the result holds for k ≤ k0; we shall prove it for k0 + 1.
The whole derivation sequence can be written as

{id}P∗ V−→k0 S′ −→ S

and the inductive hypothesis applies to the first k0 steps of the derivation,
leading to

P∗
≡−→∗ S′

Therefore, it suffices to show that

S′
V−→ S ⇒ S′

≡−→ S

which follows from Lemma A.2.3 directly. �

152 Proofs for Ch. 4

Lemma A.2.3 (Inductive step of Lemma A.2.2)

∀S, S′ .
(
S

V−→ S′ ⇒ S
≡−→ S′

)
Proof. The proof is organised by induction on the shape of the inference

tree T for the transition S V−→ S′.

Basis. There are five possible cases to be considered, corresponding to rules
(In-), (Case-), and (Rec) of the explicit substitution semantics of Table 4.7.

(In-ff) Assume that T consists of an application of rule (In-ff). We have S =

c1!c2.{ρ1}P1 | b.{ρ2}P2, S′ = {ρ1}P1 | b′.{ρ2}P2. Therefore, we can build
the following inference tree in the reduction semantics:

t1 � c1 t2 � c2 c1!c2 ` b→ b′ b′ ::ff θ

t1!t2.{ρ1}P1 | b.{ρ2}P2
≡−→ {ρ1}P1 | b′.{ρ2}P2

and thesis S ≡−→ S′ follows.

(In-tt) Analogous to the previous case, observing that {θ ◦ ρ2}P2 =
(
{ρ2}P2

)
θ.

(Case-tt) Assume that T consists of an application of rule (Case-tt). We have
S = case some(c) of some(y) : {ρ1}P1 else {ρ1}P2, S′ = {[c/y] ◦ ρ1}P1.
Therefore, we can build the following inference tree in the reduction se-
mantics:

e � some(c)

case e of some(y) : {ρ1}P1 else {ρ1}P2
≡−→
(
{ρ1}P1

)
[c/y]

from which the thesis S ≡−→ S′ follows, since {[c/y] ◦ ρ1}P1 =
(
{ρ1}P1

)
[c/y].

(Case-ff) Analogous to the previous case.

(Rec) Assume that T consists of an application of rule (Rec). We have S =

A((ρe)) and S′ = {[(ρe)/x]}P = P [(ρe)/x]. Therefore, we can build the
following inference tree in the reduction semantics:

A((ρe))
≡−→ P [(ρe)/x] if A(x) , P

from which the thesis S ≡−→ S′ follows.

Step. There are two remaining cases, corresponding to the composite rules
of the explicit substitution semantics of Table 4.7.

A.2 Semantic Equivalence 153

(Cng) Assume that T consists of an application of rule (Cng):

S1 V S2 S2
V−→ S3 S3 V S4

S1
V−→ S4

with S = S1 and S′ = S4. First of all, observe that by Lemma A.2.1 it
holds

Si V Si+1 ⇒ Si ≡ Si+1

for i ∈ {1, 3}. Moreover, by inductive hypothesis we have

S2
V−→ S3 ⇒ S2

≡−→ S3

Hence, we can build the following inference tree in the reduction semantics:

S1 ≡ S2 S2
≡−→ S3 S3 ≡ S4

S1
≡−→ S4

and the thesis follows.

(Cnt) Assume that T consists of an application of rule (Cnt), where S =

C[S1]
V−→ C[S2] = S′ is inferred thanks to S1

V−→ S2. By inductive
hypothesis, it holds

S1
V−→ S2 ⇒ S1

≡−→ S2

and the result follows according to the preservation of the reductions for
processes in contexts

S1
≡−→ S2

C[S1]
≡−→ C[S2]

for the application of · to contexts for explicit processes produces contexts
for processes. �

We have thus established the first clause of Th. A.2.1, and we shall now show
the second clause, that is, the explicit substitution semantics can simulate the
reduction semantics. Let us follow the approach of the former proof and show
first an auxiliary result which links the structural congruence on processes to
the directed congruence on explicit processes.

Lemma A.2.4 (≡⊆V)

∀P, P ′ .
(
P ≡ P ′ ⇒ ∀S .

(
S = P ⇒ ∃S′ .

(
S′ = P ′ ∧ S V S′

)))

154 Proofs for Ch. 4

Proof. The proof is organised by induction on the shape of the inference
tree T for the congruence step P ≡ P ′. For the sake of clarity, we shall consider
the symmetric version of each rule in the basis of the induction.

Basis. The basis consists of the case analysis of the axiom schemas in the
structural congruence of Table 4.2.

(Ref) Assume that T consists of an application of rule (Ref) and consider an
explicit process S such that S = P . Then, it holds that S V S and
the result follows (as the rule is self-symmetric, no consideration about
symmetry is needed).

(Nil) Assume that T consists of an application of rule (Nil) and consider an
explicit process S such that S = P = P0|0. According to the definition of
·, S is either

• S0|{ρ}0, with S0 = P0, in which case we conclude observing that
S0|{ρ}0V S0; or

• {ρ}(R0|0), with {ρ}R0 = P0, in which case we conclude observing
that S V {ρ}R0|{ρ}0V {ρ}R0.

Consider now the symmetric version of the rule, according to which P is
re-written into P |0 = P ′, and consider an explicit process S such that
S = P . The result follows observing that thanks to rule (Nil’) of V it
holds that S V S|{ρ}0 and S|{ρ}0 = S|{ρ}0 = P |0.

(Com) Assume that T consists of an application of rule (Com) and consider
an explicit process S such that S = P = P1|P2. Then, S is either

• S1|S2, with Si = Pi for i ∈ [1, 2], in which case S V S2|S1 and the
result follows; or

• {ρ}(R1|R2), with {ρ}Ri = Pi for i ∈ [1, 2], in which case S V
{ρ}R1|{ρ}R2 V {ρ}R2|{ρ}R1 and the result follows.

As the rule is self-symmetric, no consideration about symmetry is needed.

(Ass) Assume that T consists of an application of rule (Ass) and consider an
explicit process S = P = P1|(P2|P3). Then, S is either

• S1|(S2|S3), with Si = Pi for i ∈ [1, 3], in which case we conclude
observing that S V (S1|S2)|S3; or

• {ρ}(R1|(R2|R3)), with {ρ}Ri = Pi, in which case we conclude ob-
serving that S V {ρ}R1|{ρ}(R2|R3) V {ρ}R1|({ρ}R2|{ρ}R3) V
({ρ}R1|{ρ}R2)|{ρ}R3; or

A.2 Semantic Equivalence 155

• {ρ1}R1|{ρ2}(R2|R3), with {ρ1}R1 = P1 and {ρ2}Ri = Pi for i ∈
[2, 3], and we conclude as in the previous case; or

• {ρ1}R1|({ρ1}R2|{ρ1}R3), with {ρ}Ri = Pi for i ∈ [1, 3], were we
conclude applying rule (Ass) of V directly.

As for the symmetric version of the rule, observe that it is derivable in V
as follows:

(S1 |S2) |S3 V (Com)
S3 |(S1 |S2)V (Ass)
(S3 |S1) |S2 V (Com)
S2 |(S3 |S1)V (Ass)
(S2 |S3) |S1 V (Com)
S1 |(S2 |S3)

and the same reasoning as above applies.

(New1) Assume that T consists of an application of rule (New1) and consider
an explicit process S such that S = P = (νc1) (νc2)P0. Then, S is either

• (νc1) (νc2)S0, with S0 = P0, in which case we conclude applying rule
(New1) of V; or,

• {ρ}(νc1) (νc2)R0, with {ρ}R0 = P0, in which case we conclude by
pushing the substitution beyond the restrictions (applying rule (S-
new) twice) and then using rule (New1) of V. Observe that we are
free to rename c1, c2 when applying (S-new), obtaining a process α-
equivalent to P , hence equal to P .

As the rule is self-symmetric, no consideration about symmetry is needed.

(New2) Assume that T consists of an application of rule (New2) and consider
an explicit process S such that S = P = (νc)P0 with c 6∈ fc(P0). Then, S
is either

• (νc)S0, with S0 = P0, in which case we conclude applying rule
(New2) of V; or,

• {ρ}(νc)R0, with {ρ}R0 = P0, in which case we conclude by pushing
the substitution beyond the restriction (applying rule (S-new) twice)
and then using rule (New2) of V. Observe that we are free to re-
name c when applying (S-new), obtaining a process α-equivalent to
P , hence equal to P .

Consider now the symmetric version of the rule, according to which P is
re-written into (νc)P provided that c 6∈ fc(P), and consider an explicit
process S = {ρ}P0 such that S = P and c 6∈ fc(P0). The result follows

156 Proofs for Ch. 4

observing that thanks to rule (New2’) of V it holds that S V (νc)S, and
we have (νc)S = (νc)P .

(New3) Assume that T consists of an application of rule (New3) and consider
an explicit process S such that S = P = (νc) (P1|P2). Then, S is either

• (νc) ({ρ1}P1|{ρ2}P2), with {ρi}Ri = Pi for i ∈ [1, 2] and c 6∈ fc({ρ}R2),
in which case we conclude by applying rule (New3) of V directly; or

• {ρ}(νc) (R1|R2), with {ρ}Ri = Pi for i ∈ [1, 2] and c 6∈ fc({ρ}R2),
in which case we first have to push the substitution beyond the re-
striction using rule (S-new), then carry the substitution to the par-
allel components by rule (S-par), and finally conclude applying rule
(New3) of V.

Consider now the symmetric version of the rule, according to which P =
((νc)P1)|P2 is re-written into (νc) (P1|P2) provided that c 6∈ fc(P2), and
consider an explicit process S such that S = P . The reasoning proceeds
as above by taking advantage of rule (New3’) of V.

Step. The basis consists of the case analysis of the composite rules in the
directed congruence of Table 4.6.

(Tra) Assume that T consists of an application of rule (Tra), where P = P1 ≡
P3 = P ′ is derived thanks to P1 ≡ P2 and P2 ≡ P3. Consider an explicit
process S1 such that S1 = P1. Then, by inductive hypothesis we have

P1 ≡ P2 ∧ S1 = P1 ⇒ ∃S2 .
(
S1 V S2 ∧ S2 = P2

)
and the inductive hypothesis applies again to S2, leading to

P2 ≡ P3 ∧ S2 = P2 ⇒ ∃S3 .
(
S2 V S3 ∧ S3 = P3

)
and we conclude S1 V S3 by transitivity of the directed congruence on
explicit processes.

(Cnt) Assume that T consists of an application of rule (Cnt), where P =
C[P1] ≡ C[P2] = P ′ is derived thanks to P1 ≡ P2. Consider an explicit
process S such that S = C[P1]. We proceed by induction on the structure
of the context C.

Basis. Assume that C = []. Then, we have P = P1 = S and P ′ = P2.
Hence, we conclude observing that by inductive hypothesis it holds
that

P1 ≡ P2 ∧ S = P1 ⇒ ∃SP2 .
(
S V SP2 ∧ SP2 = P2

)

A.2 Semantic Equivalence 157

Step. There are two cases to consider.

– Assume that C = (νc)C0[]. Then, we have P = (νc)C0[P1] = S
and P ′ = (νc)C0[P2]. Now, according to the definition of ·, S
is either {ρ}(νc)CS0 [PS1] with {ρ}CS0 [PS1] = C0[P1] or (νc)S0

with S0 = C0[P1]. Moreover, observe that the former reduces
to the latter by a congruence step, and thus we shall focus on
S = (νc)S0. Observe that the inductive hypothesis applies to
the sub-process S0 of S, leading to

C0[P1] ≡ C0[P2]∧S0 = C0[P1] ⇒ ∃S′0 .
(
S′0 = C0[P2] ∧ S0 V S′0

)
and we conclude observing that the congruence on explicit pro-
cesses is preserved in contexts, and thus we can build the follow-
ing inference tree:

S0 V S′0

S = (νc)S0 V (νc)S′0 = S′

where S′ = P ′ = (νc)C0[P2] holds by definition of ·, for we have
S′0 = C0[P2].

– The reasoning for the case C = C0[]|Q (and for the symmetric
right-parallel context) proceeds analogously. �

Lemma A.2.5 (≡−→⊆ V−→) For all systems, it holds that

∀P .
(
P∗

≡−→∗ P ⇒ ∃S .
(
{id}P∗ V−→∗ S ∧ S = P

))
Proof. The proof is organised by induction on the length k of the deriva-

tion sequence P∗
≡−→∗ P .

Basis. Assume k = 0. Then P = P∗, and similarly in no step {id}P∗ evolves
to itself in the explicit substitution semantics, yielding S = {id}P∗, and we con-
clude observing that P = P∗ = {id}P∗ = S.

Step. Assume that the result holds for k ≤ k0; we shall prove it for k0 + 1.
Then, the whole derivation sequence can be written as

P∗
≡−→k0 P ′

≡−→ P

and the inductive hypothesis applies to the first k0 steps of the derivation,
leading to

∃S′ .
(
{id}P∗ V−→∗ S′ ∧ S′ = P ′

)

158 Proofs for Ch. 4

Therefore, it suffices to show that

S′
≡−→ P ⇒ ∃S.

(
S′

V−→ S ∧ S = P
)

which follows from Lemma A.2.6 directly. �

Lemma A.2.6 (Inductive step of Lemma A.2.5)

∀P, P ′ .
(
P
≡−→ P ′ ⇒ ∀S .

(
S = P ⇒ ∃S′ .

(
S′ = P ′ ∧ S V−→ S′

)))
Proof. The proof is organised by induction on the shape of the inference

tree T for the semantic step P ≡−→ P ′.

Basis. There are five possible cases to be considered, corresponding to rules
(In-), (Case-), and (Rec) of the reduction semantics of Table 4.4.

(In-ff) Assume that T consists of an application of rule (In-ff), where P =
t1!t2.P1|b.P2 and P ′ = P1|b′.P2. Consider an explicit process S such that
S = P . By definition of ·, it is either

• S = {ρ}(R1|R2), where {ρ}R1 = c1!c2.P1 and {ρ}R2 = b.P2; or,

• S = {ρ1}R1|{ρ2}R2, where {ρ1}R1 = c1!c2.P1 and {ρ2}R2 = b.P2;
or,

• S = c1!c2.{ρ1}R1|b.{ρ2}R2, where {ρ}R1 = P1 and {ρ}R2 = P2.

However, since the first two explicit processes reduce to the latter applying
the directed congruence, let us focus on S = c1!c2.{ρ1}R1|b.{ρ2}R2. In
the explicit substitution semantics we can build the following inference
tree:

c1!c2 ` b→ b′ b′ ::ff θ

c1!c2.{ρ1}R1|b.{ρ2}R2
V−→ {ρ1}R1|b′.{ρ2}R2

and it holds that S′ = {ρ1}R1|b′.{ρ2}R2 = P1|b′.P2 = P ′. The other cases
can be arranged by applying first some congruence steps (cf. rule (Cng)).

(In-tt) Analogous to the previous case, observing in the conclusion that {θ ◦ ρ2}R2 =
P2θ.

(Case-tt) Assume that T consists of an application of rule (Case-tt), and con-
sider an explicit process S such that S = P . It is either

• S = {ρ}case e of some(y) : R1 else R2; or

A.2 Semantic Equivalence 159

• S = case (ρe) of some(y) : {ρ}R1 else {ρ}R2,

where it must be {ρ}Ri = Pi for i ∈ [1, 2] in both cases. Again, the first
case reduces to second via a directed congruence step, thus let us focus on
S = case (ρe) of some(y) : {ρ}R1 else {ρ}R2. Notice that since S = P and
e � some(c), it follows (ρe) = some(c). hence, in the explicit substitution
semantics we can build the following inference tree:

case (ρe) of some(y) : {ρ}R1 else {ρ}R2
V−→ {[c/y] ◦ ρ}R1

and we conclude observing that S′ = {[c/y] ◦ ρ}R1 = P1[c/y].

(Case-ff) Analogous to the previous case.

(Rec) Assume that T consists of an application of rule (Rec), and consider
an explicit process S such that S = P . Then, we have S = {ρ}A(e0),
with (ρe0) = e, and we can therefore derive the following inference in the
explicit substitution semantics:

{ρ}A(e0)
V−→ {[(ρe0)/x]}P0 if A(x) , P0

and we conclude observing that S′ = {[(ρe0)/x]}P0 = P0[e/x].

Step. There are two remaining cases, corresponding to the composite rules
of the reduction semantics of Table 4.4.

(Cng) Assume that T consists of an application of rule (Cng):

P1 ≡ P2 P2
≡−→ P3 P3 ≡ P4

P1
≡−→ P4

Consider an explicit process S1 such that S1 = P1. Observe that by
Lemma A.2.4 there exist S2, S3, S4 such that

Pi ≡ Pi+1 ⇒ Si V Si+1 ∧ Si+1 = Pi+1

for i ∈ {1, 3}. Moreover, by inductive hypothesis we have

P2
≡−→ P3 ⇒

(
S2

V−→ S3 ∧ S3 = P3

)
Therefore, we can build the following inference tree in the explicit substi-
tution semantics:

S1 V S2 S2
V−→ S3 S3 V S4

S1
V−→ S4

and we conclude observing that S4 = P4.

160 Proofs for Ch. 4

(Cnt) Assume that T consists of an application of rule (Cnt), where P =

C[P1]
≡−→ C[P2] = P ′ is inferred thanks to P1

≡−→ P2. Consider an
explicit process S such that S = C[P1]. We proceed by induction on the
structure of context C:

Basis. Assume that C = []. Then, we have P = C[P1] = P1 = S, P ′ = P2,
and we conclude observing that by inductive hypothesis it holds that

P1
≡−→ P2 ∧ S = P1 ⇒ ∃S′ .

(
S′ = P2 ∧ S

V−→ S′
)

Step. There are two cases to consider.

– Assume that C = (νc)C0[]. Then, we have P = C[P1] =

(νc)C0[P1] = S and P ′ = (νc)C0[P2]. Now, according to the

definition of ·, S is either {ρ}(νc)CS0 [PS1] with {ρ}(νc)CS0 [PS1] =

C0[P1] or (νc)S0 with S0 = C0[P1]. Moreover, notice that the
former reduces to the latter by a congruence step, and thus we
shall focus on S = (νc)S0. Observe that the inductive hypothesis
applies to the sub-process S0 of S, leading to

C0[P1]
≡−→ C0[P2]∧S0 = C0[P1] ⇒ ∃S′0 .

(
S′0 = C0[P2] ∧ S0

V−→ S′0

)
and we conclude by building the following inference tree:

S0
V−→ S′0

S = (νc)S0
V−→ (νc)S′0 = S′

where (νc)S′0 = C[P2] = (νc)C ′[P2] holds by definition of ·, for
we have S′0 = C ′[P2].

– The reasoning for the case C = C ′[]|Q (and for the symmetric
right-parallel context) proceeds analogously. �

Appendix B

Proofs for Ch. 5

This appendix contains the proof of correctness of the availability analysis pre-
sented in § 5.4 with respect to an explicit substitution semantics in the style
of § 4.5. We shall limit to present the key results needed to lift the correctness
proof from the robustness to the availability analysis, the overall organisation
of the proofs developing as in Appendix A.

The equivalence of the latter and the reduction semantics discussed in § 5.2
is too close to the developments of Appendix A.2 for a detailed discussion to
be beneficial. We limit to observe here that the notation S is updated so
as to account for the syntax with qualified names and patterns. In partic-
ular, substitutions are applied to patterns in the first rule for the case con-
struct. Corresponding results can be established for Theorem A.2.1 and Lem-
mata A.2.1,A.2.2,A.2.3,A.2.4,A.2.5,A.2.6.

B.1 Correctness of the Availability Analysis
The correctness proof exploits an explicit substitution semantics in the style
of § 4.5. The notion of explicit process is seamlessly extended to the Quality
Calculus with patterns as follows:

S ::= {ρ}P | (νcτ)S | b.S | t1!t2.S | S1|S2 | case e of some(p) : S1 else S2

As for the directed structural rules, in the first part of Table 4.6 we only
need to replace restrictions with qualified restrictions. In the second part of
the table, in charge of pushing substitutions to active processes, the following

162 Proofs for Ch. 5

Table B.1: The transition relation −→ of the Quality Calculus with patterns
with explicit substitutions.

c1!v2 ` b→ b′ b′ ::ff θ

c1!v2.{ρ1}P1 | b.{ρ2}P2 −→ {ρ1}P1 | b′.{ρ2}P2

(In-ff)

c1!v2 ` b→ b′ b′ ::tt θ

c1!v2.{ρ1}P1 | b.{ρ2}P2 −→ {ρ1}P1 | {θ ◦ ρ2}P2

(In-tt)

` v ./ p : σ

case some(v) of some(p) : {ρ1}P1 else {ρ1}P2 −→ {σ ◦ ρ1}P1

(Match)

6` v ./ p
case some(v) of some(p) : {ρ1}P1 else {ρ1}P2 −→ {ρ1}P2

(Mismatch)

case none of some(p) : {ρ2}P1 else {ρ2}P2 −→ {ρ2}P2 (Case-ff)

{ρ}A(e) −→ {[(ρe)/x]}P if A(x) , P (Rec)

S1 V S2 S2 −→ S3 S3 V S4

S1 −→ S4

(Cng)
S −→ S′

C[S] −→ C[S′]
(Cnt)

changes are needed: (i) qualified names replace names in rule (S-new); (ii)
a pattern p replaces the variable y in the left-hand side of rule (S-case), and
the substitution ρ is applied to p in the right-hand side of the rule; (iii) when
applying substitutions to binders, like in rule (S-bin), also input patterns are
involved now.

Finally, the explicit substitution semantics is given by the set of rules dis-
played in Table B.1, the main differences with respect to the basic calculus being
the use of values for terms and rules (Match) and (Mismatch).

As for satisfiability-related notation, the concepts introduced in Appendix A
needs to be lifted to first-order logic. Substitutions ρ shall now map variables
x ∈ X and y ∈ Y to the counter-part of expressions e and terms t in the
logic, which will be elements of the types OpValues and Values. For the sake of
simplifying the notation, we shall abuse the notation use the same syntax for
expressions and terms on the calculus side and OpValues and Values on the logic
side, retaining the notation ρ to denote lifting a substitution from the semantics
of the calculus to an assignment in the logic. Moreover, the satisfaction relation
|= is lifted naturally to the new settings, where the satisfiability of quantifiers
is sought with respect to the domain dom introduced in § 5.5.

The first result we need is lifting the correctness of the analysis of expressions

B.1 Correctness of the Availability Analysis 163

to patterns, i.e., producing a pattern-aware counter-part of Lemma A.1.1.

Lemma B.1.1

(1) ∀e∀ρ∀p.
(

(∃v∃σ. ((ρe) = some(v)∧ ` v ./ p : σ) ∧ ` e IJ p : ψe)
⇒ σ ◦ ρ |= ψe

)
(2) ∀e∀ρ∀p.

(
(∃v. ((ρe) = some(v)∧ 6` v ./ p) ∧ ` e IJ p : ψe) ⇒ ρ |= ¬ψe

)
(3) ∀e∀ρ∀p.

(
((ρe) = none∧ ` e IJ p : ψe) ⇒ ρ |= ¬ψe

)
Proof. By induction on the structure of expression e, with inner inductions

on the structure of values v and patterns p. �

Then, we need to lift the correctness of the analysis of binders to binders
with patterns, i.e., producing a pattern-aware counter-part of Lemma A.1.2.

Lemma B.1.2 Let Θ, θ be substitutions from variables x ∈ X to constant
optional values, and b be a binder. It holds:

∀Θ∀θ∀b
(
(Θ� b) ::tt θ ∧ ` b I ϕb, ψb ⇒ θ |= (ϕb ∧ ψb)

)
Proof. By induction on the structure of binder b, observing that θ is

constructed according to the semantics of ::tt and that ψb is built so as to
comply with ` v ./ p, as shown in the previous lemma for the more complex
case patterns. �

Finally, the notion of goodness has to be updated to the new settings. In
the following, we denote ΞP a formula produced by the availability analysis
for the program point just before process P , in analogy with the notation ΦP
introduced in § 4.6.3.

Definition B.1 (Goodness with patterns) Let S be an explicit pro-
cess. S is good, denoted good(S), if

((∃C.S = C[{ρ}P])⇒ ρ |= ΞP)∧
((∃C.S = C[t1!t2.{ρ}P])⇒ ρ |= ΞP)∧
((∃C∃σ.S = C[case some(v) of some(p) : {ρ}P else {ρ}P2]∧ ` v ./ p : σ)

⇒ σ ◦ ρ |= ΞP)∧
((∃C.S = C[case some(v) of some(p) : {ρ}P else {ρ}P2]∧ 6` v ./ p)⇒ ρ |= ΞP)∧
((∃C.S = C[case none of some(p) : {ρ}P1 else {ρ}P])⇒ ρ |= ΞP)∧
(∀Θ∀θ.((∃C.S = C[b.{ρ}P] ∧ (Θ� b) ::tt θ)⇒ θ ◦ ρ |= ΞP)).

We can now state the main correctness results.

164 Proofs for Ch. 5

Theorem B.1.1 (Correctness of the robustness analysis) For
all systems

define A1(x1) , P1

...
An(xn) , Pn

in {id}P∗
it holds that

∀S . ({id}P∗ −→∗ S ⇒ good(S))

Proof. The proof is organised by induction on the length k of the deriva-
tion sequence {id}P∗ −→∗ S.

Basis. If k = 0, then it is S = {id}P∗ and ΞP∗ = tt, from which the result
follows since id |= tt.

Step. Assume that the result holds for k ≤ k0; we shall prove it for k0 + 1.
The whole derivation sequence can be written as

{id}P∗ −→k0 S′ −→ S

The inductive hypothesis applies to the first k0 steps of the derivation, leading
to

good(S′)

Therefore, we shall now show

S′ −→ S ∧ good(S′) ⇒ good(S)

that is, the last derivation step in the sequence preserves the goodness of the
system. The result follows directly from Lemma B.1.5. �

The technical lemmata on which the theorem rests establish that the struc-
tural congruence and the explicit substitution semantics of the calculus preserve
goodness of explicit processes, starting from {id}P∗ which is indeed good, as
ΞP∗ = tt and id |= tt.

Lemma B.1.3 (V preserves goodness) For all explicit processes S and
S′ it holds that

good(S) ∧ S V S′ ⇒ good(S′)

Proof. The proof is organised by induction on the shape of the inference
tree for the congruence step S V S′. The detailed proof closely retraces the one
of Lemma 4.6.1, the main differences consisting in the cases for rules (S-case)
and (S-bin), which now rely on Lemmata B.1.1,B.1.2. �

B.1 Correctness of the Availability Analysis 165

The second central result, stated in Lemma B.1.5 below, shows that the
explicit substitution semantics preserves goodness of processes. Before stating
the lemma, let us accommodate the correctness of the judgement c1!c2 ` b→ b′

with respect to the availability analysis.

Lemma B.1.4 Let Θ, θ be substitutions from variables x ∈ X to constant
optional values, and b be a binder. It holds:

∀Θ∀θ (` b I ϕb, ψb ∧ (Θ� b) ::tt θ ⇒ θ |= ϕb ∧ ψb
)

⇓
∀Θ∀θ∀c∀v (c!v ` b→ b′ ∧ ` b′ I ϕb′ , ψb ∧ (Θ� b′) ::tt θ ⇒ θ |= ϕb′ ∧ ψb

)
Proof. The proof is analogous to the proof of Lemma A.1.6. �

Lemma B.1.5 (−→ preserves goodness) For all explicit processes S
and S′ it holds that

good(S) ∧ S −→ S′ ⇒ good(S′)

Proof. The proof is organised by induction on the shape of the inference
tree for the transition S −→ S′, exploiting Lemma B.1.3 for accommodating
transitions of congruent processes. The detailed proof closely retraces the one
of Lemma 4.6.2, the main differences consisting in the cases for rule (Case-tt),
now replaced by (Match), (Mismatch), which rely on Lemma B.1.1, and for rules
(In-ff), which now rely on Lemma B.1.2. �

166 Proofs for Ch. 5

Appendix C

Proofs for Ch. 7

This appendix discusses the correctness of the protection analysis of Ch. 7.

C.1 Correctness of the Protection Analysis

The correctness of the protection analysis with respect to the semantics of the
calculus is formalised as follows:

if P |Q =⇒∗ C[lP ′] then ∃N ∈ attack(M l) s.t. N ⊆ fc(Q)

i.e., for all the executions in which Q can drive P to l, the analysis computes a
set of channels N ∈ Names that under-approximates the knowledge required of
Q.

Technically, it is convenient to organise a formal proof in two steps. First, if
P |Q reaches l then P |H[fc(Q)] reaches l, where processH is the hardest attacker
possible and is parametrised on the knowledge of Q. H can be thought as the
(infinite) process executing all possible actions on fc(Q), and the proof simply
argues that whatever Q can, H can (Fact C.1.1). A similar approach is detailed
in [NRH02].

Finally, the second step shows that if P |H[N ′] reaches l, then there must
be a set N ∈ attack(M l) such that N ⊆ N ′ (Theorem C.1.1). Observe that
this formulation corresponds to the qualitative analysis of § 7.3. However, as
attack(minimal(M l)) ⊆ attack(M l), the correctness of the quantitative analysis
of § 7.4 follows as a particular case.

168 Proofs for Ch. 7

Definition C.1 (Hardest attacker) Let N = {c1, . . . , cn} be a finite
set of channels. H[N] is the process that does all possible sequence of output
actions over channels in N :

H[N] , (νd) (!(c1!d)) | . . . | (!(cn!d))

(where labels are of no use hence omitted).

In the definition we used a fresh name d as output term, but any name can
be chosen as P cannot check the content of input variables. Observe that the
channels in N might be used to trigger necessary outputs on other channels,
according to the constraints in P l⇔.

Fact C.1.1 Let P, P ′, Q be processes and C,C ′ contexts. It holds that

if P |Q =⇒∗ C[lP ′] then P |H[fc(Q)] =⇒∗ C ′[lP ′]

As a matter of fact, the only blocking actions in P are inputs, and since
the calculus is value-passing, the execution of P is driven exclusively by (i)
the number of output actions Q performs, (ii) the channels over which they are
executed, and (iii) their order. Now, for each channel c ∈ fc(Q), that is, for each
channel known to Q, by construction H[fc(Q)] interleaves an arbitrary number
of output on c, thus mimicking all the possible sequence of output actions on
fc(Q), among which is the one performed by Q.

The main correctness result is phrased as follows. Since the semantics is
value-passing, the proof does not present any particular obstacle, and therefore
we limit to present its structure and major cases.

Theorem C.1.1 (Correctness of the protection analysis) Let
P, P ′ be processes, C a context, and N ∈ Names a set of channels. It holds that

if P |H[N] =⇒∗ C[lP ′] then
(
∃N ′ .N ′ ∈ attack(M l) ∧ N ′ ⊆ N

)
Proof sketch. The proof is organised by induction on the length k of the

derivation sequence P |H[N] =⇒∗ C[lP ′].

Basis. If k = 0, then it is P = C[lP ′], from which ∅ ∈ attack(M l), for l is a
fact in P l⇔, and thus it does not entail any channel literal to be tt. Since ∅ ⊆ N ,
for all set N , the thesis follows.

Step. Assume k = k0 + 1. The derivation sequence can be written as

P |H[N] =⇒k0 C ′′[l
′
P ′′] =⇒ C ′[lP ′]

for some context C ′′ and process P ′′. The inductive hypothesis applies to the
first k0 steps of the derivation: there exists N ′′ ∈ attack(M l′) such that N ′′ ⊆

C.1 Correctness of the Protection Analysis 169

N . Now, it suffices to show that the last step in the derivation sequence, leading
to reaching l, preserves the inclusion relationship.

Observe that the last step C ′′[P ′′] =⇒ C ′[lP ′] is entailed by combining
rule (Sys) with a transition P ′′

α−−−→ P ′, where we assume that the contexts
C ′′, C ′ take care of hiding restrictions preceding P ′′ and parallel components of
P ′′, P ′ that are not affected by the transition. As for the congruence step in the
premise of rule (Sys), observe that the rewrite cannot produce inputs or outputs
not already considered by the analysis, as the latter always assumes replications
to be unfolded. To conclude, a formal proof requires an induction on the shape
of the inference tree for the transition P ′′ α−−−→ P ′.

Let us comment upon the case of rule (In-tt), which is the most interesting
and the only non-trivial. Assume that the binder b is a simple input c?x, passing
which the label of interest is attained. Now, it is either c ∈ N ′′, in which case
we conclude N ′ = N ′′ ⊆ N , or c /∈ N ′′. Again, we have two cases.

If there exists a subset of N ′′ which can trigger another component of P
to make an output on c, we again conclude N ′ = N ′′ ⊆ N . Otherwise, we
are in the case ϕ ∧ c ⇔ l with c /∈ N ′′ and c not a consequence of the literals
corresponding to N ′′. In the set of constraints we have gc ∨ ϕ′ ⇔ c. It must
then be either c ∈ N , or N ′′′ ⊆ N , where N ′′′ satisfies ϕ′, otherwise H[N]
would not pass the input. If we look at models of P l⇔, we have that either
gc is tt or ϕ′ evaluates to tt – in every model. In the first case we conclude
N ′ = N ′′ ∪ {c} ⊆ N . In the latter N ′ = N ′′ ∪ N iv ⊆ N , with N iv ⊆ N ′′′,
because the least way of satisfying ϕ′ by the analysis under-approximates the
least way of satisfying ϕ′ by the semantics.

The same reasoning applies to the case in which b is a quality binder, as
formulae are computed according to the semantics of quality binders.

170 Proofs for Ch. 7

Appendix D

Properties of Attack Trees

This appendix contains some results that substantiate the procedure for gener-
ating attack trees discussed in Ch. 8.

D.1 Properties of [[P]]tt and of [[l]]

Lemma D.1.1 Let P be a closed process in the Value-Passing Quality Calcu-
lus, and assume that each variable x and name c occurring in P is bound exactly
once. Then, for any variable x in P , there exists exactly one formula ϕ⇒ x in
the translation [[P]]tt, and x does not occur in ϕ.

Proof. By induction on the structure of processes. In particular, observe
that in Table 7.3 a literal x is added to Φ only when a case clause is met, and
by hypothesis x must previously appear in a binder, for processes are closed.

Let us discuss now the complexity of the translation given in Table 7.3. Let
size(C) denote the number of literals occurring in a set of formulae C, that is,
size(C) =

∑
ϕ∈C (size(ϕ)), where size(ϕ) counts the literals in ϕ.

Lemma D.1.2 Let P be a closed process in the Value-Passing Quality Calcu-
lus. Assuming that P contains n actions, then size([[P]]tt) = O(n2).

Proof. If P consists of n actions, [[P]]tt consists of at most O(n) formulae.
More in detail, [[P]]tt consists of no+nc+ni+nb formulae, no being the number
of outputs in P , nc the number of case clauses, ni the number of simple inputs
(including the ones occurring within quality binders), and nb the number of

172 Properties of Attack Trees

binders. The number of literals in a formula depends linearly on the number of
actions preceding the label at which the formula is generated (cf. Table 7.3),
hence the number of literals in [[P]]tt is asymptotically bounded by n2.

It is interesting to observe that from a theoretical point of view O(n2) is
a precise bound to size([[P]]tt). Consider the process IN n that consists of n
sequential inputs c1?x1.cn?xn. The number of literals in [[IN n]]tt grows
with ∑n

i=1 (2(i− 1) + 3) =
∑n
i=1 (2i+ 1) =

= n+ 2
∑n
i=1 i = n+ 2n(n+1)

2 =
= n2 + 2n

where i records the number of literals in the hypothesis Φ, we have omitted
counting the tt conjuncts, and we leverage the fact that an input generates two
formulae whose size is size(Φ) + 2 adding 1 literal to the hypothesis, from which
the relation 2(i− 1) + 3 is derived. Similarly, the translation of a process made
of alternating inputs and case clauses would grow quadratically (with greater
constants than IN n).

Lemma D.1.3 Let P be a closed process in the Value-Passing Quality Calcu-
lus, and assume that each variable x and name c occurring in P is bound exactly
once. Then, for all labels l occurring in P , the formula [[l]] built according to the
rules of Table 8.1 contains no literal x. In particular, [[l]] only contains literals
related to channels c.

Proof. By induction on the number of steps in the unfolding of the gener-
ation of [[l]], according to the rules in Table 8.1.

Bibliography

[AAV95] AAVV. Linda: User’s Guide and Reference Manual. Scientific
Computing Associates, 1995. 53

[AB05] Martín Abadi and Bruno Blanchet. Analyzing security proto-
cols with secrecy types and logic programs. Journal of the ACM
(JACM), 52(1):102–146, January 2005. 89

[ACG86] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and
Friends. Computer, 19(8):26–34, 1986. 53

[Ach09] Dimitris Achlioptas. Random Satisfiability. In Handbook of Satis-
fiability, volume 185, pages 245–270. IOS Press, 2009. 15

[AF01] Martín Abadi and Cedric Fournet. Mobile values, new names, and
secure communication. In ACM Symposium on Principles of Pro-
gramming Languages (POPL ’01), volume 36, pages 104–115. ACM,
2001. 9, 77, 89

[AG97] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In 4th ACM Conference on Computer
and Communications Security, pages 36–47, 1997. 76, 89

[AG98] Martín Abadi and Andrew D. Gordon. A Calculus for Crypto-
graphic Protocols: The Spi Calculus. Information and Computa-
tion, 148(1):1–70, January 1998. 9

[AGG+05] Gul Agha, Carl Gunter, Michael Greenwald, Sanjeev Khanna, José
Meseguer, Koushik Sen, and Prasanna Thati. Formal Modeling and
Analysis of DoS Using Probabilistic Rewrite Theories. In Workshop
on Foundations of Computer Security (FCS’05), 2005. 20

174 BIBLIOGRAPHY

[AIL05] Madhukar Anand, Zachary Ives, and Insup Lee. Quantifying Eaves-
dropping Vulnerability in Sensor Networks. In 2nd VLDB Work-
shop on Data Management for Sensor Networks (DMSN), pages
3–9. Wiley, 2005. 38

[Ama97] Roberto M. Amadio. An Asynchronous Model of Locality, Failure
and Process Mobility. In COORDINATION, volume 1282 of LNCS,
pages 374–391. Springer, 1997. 53

[Amo94] Edward Amoroso. Fundamentals of Computer Security Technology.
Prentice-Hall, 1994. 98, 116

[AN04] Jari Arkko and Pekka Nikander. Weak Authentication: How to
Authenticate Unknown Principals without Trusted Parties. In Se-
curity Protocols, 10th International Workshop (2002), volume 2845
of LNCS, pages 5–19. Springer, 2004. 25

[And72] James P. Anderson. Information Security in a Multi-User Computer
Environment. Advances in Computers, 12:1–36, 1972. 24

[ANL01] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-
Resistant Authentication with Client Puzzles. In 8th International
Workshop on Security Protocols, volume 2133 of LNCS, pages 170–
177. Springer, 2001. 21

[Aur01] Tuomas Aura. DOS-Resistant Authentication with Client Puzzles
(Transcript of Discussion). In 8th International Workshop on Se-
curity Protocols, volume 2133, pages 178–181. Springer, 2001. 17

[AWK02] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable,
graph-based network vulnerability analysis. In 9th ACM conference
on Computer and Communications Security (CCS’02), pages 217–
224, 2002. 135

[BAD14] Nikolaj Bjørner and Phan Anh-Dung. nuZ - Maximal Satisfaction
with Z3, 2014. 117

[Bae05] J. C. M. Baeten. A brief history of process algebra. In Theoretical
Computer Science, volume 335, pages 131–146, 2005. 9

[BAF08] Bruno Blanchet, Martín Abadi, and Cedric Fournet. Automated
verification of selected equivalences for security protocols. Journal
of Logic and Algebraic Programming, 75(1):3–51, 2008. 89

[Bal87] Robert W. Baldwin. Rule Based Analysis of Computer Security.
PhD thesis, MIT, 1987. 135

BIBLIOGRAPHY 175

[BB90] Gerard Berry and Gerard Boudol. The Chemical Abstract Ma-
chine. In 17th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’90), pages 81–94. ACM, 1990.
43

[BBD+03] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, GianLuigi Ferrari,
Daniele Gorla, Michele Loreti, Eugenio Moggi, Rosario Pugliese,
Emilio Tuosto, and Betti Venneri. The KLAIM Project: Theory
and Practice. In Global Computing. Programming Environments,
Languages, Security, and Analysis of Systems, IST/FET Interna-
tional Workshop (GC’03), volume 2874 of LNCS, pages 88–150.
Springer, 2003. 53, 140

[BC10] David Basin and Cas Cremers. Degrees of Security: Protocol Guar-
antees in the Face of Compromising Adversaries. In Computer Sci-
ence Logic, pages 1–18. Springer, 2010. 27

[BDP02] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. KLAVA:
a Java package for distributed and mobile applications. Software
Practice and Experience, 32(14):1365–1394, 2002. 140

[BDP07] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic
Games on Defense Trees. In Formal Aspects in Security and Trust
(FAST’06), volume 4691 of LNCS, pages 1–15. Springer, 2007. 136

[Ber96] D. J. Bernstein. SYN cookies. cr.yp.to/syncookies.html (Accessed:
August 2014), 1996. 21

[Ber04] Martin Berger. Basic Theory of Reduction Congruence for Two
Timed Asynchronous pi-Calculi. In CONCUR, volume 3170 of
LNCS, pages 115–130. Springer, 2004. 53

[Ber05] Martin Berger. An Interview with Robin Milner. In Short Contri-
butions from the Workshop on Algebraic Process Calculi: The First
Twenty Five Years and Beyond (PA’05), BRICS Notes Series, pages
35–45, 2005. 8

[BGM+12] Michele Bugliesi, Lucia Gallina, Andrea Marin, Sabina Rossi,
and Sardaouna Hamadou. Interference-Sensitive Preorders for
MANETs. In 9th International Conference on Quantitative Eval-
uation of Systems (QEST 2012), pages 189–198. IEEE Computer
Society, 2012. 90

[BH00] Martin Berger and Kohei Honda. The Two-Phase Commitment
Protocol in an Extended pi-Calculus. Electr. Notes Theor. Comput.
Sci., 39(1):21–46, 2000. 53

176 BIBLIOGRAPHY

[BH02] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization.
Discrete Applied Mathematics, 123(1-3):155–225, 2002. 109

[BHJ+11] Johannes Borgström, Suqin Huang, Magnus Johansson, Palle Raab-
jerg, Björn Victor, Johannes Pohjola, and Joachim Parrow. Broad-
cast Psi-calculi with an Application to Wireless Protocols. In 9th In-
ternational Conference on Software Engineering and Formal Meth-
ods (SEFM 2011), volume 7041 of LNCS, pages 74–89. Springer,
2011. 89, 91

[BJPV11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn
Victor. Psi-calculi: a framework for mobile processes with nominal
data and logic. Logical Methods in Computer Science, 7(1), 2011.
9, 42

[BK86] J. A. Bergstra and Jan Willem Klop. Algebra of communicating
processes. Mathematics and Computer Science, CWI Monograph,
1:89–138, 1986. 9

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing, volume 950. The MIT Press, 2008. 11

[Bla02] Bruno Blanchet. From Secrecy to Authenticity in Security Pro-
tocols. In 9th International Static Analysis Symposium (SAS’02),
pages 342–359, Madrid, Spain, 2002. Springer Verlag. 77

[Bla09] Bruno Blanchet. Automatic verification of correspondences for se-
curity protocols. Journal of Computer Security, 17(4):363–434,
2009. 77, 89, 116

[BLMW13] Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wą-
sowski. Quantifying Information Leakage of Randomized Protocols.
In 14th International Conference Verification, Model Checking, and
Abstract Interpretation (VMCAI’13), volume 7737 of LNCS, pages
68–87. Springer, 2013. 129

[BLT13] Fabrizio Biondi, Axel Legay, and Louis-marie Traonouez. QUAIL :
A Quantitative Security Analyzer. In 25th International Conference
on Computer Aided Verification (CAV’13), volume 8044 of LNCS,
pages 702–707. Springer, 2013. 130

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That,
volume 145. Cambridge University Press, 1998. 75

[BRN04] Mikael Buchholtz, Hanne Riis Nielson, and Flemming Nielson. A
Calculus for Control Flow Analysis of Security Protocols. Interna-
tional Journal of Information Security, 2(3-4):145–167, 2004. 57,
72, 89

BIBLIOGRAPHY 177

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB
Standard Version 2.0. Technical report, 2010. 67

[BWA94] Paul Butcher, Alan C. Wood, and Martin Atkins. Global synchroni-
sation in Linda. Concurrency - Practice and Experience, 6(6):505–
516, 1994. 53

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Principles of Progamming Languages
(POPL’77), pages 238–252, 1977. 11

[CDE+11] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn Talcott. Maude Man-
ual (Version 2.6), 2011. 75, 78, 90

[CDM14] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as
Compositional Lock-Freedom. In COORDINATION, volume 8459
of LNCS, pages 49–64. Springer, 2014. 116

[CDP+11] Luís Caires, Rocco De Nicola, Rosario Pugliese, Vasco Thudichum
Vasconcelos, and Gianluigi Zavattaro. Core Calculi for Service-
Oriented Computing. In Results of the SENSORIA Project, pages
153–188. Springer, 2011. 9

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Roberto Se-
bastiani, and Cristian Stenico. Satisfiability Modulo the Theory of
Costs: Foundations and Applications. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 6015 of LNCS,
pages 99–113, 2010. 116

[CGG05] Luca Cardelli, Andrew D. Gordon, and Giorgio Ghelli. Secrecy and
Group Creation. Information and Computation, 196(2):127–155,
2005. 90

[CJI+09] Richard Chang, Guofei Jiang, Franjo Ivančić, Sriram Sankara-
narayanan, and Vitaly Shmatikov. Inputs of coma: Static detection
of denial-of-service vulnerabilities. In Computer Security Founda-
tions Symposium (CSF’09), pages 186–199. IEEE, 2009. 22

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures.
In STOC ’71 Proceedings of the third annual ACM symposium on
Theory of computing, pages 151–158, 1971. 13

[COP13] Amin Coja-Oghla and Konstantinos Panagiotou. Going after the K-
SAT Threshold. In 45th ACM symposium on Theory of Computing
(STOC’13), pages 705–714. ACM, 2013. 15

178 BIBLIOGRAPHY

[DB12] Pierpaolo Degano and Andrea Bracciali. Process Calculi, Systems
Biology and Artificial Chemistry. In Handbook of Natural Comput-
ing, pages 1836–1896. Springer, 2012. 8

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Pro-
gramming. Academic Press Ltd., 1972. 12, 139

[DDK96] M. Dacier, Y. Deswarte, and M. Kaaniche. Models and tools for
quantitative assessment of operational security. In 12th Interna-
tional Information Security Conference (IFIP/SEC’96), pages 177–
186, 1996. 135

[DDMA12] Isil Dillig, Thomas Dillig, Kenneth L. McMillan, and Alex Aiken.
Minimum Satisfying Assignments for SMT. In Computer Aided Ver-
ification (CAV’12), volume 7358 of LNCS, pages 394–409. Springer,
2012. 117

[DM94] Giovanni De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994. 105, 110

[dMB] Leonardo de Moura and Nikolaj Bjørner. Z3 - a Tutorial. Technical
report, Microsoft Research. 14

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3 : An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’08), volume 4963 of LNCS, pages 337–340,
2008. 14

[dMB11] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo the-
ories: introduction and applications. Communications of the ACM,
54(9):69–77, 2011. 13

[DPVD12] Alessio Di Mauro, Davide Papini, Roberto Vigo, and Nicola Drag-
oni. Toward a Threat Model for Energy-Harvesting Wireless Sen-
sor Networks. In 4th International Conference on Networked Digi-
tal Technologies (NDT 2012), International Workshop on Wireless
Sensor Networks and their Applications, volume 294 of Commu-
nications in Computer and Information Science, pages 289–301.
Springer, 2012. v

[DY83] Danny Dolev and Andrew Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 29(2):198–208,
1983. 24

[Edd06] Wesley M. Eddy. Defenses Against TCP SYN Flooding Attacks.
The Internet Protocol Journal, 9(4):2–16, 2006. 21

BIBLIOGRAPHY 179

[EG04] Joost Engelfriet and Tjalling Gelsema. A new natural structural
congruence in the pi-calculus with replication. Acta Informatica,
40:385–430, 2004. 42

[EMA+12] Jonas Eckhardt, Tobias Mühlbauer, Musab Alturki, José Meseguer,
and Martin Wirsing. Stable Availability under Denial of Service
Attacks through Formal Patterns. In 15th International Conference
on Fundamental Approaches to Software Engineering (FASE’12),
volume 7212 of LNCS, pages 78–93. Springer, 2012. 20

[EMM09] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-
NPA: Cryptographic Protocol Analysis Modulo Equational Prop-
erties. In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri,
editors, Foundations of Security Analysis and Design V, pages 1–50.
Springer Berlin / Heidelberg, 2009. 90

[FGS06] Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. JSCL:
a Middleware for Service Coordination. In Formal Techniques for
Distributed Systems (FORTE 2006), volume 4229 of LNCS, pages
46–60. Springer, 2006. 140

[FH05] Adrian Francalanza and Matthew Hennessy. A Theory of System
Behaviour in the Presence of Node and Link Failures. In CONCUR,
volume 3653 of LNCS, pages 368–382. Springer, 2005. 53

[FMQ94] GianLuigi Ferrari, Ugo Montanari, and Paola Quaglia. A Pi-
Calculus with Explicit Substitutions: the Late Semantics. In 19th
International Symposium Mathematical Foundations of Computer
Science (MFCS’94), number L in LNCS, pages 342–351. Springer,
1994. 42

[GFM10] Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar. Equa-
tional Reasoning on Mobile Ad Hoc Networks. Fundam. Inform.,
105(4):375–415, 2010. 90

[GJ05] V. Griffith and M. Jakobsson. Messin’ with Texas Deriving
Mother’s Maiden Names Using Public Records. In Applied Cryptog-
raphy and Network Security, volume 3531 of LNCS, pages 91–103.
Springer, 2005. 114

[GJM12] B. B. Gupta, R. C. Joshi, and M. Misra. Distributed Denial of
Service Prevention Techniques. International Journal of Computer
and Electrical Engineering, 2(2):268–276, 2012. 20

[Gli83] Virgil Gligor. A Note on the Denial-of-Service Problem. In Pro-
ceedings of the 1988 Symposium on Security and Privacy, pages
139–149. IEEE, 1983. 23, 24, 25

180 BIBLIOGRAPHY

[Gli84] Virgil Gligor. A Note on Denial-of-Service in Operating Systems.
IEEE Transactions on Software Engineering, 10(3):320–324, 1984.
23, 24, 25

[Gli86] Virgil Gligor. On Denial-of-Service in Computer Networks. In Pro-
ceedings of the 2nd International Conference on Data Engineering,
pages 608–617. IEEE, 1986. 23, 24, 25

[GLP04] Deepak Garg, Akash Lal, and Sanjiva Prasad. Effective Chem-
istry for Synchrony and Asynchrony. In IFIP TCS, pages 479–492.
Kluwer, 2004. 44

[GlPT07] Jean Goubault-larrecq, Catuscia Palamidessi, and Angelo Troina.
A Probabilistic Applied Pi–Calculus. In 5th Asian Conference on
Programming Languages and Systems, pages 1–16, 2007. 90

[God07] Jens C. Godskesen. A Calculus for Mobile Ad Hoc Networks. In
Coordination Models and Languages, pages 132–150, 2007. 91

[Gol11] Dieter Gollmann. Computer Security. Wiley, 3rd edition, 2011. 17

[GPV12] Marco Giunti, Catuscia Palamidessi, and Frank D. Valencia. Hide
and New in the Pi-Calculus. In Proceedings Combined 19th In-
ternational Workshop on Expressiveness in Concurrency and 9th
Workshop on Structured Operational Semantics (EXPRESS/SOS),
volume 89, pages 65–79, 2012. 113

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation (3rd
edition). Addison-Wesley, 2006. 8

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985. 8, 83

[IB02] John Ioannidis and Steven M. Bellovin. Implementing pushback:
Router-based defense against DDoS attacks. In Network and Dis-
tributed System Security Symposium (NDSS’02), pages 79–86. The
Internet Society, 2002. 20

[INR] INRIA. Tutorials for CADP, LNT, and LOTOS. http://cadp.
inria.fr/tutorial/ (Accessed: October 2014). 140

[ISOa] ISO/IEC 15408. Common Criteria for Information Technology Se-
curity Evaluation. 19

[ISOb] ISO/IEC 7498-2. Information technology - Open Systems Intercon-
nection - Security Architecture. 1, 19

http://cadp.inria.fr/tutorial/
http://cadp.inria.fr/tutorial/

BIBLIOGRAPHY 181

[Ive80] Kenneth E. Iverson. Notation as a Tool of Thought. Communica-
tions of the ACM, 23(8):444–465, 1980. 9

[JB99] Ari Juels and John Brainard. Client puzzles: A cryptographic coun-
termeasure against connection depletion attacks. In Networks and
Distributed Systems Security Symposium (NDSS’99), pages 151–
165, 1999. 21

[JSW02] Somesh Jha, Oleg Sheyner, and Jeannette M. Wing. Two formal
analyses of attack graphs. In Computer Security Foundations Work-
shop (CSFW’02), pages 49–63, 2002. 135

[JW09] Jan Jürjens and Tjark Weber. Finite Models in FOL-Based Crypto-
Protocol Verification. In ARSPA-WITS, volume 5511 of LNCS,
pages 155–172. Springer, 2009. 68

[JW10] Aivo Jürgenson and Jan Willemson. Serial Model for Attack
Tree Computations. In Information, Security and Cryptology
(ICISC’09), volume 5984 of LNCS, pages 118–128. Springer, 2010.
135

[KAv14] Aapo Kalliola, Tuomas Aura, and Sanja Šćepanović. Denial-of-
Service Mitigation for Internet Services. In 19th Nordic Conference
on Secure IT Systems (NordSec’14), volume 8788 of LNCS, pages
213–228. Springer, 2014. 20

[KK07] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan
Kaufmann, 2007. 18

[KMRS10] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Foundations of Attacks-Defense Trees. In 7th In-
ternational Workshop on Formal Aspects of Security and Trust
(FAST’10), volume 6561 of LNCS, pages 80–95. Springer, 2010.
135

[KMS12] Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer. Quantitative
Questions on Attack-Defense Trees. In 15th International Confer-
ence on Information Security and Cryptology (ICISC’12), volume
7839 of LNCS, pages 49–64. Springer, 2012. 128, 136

[KP11] Dimitrios Kouzapas and Anna Philippou. A Process Calculus for
Dynamic Networks. In Formal Techniques for Distributed Systems
(FMOODS/FORTE 2011), LNCS, pages 213–227. Springer, 2011.
90

[KPYK13] Seung-Hoon Kang, Keun-Young Park, Sang-Guun Yoo, and Juho
Kim. DDoS avoidance strategy for service availability. Cluster
Computing, 16:241–248, 2013. 22

182 BIBLIOGRAPHY

[Lav] Sandra Laville. Anonymous cyber-attacks cost Pay-
Pal £3.5m, court told. In The Guardian. http:
//www.theguardian.com/technology/2012/nov/22/
anonymous-cyber-attacks-paypal-court (November 22, 2012 -
Accessed: August 2014). 20

[LD10] A. Legay and B. Delahaye. Statistical Model Checking : An
Overview. ArXiv e-prints, 2010. 11, 20

[Lee08] Edward A Lee. Cyber Physical Systems : Design Challenges. In
International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2008. 27

[Lip09] R. J. Lipton. The P=NP Question and Gödel’s Lost Letter.
Springer, 2009. 15

[LM03] Stéphane Lafrance and John Mullins. An Information Flow Method
to Detect Denial of Service Vulnerabilities. Journal of Universal
Computer Science, 9(11):1350–1369, 2003. 26

[LS10] Ivan Lanese and Davide Sangiorgi. An operational semantics for
a calculus for wireless systems. Theoretical Computer Science,
411(19):1928–1948, 2010. 90

[MBS11] Massimo Merro, Francesco Ballardin, and Eleonora Sibilio. A
timed calculus for wireless systems. Theoretical Computer Science,
412(47):6585–6611, 2011. 90

[MBZ+06] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund
Clarke, and Jeannette Wing. Ranking Attack Graphs. In 9th In-
ternational Symposium on Recent Advances in Intrusion Detection
(RAID’06), volume 4219 of LNCS, pages 127–144, 2006. 135, 136

[Mea99] Catherine Meadows. A formal framework and evaluation method
for network denial of service. In Computer Security Foundations
Workshop (CSFW’99), pages 4–13. IEEE, 1999. 25

[Mea01] Catherine Meadows. A cost-based framework for analysis of denial
of service in networks. Journal of Computer Security, 9(1):143–164,
2001. 25, 116

[Mer09] Massimo Merro. An Observational Theory for Mobile Ad Hoc Net-
works. Inf. Comput., 207(2):194–208, 2009. 90

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer,
1980. 8

http://www.theguardian.com/technology/2012/nov/22/anonymous-cyber-attacks-paypal-court
http://www.theguardian.com/technology/2012/nov/22/anonymous-cyber-attacks-paypal-court
http://www.theguardian.com/technology/2012/nov/22/anonymous-cyber-attacks-paypal-court

BIBLIOGRAPHY 183

[Mil90] Robin Milner. Functions as processes. In Automata, Languages and
Programming, volume 443 of LNCS, pages 167–180. Springer, 1990.
43

[Mil93a] Jonathan K Millen. A Resource Allocation Model for Denial of
Service Protection. Journal of Computer Security, 2:89–106, 1993.
25

[Mil93b] Milner. Elements of Interaction - Turing Award Lecture. Commu-
nications of the ACM, 36(1):78–89, 1993. 8

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, 1999. 8

[Mil06] Robin Milner. Turing, Computing and Communication. In Inter-
active Computation, pages 1–8. Springer, 2006. 1, 10, 25

[Mit] Mitre. Weak Password Recovery Mechanism for Forgotten Pass-
word. In Common Weakness Enumeration. http://cwe.mitre.
org/data/definitions/640.html (Accessed: August 2014). 99

[MM12] Damiano Macedonio and Massimo Merro. A Semantic Analysis of
Wireless Network Security Protocols. In NASA Formal Methods -
4th International Symposium (NFM 2012), volume 7226 of LNCS,
pages 403–417. Springer, 2012. 91

[MO06] Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees.
In 8th International Conference on Information Security and Cryp-
tology (ICISC’05), volume 3935 of LNCS, pages 186–198. Springer,
2006. 135

[MOPV12] Narciso Martí-Oliet, Miguel Palomino, and Alberto Verdejo.
Rewriting logic bibliography by topic: 1990-2011. Journal of Logic
and Algebraic Programming, 81(7-8):782–815, 2012. 90

[MS05] Ajay Mahimkar and Vitaly Shmatikov. Game-based analysis of
denial-of-service prevention protocols. In Computer Security Foun-
dations Workshop (CSFW’05), pages 287–301. IEEE, 2005. 22

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997. 32

[MV09] Sebastian Mödersheim and Luca Viganò. Secure Pseudonymous
Channels. In 14th European Symposium on Research in Computer
Security (ESORICS’09), volume 5789 of LNCS, pages 337–354.
Springer, 2009. 94

http://cwe.mitre.org/data/definitions/640.html
http://cwe.mitre.org/data/definitions/640.html

184 BIBLIOGRAPHY

[MZ09] Sharad Malik and Lintao Zhang. Boolean satisfiability from theo-
retical hardness to practical success. Communications of the ACM,
52(8):76, 2009. 12

[NG09] Sebastian Nanz and Jens C. Godskesen. Mobility Models and
Behavioural Equivalence for Wireless Networks. In COORDINA-
TION, volume 5521 of LNCS, pages 106–122. Springer, 2009. 90

[NH06] Sebastian Nanz and Chris Hankin. A framework for security anal-
ysis of mobile wireless networks. Theoretical Computer Science,
367(1-2):203–227, 2006. 90, 91

[NO06] Robert Nieuwenhuis and Albert Oliveras. On SAT Modulo Theories
and Optimization Problems. In Theory and Applications of Satis-
fiability Testing (SAT’06), volume 4121 of LNCS, pages 156–169,
2006. 116

[NRH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer-Verlag, 1999. 11

[NRH02] Flemming Nielson, Hanne Riis Nielson, and René Rydhof Hansen.
Validating firewalls using flow logics. Theoretical Computer Science,
283(2):381–418, 2002. 167

[OBM06] Xinming Ou, Wayne F. Boyer, and Miles a. McQueen. A scalable
approach to attack graph generation. In Computer and Communi-
cations Security (CCS’06), page 336, New York, New York, USA,
2006. ACM. 135

[OGKW08] L.J. Osterweil, C. Ghezzi, J. Kramer, and A.L. Wolf. Determining
the Impact of Software Engineering Research on Practice. Com-
puter, 41(3):39–49, 2008. 29

[OSW] Choosing and Using Security Questions Cheat Sheet. In Open Web
Application Security Project. www.owasp.org (Accessed: October
2014). 100

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Handbook
of Process Algebra, chapter 8, pages 479–543. Elsevier, 2001. 42

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security, 6(1-2):85–128,
1998. 116

[PHS03] Henrik Pilegaard, Michael Reichhardt Hansen, and Robin Sharp.
An Approach to Analyzing Availability Properties of Security Pro-
tocols. Nordic Journal of Computing, 10(4):337–373, 2003. 26

www.owasp.org

BIBLIOGRAPHY 185

[PNR08] Henrik Pilegaard, Flemming Nielson, and Hanne Riis Nielson. Path-
way Analysis for BioAmbients. Journal of Logic and Algebraic Pro-
gramming, 77:92–130, 2008. 44

[Pon12] Cyber Security on the Offense: A Study of IT Security Experts.
Technical report, Ponemon Institute, 2012. 2, 3

[PPQ05] Davide Prandi, Corrado Priami, and Paola Quaglia. Process Calculi
in a Biological Context. Bullettin of the EACTS, 85, 2005. 8

[Pra95] K.V.S. Prasad. A calculus of broadcasting systems. Science of
Computer Programming, 25(2-3):285–327, 1995. 90

[PS98] Cynthia Phillips and Laura Painton Swiler. A graph-based system
for network-vulnerability analysis. In Workshop on New security
paradigms (NSPW’98), pages 71–79, 1998. 135

[Puh06] Frank Puhlmann. Why do we actually need the Pi-Calculus for
Business Process Management. In 9th International Conference on
Business Information Systems (BIS 2006), volume P-85 of LNI,
pages 77–89. Gesellschaft für Informatik, 2006. 8

[Pul89] Geoffrey K. Pullum. Topic...Comment - The great Eskimo vocab-
ulary hoax. Natural Language and Linguistic Theory, 7:275–281,
1989. 10

[PV98] Joachim Parrow and Björn Victor. The Fusion Calculus. In Logic
in Computer Science (LICS’98), pages 176–185. IEEE, 1998. 9

[Rab08] Ariel Rabkin. Personal Knowledge Questions for Fallback Authen-
tication: Security Questions in the Era of Facebook. Proceedings of
the 4th Symposium on Usable Privacy and Security (SOUPS’08),
pages 13–23, 2008. 114

[Ram02] Vijay Ramachandran. Analyzing DoS-Resistance of Protocols Using
a Cost-Based Framework. Technical report, Yale University, 2002.
26

[RC11] Simona Ramanauskaite and Antanas Cenys. Taxonomy of DoS
Attacks and Their Countermeasures. Central European Journal of
Computer Science, 1(3):355–366, 2011. 19

[RH98] James Riely and Matthew Hennessy. A Typed Language for Dis-
tributed Mobile Processes (Extended Abstract). In Principles of
Progamming Languages (POPL’98), pages 378–390. ACM, 1998.
53

186 BIBLIOGRAPHY

[RH01] James Riely and Matthew Hennessy. Distributed processes and
location failures. Theoretical Computer Science, 266(1-2):693–735,
2001. 53

[RKT12] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Attack coun-
termeasure trees (ACT): towards unifying the constructs of at-
tack and defense trees. Security and Communication Networks,
5(8):929–943, 2012. 135

[RN02] Hanne Riis Nielson and Flemming Nielson. Flow Logic : A Multi-
paradigmatic Approach. In The Essence of Computation, Complex-
ity, Analysis, Transformation. Essays Dedicated to Neil D. Jones,
volume 2566 of LNCS, pages 223–244, 2002. 11

[RN07] Hanne Riis Nielson and Flemming Nielson. Semantics with Appli-
cations: an Appetizer. Springer, 2007. 8

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 3rd edition, 2009. 15, 125, 126

[RN13a] Hanne Riis Nielson and Flemming Nielson. Probabilistic Analysis
of the Quality Calculus. In Formal Techniques for Distributed Sys-
tems (FMOODS/FORTE’13), volume 7892 of LNCS, pages 258–
272. Springer, 2013. 140

[RN13b] Hanne Riis Nielson and Flemming Nielson. Safety versus Security
in the Quality Calculus. In Theories of Programming and Formal
Methods, volume 8051 of LNCS, pages 285–303. Springer, 2013. 140

[RNKP11] Hanne Riis Nielson, Flemming Nielson, Jörg Kreiker, and Henrik
Pilegaard. From Explicit to Symbolic Types for Communication
Protocols in CCS. In Formal Modeling: Actors, Open Systems,
Biological Systems, volume 7000, pages 74–89. Springer, 2011. 44

[RNP12] Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard. Flow
Logic for Process Calculi. ACM Computing Surveys, 44(1):1–39,
January 2012. 11

[RNV12] Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo. A Calcu-
lus for Quality. In 9th International Symposium on Formal Aspects
of Component Software (FACS’12), volume 7684 of LNCS, pages
188–204. Springer, 2012. v, 4, 31, 32, 48

[RSF+09] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pěchouček,
Martin Grill, Jan Stiborek, Karel Bartoš, and Thomas Engel.
Runtime Monitoring and Dynamic Reconfiguration for Intrusion
Detection Systems. In Recent Advances in Intrusion Detection

BIBLIOGRAPHY 187

(RAID’09), volume 5758 of LNCS, pages 61–80. Springer, 2009.
126, 135

[Sch89] Uwe Schöning. Logic for computer scientists. Birkhäuser Boston,
1989. 12

[Sch99] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal, 1999. 135

[SG10] Lei Song and Jens C. Godskesen. Probabilistic Mobility Models for
Mobile and Wireless Networks. In Theoretical Computer Science -
6th IFIP International Conference (TCS 2010), volume 323 of IFIP
Advances in Information and Communication Technology, pages
86–100. Springer, 2010. 90

[SGNB06] J. Smith, J. M. González-Nieto, and C. Boyd. Modelling Denial of
Service Attacks on JFK with Meadows’s Cost-Based Framework. In
Australasian Workshops on Grid Computing and e-Research, vol-
ume 54, pages 125–134. Australian Computer Society, 2006. 26

[SHJ+02] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann,
and Jeannette M. Wing. Automated Generation and Analysis of
Attack Graphs. In 2002 IEEE Symposium on Security and Privacy,
pages 273–284, 2002. 135, 136

[SK97] K.E. Sirois and S.T. Kent. Securing the Nimrod routing architec-
ture. In Symposium on Network and Distributed System Security
(NDSS’97), pages 74–84. IEEE, 1997. 25

[SLK10] Tao Shu, Sisi Liu, and Marwan Krunz. Secure Data Collection
in Wireless Sensor Networks Using Randomized Dispersive Routes.
IEEE Transactions on Mobile Computing, 9(7):941–954, 2010. 85

[SMS11] Karem A. Sakallah and Joao Marques-Silva. Anatomy and Empir-
ical Evaluation of Modern SAT Solvers. Bulletin of the EATCS,
103:96–121, 2011. 15

[Som] Ravi Somaiya. Activists SayWeb Assault for Assange Is Expanding.
In The New York Times. http://www.nytimes.com/2010/12/11/
world/europe/11anonymous.html (December 10, 2012 - Accessed:
August 2014). 20

[SRS10] Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka. A process
calculus for Mobile Ad Hoc Networks. Science of Computer Pro-
gramming, 75(6):440–469, 2010. 90

[STCE14] Sang C. Suh, U. John Tanik, John N. Carbone, and Abdullah
Eroglu, editors. Applied Cyber-Physical Systems. Springer, 2014. 2,
27

http://www.nytimes.com/2010/12/11/world/europe/11anonymous.html
http://www.nytimes.com/2010/12/11/world/europe/11anonymous.html

188 BIBLIOGRAPHY

[SW01] Davide Sangiorgi and David Walker. The Pi-calculus - A Theory
of Mobile Processes. Cambridge University Press, 2001. 44

[SW04] Oleg Sheyner and Jeannette Wing. Tools for Generating and Ana-
lyzing Attack Graphs. In 2nd International Symposium on Formal
Methods for Components and Objects (FMCO’03), volume 3188 of
LNCS, pages 344–371, 2004. 135, 136

[SWYS11] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A Survey of
Cyber Physical Systems. In International Conference on Wireless
Communications and Signal Processing (WSCP ’11), pages 1–6,
Nanjing, China, 2011. IEEE Computer Society. 27

[TSMO04] Prasanna Thati, Koushik Sen, and Narciso Martí-Oliet. An Exe-
cutable Specification of Asynchronous Pi-Calculus Semantics and
May Testing in Maude 2.0. Electronic Notes in Theoretical Com-
puter Science, 71:261–281, 2004. 90

[VCT+14] Roberto Vigo, Alessandro Celestini, Francesco Tiezzi, Rocco De
Nicola, Flemming Nielson, and Hanne Riis Nielson. Trust-based
Enforcement of Security Policies. In Trustworthy Global Comput-
ing, 9th Symposium (TGC 2014), LNCS, page To appear. Springer,
2014. v, 53

[Vig12] Roberto Vigo. The Cyber-Physical Attacker. In 7th
ERCIM/EWICS Workshop on Cyberphysical Systems, volume 7613
of LNCS, pages 347–356. Springer, 2012. v, 4, 27, 114

[VMO02] Alberto Verdejo and Narciso Martí-Oliet. Implementing CCS in
Maude 2. In Workshop on Rewriting Logic and its Applications
WRLA02, volume 71 of Electronic Notes in Theoretical Computer
Science, pages 282–300. Elsevier, 2002. 90

[VMO06] Alberto Verdejo and Narciso Martí-Oliet. Executable structural
operational semantics in Maude. Journal of Logic and Algebraic
Programming, 67(1-2):226–293, 2006. 90

[VNR13] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Broad-
cast, Denial-of-Service, and Secure Communication. In 10th Inter-
national Conference on integrated Formal Methods (iFM’13), vol-
ume 7940 of LNCS, pages 410–427, 2013. v, 5, 74, 132

[VNR14a] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Au-
tomated Generation of Attack Trees. In 27th Computer Security
Foundations Symposium (CSF’14), pages 337–350. IEEE, 2014. v,
5, 121

BIBLIOGRAPHY 189

[VNR14b] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Avail-
ability By Design. In 19th Nordic Conference on Secure IT Systems
(NordSec’14), volume 8788 of LNCS, pages 277–278. Springer, 2014.
v

[VNR14c] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Uniform
Protection for Multi-exposed Targets. In 34th IFIP International
Conference on Formal Techniques for Distributed Objects, Com-
ponents and Systems (FORTE’14), volume 8461 of LNCS, pages
182–198. Springer, 2014. v, 2, 5, 95

[VYD12] Roberto Vigo, Ender Yüksel, and Carroline Dewi Puspa Kencana
Ramli. Smart Grid Security A Smart Meter-Centric Perspective.
In 20th Telecommunications Forum (TELFOR), 2012, pages 127
–130, 2012. 61

[Wei99] Christoph Weidenbach. Towards an automatic analysis of secu-
rity protocols in first-order logic. In 16th International Conference
on Automated Deduction (CADE- 16), pages 314–328. Springer-
Verlag, 1999. 116

[Wika] Wikipedia. Low Orbit Ion Cannon. http://en.wikipedia.org/
wiki/Low_Orbit_Ion_Cannon (Accessed: August 2014). 20

[Wikb] Wikipedia. Timeline of events associated with Anony-
mous. http://en.wikipedia.org/wiki/Timeline_of_events_
associated_with_Anonymous (Accessed: August 2014). 20

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Com-
munications of the ACM, 14(4):221–227, 1971. 139

[WJHF04] Brent Waters, Ari Juels, J. Alex Halderman, and EdwardW. Felten.
New Client Puzzle Outsourcing Techniques for DoS Resistance. In
11th ACM conference on Computer and communications security
(CCS’04), page 246, 2004. 21

[WNR14] Shuling Wang, Flemming Nielson, and Hanne Riis Nielson. Denial-
of-Service Security Attack in the Continuous-Time World. In
34th IFIP International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems (FORTE’14), volume
8461 of LNCS, pages 149–165. Springer, 2014. 140

[XRK08] Kun Xiao, Shangping Ren, and Kevin Kwiat. Retrofitting Cyber
Physical Systems for Survivability through External Coordination.
In 41st Hawaii International Conference on System Sciences, pages
1–9, 2008. 27

http://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
http://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
http://en.wikipedia.org/wiki/Timeline_of_events_associated_ with_Anonymous
http://en.wikipedia.org/wiki/Timeline_of_events_associated_ with_Anonymous

190 BIBLIOGRAPHY

[YG90] Che-Fn Yu and Virgil D. Gligor. A Specification and Verification
Method for Preventing Denial of Service. IEEE Transactions on
Software Engineering, 16(6):581–592, 1990. 24

[YPS04] Abraham Yaar, Adrian Perrig, and Dawn Song. SIFF: A stateless
internet flow filter to mitigate DDoS flooding attacks. In IEEE
Symposium on Security and Privacy (S&P 2004), pages 130–143,
2004. 20

[ZNR14] Kebin Zeng, Flemming Nielson, and Hanne Riis Nielson. The
Stochastic Quality Calculus. In COORDINATION, volume 8459
of LNCS, pages 179–193. Springer, 2014. 140

	Summary
	Resumè
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Challenge
	1.2 Contribution
	1.3 Synopsis

	2 Setting the Scene
	2.1 Process Calculi
	2.1.1 Programming abstractions: a linguistic fascination

	2.2 Reasoning on Abstract Representations
	2.3 SAT and SMT
	2.3.1 Theoretical complexity versus performance

	3 Denial-of-Service
	3.1 A Bird's Eye View
	3.1.1 Availability in theory
	3.1.2 Denial-of-Service in practice
	3.1.3 Countermeasures

	3.2 Formal Approaches to DoS
	3.2.1 Early steps
	3.2.2 From qualitative to quantitative considerations

	3.3 DoS in Cyber-Physical Systems
	3.4 Ready Set Sail

	4 The Quality Calculus: Modelling Availability
	4.1 The Quality Calculus
	4.2 Reduction Semantics
	4.3 Expressiveness
	4.4 A Robust Base Station
	4.5 An Explicit Substitution Semantics
	4.5.1 Directed structural rules
	4.5.2 The transition relation

	4.6 Robustness: Absence of Communication
	4.6.1 Robustness analysis
	4.6.2 Analysing the base station
	4.6.3 Formal correctness

	4.7 Concluding Remarks

	5 From Network to Application Level
	5.1 The Quality Calculus with Patterns
	5.2 Reduction Semantics
	5.3 The Base Station, Revised
	5.4 Availability of Communication
	5.4.1 Availability analysis
	5.4.2 Formal correctness

	5.5 Implementation of the Analysis
	5.5.1 SMT-LIB encoding
	5.5.2 Analysing the smart meter
	5.5.3 Results

	5.6 Concluding Remarks

	6 A Broadcast Scenario
	6.1 The Applied Quality Calculus
	6.2 Exploting Rewrite Rules
	6.2.1 Cryptographic reasoning
	6.2.2 Quality guards

	6.3 Semantics
	6.4 Key Update through Secret Sharing
	6.5 Concluding Remarks

	7 Quantifying Protection
	7.1 The Value-Passing Quality Calculus
	7.1.1 Syntax and semantics
	7.1.2 Confidentiality labels
	7.1.3 Security model

	7.2 A Login System with Password Recovey
	7.3 Discovering Attacks
	7.3.1 From processes to flow constraints
	7.3.2 Modelling the attacker
	7.3.3 A SAT-based solution technique

	7.4 Quantifying Attacks
	7.4.1 From qualitative to quantitative considerations
	7.4.2 Optimisation Modulo Theories
	7.4.3 Complex cost structures

	7.5 The Quality Tool
	7.6 Concluding Remarks

	8 Generating Attack Trees
	8.1 The NemID System
	8.2 From Processes to Propositional Formulae
	8.3 Synthesising Attack Trees
	8.3.1 From formulae to attack trees
	8.3.2 Attacking NemID

	8.4 Assessing Attack Trees
	8.5 Implementation
	8.5.1 Comparing the protection analysis with attack trees
	8.5.2 The Quality Tree Generator

	8.6 First-Order Attack Trees
	8.7 Concluding Remarks

	9 Conclusion
	9.1 Contribution
	9.2 Future Directions

	A Proofs for Ch. 4
	A.1 Correctness of the Robustness Analysis
	A.2 Semantic Equivalence

	B Proofs for Ch. 5
	B.1 Correctness of the Availability Analysis

	C Proofs for Ch. 7
	C.1 Correctness of the Protection Analysis

	D Properties of Attack Trees
	D.1 Properties of [[P]] tt and of [[l]]

	Bibliography

