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1 Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000
Roskilde, Denmark
2 NTUA, School of Mechanical engineering, Greece
3 Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de
Louvain, Belgium

E-mail: ebra@dtu.dk

Abstract. Vortex particles methods are applied to the aeroelastic simulation of a wind turbine
in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence
with the effect of the shear vorticity is demonstrated for the first time in vortex methods
simulations. Most vortex methods formulation of shear, including segment formulations, assume
a frozen shear. It is here shown that these formulations omit two source terms in the vorticity
equation. The current paper also present unfrozen simulation of shear. The infinite support of
the shear vorticity is accounted for using a novel approach relying on a Neumann to Dirichlet
map. The interaction of the sheared vorticity with the wind turbine is shown to have an
important impact on the wake shape. The obtained wake shape are closer to the one obtained
using traditional computational fluid dynamics: Results with unfrozen shear do not have the
severe upward motion of the wake observed in vortex methods simulation with frozen shear.
The interaction of the shear and turbulence vorticity is shown to reduce the turbulence decay
otherwise observed. The vortex code implemented is coupled to an aeroelastic code and examples
of aeroelastic simulations under sheared and turbulent inflow are presented.

1. Introduction
Conventional aeroelastic codes use the Blade Element Momentum method (BEM) to determine
the induced velocities and the aerodynamic loads at the blade. A precomputed synthetic
velocity component is added to the induced velocities to include the effect of turbulence [1].
The turbulent field, referred to as a ”turbulent box”, convects with the free-stream velocity
under the assumption of Taylor’s hypothesis of frozen turbulence [2].

Aeroelastic simulations have also been performed using higher order aerodynamic tools such
as vortex methods [3] and traditional Computational Fluid Dynamics (CFD) [4], at a successively
increasing computational cost. The methods have been applied to steady inflow conditions.
Vortex methods have been recently used to perform non-aeroelastic Large Eddy Simulations
(LES) of wind turbines by Chatelain et al. [5]. The current study is conducted by performing
aeroelastic LES of wind turbines using vortex methods and by further examining the inclusion
of shear in the method.

The paper is structured as follows. The theoretical and computational models are presented
in a first section. The different components of the implementation are then studied in more
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detail. The final part presents combined analyses of the different components.

2. Model and computational setup
2.1. Problem definition
A wind turbine operating under sheared and turbulent inflow is considered. The shear and the
turbulence are assumed to be given at a distance upstream of the turbine, while the process
responsible for their generation is not modelled. The turbulence is assumed to be generated by
an upstream mask of finite cross section upstream. The layout is sketched in Figure 1. The
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Figure 1: Computational setup. Turbulent vortex particles generated by a mask (represented by a grid)
are inserted at each time step. The wind turbine wake is modeled with vortex particles. The domain is
filled with particles (not shown) representing the shear vorticity, also inserted at each time step.

incompressible Navier-Stokes equation in vorticity formulation and in Lagrangian coordinates
X(ξ, t), with X(ξ, 0) = ξ, takes the form:

dω

dt
(X, t) = [∇u(X, t)] · ω(X, t) + ν∇2ω(X, t),

dX

dt
(ξ, t) = u(X, t) (1)

where u is the flow velocity, ν is the fluid viscosity, and ω = ∇ × u is the vorticity. Of the
wind turbine, only the blades are modelled and a lifting line approach is used: The blades are
represented by a line of bound vorticity which shed and trailed vorticity in the wake (see e.g. [6]).
The entire system of the fluid and the turbine is thus modelled in a unified vorticity formulation.

2.2. Vorticity inversion and Helmholtz decomposition
For most physical applications, a velocity field u can be written according to the Helmholtz
decomposition [7]: u = U0+uω+uφ where ∇×U0 = 0, ∇·U0 = 0, ∇·uω = 0 and ∇×uφ = 0.
The divergent free component is written as function of a vector potential ψ as uω = ∇ × ψ.
Choosing the gauge ∇·ψ = 0, the definition ω = ∇×u leads to ∆ψ = −ω. For incompressible
flows uφ accounts for boundary conditions. In absence of boundaries and for a flow occupying
the entire space uφ = 0. In an unbounded space and in the absence of boundaries, the velocity
can be retrieved from the vorticity field using the Biot-Savart law:

uω(x, t) =

∫
D
K(x− x′)× ω(x′, t) dx′ , K(r) = − r

4π r3
(2)

where the integral is taken over D = Dω, with Dω the support of vorticity, possibly infinite.
If one restricts the integral to a smaller domain D = Din, the contribution from the vorticity
outside of the domain is accounted for by means of a Neumann to Dirichlet map (or generalized
Helmholtz decomposition) which ensures the continuity of tangential and normal velocity at the
domain interface ∂Din [8]. The velocity field is then written u = U0 + uω + uext with

uext(x) =

∫
∂Din

[
−K(x− x′)un(x′) +K(x− x′)× uτ

]
dx′ (3)
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where, un is the component of the input field normal to ∂Din such that un = u · n, with n
pointing towards the interior of the domain, and uτ = n × u. The gradient ∇uext is directly
obtained from the expression of uext. In the current study Din represents the computational
domain and it is assumed for simplicity that the contribution from uext is time invariant.

2.3. The numerical tool
Equation 1 is solved using a vortex particle approximation [9]. The vorticity field is written as
a sum of particle strengths αp =

∫
Vp
ω dV weighted by a local function ζ, as

ω(x, t) ≈ ωα(x, t) =
∑
p

ζ(|x− xp|)αp(t) (4)

where xp is the position of the particle and Vp a volume attributed to the particle. In the present
study a second order exponential function is used for ζ.

The velocity and its gradient in the domain can be determined in two ways. Both approaches
are tested in this study. Inserting Equation 4 into Equation 2, the particle positions are used
as quadrature points and the Biot-Savart integral becomes a summation over the particles. A
second order multipole tree algorithm is used for a fast evaluation of the summation [10]. This
will be here referred to as the “mesh-free” method and was added to the in-house solver Omnivor
since its previous description [11]. Alternatively, the vorticity carried by the particles can be
projected onto a grid and the velocity is then retrieved using a Poisson solver (Particle Mesh
Methods): solving ∇2ψ = −ω for ψ and getting u = ∇ × ψ, or solving ∇2uω = −∇ × ω
for u directly. The second order Poisson solver, Yaps, developed at NTUA is used [12] and
is coupled to the Omnivor library. In order to facilitate performance of the Poisson solver,
the method of local corrections is applied [13] together with a domain decomposition method
described in [14]. Regardless of the approach used, particles are convected using a first-order
forward Euler scheme. Redistribution (re-meshing) of the particles on a regular lattice every
few time-steps is performed to ensure the coverage of the space and retain accuracy [15]. Even
in the “mesh-free” formulation, an underlying grid and computational domain is thus defined.

The vortex code Omnivor was coupled [11] to the aero-servo-elastic code HAWC2 [16] using
a strong coupling: At each sub-iteration of the structural solver new aerodynamic loads on the
lifting-line are computed by the vortex code based on the new blade position using an iteration
procedure on the bound and near-wake circulation [6] and using a form of the Beddoes-Leishman
dynamic stall model [17]; at the end of a time step Equation 1 is solved for the free vorticity.

2.4. Viscosity and LES
For the high Reynolds number considered here (Re ≈ [105 − 107]), the omission of the diffusion
associated with the molecular viscosity can be justified. Yet, the inclusion of turbulence calls
for an account of viscous effects. In the current study, the effects of the smaller scales is
modelled by limiting the amount of stretching and by using a low-order kernel in the re-meshing
scheme to act as a subgrid-scale (SGS) filter [18, p. 140]. The λ1 kernel is here used [15]. This
approximation was used in a previous study by the authors [19]. The approach is convenient
when the mesh-free method is used. Indeed, the computation of viscous terms [20] or SGS
models [21] is possible by integral approximation of the differential operators but the method can
be computationally expensive for large amount of particles. Using the Poisson-solver approach
though, finite difference tools are directly available on the grid and can be used for computing
the diffusion and different sub-grid scale models [5, 15]. Considering the coupling with the Yaps
Poisson solver the finite-difference sub-grid scale models will be tried in the near future.
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2.5. The simulation setup
The computational domain used in the present study has dimensions 8D×3D×3D as shown in
Figure 1. The three-bladed Nordtank 500kW stall regulated wind turbine located at one of DTU
Wind Energy’s test sites is modelled. The turbine diameter is D = 2R = 41m and it rotates at
the constant speed Ω = θ̇ = 27.1 RPM. The free-stream velocity is chosen as U0 = 7.5m.s−1 and
the tip-speed ratio is then λ = 7.7. The shear is assumed linear of slope dus/dz = 0.079s−1 so
that the free-stream velocity at the blade tip varies between 6 and 9m.s−1. The domain consists
of a grid of 256 × 96 × 96 cells resulting in 2.4M particles. Re-meshing is performed every 10
time steps. The time step chosen is dt = 0.086s (dθ = 14◦), while the total simulation time is
300s. Particles exiting the domain are discarded but a hybrid wake approach could be used [22].

3. Separate analysis of the different models involved
3.1. Accuracy of the numerical tools
The accuracy of vortex particle methods depends to a large extent on the determination of the
velocity u and deformation [∇u].ω from the distribution of vorticity. The accuracy of both
the mesh-free Biot-Savart law and the Poisson solver approaches are studied by comparison
with the analytical formulae of the Hill’s spherical vortex [23, 24]. The particles are initialized
using the analytical vorticity value on a regular grid of spacing h/a where a is the radius of the
Hill’s sphere. The domain extends from −1.2a to 1.2a is all directions. The velocity is then
computed by the two methods on two control volumes: one entirely located inside the sphere
and one crossing the sphere surface. Both volumes are made of 1000 control points that remain
unchanged for the different grid spacings tried. The second control volume is more challenging
since the vorticity experiences a discontinuity at the sphere boundary. The mean relative error
between the numerical and analytical velocity and deformation on the two control volumes are
shown in Figure 2. The Poisson solver uses a grid of the same spacing as the particle spacing.
Different grid spacing h were used, the lowest grid resolution corresponding to 2000 particles and
the highest to 14M. Resolutions up to 628M particles were also tried. Both methods are seen
to be second order as expected. Better performance of the Poisson solver was observed in the
determination of the velocity. For the mesh-free approach, the accuracy can easily be improved
by using higher order 3D regularization kernels ζ [25, 26] as long as the vorticity distribution
has sufficient continuous derivatives [27]. For the Poisson solver, both the order of the solver
and the order of the differentiation scheme are important. Since the solution of the Poisson
problem highly depends on the quality of the information projected on the grid, it is usually
recommended to use more than one particle per cell to increase accuracy and limit diffusion
during the re-meshing procedure. These will be considered in future studies.

3.2. Representation of shear
Inviscid flows are used in this section but the results can be extended to viscous flows.

Shear only A vertical shear profile us = Us(z)ex is associated to a vorticity profile ωs = dUs
dz ez

and the gradient of the velocity field is [∇U s] = dUs
dz ey ⊗ ez. The vorticity equation for a shear

flow is directly obtained from Equation 1 as:

∂ωs
∂t

+ [∇ωs] ·U s = [∇U s] · ωs (Unfrozen Shear - Shear only) (5)

All three terms are zero for a uniform and steady shear flow.

Shear and additional vorticity Another source of vorticity is here assumed to be present in the
flow such that the total vorticity is ω = ωs + ω̃ and the total velocity is u = U s + ũ. The
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Figure 2: Accuracy of the current particle method using the Biot-Savart law or the Poisson solver by
comparison with the analytical solution from the Hill’s vortex. Relative error in velocity (left) and
deformation (right). The errors were evaluated in a domain inside the Hill’s vortex (plain lines), and
in a domain surrounding part of the boundary of the vortex (dashed lines). The latter present more
challenges due to the discontinuity of the vorticity across the boundary.

.

evolution of the total vorticity is given in Equation 1, written again below:

∂ω

∂t
+ [∇ω] · u = [∇u] · ω (Unfrozen Shear - Full interaction) (6)

Frozen shear The term “frozen shear” will be used to denote the case where the additional
vorticity does not affect the shear vorticity. Developing the expressions of u and ω in Equation 6,
and using the fact that Equation 5 holds if the shear is frozen, leads to:

∂ω̃

∂t
+ [∇ω̃] · (U s + ũ) = ([∇U s] + [∇ũ]) · ω − [∇ωs] · ũ+ [∇ũ] · ωs (Frozen Shear) (7)

Frozen shear - Erroneous approach In all vortex methods wind turbine simulations known to the
authors, the wind shear is assumed frozen and included as part of the “free-stream” [28, 29, 22].
In vortex particle simulations, the term [∇U s] is added to the gradient [∇ũ] in order to include
the deformations due to the shear. In vortex segments simulations this term is automatically
included since the vortex segments are convected as material elements. For such particle or
segment simulation the vorticity equation solved for is:

∂ω̃

∂t
+ [∇ω̃] · (U s + ũ) = ([∇U s] + [∇ũ]) · ω̃ (Frozen Shear - Erroneous) (8)

Comparison of Equation 7 and 8 reveals that most vortex code implementations with frozen
shear omit two terms. The two additional terms are easily implemented in a vortex particle
simulation. The term [∇ωs] ·u is zero for a linear shear but the term [∇ũ] ·ωs is non negligible.
The consequence of this omission for wind turbine wakes will be discussed in subsection 4.2.

Numerical implementation for Unfrozen Shear A novel approach to account for the shear
vorticity and its possible interaction with the additional vorticity is described in the following.
The shear vorticity contained within the computational domain is interpolated onto vortex
particles. Since the shear vorticity has an infinite support, the external map from Equation 3
is used to account for the velocity uext and gradient [∇uext] due to the vorticity outside of the
computational domain. In a time-stepping simulation, the “shear” vortex particles convecting
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outside of the domain at the outlet are discarded whereas new particles are inserted at the inlet.
The particles are inserted on a regular grid of spacing h in the y − z plane of the inlet. The
validation of the whole procedure, with and without time-stepping, is shown in Figure 3 for a
step shear and a linear shear. The contribution of the external map from Equation 3 is crucial to
reconstruct the exact shear and allow long term simulations with the proper deformation of the
vortex particles. The method can be applied to any kind of shear with the same accuracy since
the developments of subsection 2.2 are exact. The only approximation comes in the evaluation
of the Biot-Savart and surface map integrals. In the current study, the surface map integral is
computed using point sources and point vortices which result in loss of accuracy close to the
boundary Din. Small instabilities were observed at the end of the computational domain due to
this point-wise approximation. The rest of the domain is not seen to be significantly affected
by these instabilities as seen in Figure 3. The use of piecewise constant surface panels and the
account of the principal value of the integral at the surface itself will increase the accuracy.
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Figure 3: Modelling of shear using vortex particles. Velocity profiles obtained at the center of the domain
for a step shear and a linear shear. The inclusion of the surface map from Equation 3 is crucial. The
curved labelled “(end)” is extracted at the end of the simulation. The shear is seen to be conserved with
time despite the numerical error that could be introduced by the re-meshing, numerical stretching and
convection.

3.3. Representation of turbulence using vortex particles
The approach used by Chatelain et al. [5] is followed: A synthetic isotropic turbulent velocity field
is computed prior to the simulation using the Mann model [30]; the velocity field is smoothly
clipped on the side, by multiplication with a function that smoothly drops to zero, to avoid
strong vortex lines at these locations; the vorticity of the field is computed and interpolated
onto vortex particles; at the initial time step the domain is filled with these “turbulent” vortex
particles while more particles are inserted at each time-step at the inlet of the domain. The
method was previously used in the literature [31, 32, 33] and recently applied by the authors
to study the impact of a wind turbine on turbulence [19]. More details can be found in these
references. Instead of clipping the turbulent vorticity field, an external map could also be used
but the surface integral would need to be evaluated at each time step since the flow on the
surface is unsteady.

The vorticity obtained from the particle approximation is represented in the right of Figure 4
for the initial and final time steps. The spectra of the velocity fields are shown in the left of
Figure 4. The evolution of the turbulence intensity can be seen in Figure 6. The current particle
approximation was estimated to have a cut-off frequency of about fcut ≈ U0/10h [19]. This
explains the differences between the input Mann spectrum and the “Frozen” spectrum obtained
by purely convecting the particle turbulent field using the free-stream velocity and without
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allowing it to deform. When the particle field is allowed to deform (“Unfrozen Turbulence”),
the turbulent kinetic energy kt decays with the distance from the insertion point. The same
behavior was found in CFD simulations where turbulence is inserted as body forces [34]. In the
presence of viscous forces the decay of kt behind a mask is expected if there is no driving force
to sustain turbulence [35]. Batchelor and Townsend [36] observed a linear decay of the kinetic
energy independently of the viscosity value. This is consistent with the theory from Kármán
and Howarth [37] that obtained the decay as dkt

dt = −10ν kt
λ2

, where λ denotes the representative

length scale, when λ satisfies λ2 ∝ ν/
√
kt. More advanced turbulence decay models can be found

e.g. in the work of Thormann and Meneveau [38]. The reproduction of the early linear decay
seen in the curve labelled “No Shear” in Figure 6 confirms the validity of the current model.
The other curves of the figure are discussed in subsection 4.1. More analyses on the turbulence
modelling were performed by the authors in [19].
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Figure 4: Statistics of the turbulent velocity fields represented using vortex particles. Left: comparison
of the original velocity spectrum with the ones obtained from the particle approximation. The unfrozen
spectrum is shown at x = 0, after the turbulence has evolved over 2 diameters. Right: Vorticity for frozen
turbulence (top) and unfrozen decaying turbulence (bottom). x ∈ [−2D, 6D]

3.4. Wind turbine wake simulation using particles
The Omnivor library in its segments wake formulation was previously validated against BEM
codes, actuator-line and actuator-disk (AD) simulations results and measurements [11, 39]. The
principle of the vortex segment wake formulation used is similar to the one described for the
AWSM code [6]. The particle formulation simply consists in converting the wake segments into
vortex particles. The bound segments may also be temporarily converted to particles. The
particle wake formulation is here validated against the segment wake formulation.

Vortex particles can be seen as lower order vortex elements compared to vortex segments.
As a first step, the difference between the velocity induced by a vortex segment and a vortex
particle is investigated. A given vortex segment of length l and intensity Γ is modeled using a
distribution of n equally spaced vortex particles of intensity α = Γl/n. The velocity field from
the segment or the collection of particles is evaluated on a surface described by h = constant,
where h is the minimum distance to the segment. The maximum relative error on this surface
for different values of h and n is shown in the left of Figure 5. The mean error was found to be
about 2.5 lower than the maximum error.

The circulation along the span of the wind turbine blade for a simulation under uniform
inflow with a vortex segment wake and with a particle wake is shown in the right of Figure 5.
The agreement between the two cases validates the implementation of the particle wake method.
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values obtained from the particle simulation (x ∈ [0D; 6D]).

4. Combined analyses
4.1. Combination of shear and turbulence
It was seen in subsection 3.3 that the “unfrozen” turbulence tends to loose energy progressively
as the eddies evolve away from the mask where they had been generated. The inclusion of shear is
expected to sustain the turbulence. Shear and turbulence particles are here inserted as described
individually in subsection 3.2 and subsection 3.3. When combining shear and turbulence, the
velocities on the boundary ∂Din will not be exactly the ones from the undisturbed shear. This
is clear at the inlet and outlet of the turbulence but also on all other boundaries due to the
induced velocities of the turbulence vortex particles on ∂Din and due to the interaction between
the shear and turbulence particles which may affect the strength of the shear particles. The
difference between the unsteady velocity at the boundary and the steady state shear velocities are
expected to be of second order and they are here omitted for simplicity. As seen in Equation 3,
the errors involved would decrease in 1/r2 away from the boundaries, and an extension of the
computational domain would thus reduce the error involved. No visible differences was observed
using a lateral extent of 5D instead of 3D. Since meandering occurs, some shear particles might
exit the domain on one side of the domain and holes may be created on the other side. Shear
vortex particles are also inserted on the sides of the domain when such holes are detected. At
the inlet, the shear particles are inserted as described in subsection 3.2: More shear vorticity
is inserted where the wind velocity is higher. This approach is not followed for the turbulence
as the turbulent particles are inserted with the free-stream. Further, the turbulence box used
to generate the vortex particles is isotropic and it does not account for an inherent shear. The
influence of these two limitations will be investigated in the future.

The evolution of the turbulence intensity across the domain is shown in Figure 6 for different
cases. All simulations corresponds to “unfrozen turbulence”. It is observed in the figure that
the frozen shear does not significantly affect the turbulence kinetic energy which is seen to decay
in the same proportion as the non-sheared case. On the other hand, the account for the full
interaction is seen to reduce the decay and a trend towards a stabilisation of the turbulent
kinetic energy can be foreseen. Analysis of the velocity profiles revealed that the shear slope
was reduced when the full interaction was allowed. The turbulence extracts energy from the
shear and tends to homogenize the profile. Troldborg et al. performed CFD simulations with
prescribed linear shear and insertion of turbulence in an upstream plane of the domain [40]. In
one of their test cases, the boundary condition consisted in artificially prescribing the velocity
on the lower and higher boundary. This situation can be linked to the one used here where
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the surface map is assumed constant. The authors observed that the inclusion of shear was
sustaining turbulence and constant statistical properties of turbulence were obtained [40]. The
current results are not as pronounced but the difference between the uniform and sheared inflow
cases follow the same trends as their results. The fact that a decay occurs in the unfrozen shear
case reveals inconsistencies between the numerical model and the input field. Future work will
address this issue in order to obtain a sustained turbulence field throughout the domain in the
presence of shear. This can be done by recirculating the turbulence field in a fashion similar to
the study of Troldborg et al. [40] or by adjusting the parameters of the input turbulence box.
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Figure 6: Evolution of the turbulence intensity with the distance from the turbulence insertion point.
Accounting for the interaction between the shear and turbulence (“unfrozen shear”) is seen to increase
the turbulence intensity.

4.2. Combination of shear and wind turbine
Simulations of the Nordtank wind turbine are here presented for three cases: “Frozen Shear -
Erroneous”, “Frozen Shear”, and “Unfrozen Shear”. Vorticity contours for the “Frozen Shear
- Erroneous” and “Unfrozen Shear” cases are shown in Figure 7. The wake shape for the case
“Frozen Shear” is also shown on the figure. Results from the “Frozen Shear - Erroneous” case,
in the top of Figure 7, are consistent with vortex segments simulations performed without the
inclusion of the shear vorticity [29]. In the current study, it is seen that the interaction between
the shear vorticity and the turbine has an important impact on the wake shape. The wake does
not have such a significant upward motion when the full interaction is included. This result is
consistent with CFD simulations [41]. The cancellation of the longitudinal vorticity of the wake
induced by the shear and the longitudinal vorticity of the shear induced by the wake is likely to
be the source of this result. It can be proven using a simple vortex model [42]. For the current
simulation, the omission of this interaction leads to an overestimation of 4% of the power and
1% of the thrust. The comparison between the two frozen shear cases reveals the importance
of the additional terms of Equation 7: Less upward motion of the wake is found and the wake
shape compare better with the full-interaction case.

4.3. Aeroelastic LES of wind turbine with shear and turbulence
A proof of concept of the applicability of the different models to aeroelastic wind turbine
simulations is presented here using the HAWC2 and Omnivor tools. Turbulent simulations
with different shear modelling are run. The simulation time for the full unfrozen case, was
7h30 with 160 CPUs using the tree-code algorithm. A total of 1h was spent in the iterative
interaction with the structural code. Many future optimizations of the code are yet possible
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Figure 7: Vorticity contours in the wake of the turbine (x ∈ [0D, 6D]) for the case “Frozen Shear -
Erroneous” (top) and “Unfrozen Shear - Full interaction” (bottom). The black dashed lines represent the
wake shape for the correct “Frozen Shear” simulation (Equation 7). The interaction between the shear
vorticity and the turbine has an important impact on the wake shape. Implementing the correct frozen
shear equation improves the results but not enough to reach the results of the full interaction.

since new bottlenecks appeared in this study. Further speed up will be obtained by using the
Poisson solver and by optimizing the re-meshing procedure (accounting for 30min here). The
simulation time is roughly half the time of a typical CFD LES simulation with similar resolution
at the rotor. Results are shown in Figure 8. The vertical lines corresponds to values obtained
using the BEM aerodynamic module of HAWC2 without turbulence. Both the BEM and vortex
code predicts a reduction of loads and power when shear is present for the simulated operational
conditions. Unfreezing the shear is seen to reduce the power mean value but increases its
standard deviation. Little impact is seen on the flap-wise moment. Further investigations will
be the topic of future work.
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Figure 8: Probability density functions of power and flap-wise moments for turbulent aeroelastic
simulations perform using the vortex code coupled with HAWC2 under different shear conditions: no
shear, frozen shear, unfrozen shear. The turbulence intensity is TI = 12% (see Figure 6 at x = 0).
Vertical lines represent BEM value for TI = 0%, P0 = 148kW, Mf,0 = 1.36kNm. Unfreezing the shear is
seen to reduce the power but has little influence on the flapwise moment.

5. Conclusions
Vortex particle methods were applied to turbulence, shear, a wind turbine and the combinations
of these cases. For the first time, a Neumann to Dirichlet map was used to account for the
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vorticity outside of the domain in the modelling of shear. The interaction of the shear and
turbulence vorticity was seen to avoid the decay of turbulent kinetic energy. If shear is present
but the interaction is not a two-way interaction, the decay occurs. It was shown that most
vortex methods implementation of frozen shear were lacking two terms in the vorticity equation.
The inclusion of these two terms reduces the upward motion of the wake in a sheared flow. The
full interaction of the shear and the wind turbine vorticity further reduces this upward motion.
Solving for the full interaction appeared of importance both for the wake shape and the loads.
The possibility to perform aeroelastic simulations of wind turbine under sheared and turbulent
conditions was demonstrated. It is the first time, known to the authors, that fully coupled
lifting-line aeroelastic simulations including shear and turbulence have been performed. Future
work should address the possibility to include unsteady boundary conditions in the method,
more consistent SGS models, and further investigate the different interactions of vorticity.

Acknowledgments
The work was funded by the Danish Council for Strategic Research (DSF), under contract 2104-
09-0026, Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence.
The computational cluster was provided by DCSC and the DTU central computing facility.

References
[1] G. C. Larsen, H. A. Madsen, K. Thomsen, and T. J. Larsen. Wake meandering. Wind Energy, 11(4):377–395,

2008.
[2] G. I. Taylor. The spectrum of turbulence. Proceedings of The Royal Society of London Series A-Mathematical

And Physical Sciences, 164(A919):0476–0490, 1938.
[3] V. A. Riziotis, D. I. Manolas, and S. G. Voutsinas. Free-wake aeroelastic modelling of swept rotor blades.

European Wind Energy Conference and Exhibition 2011, EWEC 2011, 2011.
[4] J. C. Heinz. Partitioned Fluid-Structure Interaction for Full rotor computations using CFD. PhD thesis,

Technical University of Denmark, 2013.
[5] P. Chatelain, S. Backaert, G. Winckelmans, and S. Kern. Large eddy simulation of wind turbine wakes.

Flow Turbulence And Combustion, 91(3):587–605, 2013.
[6] A. van Garrel. Development of a wind turbine aerodynamics simulation module. Technical Report ECN-

C–03-079, ECN, 2003.
[7] S. M. Richardson and A. R. H. Cornish. Solution of three dimensional incompressible flow problems. Journal

of Fluid Mechanics, 82:pp. 309–319, 1977.
[8] G. Papadakis and S. G. Voutsinas. In view of accelerating CFD simulations through coupling with vortex

particle approximations. Journal of Physics: Conference Series, 524(1):012126, 2014.
[9] G. S. Winckelmans and A. Leonard. Contributions to vortex particle methods for the computation of 3-

dimensional incompressible unsteady flows. Journal Of Computational Physics, 109(2):247–273, 1993.
[10] J. K. Salmon, M.S. Warren, and G.S. Winckelmans. Fast parallel tree codes for gravitational and fluid

dynamical n-body problems. Intl. J. Supercomput. Appl. High Perf. Comp., 8(2):192–142, 1994.
[11] E. Branlard, E. Machefaux, M. Gaunaa, H.H. Brandenborg Sørensen, and N. Troldborg. Validation of vortex

code viscous models using lidar wake measurements and CFD. In Proceedings. EWEA - The European
Wind Energy Association, 2014.

[12] Giorgos Papadakis. Development of a hybrid compressible vortex particle method and application to external
problems including helicopter flows. PhD thesis, National Technical University of Athens, 2014.

[13] C. R. Anderson. A method of local corrections for computing the velocity field due to a distribution of
vortex blobs. Journal of Computational Physics, 62(1):111–123, 1986.

[14] GT Balls and P. Colella. A finite difference domain decomposition method using local corrections for the
solution of poisson’s equation. Journal Of Computational Physics, 180(1):25–53, 2002.

[15] G.-H. Cottet and P. Koumoutsakos. Vortex methods: theory and practice. Cambridge University Press,
2000.

[16] T. J. Larsen and A. M. Hansen. HAWC2 - User manual. DTU-Risø-R-1597, 2007.
[17] J. G. Leishman and T.S. Beddoes. A semi-empirical model for dynamic stall. Journal of the American

Helicopter Society, 34(3):p3–17, 1989.
[18] G. S. Winckelmans. Encyclopedia of computational mechanics - Volume 1. Chapter 5: Vortex Methods,

chapter 5. J. Wiley & Sons, New-York, N.Y., 2004.

Wake Conference 2015 IOP Publishing
Journal of Physics: Conference Series 625 (2015) 012019 doi:10.1088/1742-6596/625/1/012019

11



[19] E. Branlard and M. Gaunaa. Impact of a wind turbine on turbulence: un-freezing the turbulence by means
of a simple vortex particle approach, 2015. (Submitted to the Journal of Wind Engineering and Industrial
Aerodynamics, currently under review).

[20] P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. part 1: The
case of an isotropic viscosity. Mathematics of Computation, 53(188):485–507, 1989.

[21] G. Daeninck. Developments in hybrid approaches: Vortex method with known separation location Vortex
method with near-wall Eulerian solver RANS-LES coupling. PhD thesis, Université catholique de Louvain,
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and S. Ivanell, editors, Wind Energy - Impact of Turbulence, volume 2 of Research Topics in Wind Energy,
pages 135–140. Springer Berlin Heidelberg, 2014.

[33] D. Sale, A. Aliseda, and Y. Lic. Simulation of hydrokinetic turbines in turbulent flow using vortex particle
methods. In Proceedings of the 2nd Marine Energy Technology Symposium: METS2014-April 15-18, 2014,
Seattle, WA, 2014.

[34] N. Troldborg, J. N. Sorensen, and R. Mikkelsen. Actuator line simulation of wake of wind turbine operating
in turbulent inflow. Science Of Making Torque From Wind, 75(1):–, 2007.

[35] A. S. Monin and A. M. Yaglom. Statistical fluid mechanics mechanics of turbulence. vol. 1. MIT press,
Cambridge, 1971.

[36] G. K. Batchelor and A. A. Townsend. Decay of vorticity in isotropic turbulence. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 190(1023):534–550, 1947.
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