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The optical response of plasmonic nanogaps is challenging to address when the

separation between the two nanoparticles forming the gap is reduced to a few

nanometers or even subnanometer distances. We have compared results of the

plasmon response within different levels of approximation, and identified a classical

local regime, a nonlocal regime and a quantum regime of interaction. For separations of

a few Ångstroms, in the quantum regime, optical tunneling can occur, strongly

modifying the optics of the nanogap. We have considered a classical effective model,

so called Quantum Corrected Model (QCM), that has been introduced to correctly

describe the main features of optical transport in plasmonic nanogaps. The basics of

this model are explained in detail, and its implementation is extended to include

nonlocal effects and address practical situations involving different materials and

temperatures of operation.
1 Introduction

Surface Plasmon Polaritons, the collective oscillations of free electrons that are
excited resonantly in metals by an optical electromagnetic eld, can be localized
in nite structures acting as optical nanoantennas. The resulting Localized
Surface Plasmon Polaritons (LSPPs) allow the manipulation of light at the
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nanoscale and the achievement of strong and very conned local eld enhance-
ments.1–6 This opens a route to a variety of applications, in e.g. Surface Enhanced
Raman Spectroscopy (SERS),7–11 control of radiation from single quantum emit-
ters,12–17 or generation of high harmonic pulses at extreme ultraviolet frequencies
via non-linear processes.18 The optical response of many plasmonic
systems3,4,7–9,19–22 has been successfully addressed using Maxwell's equations.
Within this classical approach different materials are separated by sharp
boundaries and the material’s properties are given by the position and frequency
dependent dielectric function 3(r, u). Within the local, linear dielectric response,
we can relate the dielectric displacement D and the electric eld E at a position r
through D(r, u) ¼ E(r, u) + 4pP(r, u) ¼ 3(r, u)E(r, u), where the medium polar-
isation P veries 4pP(r, u) ¼ (3(r, u) � 1)E(r, u) (in atomic units). Equivalently,
P(r, u) ¼ c(r, u)E(r, u), where c(r, u) ¼ (3(r, u) � 1)/4p is the medium polar-
isability. For an isotropic and homogeneous medium, 3 and c can be described as
scalars while, in the general case, these are tensors of rank 2. The described linear
relationship between E and P excludes possible non-linearities that occur for
strong elds,23–25 and it only depends on the particular point of evaluation r.

Among the different plasmonic congurations, gap-nanoantennas composed
by two metal particles separated by a narrow dielectric gap, as those schematically
depicted in Fig. 1(a) and (b), are particularly interesting as they serve to probe
many fundamental optoelectronic processes at the nanoscale. The local classical
approach of metallic nanogaps predicts that arbitrarily large charge densities can
be induced at the opposite sides of a vanishingly narrow plasmonic gap, leading
to extremely intense elds at the gap3–5,7–9,19–22,26,27 and to strongly red-shied
hybridized bonding LSSP resonances that arise from Coulomb coupling between
the modes. The lowest energy gap mode is known as Bonding Dimer Plasmon
(BDP) and its redshi with narrowing gap is usually a good ngerprint of the
plasmonic cavity.21,22,28–32 Within the local classical treatment, the transition from
the separated to the overlapping nanoparticles is characterised by the disconti-
nuity of the energy of the resonances, with a sharp change of the optical response
at the touching point. Aer contact, a set of Charge Transfer Plasmons (CTPs) that
blueshi with increasing overlap appears.21,29,33,34 This behaviour is outlined by
the solid blue lines in Fig. 1(c).

Local classical treatments, however, disregard nonlocal and quantum
effects35,36 that lead, for example, to the size dependence of the plasmon energy of
individual nanoparticles.37–45 In addition to quantum-size effects, the complex
quantum interactions between electrons can also change dramatically the optical
response of very narrow, nanometer and subnanometer gaps; a regime progres-
sively available for experimental testing, where the limitations of classical
descriptions are manifested.46–55 A local classical description of the response of
metallic nanoparticles does not properly account for the correlated motion of the
conduction electrons and their spill out the nanoparticle surfaces. Thus, the
classical local model fails to capture: (i) the spatial prole of the screening
charge56 with smooth transition of the electron density at the interfaces, instead
of sharp discontinuities, (ii) strong nonlocal interactions so that, in general, the
centroid of the screening charge density does not coincide with the geometrical
interface, (iii) the tunneling between the metal nanoparticles, where the
conductive contact can be established prior to the direct geometrical contact.
152 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015



Fig. 1 General consideration of quantum effects and the Quantum Corrected Model
(QCM). (a and b) Example of the implementation of QCM in metallic gaps. In (a), a spatially
inhomogeneous effective medium whose properties depend continuously on the sepa-
ration distance is introduced in the gap between two metallic spheres. (b) A bow-tie
plasmonic nanoantenna where the effective medium in the gap is described by a set of
discrete homogeneous shells of effective material. Each of these shells is characterized by
a constant permittivity that corresponds to a representative local separation distance. The
permittivity always remains constant in the longitudinal z direction along the axis of the
dimers, and only changes in the horizontal xy plane. (c) Sketch of the evolution of the
resonant wavelength of the Bonding Dimer Plasmon (BDP) and two Charge Transfer
Plasmons (CTP and CTP0) of a metallic dimer in vacuum. Three different interaction
regimes can be distinguished: a classical local regime (d T 2–5 nm), a classical nonlocal
regime (0.3–0.4 nm( d( 2–5 nm), and a quantum regime (d( 0.3–0.4 nm). Behaviour
of a local treatment (solid blue line), a nonlocal hydrodynamical model (dashed red line)
and the Quantum Corrected Model (QCM, green dots) are displayed.
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To be able to capture these effects, one possibility is to perform rigorous
quantum mechanical calculations of the optical response using the Time
Dependent Density Functional Theory (TDDFT).34,57–61 In contrast to classical
calculations, quantum results for very narrow gaps show pronounced effects of
electron tunneling such as a strong reduction of the eld enhancement, a
continuous transition of modes between the non-touching and contact regimes
and the appearance of a Charge Transfer Plasmon (CTP) mode before the nano-
particles touch.33,62 These effects are outlined by dotted green lines in Fig. 1(c).

Full-quantum approaches are very useful in understanding the physics
involved, but show limitations when trying to model realistic materials and
structures. Because of the heavy computational load, only relatively small struc-
tures have been addressed so far. For example, using a free-electron jellium
description of the metal allows the simulation of systems with a few thousand
electrons, corresponding to dimensions of only a few nanometers. Attempting the
full atomistic approach further reduces the feasible size of the system to several
hundreds of electrons.63 In contrast, typical plasmonic systems are much larger
and can easily contain many millions of electrons. It is thus worthwhile to invest
the theoretical effort to elaborate approximate methods that effectively account
for nonlocal and quantum effects and allow for efficient computational schemes.

During the last years, different models have been developed where nonlocal
effects have been accounted for with model dielectric functions, or within the
theory of surface screening.2,64–73 The nonlocal hydrodynamical (NLHD) descrip-
tion has attracted considerable interest because of its numerical efficiency for
arbitrarily-shaped objects47,74–84 and the possibility to obtain semi-analytical
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 151–183 | 153
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solutions using transformation optics.85 The introduction of nonlocality via the
standard NLHD model produces a blueshi of the plasmonic modes with respect
to the local classical solution, as schematically depicted with the dotted red line in
Fig. 1(c). The NLHD results are adequate for metals such as silver and gold, whose
optical response is signicantly affected by d-electrons, but the blueshi obtained
for simple free-electron metals is in contradiction with full quantum results.86,87

Some approaches have proposed the recovery of nonlocal results by a convenient
rescaling of the local distances86,87 and thicknesses88 at the metal interfaces,
providing good descriptions of the plasmon energies and dispersions in nano-
metric gaps. Recently, the inclusion of the realistic density prole above the
surface into the NLHD description has allowed the retrieval of full quantum and
experimental results both for d-electron and simple metals,89 at an increased
computational cost. While the above treatments address nonlocal screening, it
has only been recently that the charge transfer between the particles due to
quantum tunneling could be accounted for within the classical treatment
appropriate for large systems. The Quantum Corrected Model62 (QCM) was
introduced to account for the tunneling current across the gap via the insertion of
an effective conductive medium in the gap [red areas sketched in the dimers of
Fig. 1(a) and (b)]. The conductivity of this effective medium is set from the elec-
tron transmission properties of the interparticle barrier. The method was rst
successfully tested against TDDFT calculations of the optical response of nano-
gaps of small particles,62 and latter used to interpret experimental results for
subnanometric realistic gaps.46,90

As sketched in Fig. 1(c), we can distinguish between three different separation
distance regimes in plasmonic gaps. The classical regime corresponds to wide
gaps, down to a separation that depends on the size of the particles but can be
estimated as �2–5 nm, where a classical local approach gives basically the same
results as a nonlocal treatment. We identify this range of large separations as a
local classical regime. As the gap becomes smaller, both local and non-local
classical descriptions predict a similar qualitative behaviour: a continuous
redshi of the plasmonic modes and a rise of the near elds. However, quanti-
tative differences emerge, as observed in Fig. 1(c). We thus dene the range of
separation distances below �2–5 nm down to �0.3–0.5 nm as the one corre-
sponding to strong nonlocal effects. For separation distances below �0.3–0.5 nm,
the electron tunneling between the nanoparticles quenches the strong charge
concentration across the gap and thus critically affects the plasmonic response.60

This pure quantum effect can become signicant even for larger distances under
intense lasers.34 We thus identify a third range of plasmonic gap sizes, below
�0.3–0.5 nm, where pure quantum effects take over. As depicted in Fig. 1(c), in
this quantum regime, electron tunneling leads to a gradual transition from
modes that redshi towards modes that blueshi with narrowing gaps (le hand
side of the gure). The three ranges of distances identied in this introductory
gure correspond to the three levels of theoretical modelling required to correctly
address the optical response of the strongly interacting plasmonic nanogap
system.

The objective of this paper is to discuss comprehensively the QCM as amethod
that can incorporate quantum effects and in particular electron tunneling in
many practical situations of interest. Notably, QCM typically uses a local frame-
work, but can incorporate nonlocality as demonstrated for 2D-particles.91 Here,
154 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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we have developed a nonlocal QCM and applied it to dimers of realistic size. We
have analyzed the plasmonic response with and without inclusion of nonlocality
and/or tunneling to reveal the relative importance of each contribution for gaps of
different sizes. This is highly relevant for the interpretation of experimental data
obtained in plasmonic nanogap systems.

In the following, we rst describe the technical details of QCM,46,62 and discuss
the relevance of the long-range image charge interactions for the correct
description of the electron tunneling barrier. We detail the step-by-step procedure
to dene the effective medium required in the QCM for the case of arbitrary
metals surrounded by a dielectric. We also show how nonlocality can be incor-
porated into the model. We then discuss local classical, nonlocal classical, local
QCM and nonlocal QCM results of the optical response of Au dimers to identify
separately the effects of tunneling and nonlocality. Last, we discuss the imple-
mentation of the QCM for different materials, and consider the inuence of
temperature. Throughout the paper atomic units (a.u.) are used unless otherwise
stated.

2 Implementation of the local QCM

In this section, we rst describe the quantummechanical calculation of the static
tunneling between two closely located metallic surfaces (Subsection 2.1). The
metal-to-metal tunneling barrier is obtained within the simple jelliummodel (JM)
description of the leads. A typical Scanning Tunneling Microscopy (STM)
approach is then used to obtain the conductance of the junction (Subsection 2.2).
Within the JM, the metal is described as a gas of interacting electrons moving in a
uniform positive background charge representing ionic cores. The interface
between the background charge and the vacuum denes the so-called jellium
edge that delimits the free electron system. For at metal surfaces, the jellium
edge is located in front of the surface atomic layer at a distance typically given by
half the separation between successive atomic planes in the direction perpen-
dicular to the surface. Under the assumption of a linear potential drop across the
gap, the calculated conductance yields the static conductivity. Despite its
simplicity, the JM captures the collective plasmonic modes of the conduction
electrons at the surface in individual nanoparticles and nanoparticle
dimers.56,59,60,92 The JM has also been successfully used to model effects associated
with conduction electrons in a variety of metallic systems such as in electronic
and optical properties of metal clusters and surfaces,93–96 charge transfer reac-
tions between atoms and surfaces,97 conductances of molecular junctions,98 and
strong-eld effects.99

The second part of this section will discuss the basis of the QCM, i.e., how to
incorporate the optical conductivity derived from a quantum mechanical calcu-
lation into the classical calculations of the plasmonic response (Subsection 2.3).
Upon an adiabatic assumption, typical for the description of the strong eld
ionisation in atomic andmolecular physics,100–102 the static conductivity (obtained
quantum mechanically) is extended towards optical frequencies via a simple
Drude model. We initially consider free electron metals in vacuum, but the more
general scenario incorporates the contribution of d-electrons to the response
of the metal and the presence of a dielectric as the surrounding medium
(Subsection 2.4).
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 151–183 | 155
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The key aspect of the QCM with respect to previous classical models is the
introduction of an effective medium of adequate permittivity (that relates to the
optical conductivity) at the gap between metallic interfaces, to account for the
possibility of charge transfer across the gap. Signicantly, the denition of the
effective medium incorporates the resistive nature of the gap impedance.
This effective material can then be inserted into a conventional solver of
Maxwell's equations to obtain the optical response for an arbitrary geometry
(Subsection 2.5).

We note that the QCM is compatible with different quantum approaches, as
the only input needed is the conductivity of the junction, which can be obtained
with a jellium model of the metal nanoparticles, or with a full atomistic
description. Atomistic studies63 of plasmonic dimers have pointed out some
quantitative differences with respect to the jellium model for small clusters, but
the main trends of the results are qualitatively similar.

2.1 Electron tunneling

For typical plasmonic systems where the size of the gap between the nanoparticles
is much smaller than the radius of curvature, the local geometry of the junction
can be approximated as two at semi-innite parallel metallic surfaces separated
by a dielectric gap of size ‘. To calculate the energy U- and separation ‘-dependent
electron transmission T(U,‘) through the potential barrier between the at free-
electron metal leads, we have used a wave packet propagation method detailed
previously.103 Briey, a “probe” electron wave packet is launched from the inside
of one of themetal leads onto the junction. The transmitted and reected electron
uxes are collected in two virtual detectors placed in the asymptotic regions so
that the transmission T and reection R coefficients can be extracted. Because of
the symmetry of the model system, we consider only the electron motion along z,
the direction perpendicular to the surfaces. The one-dimensional time-dependent
Schrödinger equation, describing the evolution of the “probe” electron wave
packet, is then directly solved on a grid of equidistant points.

The potential acting on the conduction electrons in the system is derived by
transforming the well established model potentials proposed in ref. 104. Specif-
ically, a constant potential inside the metal is imposed, which is consistent with
the JM description. As a result of this simplication, the effects of a contact
between particular crystallographic faces63 cannot be addressed. However, for
realistic plasmonic systems, the contact area is large enough so that the contact
can be assumed to occur between poly-crystal surfaces rather than mono-crys-
talline ones. Provided that the pertinent parameters, such as the surface work
function, are set from empirical data, the JM is well suited for the description of
the electric eld-induced inter-particle tunneling of conduction electrons across
the ultra small plasmonic junction. Note that the use of the JM is not a limitation
of the QCM. The properties of the effective medium that lls the gap could be
derived on the basis of full atomistic quantum calculations, provided their
feasibility.

The explicit form of the model potential for the electron interaction with a
semi-innite metal surface is given by:

Vsðz� zimÞ ¼ expð � xðz� zimÞÞ � 1

4ðz� zimÞ ; z. zim; (1)
156 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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� U0

A expðBðz� zimÞÞ þ 1
; z# zim; (2)

where the U0, zim, and x parameters are set as in ref. 104 for (111) metal surfaces.
For Na, we can use the tabulated data for the (110) surface (see data summarized
in Table 1) or the potential calculated with density functional theory for a
spherical dimer.34 The numerical values for A and B are obtained by requiring
continuity of the potential and its derivative at z ¼ zim. Within the JM of metals,
the tunneling barrier is mainly determined by the vacuum part of the interface
potential, thus the calculated transmission of the junction is robust with respect
to the choice of the surface orientation.

For an electron on the vacuum side above the surface (z > zim), the potential Vs
given by eqn (1) converges to the classical attractive image potential, which is of
paramount importance for the correct description of the tunneling barrier.60,105,106

When two metal surfaces are brought in front of each other, the image potential
has to be corrected by the inclusion of the multiple image term Vmi(z) accounting
for the cross terms in the screening interactions:105,106

VmiðzÞ ¼ 1

4

XN
n¼1

8<
:

�1�
z� z

ðlÞ
im

�
þ nZ

þ �1�
z� z

ðrÞ
im

�
þ nZ

9=
;; z

ðlÞ
im # z# z

ðrÞ
im ; (3)

where the indexes (l) and (r) stand for the le and right metal surface, respectively.
For z inside the metals, z < z(l)im or z > z(r)im, the multiple image term vanishes
Vmi(z) ¼ 0.

Table 1 connects the position of the image plane zim and jellium edge zg to the
position of the surface atomic layer zal. The distance ‘ between the two surfaces is
given by the separation between their jellium edges ‘¼ z(r)g � z(l)g , thus dening the
contact at ‘ ¼ 0. In this section, we will give a detailed description of the results
obtained for a Au–Au junction, but Table 1 also gives the parameters of the model
for Ag, Cu, and Na.

Finally, the total potential accounting for the long-range image-potential tail of
the electron–surface interaction is given by

U(z) ¼ Vs(z � z(l)im) + Vs(z
(r)
im � z) + Vmi(z). (4)

In order to illustrate the role of long-range image–charge interactions, we
occasionally use the effective one electron potential U1e(z) as derived from the
density functional theory (DFT) studies within the local density approximation
Table 1 Jellium model potential parameters: U0, x, work function f, jellium edge zg and
image plane position zim with respect to the surface atomic layer zal for different metals.
Values are given in units of Bohr radius, 1 a0 ¼ 0.529 Å

U0 (eV) x (a0
�1) f (eV) (zg � zal)(a0) (zim � zal)(a0)

Ag 9.64 1.17 4.56 2.215 2.22
Au 11.03 1.33 5.55 2.225 2.14
Cu 11.89 1.27 4.94 1.97 2.11
Na 6.1 1.0 2.9 1.52 2.12
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(LDA). In this case, we performed static DFT calculations of a plasmonic dimer
formed by spherical nanoparticles, extracted the potential along the dimer axis,
and then used it in the quantum transport calculations.62 The known defect of
LDA is that it misses long-range correlations and fails to reproduce the image
potential tail of electron surface interactions.107 In Fig. 2, we show the potential
obtained at the vacuum junction between Au surfaces for different separation
distances. We have compared the potentials obtained including long-range
image–charge interactions and using the DFT LDA calculations. The latter choice
leads to overestimating signicantly the barrier between the two surfaces.60 The
QCM calculations presented in this paper use the potential model given by eqn
(1)–(4) that account for the image–charge interactions. The results in Fig. 2, which
were obtained for a relatively simple static case of at interfaces, represent all the
information that will ultimately be required to implement the QCM, as we discuss
in the next subsections. The probability of transmission through the junction for
an electron moving perpendicular to the interface T(U,‘) is determined by the
potentials described here, and calculated as the ratio between the transmitted
and incident electron uxes across the gap.
2.2 Conductivity of the gap

It is possible to convert the calculated electron transfer probability T(U,‘) into the
static conductivity s0 of the plasmonic gap. Within the standard approach used in
the description of e.g. STM junctions,106 the tunneling current density J(V,‘)
through the junction between two planar jellium surfaces for a (small) applied
bias V is given by:108

JðV ; ‘; qÞ ¼ kBq

2p2

ðN
0

dUTðU; ‘Þln
�
1þ eðEFþV=2�UÞ=kBq

1þ eðEF�V=2�UÞ=kBq

�
: (5)

T(U,‘) depends on the electron energy U and separation distance ‘. The zero
energy is placed at the bottom of the conduction band. The logarithmic factor
accounts for temperature q effects arising from the Fermi–Dirac energy statistics
in the leads, where kB is the Boltzmann constant.
Fig. 2 Quantummechanical input to the QCM. Potential across the gap for several values
of separation ‘ as a function of the position along z, where the zero position corresponds
to the gap center. The results were obtained for gold surfaces separated by vacuum when
considering long range interactions in the potentials given by image charges [eqn (3) and
(4)] (red lines and symbols) and without considering these long range interactions within
the DFT LDA (blue lines and symbols).
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The conductance per unit area is given by:

Gð‘; qÞ ¼
�
vJ

vV

�����
V¼0

; (6)

where, from eqn (5), one obtains the nal expression for the conductance G(‘,q):

Gð‘; qÞ ¼ 1

2p2

ðN
0

dUTðU; ‘Þ 1

1þ eðU�EFÞ=kBq: (7)

We discuss the effect of temperature q in Subsection 5.1. We have otherwise
assumed q ¼ 0 K in the following, and eqn (7) is simplied to

Gð‘Þ ¼ 1

2p2

ðEF

0

TðU; ‘ÞdU: (8)

Finally, assuming that the bias is given by V¼ E‘, where E is the electric eld in
the vacuum gap between the metal surfaces, the conductivity of the junction

s0ðq; ‘Þ ¼ vJ
vE

is given by

s0(‘) ¼ ‘G(‘), (9)

which holds only for not too small ‘ values. For very narrow gaps, the described
approach is not valid primarily because the elds in the junction can no longer be
considered as homogeneous, so that the V ¼ E‘ approximation breaks.

Fig. 3 shows the electron transmission probability T(EF,‘) between le and
right leads, as calculated at the electron Fermi energy EF for the Au junction.
These results are obtained both with the model potential that accounts for long-
range interactions [given by eqn (3) and eqn (4)] as well as with the DFT LDA
potential that misses the long-range contribution (potentials displayed in Fig. 2).
Except for very narrow gaps ‘( 2 Å, T(‘) shows in both cases a nearly exponential
dependence with the junction size ‘, typical of tunneling processes. For small ‘,
the potential barrier becomes low and the electrons are transferred frommetal to
metal via direct transitions over the barrier. The transmission probabilities tend
Fig. 3 Quantum mechanical input to the QCM. Transmission at the Fermi Energy T(EF,‘)
(continuous line) and static conductivity s0 (open circles), both calculated quantum-
mechanically, as a function of the separation distance ‘. The results are obtained for gold
surfaces separated by vacuumwhen considering long range image–charge interactions in
the potentials [eqn (3) and (4)] (red lines and symbols) and without considering these long
range interactions within the DFT LDA (blue lines and symbols).
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then to 1 in a non-exponential manner as the gap closes, reecting the formation
of a continuous solid. Fig. 3 also demonstrates that, consistent with the over-
estimation of the potential barrier, the DFT LDA description results in too small
transmission probabilities. The junction width where the tunneling process
becomes important is underestimated by about 1 Å within DFT LDA.

Fig. 3 also shows that, similarly to the transmission probability T(EF,‘), the static
conductivity s0 (open circles) approximately follows an exponential dependence
with ‘ except at the shortest distances. Indeed, because of the rapid decrease of the
transmission probability and lowering of the electron energy, only a small energy
region around the Fermi level contributes to the tunneling current (conductivity s0)
which is determined by T(EF,‘) [see eqn (8) and (9)]. The decay lengths of these two
exponential functions are of the order of one atomic unit (z0.53 Å). The long range
image–charge interactions also inuence s0 considerably, as manifested by the
faster decay of the conductivity with ‘ obtained using the LDA approximation
(higher potential barrier in Fig. 2, blue lines and symbols) as compared to the more
accurate model that includes the image potential (red lines and symbols).
2.3 Effective medium within the QCM: Drude metals in vacuum

We describe now how to account for the tunneling between plasmonic nano-
particles within the framework of classical Maxwell's equations which is the
essence of the QCM. The interest in such approach is obvious since standard
electromagnetic solvers can be applied so that the impact of quantum effects on
the optical properties of practical plasmonic systems can be efficiently calculated.
To some extent, the underlying idea here is similar to the text book examples
relating e.g. the macroscopic dielectric constant of the medium to the polariz-
ability of individual molecules.109 In this subsection, we concentrate on particles
made of a free-electron metal and surrounded by vacuum.

The typical curvature radius R of plasmonic nanoparticles is of some tens of
nanometers, much larger than the gap widths at which tunneling effects become
important. Under this condition, the quantum effects for a region of the nanogap
characterized by a local separation distance ‘ can be modeled by assuming that
quantum effects in that position show similar behaviour to a pair of planar metal
surfaces separated by the same separation ‘. According to the discussion intro-
duced in the previous sections, in the static case the current density between
these two surfaces is given by

J(‘) ¼ s0(‘)E. (10)

Eqn (10) describes the tunneling regime typical for STM with small s0 and
static homogeneous electric eld E inside the junction. For time varying elds, we
have used the adiabatic assumption that has proven its validity, for example, in
the description of strong eld ionisation in atomic and molecular physics.100–102

Under this assumption, the frequency-dependent currents and elds at the gap
can be related through the static conductivity as

J(‘,u) ¼ s0(‘)E(u), (11)

where, similar to eqn (10), homogeneity of the optical elds in the junction is
assumed. Note that s0 is a real number so that the junction has resistive
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character. Similar equations have been recently derived110,111 within a framework
of the Tien–Gordon theory developed for microwave elds,112 however, this
approach does not account for eld penetration into the nano-object neither it
allows for a simple interpolation of the tunneling and contact regimes.

Since the typical sizes of the tunneling gaps are at the nanometer scale, i.e., 100
times smaller than the wavelength of optical frequencies, eqn (11) can be
generally considered as a local one. One can now consider the relationship
between the permittivity of an effective medium that lls in the gap of two
plasmonic nanoparticles and the conductivity across the gap within classical
Maxwell's equations:

3g(‘) ¼ 1 + i4ps0(‘)/u, (12)

and realize that this relationship connects classically the current density across
the gap and the optical eld inside the gap, exactly in the same way as the
quantum relationship between the tunneling current and the eld in the gap. We
note that at this stage any description of the dielectric properties of the metal can
be adopted (Drude, empirical,.), and s0(‘) can be calculated with quantum
methods, as discussed earlier or with any other level of sophistication in the
description of the junction.

While the simple model resulting in eqn (12) describes the STM or tunneling
regime with well separated nanoparticles, it does not allow to directly address all
gap sizes down to the touching regime, where the junction progressively behaves
as a continuous metal bridge. We seek an effective dielectric medium that has the
permittivity described by eqn (12) for large separations and that becomes iden-
tical to the surrounding metal at small ‘. In this respect, assuming particles made
of a free-electron Drudemetal is instructive as it allows to obtain simple analytical
expressions. Within the Drude model, the frequency-dependent permittivity of
the particles is given by:

3mðuÞ ¼ 1� up
2

u
�
uþ igp

� (13)

where up is the plasmon frequency and gp describes the damping. In this paper
we have used up ¼ 9.065 eV and gp ¼ 0.0708 eV for gold, as extracted from a t to
empirical data at low energies.113

To describe the effective material at the gap, and taking into account that, for
small separations, electrons are easily transferred and the gap becomes metallic,
we have also used a Drude-type expression, which allows an easy interpolation to
the continuous metal case at ‘ ¼ 0. We write the permittivity 3g of the effective
medium at the gap as:

3gðu; ‘Þ ¼ 1� up
2

u
�
uþ iggð‘Þ

� ; (14)

which is related to the conductivity by

s(u,‘) ¼ �iu(3g(u,‘) � 1)/4p. (15)
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The separation-dependent loss parameter gg allows to set the permittivity (and
thus the conductivity) to a desired value for each ‘. If we now require that the
tunneling regime, given by eqn (12), must be reproduced by eqn (14) for large
separation distances, ‘ / N, we obtain

ggð‘Þ ¼
up

2

4ps0ð‘Þ ; (16)

where we have approximated gg(‘)� iuz gg(‘), since s0(‘) becomes exponentially
small when ‘ increases (Fig. 3). Notice that, within this approximation, due to the
exponential increase of gg for large ‘, eqn (12) is recovered independently of the
gap plasmon frequency assumed in eqn (14). We take it as equal to the value
describing the particles up to facilitate the recovery of the metal permittivity 3m

when contact is established. In principle, one could directly apply eqn (16) for
each sufficiently large value of ‘. Nonetheless, looking at the behaviour of s0 in
Fig. 3 using a simple exponential function is suggested.

For vanishing gaps, the permittivity of the effective medium 3g should tend
towards the permittivity of the metals 3m for all wavelengths, as the potential
barrier between the particles disappears. Thus, for ‘ / 0, we should recover the
dielectric constant of the Drudemetal, or equivalently gg/ gp. However, eqn (16)
does not necessarily extrapolate directly to gp at ‘¼ 0 due to the limitations on the
quantum calculation of the conductivity s0 for small separations. We then
proceed as follows. Taking into account the exponential dependence of s0 with
separation found for large enough ‘, we impose

gg(‘) ¼ gpe
‘/‘c. (17)

The description of the effective material given by this simple exponential
expression is a key aspect of the implementation of the QCM. ‘c is chosen to verify
eqn (16) for sufficiently large ‘ values. In our implementation, we select ‘c such
that eqn (16) is exactly veried for an specic ‘ ¼ ‘0 at which the transmission at
the Fermi energy T(EF,‘0) is one percent. We explicitly checked that the nal
results are robust with respect to the choice of the matching point ‘0, as far as it is
located in the deep tunneling regime.62 Fig. 4 shows the results for gg obtained for
Au (up ¼ 9.065 eV, gp ¼ 0.0708 eV), where we consider the calculation of s0

including long range interactions [eqns (3) and (4), red colours] or only short
range interactions within the DFT LDA approach [blue colours], as explained in
previous sections. In the tunneling regime for ‘ T 3 Å, the exponential depen-
dence given by eqn (17) provides a reasonable approximation to gg(‘), obtained
directly from the calculated tunneling characteristics using eqn (16), particularly
when the image charge interactions (long range) are accounted for. We obtain in
this case ‘c ¼ 0.4 Å. The discrepancy between eqn (16) and the exponential t
becomes rather large at short distances, where the STM-type model resulting in
eqn (16) does not apply.

Following our procedure, gg becomes very large for large separation distances,
obtaining resistive contacts, i.e., the effective material has mostly real conduc-
tivity. Indeed, at optical frequencies for sufficiently large separation distances,
gg(‘)[ u and the purely static conductivity is recovered, s(u,‘)¼ s0(‘). As the gap
closes, gg decreases, s(u,‘) becomes complex and the effective material acquires
inductive character becoming purely metallic. At very small ‘, the value of the
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Fig. 4 Description of the effective medium used in the QCM. The loss parameter gg

required for the effective medium in the gap is plotted as a function of the separation
distance ‘. Solid lines correspond to the exponential expression used for the QCM
implementation, while crosses are obtained from eqn (16) using the static conductivity s0
calculated quantum-mechanically. The results are obtained for gold surfaces separated by
vacuum with [red] and without [blue] taking into account long-range image–charge
interactions.
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metal 3m at both sides of the gap is recovered. The resistive to inductive transition
is not described within the tunneling STM theory, thus a direct comparison
between the predictions of the QCM and full quantum calculations is then needed
in order to validate our approach.

We performed such an analysis for a Na nanosphere dimer. Na is a prototype
of a free-electron metal with up ¼ 5.16 eV and gp ¼ 0.218 eV. The JM approxi-
mation can then be used, allowing to perform full quantum Time-Dependent
Density Functional Theory (TDDFT) calculations of the plasmonic response of a
spherical nanoparticle dimer comprising 2148 electrons.34,62 Each Na sphere has
a closed shell structure with 1074 electrons so that the nanoparticle response
exhibits a well developed plasmon resonance. The sphere radius is Rcl ¼ 2.17
nm. This is small compared to typical plasmonic nanostructures, but treating
the correlations between the 2148 electrons contained in the dimer is already
extremely heavy computationally. Fig. 5(a) and (b) display the amplitude and
phase of the gap conductivity s as obtained within the QCM (effective medium
from eqn (15), blue lines) and from TDDFT calculations (red stars), for a varying
separation distance ‘ under the excitation of radiation with energy ħuz 2.2 eV,
Fig. 5 Conductivity of the junction between two spherical Na nanoparticles in vacuum.
Results are shown as function of the width of the junction ‘. (a) Amplitude and (b) phase of
the conductivity, as given by TDDFT calculations (red stars) and as calculated with QCM
(blue solid lines). The frequency corresponds to an energy of �2.2 eV.
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close to the bonding dimer plasmon. In TDDFT, the conductivity is dened as
the ratio between the current and the electric eld at the central point between
the nanoparticles.

For sufficiently large ‘, both approaches give nearly real conductivity s, man-
ifesting the resistive nature of the contact and the validity of the adiabatic
approach, according to which the tunneling current should have the same phase
than the optical eld due to the instantaneous response. As the distance
decreases, the junction acquires inductive character, with a dephasing between
the currents and the elds. The difference between the TDDFT and QCM data for
the phase of s is only signicant at very narrow gaps, where the TDDFT gives
larger efficient losses, probably linked with the nite cross-section of the junction,
resulting in a smaller phase. The agreement between QCM and TDDFT is also
good for the absolute value of the conductivity, with a somewhat larger
disagreement for ‘ T 6 Å. In this regime, where ‘ T Rcl for the small dimer
considered in Fig. 5, the description of the junction as a composition of contacts
between planar surfaces obviously fails. However, we expect that the agreement
will improve for common systems with larger Rcl values. We also note that
tunneling is sufficiently small for ‘ T 6 Å so that it does not affect the optical
response. In general, the agreement between the two approaches is surprisingly
good, in particular considering the small radius of curvature of the plasmonic
dimer considered for this comparison.
2.4 Generalization of the QCM to noble metals and dielectric gaps

In the previous section, we described the plasmonic material as a free-electron gas
using the classical Drude permittivity given by eqn (13). This description is valid
for materials such as Na but for noble metals such as gold or silver it does not
account for the signicant contribution of d-electrons to the optical response.
Further, the surroundingmedium was considered to be vacuum. The QCM can be
straightforwardly extended to the case of arbitrary metals surrounded by any
dielectric medium.46 The permittivity of metals 3m, as obtained from the litera-
ture,113 can be described as:

3mðuÞ ¼ 3dmðuÞ �
up

2

u
�
uþ igp

� (18)

which explicitly distinguishes between the contribution from interband transi-
tions involving d-electrons 3dm, and that from the free electron gas (right-hand side
term). In contrast to eqn (13), 3dm does not need to be equal to 1 and can be
frequency-dependent. For the calculations of the gold dimers presented here,
up ¼ 9.065 eV and gp ¼ 0.0708. 3dm is then directly obtained from eqn (18) using
empirical data.113

To describe the permittivity of the QCM effective medium at the gap 3g, we treat
the free electrons as in the previous section and introduce the contribution of
the d-electrons, which decays exponentially for increasing gaps, with a decay
length ‘d.

3gðu; ‘Þ ¼ 30ðuÞ þ
�
3dmðuÞ � 30ðuÞ

�
e�‘=‘d � up

2

u
�
uþ iggð‘Þ

� : (19)
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30 is the relative permittivity of the surrounding dielectric medium, which does
not need to be vacuum and can depend on the frequency. gg(‘) in the Drude term
is obtained as in the previous section [eqn (16) and (17)], where we continue using
the jellium approach to obtain the quantum value of the static conductivity, s0,
since the quantum charge transfer is dominated by the free electrons. A more
complex ab initio calculation including d-electrons and the actual dielectric
material in the plasmonic gap could also be used if feasible. 3g thus tends to the
permittivity of the particles for vanishing gaps, and to the value of the
surrounding medium for large separations (gg(‘ / N) / N).

The decay length ‘d of the d-electron contribution (3dm � 30)e
�‘/‘d is of the order

of the Bohr radius since the electron density probability associated with the d-
electrons is conned to the proximity of the metal. The exact value of ‘d can be set
in several ways. For example, from the radial decay of the 5d orbital,114 we can set
‘d ¼ 1.5 a.uz 0.8 Å for gold and other typical materials. This is the value used in
the calculations in this paper. We could also consider that the d-electron
contribution should decay faster than the free-electron component, due to the
higher localisation of the d-orbitals, and use a ‘d somewhat smaller than ‘c.
Nonetheless, it is the Drude term that gives the critical conductive contribution to
the permittivity setting the regime of conductive coupling between the nano-
particles across the gap. Therefore, as we have explicitly observed for local QCM
calculations of Au dimers, the calculated optical response of the nanoparticle
assembly is robust with respect to the specic choice of ‘d.
2.5 Implementation of the QCM in classical electrodynamics

We describe in this section how to implement the QCM using an electrodynamic
solver of Maxwell's equations. The metallic particles are characterized as a
medium of permittivity 3m (possibly obtained from empirical data) that is
delimited by sharp interfaces. The position of the interface is chosen at the jel-
lium edge in the JM description of the metal, as indicated in Table 1. This choice
is not unique, and one can also consider the classical metal boundary dened by
the position of the centroid of the screening charge at the surface.86,87 For the
implementation of the QCM, however, it is important that the classical denition
of ‘ corresponds to the one used in the quantum calculations of the tunneling
current. This denition will be also relevant when comparing experiments and
calculations with the aim of establishing a criterion of absolute separation
distances.

The distance-dependent effective medium of permittivity 3g described in the
previous section needs to be inserted in the gap. In the general case of the
nanoparticle dimer, the junction is not between two planar surfaces so that there
is not a single global distance. For each pair of opposite points separated by the
local distance ‘, the local 3g can be set to the same value as the permittivity
calculated for the corresponding ‘-wide at gaps. This simple approach assumes
that the nanoparticle surfaces are of sufficiently large radius of curvature to be
considered as locally at, an assumption that should be valid considering typical
experimental geometries. 3g remains constant along the line joining opposite
points, but can change as we move in the orthogonal direction of the gap, leading
in general to an spatially inhomogenous 3g.
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A general prescription to determine how to dene opposite points and the
connecting line is not necessarily straightforward, but typical structures oen
present a ‘natural’ option. For example, for congurations rotationally symmetric
with respect to a given axis [z in Fig. 1(a) and (b)], we dene the local ‘ as the
distance between opposite points linked by a line parallel to this axis. Conve-
niently, the expected polarization of the elds, which is critical for tunneling, is
also oen expected to be along the same axis. For a more complex conguration,
it may be benecial to dene opposite points, as those connected by a line parallel
to the local electric eld vector, and the distance as the length of this line.

Fig. 1(a) sketches the insertion in the gap of the effective medium with
spatially-inhomogeneous permittivity 3g, for a dimer composed of two metallic
spheres. The plasmonic response can then be found using a classical solver of
Maxwell's equations. For the results obtained here, two different solvers have
been used: a nite element solver (COMSOL Multiphysics) and a boundary
element method (BEM).115 BEM requires the gap to be divided into different areas
characterized by a mean distance to avoid the inhomogenous distribution of the
material. A possible implementation for the case of a bowtie antenna is sketched
in Fig. 1(b). For rotationally symmetric congurations, we have oen found
sufficient to consider �3–8 shells placed in the region of the gap where the local
distance is smaller than around 6 Å, but different scenarios may require different
number of shells. For example, if eld discontinuities need to beminimized at the
contact regions between two shells and one of the particles, it can be convenient
to use more shells.

The described implementation of the QCM comprises a series of steps to
dene the permittivity 3g of the effective medium to be inserted in the gap. It is,
however, possible to conceive modications of the given procedure that would
change to some extent the value of 3g. In a previous work considering free-electron
metals,62 we observed very little change of the plasmonic response aer modi-
cation of the exact denition. We have also veried that ignoring the contribution
of the d-electrons to 3g for two Au spheres does not essentially modify the
extinction and near eld enhancement spectrum within the local QCM model.

Thus, the QCM seems generally robust towards modications on the imple-
mentation details. Nonetheless, two conditions should likely be respected: the
effective medium should have a strong resistive component, except possibly for
very narrow gaps, and 3g should model correctly the exponential dependence of
the absolute value of the gap impedance with the distance determined from the
quantum calculations of the transmission probability.
3 Extension of the QCM to include nonlocal
effects

A critical parameter for classical calculations is the relationship between the
polarization induced in a material and the electric elds. Up to here, we have
considered a local description of a metal. It assumes that the polarization at a
point is proportional to the local elds at this same position, which introduces a
certain error by ignoring the inuence of the surrounding charge distribution, in
particular for strong interactions between interfaces. This is precisely the case of
small metallic particles and/or very narrow gaps.
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Possibly, the most common approach to introduce nonlocality when studying
plasmonic systems within a classical framework is the hydrodynamical
model,116,117which considers an extra term in the dynamics of the free electron gas
related to its pressure and thus, the deformation to an external perturbation. In
this model, nonlocality is introduced in k-space by using a permittivity that is not
only a function of frequency, but also of the wavevector k. In real space, this
description corresponds to the introduction of an additional contribution to the
polarization from the immediate vicinity of the non-uniform charge density, so
that the polarization at each point is obtained via an integral comprising the
electric elds over the surrounding region.

We have recently discussed how, for a pure free electron gas such as Na, the
hydrodynamical model does not correctly reproduce certain aspects of the charge
densities associated to the localized surface plasmons.87 The model predicts an
electron density that decays considerably before the jellium edge dening the
limit of the particles, i.e., the centroid of charge is displaced towards the interior
within this approach. In contrast, full quantum simulations reveal that, for these
free electron metals, the electron density is pushed a short distance towards the
outside of the particles, i.e. there is a spill-out of electrons. Nonetheless, for the
typical noble metals used in plasmonic experiments, the centroid of the charge is
indeed displaced towards the interior of the particles due to the inuence of the
bound d-electrons, and the hydrodynamic approach can then be applied for
practical purposes.47

In the following, we describe briey how we introduce the hydrodynamical
approach into both the classical local and QCM theoretical frameworks. First, we
discuss how the nonlocality is implemented into the optical response. Again, we
consider separately the contribution from bound and free electrons, and write the
electric displacement vector ~D as:

~D ¼ ~E + 4p~Pd + 4p~Pc (20)

with ~Pd and ~Pc the polarization vectors for bound (d-electrons) and conduction
electrons, respectively, and the electric eld vector~E. As in standard studies of the
optical response of metal nanostructures, ~Pd is described via a local
approximation:

4p~Pd(u) ¼ 3dm(u)~E(u) (21)

whereas nonlocal effects are incorporated by means of the polarization eld ~Pc.
This free-electron polarization eld is directly related to the induced current
density~Jc ¼ v~Pc/vt. For the implementation of nonlocal effects into the COMSOL
Multiphysics package, it is much more convenient to work with~Jc instead of~Pc. In
the hydrodynamical model, the time evolution of the induced current density due
to conduction electrons is described by the linearized Navier–Stokes equation:

v~Jc

vt
þ gp

~Jc ¼ up
2

4p
~E � b2~Vn (22)

where n ¼ �~V~Pc is the induced charge density. One immediately recognizes the
nonlocal contribution from the free electrons, i.e., the dependence on the
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 151–183 | 167



Faraday Discussions Paper
gradient of the induced charge density. Typically, b ¼ ffiffiffiffiffiffiffiffi
3=5

p
vF, where vF is the

Fermi velocity. In particular, one can show that in the frequency domain:

b2~V
�
~V~Jc

�þ u
�
uþ igp

�
~Jc ¼ iu

up
2

4p
~E: (23)

This equation for the induced current density and Maxwell's equations are
related through their mutual dependence on the electric eld ~E and~Jc. They can
be solved simultaneously in COMSOL by choosing appropriate boundary condi-
tions for~Jc, such as continuity of its normal component. This implementation of
nonlocal effects into our numerical framework reduces it to a local response when
b is simply set to zero, making the integration of a local and nonlocal description
of different parts of a plasmonic system easy to realize.

Inclusion of the effective gap material in the hydrodynamical model leads to
what we previously referred to as nonlocal QCM. An equation similar to eqn (23)
can be written within the gap region:

b2~V
�
~V~Jc

�þ u
�
uþ igg

�
~Jc ¼ iu

up
2

4p
~E (24)

where gg (see Section 2.3 for its denition) replaces gp. At the current stage, for the
sake of simplicity, we assume that the optical response within the gap region is
local, i.e., b ¼ 0 in the region. Regarding the polarization contribution coming
from bound electrons, it is treated in the same way as in the local QCM and,
therefore, it does not appear explicitly in eqn (24).

Complementary to the hydrodynamical model, we have also considered a
simple approach to the previously introduced nonlocality,86,87 based on a simple
rescaling of the separation distances to take into account the spatial distribution
of the electrons. To calculate the nonlocal results for two particles at physical
separation distances d, as dened by the jellium edges, it is simply required to
obtain the classical local response at d + dn separation, where dn is the distance
given by the position of the two centroids of charge, dn ¼ �1.8 Å for Na and dn
�1.7–3.0 Å for Au. This approach proved to be successful when predicting the
observed peak positions for two Na wires and distances up to a few Ångströms.87

Unfortunately, it is not evident how to implement this method when a non-
negligible quantum charge transfer between the particles is considered, and thus
it is only used here for classical nonlocal calculations before contact. Other
approaches to introduce nonlocality have been recently discussed, such as adding
an extra dielectric layer of well dened properties to mimic the nonlocal
displacement of the centroid of charge at the surface,88 including extra nonlocal
dissipation terms,84 or considering more accurately the electron density prole at
the interfaces.89
4 Nonlocality and quantum effects in the
plasmonic response

In the following, we analyze the response of a plasmonic dimer as a function of
the separation distance to explore the different regimes sketched in Fig. 1(c):
local, nonlocal, and quantum. We have calculated the optical response of a dimer
composed by two Au spheres of R ¼ 25 nm, using a local or nonlocal
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hydrodynamic description and with or without inclusion of the interparticle
electron tunneling within the QCM. In all the calculations, we solved the classical
electromagnetic Maxwell's equations to obtain the optical response of the system.
However, to distinguish between different approaches, we have denoted as clas-
sical local the calculations where the optical response of the metal is described by
a local dielectric constant without charge transfer across the gap, classical
nonlocal refers to calculations where the metal response is described within the
hydrodynamical approach, also without considering charge transfer between
particles, QCM local calculations use a local dielectric constant for the metal and
include the electron tunneling within the QCM, and last, QCM nonlocal calcula-
tions consider the hydrodynamical approach for the metal response and the QCM
to include charge transfer due to tunneling.

The system holds cylindrical symmetry with respect to the z axis that connects
the particle centers, located at z� ¼ R � d/2. Thus, d indicates the distance
between the two closest points between the particles (different from the local
separation ‘) and z� is measured from the center of the junction. d < 0 corre-
sponds to overlapping particles. Experimental values of the gold permittivity are
used113 and a plane-wave polarized along the dimer axis illuminates the system.
The near-eld enhancement |Eg/E0| is dened as the ratio between the electric
eld amplitude at the center of the gap Eg and the amplitude of the incident eld
E0. Aer contact, the elds inside the metallic junction are strongly screened,
therefore we have only shown the eld enhancement for positive distances d.
Nonlocal results were obtained with the Finite Element Method (COMSOL Mul-
tiphysics), and the local calculations were performed using the Boundary Element
Method (BEM). We have conrmed that both methods provide the same results
for the case of QCM local calculations.

The classical local response of the dimers has been studied by many different
groups and is generally well understood.21,118,119 We show the extinction spectra
and near-eld enhancement at the gap of the Au dimer for several representative
separation distances in Fig. 6(a) and 7(a), respectively. As pointed out above, the
near-eld spectra are shown only for positive separation distances as the local
eld is quenched for overlapping dimers. As the spheres approach, Coulomb
interactions lead to a strong charge concentration at the opposed metal surfaces
and, thus, to very intense elds120 in the gap and to hybridized plasmonic modes
that strongly redshi. The charges are antisymmetric with respect to the plane
perpendicular to the axis of the dimer at the center of the gap (z ¼ 0). Dark
symmetric modes are not excited in our planewave scheme of illumination. For
moderate separations d, the lowest-energy Bonding Dimer Plasmon (BDP)
dominates the response but, for small d, higher order modes are also efficiently
excited. All modes have a clear signature in both the extinction and the near eld.
As the gap closes, d / 0+, both the redshi of the modes and the magnitude of
the associated eld enhancement diverge.

The response changes abruptly when conductive contact is established at d #

0. For overlapping particles, electron transfer between the particles becomes
possible, and Charge Transfer Plasmon (CTP) modes29–31,121 emerge. The lowest
energy CTP appears at distinctively large wavelengths and corresponds to a
dipolar-like oscillation characterized by non-zero net charges of opposite sign at
each particle, an unphysical situation before contact. For small overlaps, the
narrow wedges support very fast spatial oscillations of the charge distribution,122
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Fig. 6 Extinction cross-section of a Au dimer for different separation distances d within:
(a) the local classical model, (b) the nonlocal classical model, (c) the local QCM and (d) the
nonlocal QCM. The solid lines in (b) correspond to the hydrodynamical model and the
dashed lines for d > 0 to the values obtained after rescaling the results from local classical
calculations by dn ¼ 2 a.u¼ 1.06 Å. The system is composed of a dimer of 25 nm radius Au
spherical particles in vacuum, illuminated by a plane-wave polarized along the dimer axis.
The results are plotted for d steps of 1 a.u. (0.529 Å) and shifted vertically for clarity, with
some representative distances indicated on the right. d < 0 correspond to overlapping
particles. The classical local and nonlocal extinction spectra for d¼ 0 are not plotted as, in
the absence of tunneling, the geometry is ill defined when contact is just established. The
red open circles indicate the positions of the maxima of the modes that are further
analyzed in Fig. 8.
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leading to many high order modes. The resonant wavelength of these modes also
diverges for d/ 0�. As the overlap increases, the modes blueshi until eventually
the spectra of a single sphere is recovered.

The divergence of the results as d/ 0, right before and aer contact, is related
to the description of the sharp interfaces between the metal and the surrounding
medium within the local classical approach. This leads to extremely large and
conned charges at the sharp wedges and narrow gaps producing the divergence.
Rounding the edges of the neck of the contact between two particles would
considerably diminish the expected number of resonances, their redshi and the
eld enhancement. While ref. 21 discusses the implications of geometrical
rounding, nonlocal and quantum tunneling effects also result in effective
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Fig. 7 Near field enhancement at the centre of the gap |Eg/E0| between two 25 nm radius
Au spheres in vacuum as a function of the separation distance d within: (a) the local
classical model, (b) the nonlocal classical model, (c) the local QCM and (d) the nonlocal
QCM. The solid lines in (b) correspond to the hydrodynamical model and the dashed lines
to the values obtained after rescaling the results from local classical calculations by dn ¼ 2
a.u ¼ 1.06 Å. The system is composed of a dimer of 25 nm radius Au spherical particles in
vacuum, illuminated by a plane-wave polarized along the dimer axis. The results are
plotted for d steps of 1 a.u. (0.529 Å) and shifted vertically for clarity, with some repre-
sentative distances indicated on the right. The red open circles indicate the position of the
maxima of the modes that are further analyzed in Fig. 8.
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rounding of the geometry of the junction as follows from the results below.
Accounting for the nonlocal response within the hydrodynamical approach allows
to remove the unphysical divergences of the optical response of narrow gaps47,84

consistent with the results of Fig. 6(b) and 7(b).
Local and hydrodynamical nonlocal calculations indicate several similarities

both in their far eld [Fig. 6(a) and (b)] as well as in the near-eld response
[Fig. 7(a) and (b)]. As the particles approach, the modes redshi strongly and the
corresponding eld enhancement increases. Particle contact results in an abrupt
change in the spectra with the appearance of Charge Transfer Plasmons that
blueshi with the increasing overlap. However, important differences appear
between the two models. Compared to the local results, the nonlocal description
generally ’soens' the spectral trends,85 as it captures the lack of sharp interfaces
in real systems. As the distance approaches zero, either before or aer contact,
both the shis of the modes and the number of resonances efficiently excited are
smaller than for the local classical results. In a similar manner, the eld
enhancement predicted by the nonlocal approach can be very large just before
contact but not as large as obtained in the local case, with no apparent divergence
as the gap closes. In general, the differences between the two models are more
signicant for narrow gaps or small overlaps. For example, when d changes from
2.65 Å to 1.06 Å the local classical calculations predict that the low-energy BDP
extinction resonance peak redshis from 1.88 eV (660 nm) to 1.62 eV (764 nm),
and that the near eld enhancement increases from 2900 to 8100. This is to be
compared with a wavelength change from 1.97 eV (628 nm) to 1.82 eV (683 nm),
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and a eld enhancement increase from 1600 to 4600, obtained within the
nonlocal hydrodynamical model for the same separation distances.

The distribution of surface charges is critical to understand the differences
between the local and nonlocal classical responses. While in the local classical
calculations the plasmon-induced screening charges are located at the geomet-
rical surfaces of the metal, using the nonlocal hydrodynamic model results in a
displacement of the screening charges into the metal, inwards from the metal
surface.80,86,87,123,124 Thus, when the distance between the geometrical surfaces is
zero, the screening charges across the junction are separated by a distance dn,
where dn/2 is the position of the centroid of the screening charge with respect to
the geometrical surface (jellium edge) of the individual nanoparticles. Since the
screened charges do not abruptly overlap when contact is established, the elec-
trostatic interactions in the system do not diverge, in clear contrast to the classical
model where innite localization of the charges is produced. The effect of the
spatial dispersion of the response for d < 0 is thus to round the sharp wedges of
overlapping geometries.85

The effect of the shi of the centroid of the screening charge with respect to the
geometrical surfaces of the gap can be further explored for d > 0 by using the
concept of distance rescaling.87 In Fig. 6(b) and 7(b), we show spectra corre-
sponding to local classical calculations where the separation distance is rescaled to
d + dn (with dn ¼ 2 a.u. ¼ 1.06 Å) given by the actual separation between the
screening charges, and not by the system geometry. Notably, this simple approach
is in very good agreement with more complex hydrodynamical calculations, which
supports the interpretation that the main role of nonlocality is to displace and
spread the centroid of the charge density, effectively liing unphysical divergences.

We move next to one of the main aspects of this discussion, the quantum
effects due to electron tunneling across the junction, as captured using the QCM.
Fig. 6(c) and 7(c) show the far- and near-eld QCM results, respectively, for a local
description of the plasmonic response. For d T 3.5 Å, the tunneling starts being
negligible and thus the classical behaviour is recovered. However, for shorter
distances, as well as for all the overlapping cases considered, the electron
tunneling strongly modies the response, as expected from previous studies of
related systems.34,60,62 We thus denote the region of separation d < 3–4 Å as the
tunneling regime. Due to the tunneling current that emerges before contact and
neutralizes the induced charges of opposite sign at the junction, the classical
discontinuity of the optical response at contact, d ¼ 0, is removed. The QCM
calculations of the extinction cross-section [Fig. 6(c)] show a gradual transition,
with a threshold distance dthz 0.35 nm separating two different situations.34,60 As
the gap closes, still being larger than dth, the hybridized plasmonic modes of the
dimer redshi similarly to the results of classical calculations. At d ¼ dth, the
redshiing modes gradually disappear and new modes corresponding to the
Charge Transfer Plasmons (CTPs) emerge and blueshi with a further decrease of
d.33,125 The emergence of CTPs at small but positive separation distances, d > 0,
points out that the conductive contact between nanoparticles is established prior
to the direct geometrical overlap of their surfaces, owing to the electron tunneling
through the potential barrier separating the nanoparticles.

The QCM extinction spectra exhibit a moderate number of modes for all
separation distances, in contrast to the prediction from local classical calcula-
tions of dimers with narrow gaps and small overlaps. In the nonlocal classical
172 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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case, we have discussed the relatively small number of modes as a consequence of
the gradual variation of the electron distribution near the interfaces, which
soens the plasmonic response. In the QCM, the soening is due to the charge
transfer across the separating vacuum. The transfer probability, as codied by 3g,
changes gradually as we move transversally (plane xy) away from the center, from
basically metallic to identical to the surrounding vacuum.

The results of the local QCM also show how the charge transfer between
particles at tunneling distances has a dramatic effect on the near eld enhance-
ment at the center of the gap [Fig. 7(c)]. For sufficiently large gaps d T dth the
classical results are basically recovered, with increasing enhancement for nar-
rowing gaps. However, for distances smaller than d z dth, where the strongest
classical enhancements are found, the quantum electron transfer screens the
charges at the gap, quenching the near elds. This quenching can have important
consequences in different optical techniques, such as surface-enhanced spec-
troscopies, where large eld enhancements are oen necessary.

Last, we analyze the situation where nonlocality and electron transfer across
the gaps are included simultaneously in our QCM calculations with a hydrody-
namical treatment of the metal response, as introduced in Section 3. For suffi-
ciently large separation distances above dth, the tunneling is negligible and the
nonlocal screening is the main reason of the difference with classical local
descriptions. We thus recover the classical nonlocal results both for the extinc-
tion, shown in Fig. 6(d), and for the near-eld enhancement, Fig. 7(d). For
separations below dth, the nonlocality also modies the details of the response, as
observed when comparing the results of nonlocal QCM with those of the local
QCM simulations. Nonetheless, the inuence of nonlocality on the response
remains relatively small when compared with the effect of quantum tunneling.
The latter is thus the key aspect determining the optical response of the system.
Generally, the nonlocal and local QCM calculations yield very similar results over
the entire range of separations considered here.

Fig. 8(a) and (b) show the synthetic summary of the results obtained in this
section using local classical, nonlocal classical, local QCM and nonlocal QCM
calculations. The energy of the extinction plasmon resonance [Fig. 8(a)] and the
resonance near-eld enhancement [Fig. 8(b)] are shown as a function of the
distance between nanoparticles, d, for the most relevant plasmon modes. In
particular, Fig. 8(a) shows the spectral position of the extinction peaks for the
lowest energy BDPmode that exists for positive distances (dT dth when using the
QCM, and d > 0 for the classical treatment) as well as for the two lowest energy
CTP modes that emerge at d ( 1–2 Å within the QCM and at d < 0 for classical
treatments. Fig. 8(b) focuses on the range with d $ 0 and displays the maximum
eld enhancement of the BDP, as well as of the second CTP0 charge transfer
plasmon which emerges atz 2.1 eV in the QCM calculations for d( dth. The data
points in Fig. 8(a) and (b) are extracted from Fig. 6 and 7, where they are marked
with open circles. Along with the nonlocal results obtained within the hydrody-
namical model, we also show the results obtained with the distance rescaling
(dashed line), where the nonlocal classical results at distance d are taken as equal
to the local classical values at d + dn. As already discussed, we obtain a good
agreement with the hydrodynamical approach for dn ¼ 1.06 Å.

Considering the plasmonic response of the dimer, three regions of the inter-
particle separation d can be dened, consistent with the introductory sketch of Fig. 1:
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Fig. 8 Summary of the response predicted by the different models. (a) Energy of the
extinction peaks of the main plasmon modes, and (b) maximum near field enhancement |
Eg/E0| at the center of the gap as a function of separation distance, for local classical (blue
dot), nonlocal classical (red open circle for hydrodynamical model and magenta dashed
line for distance rescaling), local QCM (black open square) and nonlocal QCM (green +,
calculated with the hydrodynamical formalism). The values correspond to those indicated
by circles in Fig. 6 and 7. The vertical dashed line corresponds to d ¼ 3.0 Å and approxi-
mately separates the distance ranges where either the quantum-induced charge transfer
or nonlocal effects dominate the response, as indicated at the top of the figure. The labels
of the plasmon peaks refer to the Bonding Dimer Plasmon (BDP) and to the two lowest-
energy Charge Transfer Plasmons (CTP and CTP0).
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� At large separations (in our case for dT dcl ¼ 2 nm, not shown in Fig. 8) the
local classical approach adequately captures the plasmonic response so that we
identify this distance range as the classical regime.

� For dth ( d ( dcl the differences between the local and nonlocal hydrody-
namical results are clearly visible, and the electron tunneling through the
potential barrier separating the nanoparticles is negligible. This is the nonlocal
regime. According to the distance rescaling, including nonlocal effects gives a
similar effect as modifying the distance in the local calculations by a factor (1 + dn/
d), which allows to understand the increasing role of the nonlocality for nar-
rowing gaps.

� The distance range d < dth corresponds to the quantum regime. At this
Ångstrom-scale separations, the electron transfer across the junction dominates
the optical response, and the differences between the nonlocal QCM and local
QCM results remain relatively small. Nonlocality does modify to some extent the
exact response, as can also be seen in Fig. 8. Nevertheless, the prediction of the
local QCM calculations seems sufficient to understand most of the features of the
plasmonic response.

To nish this section, we emphasize three particularly clear signatures of the
tunneling regime for closely interacting spherical nanoparticles:60,62 (i) the
gradual transition in the dispersion of the gap modes at a small threshold
separation distance dth, where the modes stop redshiing and start a progressive
174 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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blueshi as the particles become closer, (ii) the emergence of a CTP mode at low
energies already for (small) positive distances, and (iii) the quenching of the near
elds. The presence of much fewer modes for small overlaps and narrow gaps
when comparing local QCM with local classical calculations is also striking but
may not be the easiest path to identify quantum effects, as the number of modes
is also comparatively small for nonlocal classical calculations or, aer contact, for
local classical results with rounded wedges.21 We also notice that the signature of
quantum effects on the far-eld signal depends on the morphology of the gaps.126

An additional consequence of quantum effects is that the signicant quenching at
the center of the gap expels the strong elds outside and thus establishes an
intrinsic quantum limit to the ultimate eld connement.6,46
5 Extension of the QCM to different materials
and temperatures

We have focused up to now on gold dimers at 0 K, but the QCM can be applied to
more general materials and circumstances in plasmonics. We discuss in the
following the effect of changing the temperature and of considering other metals.
5.1 Effect of temperature

The quantum conductivity s0 used in the implementation of the QCM discussed
above has been obtained from eqn (8) assuming tunneling at 0 K temperature.
More generally, eqn (7) should be applied to calculate the conductivity for non-
zero temperatures.

Fig. 9(a) shows the static conductivity s0 of the vacuum gap between two at Au
surfaces. The results were obtained using eqn (7) as a function of the gap sepa-
ration ‘ for the case of zero temperature (open red circles), 500 K (open blue
circles) and 5000 K (open green circles). The temperature-independent electron
transmission probability at the Fermi energy T(EF) is also shown for reference
with a continuous line. The results were obtained as described in Subsections 2.1
and 2.2. Fig. 9(b) plots the distance and temperature dependent loss parameter gg

used in the QCM description of the effective medium. A continuous line shows
the results of the exponential approximation given by eqn (17), and the symbols
show the results for gg directly deduced from s0 using eqn (16). The results for 0 K
are identical to those presented in Fig. 3 and in Fig. 4.

Most notably, s0 and gg, which parameterize the electron transfer due to
quantum tunneling, are very little sensitive to the temperature. The results for 0 K
and 500 K are essentially identical, with a difference small enough not to be
appreciated in the gure. Even for a temperature as high as 5000 K, which is
considerably larger than the melting point of gold, the induced change in s0 and
gg remains small. s0 is robust to temperature changes because the ensuing
smearing of the Fermi distribution symmetrically opens the channels for electron
tunneling in both directions. While the electron energy dependence of the barrier
transmission T (U) breaks this symmetry, the characteristic electron energy scale
of the change of T (U) is a fraction of eV. This requires very high temperatures for
the corresponding electronic states to be populated. For practical purposes, the
observed temperature dependence of gg should be negligible, inducing much
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 151–183 | 175



Fig. 9 Modeling for different materials and temperatures. (a and c) Tunneling probability
at the Fermi Energy T(EF) (solid lines) and quasi-static conductance s0 (open circles) as a
function of the gap separation distance obtained from quantum-mechanical calculations.
In (a) different temperatures are considered (0 K in red, 500 K in blue, and 5000 K in green).
T(EF) is independent of the temperature, therefore all three curves fall on the same
position. The values represented here for Au at 0 K correspond to those in Fig. 3 and 4. In
(c) different materials are considered at 0 K (Au in red, Ag in blue, Cu in green, and Na in
magenta). (b and d) Tunneling loss parameter gg describing the effective medium in the
gap as a function of the gap separation distance. Solid lines correspond to the exponential
expression used for the QCM implementation, while crossed points are obtained from eqn
(16) using the static conductivity s0 calculated quantum-mechanically. In (b) the same
temperatures as in (a) are considered and overlap of the lines for 0 K and 500 K is observed.
In (d) different materials are considered as in (c).
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weaker changes than other temperature-dependent effects such as thermal
expansion of the nanoparticles or changes in the bulk permittivity of gold.
5.2 Other materials

The QCM can be applied to other metals besides Au in a straightforward manner,
following the description in Sections 2 and 3. Fig. 9(c) shows the evolution with ‘ of
the tunneling probability at the Fermi energy T(EF) and of the quantum-mechan-
ically calculated static conductivity s0, for Au, Ag, Cu and Na surfaces separated by
vacuum. The results are generally similar in all these cases, particularly for the
three noble metals. Overall, the lower the metal work function is (see Table 1 for
the work functions of Na, Au, Ag and Cu), the larger is the conductivity and thus,
the smaller is the loss parameter for a xed value of gap separation (see Fig. 9(d)).
For the four materials, and excluding the narrowest gaps, T(EF) and s0 follow an
approximately exponential variation with ‘. The exponential expression for gg used
in the QCM (eqn (17)) is a good t to the values directly deduced from s0 using eqn
(16), with the exception of very short distances where this equation does not apply.

From a practical perspective, to set the permittivity 3g of the effective medium
at the gap, the QCM requires the knowledge of the permittivity of the metal
surrounding the gap (3m),113 the values of up and gp determining the free-electron
176 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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contribution to 3m, and the characteristic lengths describing the distance
dependence of the free-electron (‘c) and the bound d-electron (‘d) terms dening
3g. up and gp can be obtained on the basis of the u dependence of 3m at large
wavelengths. ‘c and s0 can be obtained as discussed in Section 2. The d-electron
contribution to the permittivity, 3dm, at ‘ ¼ 0 can then be obtained by subtracting
the free-electron contribution from 3m. For reference, Table 2 indicates the values
used in our calculations for up, gp, ‘c and ‘d in the case of Au, Ag, Cu and Na, all
surrounded by vacuum. For pure Drude-metals such as Na, the d-electron
contribution is absent and ‘d is not necessary. Notably, the decay length ‘c takes
similar values for the three noble metals, but it is noticeably larger for Na. For
systems separated by water or dielectrics,53 we also expect to nd signicantly
larger ‘c values.

In Fig. 10 we compare the spectra of extinction and near eld enhancement
|Eg/E0| at the center of the gap of Au, Ag and Cu spherical nanoparticle dimers in
vacuum as a function of the separation d of the gap. The eld is polarized along
Fig. 10 Optical response for different materials. (a–c) Extinction cross-section sext, and
(d–f) near-field enhancement at the gap center |Eg/E0| for: (a and d) Au, (b and e) Ag and
(c and f) Cu dimers in vacuum, as a function of the separation distance and energy. A radius
R¼ 25 nmof the spherical particles and plane-wave illumination polarized along the dimer
axis are used in all cases.

Table 2 QCM parameters for Ag, Au, Cu and Na in vacuum: plasma frequency up and
losses gp of the Drude contribution to the dielectric function; characteristic lengths ‘c and
‘d of the exponential functions describing the increase of the loss parameter, and the
decay of the d-electron contribution to the screening, respectively. ‘c and ‘d are given in Å,
and gg and up are given in eV. The value of ‘d is the one used in our calculations although
other alternatives are possible (see text for discussion). ‘d is not given for Na because d-
electrons do not play a role in the screening in this material

up (eV) gp (eV) ‘c (Å) ‘d (Å)

Ag 9.175 0.0212 0.42 0.79
Au 9.065 0.0708 0.4 0.79
Cu 8.853 0.0954 0.47 0.79
Na 5.16 0.218 0.75 —
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the dimer axis, and the radius of each of the two identical nanoparticles is R ¼ 25
nm. The qualitative effect of tunneling is very similar for all three cases. As has
been already discussed for Au, the extinction exhibits a gradual transition from
large distances to the overlapping regime, and the CTP resonances emerge just
before physical contact is established. The transition occurs around a threshold
distance dth of a few Ångströms which separates a region of redshiing (towards
contact) and a region of blueshiing (progressive overlapping) of the plasmonic
modes. The near eld enhancement is maximized for all three materials for a gap
separation of a few Ångstroms, near dth, and it is quenched strongly for narrower
gaps. dth is similar for the three cases due to the similar values of ‘c obtained.
Along with the qualitative similarities, the quantitative differences in the
permittivity of different metals can strongly affect the details of the plasmonic
response. Indeed, the number, strength, and spectral position of the resonances
show a signicant material dependence, mostly due to the material dependence
of the losses parameter gp and the d-electron contributions to the metal
permittivity 3dm.

6 Discussion and conclusions

In this paper, we have described in detail the Quantum Corrected Model, which
allows accounting for the quantum tunneling with fully classical simulations of
the optical properties of nanoparticle assemblies with narrow junctions. The
main idea behind the QCM is to ll the interparticle junction with an effective
material that results in the same local classical current density as the tunneling
current density obtained from a quantum calculation. We describe the practical
case of a noble metal, which shows a large contribution from d-electrons to the
optical response. We provide a detailed description of the effective material for
frequently used metals such as Au, Ag and Cu. We put particular emphasis in the
extension of the QCM to incorporate the hydrodynamical treatment of nonlocal
effects, and discuss the effect of non-zero temperatures on the optical properties.
While this paper focuses on the linear response, the QCM can be extended to non-
linear phenomena34,127-130 by taking into account the dependence of tunneling
across the gap on the strength of the local eld.

We have also compared the respective inuence of nonlocality and of quantum
charge transfer on the plasmonic resonances of a dimer. Three regions of inter-
particle separations could be identied. Above a few nanometers, local classical
calculations adequately describe the optical properties of plasmonic dimers. In
the intermediate range of distances, above z0.35 nm, classical nonlocality
modies the exact properties of the plasmonic modes. Nonetheless, nonlocal
effects do not change the qualitative behaviour predicted by classical local models
and they can be modeled by simple distance rescaling. For junction widths below
z0.35 nm, the system is in the quantum tunneling regime. For these ultranarrow
gaps, the charge transfer across the junction radically modies the optical
response of the dimer, leading to the quenching of the near elds and to a
complete spectral redistribution of the plasmonic modes. These strong effects
cannot be captured even qualitatively by current classical theories based on the
local or nonlocal hydrodynamic descriptions of the metal. The different relative
inuence of nonlocal and tunneling effects depending on the separation distance
should be observed in very general systems characterized by nanometer gaps, at
178 | Faraday Discuss., 2015, 178, 151–183 This journal is © The Royal Society of Chemistry 2015
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least for spherical terminations,126 and can thus be helpful in the interpretation of
experimental measurements.
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