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reinforced concrete slabs with
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Department of Bridges, RAMBOLL, Copenhagen, Denmark

Punching shear in slabs is analogous to shear in beams. Despite this similarity, current design codes provide distinctly

different methods for the design of shear reinforcement in the two situations. For example, the Eurocode method for

beam shear design is founded on the theory of rigid plasticity. To design shear reinforcement in slabs, on the other

hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is

possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation

as for beam shear design. For this purpose, an extension of the upper-bound crack sliding model is proposed. This

involves analysis of sliding mechanisms in yield lines developed both within and outside the zone with shear

reinforcement. Various types of headed shear studs were considered. The results obtained using the model were

compared with a large number of published test results, and satisfactory agreements were found.

Notation
As,s cross-sectional area of one stud

a distance from column perimeter to support

aout distance from outermost perimeter of studs to

support

c cover to shear studs

D diameter of slab

d effective depth of cross-section

do diameter of column

dout diameter of zone with shear studs

fc uniaxial cylinder compression strength of

concrete

ftef effective tensile strength of concrete

fy,s yield stress of studs

h depth of slab

hs height of studs

N number of studs crossed by shear crack

nr number of radii of studs

ns number of studs in each radius

P force

Pcal theoretical punching shear capacity

Pcal,0 theoretical punching shear capacity of slab without

shear studs

Pcr cracking load

Ptest tested capacity

Pu punching load

s0, s1 stud spacing

u relative displacement in yield line

x horizontal projection of shear crack

θ rotation in cracking mechanism

ν effectiveness factor

ρ flexural reinforcement ratio (determined on the

basis of full depth h)
ρt nominal shear reinforcement ratio (Equation 11)

φ angle of friction

Introduction
The punching shear capacity of reinforced concrete slabs is of
great relevance for practical design and has therefore received
much research attention over the past five decades. The earlier
investigations mainly concerned slabs without shear reinforce-
ment. A review of those works may be found in, for example,
fib Bulletin No. 12 (fib, 2001). Important reference works
include those by Kinnunen and Nylander (1960) and Nielsen
et al. (1978).

Similar to reinforced concrete beams, the strength and the
deformation capacity of slabs can be improved if shear reinforce-
ment is provided. Ideally, a sufficient content of shear reinforce-
ment should turn the structure from being shear critical to be
governed by flexural failure. In practice, shear reinforcement in
the form of closed stirrups is difficult to handle in two-way span-
ning slabs. A popular alternative is, therefore, headed shear studs
(Figures 1(a) to 1(c)), which can be easily installed after place-
ment of the flexural reinforcement. Shear studs are often arranged
in a radial or cruciform configuration (Figures 1(d) and 1(e)). For
fast installation, the studs are sometimes delivered pre-welded to
steel rails. In this case, the rails with studs must be installed before
the flexural reinforcement at the top face is placed.

Most design standards deal with shear-reinforced slabs in a
different way than for shear-reinforced beams, even though
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punching shear in slabs is a two-way analogy to shear in
beams. In Eurocode 2 (BSI, 2005) for instance, design of beam
shear reinforcement is grounded on a rigid-plastic lower-bound
model (Nielsen et al., 1978), while design of shear reinforce-
ment in slabs follows a purely empirical equation. Empirical
methods may be easy to use and correlate well with selected
tests. However, the disadvantage of these methods is that they
do not provide the engineer with an explanation of the mech-
anical phenomena involved. Moreover, it is difficult to extra-
polate empirical equations to non-standard cases. In the
recently published Model Code 2010 (fib, 2013), a significant
step away from the purely empirical approach has been taken.
The Model Code 2010 provisions on punching shear are based
on the critical shear crack theory. This theory was originally
developed for non-shear-reinforced members, and has been
extended to cover slabs with shear reinforcement (Fernández
and Muttoni, 2009; Muttoni and Schwartz, 1991). Many phys-
ical phenomena are taken into account in this model, including
the influence of crack width on the shear resistance of the criti-
cal crack as well as on the state of stress in the shear studs.
One of the main assumptions in this context is that the critical
shear crack has an inclination of 45°. As a consequence, only
shear reinforcement placed within the extent of the ‘45° shear
crack’ may be taken into account.

The investigation presented in this paper is based on a rigid-
plastic upper-bound approach. This choice of approach was
motivated by the fact that the results obtained would be
grounded on the same theoretical basis as the Eurocode 2
method for beam shear design. Furthermore, in a rigid-plastic
approach, the inclination of the critical yield line is found by
calculation, and may therefore have a value different from 45°.

This means that, within the framework of rigid-plasticity, it is
possible to capture the fact that the concrete contribution will
vary depending on the shear reinforcement ratio. In addition,
shear reinforcement outside the extent of a 45° shear crack
may also be taken into account, which is an advantage.

The starting point of the investigation was the crack sliding
model (CSM) (Zhang, 1997), which draws on the classical
upper-bound approach (Nielsen et al., 1978), and, in addition,
takes into account the possibility of sliding failures in initial
cracks. In the present study, crack sliding failures within as
well as outside the zone with shear reinforcement were con-
sidered. The results of the model were compared with the
results of relevant tests published in the literature. Satisfactory
agreement was obtained without the need to calibrate the
model parameters by undertaking punching tests.

Principles of the crack sliding model
The CSM was originally developed by Zhang (1997) for beam
shear problems, and has been further developed by Hoang
(2006) to deal with punching shear in slabs without shear
reinforcement. This section provides a brief summary of the
principles behind the CSM, and demonstrates how it is applied
to slabs without shear reinforcement. For details, the reader is
referred to Hoang (2006) or Nielsen and Hoang (2011).

Unlike the classical upper-bound approach, the CSM differen-
tiates between yield lines formed in uncracked concrete and
yield lines formed in cracked concrete. Yield lines are lines of
discontinuity in displacement, and the phenomenon of sliding
yield lines formed in cracked concrete can, for example, be
interpreted from the experimental research carried out by
Muttoni (1990). Muttoni showed that when the critical shear
crack is formed, the relative displacement is mainly perpen-
dicular to the surface of the crack. At the onset of the shear
failure, however, the relative displacement in the crack has a
component parallel to the crack. Due to this change in relative
displacement, the sliding resistance along the crack is mobi-
lised. In terms of plastic theory, the crack is transformed into a
sliding yield line.

According to the CSM, the position of the critical yield line
can be determined by combining a cracking criterion with a
crack sliding criterion. The first criterion is used to calculate
the load required to develop a certain shear crack, while the
second criterion is used to evaluate the possibility of a sliding
failure in the same crack. If the sliding resistance is equal to
the cracking load, a shear failure may take place immediately
after cracking. However, if the sliding resistance turns out to
be larger, the considered crack is not critical. The applied load
may, in this case, increase further, which then leads to the
development of new shear cracks. The cracking load Pcr and
the crack sliding load Pu are derived by considering geometri-
cally possible mechanisms.

(a)

ns
ns

(b) (c)

(d) (e)

Figure 1. (a)–(c) Types of shear stud; (d)–(e) typical arrangements
in slabs
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Figure 2 illustrates an axisymmetric reinforced slab, simply
supported along the perimeter D and loaded at the centre by a
force P. The load is applied via a column with diameter do, and
the slab is assumed to be sufficiently reinforced with respect to
bending and torsional moments. A punching failure is assumed
to take place in a circumferential shear crack, which for simpli-
fication is assumed to have the form of a conical surface
(in Figure 2, x is the horizontal projection of the crack).
The failure mechanism is idealised as an upward punch of the
truncated conical concrete block. An upper bound for
the punching load Pu(x) can be determined by use of the work
equation, and by assuming that the cracked concrete obeys the
modified Coulomb failure criterion and the normality con-
dition of plastic theory. The solution is (Hoang, 2006)

1: Pu ¼ π

2
νfcðdo þ xÞ½ðx2 þ h2Þ0�5 � x�

where the effectiveness factor ν takes into account the fact that
concrete is not perfectly rigid-plastic as assumed in the cal-
culations. In addition, the effectiveness factor in the CSM also
accounts for the reduced sliding strength of cracks compared
with that of uncracked concrete. In a condensed form, the
effectiveness factor appears as follows:

2: ν ¼ 0�44
fc
0�5 1þ 1

h0�5

� �
1þ 26ρð Þ

where fc is in megapascals and h is in metres. Here, the parameter
ρ is the flexural reinforcement ratio. A detailed discussion of the
physical reasons behind this factor has been given by Zhang
(1997), who used the equation for rectangular beams. When
Equation 2 is applied to two-way spanning slabs, the reinforce-
ment ratio may be taken as ρ ¼ ðρxρyÞ0�5, where ρx and ρy are the
reinforcement ratios in two orthogonal directions (Hoang, 2006).

For a punching failure to take place as crack sliding, the crack
has to exist prior to failure. Hence, one must verify that it is

possible to develop the crack at a load that is lower or equal to
the load level required to cause shear failure in the crack. In
this context, the cracking load is calculated based the cracking
mechanism shown in Figure 3. Note that the circumferential
shear crack has to be accompanied by a system of radial flex-
ural cracks to make the cracking mechanism geometrically
possible. By using the upper-bound technique for this cracking
mechanism, it may be shown that the cracking load is given by
(Hoang, 2006)

3: Pcr ¼ 2π
a
ftef ðx2 þ h2Þ do

4
þ x

3

� �
þ h2

a
2
� x

3

� �� �

When deriving this solution, the cracking moment of the
cross-section has been assumed to be independent of the flex-
ural reinforcement (which is a normal assumption). The crack-
ing moment thus depends only on the tensile strength of the
concrete and the height of the cross-section. In the solution,
the so-called ‘effective plastic tensile strength’ of concrete ftef
has been used. For beam shear, Zhang (1997) proposed the fol-
lowing expression, which was also adopted in the present study

4: ftef ¼ 0�156f 2=3c
h

0 � 1
� ��0�3

where h is in metres and fc is in megapascals. An example of the
variation in Pu(x) and Pcr(x) versus x is shown in Figure 4,
which also offers a simple explanation of the punching failure
process in slabs without shear reinforcement. At lower load
levels, steep shear cracks with a small horizontal projection x can
be formed. Because the sliding resistance of these cracks is larger
than the load required to form them, sliding failure cannot
occur. However, when the applied load leading to the formation
of a shear crack is equal to the sliding resistance of that same

CL
½D

x

a

h

do

P

Conical crack 
surface

u

Figure 2. Punching mechanism in a slab without shear studs

(a)

(b)

Pcr

Inclined
circumferential crack

Radial crack

a – x a – xx do x
CL

θ

Figure 3. Cracking mechanism in a slab without shear studs η
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crack, punching failure will occur. Thus, this load level must be
taken as the punching capacity, and it is found graphically as the
intersection of the two curves representing Pu and Pcr.

Analytically, the capacity is found by solving Pu(x)=Pcr(x)
with respect to x, and then inserting the result into
Equation 1. The solution has to fulfil the constraints: 0·75 h ≤
x ≤ a. The upper constraint is due to geometry (the crack needs
to be within the shear span a), while the lower constraint is a
consequence of the normality condition of plastic theory.
This condition dictates that the angle between the relative dis-
placement at failure and the shear crack cannot be smaller
than the internal angle of friction, which for concrete is taken
as φ=arctan0·75 (Nielsen and Hoang, 2011). The mentioned
constraints mean that if x is found to be less than 0·75 h, then
x=0·75 h has to be inserted in Equation 1 to find the punching
capacity. On the other hand, if x is found to be larger than a,
then x=a must be used.

The model outlined was shown to give good agreement with a
large number of test results for slabs without shear reinforce-
ment (Hoang, 2006).

Application of CSM to slabs with shear studs
The CSM has recently been extended to deal with slabs re-
inforced with shear studs arranged in either a radial or a cruci-
form configuration (Pop, 2014). It is normal to place shear
studs only within a limited area around the column. For this
reason, it is necessary to consider potential failures within as
well as outside the shear-reinforced zone. In the following, two
pure punching mechanisms are analysed.

Mechanism I – failure within zone containing
shear studs
As in the previous section, a sliding failure is assumed to take
place in a circumferential shear crack that is idealised as a
conical surface (Figure 5). The shear crack crosses a number of
shear studs. Because of the displacement discontinuity in the
yield line, these studs will have to yield and thus dissipate
plastic energy. In this context, it is noted that yielding of the
shear studs, as indicated by experimental studies, can be
achieved if the studs are well anchored. For instance, Elgabry
and Ghali (1990) reported that circular or square anchor
plates with an area of at least ten times the cross-sectional area
of the stud are sufficient to develop yielding (410MPa) in the
studs. According to the investigations by Seible et al. (1980),
anchorage is adequate and leads to yielding (500MPa) of the
shear studs when the diameter of the circular head is four
times the stem diameter.

The total number of studs crossed by the shear crack will, of
course, be a function of the horizontal projection x. With refer-
ence to Figure 5, it may now be shown that the following
algorithm can be used to calculate the number of studs N(x)
crossed by the shear crack. For ηx ≤ s0

5: NðxÞ ¼ 0

For s0+(i− 1)s1 < ηx ≤ s0+ is1; i=1,2,3,… ,ns

6a: NðxÞ ¼ nri if
x
h
� s0

c

6b: NðxÞ ¼ nrði � 1Þ if
s0
c
,

x
h
� s0 þ s1

c

6c: NðxÞ ¼ nrði � 2Þ if
s0 þ s1

c
,

x
h
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Figure 4. Variation in the punching and cracking load as a
function of x (parameters correspond to test specimen PV1
reported by Lips et al. (2012))

CL

x

hs h

c

P

do S0 S1 S1 S1 S1

ηx

Figure 5. Punching failure within the zone containing shear studs

4

Magazine of Concrete Research Punching shear capacity of reinforced
concrete slabs with headed shear studs
Hoang and Pop

Offprint provided courtesy of www.icevirtuallibrary.com
Author copy for personal use, not for distribution



Here, nr is the number of radii of studs (e.g. nr=8 for the
arrangements shown in Figures 1(d) and 1(e)), and ns is the
number of studs within each radius. The parameter η ( ≤ 1) is
defined as

7: η ¼ hs þ c
h

This parameter takes into account the fact that the height of
the studs hs is smaller than the height of the slab. Therefore,
there may only be shear studs within the distance ηx for the
crack to intersect. It should be noted that Equation 6b takes
into account the case where the inclination of the shear crack
is so small (i.e. large value of x) that the first perimeter of
studs will escape intersection with the shear crack. Similarly,
Equation 6c accounts for the case where both the first and the
second perimeter of studs are not intersected by the crack. It
may be shown that omitting more than two studs in each
radius is not relevant.

Having established the algorithm to keep track of the number
of studs to be included, it is now possible to set up the work
equation leading to an upper bound for the punching capacity.
The result is as follows.

8: PuðxÞ ¼ π

2
νfcðdo þ xÞ ðx2 þ h2Þ0�5 � x

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Concrete contribution

þ NðxÞAs;sfy;s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Shear stud contribution

The first term in Equation 8 is, of course, identical to
Equation 1. Note that Equation 8 differs from Equation 1 in
two distinct ways. First, the curve representing Equation 8 will
be discontinuous with respect to x. There is a jump (correspon-
ding to nrAs,sfy,s) on the curve whenever a new perimeter of
studs is intersected. Second, Equation 8 may have a minimum
value within the range 0 ≤ x ≤ a, while Equation 1 just
decreases monotonically. The variation in Equation 8 is illus-
trated for two characteristic cases in Figure 6. For illustration,
the separate contributions from the concrete and from the
shear studs have been plotted as dashed lines. Note that the
cracking load Pcr(x) has not been plotted. The cracking load
is, as explained below, not relevant in this case.

According to the description in the previous section, the criti-
cal shear crack should, in principle, be found by the inter-
section between the Pu(x) curve and the Pcr(x) curve. In this
context, Pcr(x) may be determined by means of Equation 3,
thus neglecting the effects of shear reinforcement on the crack-
ing load. This procedure, however, turns out to be unnecessary
when a shear failure within the zone containing studs is con-
sidered. Based on a large parametric study (Pop, 2014), it has
been found that the Pu(x) curve according to Equation 8 will
always lie above the Pcr(x) curve for shear reinforcement ratios
usually met with in practice. The two curves will, therefore, not

intersect. This basically means that all potential shear cracks
have already been developed at load levels that are lower than
the load, which eventually will cause punching failure. A
similar situation is also found when the CSM is applied to
lightly shear-reinforced beams (Nielsen and Hoang, 2011).
Hence, with reference to Figure 6(a), the punching capacity
must be taken as the minimum value on the Pu(x) curve.
This point is marked on the figure by a dot. The content of
shear reinforcement may, in some cases, be so large (e.g. in
many of the published tests), that the global minimum on the
Pu(x) curve is located at x < 0·75 h. In such situations, the
punching capacity must be taken as the smallest value that
occurs on the Pu(x) curve for x ≥ 0·75 h (see the explanation of
the normality condition in the previous section). This is

0 200 400

(a)

(b)

600 800
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1500
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N
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contribution

0 200 400 600 800
0

500

1000

1500

2000

2500

x: mm

P:
 k

N

 

Pu,cal

Shear stud
contribution

Pu(x)

Concrete contribution

0·75h = 135 mm

Figure 6. Schematic variation in Pu(x) versus x for slabs with (a) a
low number and (b) a high number of shear studs
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marked by the dot in Figure 6(b). Note that parameters corre-
sponding to test specimen C1 reported by Ferreira et al. (2014)
have been used to plot Figure 6(b). The same parameters were
used to plot Figure 6(a), except for ρt=0·18%.

The procedure described above may be called a ‘discrete’
approach because it takes into account the effect of finite stud
distances. This effect, which is not included in existing
methods, may be significant in cases where the stud spacing is
large. If, however, the stud distance is small compared with the
height of the slab, a classical smeared approach can be used.
Basically, the number of studs crossed by the shear crack
may, in this approach, be approximated by a continuous func-
tion N(x)=ηx/s1, leading to a continuous function for Pu(x).
Calculations based on a smeared approach have also been
investigated in detail by Pop (2014). In the present study,
however, the scope was confined to results obtained using the
discrete approach.

Mechanism II – failure outside the zone containing
shear studs
Depending on the extent of the shear-reinforced zone, a
failure outside this zone might occur. The original procedure
of the CSM may be used in such situations. As illustrated in
Figure 7, the circumferential shear crack to be considered is
now assumed to begin from the last perimeter of studs.

By following the procedure outlined for slabs without shear
reinforcement, the punching capacity can be found by solving
Pu(x)=Pcr(x) with respect to x. In this context, Pu(x) has to be
determined as follows.

9: Pu ¼ π

2
νfc dout þ xð Þ ðx2 þ h2Þ0�5 � x

h i

This equation is similar to Equation 1, except that dout now
replaces do. Likewise, the cracking load Pcr(x) must be deter-
mined by inserting dout and aout instead of do and a, respect-
ively, into Equation 3. The parameters dout and aout are
defined in Figure 7. The equation for Pcr(x) is

10: Pcr ¼ 2π
aout

ftef ðx2 þ h2Þ dout
4

þ x
3

� �
þ h2

aout
2

� x
3

� �� �

According to the explanations provided above, the solution
obtained when solving Pu(x)=Pcr(x) in this case is valid only
if it fulfils the condition: 0·75 h ≤ x ≤ aout. If x is smaller than
0·75 h, this limit must be used to calculate Pu. Finally, if x is
larger than aout, then x=aout must be used.

Comparison with test results
In the present study, calculations were carried out and com-
pared with 58 relevant test results found in the literature

(Beutel, 2002; Birkle and Dilger, 2008, 2009; Broms, 2007;
Ferreira et al., 2014; Lips et al., 2012; Moreno and Sarmento,
2013; Musse, 2004; Regan and Samadian, 2001; Trautwein,
2006; Vaz et al., 2009). The range of a number of important
parameters is shown later in Figure 10. A detailed review of the
tests has been given in the thesis by Pop (2014). The tests con-
sidered include slabs with double-headed studs, single-headed
studs welded on steel rails, and double rail studs. In some of
the tests the loading footprint was quadratic. In these cases, the
side length of the quadratic footprint was used as the diameter
do when performing the calculations. For the tests considered,
the boundary conditions comply (either approximately or
exactly) with the assumption of a circular support perimeter.

The correlation between the tests and the calculations is shown
in Figure 8. In the plots, the tests have been grouped according
to test series and according to predicted failure mechanism. As
can be seen, mechanism I (which is also the most important
one in relation to dimensioning) is critical in the majority of
the tests. The mean value of the ratio Pu,test/Pu,cal was found to
be 0·88, and the standard deviation was 0·14. Hence, on
average, the model (providing upper bounds for the capacity)
overestimates the load-carrying capacity by 13%.

In Figure 9 the ratio Pu,test/Pu,cal is plotted against the ratio
Pu,cal/Pu,0, where Pu,0 denotes the calculated punching capacity
of a similar slab without shear reinforcement. This plot is
intended to show how the correlation varies, when the relative
contribution from the shear studs varies. As can be seen, the
range of the theoretical strength increase (when shear studs are
supplied) is from about Pu,cal/Pu,0=1·3 to Pu,cal/Pu,0=3·3. This
means that for the most heavily shear-reinforced test specimens
more than three times the basic strength could theoretically
be obtained. From the plot it can be observed that the ratio
Pu,test/Pu,cal has a tendency to decrease moderately when the
ratio Pu,cal/Pu,0 increases. In fact, for the six tests where Pu,cal/
Pu,0 is between 3·0 and 3·5, the mean value of Pu,test/Pu,cal was
found to be 0·77 (standard deviation 15%). This means that

CL

½dout x

hs h

c

P

do S0 S1 S1 S1
aout

Figure 7. Punching failure outside the zone containing shear
studs
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for these six heavily shear-reinforced specimens the model over-
estimates the observed results by, on average, 30%. This over-
estimation is larger than the overall result (13%, as mentioned
in the above) and may most probably be explained by the fact
that the model does not directly take into account the effect of
crack width on the shear resistance of cracks. It is well known
that the shear resistance of cracks depends on the crack opening
(see, for example, Fernández and Muttoni, 2009). In this
context, it is noted that the effectiveness factor ν of the CSM
was originally calibrated using the results of shear tests on
beams without stirrups (Zhang, 1997). In non-shear-reinforced
members, shear failure usually takes place immediately after
crack formation (see the explanation of the CSM above), while
in shear-reinforced members, failure takes place in an initial

crack developed at an earlier loading stage. Therefore, the crack
width prior to failure is larger in shear-reinforced members than
in non-shear-reinforced members (Fernández and Muttoni,
2009). The effect of shear crack width is only taken into
account indirectly in the CSM, where ν depends on the flexural
reinforcement ratio (which is one of the main parameters that
control the crack widths). Hence, the above-mentioned overesti-
mation for the six heavily shear-reinforced specimens can most
probably be reduced if the model is refined in such a way that
the effectiveness factor becomes a descending function of the
shear crack width. However, such a refinement would require
an iterative procedure to determine the punching capacity.

To determine how accurate the model predictions are, the ratio
Pu,test/Pu,cal was plotted against a number of key parameters,
as shown in Figure 10, which gives plots of Pu,test/Pu,cal against
h, ρt, fc and fy,s. Note that a unique value for the shear
reinforcement ratio cannot be defined for shear studs arranged
in a radial or cruciform configuration. Therefore, as a measure
of the content of shear reinforcement, the following nominal
ratio is adopted (similar to the ratio used by Lips et al., 2012)

11: ρt ¼
nrAs;s

s1π do þ dð Þ

From Figure 10 it can be seen that the model is reasonably
robust in terms of accuracy and scatter when the different par-
ameters are varied. Of particular interest is the plot showing
Pu,test/Pu,cal against fy,s. It appears that the accuracy of model
is not particularly sensitive with respect to the yield strength of
the studs used in the tests. This indicates that it is reasonable
(in calculations) to assume yielding in all studs crossed by the
shear crack.

Overall, the obtained result – especially the standard devi-
ation – is judged to be satisfactory when considering the sim-
plicity of the model and the fact that the parameters ν and ftef
have been adopted without modification (as mentioned,
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these parameters were originally calibrated using beam tests
(Zhang, 1997)). As discussed above, better agreement with
tests may most probably be obtained if the model is refined;
for example, by working with an effectiveness factor ν that is
directly dependent on the shear crack width. This would,

however, make the model complicated to use. For the practical
application of the model in its current form, a more pragmatic
approach may be adopted. This could, for instance, involve a
simple multiplication of the calculated punching capacity by a
factor 0·88 to account for the average overestimation of the
model (see the result of the model prediction above). In
addition, an upper limit for the allowable strength increase
may be introduced (e.g. Pu,cal/Pu,0 ≤ 2), regardless of how high
the theoretical strength increase due to studs is found to be. In
this context, it is important to observe that below a value of
Pu,cal/Pu,0=2, the plot in Figure 9 does not show any signifi-
cant change in the accuracy of the model prediction.
Furthermore, it should be noted that, in practical design, a
strength increase up to twice the basic strength (i.e. without
shear reinforcement) will be sufficient in many cases.

Conclusions
An extension of the plasticity-based CSM to predict the
punching shear capacity of reinforced concrete slabs with
headed shear studs has been described. Simple formulae for
the cracking load and the crack sliding load have been pre-
sented. An algorithm taking into account the finite stud
spacing has been developed to include the contribution of
shear studs. According to the model, the inclination of the
critical shear crack depends on the amount of shear reinforce-
ment. This means that the concrete contribution to the punch-
ing capacity is not constant as assumed in many code
equations. Furthermore, shear studs placed outside the extent
of a 45° shear crack may also affect the punching capacity.

The model provides upper-bound solutions, which on average
overestimated the capacity of 58 test specimens by 13% (stan-
dard deviation 0·14). This result was obtained without cali-
bration of the model parameters using punching tests, and is
therefore judged to be satisfactory. On average, the best agree-
ment with the tests was observed for slabs, where the predicted
strength was less than about twice the strength of a similar
slab without shear studs.

According to the model it is not necessary to evaluate the
cracking load when a failure within the shear-reinforced zone
is considered. This makes the model easy to use in practice.
What the engineer needs to do is simply to find the minimum
value on the Pu(x) curve for x > 0·75 h. For failure outside the
shear-reinforced zone, the intersection between the Pu(x) curve
and the Pcr(x) curve needs to be determined in order to find
the punching capacity of this zone. In this context, the geo-
metrical parameter a in the model may (as usual) be taken as
the average distance from the column face to the perimeter of
zero moment when punching of internal columns supporting
flat slabs is considered.

This study has only dealt with concentric punching. As an
important further development of the model, punching of
columns at the edges and corners of flat slabs should be
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investigated. The main challenge in these eccentric punching
problems is to come up with failure mechanisms that capture
the effects of moment transfer from column to slab when
establishing formulae for Pu(x) and Pcr(x).
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WHAT DO YOU THINK?

To discuss this paper, please submit up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if con-
sidered appropriate by the editorial panel, will be pub-
lished as a discussion in a future issue of the journal.
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