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Method6

Statistical model7

We consider datasets consisting of a set of allelic counts at bi-allelic loci for a set of reference8

populations of known geographic locations. Additionally, genotypes for orthologous loci are9

available for individuals of unknown geographic origin. Our method is tailored to geoposition10

the latter individuals given the set of geo-referenced genetic data (hereafter referred to as11

training data). We denote by fsl the frequency of a reference allele at locus l at geographic12

location s. We assume that the number of reference alleles is binomial B(nsl, fsl) with13

statistical independence across loci. This amounts to assuming that inviduals located around14

location s form a population at Hardy-Weinberg equilibrium with linkage equilibrium across15

markers. Our model has therefore the same likelihood function as described by Pritchard16

et al. (2000). We assume that spatial variation of allele frequencies can be described by17

a non-parametric surface in two dimensions. Following Wasser et al. (2004), we model the18

spatial variation of (fsl)s by a set of spatially auto-correlated random variables with Gaussian19

distribution (a random field) denoted by ysl. We assume that fsl and ysl relate through a20

logistic function fsl = 1/[1 + exp−(al + ysl)] where al is a locus-specific intercept. We21

model the spatial auto-covariance of allele frequencies by imposing a parametric form to22

Cov[ysl, ys′l].23

We should stress that our method is designed to perform continuous assignment. There-24

fore, we cannot only rely on a covariance matrix, but need instead a covariance function,25

which models covariance variation in the continuous space. We assume that Cov[ysl, ys′l] =26

C(|s − s′|) = C(h) for some function C, implying that the spatial auto-covariance only de-27

pends on the geographical distance h = |s− s′|. As commonly assumed in spatial statistics28

and for reasons that will appear later, we consider that C belongs to the Matérn family i.e.29

C(h) = σ2(κh)ν21−νΓ−1(ν)Kν(κh) where Kν is the modified Bessel function of the second30

kind of order ν > 0, κ > 0 is a scaling parameter and σ2 is the marginal variance. This model31

can be defined either in a flat geographical domain, using straight-line distances (2D) or on32

the sphere using great circle distances (a sub-model referred to below as 3D model) which33

is more appropriate when analyzing worldwide datasets. The Matérn family of covariance34
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function is broad and flexible, it includes for example the widely used exponential covariance35

function σ2 exp(−κh) as a particular case (Gelfand et al., 2010; Porcu et al., 2010). Under36

our model, the covariance between allele frequencies at geographical locations s and s′ decays37

with the geographical distance |s−s′| and therefore models the form of population structure38

known as isolation-by-distance (Guillot et al., 2009; Guillot and Orlando, 2015). However,39

its main advantage is computational, as explained in the next section.40

Estimation within the INLA-GMRF-SPDE framework41

A key feature of our model is that it can be handled within the theoretical and computational42

framework developed by Rue et al. (2009) and Lindgren et al. (2011). The former develops43

a framework for Bayesian inference in a broad class of models enjoying a latent Gaussian44

structure. The latter bridges a gap between Markov random fields (MRF) and Gaussian45

random fields (GRF) theory and makes it possible to combine the flexibility of Gaussian46

random fields for modelling and the computational efficiency of Markov random fields for47

inference. The approach of Lindgren et al. (2011) is based on the observation that a Gaussian48

random field y(s) with a Matérn covariance function is the solution of the stochastic partial49

differential equation (SPDE). Solving numerically this SPDE with finite element techniques50

and a smart choice of basis functions makes it possible to use Markov properties. This51

framework can be embedded in the INLA method of Rue et al. (2009), which makes use of the52

Markovian structure of the model during computation. The INLA and SPDE appproximate53

inference methods are implemented in the R-INLA package (Rue et al., 2014). See also54

Guillot et al. (2013) for the use of a related model in genomics.55

Practical implementation of INLA-GMRF-SPDE56

We now describe specific steps for casting the problem of continuous geographic assignment57

in the INLA-GMRF-SPDE framework. The location of samples from unknown geographical58

origin is estimated following three steps.59

In the first step, we estimate the parameters of the GMRF-SPDE model from the set of geo-60

referenced genetic data. There are three parameters (σ, κ, ν). However, in line with Lindgren61

et al. (2011) and to minimize the computational burden, we set ν = 1. We stress that62
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the inferential difficulties reported under Markov Random field models by Sørbye and Rue63

(2014) bear on Intrinsic Markov Random fields (IMRF). The SPDE-GMRF model considered64

here differs sharply from the IMRF model and is not subject to this issue. The estimated65

parameters (σ, κ) of the GMRF-SPDE model summarize information on the magnitude and66

the spatial scale of variation of allele frequencies. This step involves processing the whole67

dataset jointly and can be computed for datasets consisting of typically˜500 individuals and68

˜1,000 loci. For larger datasets, we devised a strategy limiting computational demands and69

running times by picking a random subset of loci and performing inference of σ and κ on70

this subset. In the second step, we compute estimated geographic maps of allele frequencies71

for each locus using the parameters previously estimated.72

In the third step, we assign samples of unknown origin by maximizing the likelihood that73

a sample comes from a specific location over the study area (in practice, the nodes of a74

grid which can be easily chosen to be fine enough to avoid any discretization issue). In the75

latter step, we maximimise the likelihood p(genotypes|allele freq., locations) with respect to76

the geographical locations, assuming allele frequencies are perfectly estimated. The method77

provides therefore not only a point estimate of the unknown geographic origin but also a map78

informative about uncertainty in assignment and multiple putative origins, as illustrated in79

figure I. See (Rue et al., 2009; Lindgren et al., 2011; Simpson et al., 2012; Martins et al.,80

2013) for details on the INLA method and its implementation with random fields models.81

The main competitors of SPASIBA are the SCAT program of Wasser et al. (2004) and82

the SPA program of Yang et al. (2012). We therefore compare our method to the latter. The83

accuracy of the INLA method in spatial statistics being widely validated (Lindgren et al.,84

2011; Simpson et al., 2012; Martins et al., 2013). Additionally, our model is very similar to85

that of Wasser et al. (2004). As running SCAT on a single dataset of more than 1,000 loci86

typically requires weeks of computations, we did not carry out full comparison of SPASIBA87

and SCAT. The comparison was, therefore, limited to SPASIBA and SPA. Furthermore, our88

focus is on medium-density SNP datasets which are becoming increasingly more common in89

the field of ecology. Therefore, we do not compare to recent methods that require high-density90

SNP data (Drineas et al., 2010; Baran et al., 2013; Rañola et al., 2014; Yang et al., 2014).91

We also stress that our method is tailored to perform continuous geographic assignment,92
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Figure I: Map of SPASIBA likelihood scores and assignment error (green arrow) recovered
for one individual. Data were simulated under model underlying the SPASIBA program (50
diploid individuals with known origin, 200 SNP markers). We used SPASIBA to assign the
most likely geographic origin of a given individual. The red dot indicates the true geographic
position of the individuals, while the green triangle corresponds to the position inferred by
SPASIBA. Typically, an individual located in an area of low spatial sampling density (left
panel) is assigned with larger errors than an individual located in a area of high spatial
sampling density or close to an individual of the training sample (right panel). The map
relative to a specific individual can be checked for the existence of several local maxima.
The various global maxima corrponding to the various individuals can be compared and
help identify which individuals are assigned with low and large confidence.

therefore we do not compare it to methods designed to assign individuals to a set of known93

populations such as GENECLASS (Piry et al., 2004).94
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Results95

Model validation on simulated data96

We validated our method on datasets simulated under various spatially explicit models,97

in line with the validation strategy used earlier by Novembre et al. (2008) and Bradburd98

et al. (2013). A set of individuals is randomly selected and removed from the dataset.99

Remaining individuals are used to train the algorithm (training dataset) while individuals100

initially removed from the dataset are used as testing data for which we predict their spatial101

origin using genotype information only. The accuracy of each method is assessed using the102

average geographical distance obtained between predicted and known geographical positions.103

We first simulated datasets under the model underlying the SPA program (Yang et al.,104

2012) in which variation of allele frequencies is given by a logistic function in two dimensions105

characterized by an origin, a slope and a direction. We considered a training set consisting106

of 100 diploid individuals and evaluated accuracy in assignment for 200 individuals. The107

locations of individuals were sampled from a uniform distribution on the unit square, the108

direction of the cline was sampled uniformly on [−π, π] and the slope was sampled uniformly109

on [1, 10]. This type of simulation can be seen as the best-case scenario for the SPA method.110

We then simulated data under the geostatistical random field model underlying the SPA-111

SIBA program. The data simulated here display far more variability than those generated112

under the SPA model. We considered a training set consisting of 100 diploid individuals and113

evaluated accuracy in assignment for 200 individuals. The marginal variance of the random114

field was set to one and the scale parameter to 10/3 on a unit square domain.115

Lastly, we used the MS program (Hudson, 2002)) to simulate data under a two-dimensional116

stepping stone model. This approach was selected because it explicitly accounts for demo-117

graphic and mutational processes and therefore provides spatial genetic structure. Impor-118

tantly, it does not rely on any of the assumptions underlying the SPA and the SPASIBA119

program. Data were simulated for haploid individuals on a 20x20 grid with training and120

testing sets of size 380 and 20 individuals respectively. In all cases the mutation and migra-121

tion were controlled by setting mutation rate 4Nµ = 1 and the migration rate 4Nm = 0.4.122

Simulations were performed for a number of loci varying from 20 to 5,000. Results reported123
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for each condition are obtained as averages over five independent datasets. Results for the124

three types of simulations are summarized on figure II.125

For data simulated under the logistic curve underlying the SPA program, our method126

performed similarly or better than the SPA method, as long as a large number of loci was127

considered (superior to 1,000). For smaller datasets, SPASIBA achieved better accuracy128

than SPA, with for example an average error twice smaller for 20 loci (Fig. II top panel).129

For data simulated under the geostatistical model underlying the SPASIBA program, the130

assignment errors are typically larger than those observed for data simulated under the SPA131

model, which reflects the greater spatial complexity in the genetic variation simulated. In132

such conditions, the SPASIBA method outperforms the SPA method regardless of the num-133

ber of loci analyzed (Fig. II middle panel).134

In our attempts to implement the SPA program on the stepping-stone data, we faced numer-135

ous cases where the assignment error appears of several orders of magnitude larger than the136

size of the geographic domain considered. This phenomenon becomes increasingly important137

with increasing numbers of loci (Tab. I). Even when discarding such problematic datasets138

from the analysis, the assignment error of the SPA method is larger (up to about 10-fold139

over the range of loci considered) than that of SPASIBA (Fig. II bottom panel).140

As SPASIBA provided great performance in simulated settings, we next applied our141

method to three real datasets, selected to represent a range of possible biological situations.142
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Figure II: Assignment error on simulated data. We simulated spatially explicit genetic
datasets using three methods (Top: SPA, Middle: SPASIBA, Bottom: MS). In the bot-
tom plot, the curve for the SPA method corresponds to the subset of data where SPA did
not fail, see text for detail. 8



Nb loci \Index sim 1 2 3 4 5
10 0 0 2 0 0
20 0 0 0 0 0
50 0 0 0 0 0
100 0 0 0 0 0
200 0 0 0 0 0
500 0 0 13 11 0
1000 0 1 0 6 13
2000 8 0 3 0 9
5000 8 10 20 12 9
10000 7 11 9 13 11

Table I: Summary about problematic runs with the SPA program on data simulated under a
stepping stone model: number of individuals with outlier estimated coordinates. These are
defined conventionally as those larger than 1064.
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Florida scrub jays143

We consider here a dataset consisting of 1,311 Florida scrub jay birds (Aphelocoma cœrulescens),144

which are known for their short dispersal distances (Woolfenden and Fitzpatrick, 1984, 1996;145

Fitzpatrick et al., 1999). For example, Coulon et al. (2010) reported dispersal distances of146

the order of 1.3-4.2 km (depending on sex and habitat). This species is therefore expected147

to show strong geographical population structure, which should facilitate geospatial assign-148

ment. The species was sampled extensively over Florida and genotyped for a limited number149

of SNP markers (for a total of 41). This allowed us to explore how the method performs150

with types of datasets that are classical for ecological surveys and population monitoring.151

The population density and the spatial sampling strategy are both characterized by the152

absence of clusters, which are known to be problematic for traditional population-based as-153

signment methods (Manel et al., 2005). We investigated the assignment accuracy of our154

method by splitting the dataset into a random training set of 1,000 individuals, the 311155

remaining individuals being used as a testing set. Running the SPA program on the same156

training and testing dataset returned non-sensical results with a large proportion of individu-157

als assigned at locations farther than several thousands of kilometers away from Florida. For158

SPASIBA outputs, we computed the distance between the predicted origin and the sampling159

location and used this as a genuine measure of the assignment error. This distance has a160

median of 26.4 km, a 75% quantile of 76.6 km and a maximum of 274.5 km. The distribu-161

tion of the distance between predicted origin and sampling location is displayed on figure III.162

This, together with the short dispersal distances of Florida scrub jays, suggests that even if a163

dispersal event occured for individuals of our testing set, at the scale of Florida, our method164

is able to detect their birthplace with relatively high accuracy. This is particularly striking165

as only 41 SNPs were considered and those had not been pre-selected for the purpose of166

making assignment, not even for their ability to a priori reflect population structure.167
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panel.
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Arabidopsis thaliana in Europe168

We further explore the performance of our method using a large genetic dataset of Arabidopsis169

thaliana, which represents an extensively studied model organism. We consider here a subset170

of the data from Horton et al. (2012), consisting of the 1,007 samples located in Eurasia171

with longitude between 20◦W and 100◦E. We perform assignment on random training sets172

of eight hundreds specimens at random subsets of L = 100 then L = 1, 000 loci. Geospatial173

assignment was performed in each case using the remaining 207 samples. Because the data174

are sampled at large scale, we investigate both the 2D and 3D versions of these programs. In175

many runs of SPA in the 3D option, the output was non-sensical, showing samples assigned176

to geographic regions located at the antipodes of the sampling area. We therefore limited177

our exploration of the 3D option to L = 100. We found that SPASIBA was more accurate178

than SPA for all cases considered, and predicted the geographic position of a large number of179

specimens to be extremely close to their known positions (Fig. IV). More specifically, three180

quarters of the samples were assigned within 375 kilometers of their exact geographic origin,181

when using 100 loci and within 93 kilometers when using 1,000 loci.182
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Geographic assignment of Europeans183

Lastly, we explore the performance of our method in a case where extensive genetic infor-184

mation is available for a large number of individuals. More specifically, we consider here185

the subset of the Population Reference Sample (POPRES Nelson et al., 2008), used by186

Novembre et al. (2008) which consists of 1,385 individuals with grandparents of similar an-187

cestry. We use genotypes at 197,146 loci (after pruning tightly linked loci). In this dataset,188

the exact geographic origin of individuals is unknown and each individual is conventionally189

geo-referenced to the centre of its reported country of origin (except for a few countries for190

which another location was considered more reflective of the origins of these individuals).191

This implies that the uncertainty in the known geographic origin of samples varies with the192

size of the country of origin, ranging from around 80 km in Macedonia up to thousands of193

kilometres in Russia.194

To assess the accuracy of methods on this dataset, we proceeded in two different ways to195

compute predicted maps of allele frequencies. In a first assessment, we used the whole dataset196

to compute these maps and estimated origins of each individual using these maps. This is197

likely to produce unrealistically low estimates of assignment errors. Therefore, to assess the198

accuracy of the two methods in a more realistic setting, and following a strategy taken by199

Wasser et al. (2004), we removed all individuals of a country at a time from the dataset, then200

computed predicted maps of allele frequency with a training set of geo-referenced genotypes201

consisting of individuals from all other countries only (which we refer below to as ’leave-one-202

population-out’) and estimated origins of remaining individuals from these maps. The detail203

of estimated origins is displayed in figure V.204

In the approach using the whole dataset to obtain allele frequencies maps, the median dis-205

tance of the estimated origins to the centre of the country is 72.8 km for SPASIBA (187 km206

for SPA) and the bias (defined as the mean distance of the per-country average estimated lo-207

cation to the country center) is 7.9 km for SPASIBA (21.8 km for SPA). Therefore, under this208

validation scheme, both methods show great accuracy, albeit SPASIBA consistently shows209

slightly better performance than SPA. Under the leave-one-population-out strategy, these210

statistics are respectively 696 km and 45.8 km for SPASIBA (543 km and 75km for SPA).211
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This suggests that the accuracy of both methods is extremely reduced when the training212

dataset does not include a population from the same genetic background as the test indi-213

viduals. Importantly, while SPA appears to perform better than SPASIBA in this setting,214

the assignment errors of SPASIBA appear to be homogeneously distributed geographically215

in contrast to those of SPA, which all appear to converge to the center of the study domain.216

Miscellaneous remarks217

The statistical model underlying our method is largely reminiscent of the SCAT program218

(Wasser et al., 2004, 2007). However, taking advantage of INLA instead of MCMC allowed219

us to significantly reduce computing times typically by several orders of magnitudes. Addi-220

tionally, our approach is free from MCMC convergence issues that can increase considerably221

the computation burden. In the Florida Scrub-jay dataset (1,311 individuals, 41 SNPs),222

SPASIBA achieved a full analysis in about ten minutes using a single 3GHz-CPU. SCAT223

required about a week of computation, while SPA provided results within a few seconds.224

These computing times scale linearly with the number of loci. With such running times225

and the accuracy levels demonstrated above, SPASIBA appears well tailored for the routine226

analysis of SNP datasets for non-model species consisting of a few tens of thousands of loci.227

In particular, it appears to be an ideal method for the analysis of reduced-representation228

sequencing data that become increasingly available in ecology. However, for a larger number229

of loci, SPASIBA is best carried on a computer cluster where the predictive maps of allele230

frequencies can be computed in parallel. Implementing this strategy on the POPRES data231

on a 80-CPU cluster, allowed us to carry out the analysis in 24-48 hours.232

The algorithm underlying SPA and SPASIBA are essentially deterministic, while SCAT is233

stochastic. Defining a computing time for an MCMC-based like SCAT is impossible as com-234

putations are usually carried out over a number of iterations, larger than what is assumed235

to be necessary, and it is checked a posteriori and over several independent runs that the236

MCMC algorithm did not experience any convergence issue.237

In SPA, all computations are locus-specific, therefore the computing time scales linearly238

with the number of loci. In SPASIBA, the computing time for the inference of the parameters239

15
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of the random field scales non-linearly with the size of the data matrix (whose dimension is240

given by the product of the number of geographic sampling sites and the number of loci).241

The task of computing predicted allele frequency maps scales linearly with the number of242

loci.243

In the tasks above, deterministic algorithms seek to optimize one criterion until a condi-244

tion is fulfilled. For the reasons described above, we are reluctant to provide exact computing245

times for the various methods discussed here. However, in our computations we observed246

that computations with SPA are in the order of hundred times faster than those with SPA-247

SIBA, which are themselves in the order of hundred times faster than those with SCAT. We248

note however that SCAT is the only program that handles micro-satellite data.249

Limitations of the SPASIBA method250

A potential advantage of SCAT over our SPASIBA method is the computer implementation251

that allows SCAT to restrict geographic assignments to a set of polygonal areas. Imple-252

menting this feature in SPASIBA would be straightforward and could increase accuracy253

in assignment when the spatial sampling window includes areas known to be non-suitable254

habitats. We note however that in the Florida scrub jay case, SPASIBA assigned only a255

handful of individuals a few kilometers away from the landmass (Fig. III), even though the256

assignment was not restricted to any specific area of the rectangular domain encompassing257

Florida.258

Lesser accuracy of the SPA method259

The SPA method is based on the assumption that allele frequencies vary logistically on the260

plan or the sphere, displaying essentially a nearly linear behavior in a central region and no261

variation elsewhere with frequencies fixed to 0 or 1. This may be a reasonable approximation262

for the data used earlier to assess the SPA method, namely human data in Europe and at263

the synoptic scale. At smaller scales, spatial patterns of genetic variation also likely reflect264

the processes of local genetic drift, migration and relatedness, which presumably features265

more spatial complexity. Additionally, the logistic model underlying SPA has the property266

of being invariant under shifts orthogonal to the main axis of variation. We believe that267
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a combination of these factors explain the lesser accuracy observed for SPA and also its268

propensity to numerical instabilities, as observed here with the Arabidopsis thaliana dataset269

(especially under the 3D option), the Florida scrub jay dataset and MS simulations.270

Limitations of current continuous assignment methods271

The interpolation of alleles frequencies between reference populations assumes a model of272

isolation-by-distance, however in reality, many biological populations display restricted gene273

flow due to a range of barriers that disrupt this relationship. These includes habitat variation274

and physical dispersal barriers (Wang and Bradburd, 2014). This is not handled by any of275

the continuous assignment methods and may affect the accuracy obtained.276

Related to the point above, current continuous assignment methods assume marker neu-277

trality. While this is likely to be true for smaller microsatellite and SNP panels selected278

at random, genome-wide SNP panels, such as those produced by whole-genome or reduced-279

representation sequencing are likely to include loci under selection where the change in allele280

frequency may be completely disconnected from geographic distance. A recent study by281

Nielsen et al. (2012) suggests that such loci are highly informative for geographic assign-282

ment. However, the latter study is not based on an isolation-by-distance model and how283

the information gained from the use of highly informative loci will be offset by the use of a284

model that does not fit these loci, has still to be assessed.285

Re-appraisal of assignment results on the POPRES dataset286

The POPRES population reference sample has become an invaluable resource in many areas287

of human genetics, including pharmacogenetics and population genetics (Nelson et al., 2008).288

Here, we were able to bring the assignment error down to 72.8km but we caution that289

this figure only represents a lower bound for assignment errors. We note, however, that290

removing all individuals from a country from the training data (the leave-one-population-291

out approach) resulted in substantially larger assignment errors (696 km and 543 km for292

SPASIBA and SPA, respectively). Additionally, SPASIBA was characterized by relatively293

isotropic errors while SPA systematically biased predicted geo-spatial assignments towards294

the centre of the study area. Our leave-one-population-out approach revealed that none295
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of the two methods is robust to uneven population sampling in the training dataset and296

are particularly inefficient at estimating the country of origin of an individual whose true297

country of origin is not represented in the training dataset. It opens avenues for novel298

statistical approaches reducing the impact of uneven training sets on spatial assignments.299
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