

Method for Surface Scanning in Medical Imaging and Related Apparatus

Olesen, Oline Vinter; Larsen, Rasmus; Wilm, Jakob; Jensen, Rasmus Ramsbøl

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Olesen, O. V., Larsen, R., Wilm, J., & Jensen, R. R. (2015). Method for Surface Scanning in Medical Imaging and Related Apparatus. (Patent No. *WO2015071369*).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

(12) INTERNATIONAL APPLI	CATION PUBLISHED UNDER TH	HE PATENT COOPERATION TREATY (PCT)
--------------------------	---------------------------	------------------------------------

(19) World Intellectual Property Organization

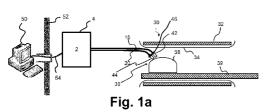
International Bureau

(43) International Publication Date 21 May 2015 (21.05.2015)

- A61B 5/00 (2006.01)
 A61B 5/055 (2006.01)

 A61B 5/11 (2006.01)
 G02B 6/32 (2006.01)

 A61B 6/00 (2006.01)
 G02B 6/32 (2006.01)
- (21) International Application Number: PCT/EP2014/074509
- (22) International Filing Date: 13 November 2014 (13.11.2014)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 13192786.5 13 November 2013 (13.11.2013) EP
- (71) Applicant: DANMARKS TEKNISKE UNIVERSITET [DK/DK]; Anker Engelunds Vej 1, DK-2800 Kgs. Lyngby (DK).
- (72) Inventors: OLESEN, Oline; Gladsaxevej 78, st.tv., DK-2860 Søborg (DK). LARSEN, Rasmus; Ermelundsvej 123, DK-2820 Gentofte (DK). WILM, Jakob; Borgmestervangen 4A, DK-2200 Copenhagen N (DK). JENSEN, Rasmus Ramsbøl; L.I. Brandes Allé 4, 2th, DK-1956 Frederiksberg C (DK).


(10) International Publication Number WO 2015/071369 A1

- (74) Agent: ZACCO DENMARK A/S; Arne Jacobsens Allé 15, DK-2300 Copenhagen S (DK).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))

(54) Title: METHOD FOR SURFACE SCANNING IN MEDICAL IMAGING AND RELATED APPARATUS

WO 2015/071369 A1

(57) Abstract: A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image source into the proximal ends of the first optical fibers, wherein the first optical coupler comprises a plurality of lens elements including a first lens element and a second lens element, each of the plurality of lens elements comprising a primary surface facing a distal end of the first optical coupler, and a secondary surface facing a proximal end of the first optical coupler.

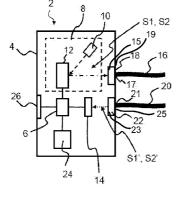


Fig. 1b

METHOD FOR SURFACE SCANNING IN MEDICAL IMAGING AND RELATED APPARATUS

The present invention relates to a method and apparatus for surface scanning in medical imaging, in particular in magnetic resonance imaging (MRI), in positron

5 emission tomography (PET), and/or in combined MRI/PET. The invention may be used for surface scanning/motion tracking in particular inside small geometries (in-bore of PET, MRI, CT, SPECT or combined scanners as PET/CT and MRI/PET).

BACKGROUND

Over the last decade, numerous methods for surface scanning and motion tracking in
brain imaging have been developed, but head motion during scanning pertains to be a significant problem causing artefacts and significantly reducing image quality.

Known methods include external tracking systems as well as image based motion tracking and correction. Many external tracking systems use markers attached to the subjects head. This potentially introduces errors and complicates the process of

- 15 preparing the subject for the scan and therefore reduces the usability in clinical practice. Correspondingly, the image based motion tracking methods developed for medical brain imaging generally suffer from an inability to obtain sufficiently high temporal and spatial resolution at the same time. Further, the high resolution of modern medical scanners (down to tenths of a millimeter for MRI and a few millimeters for PET)
- 20 set strict requirements to motion tracking systems.

SUMMARY

The present invention relates to a method and apparatus for improved surface scanning in medical imaging. Disclosed herein is therefore a method for surface scanning in medical imaging that may be used for subject tracking, the method

- 25 comprising a) providing an image source and a first fiber bundle comprising first optical fibers having proximal ends and distal ends; b) positioning the distal ends of the first optical fibers within a scanner borehole of a medical scanner; c) feeding an image from the image source into a proximal end of a first optical coupler, the first optical coupler comprising a plurality of lens elements including a first lens element and a second lens
- 30 element; and d) feeding an image from a distal end of the first optical coupler into the proximal ends of the first optical fibers.

Disclosed herein is also a surface scanning apparatus for surface scanning in medical imaging, the apparatus comprising a) an image source, b) a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and c) a first optical

2

coupler for coupling an image from the image source into the proximal ends of the first optical fibers, wherein the first optical coupler comprises a plurality of lens elements including a first lens element and a second lens element, each of the plurality of lens elements comprising a primary surface facing a distal end of the first optical coupler, and a secondary surface facing a proximal end of the first optical coupler.

By the above method and/or surface scanning apparatus is obtained an improved surface scanning method and/or motion tracking method wherein components that generate noise, such as radio emitting components and/or ferromagnetic components, are separated form and kept out of the bore. Further, occlusion effects are highly

- 10 reduced if not completely avoided. Further, an improved image quality on the object which is scanned in the borehole is provided. Problems previously observed regarding a decrease in image quality due to long distances between scanner and light source is avoided due to the use of optical fibers, which ensures a high image quality even over larger distances.
- 15 The method may be particularly useful in a method for motion tracking in medical imaging, and the surface scanning apparatus may be a motion tracking apparatus By the method and/or surface scanning apparatus is further obtained a very compact device, which can easily be incorporated into a scanner or be used as an add-on to existing scanning systems.

20 BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features and advantages of the present invention will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:

Fig. 1a schematically illustrates a surface scanning apparatus in connection with a medical scanner and a computer system,

- Fig. 1b schematically illustrates an exemplary surface scanning apparatus,
- Fig. 2 schematically illustrates parts of an exemplary surface scanning apparatus,
- Fig. 3 schematically illustrates parts of an exemplary surface scanning apparatus,
- Fig. 4 schematically illustrates parts of an exemplary surface scanning apparatus,
- 30 Fig. 5 schematically illustrates parts of an exemplary surface scanning apparatus,

Fig. 6a schematically illustrates decreasing of the image size with different lens elements in an optical coupler,

- Fig. 6b schematically illustrates increasing of the image size with different lens elements in an optical coupler,
- Fig. 7a schematically illustrates a relay lens coupler, and
- Fig. 7b schematically illustrates an alternative relay lens coupler.
- 5 DETAILED DESCRIPTION

The figures are schematic and simplified for clarity, and they merely show details which are essential to the understanding of the invention, while other details may have been left out. Throughout, the same reference numerals are used for identical or corresponding parts.

10 Surface scanning incorporates tracking spatial position of a surface or surface points over time and/or tracking/determining spatial position of a surface or surface points at a given time.

The medical scanner may be a magnetic resonance (MR) scanner. Further, the method and apparatus for motion tracking may be employed for motion correction of scanning

- 15 images obtained by other medical scanners, such as a positron emission tomography (PET) scanner, a single photon emission computed tomography (SPECT) scanner or a computed tomography (CT) scanner. In one or more aspects, the method and apparatus may be employed for motion correction of a subject in a combined PET-MR scanner or a combined PET-CT scanner.
- 20 The image source provided in the method or the apparatus may include a light source and/or a digital micromirror device (DMD) chip, where the DMD chip is for modulating the incoming light from the light source thus creating a pre-determined image source.

The image source may be a modified DLP (digital light processing) projector.

Feeding an image, e.g. from the image source into a proximal end of a first optical

25 coupler and/or from a distal end of the first optical coupler into the proximal ends of the first optical fibers, may comprise feeding a pattern sequence comprising a pattern or a plurality of different patterns.

The image source may be configured for providing a pattern sequence, e.g. comprising a plurality of different patterns, e.g. for projection of patterns onto the surface region or

30 scene of the subject in the borehole. A pattern sequence (S), e.g. a first pattern sequence (S1) and/or a second pattern sequence (S2), comprises one or more patterns (P), such as a plurality of different patterns including a primary pattern and a secondary pattern. A pattern sequence comprises or consists of a number N of

patterns. A pattern sequence may be defined by pattern sequence parameters, for example including number of patterns, configuration/structure of respective patterns, order of patterns and/or timing of pattern(s) of the pattern sequence. The duration of a pattern sequence may be in the range from 1 millisecond to about 1 second. The

5 duration of a pattern sequence may be about 10 milliseconds, about 20 milliseconds, about 50 milliseconds, about 100 milliseconds or about 200 milliseconds.

A pattern may comprise a number of pixels, e.g. arranged in an array along a first and second axis. A pattern may be defined by pattern parameters, e.g. including pixel settings (color/wavelength and/or intensity) of each pixel and/or one or more groups of

- 10 pixels in the pattern. A group of pixels of a pattern may be referred to as a subregion denoted R of a pattern. Accordingly, a pattern may comprise one or more subregions R₁, R₂, R₃..., a subregion comprising one or more pixels. Pattern sequence parameters may include pattern parameters, e.g. of a primary pattern, a secondary pattern and/or a tertiary pattern.
- 15 The image source may comprise a light modulator.

The light modulator or DMD chip can be adapted for projection of patterns onto the surface region or scene of the subject in the borehole. The light modulator may comprise a liquid crystal display (LCD) chip or a DMD chip. In one or more embodiments, the light modulator may comprise a liquid crystal on silicon (LCOS) chip.

20 In one or more embodiments, the light modulator may comprise grids, slits or filters. The light modulator may be a transmitting or reflective light modulator.

The DMD chip/light modulator may be an array which is approximately 9.86 mm times 6.16 mm and images from the DMD chip/light modulator are mapped with the first optical coupler into a first fiber bundle with proximal end size of about 6.7mm times

25 5mm.

The image source may be connected to a control unit for receiving control signal(s) from the control unit. The control signal(s) may comprise pattern sequence parameters, such as number, configuration, order and/or timing of pattern(s) of the pattern sequence. In one or more embodiments, the control signal(s) may comprise a pattern

30 sequence selector, and the image source may be configured for projecting different pattern sequences dependent on the pattern sequence selector.

The resolution of the image source and/or first fiber bundle limits the pattern resolution projected onto the subject. The image source may have a resolution of at least 500 pixels, such as at least 1,000 pixels or at least 10,000 pixels in order to project a useful

image on the subject. In an exemplary method and/or apparatus, the image source may have a resolution of HVGA (480x320 pixels) or more, e.g. (608x684 pixels), SVGA(800x600 pixels), XGA (1024x768 pixels), 720p (1280x720 pixels), or 1080p (1920x1080 pixels).

5 In one or more embodiments, a number of different pattern sequences may be stored in the image source, and the image source may be configured to project a selected pattern sequence based on a pattern sequence selector from a control unit.

In an embodiment, the light source may include one or more lasers or (high power) LED's including a first laser/LED configured to emit light at the first wavelength λ_1

10 and/or a second laser/LED configured to emit light at a second wavelength λ_2 . The light source may also include a third laser/LED configured to emit light at a third wavelength λ_3 .

The light source may include a broad spectrum light source, such as a metal-halide lamp. In one or more embodiments, the light source may comprise a light emitting

- 15 diode (LED). The light source may comprise a filter for forming light with desired frequency spectrum/wavelength distribution. In one or more embodiments, the light source may be adapted to emit light in the infrared (IR) or near-infrared (NIR) range, for example at a wavelength in the range from 700 nm to about 1,000 nm, e.g. about 850 nm. In one or more embodiments, the light source may be adapted to emit light in the
- 20 UV range.

In one or more embodiments, the image source may comprise light at a first wavelength λ_1 in the range from 780-900 nm. For example, the wavelength range may be between 800-860 nm. The first laser/LED may be a red or orange/red laser, wherein the first wavelength λ_1 is in the range from about 590 nm to about 700 nm. In one or

- 25 more embodiments the first wavelength λ_1 is about 635 nm. The first laser/LED may be an LED, wherein the first wavelength λ_1 is in the range from about 830 nm to about 870 nm, e.g. about 850 nm or from about 810 nm to about 850 nm. The first laser/LED may be an LED, wherein the first wavelength λ_1 is in the range from about 790 nm to about 830 nm, e.g. about 810 nm or from about 800 nm to about 820 nm.
- 30 The second laser/LED may be a green laser, wherein the second wavelength λ_2 is in the range from about 490 nm to about 560 nm, e.g. about 532 nm. The second laser/LED may be an LED, wherein the second wavelength λ_2 is in the range from about 880 nm to about 920, e.g. about 900 nm.

The third laser/LED may be a blue or violet laser, e.g. wherein the third wavelength λ_3 is in the range from 430 nm to about 490 nm, e.g. about 445 nm or about 473 nm. The third laser/LED may be an LED, e.g. wherein the third wavelength λ_3 is in the range from 930 nm to about 1,000 nm, e.g. about 940 nm.

5 The light source may comprise a UV source, e.g. configured to emit light with a wavelength in the range from about 230 nm to about 400 nm, e.g. about 350 nm.

One or more mirrors or a prism may be used to guide light or an image from the light source and/or image source to the first optical coupler. Different examples of this are shown and described in connection with fig. 2-5.

- 10 The first optical coupler may comprise or consist of an even number of lens elements, e.g. two, four, six, eight, ten, twelve or more lens elements. In one or more embodiments, ten lenses are included in the first optical coupler. In another embodiment, six lenses are included in the first optical coupler. When choosing a lower number of lenses, the optical loss is kept at a minimum, whereas when choosing a
- 15 many lenses, the image quality is improved and the distortion and blurriness are reduced. The relay lens element may comprise between four and twelve lens elements.

The first optical coupler may be adapted for either increasing or decreasing the size of the image after the image has passed through the first optical coupler. In an exemplary method/apparatus, the lens elements in the first optical coupler maps the incoming

- 20 image size by a ratio of 1:1.2, thus the image size of the image coming out of the distal end of the first optical coupler is 20% larger compared to the size of the image entering the first optical coupler at its proximal end. In general, the image size can be mapped in the range from 1:0.5 (i.e. the out-coming image is 50 % smaller than the incoming image) to 1:2.
- Advantageously, the first optical coupler may be a relay lens coupler.

The distal end of the first optical coupler may be secured releasably to the proximal end of the first fiber bundle by a click-release-coupling. This allows for an easy and flexible positioning of the optical fibers in the borehole of the scanner or an easy replacement and/or exchange of the optical fibers or the first optical coupler without

30 moving the other of the two.

Alternatively, for ensuring a constant optimum coupling of the image from the first optical coupler into the optical fibers, the distal end of the first optical coupler may be fixed non-releasably to the proximal end of the first fiber bundle. A second optical coupler comprising a plurality of lens elements including a first lens element and a second lens element may also be included in the surface scanning apparatus and/or the method for tracking the motion. Also, a second fiber bundle comprising second optical fibers having proximal ends and distal ends can be provided

5 and its distal ends positioned within the scanner borehole of the medical scanner. The distal ends of the second optical fibers may be applied for capturing a projected image from a subject in the borehole. This projected image will normally be fed from the proximal ends of the second optical fibers into the second optical coupler.

The second optical coupler may also be adapted for either increasing or decreasing the

10 size of the projected image after the image has passed through the second optical coupler.

At least one of the plurality of lens elements in the first and/or second optical coupler may be achromatic.

In an embodiment of the invention, the first lens element in the first and/or second optical coupler can be positioned at the proximal end of the first and/or second optical coupler, respectively, and the second lens element can be positioned at the distal end of the first and/or second optical coupler, respectively. The first lens element and the second element may further be achromatic with convex sides pointing towards each other.

20 The primary surface of each of the plurality of lens elements in the first and/or second optical coupler may be concave or convex or planar or a combination thereof. Likewise, the secondary surface of each of the plurality of lens elements in the first and/or second optical coupler may be concave or convex or planar or a combination thereof. The primary surface of one or more lens elements may be concave. The primary

25 surface of one or more lens elements may be convex. The primary surface of one or more lens elements may be plane. The secondary surface of one or more lens elements may be concave. The secondary surface of one or more lens elements may be convex. The secondary surface of one or more lens elements may be plane.

The apparatus and the method may further comprise a mirror and/or a prism, and light
from the light source may pass the mirror/prism before entering the first optical coupler.
The first optical fibers may further be adapted for projecting at least one pattern from
the image source via the first optical fibers onto the surface region of the subject
positioned in a borehole of the medical scanner.

8

The first optical fibers may comprise at least 100 optical fibers, such as at least 10,000 fibers, each fiber corresponding to a pixel in a pattern projected onto the surface region of the subject. In one or more embodiments, the number of first optical fibers is equal to or larger than the number of pixels in the image source, for full benefit of the image

5 source resolution. The number of first optical fibers may match or be in the range of ±20% of the resolution of the image source. In one or more embodiments, the number of first optical fibers is less than the number of pixels in the image source, for full benefit of the optical fibers.

The second optical fibers can be adapted for capturing at least one projected pattern and/or image projected form the subject. The second optical fibers may comprise at least 100 optical fibers, such as at least 100,000 fibers. Each second optical fiber may correspond to one or more pixels in a first camera, which the captured image is transmitted to. In one or more embodiments, the number of second optical fibers is equal to or larger than the number of pixels in the first camera for increasing the

15 processing time of the camera. In one or more embodiments, the number of second optical fibers is less than the number of pixels in the first camera for increasing the precision of the image capturing. The number of second optical fibers may match or be in the range of ±50% of the resolution of the first camera.

The first camera may be a CCD camera or a CMOS camera. The first camera may have a resolution of at least 640x480, e.g. 1280X960, 3264x2448 or more.

The surface region may have an area of at least 0.1 cm^2 , e.g. in the range from 1 cm^2 to 500 cm². In one or more embodiments, the surface region area may be in the range from 20 cm² to 100 cm².

The surface region may at least partly cover a nasal region of the subject. This may lead to improved motion tracking due to the significant curvature of the subject surface in this region. Further, facial movements are limited near the bridge of the nose which is preferred when tracking the motion of the scull and the brain.

The apparatus may also comprise a first lens assembly, i.e. projector side projection optics, arranged at and/or attached to the distal end of the first optical fibers for

30 coupling images or pattern sequences from the first optical fibers to the surface region of the subject. The distal ends of the second optical fibers may be provided with a second lens assembly, i.e. image capturing optics, for coupling images or pattern sequences from the surface region of the subject to the second optical fibers.

The apparatus may comprise a frame, wherein the first and second lens assemblies are mounted on the frame. The frame fixes the position between the two distal ends of the fibers bundles and/or between the first and second lens assemblies to maintain a fixed positional relationship in order to provide an accurate movement correction and/or

5 such that the two fiber bundles can be moved together inside the borehole. The distal ends of the first and the second fiber bundles may be mounted on the frame.

The first and second lens assemblies will normally comprise an objective lens with a given focal length and an aperture. The focal length may be changed by exchanging the objective lens. Also by changing the distance between the objective lens and the

- 10 distal ends of the optical fibers in the first or second optical fiber bundle, control of how much of the image source illuminates the subject and which area projected light is captured from, respectively, can be obtained. The aperture in the first and/or second lens assemblies may be adjusted by opening and/or closing them, which also provides a tool for controlling the output from the first optical fibers onto the subject, and the
- 15 projected image from the subject into the second optical fibers for the first lens assembly and the second lens assembly, respectively.

The second lens assembly may also comprise a filter, e.g. a NIR filter. Likewise, the first lens assembly may also comprise a filter.

The first lens assembly may comprise a first mirror/prism. The second lens assembly may comprise a second mirror/prism, respectively. A common mirror/prism may be shared between the first lens assembly and the second lens assembly. A mirror/prism in a lens assembly may provide redirection of the light which may lead to larger freedom in positioning the distal fiber ends/lens assemblies in the bore.

The first and second optical fibers may be arranged in respective first and second fiber arrays. In one or more embodiments, the first optical fibers may comprise a first array of at least 10,000 fibers, such as 100x100 fibers, such as 400x400 or 600x600 fibers or 680x480 fibers or 1,200x1,200 fibers or more. The first optical fibers may comprise a first array of at least 100,000 fibers, e.g. 5,000x5,000 fibers. In one or more embodiments, the second optical fibers comprise a second array of at least 10,000

- 30 fibers, such as 100x100 fibers, such as at least 400x400 or 600x600 fibers or 680x480 fibers or 1,200 x1,200 fibers, or more. The second optical fibers may comprise a second array of at least 100,000 fibers, e.g. 5,000x5,000 fibers. The optical fibers may be arranged in an array of any suitable size and shape, e.g. rectangular, circular, oval, polygonal or others. Typically, the fiber diameter is in the range from 5 to 20
- 35 micrometers. The number of first optical fibers may be larger than 1,000, such as larger

than 10,000. The number of second optical fibers may be larger than 1,000, such as larger than 10,000.

Using first and second optical fibers enables or facilitates the use of the method and apparatus for medical scanners with a permanent magnetic field surrounding the

5 object, e.g. an MR scanner. Further, using first and second optical fibers enables or facilitates the use of the method and apparatus for medical scanners with limited access to the subject due to the subject being positioned in a scanner borehole during scanning.

The first and second fiber bundles may each have a length larger than 1 meter, such

- 10 as larger than 2 meters, e.g. about 5 meters or about 10 meters. In an exemplary apparatus and/or method, the first and second fiber bundles may each have a length between 1 and 5 meters, such as between 2.5 and 3 meters, for example about 2.7 meters. Having a length of the fiber bundles in this length range may enable the user to place the distal ends of the first and second fiber bundles inside the scanner while
- 15 keeping the first and/or second optical couplers at a different location remote from the scanner or even remote from/outside the scanning room.

The length of the fiber bundles allows for positioning of a power management part and/or a computer for controlling a sequence, an image pattern or similar relating to the image source, outside the room with the scanner. This allows for the creation of a

20 remote surface scanner. By separating the electronics from the optical end by the two fibers bundles, a compact, radio frequency noiseless and low attenuation surface scanner is achieved.

In the apparatus and method of this invention, a minimum of components are located in the borehole of the scanner and the disturbing components are kept outside the

25 borehole. This maintains the field of view and the high resolution of nowadays surface scanners. Further, the components located in the borehole of the scanner may be made of non-metallic materials.

The surface scanning apparatus may also comprise a housing which surrounds all the motion tracking elements apart from the fibers bundles which extend from the surface

30 of the housing. The housing may be a radio frequency shielded box costume normally made out of a frame covered by a thin copper layer or sheet, e.g. of a thickness of 1 mm. Any metal suited for shielding the electric components may be used.

A filter of one or more capacitors may ensure that the electromagnetic noise from powering the components inside the housing does not propagate along the power

11

cable. Correspondingly, a power supply is positioned outside the scanner room and the power is led though a filter in the wall into the scanner room and the inside of the housing to feed the relevant components therein.

The surface scanning apparatus may be constructed such that it is part of the medical scanner or be used as an add-on to existing scanners.

Fig. 1a schematically illustrates a medical scanner 30 for use with the method and apparatus. The scanner 30 is an MR scanner comprising a permanent magnet 32 in a scanner housing 34 forming a scanner borehole 36. The scanner 30 comprises a head coil 38 for scanning a subject positioned on the support structure (scanner bed) 39.

10 First lens assembly 42 and second lens assembly 44 are mounted to respective distal ends of first optical fibers 16 and second optical fibers 20 and positioned in the scanner borehole 36 for projecting and detecting pattern sequences on/from a surface region within the head coil 38.

As an alternative to the MR scanner shown in fig. 1a, PET scanner comprising at least one detector ring in a scanner housing forming a scanner borehole could also be imagined. In this case, the distal ends of the respective optical fibers 16, 20 could be positioned outside the detector ring and near the scanner borehole for projecting and detecting pattern sequences on/from a surface region within the scanner borehole. Yet an alternative to the MR scanner of Fig. 1a is a combined MR/PET scanner.

Fig. 1a shows a surface scanning apparatus 2 which is positioned inside the scanner room defined by surrounding walls 52 illustrated by one wall/Faraday cage to the left side of the apparatus 2. A power management and/or controller part 50, e.g. a computer as illustrated in Fig. 1a, is positioned outside the scanner room. The surface scanning apparatus 2 may be positioned outside the scanner room defined by surrounding walls 52 if the optical fibers 16, 20 are sufficiently long.

In Fig. 1a is also shown an optical extender 54 which transfers image data noiseless between the surface scanning apparatus 2 and the computer 50 outside the scanner room. The apparatus 2 can be surrounded by a housing 4 which functions as a radio frequency shielded box. The housing 4 can be made out of a frame, e.g. a wooden

30 frame, covered by a 1 mm copper layer. A filter of capacitors (not shown in the figure) ensures that the electromagnetic noise from powering the components inside the housing does not propagate along the power cable. The power supply optionally being a separate power supply or a part of the power management/controller part 50 is

positioned outside the scanner room and the power is led through a filter in the wall 52 into the scanner room and the elements inside the housing 4 of the apparatus 2.

The distal ends of fibers are provided with respective first and second lens assemblies 42, 44 constituting projection optics and image capturing optics, respectively. A frame

5 46 is used for fixing the position between the first and second lens assemblies 42, 44 and/or between the distal ends of the first and second optical fibers 16, 18, respectively.

The first and second lens assemblies may each comprise an objective lens with a given focal length and aperture. Also, the second lens assembly may comprise a near

10 infra-red (NIR) filter. Both first and second lens assemblies may comprise a first mirror/prism and/or second mirror/prism, respectively. The mirror/prism may be shared between the two lens assemblies.

Fig. 1b schematically shows a surface scanning apparatus 2 of the present invention. The apparatus 2 comprises a housing 4 accommodating a control unit 6 and an image

- 15 source 8 comprising a light source 10 and a light modulator 12. Further, the apparatus 2 optionally comprises a first camera 14 connected to the control unit 6 for exchange of control signals and/or pattern sequence data between the control unit 6 and the first camera 14. During use, first optical fibers 16 are coupled to the apparatus at the proximal ends 17 of the first optical fibers via first optical coupler 18 such that light from
- 20 the image source 8 is coupled into the first optical fibers 16. The first optical coupler 18 has a proximal end 15 and a distal end 19.

The apparatus optionally comprises a memory unit 24 and a user interface unit 26.

The first optical fibers 16 may be fixedly mounted to the housing 4, i.e. the first optical fibers 16 may form a part of the apparatus 2. Alternatively, a distal end 19 of the first optical coupler 18 may be secured releasably to the proximal ends 17 of the first fiber

25 optical coupler 18 may be secured releasably to the proximal ends 17 of the first fiber bundle 16 by a click-release-coupling.

During use, second optical fibers 20 are coupled to the apparatus 2 at the proximal ends 21 of the second optical fibers 20 via second optical coupler 22 such that pattern sequences or images projected on the surface region is detected by the first camera

30 14. The second optical coupler 18 comprises a proximal end 23 and a distal end 25. The first and second optical fibers may be fixedly mounted to the housing 4, i.e. the first and second optical fibers may form a part of the apparatus 2, thereby simplifying setting up the apparatus.

PCT/EP2014/074509

13

Alternatively, the distal end 19 of the first optical coupler 18 and/or the distal end 25 of the second optical coupler 22 may be secured releasably to the proximal ends 17 of the first fiber bundle 16 and the proximal ends 21 of the second fiber bundle 20, respectively, by a click-release-coupling.

- 5 The apparatus 2 is configured for projecting a first pattern sequence (S1) onto a surface region of the subject with the image source 10, wherein the subject is positioned in a scanner borehole of a medical scanner, the first pattern sequence optionally comprising a first primary pattern (P_{1,1}) and a first secondary pattern (P_{1,2}). The apparatus 2 may be configured for detecting the projected first pattern sequence
- 10 (S1') with the first camera 14. The control unit 6 optionally determines a second pattern sequence (S2) comprising a second primary pattern (P_{2,1}) based on the detected first pattern sequence (S1') and sends control signals to the image source 8 with image source 10 and light modulator 12 projecting images in the form of the second pattern sequence (S2) onto a surface of the subject via the first optical coupler 18. The
- 15 projected second pattern sequence (S2') may be detected with the first camera 14 and the pattern sequence data are processed in the control unit and/or in the first camera 14 and/or in external computer 50. Upon or during detection of pattern sequence data, the apparatus 2 or external computer 50 determines motion tracking parameters based on the detected second pattern sequence (S2').
- Figs. 2-5 show different embodiments of the first optical coupler 18 comprising a plurality of lens elements *l*_{1,...,} *l*_N, including a first lens element *l*₁ and a second lens element *l*₂. In Fig. 2, two lens elements are provided whereas Figs. 3 and 4 show a large plurality of lens elements. In Fig. 5, the first optical coupler 18 is a relay lens coupler comprising or consisting of a number of N lens elements positioned inside an outer housing of the relay lens coupler. N may be six, eight or ten.

Figs. 2-5 show only the first optical coupler 18, however the second optical coupler 22 may have an identical or different construction as the embodiments shown in Figs. 2-5 for the first optical coupler 18. The following description of the lens elements in the first optical coupler 18 may therefore also apply to the lens elements in the second optical

30 coupler 22.

Each lens element of the plurality of lens elements $I_{1, ...,} I_N$ comprises a primary surface 28 facing a distal end 19 of the first optical coupler 18, and a secondary surface 29 facing a proximal end 15 of the first optical coupler 18. Normally, there will be an even number of lens elements in the first and/or second optical coupler 18, 22. There may

35 be two, four, six, eight, ten, twelve or more lens elements l_{1, \dots, l_N} .

One or more of the lens elements I_N may be achromatic, e.g. at least one of the plurality of lens elements is achromatic. In Fig. 2-5 only chromatic lens elements are shown.

In one or more embodiments, the first lens element I_1 is positioned at the proximal end

5 15 of the first optical coupler 18 and the second lens I_2 element is positioned at the distal end 19 of the first optical coupler 18, as shown in Fig. 2. In Fig. 2, both lens elements are chromatic. However, the first lens element I_1 and the second element I_2 could also be achromatic with convex sides pointing towards each other.

In the apparatus, mirrors and/or prisms may be used to guide the image from the

image source 8 to the first optical coupler 18. In Figs. 2 and 3, a mirror 7 is used for guiding the image from the image source to the light modulator 12 from where it is guided to the proximal end 15 of the first optical coupler 18. In Figs. 4 and 5, the image passes from the image source 8 through a prism 9 to the light modulator 12 from where it again passes through the prism 9 in such a manner that the image is guided directly
into the proximal end 15 of the first optical coupler 18.

The first and/or second optical coupler 18, 22 may be adapted for either increasing or decreasing the size of the image and/or the projected image, respectively such that the size of the image / projected image is either larger or smaller after having passed through the first and/or second optical coupler.

A simple schematic illustration of how the image size can be increased or decreased using an optical coupler is shown in Fig. 6a-b. In Fig. 6a, the image size is decreased from a size d_{in} of the incoming image to a size of d_{out} of the outcoming image, where $d_{in} > d_{out}$, whereas in Fig. 6b, the image size is increased from d_{in} of the incoming image to a size of d_{out} , where $d_{in} > d_{out}$. The different focal length f_1 , f_2 of the lens elements are illustrated in the figures.

25 illustrated in the figures.

By utilizing more than two lens elements, an improved correction and reduced (geometric) distortion may be obtained. Further, aberration effects are reduced. This allows the user to control the how large a part of the image which is coupled into the first optical fibers 16 and control the size of the projected image, which comes out of

the second optical coupler 22 after having been collected by the second optical fibers20.

Figs. 7a-b show two different examples of a relay lens couplers which may be used in the invention as the first optical coupler 18 and/or the second optical coupler 22.

In Fig. 7a, the relay coupler comprises or consist of six lens elements I_1 , I_2 , I_3 , I_4 , I_5 , I_6 arranged symmetrically such that the outermost lens elements I_1 , I_6 are nearly identical in size oriented such that they are a mirror image each other. Likewise, the lens elements I_2 , I_5 positioned adjacent to the outermost lens elements I_1 , I_6 form a mirror

5 image pair and so forth for the next lens elements approaching the middle of the relay lens coupler. Four of the lens elements *l*₁, *l*₃, *l*₄, *l*₆ are planoconvex, i.e. they have a convex side and a plane side, whereas the other two lens elements *l*₂, *l*₅ are biconcave, i.e. both the primary and the secondary side of the lens elements are concave.

Fig. 7b shows a relay lens coupler comprising ten lens elements I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 , I_9 ,

- 10 *I*₁₀ again arranged symmetrically with the lens elements pair wise from the two outermost lens elements towards the centre of the relay lens coupler being mirror images of one another. In Fig. 7a, four of the lens elements *I*₁, *I*₄, *I*₇, *I*₁₀ are planoconvex, two of the lens elements *I*₃, *I*₈ are biconcave, two of the lens elements *I*₂, *I*₉ are biconvex, i.e. both the primary and the secondary side of the lens elements are
- 15 convex, and the last two elements l_5 , l_6 are planoconcave, i.e. they have a concave side and a plane side.

The number of lens elements pairs is not limited to the examples shown in Fig. 7a-b. Further the combination of sizes and shapes of the lens elements may also vary, e.g. different combinations of planoconcave, planoconvex, biconcave, and/or biconvex lens

20 element pairs positioned such they form a mirror image of one another could also be imagined.

It should be noted that in addition to the exemplary embodiments of the invention shown in the accompanying drawings, the invention may be embodied in different forms and should not be construed as limited to the embodiments set forth herein.

25 Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

REFERENCES

- 2 Apparatus
- 4 Housing
- 6 Control unit
- 5 7 Mirror
 - 8 Image source
 - 9 Prism
 - 10 Light source
 - 12 Light modulator
- 10 14 First camera
 - 15 Proximal end of the first optical coupler
 - 16 First optical fibers
 - 17 Proximal ends of first optical fibers
 - 18 First optical coupler
- 15 19 Distal end of the first optical coupler
 - 20 Second optical fibers
 - 21 Proximal ends of second optical fibers
 - 22 Second optical coupler
 - 23 Proximal end of the second optical coupler
- 20 24 Memory
 - 25 Distal end of the second optical coupler
 - 26 User interface
 - 28 Primary surface of the lens elements
 - 29 Secondary surface of the lens elements
- 25 30 Medical scanner
 - 32 Magnet
 - 34 Scanner housing
 - 36 Scanner borehole
 - 38 Head coil
- 30 39 Scanner bed
 - 40 Subject
 - 42 First lens assembly
 - 44 Second lens assembly
 - 46 Frame
- 35 50 Power management part
 - 52 Wall surrounding the scanner room

- 54 Optical extender
- I_N N'th lens element
- *I*₁ First lens element
- *I*₂ Second lens element
- 5 I_3 Third lens element
 - *I*₄ Fourth lens element
 - *I*₅ Fifth lens element
 - *I*₆ Sixth lens element
 - *I*₇ Seventh lens element
- 10 I_8 Eights lens element
 - *I*₉ Ninths lens element
 - I_{10} Tenths lens element
 - d_{in} Size of the image before entering the first/second optical coupler
 - d_{out} Size of the image after exiting the first/second optical coupler
- 15 f_1 Focal length of the first lens element
 - *f*₂ Focal length of the second lens element

CLAIMS

15

20

30

1. A method for surface scanning in medical imaging, the method comprising

providing an image source and a first fiber bundle comprising first optical fibers having proximal ends and distal ends;

5 positioning the distal ends of the first optical fibers within a scanner borehole of a medical scanner;

feeding an image from the image source into a proximal end of a first optical coupler, the first optical coupler comprising a plurality of lens elements including a first lens element and a second lens element;

- 10 feeding an image from a distal end of the first optical coupler into the proximal ends of the first optical fibers.
 - Method according to claim 1, wherein the image source has a resolution of 480x320 pixels or more.
 - 3. Method according to any of claims 1-2, wherein the image source includes a digital micromirror device (DMD) chip.
 - 4. Method according to any of claims 1-3, wherein the image source is connected to a control unit for receiving control signal(s) from the control unit, the control signal(s) comprising a pattern sequence selector, and wherein the image source is configured for projecting different pattern sequences dependent on the pattern sequence selector.
 - 5. Method according to claim 4, wherein a number of different pattern sequences are stored in the image source, and the image source is configured to project a selected pattern sequence based on the pattern sequence selector from the control unit.
- Method according to any of claims 1-5, wherein the image source comprises a light source, and a mirror or a prism is used to guide light from the light source towards the first optical coupler.
 - 7. Method according to any of the preceding claims, wherein the first optical coupler is a relay lens coupler.

- 8. Method according to any of the preceding claims, wherein the distal end of the first optical coupler is releasably secured to the proximal end of the first fiber bundle by a click-release-coupling.
- 9. Method according to any of claims 1-7, wherein the distal end of the first optical coupler is fixed non-releasably to the proximal end of the first fiber bundle.
- 10. Method according to any of the preceding claims, the method comprising

providing a second optical coupler comprising a plurality of lens elements including a first lens element and a second lens element;

providing a second fiber bundle comprising second optical fibers having proximal ends and distal ends;

positioning the distal ends of the second optical fibers within the scanner borehole of the medical scanner;

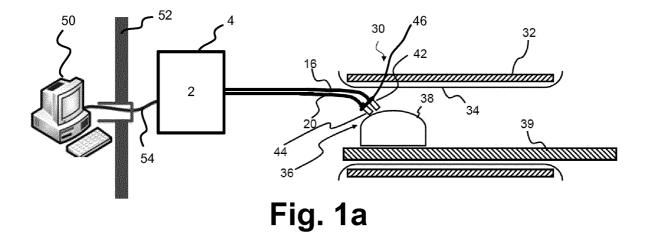
capturing a projected image from a subject in the borehole by the distal ends of the second optical fibers; and

- 15 feeding the projected image from the proximal end of the second optical fibers into the second optical coupler.
 - 11. Surface scanning apparatus for surface scanning in medical imaging, the apparatus comprising
- 20 an image source,

a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and

a first optical coupler for coupling an image from the image source into the proximal ends of the first optical fibers,

25 wherein the first optical coupler comprises a plurality of lens elements including a first lens element and a second lens element, each of the plurality of lens elements comprising a primary surface facing a distal end of the first optical coupler, and a secondary surface facing a proximal end of the first optical coupler.

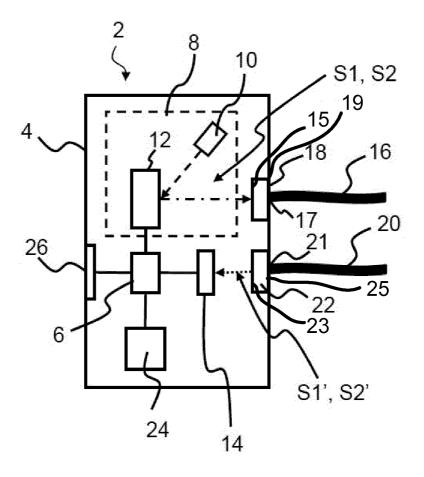
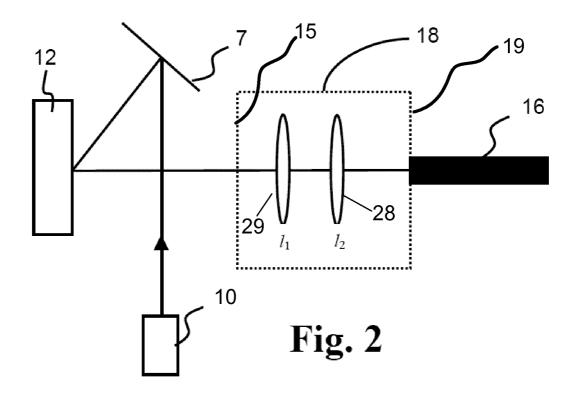
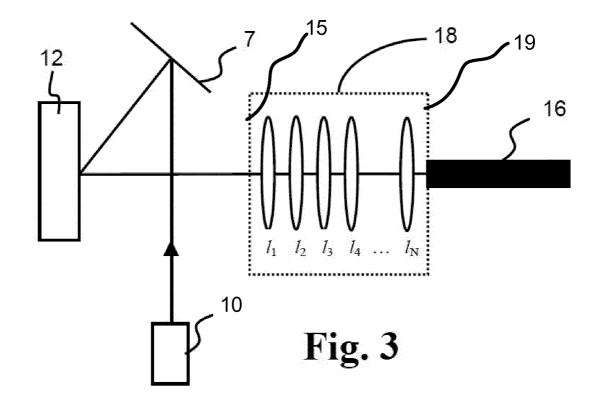
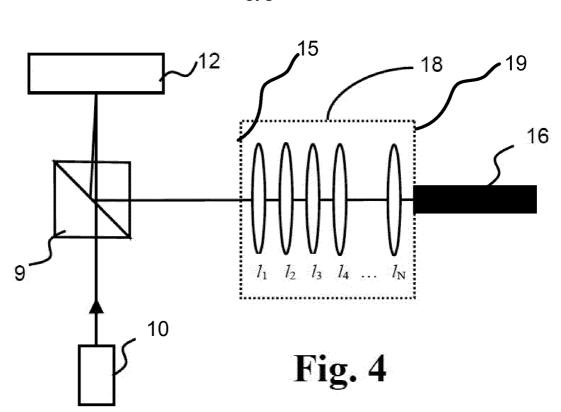

5

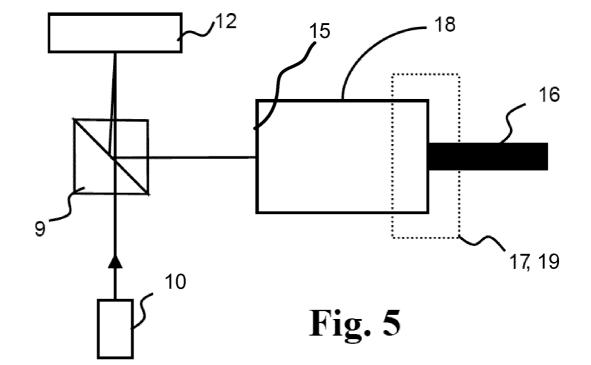
- 20
- 12. Surface scanning apparatus according to claim 11, wherein the image source has a resolution of 480x320 pixels or more.
- 13. Surface scanning apparatus according to any of claims 11-12, wherein the image source includes a digital micromirror device (DMD) chip.
- 5 14. Surface scanning apparatus according to any of claims 11-13, wherein the image source is connected to a control unit for receiving control signal(s) from the control unit, the control signal(s) comprising a pattern sequence selector, and wherein the image source is configured for projecting different pattern sequences dependent on the pattern sequence selector.
- 10 15. Surface scanning apparatus according to claim 14, wherein a number of different pattern sequences are stored in the image source, and the image source is configured to project a selected pattern sequence based on the pattern sequence selector from the control unit.
- 16. Surface scanning apparatus according to any of claims 11-15, wherein the first
 optical coupler comprises an even number of lens elements, e.g. two, four, six, eight, ten, twelve or more lens elements.
 - 17. Surface scanning apparatus according to anyone of the claims 11-16, wherein the first optical coupler is a relay lens coupler.

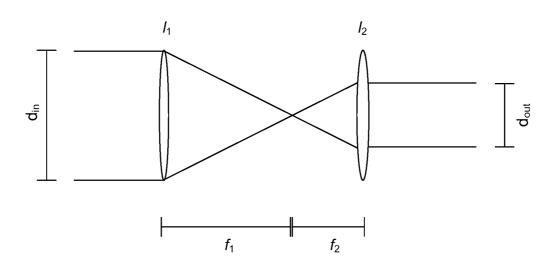
- 18. Surface scanning apparatus according to anyone of the claims 11-17, wherein the distal end of the first optical coupler is releasably secured to the proximal end of the first fiber bundle by a click-release-coupling.
- 25 19. Surface scanning apparatus according to anyone of the claims 11-17, wherein the distal end of the first optical coupler is fixed non-releasably to the proximal end of the first fiber bundle.
- 20. Surface scanning apparatus according to anyone of the claims 11-19, wherein atleast one of the plurality of lens elements is achromatic.

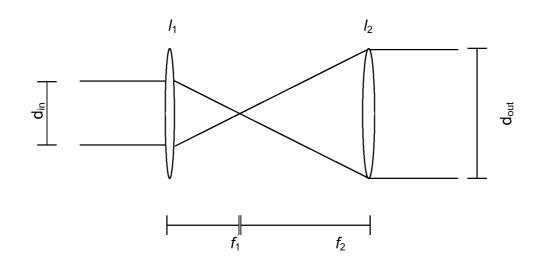
- 21. Surface scanning apparatus according to claim 20 wherein the first lens element is positioned at the proximal end of the first optical coupler and the second lens element is positioned at the distal end of the first optical coupler, wherein the first lens element and the second element are achromatic with convex sides pointing towards each other.
- 22. Surface scanning apparatus according to anyone of the claims 11-21, wherein the primary surface of each of the plurality of lens elements is concave or convex, and the secondary surface of each of the plurality of lens elements is concave or convex.

1/5

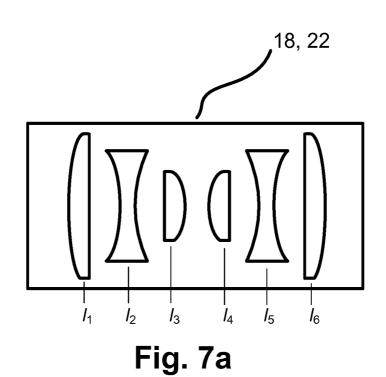






Fig. 1b





3/5



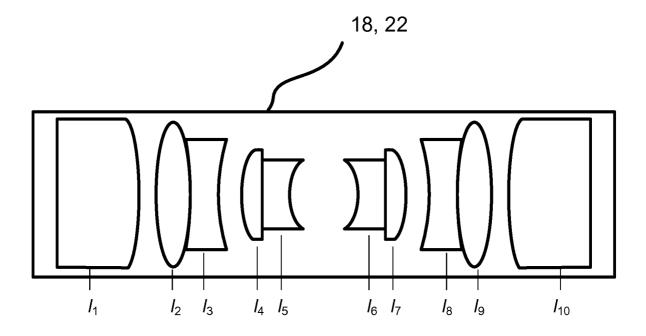


Fig. 7b

	INTERNATIONAL SEARCH R	EPORT	application No				
			014/074509				
INV.	FICATION OF SUBJECT MATTER A61B5/00 A61B5/11 A61B6/00 A61B5/055 G02B6/32						
According to	International Patent Classification (IPC) or to both national classificat	ion and IPC					
B. FIELDS	SEARCHED						
	cumentation searched (classification system followed by classification $H04N$ $G01R$ $G02B$ $A61N$	n symbols)					
	ion searched other than minimum documentation to the extent that su						
	ata base consulted during the international search (name of data base	e and, where practicable, search terms	used)				
EPO-In	EPO-Internal, WPI Data						
C. DOCUME	NTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relev	/ant passages	Relevant to claim No.				
Х	US 2013/093866 A1 (OHLHUES ANDERS AL) 18 April 2013 (2013-04-18) paragraphs [0026] - [0038], [006 [0075], [0086] - [0111], [0165] [0173]; claims; figures	5] -	1-22				
Х	US 6 768 593 B1 (JUTAMULIA SUGAND 27 July 2004 (2004-07-27) column 3, line 45 - column 7, lin claims; figures	1,6-11, 16-22					
X	US 2004/111032 A1 (KORN JEFF [US] 10 June 2004 (2004-06-10) paragraphs [0006] - [0009], [001 [0015], [0018] - [0019], [0029] [0043]; claims; figures 	1,6-11, 16,17, 19-22					
X Furth	ner documents are listed in the continuation of Box C.	X See patent family annex.					
 * Special categories of cited documents : * "A" document defining the general state of the art which is not considered to be of particular relevance * "E" earlier application or patent but published on or after the international filing date * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) * "O" document referring to an oral disclosure, use, exhibition or other means * "P" document published prior to the international filing date but later than the priority date claimed * Date of the actual completion of the international search * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention * "T" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art * "A" document member of the same patent family Date of mailing of the international search report 							
2	7 November 2014	04/12/2014					
Name and n	nailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Crisan, Carmen-	Clara				

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/074509

C(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	EP 1 513 446 A2 (BIOPHYMED [FR]) 16 March 2005 (2005-03-16) the whole document	1,6-11, 16-22
Х	US 2012/123205 A1 (NIE SHUMING [US] ET AL) 17 May 2012 (2012-05-17) paragraphs [0004], [0073] - [0075], [0080], [0085], [0091], [0094], [0097], [0100] - [0105], [0195] - [0199]	1,6-11, 16-22
Х,Р	WO 2013/174980 A1 (UNIV DANMARKS TEKNISKE [DK]) 28 November 2013 (2013-11-28) the whole document	1-22
A	US 4 796 969 A (FANTONE STEPHEN D [US]) 10 January 1989 (1989-01-10) the whole document	8-15
A	OLINE VINTER OLESEN ET AL: "Motion Tracking for Medical Imaging: A Nonvisible Structured Light Tracking Approach", IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 31, no. 1, 1 January 2012 (2012-01-01), pages 79-87, XP011391090, ISSN: 0278-0062, DOI: 10.1109/TMI.2011.2165157 the whole document	1-22
A	JASON GENG: "Structured-light 3D surface imaging: a tutorial", ADVANCES IN OPTICS AND PHOTONICS, vol. 3, no. 2, 31 March 2011 (2011-03-31), page 128, XP055033088, DOI: 10.1364/AOP.3.000128 the whole document	1-22

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

	Informa	tion on patent family mer	nbers		PCT/EP2	2014/074509
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2013093866	A1	18-04-2013	EP US WO	2547259 2013093860 201111344	6 A1	23-01-2013 18-04-2013 22-09-2011
US 6768593	B1	27-07-2004	CN US	1540382 6768593		27-10-2004 27-07-2004
US 2004111032	A1	10-06-2004	NONE			
EP 1513446	A2	16-03-2005	AT AU DE EP FR WO	321490 2003255588 60304343 1513440 2839633 03096900	5 A1 3 T2 6 A2 7 A1	15-04-2006 02-12-2003 30-11-2006 16-03-2005 21-11-2003 27-11-2003
US 2012123205	A1	17-05-2012	EP US WO	263755 201212320 201206516	5 A1	18-09-2013 17-05-2012 18-05-2012
WO 2013174980	A1	28-11-2013	NONE			
US 4796969	A	10-01-1989	NONE			