New developments in the McStas neutron instrument simulation package

Willendrup, Peter Kjær; Bergbäck Knudsen, Erik; Klinkby, Esben Bryndt; R. Nielsen, Torben; Farhi, E.; Filges, U.; Lefmann, K.

Publication date:
2014

Citation (APA):
New developments in the McStas neutron instrument simulation package

Peter Willendrup1,2, Erik Knudsen1, Esben Klinkby3,4, Torben R Nielsen2, E Farhi5, U Filges6, K Lefmann7

1NEXMAP, Physics Department, Technical University of Denmark, Denmark
2ESS Data Management & Software Center, Denmark
3Center for Nuclear Technologies, Technical University of Denmark, Denmark
4ESS Neutronics Group, Sweden
5CS-group, Institut Laue-Langevin (ILL), France
6LDM, Paul Scherrer Institute (PSI), Switzerland
7eScience and Nano-Science centers, Niels Bohr Institute (NBI), Denmark
Agenda

• A brief introduction to McStas, Monte Carlo & raytracing

• Highlighted new features in McStas 2.1
 • McStas-MCNP for background estimates
 • McStas-Mantid event processing
 • Speedup in Single_cystal.comp
McStas Introduction

• Flexible, general simulation utility for neutron scattering experiments.

• Original design for Monte carlo Simulation of triple axis spectrometers

• Developed at DTU Physics, ILL, PSI, Uni CPH, ESS

• V. 1.0 by K Nielsen & K Lefmann (1998) RISØ

• Currently 2.5+1 people full time plus students

GNU GPL license
Open Source

Project website at http://www.mcstas.org
mcstas-users@mcstas.org mailinglist

New developments in McStas
McXtrace - An X-ray ray-trace simulation package

McXtrace - Monte Carlo X-ray Tracing, is a joint venture by

This site is undergoing reorganization. Inconsistencies and broken links may occur. Please do report any findings to erkn_AT_lysk.dtu.dk if you have the time. Thanks in advance.

Funding from NABIT, DFF and the above parties.

McStas

New developments in McStas
McStas Introduction

World leading in neutron Monte Carlo

New developments in McStas
What is McStas used for?

- Instrumentation
- Virtual experiments
- Data analysis
- Teaching

(KU, DTU)
Reliability - cross comparisons

- Much effort has gone into this
- Here: simulations vs. exp. at powder diffrac. DMC, PSI
- The bottom line is
- McStas agrees very well with other packages (NISP, Vitess, IDEAS, RESTRAX, ...)
- Experimental line shapes are within 5%
- Absolute intensities are within 10%
- Common understanding: McStas and similar codes are reliable

E. Farhi, P. Willendrup et al., in preparation

New developments in McStas
New developments in McStas

McStas key concepts

Neutron ray/package:
Weight (p): # neutrons (left) in the package
Coordinates (x,y,z)
Velocity (v_x, v_y, v_z)
Spin (s_x, s_y, s_z)

Instrument: positioning + transformation between sequential component coordinate systems, e.g. neutron source, crystal, detector.

Components: Here the neutron physics happen, neutron weight adjusted according to scattering probabilities etc.
Elements of Monte-Carlo raytracing

- Instrument Monte Carlo methods implement coherent scattering effects
- Uses deterministic propagation where this can be done
- Uses Monte Carlo sampling of “complicated” distributions and stochastic processes and multiple outcomes with known probabilities are involved
- I.e. inside scattering matter
- Uses the particle-wave duality of the neutron to switch back and forward between deterministic ray tracing and Monte Carlo approach

Result: A realistic and efficient transport of neutrons in the thermal and cold range
McStas overview

- Portable code (Unix/Linux/Mac/Windoze)
 - Ran on everything from iPhone to 1000+ node cluster!

- 'Component' files (~150) inserted from library
 - Sources
 - Optics
 - Samples
 - Monitors
 - If needed, write your own comps

- DSL + ISO-C code gen.

New developments in McStas
Neutron optics and other instrument components

New developments in McStas
Writing new comps or understanding existing is not that complex...

- Check our long list of components and look inside... Most of them are quite simple and short... Statistics:

Number of lines of code per component - 165 comps in total

New developments in McStas
Example suite: 123 instruments
New developments in McStas

1 - work on McStas-MCNPX interfaces

McStas-MCNPX interfaces for beam losses

\[n_t = (r_t, v_t, t_t, s_t, p_i - p_r) \]

\[n_r = (r_r, v_r, t_r, s_r, p_r) \]

Collaboration
DTU Nutech
DTU Fysik
ESS
McStas-MCNPX interfaces for beam losses

Use: Check the Scatter_logger.comp in the McStas distribution

Future: Geant4, PHITS?

Collaboration
DTU Nutech
ESS

Journal of Physics: Conference Series Volume 528 conference 1
McStas-Mantid event processing facilitated by:

- Special labels in component list
- Special Monitor_nD parameters
- IDF autogenerated by "mcdisplay" run
- NeXus output and LoadMcStas Mantid algorithm
McStas-Mantid event processing facilitated by:

- Special labels in component list
- Special Monitor_nD parameters
- IDF autogenerated by “mcdisplay” run
- NeXus output and LoadMcStas Mantid algorithm

Use: Check out templateSANS_Mantid from the McStas distribution
- fully functional reduction
Events shown on the full instrument

- The event data from McStas should look something like this in “full 3D” - you may have to move/zoom a bit about
Events shown on the full instrument

- The event data from McStas should look something like this in “full 3D” - you may have to move/zoom a bit about

Use: Check out ILL_H16_IN5_Mantid from the McStas distribution (not yet fully functional reduction)
Problem: McStas Single_crystal.comp “slow” for large unit cell diffraction studies

- Example: Rubredoxin

1 timebin, 1000 x,y-bins

Rubredoxin

Images created from simulated datafile produced August 20th 2012 using 25 nodes on the DMSC cluster.

Neutron count: 1e12

Simulation time: \(\sim 10 + \sim 20 \text{ hr} = \sim 30 \text{ hrs total} \)

- Reflection list \(\sim 124 \text{ K reflections (still “small” in the PX world!!)} \)
Algorithm improvement: **Use incoming neutrons more efficiently - scatter each one on all possible reflections**

- **Red**: Original algorithm, one incoming neutron used only once
- **Blue**: Improved algorithm, each incoming neutron scattered (via SPLIT keyword) all possible times

- Component makes **estimate on average number of “active” diffraction spots** - in the case Rubredoxin this is around **50!**
Sim data speak for themselves - 1e9 rays

Old comp

[LOG] det [1e9_single/psd.dat]
X0=-7.56618; dX=97.4494; Y0=0.503148; dY=41.0417;
l=212.112 Err=1.14736 N=42254

New comp

[LOG] det [1e9_parallel/psd.dat]
X0=-6.35127; dX=97.5669; Y0=0.343201; dY=41.1348;
l=210.788 Err=0.162219 N=2.09642e+06

~ Factor 50 more efficient

Rubedoxin 124K reflections

Predeuterated pyrophosphatase 1.7M reflections

~ Factor 500 more efficient
Sim data speak for themselves - 1e9 rays

Old comp

[LOG] det [1e9_single/psd.dat]
X0=-7.56618; dX=97.4494; Y0=0.503148; dY=41.0417;
l=212.112 Err=1.14736 N=42254

Rubedoxin
124K reflections

[LOG] det [OldComp.BIG/1e9_single/psd.dat]
X0=-1.56177; dX=87.3014; Y0=0.292905; dY=37.9288;
l=29.7823 Err=0.554629 N=5950

Predeuterated

Use: Check out template_NMX from the McStas distribution

New comp

[LOG] det [1e9_parallel/psd.dat]
X0=-6.35127; dX=97.5669; Y0=0.343201; dY=41.1348;
l=210.788 Err=0.162219 N=2.09642e+06

Similar optimisation of the PowderN component

~ Factor 50 more efficient

~ Factor 500 more efficient
People

• The success of the project is also about the people:

• Present McStas team members

 • K Lefmann
 • E Farhi
 • P Willendrup
 • E Knudsen
 • U Filges
 • T R Nielsen

• Past McStas team members

 • K Nielsen
 • PO Åstrand
 • K Lieutenant
 • P Christiansen
 • J Brinch

New developments in McStas