Conceptual design of a thorium supplied thermal molten salt wasteburner

Schönfeldt, Troels; Klinkby, Esben Bryndt; Klenø, K.H.; Boje, Peter; Eakes, C.; Pettersen, E.E.; Løvschall-Jensen, A. E.; Jørgensen, M. D.

Publication date: 2015

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Conceptual design of a thorium supplied thermal molten salt wasteburner

Troels Schönheldt1,2
E. Klinkby1,2, K. H. Klenø2, P. Boje3, C. Eakes2, E. E. Pettersen1,2,4, A. E. Løvschall-Jensen2,4, & M. D. Jørgensen2.

1DTU Nutech, 2Seaborg IVS, 3DTU Diplom, & 4Niels Bohr Institute
The Project

• Me: Troels Schönfeldt: PhDr - Advanced cold neutron moderators @ DTU Nutech and ESS Neutronics
• 168 hours/week. A PhD study is 37.5 hours/week (=> 77.7% spare-time)... So we started a company
• Seaborg IVS:
 – We now consist of 10 unpaid physicist, chemists and engineers
 – We focus on nuclear reactor technologies, with special focus on molten salt reactors and thorium
• Here you will be presented with our, still very preliminary, Seaborg WasteBurner, the SWaB
Kickoff

• In December 2014 we were invited to join the “Feasibility Study for the Development of a Pilot Scale Molten Salt Reactor in the UK”, by:

• The SWaB design - a single salt thermal molten salt wasteburner
• The SWaB is currently under evaluation by UK experts
• Also, it turns out that 130.5 hours/week of spare times is not really a lot
Our constraints

1: No weapons!
- No separation of Pu/Pa from U
- Highly “denatured” U and Pu
- Decreasing weapon “quality”

2: Inherently safe
- Rely on physics
- Any active system must be redundant

3: Wasteburner
- Negative net TRU production
- Evolve towards the closed thorium fuel cycle

4: Thermal spectrum operation
- Because it has tremendous advantages
- Inefficiency of TRU burning should be compensated for by enhanced neutron economy

5: Modular (Economical):
- decrease construction/decommission cost
- Shipyard style manufacturing - mass-production

Early drawing of the “bottle”.

DTU Nutech
Center for Nuclear Technologies
The “product”

Reactor class:
S. Delpech et al., Reactor physic and reprocessing scheme for innovative molten salt reactor system. Journal of fluorine chemistry, 2009
Method

- Reactor model
- MCNPX (& Cinder)
- Degasser
- Chemistry
- Refueler
- Time-evolve SNF
- Rebalance 78LiF-22AcF₄ and volume
- Initial fuel from LWR
- Material
- Neutronics
- Spectrum

Note: The diagram illustrates the flow of processes including reactor model, MCNPX (or Cinder), degasser, chemistry, refueler, time-evolve SNF, rebalance of 78LiF-22AcF₄ and volume, and initial fuel from LWR. The processes are connected with arrows indicating the flow of material and information.
Initial fuel and alternatives

Flame reactor:
SNF -> Fluoride salts and removes:
- 99.1% U (as UF$_6$)
- 0.1% other Ac
- 99% FP (extracted)

Initial fuel (10 year storage):
45% U (~1.3% enriched)
45% Pu (~68% fissile)
5% FP (only non-gasses)
5% minor Ac (mainly Am)

<table>
<thead>
<tr>
<th>Component</th>
<th>Processed Waste</th>
<th>4.5% 235U</th>
<th>19.99% 235U</th>
<th>93% 235U</th>
<th>100% 239Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>232Th fraction</td>
<td>86.7%</td>
<td>6.9%</td>
<td>73.3%</td>
<td>93.9%</td>
<td>97.6%</td>
</tr>
</tbody>
</table>

Source: GAO analysis of DOE data.
Salt and moderator

Iterative optimization of geometry and spent fuel to Th ratio (Ac => xTh+yAc\textsubscript{SNF} optimized to $K_{\text{eff}} \approx 1.05$)

Using this tool, we were able to analyze several moderator and carrier salt candidates in a matter of days.
Control

1: Huge “instant” negative response, mainly from salt density change.
2: Small “slow” positive response from graphite heating. (Problematic)

Daily control using online chemistry. Hourly control using 4 graphite fine-tuning rods ($\Delta k_{\text{eff}}=0.88\times 254$ pcm)
Absorbing control rods for full shutdown only (= better neutron economy)
Pot outer dimension: 190x190x340 cm3
Blanket thickness: 15-22 cm
Moderator: Graphite (r=75 cm, l=300 cm)
Operation temperature 700°C-900°C
Flow speed: 38.1 l/s
Salt volume: ~6 m3 (~5 m3 in core)
Salt composition: $^{78}\text{LiF}^{22}\text{AcF}_4$ (99.95% ^7Li)
- 100Ac $^87\text{Th}+6\text{U}+6\text{Pu}+1\text{Ac}_m$ (starting)
- Melting point <568°C
- Salt evaporation starts: >1300°C
Running the cycle with our (thermal-epithermal) spectrum utilizes **83.1%** of the fuel and produce **16.9%** americium waste – but \(\text{eta}=0.88 \) (sustainable is \(\text{eta}>>1 \))
Running the cycle with our (thermal-epithermal) spectrum utilizes virtually all the fuel and produce **4.56 ppm** americium waste and **eta=1.06** – however...
Neutron loss

The changing leakage over time, is caused by significant inventory changes from “over-fueling” (and Th removal) to keep the core critical.

Our thorium cycle has \(\eta = 1.06 \)
But we lose 10-13% neutrons.

<table>
<thead>
<tr>
<th>Actinide component</th>
<th>Initial</th>
<th>30 years</th>
<th>60 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>86.7%</td>
<td>59.6%</td>
<td>39.9%</td>
</tr>
<tr>
<td>Uranium</td>
<td>6.3%</td>
<td>21%</td>
<td>32%</td>
</tr>
<tr>
<td>Plutonium</td>
<td>6.3%</td>
<td>16%</td>
<td>23%</td>
</tr>
<tr>
<td>Minor Ac</td>
<td>0.6%</td>
<td>3.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Fissile Pu/Pu</td>
<td>67.8%</td>
<td>53.1%</td>
<td>48.5%</td>
</tr>
</tbody>
</table>
60 years, at 50 MW$_{th}$:
Net negative transuranic production of ~1 ton!
We do not have an underlying closed thorium fuel cycle.
But with the production of 233U we are getting closer.
Next step: SWaB -> CUBE
Seaborg WasteBurner -> Compact Used fuel BurnEr

Fix reactivity feedback from graphite expansion
- graphite slabs instead of salt pipes

Increase fine-tuning rods reactivity span
- move rods to a more central position

Reduce Pu (and Ac\textsubscript{m}) inventory
- minimize salt volume (double blanket?)
- optimize moderator configuration
- remove Am online
- increase UF6 evaporation in fuel processing

Increase neutron economy
- reduce leakage (ultra compact)
- add outer reflector

Funding needed for two activities:
System engineering and multi physics
Chemistry system design and verification