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Abstract 

For the past 50 years the prediction that turned into what is now known as Moore’s Law has held true. 

It states that the complexity of integrated circuits such as computer processors will double 

approximately every second year. In order to keep up the industry has been on constant lookout for new 

solutions to take products to the next node and the field of memory technology is no exception. Over 

the past decade research and development in a novel, non-volatile memory type known as MRAM has 

intensified, and commercial MRAM devices are now available. MRAM holds an extremely favorable 

position as it is believed to have the potential of becoming a truly universal memory solution dominant 

within all fields of memory application. 

A decade ago the company CAPRES A/S introduced the so-called CIPTech, which is a metrology tool 

utilizing micro four-point probes (M4PPs) and a method known as current in-plane tunneling (CIPT) 

for characterization of magnetic tunnel junctions (MTJs), which constitutes the key component not only 

in MRAM but also the read-heads of modern hard disk drives. MTJs are described by their tunnel 

magnetoresistance (TMR), which is the relative difference of the resistance area products (RA) at two 

characteristic resistance levels (high and low) of the MTJ device. In the final memory application these 

resistance states correspond to a digital “1” or “0” stored. During CIPT measurements the tool will alter 

the state of the MTJ by application of an external magnetic field. With the CIPTech the turn-around 

time for measurements on magnetic tunnel junctions shortened dramatically from two days to one or 

two minutes. As one happy user put it, it was like going from a tricycle to a Ferrari in one step, and the 

tool is now in use in all major memory companies throughout the world. 

However, with a measurement time of 1-2 minutes per measurement, the technique is commonly used 

just for research and development of novel MTJ stacks and not for full wafer analysis, which would 

otherwise provide valuable information with respect to uniformity, e.g. for tool optimization. The 

precision of CIPT measurements is limited by electrode position errors, the importance of which 

increases for decreasing electrode pitch. This is a challenge to the measurement method as such and 

may become even more so in the future, when the cell size of MRAM is scaled down to increase 

memory density. 

 

The fundamental goal of this project has been to provide cheaper, faster and more precise metrology 

for MTJs. 

 

This goal has been achieved in part by the demonstration of a static field CIPT method, which allows 

us to reduce the measurement time by a factor of 5, by measuring only RA thus excluding TMR. This 

enhancement is obtained purely by acquiring only half of the data needed for the conventional 

switching field CIPT measurement and particularly by avoiding magnetic field switching. We observe 

that the new method measures essentially the same RA values as compared to the conventional 

strategy. By offering the choice of characterizing either RAlow
 or RAhigh the static field CIPT method 

has an added advantage over the conventional switching field CIPT method, which relies on the 

characterization of both RA values. This allows for an improved matching of the range of available 

electrode pitches and sample transfer lengths, which may effectively increases the dynamic range of 

any given micro 12-point probe (M12PP). 
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Without the requirement for switching magnetic fields during measurements the static field CIPT 

method has inspired the concept of detached magnet setups for future CIPTech tools. While lowering 

the complexity of the measurement system a detached magnet setup, e.g. a proposed letterbox magnet, 

could provide superior dynamic range and field homogeneity as compared to current state of the art 

solutions. 

We have carried out an extensive characterization of electrode position errors and experimentally 

shown that the dominant sources of error in single configuration micro four-point probe resistance 

measurements are in-line probe geometry errors and in-line static position errors. These errors were 

shown to be eliminated very effectively using dual-configuration measurements and position error 

correction algorithms. The standard deviation of the static in-line position error for measurements with 

Au coated electrodes on Ru thin film samples was found to be in the range from 3.9 nm to 7.5 nm. The 

standard deviation of the dynamic in-line position error was shown to be small ~3 Å and only 

detectable in measurements with high measurement current. At lower measurement currents the 

electrical measurement noise was the dominant error source. No significant ageing effect on position 

errors (except for a very slight reduction in position error with measurement age) was observed for a 

probe in the course of 5000 measurements. We have demonstrated how new probe designs may be 

evaluated and benchmarked against each other using the same strategy. 

Based on Monte Carlo simulations we have studied the influence of electrical noise as well as static 

and dynamic, in-line and off-line electrode position errors on four-point resistance measurements on 

MTJs. This study points out the van der Pauw position correction strategy based on combined 

measurement in four-point configuration A and C as being the most effective method to lower the 

relative standard deviation on the measured resistance. In line with this we find that the same method 

also provides the broadest dynamic range for the M12PP used in this project. 

As a means to further enhance the measurement precision we have proposed the addition of more sub-

probes of nominally identical electrode spacing and shown, that for one added sub-probe, the option for 

which two sub-probes shares two pins, yields the most significant reduction of electrode positional 

errors. Finally, a radical probe design entirely occupied by equidistant electrodes was proposed. 
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Resumé 

Over en periode på mere end 50 år har prognosen, der blev kendt som Moores Lov, vist sig at holde 

stik. Den forudsiger i praksis, at antallet af transistorer integreret i en computer processor vil fordobles 

hvert andet år, og for at holde trit med den udvikling har industrien til stadighed måttet være på udkig 

efter nye løsninger, der kunne bringe deres produkter videre til den næste teknologinode. Branchen for 

digital hukommelse har ikke været en undtagelse. I løbet af det seneste årti er forskning og udvikling i 

en ny hukommelsestype kaldet MRAM intensiveret, og teknologien spås en lys fremtid med potentiale 

for at kunne blive en universel hukommelsesløsning, der vil komme til at dominere indenfor alle 

anvendelser af hukommelse. 

Firmaet CAPRES A/S introducerede for 10 år siden den såkaldte CIPTech. Det er et måleudstyr, der 

ved hjælp af mikro-fire-punkts-prober (M4PP) og en metode kendt som current in-plane tunneling 

(CIPT) anvendes til karakterisering af magnetiske tunnel junctions (MTJs), som udgør en 

kernekomponent ej blot i MRAM, men også i læsehovederne i moderne harddiskdrev. MTJs kan 

beskrives ved deres tunnel-magnetoreistans (TMR), hvilket er den relative forskel mellem modstand-

areal-produktet (RA) ved to karakteristiske modstandsniveauer (højt og lavt) for MTJ-enheden. I den 

endelige hukommelsesapplikation vil disse modstandstilstande svare til den digitalt lagrede information 

”1” eller ”0”, og under en CIPT-måling vil udstyret ændre tilstanden for en MTJ ved at påtrykke et 

eksternt magnetfelt. Ved brug af CIPTech’en er turn-around-tiden for målinger på MTJs forkortet 

dramatisk fra to dage til et eller to minutter. Som en glad bruger udtrykte det, var det som at gå direkte 

fra en trehjulet cykel til en Ferrari, og udstyret er nu i anvendelse hos alle ledende 

hukommelsesproducenter verden over. 

Med en måletid på blot 1-2 minutter pr. punkt er metoden dog stadig for tidskrævende til, at man kan 

udnytte dens fulde potentiale til procesoptimering gennem udførelsen af scans med flere hundrede 

målinger på samme prøve. Målepræcisionen for CIPT udstyret begrænses af positionsfejl for 

mikroprobens elektroder, hvis indflydelse stiger for faldende elektrodeafstand. Det er en udfordring for 

målemetoden som sådan, og kan blive det i endnu højere grad i fremtiden, når MRAM-cellens størrelse 

skaleres ned for at øge hukommelsestætheden. 

 

Målet for dette projekt har været at tilvejebringe løsninger, der resulterer i både hurtigere, billigere og 

mere præcis karakterisering af (MTJs). 

 

Dette mål er opnået til dels ved demonstration af en statisk-felt CIPT-metode, som giver os mulighed 

for at reducere måletiden med en faktor 5 ved kun at måle RA og altså udelade TMR. Denne forbedring 

opnås ved at foretage blot halvdelen af de målinger, der er nødvendige for den konventionelle CIPT-

målemetode, og i særdeleshed ved at udgå magnetfeltsskift. Vi observerer, at den nye metode i al 

væsentlighed måler de samme RA-værdier, som findes med den konventionelle strategi. Statisk-felt 

CIPT-metoden har, idet den tilbyder valgfrihed i forhold til karakterisering af enten RAlav eller RAhøj, 

en ekstra fordel i forhold til standardmetoden, der bygger på karakteriseringen af begge RA-værdier. 

Dette giver mulighed for en forbedret matchning af tilgængelige mikroprober og den enkelte prøves 

transferlænge, hvilket effektivt set kan øger det dynamiske område for en given mikro 12-punkts probe 

(M12PP). 
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Uden kravet om at skifte magnetfelt under en måling har statisk-felt CIPT-metoden inspireret et 

koncept med en fritliggende magnetopstilling for fremtidige CIPTech-udstyr. Samtidig med at sænke 

kompleksiteten af målesystemet vil en fritliggende magnetopstilling, f.eks. den foreslåede 

”brevsprække-magnet”, kunne tilbyde dynamikområde og felt homogenitet, som er overlegent i forhold 

til den nuværende løsning.  

Vi har foretaget en omfattende karakterisering af elektrodepositionsfejl og eksperimentelt påvist, at de 

dominerende fejlkilder i enkelt-konfigurations-modstandsmålinger, foretaget med en M4PP, er in-line 

probegeometrifejl og in-line, statiske positionsfejl. Det blev vist, at disse fejl effektivt elimineres ved 

hjælp af dual-konfigurations-målinger og positionsfejls-korrigerende algoritmer. Standardafvigelsen af 

de statiske, in-line positionsfejl for målinger med Au-elektroder på Ru-tyndfilmsprøver viste sig at 

være fra 3.9 nm til 7.5 nm. Standardafvigelsen af den dynamiske, in-line positionsfejl blev vist til at 

være ~ 3 Å, og var kun påviselig i målinger med høj målestrøm. Ved lavere målestrøm var den 

elektriske støj den dominerende fejlkilde. Ingen signifikant ældningseffekt på positionsfejl blev 

observeret for en probe i løbet af 5000 målinger (bortset fra en meget lille reduktion i positionsfejl). Vi 

har vist, hvordan nye probe design kan vurderes og benchmarkes mod hinanden ved hjælp af den 

samme strategi. 

Baseret på Monte Carlo-simuleringer har vi studeret indflydelsen af elektrisk støj samt statiske og 

dynamiske, in-line og off-line elektrodepositionsfejl på fire-punkts-modstandsmålinger på MTJs. 

Denne undersøgelse udpeger van-der-Pauw-positionskorrektionsstrategien baseret på kombinationen af 

modstandsmålinger optaget i fire-punkts-konfigurationerne A og C, som værende den mest effektive 

metode til at sænke den relative standardafvigelse på den målte modstand. I tråd med dette finder vi, at 

den samme metode også giver det bredeste dynamikområde for den M12PP, der anvendes i dette 

projekt. 

Som et middel til yderligere forbedring af målepræcisionen har vi foreslået tilføjelsen af flere sub-

prober med nominelt identiske elektrodeafstande og vist, at to kombinationen af to sub-prober, der 

deler to elektroder, giver den største reduktion af elektrodepositionsfejl. Endelig blev et radikalt 

probedesign, udelukkende besat af ækvidistante elektroder, foreslået. 
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Chapter 1 

1 Introduction 

In 1965 Gordon E. Moore, co-founder of the Intel Corporation and Fairchild Semiconductor, stated in 

an article in the Electronics magazine [1], [2] that “The complexity for minimum component cost has 

increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be 

expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more 

uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 

years.” This forecast has since become known as Moore’s Law [3] and turned out to hold true for the 

past five decades (see Fig. 1.1) [4]. Acting as a driver for the semiconductor industry it reflects the 

advances that have been made within information technology (IT) and shaped society of today for 

which electronic data processing and data storage is of fundamental importance. 

 

 
Fig. 1.1: Number of transistors in processors. In line with Moore's Law the number has doubled approximately every two 

years. Source: [5]. 

Whether or not the technological development can keep up with Moore’s Law in decades to come may 

be questioned [6] but it should be safe to assume that the industry will come up with new and more 

advanced solutions as it strives to meet the challenge. One place to look for solutions would be within 

the field of spintronics, which covers electronic devices based on spin-dependent electron transport 

[7]–[9]. One such device, the so-called magnetic tunnel junction (MTJ) [10], [11], can already be found 
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in modern hard disk drives (HDDs) [12]–[16] and memory units known as magnetoresistive random 

access memory (MRAM) [12], [17]–[22], and has attracted a lot of attention as a promising candidate 

also for future main stream memory applications including possible replacement of dynamic and static 

random access memory (DRAM and SRAM) [12], [17], [23]. 

1.1 Magnetic tunnel junctions 

The basic MTJ (see Fig. 1.2a) is a three layer structure: Two ferromagnetic electrodes are separated by 

a thin (~1 nm), insulating barrier, typically AlOx or MgO [12], which is thin enough for electrons to 

tunnel through, when a bias voltage is applied [24]–[27]. The orientation of the magnetic moment of 

the two ferromagnetic electrodes surrounding the barrier can be changed by the application of an 

external magnetic field. Typically one of the electrodes is pinned by an adjacent antiferromagnetic 

layer, which increases the magnetic field (switching field) required for a shift in magnetic orientation as 

compared to that of its unpinned counterpart, and thus allows the magnetic moments of the two layers 

to be either parallel or anti-parallel to each other. The two electrode layers are denoted the fixed layer 

and the free layer respectively.  

 

 
Fig. 1.2: (a) Basic MTJ structure composed of two ferromagnetic layers with free and fixed magnetization separated by an 

insulating tunnel barrier. (b) Hysteresis loop showing the resistance change as a function of applied magnetic field. 

Due to the spin polarizing effect of the ferromagnetic layers the probability of electrons tunneling 

through the barrier is higher in the parallel state as compared to the anti-parallel state.  It follows that 

the resistance across the barrier is lowest in the parallel state and the observed relative increase in 

resistance as the magnetic orientation is changed to the anti-parallel state is the tunnel 

magnetoresistance (TMR) (see Fig. 1.2b). The overall resistance across the MTJ barrier is characterized 

by the resistance area product (RA) or simply the specific contact resistance. Thus the TMR can be 

defined as: ( ) lowlowhigh RARARATMR −= , where RAlow and RAhigh refers to the resistance area 

product of the MTJ in the parallel and anti-parallel states, respectively [28]. In general the reported RA 

value of an MTJ is that of the low resistance mode i.e. RAlow. 

1.1.1 Read heads 

In conventional HDDs (see Fig. 1.3) data are stored by controlling the magnetization of magnetic 

grains distributed in a thin layer on the surface of a spinning disk. A bit of data is represented by a 
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cluster of magnetic grains with the same magnetization. Write and read heads are placed at the tip of an 

actuator arm, which provides random access to any location on the rotating disk. Data are read using a 

magnetic sensor to detect the fringing fields at the transitions between individual bits [8], where 

changes in the magnetic field lead to changes in the electrical resistance of the sensor.  

 

 
Fig. 1.3: HDD with several disks/platters available for data storage. The read and write heads are located at the tip of the 

actuator arm. Source: [29]. 

In earlier versions of HDDs the functionality of the read head was based on a phenomenon known as 

anisotropic magnetoresistance (AMR) [30], [31]. This is based on a bulk scattering effect, which will 

alter the resistance of the read head as a function of applied magnetic field (from the magnetic bit) and 

the direction of the current inside the sensor. The AMR effect is rather weak however, and will only 

change the resistance by a few percent, which effectively limits the obtainable storage density of this 

technology [8]. AMR was replaced by sensor elements utilizing giant magnetoresistance (GMR) [32], 

[33], which is a much stronger effect leading to relative resistance changes up to more than 100% [34]. 

GMR is caused by spin dependent elastic scattering at the interface between magnetic and non-

magnetic metals [35], [36] and depends on the relative magnetization of the magnetic layers [37]. An 

implementation of GMR, which is particularly suitable for read heads, is the so-called spin valve [38]. 

This structure is almost identical to the MTJ described above with the important difference being a 

non-magnetic metal spacer instead of the isolating barrier of the MTJ. Electrons passing through the 

non-magnetic spacer from one ferromagnetic electrode the other will experience increased scattering if 

the magnetic moments of the two ferromagnetic layers are anti-parallel [37]. As is the case for MTJs 

pinning of one of the ferromagnetic layers introduces different switching fields for the two 

ferromagnetic layers and allows the spin valve to detect lower magnetic fields (smaller magnetic bit) as 

compared to a regular GMR sensor [38]. Surpassing all predecessors are however the read heads based 

on MTJs. TMR values of more than 600% have been reported for measurements at room temperature 
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[39]. It was first introduced in read heads in 2004 by Seagate [12] and has enabled the continued 

increase of memory density in HDDs over the past decade. 

1.1.2 MRAM 

Power consumption is one of the main focus points in the development of future memory solutions 

[40]. In particular for battery powered mobile devices such as phones, tablets and laptops the power 

consumption is a key parameter. This is one of the reasons why MRAM has attracted much attention: 

MRAM is a non-volatile memory and thus does not require continuous refreshing (or re-writing) as 

DRAM or power at all, like SRAM, in order to keep data stored [7], [12], [18], [20], [22], [41]. In 

MRAM every bit is represented by an individual MTJ, which state “0” or “1” depends on the magnetic 

configuration being parallel or anti-parallel and therefore data are stored in principle indefinitely also 

when the power is switched off [17]. This characteristic has lead to reflections on “instant-on” devices, 

which could be completely powered off and still keep recent data loaded to allow instant availability 

once the device is turned back on [42]. 

 

 
Fig. 1.4: Toggle MRAM cell. Source: [43]. 

In first generation of commercialized MRAM also known as toggle MRAM [20], [44], [45] the 

individual memory cells (see Fig. 1.4)  are written by the application of an external magnetic field, 

generated by the current passing in write lines 1 and 2, respectively [18], [20], [22], [31], [43]. The 

magnetic field generated by a single write pulse in either of the write lines is not strong enough to 

change the magnetic state of a memory cell but at the intersection of write lines 1 and 2 the combined 

magnetic fields generated by a sequence of current pulses acts together to set the magnetic state [20], 
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[44], [45]. In this way only the cell at the intersection is written and other cells in the circuit are left 

unchanged. A major drawback of toggle MRAM is the relatively high current needed to write a bit, 

which increases for decreasing cell size and thus reduces scalability [41], [44], [45].  

Second generation MRAM (see Fig. 1.5) utilizes a writing principle known as spin transfer torque 

(STT) [46], [47]. The write current is passed directly through the cell and the spin polarizing effect of 

the electrodes surrounding the barrier is used to switch the magnetic state of the cell.  

 

 
Fig. 1.5: STT MRAM cell. Source: [41]. 

Fig. 1.6 shows the working principle of spin transfer torque. The transverse component of the spin 

angular momentum is absorbed and transmitted to the total spin of the layer and thus exerts a torque on 

the magnetization of the layer. When the current exceeds a threshold the torque will switch the 

magnetization of the free layer. Depending on the direction of the electron flow parallel or anti-parallel 

magnetization is favored as the magnetization of the free layer is affected by transmitted or reflected 

electrons, respectively. 

STT MRAM provides excellent scalability due to its simple design and low write power, which 

decreases for decreasing cell size. Since the spin polarized current is generated only in the cell to be 

written, while other cells are left undisturbed, high writing speed as well as multibit writing can be 

achieved. 

Due to the many advantages over competing technologies, some of them mentioned here, MRAM is 

believed to have the potential of becoming a truly universal memory solution dominant within all fields 

of memory application [12], [17]. 
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Fig. 1.6: Spin torque transfer. Source: [31]. 

1.2 MTJ metrology 

Metrology is of crucial importance in the development of new materials, devices and fabrication 

techniques as well as in production optimization and process monitoring. Fabrication of MTJs relies on 

full-wafer deposition of ultra-thin layers (on the order of nm) of material and subsequent processing, 

including annealing in an applied magnetic field and device patterning. The ability to successfully 

develop and fabricate MTJ devices is strongly tied to the understanding and control of these processes 

and hence a number of metrology techniques must be applied. Among the important metrology for 

characterization of MTJs we find Kerr magnetometry, vibrating sample magnetometry (VSM), 

conductive AFM (CAFM) and current in-plane tunneling (CIPT). Each of these measurement 

techniques provide valuable insight into different properties of the MTJ at blanket film level as well as 

after patterning has taken place [48]. 

1.2.1 CIPT 

For the past decade CIPT has been the standard method to evaluate RA and TMR of non-patterned 

MTJ stacks. In this method a series of four-point resistance measurements is carried out on the surface 

of an MTJ, while the magnetization of the MTJ free layer and pinned layer is controlled by an external 

magnetic field and thus set to the parallel and anti-parallel state. In a four-point resistance measurement 

a fixed current is passed between two electrodes while measuring the resulting potential difference over 

another pair of electrodes. In this way the contact resistances between electrodes and sample can be 

neglected since practically no current flows through the voltage sensing electrodes. As illustrated in 

Fig. 1.7 the current flow in the MTJ depends on the electrode spacing and to accurately estimate the 
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properties of the MTJ, resistance measurements are carried out at varying electrode pitch typically in 

the range from 1.5 µm to 20 µm. Data are then fitted to a theoretical model [28], [49] from which 

RAlow and RAhigh (and thus TMR) can be extracted.  

For small electrode spacing the current will flow primarily in the top-layer of the MTJ since the area 

available for tunneling is small (scales with electrode spacing) and therefore leads to a high barrier 

resistance compared to the sheet resistance of the top electrode. At relatively large electrode pitch the 

barrier resistance is negligible and allows the current to spread out over top and bottom electrodes like 

the current flow in to two paralleled resistors. No measurements at either of these extremes provide the 

necessary information on RA. However, at some intermediate electrode spacing the barrier resistance is 

sufficiently low to allow some current to flow in the bottom electrode, while still contributing 

significantly to the measured resistance. It is this pitch-dependent behavior of the current flow that 

forms the basis for the CIPT method. The CIPT measurement technique is enabled by micro fabricated 

electrodes, the so-called micro four-point probes (M4PP) with up to twelve electrodes included on the 

same chip (M12PP), thus allowing four-point measurements at varying electrode pitch by combining 

different subsets of four electrodes (see Fig. 1.8). 

 

 
Fig. 1.7: Four-point measurement on an MTJ. At small electrode pitch the current is confined to the top electrode. At larger 

electrode pitch the current will flow in both electrode layers. By utilizing a micro 12-point probe the electrode spacing may 

be varied by selecting different subsets of four electrodes. 

 
Fig. 1.8: Micro 12-point probe with electrode spacing from 1.5 µm to 18.5 µm. (a) Probe chip mounted and wire bonded to 

a ceramic substrate for interfacing with measurement equipment [50]. (b) Scanning electron micrograph showing the 

cantilever electrodes. 
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1.3 Motivation 

The CIPT method was commercialized in a metrology tool (see Fig. 1.9) by CAPRES A/S [50] in 2004 

and has since been employed as an increasingly important MTJ metrology at leading semiconductor 

and magnetic storage fabrication facilities and it is today used in industry and research worldwide.  

 

 
Fig. 1.9: CAPRES CIPTech-M300. Source: [50]. 

The method reduces the turnaround time in tunnel junction development due to the ability of measuring 

on non-patterned MTJ stacks. However, with a measurement time of 1-2 minutes per measurement, the 

technique is commonly used just for research and development of novel MTJ stacks and not for full 

wafer analysis, which would otherwise provide valuable information with respect to uniformity, e.g. for 

tool optimization. The precision of CIPT measurements is limited by electrode position errors, which 

increases for decreasing electrode pitch [51]. This is a challenge to the measurement method as such 

and may become even more so in the future, when the cell size of MRAM is scaled down to increase 

memory density. Lower RA values may be pursued in order to reduce the overall cell resistance, and 

since in general the relevant electrode spacing for CIPT measurements scales with the RA value of the 

MTJ, measurement precision at small electrode spacing becomes more important. As the industry 

moves towards volume production of MRAM and starts focusing on thin film homogeneity and other 

performance related factors, the need for suitable metrology is increasing. In order for the CIPT method 

to meet the future requirements for MTJ based products, improvements to measurement speed, 

dynamic range, precision, reliability and cost are all urgent challenges. 

 

The fundamental goal of this project is to provide cheaper, faster and more precise metrology for MTJs. 



23 

 

1.4 Outline 

Here follows a brief overview of the content of the thesis: 

 

• Chapter 2 presents the theoretical background for four-point measurements on single sheet thin 

film samples as well as an introduction to position error correction for this sample type. 

Hereafter follows a presentation of the CIPT model and description of electrode position errors 

and position error correction for measurements on MTJs. 

• Chapter 3 describes the experimental setup used for the work presented in this thesis. A detailed 

description of the M12PP is followed by a general introduction to the CIPT measurement 

equipment and the standard data treatment routines. 

• Chapter 4 presents a new CIPT measurement strategy offering reduced measurement time. This 

chapter also includes a description of an alternative magnet concept, which could reduce the 

general complexity of the CIPT metrology tool while increasing its dynamic range. 

• Chapter 5 presents a study of position errors and electrical noise for measurements on single 

sheet thin film samples. Preliminary evaluation of an alternative probe design is demonstrated 

based on the proposed strategy.   

• Chapter 6 includes a comparative study of the effectiveness of position error correction 

algorithms based on Monte Carlo simulations. Actual four-point resistance measurements are 

compared to simulated results. An alternative probe design strategy is proposed as a means to 

enhance the CIPT measurement precision and evaluated based on analytical calculations. 

• Chapter 7 presents an outlook including a description of a modified CIPT-model developed for 
measurements on small test pads. A new measurement concept aimed at characterization of 

individual MTJ devices is also included. 

• Chapter 8 presents the conclusions of the thesis. 
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Chapter 2 

2 Theory 

In this chapter relevant theory is presented. First the simple case of four-point probe sheet resistance 

measurements on samples with a thin, electrically conductive, top layer (single sheet sample) is 

described together with a presentation of the different electrode configurations. Hereafter follows a 

review of electrode position errors and algorithms designed to reduce the influence these errors. The 

influence of electrical noise is also described before turning the focus to CIPT measurements on MTJs. 

The theoretical CIPT model is then presented together with a description of electrode position errors 

and position error correction for measurements on MTJs. Finally we introduce a simple model for 

conductance across the tunnel barrier of an MTJ.  

This chapter is based on and repeats text and figures from papers I and II. 

2.1 Four-point resistance (single sheet) 

The purpose of a four-point probe measurement on a thin film is usually to determine the sheet 

resistance, 
SR , of the film. The generic measurement is carried out by passing current, ijI , through two 

point-like electrode contacts, ( i , j ), to the sample and measure the voltage, 
klV , across two other point-

like electrode contacts, ( k , l ). For a uniform thin film sample the expected four-point resistance, ijklR , , 

is [52]  
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where 
nr  is the in-plane position vector for the contacts, [ ]lkjimn ,,,, ∈ . It follows that the sheet 

resistance can be calculated from a measured value of ijklR ,  by solving Eq. 1 for 
SR  if the four inter-

electrode distances, mn rr − , are known accurately. In most practical implementations the electrodes 

are arranged on a single line, a collinear probe, as illustrated in Fig. 2.1, where the intended distances 

between neighboring contact points are 
1s , 

2s  and . 
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Fig. 2.1: Collinear four-point probes and the independent configurations, A, B and C, and their inverted (dual) versions, A', 

B' and C'. The distances between neighboring electrodes are denoted s1, s2 and s3. Reproduced from paper II. 

Four-point probe measurements with the collinear probe can be arranged in several configurations, 

usually denoted A, B and C and their inverted versions A', B' and C' [53] (see Fig. 2.1). Of the 

resistances 
AR , 

BR  and CR , measured in configurations A, B and C, only two are independent since 

 BAC RRR −= [54]. Equivalent dependence applies to resistances measured in the inverted 

configurations and in the absence of a magnetic field, 
AA RR =′ , 

BB RR =′  and CC RR =′  due to 

reciprocity [55], [56]. For the collinear four-point probe the expected measured resistances according to 

Eq. 1 are 
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(2) 

 
 

(3) 

 

 

(4) 

2.1.1 Position errors (single sheet) 

When the electrode spacings, 
1s , 

2s  and 
3s , become small, the actual spacings may differ significantly  

from their nominal value such that e.g. 112 s≠− rr  and then resistances calculated from Eqs. 2 and 3 

will be inaccurate due to the electrode spacing error; this is what we define as general position errors 

(see Fig. 2.2).  
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Fig. 2.2: Sketch illustrating position errors for a four-point probe. Due to in-line and off-line position errors the actual 

positions of the electrodes deviate from their ideal, intended positions ((x1,0), (x2,0), (x3,0) and (x4,0)). 

These position errors arise for a number of different physical reasons and may have both in-line and 

off-line components: 

 

Probe geometry errors. The real probe may be fabricated with different electrode spacings 

than intended. 

Static position errors. Each probe-sample engage may result in slightly different contact 

spacing, e.g. induced by plastic deformation of the electrode tips or due to the surface topology 

of the sample. 

Dynamic position errors. While the probe is engaged on the sample, the contact points may 

move slightly on the sample surface, e.g. due to vibrations. 

 

As a result of these errors the position, 
nr , of electrode [ ]4,3,2,1∈n  may be displaced from the ideal 

position, , according to  

 ( ),,),( 0000 nynxnnnnnnnnn xyyyxxxx ∆∆+=+∆+∆+∆+∆+= δδr  (5) 

where the ideal y-position is taken as 00 =y  without loss of generality; 
0nx∆  and 

0ny∆  are probe 

geometry errors, 
nx∆  and 

ny∆  are static position errors while 
nxδ  and 

nyδ  are dynamic position 

errors; finally 
nx∆  and ny∆  are total in-line and off-line errors, respectively. As a result the probe 

spacing, , becomes 
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and similar expressions are valid for the other probe spacings involved in the measurements. It follows 

that in-line position errors affect four-point probe measurements to first order, while the effects of off-

line position errors are of second order. Thus, off-line position errors may be neglected for small 

electrode position errors relative to the electrode spacing.  

)0,( 00 nn x=r

12 rr −
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When the electrical measurement noise on the extracted four-point resistance is smaller than 

contributions from geometrically induced errors, we may evaluate the extent of these geometrical 

errors. We assume that all electrodes suffer from normal distributed static in-line position errors with 

the standard deviation 
xσ  and dynamic in-line position errors with the standard deviation 

dyn

xσ . With 

these assumptions it has been shown [57] that the relative standard deviations, 
rel

ARσ , 
rel

BRσ  and 
rel

CRσ , on 

AR , 
BR  and CR , respectively, are 
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where ( ) 3/321 ssss ++=  is the mean electrode pitch. The geometrical coefficients, α , β  and ζ , 

can be shown to be 
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In the case of equidistant electrodes ( ssn = ) the geometrical coefficients become particularly simple  
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With these equations, static position errors may be evaluated from repeated measurements of 
AR , 

BR  

and CR , where the probe is retracted from the sample and re-engaged between each recorded four-point 

measurement. Similarly, we can evaluate the dynamic in-line position errors from the variations of 
AR , 

BR  or CR  during probe-sample engage. This gives similar expressions, i.e. sxRA
/, dyndynrel ασσ = , 

sxRB
/, dyndynrel βσσ =  and sxRC

/, dyndynrel ζσσ = . 

2.1.2 Position error correction (single sheet) 

Rymaszewski has suggested a position correction algorithm [54] which eliminates the influence of in-

line position errors for four-point measurements obtained using collinear electrodes. Based on the work 

by van der Pauw [58], he showed that the sheet resistance, 
SR , must be related to 

AR  and 
BR  as 

follows: 
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Similar expressions are valid for 
AR  and CR  
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or 
BR  and CR  
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From these expressions (without geometric parameters), the sheet resistance can be calculated 

accurately if the measured resistances are only affected by in-line static position errors and in-line 

geometry errors. We shall denote this position correction scheme the van der Pauw (vdp) method. 

However, this correction scheme will not correct for off-line position errors, and it will not correct for 

dynamic in-line position errors since the two resistance values to be combined (
AR  and 

BR , 
AR  and CR  

or 
BR  and CR ) are not measured simultaneously. This can be understood by inserting Eq. 1 in Eqs. 16-

18 to get the geometry requirement, which must be fulfilled in order for Eqs. 16-18 to be correct 
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where subscripts indicate geometry during the respective measurements. The geometry requirement is 

trivially fulfilled under static conditions if the electrode-sample contacts are in-line. Any off-line 

component in the geometry will violate this condition as will any dynamic in-line electrode 

displacement, and thus this scheme cannot correct such errors.  

A position correction algorithm [59] proposed by D. C. Worledge uses a linear combination of 
AR  and 

BR , i.e. BwA RR γ−  where wγ  is a geometric pre-factor, to reduce the influence of position errors. With 

this method the sheet resistance estimate, wR , is calculated from 
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with the geometric pre-factor, wγ , defined as (the numerical value is valid for equidistant electrodes) 
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Note, different symbols were used in the equations than those originally used by D. C. Worledge. Since 

this method essentially is a first order approximation to the vdp method it is expected to correct the 

same errors, but only if they are sufficiently small such that higher order terms can be ignored. 

Obviously, similar first order correction schemes based on 
AR  and CR  or 

BR  and CR  may be used, i.e. 

using CvA RR γ+  the sheet resistance estimate, vR , becomes  
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with the pre-factor, vγ , defined as (the numerical value is valid for equidistant electrodes)  

 ,3
31

321
2 ≈

++
=

ss

sss
svγ  (25) 

and using CuB RR γ+  the sheet resistance estimate, uR , becomes  
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with the pre-factor, uγ , obtained from (the numerical value is valid for equidistant electrodes) 
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The position correction schemes presented above will eliminate the effect of in-line geometry and static 

position errors whereas the extracted sheet resistance will still be affected by dynamic in-line position 

errors. The analysis of the effect of dynamic in-line position errors is most easily carried out for the 

first order corrections; the results, however, will also be valid for the full vdp corrections if the 

dynamic in-line position errors are small enough. Since the dynamic position error on say 
AR  may be 

assumed to be uncorrelated to the dynamic position errors on 
BR  and CR  it can be deduced that the 
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relative standard deviation on the extracted position corrected sheet resistances based on 
AR  and 

BR , 

AR  and CR  and 
BR  and CR  are  
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where the numerical values are for equidistant electrodes. 

2.1.3 Electrical noise (single sheet) 

The electronic noise is assumed to be voltage noise with the standard deviation nV  (e.g.  nV65=nV ). It 

follows that the relative standard deviation on 
AR , 

BR  and CR  due to electronic noise are 
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and 
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where the simplified expressions are true for equidistant probes ( 321 sss == ). 

Then the standard deviation on the position corrected sheet resistances becomes  
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and 
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where the simplified expressions are true for equidistant probes ( 321 sss == ). 
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As expected the effect of electronic noise decreases with increasing measurement current, it also 

decreases with increasing sample sheet resistance (assuming that the electronic noise is independent on 

sample sheet resistance; ultimately fTRkVn ∆>
2pB

4  where 2p
R  is the two-point probe-sample 

resistance, f∆  the measurement bandwidth, 
B

k  Boltzmann's constant and T  the absolute temperature). 

 

The total standard deviation is obtained by adding the noise contributions on a power basis: 
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Both with respect to electronic noise and in particular dynamic position error the AC correction is 

favorable, and BC is better than AB, which is the inferior correction scheme with respect to the 

resulting standard deviation. 

2.2 CIPT (MTJ) 

For several decades, specific contact resistance measurements have been done using a variety of so-

called transmission line methods [60]–[63].
 
The use of collinear four-point probes for specific contact 

resistance measurements was pioneered by Severin et al. [64] in 1971 and in 1991 extended in a 

hitherto unnoticed paper by Vu et al. [49] for the specific case of two parallel coupled sheets of finite 

conductance. They both solved for the electrical potential distribution on the surface of a two-layer 

structure with a specific contact resistance at the interface, and showed how the transfer length could be 

extracted from four-point probe configuration switching [64] and variable electrode pitch [49]. Vu et al. 

also applied the measurement technique to an Al/RuO2/Al stack [65]. Essentially the same technique, 

Current In-Plane Tunneling [28], is now the standard method for evaluating RA and TMR of MTJs.  

Fig. 2.3 shows an electrical model describing the current flow in a small sample volume of width dr 

placed a radial distance, r, away from the current inlet. At some small electrode pitch, s, the current 

will flow primarily in the top layer, while at some large electrode pitch the barrier resistance will be 

negligible and the current flow will be limited only by the parallel resistance of the top and bottom 

layer. The latter is the case for probe pitches s≫λ, where λ=[RA/(Rt+Rb)]
½

 is the transfer length for a 

given sample [28], [49], [65] and Rt and Rb characterize the sheet resistance of the top and bottom 

layers, respectively. 
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Fig. 2.3: Electrical model describing the current flow in a small sample volume of width dr placed a radial distance, r, away 

from the current inlet. Reproduced from paper I. 

The electrostatic potential of the sample surface a distance, r-r0, away from a single current source is 

given by [49]:  
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where I is the injected current and K0 is the modified Bessel function of the second kind of order zero. 

In a four-point probe setup two current electrodes positioned at r+ and r- can be considered using the 

superposition principle to evaluate the potential at position r. The four-point resistance can be defined 

as R=V/I, where V is the voltage difference between the two potential electrodes and I is the current 

passed between the two current electrodes.  

For a standard four-point probe with electrodes at positions r1, r2, r3 and r4 the measured potential 

difference can be evaluated as: 

 ( ) ( ) ( ) ( ),,,,, 43134212A rrrrrrrr Φ+Φ−Φ−Φ=V  (41) 

 ( ) ( ) ( ) ( )34143212B ,,,, rrrrrrrr Φ+Φ−Φ−Φ=V  (42) 

and 

 ( ) ( ) ( ) ( ),,,,, 23132414C rrrrrrrr Φ+Φ−Φ−Φ=V  (43) 

for A-, B- and C-configurations, respectively [66]. 

Inserting Eq. 40 into Eqs. 41-43 gives us the following expressions for the four-point resistances, 
AR , 

BR  and CR , measured with a collinear four-point probe with expected electrode distances s1, s2 and s3 

(see Fig. 2.1): 
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and 
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To allow easy comparison on the same scale the measured four-point resistance of an MTJ can be 

expressed in terms of an apparent, non-physical, sheet resistance, Rs, by combining Eq. 1 and Eqs. 44-

46. In Fig. 2.4 the apparent sheet resistance is shown as a function of electrode spacing (normalized to 

λ), for an equally spaced four-point probe and for A-, B- and C-configurations, respectively. Here Rt = 

10 Ω/□ and Rb = 1 Ω/□ has been used and it is seen from the plot that for s≪λ essentially Rt is 

measured, while for s≫λ the parallel resistance of Rt and Rb, ( )btbt RRRRR += /|| , is measured. This 

reflects the fact that for probe pitches in either of these extremes (s≪λ or s≫λ), measurements on an 

MTJ sample are essentially identical to measurements on a single sheet sample. Similar plots are 

presented in Fig. 2.5 and Fig. 2.6 for Rt/Rb-ratios of 1 and 0.1, respectively. Comparing the three plots 

illustrates the how the current flow, for all values of s/λ, will approach that of a single sheet sample in 

the extreme cases of Rt/Rb → 0, for which the current flow would be constricted to the top electrode. 

 

 
Fig. 2.4: Apparent sheet resistance, Rs, as a function of electrode spacing, s (normalized to λ), for an equally spaced, 

collinear four-point probe and A-, B- and C-configurations, respectively. Rt = 10 Ω/□ and Rb = 1 Ω/□. 
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Fig. 2.5: Apparent sheet resistance, Rs, as a function of electrode spacing, s (normalized to λ), for an equally spaced, 

collinear four-point probe and A-, B- and C-configurations, respectively. Rt = 10 Ω/□ and Rb = 10 Ω/□. 

 
Fig. 2.6: Apparent sheet resistance, Rs, as a function of electrode spacing, s (normalized to λ), for an equally spaced, 

collinear four-point probe and A-, B- and C-configurations, respectively. Rt = 10 Ω/□ and Rb = 100 Ω/□. 
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2.2.1 Position errors (MTJ) 

The different components of electrode position errors, described above for four-point resistance 

measurements on single sheet samples, also constitutes a major challenge for measurements on MTJs. 

The same basic approach will here be used to characterize the influence of position errors on four-point 

resistance measurements on MTJs. Using the same assumptions as for Eqs. 7-9, the relative standard 

deviations, 
rel

ARσ , 
rel

BRσ  and 
rel

CRσ , on the measured four-point resistances 
AR , 

BR  and CR , respectively, 

are 
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where ( ) 3/321 ssss ++=  is the mean electrode pitch. For equidistant electrodes ( ssn = ) geometrical 

coefficients, ∗α , 
∗β  and 

∗ζ , can be shown to be 
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and 

 

( ) ( )( )( ) ( ) ( )( )( )

( ) ( ) ( )
.

3

4
ln322

2322

000

2

2
1

11

2

6
1

11









++−

+−+−+−
=∗

t

b

t

b

t

b

R

Rsss

R

Rsss

R

Rsss

KKK

KKKK
ζ

λλλ

λλλλλλ
 (52) 

From Eqs. 50-52 it is clear that 
rel

ARσ , 
rel

BRσ  and 
rel

CRσ  not only depend on the electrode positions but also 

on the sample properties RA, Rt and Rb. This is illustrated in Fig. 2.7, where the geometrical 

coefficients ∗α , 
∗β  and 

∗ζ  are plotted for Rt/Rb = 10 as a function of electrode spacing (normalized to 

λ). Whereas the geometrical coefficients α , β  and ζ , defined for single sheet measurements (see 

section 2.1.1), describes a constant relation between 
rel

Rσ  and sx /σ , the geometrical coefficients for 
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MTJs vary as a function of sample properties. However, for s≪λ or s≫λ the values of ∗α , 
∗β  and 

∗ζ  

approach those of α , β  and ζ . For electrode distances in the intermediate range the sensitivity to 

position errors is higher as compared to four-point resistance measurements on single sheet samples. A-

configuration measurements yields the lowest sensitivity to position errors, whereas B-configuration 

measurements yields the highest sensitivity to position errors for Rt/Rb = 10. 

Similar plots are presented in Fig. 2.8 and Fig. 2.9 for Rt/Rb-ratios of 1 and 0.1, respectively. 

Comparing the three plots illustrates the how the geometrical coefficients for measurements on MTJs, 

for all values of s/λ, will approach those of their counterparts for single sheet samples in the extreme 

case of Rt/Rb → 0, which is in line with our previous observations (see section 2.2). 

With RA, Rt and Rb being unknown variables it is not possible to correctly estimate electrode position 

errors based on measurements of 
AR , 

BR  and CR . 

 

 

Fig. 2.7: Geometrical coefficients 
∗α , 

∗β  and 
∗ζ  plotted for Rt/Rb = 10, where Rt = 10 Ω/□ and Rb = 1 Ω/□, as a function 

of electrode spacing (normalized to λ). 



38 

 

 

Fig. 2.8: Geometrical coefficients 
∗α , 

∗β  and 
∗ζ  plotted for Rt/Rb = 1, where Rt = 10 Ω/□ and Rb = 10 Ω/□, as a function 

of electrode spacing (normalized to λ). 

 

Fig. 2.9: Geometrical coefficients 
∗α , 

∗β  and 
∗ζ  plotted for Rt/Rb = 0.1, where Rt = 10 Ω/□ and Rb = 100 Ω/□, as a 

function of electrode spacing (normalized to λ). 
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2.2.2 Position error correction (MTJ) 

As pointed out in the previous section concerning four-point resistance measurements on MTJs the 

standard deviation on 
AR , 

BR  and CR  is dependent not only on the electrode positions but also the three 

defining properties, RA, Rt and Rb, of the particular MTJ under test. This added complexity to the 

resistance dependence means that the position error correction methods described in section 2.1.2 will 

not hold true for measurements on MTJs i.e. the resulting, position corrected resistance value will not 

be meaningful in a physical sense. Exceptions to this statement of course include four-point 

measurements obtained at electrode spacing s≪λ or s≫λ as well as measurements on samples with 

Rt/Rb → 0, since MTJs will exhibit single sheet behavior in these cases.  

Applying the position correction algorithms (the vdp method or the first order approximation) to four-

point measurements on MTJs will, however, yield a so-called pseudo resistance value, Rp, which is less 

sensitive to electrode position errors as compared to 
AR , 

BR  and CR . Pseudo resistance values based on 

first order correction (Eqs. 22-27) are denoted 
w

pR , 
v

pR  and 
u

pR  for AB, AC and BC correction, 

respectively. For static, in-line position errors and in-line geometry errors with standard deviation 
xσ

the relative standard deviation on the position corrected pseudo resistance estimated from first order 

correction is identical for all dual combinations of  
AR , 

BR  and CR  (due to reciprocity [54]–[56]), that 

is relrelrel

u
p

v
p

w
p RRR

σσσ == , and given by (notation for AB correction is used): 
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where ( ) 3/321 ssss ++=  is the mean electrode pitch. For equidistant electrodes ( ssn = ) the 

geometrical coefficient χ is given by 
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In Fig. 2.10 χ along with ∗α , 
∗β  and 

∗ζ  for Rt/Rb = 10, where Rt = 10 Ω/□ and Rb = 1 Ω/□, are plotted 

as a function of electrode spacing (normalized to λ). At electrode spacing s≪λ or s≫λ, χ approaches 

zero, which reflects the fact that in this range the MTJ shows single sheet behavior and therefore the 

position correction algorithm completely eliminates static, in-line errors. In the intermediate range of 

s/λ we observe that χ remains significantly lower than the coefficient for single configuration 

measurements, clearly indicating the advantage of the position correction method also for MTJs. 
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Fig. 2.10: Geometrical coefficients 
∗α , 

∗β , 
∗ζ  and χ plotted for Rt/Rb = 10, where Rt = 10 Ω/□ and Rb = 1 Ω/□, as a 

function of electrode spacing (normalized to λ). 

In Fig. 2.11 χ is plotted for a range of Rt/Rb-ratios and it is observed that for Rt/Rb → 0 the sensitivity to 

position errors will vanish, which is in line with our observations in section 2.2.1.  

 

 
Fig. 2.11: The geometrical coefficient χ plotted as a function of electrode spacing (normalized to λ) for a range of Rt/Rb-

ratios. 
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This section has focused exclusively on static, in-line position errors and in-line geometry errors. 

Obviously, dynamic in-line errors and all off-line errors will also influence the standard deviation of 

the position corrected pseudo resistance. The contribution from these errors will not be evaluated 

analytically. However, a comparative study of the different position correction methods and their 

sensitivity to static and dynamic in-line and off-line errors is presented in chapter 6.  

2.2.3 Tunnel barrier conductance 

Usually the electrical conduction across the barrier of an MTJ is considered to happen exclusively by 

tunneling, as implied by its designation. This is true only for MTJs of good barrier quality and without 

pinholes [11], [67]–[69]. Therefore, to describe the current transport across non-ideal barriers a more 

complex model must be applied. 

Experimental data [67], [70]–[74] as well as theoretical considerations [11], [67], [70]–[74] suggest 

that for thicker tunnel barriers the RAlow and RAhigh products both depend exponentially on the 

thickness of the tunnel barrier with the same exponential factor, while the pre-factors to the exponential 

depend primarily on the spin polarization of the ferromagnets used. As a result the TMR is hardly 

affected by changes in the thickness of the tunnel barrier. For thinner barriers this is not true anymore, 

since pinholes and nanobridges provide an alternative current path to tunneling and may for very thin 

barriers dominate the transport altogether. This has been modeled as a parallel resistor network [75]
 

such that 

 ( ) ( ) leakBlow
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where T(d, ΦB) is the tunneling probability, which primarily depends on the tunnel barrier thickness, d, 

and barrier height ΦB. The conductances per area glow and ghigh are characteristic pre-factors for low and 

high spin states, respectively, and gleak is the characteristic leak conductance per area due to pinholes 

and nanobridges. The factor �ℓ is the area fraction occupied by pinholes and nanobridges, and this area 

fraction is of course not available for tunneling. As a result, the tunneling magnetoresistance ratio 

becomes 
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Obviously, for a perfect tunnel barrier, with �ℓ=0, TMR=glow/ghigh-1 and is essentially independent on 

the tunnel barrier thickness to first order, while for a defective barrier, with �ℓ=1, TMR=0. The 

transition between these two extreme cases happens over a very narrow range of barrier thicknesses (a 

small fraction of a nm) depending on the preparation of the barrier [76] since �ℓ is extremely thickness 

dependent. As a result, cut-off values for RAlow and RAhigh exist, below which TMR becomes too small 

to be useful due to the increase of �ℓ. 
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Chapter 3 

3 Experimental 

This chapter describes the experimental setup used for the work presented in this thesis. Some of the 

measurement parameters were varied for different experiments and will be specified along with the 

experimental results presented in the subsequent chapters. Here follows first a detailed description of 

the M12PP as well as a general introduction to the CIPT measurement equipment in which the micro 

probe is utilized. After this the standard data treatment routines are introduced and finally sample 

preparation is presented. 

3.1 Micro 12-point probe 

Various micro probes with 4 to 12 electrodes are today commercially available and aimed at different 

applications [50]. The CIPT measurement technique relies on four-point resistance measurements 

carried out at varying electrode pitch, which is the reason why M12PPs are utilized with this method. 

By selecting individual subsets of four electrodes (sub-probes), the mean electrode spacing, s , may 

be varied. For experiments presented in this thesis a conventional M12PP (see Fig. 3.1) with s  in the 

range from 1.5 µm to 8.25 µm was used and a total of eight sub-probes were addressed, some of which 

result in non-equidistant sub-probes (see Tab. 3.1). 

 

 
Fig. 3.1: Scanning electron micrograph of a 12-point probe with Au-coated, straight cantilever electrodes. Reproduced from 

paper II. 
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Tab. 3.1: Geometric details of the eight sub-probes formed using the 12-point probe. Distances between neighboring 

electrodes (s1, s2, and s3) and mean probe pitch, <s>, are listed. Adapted from paper II. 

The probe is realized using standard fabrication techniques for Silicon-based micro-electro-mechanical 

systems MEMS) [77]. The cantilevers are made of SiO2 and have nominal dimensions: 0.75 µm, 10 µm 

and 1 µm (width, length and thickness) and the nominal spring constant is 20 N/m [50]. To establish 

electrical contact to a sample the probe is covered by 100 nm Au deposited on top of 10 nm Ti, which 

acts as an adhesion layer to the SiO2. 

3.2 Experimental setup 

Regular four-point sheet resistance measurements as well as CIPT measurements presented in this 

work were carried out using a CAPRES CIPTech M300 [50]. The system incorporates a full 

multiplexer, which allows any selection of electrodes to be appointed to the in- and out-puts of the 

measurement electronics, I+, I-, V+ and V-, respectively. To reduce measurement noise a lock-in 

amplifier is used. The set AC measurement current is supplied between I+ and I-, while the voltage 

drop over V+ and V- is measured. The tool’s standard setting for measurement current is 200 µA but 

up to 2500 µA can be supplied. During measurements a stage with two linear motors controls the X-/Y-

positioning of the sample with respect to the probe, which is kept stationary in the X-/Y-plane and 

lowered into contact with the sample by a Z-stage (see Fig. 3.2). The relative precision of the 

movement of these stages are on the order of ±10 nm for the X-/Y-stage and ±5 nm for the Z-stage.  

Probe-sample engage is controlled by electrical surface detection [78] (see Fig. 3.3). In this landing 

routine every second electrode of the probe are connected to form what is basically a two-point 

configuration with one subset of six electrodes connected to I+ and V+, while the other subset is 

connected to I- and V-. When probe landing is initiated the two subsets are shorted by a shunt resistor 

of 5 MΩ. The voltage drop over the shunt resistor is monitored as the probe is continuously moved 

towards the sample. A sharp drop in the measured voltage, when any electrodes representing the two 

individual subsets are connected via the sample, will reveal probe-sample engage. At this point the 

shunt resistor is disconnected and the probe is moved down further by an overdrive commonly referred 

to as the engage depth. Typically an engage depth of 500 nm is used to ensure stable mechanical 

contact for all electrodes. 

s1 s2 s3 ��� 

µm µm µm µm 

1.50 1.50 1.50 1.50 

2.00 2.25 2.50 2.25 

3.00 3.00 3.00 3.00 

4.50 4.50 3.75 4.25 

4.50 4.50 4.50 4.50 

6.00 6.00 5.25 5.75 

7.50 7.75 6.75 7.33 

9.00 8.25 7.50 8.25 
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Fig. 3.2: View of central components of the CAPRES CIPTech M300 including a standard magnet setup for vertical field. 

Image supplied by courtesy of Mette S. Balslev. 

 
Fig. 3.3: Illustration of the probe-sample engage routine. (a) While moving towards the sample the potential drop over a 5 

MΩ shunt resistor is monitored. (b) Upon probe-sample contact the voltage will drop sharply and the shunt resistor is 

disconnected. 

The micro probe is mounted manually in a probe fixture (the so-called probe head) attached to the Z-

stage. When mounted the probe is positioned at an angle of 30 degrees with respect to the sample 

surface (see Fig. 3.4). As a result of frictional wear the electrode material and to some extent also the 
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tip of the SiO2 cantilever itself will be deformed during measurements [79]. For this reason, and due to 

unavoidable variations in the manual positioning of the probe inside the probe head, probes should not 

be removed from the probe head before it is unfit for further measurements (dead). Re-mounting a used 

probe will typically lead to reduced probe lifetime. 

 

 
Fig. 3.4: Probe head with probe mounted. Image supplied by courtesy of Mette S. Balslev. 

The magnetic field necessary to set the magnetization of the ferromagnetic layers is supplied by a 

magnet placed in close proximity of the probe. The magnet setup includes a permanent magnet, which 

can be rotated with respect to the surrounding pole shoes. Depending on the rotation of the permanent 

magnet the magnetic flux density between the pole shoes can be adjusted. Separate magnets are 

available for horizontal and vertical magnetic field, respectively. 

The CIPTech M300 is equipped with two fan filter units (FFUs) providing a steady flow of clean air 

inside the tool enclosure. Measurements reported in this thesis were, however, carried out with the 

FFUs turned off. This was done in order to rule-out the possible negative influence on the measurement 

quality caused by vibrations generated by the FFUs. 

Standard CIPT measurements with implemented position correction are carried out in sequenced 

procedure listed below. This procedure is repeated for every individual CIPT measurement. 

 

1. Probe landing 

2. Set magnetic field corresponding to parallel or anti-parallel state of the MTJ 

3. Measure four-point resistances at varying electrode spacing using the dual configuration 

method to minimize the influence of electrode position error. For each sub-probe four resistance 

measurements are recorded using two of the independent four-point configurations, e.g. A-B-

A’-B’ for AB position correction. 

4. Set magnetic field corresponding to parallel or anti-parallel state of the MTJ 

5. Measure four-point resistances at varying electrode spacing using the dual configuration 

method to minimize the influence of electrode position error. 

6. Probe disengage 

 

For CIPT measurements without position correction only A-configuration measurements are used [28]. 
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3.3 Data treatment 

Four-point measurements on single sheet samples are typically reported as position corrected values 

obtained from the application of the vdp method or the first order approximation. Four individual, 

single configuration measurements (e.g. A-B-A’-B’) are combined to form three continuous pairs (i.e. 

A-B, B-A’ and A’-B’), which are then used to calculate three, position corrected resistance values, 

based on which an average value is reported as the final measurement result. 

For CIPT measurements a series of four-point resistance measurements is carried out using n different 

sub-probes of varying electrode spacing (in this work n = 8). For each sub-probe the measurement 

routine is identical to that of measurements on single sheet sample described above and leads to n 

position corrected Rp values. Even though the physical meaning of Rp is very limited it can serve as a 

useful input for the data fitting routine designed to extract the MTJ parameters, RA, Rt and Rb, from a 

series of four-point resistance measurements. In a least-squares fitting routine n theoretical pseudo 

resistance values, 
mod

pR , based on the CIPT model and information on the intended electrode distances, 

are fitted to the experimentally obtained pseudo resistance values, 
exp

pR , by varying Rt, Rb and RA to 

lower the value of the sum, S, given by 

 ( )[ ]∑
=

−=
n

i

ipip RRRRS
1

2

bt

mod

,

exp

, RA,, . (58) 

The number of elements in the sum is n, when only one RA value is fitted (see chapter 4) and 2n when 

both RAlow and RAhigh are fitted as is the case for conventional, switching field CIPT measurements 

[28].  

3.4 Samples 

MTJ samples to be characterized with the CIPT-method should include a conductive top-layer that does 

not form an insulating oxide, when exposed to air. This is first and foremost a precaution to avoid 

probe crash on the sample surface, since the tool relies on electrical surface detection as described 

above. Another general sample design guideline concerns the sample Rt/Rb-ratio. If Rt is significantly 

lower than Rb, very little of the current will tunnel through the barrier, since the top electrode 

effectively shorts out the measurement [48]. This will lower the measurement precision and therefore it 

is typically recommended by the tool manufacturer to keep the Rt/Rb-ratio above 1 [50]. Finally, to 

evaluate the sample transfer length (and thus RA), measurements at an electrode pitch on the order of λ 

are needed [28], [76]. This can be a challenge especially for low-RA samples, where λ is close to the 

minimum electrode spacing practically achievable. However, this challenge may to some extent be 

circumvented. Since λ=[RA/(Rt+Rb)]
½

 it is possible to increase the transfer length by lowering Rt and/or 

Rb and thereby allow useful CIPT data to be obtained [48]. 

The MTJ sample investigated in this work is a 200 mm wafer with a non-patterned MTJ and in-plane 

magnetization. The MTJ was prepared in a magnetron sputtering process with a subsequent thermal 

anneal in an applied magnetic field of 1 T, and has the following stack composition: {bottom electrode: 

Ta (5 nm)/CuN (50 nm)/Ta (3 nm)}/PtMn (16 nm)/Co70Fe30 (2.2 nm)/Ru (0.85 nm)/Co40Fe40B20 (2.5 

nm)/MgO (1 nm)/Co40Fe40B20 (2.5 nm)/{top electrode: Ta (5 nm)/CuN (15 nm)/Ru (7 nm)}. This 

design of the stack ensures that the lower CoFeB layer is pinned while the upper CoFeB layer is free. 
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Since the value of RA depends on the state of the magnetization (parallel or anti-parallel) it follows that 

the transfer length of the sample will change accordingly, which can be expressed as 

λlow=[RAlow/(Rt+Rb)]
½

 and λhigh=[RAhigh/(Rt+Rb)]
½
. For this particular sample RAlow = 8.5 Ωµm

2
, RAhigh 

= 23.4 Ωµm
2
, Rt = 3.5 Ω/□ and Rb = 0.6 Ω/□. It follows that the respective transfer lengths for the 

sample are nominally λlow = 1.5 µm and λhigh = 2.5 µm. The switching field of the sample can be 

observed from the hysteresis loop presented in Fig. 3.5.  

Due to shadowing effects of the edge exclusion ring in the processing equipment, an area along the 

perimeter of the sample is left un-metalized and has therefore not been probed in this work.  

 

 
Fig. 3.5: Hysteresis loop of the free layer recorded using a micro four-point probe with a pitch of 1.5 µm. Arrows indicate 

the magnetic sweep direction. Reproduced from paper I. 

Using the same sputtering equipment another sample was prepared with a layer of 100 nm Ru 

deposited on top of a 200 mm wafer. This sample, with a nominal sheet resistance of 1.6 Ω, has been 

used for four-point resistance measurements presented in paper II. 
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Chapter 4 

4 Static field CIPT method 

The standard (switching field) CIPT method measures both RA and TMR, but the usefulness for 

uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time (see section 

1.3). In this chapter a fast complementary static magnetic field CIPT method focused only on 

measurement of RA is described together with a conceptual presentation of an alternative magnet 

design. We compare the static field method to the standard CIPT method and find perfect agreement 

between the extracted RA values and measurement repeatability while the static field method is several 

times faster. Finally, we present a detached magnet concept enabled by the proposed static field CIPT 

method. 

This chapter is based on and repeats text and figures from paper I. 

4.1 Sample uniformity 

To investigate sample uniformity high density area mapping of a quarter of an MTJ wafer (see section 

3.4) was carried out using the conventional switching field CIPT measurement method, with an 

implementation of van der Pauw like AB correction, see Fig. 4.1. 1613 measurements were acquired 

with a step size of 2 mm and at two separate magnetic flux densities, in this case ±10 mT, 

corresponding to anti-parallel and parallel magnetization of the sample (see Fig. 3.5). The measurement 

current was 200 µA.  
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Fig. 4.1: High density map of RA (a) and TMR (b) obtained with 2 mm step size on a quarter of a 200 mm wafer. (c) The 

usable wafer area vs. edge exclusion zone is based on an acceptance limit of +/-10 % with respect to the mean value at the 

center of the wafer. 

From the quarter wafer area map we observe a radially asymmetric variation in the MTJ-defining 

parameters TMR and RA. To highlight this asymmetry, we performed two cross-wafer line scans (1 

mm step size) presented in Fig. 4.2. We only depict RAhigh since RAlow showed equivalent behavior. 

Whereas the parameters TMR and RA appear radially symmetric along the X-axis, a clear gradual 

change in RA is observed along the Y-axis. It is reasonable to assume that the asymmetry is related to 

the fact that the target dimension along the Y-axis is smaller than the wafer size while the target 

dimension along the X-axis is much larger than the wafer size. As a result good uniformity can be 

expected along the X-axis while on the y-axis the uniformity is very poor without movement, and even 

with linear movement of the sample along the y-axis with respect to the static target, which is the case 

for this study, the uniformity is inferior to that along the x-axis. Such process variability is most 

detailed observed by full wafer mapping of sample homogeneity, but with the conventional CIPT 

method this can be very time consuming as the measurement time per point is ~60 s. 
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Fig. 4.2: Line scan measurements of RAhigh and TMR=(RAhigh-RAlow)/RAlow with a step size of 1 mm along the X-axis (a) 

and Y-axis (b) across a 200 mm wafer. The colored regions mark a ±10 % band with respect to the mean values indicated 

by the dashed lines. While RA and TMR appear radially symmetric along the X-axis (a), an asymmetric slope in RA is 

clearly observed along the Y-axis (b). Reproduced from paper I. 

From Fig. 4.1 and Fig. 4.2 it is evident that the relative variation of RA is the dominant factor when 

estimating the usable area of the wafer, here defined by a ±10% acceptance band centered on the mean 

value of the central 20×20 mm2 area of the sample. Whereas TMR appears constant with an abrupt 

change in close proximity of the edge of the processed area, we observe that RA begins to decrease 

significantly at an approximate distance of 50 mm from the wafer center. This is in good agreement 

with the theory for conduction across tunnel barriers discussed in section 2.2.3. For MTJs of good 

barrier quality and without pinholes the TMR is hardly affected by changes in RA, which is directly 

related to the barrier thickness. However, as the thickness of the barrier is lowered, pinholes and 

nanobridges provide an alternative current path to tunneling, which is the reason for the abrupt drop of 

TMR observed. Near the edge of the processed area, the barrier is defective and the area fraction 



52 

 

available for leakage, �ℓ (see Eqs. 55-57), is close to 1. This is in line with our observations from Fig. 

4.3 showing TMR as a function of RA as extracted from a conventional switching field CIPT wafer 

mapping. 

 

 
Fig. 4.3: TMR vs. RA extracted from a wafer mapping using the conventional switching field CIPT measurement practice. 

Reproduced from paper I. 

The results in Fig. 4.3 suggest that variations in RAhigh are most easily evaluated due to the larger 

relative change compared with RAlow. Also, evaluating the transfer length requires measurements using 

electrode pitches in a range on the order of λ [28], [76].
 
For typical MTJ’s intended for MRAM, λ is 

close to the minimum electrode pitch practically achievable, and accurate four-point measurements 

become increasingly challenging for reduced electrode pitch. Thus, it may be an advantage to measure 

only in the anti-parallel magnetization state, as RAhigh yields the most easily accessible and most 

relevant sample parameter in the shortest measurement time possible. On the other hand the option of 

simply applying a strong magnetic field and thereby ascertain that the layers are in a well-defined, 

parallel state is a unique advantage for measurements in the parallel state. Similarly, but more time 

consuming, first applying a strong magnetic field in one direction to saturate the sample and 

subsequently measuring in a weaker, static magnetic field of opposite orientation could lead to a more 

precise characterization of the anti-parallel state. In general we shall refer to this selective and less 

comprehensive measurement method as the static field CIPT method. Note that mapping of RA could 

be supplemented by a few switching field CIPT measurements, e.g. near the wafer centre, to establish 

TMR. 

In Fig. 4.4 we present high resolution wafer maps obtained with the static field CIPT method for both 

RAlow and RAhigh. The two maps are presented for comparison only, since the necessary information for 

tool optimization can be extracted from a single one of them as argued above. Each map contains 6510 

measurement positions distributed with a step size of 2 mm. The asymmetric behavior of RA seen in 

Fig. 4.2 (b) is also observable from both maps and the usable area based on an acceptance limit of 

±10% with respect to the mean value at the center of the wafer is also consistent. For the particular 

combination of sample properties and range of electrode pitches in question, there is no significant 
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advantage from measuring RAhigh as opposed to RAlow. However, we do observe a higher density of 

outliers in the usable area determined by RAlow, which might be attributed to measurement precision.  

 

 

 
Fig. 4.4: High density maps of RAhigh (a) and RAlow (c) on the full 200 mm wafer obtained with 2 mm step size totaling 

6510 measurement points per map. (b and d) The usable wafer area vs. edge exclusion zone based on an acceptance limit of 

±10 % with respect to the mean value at the center of the wafer for RAhigh and RAlow respectively. Reproduced from paper I. 
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4.2 Switching field CIPT vs. static field CIPT 

While uniformity mapping is possible with conventional CIPT measurements on a full wafer, the task 

turns out to be impractical due to the resulting measurement time. The overall time spent per 

measurement point can be split into 3 contributing factors: 

 magmovmeastot tttt ++= , (59) 

where tmeas is the time spent sampling data, tmov is the time spent on stage movement and tmag is the time 

spent on adjustments of the magnetic field. 

In a timed comparison of the two methods, a square grid of 10x10 points with a step size of 100 µm in 

a homogeneous region of the sample was measured using a current of 200 µA at a frequency of 24.11 

Hz and an integration time of 83 ms. The static field method was found to be more than 5 times faster 

than the conventional CIPT method. Fig. 4.5 compares the time consumption of the two methods in 

their regular implementation and predicts how they would relate in other scenarios where one or more 

of the contributing factors are negligible while the other factors remain unchanged. In the regular 

implementation tmeas = 5.6 s and 2.8 s for CIPT and static field methods respectively, tmov, which 

applies to both methods, is 8.9 s and tmag, which applies only to the conventional CIPT method, is 

46.1 s. The time reduction observed for the regular implementation of the methods is mainly due to the 

lack of magnet adjustments in the static field method. However, as is seen from Fig. 4.5, changes to 

other factors can greatly influence the ratio of time spent with the different method implementations. 

Thus, when we utilize the proposed static field CIPT method and measure only RAlow or RAhigh, we can 

drastically reduce the time spent per point, which in turn allows us to map the entire wafer within a 

reasonable timespan. 

 

 
Fig. 4.5: Time spent per point, ttot, for conventional CIPT and static field method respectively are presented for the regular 

implementation of the methods as well as 4 scenarios for which one or more contributing factors are negligible while the 

other factors remain unchanged. Reproduced from paper I. 
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To allow for a comparison of measurement quality for the two different methods, three individual, high 

density line scans each containing 100 measurement points were carried out using a step size of only 2 

µm. This was done in order to reduce the influence of local sample variations; otherwise the same 

measurement settings as mentioned above were used. One series of traditional switching field CIPT 

measurements as well as two series of static field CIPT measurements in an applied magnetic field of 

respectively +10 mT and –10 mT were performed. A comparison of the measurement results are 

summarized in Tab. 4.1, and the two methods are found to be in good agreement. 

 

 
Tab. 4.1: Mean value and relative standard deviation of RAlow and RAhigh based on 3 line scans: One series of traditional 

switching field CIPT measurements (CIPT) and two series of static field CIPT measurements (STATIC). Each scan contains 

100 measurement points distributed with a step size of 2 µm. Reproduced from paper I. 

4.3 Detached magnet concept 

With the proposed static field CIPT method ground has been laid to rethink the magnet setup of the 

CIPT measurement tool. With the conventional CIPT method the magnetic field is switched for every 

measurement, which demands a magnet setup positioned at the actual measurement location. 

Additionally, the general desire for large dynamic range with respect to obtainable magnetic field, 

while at the same time maintaining field homogeneity in the measurement spot, has led to magnet 

setups being placed in close proximity of both probe and sample during measurement (see Fig. 3.2). 

The complexity of such systems is generally high, and the fact that space available for the magnet setup 

is limited, since room is needed for probe, sample and optics, only adds to the complexity. Finally, the 

complexity can be expected to increase even further in a future, fully automated CIPTech tool, 

requiring automatic probe change, which is a concept know from the commercially available CAPRES 

A300 µRSP [50]. 

Taking the static field CIPT method a step further could include the implementation of a detached 

magnet setup and measuring the sample without an applied magnetic field. To remove the magnet from 

the measurement area entirely would drastically reduce the complexity of the measurement system and 

pave the way for new magnet setups with superior dynamic range and field homogeneity. One such 

magnet setup would be the “letterbox”-type (see Fig. 4.6), which is especially suited for providing 

vertical magnetic field. In the concept drawing of Fig. 4.6 the magnet setup (green) is shown together 

with an automated wafer handler, which can move the sample through the narrow gap of the letterbox 

magnet. The limiting factor with respect to the gap size is the thickness of the wafer handler and the 

wafer itself. With this being the only design restriction, it is clear that magnets can be created with 

which very high magnetic fields can be reached e.g. by placing two permanent magnets (or 

electromagnets) of opposite, vertical magnetization on either side (over and below) the narrow gap (see 
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Fig. 4.6 (b)). By moving the sample through the letterbox magnet the entire wafer will be exposed to a 

homogeneous magnetic field and can subsequently be moved to the x-/y-stage for electrical 

characterization. 

Other concepts suited for providing horizontal magnetic field can be designed. 

 

 
Fig. 4.6: Concept drawing. (a) An automated wafer handler (wafer robot) and a detached magnet setup (green) of the 

“letterbox”-type. (b) Front view of the magnet. 

Of course a detached magnet setup would also include some disadvantages as compared to the 

conventional magnet setup. First of all, the setup would not be suited for characterizing the hysteresis 

loop of a sample. Secondly, some MTJs would not be characterized without the presence of an applied 

magnetic field during CIPT measurements. However, the concept would be suited MTJs for MRAM 

application. 

4.4 Summary 

High density mapping of an un-patterned MTJ sample reveals variations of RA and TMR, exceeding 

by far an acceptance limit of ±10%. We find the variation of RA to be the most critical process 

parameter as compared to the variation of TMR. Because of process induced, radial asymmetry in the 

variations of RA, we argue that high resolution wafer mapping of the entire processed area is necessary 

for adequate process optimization and tool qualification. Since the CIPT method is a serial 

characterization technique, the time associated with mapping an entire wafer is directly proportional to 

the measurement time per point and resolution. Thus, to enable high resolution mapping, we have 

demonstrated a static field CIPT method, which allows us to reduce the measurement time by a factor 

of 5, by measuring only RA thus excluding TMR. This enhancement is obtained purely by acquiring 

only half of the data needed for the conventional switching field CIPT measurement and particularly by 

avoiding magnetic field switching. In a homogeneous region of the investigated sample, we observe 

that the two methods measure essentially the same RA values. By offering the choice of characterizing 

either RAlow
 
or RAhigh the static field CIPT method has an added advantage over the conventional 

switching field CIPT method, which relies on the characterization of both RA values. This allows for 

an improved matching of the range of available electrode pitches and sample transfer lengths λlow or 

λhigh, which may effectively increases the dynamic range of any given 12-point probe. 

Without the requirement for switching magnetic fields during measurements the static field CIPT 

method has inspired the concept of detached magnet setups for future CIPTech tools. While lowering 
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the complexity of the measurement system a detached magnet setup, e.g. the proposed letterbox 

magnet, could provide superior dynamic range and field homogeneity as compared to current state of 

the art solutions.  
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Chapter 5 

5 Characterization of position errors and 

electrical noise 

It is a declared goal of this project to improve the precision of CIPT measurements on MTJs (see 

section 1.3). In relation to achieve this goal, it is useful to gain some insight into the nature of electrode 

position errors, which are known to be a limiting factor with respect to measurement precision. 

However, electrode positions errors are best evaluated based on measurements on single sheet samples. 

This is due to the fact that only for single sheet samples will the vdp method truly correct for positional 

errors, and thus allow us to correctly estimate the size of said errors. In this chapter we therefore 

characterize the electrode position errors in measurements on a Ru thin film sample (see section 3.4) 

using the M12PP described in section 3.1, which is the same probe type being used for CIPT 

measurements. 

The standard deviation of the static electrode position error is shown to be on the order of 5 nm, which 

significantly affects the result of single configuration measurements. Position error corrected dual 

configuration measurements, however, are shown to eliminate the effect of position errors to a level 

limited either by electrical measurement noise or dynamic position errors. The probe contact points 

remain almost static on the surface during the measurements (measured on an atomic scale) with a 

standard deviation of the dynamic position errors of 3 Å. Furthermore it is demonstrated how to 

experimentally distinguish between different sources of measurement errors, e.g. electrical 

measurement noise, probe geometry error as well as static and dynamic electrode position errors. New 

measurement systems and probe designs may be evaluated and benchmarked against each other using 

the same strategy, which is the topic of section 5.3. 

This chapter is based on and repeats text and figures from paper II. 

5.1 Experimental 

Measurements were performed using a current of either 200 or 2000 µA at 24.11 Hz and an integration 

time of 83 ms. For each sub-probe the following sequence of measurement configurations was run 

during each probe-sample engage: A, B, A’ and B’. For studies of the dynamic in-line position error the 

standard deviations on ∆RA=RA-RA’  and ∆RB=RB-RB’ were used since variations in ∆R are largely 

unaffected by static position errors and probe geometry errors. Possible offsets between measurements 

in A- and A’- and/or B- and B’-configurations will not affect the relative standard deviation of the 

results. 

The eight sub-probe geometries and corresponding geometric pre-factors α, β and γw, used for AB 

position error correction (vdp method and first order approximation), are summarized in Tab. 5.1. 
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Tab. 5.1: Geometric details of the eight sub-probes formed using the 12-point probe. Distances between neighboring 

electrodes (s1, s2, and s3), mean probe pitch, <s>, and geometric pre-factors (α, β, and γ) are listed. Reproduced from paper 

II. 

5.2 Results and discussion 

Measurements were carried out as a rectangular area scan of 10 by 10 points distributed with a step size 

of 100 µm in a homogeneous area of the sample. The scan was repeated in the same area to compare 

measurements at 200 µA and 2000 µA, respectively. Fig. 5.1 summarizes the results of the 

measurements at 2000 µA; here the sheet resistances, 
SR , with respective errors are shown as a 

function of the mean probe pitch. Sheet resistances extracted directly from A or B measurements using 

Eqs. 2 or 3 are shown along with position error corrected sheet resistances calculated using the same 

data. Position error correction is carried out using the vdp method (see Eq. 16) as well as the first order 

approximation (see Eq. 22). From Fig. 5.1 it is clear that both error correction schemes result in almost 

identical extracted sheet resistances and a low standard deviation, while sheet resistances extracted 

directly from A or B measurements deviate significantly from the position corrected mean and have a 

much larger standard deviation. Measurements at 200 µA are not shown but give essentially the same 

results. 

 

s1 s2 s3 ��� α β γ 

µm µm µm µm 

1.50 1.50 1.50 1.50 1.61 2.71 0.75 

2.00 2.25 2.50 2.25 1.62 2.71 0.75 

3.00 3.00 3.00 3.00 1.61 2.71 0.75 

4.50 4.50 3.75 4.25 1.56 2.44 0.77 

4.50 4.50 4.50 4.50 1.61 2.71 0.75 

6.00 6.00 5.25 5.75 1.57 2.50 0.77 

7.50 7.75 6.75 7.33 1.55 2.45 0.77 

9.00 8.25 7.50 8.25 1.62 2.71 0.75 
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Fig. 5.1: The mean sheet resistance for A- and B-configuration measurements as well as position corrected values based on 

the van der Pauw (vdp) method and the first order approximation as a function of the mean electrode pitch <s>. 

Measurements were obtained with an applied current of 2000 µA. Error-bars indicate the standard deviation. Reproduced 

from paper II. 

For the static position error analysis, the relative standard deviations of the measured resistances are 

plotted in Fig. 5.2. As predicted by Eqs. 13-14, we observe a higher relative standard deviation for 

measurements in the B-configuration as compared to that of measurements in the A-configuration. We 

observe that the standard deviations decrease approximately inversely with the mean electrode pitch, 

which indicates that positional errors constitute the dominant source of error in this experiment. 

Changing the current by an order of magnitude does not influence the standard deviation significantly.  

Applying the expressions of Eqs. 7-8 to the measurement data in Fig. 5.2 allows the static in-line 

position error of the electrodes to be estimated. From Fig. 5.3 we observe that the standard deviations 

of static in-line position errors are in the range from 4.5 nm to 7.2 nm and without any clear correlation 

to neither the applied current nor the mean pitch. The values are significantly lower than what has 

previously been reported (20 nm) in similar experiments [51]. We find a remarkable agreement 

between the in-line position errors extracted from A- and B-configuration measurements, respectively. 

This supports the validity of Eqs. 7-8. 
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Fig. 5.2: The relative standard deviation of A- and B-configuration measurements at applied currents of 200 µA and 2000 

µA as a function of the mean electrode pitch <s>. A trend line with a slope of -1 decade/decade is added. Reproduced from 

paper II. 

 

 
Fig. 5.3: The standard deviation of the in-line electrode positions for A- and B-configurations respectively at applied 

currents of 200 µA and 2000 µA as a function of mean electrode pitch <s>. Reproduced from paper II. 
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Fig. 5.4 shows a plot of the relative standard deviation of ∆R for A- and B-configuration 

measurements, respectively. The standard deviations at 200 µA are independent of the mean electrode 

pitch and differ from those at 2000 µA that are approximately inversely proportional to the electrode 

pitch. The data at 2000 µA are consistent with dynamic position errors with a standard deviation of ~3 

Å, while the data at 200 µA are consistent with electrical measurement noise with a standard deviation 

of ~65 nV. The electrical measurement noise hardly affects the precision of the measurements at the 

higher current level. Again, the relative magnitudes of the standard deviations in A- and B-

configuration measurements are in agreement with theory. 

 

  
Fig. 5.4: The relative standard deviation of ∆R for A- and B-configuration measurements, respectively, at applied currents 

of 200 µA and 2000 µA as a function of mean electrode pitch <s>. A trend line with a slope of -1 decade/decade is added. 

Reproduced from paper II. 

To the extent that positional errors are indeed static throughout the measurement sequence for each 

subset of four electrodes and entirely located along the line of contact points they can be compensated 

for using the position correction algorithms, Eqs. 16 and 19. Here the two methods are compared by 

applying them to the measurements presented in Fig. 5.1 - Fig. 5.4. The results are shown in Fig. 5.5 

and represent statistics on the position corrected sheet resistance results of the first A-B pair for each 

subset of four electrodes; the other possible A-B pairs give almost identical results. 
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Fig. 5.5: The relative standard deviation of the position corrected sheet resistance as a function of the mean electrode pitch 

<s>. Position corrections based on the van der Pauw (vdp) method and the first order approximation were used. The curves 

represent Monte Carlo simulations mimicking the xσ  measurement conditions (parameters: xσ = 5 nm, 
dyn

xσ = 0.3 nm and 

Vn = 65 nV). Reproduced from paper II. 

It is easily recognized that the two position correction algorithms perform equally well. For the 

measurements at 200 µA there is almost no pitch related trend, which implies that for this dataset (after 

position correction is applied) electrical noise is the dominant source of residual error. When the 

current is increased to 2000 µA, the position corrected data yields a significantly lower relative 

standard deviation and there is a clear trend of decreasing standard deviation for increasing pitch, 

which means that position errors are still dominant. These errors cannot be corrected for using the 

position correction algorithms and must therefore be a combination of the following factors: static off-

line errors, dynamic off-line errors or dynamic in-line errors, which cannot be corrected by the 

algorithms. The curves in Fig. 5.5 are results of Monte Carlo simulations using static position errors 

with a standard deviation of 5 nm, dynamic position errors with a standard deviation of 3 Å and an 

electrical measurement noise with a standard deviation of 65 nV. Both position corrected 

measurements at 200 µA and 2000 µA are consistent with these three error sources found from the 

single configuration analysis.    

To investigate possible ageing effects on the probe position errors, a micro-probe was engaged at 5000 

measurement locations distributed in a small homogeneous area of the wafer. Using a current of 2000 

µA measurements with eight sub-probes were carried out in a sequence containing four electrode 

configurations, A, B, A’ and B’, at each measurement position. Evaluating data sub-sets of 100 

consecutive measurements the individual static in-line position error for each sub-probe and electrode 

configuration, 	

��
,�

 and 	

��
,�

, was found. Fig. 5.6 shows mean-, maximum- and minimum-value of 

σx evaluated across all sub-probes and electrode configurations. The average static in-line position 

error, 〈	

���〉, was found to be 5.1 nm with minimum position error 	
,���

��� = 3.9	nm and maximum 
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position error 	
,���
��� = 7.5	nm. A slight decrease in position error is seen with increasing measurement 

age of the probe. 

 

 
Fig. 5.6: Static in-line position error evaluated across 50 data sub-sets containing 100 unique and consecutive measurements 

in an area scan totaling 5000 points. For each sub-set of data σx is evaluated individually for each sub-probe and electrode 

configuration and we show mean-, maximum- and minimum-value of σx evaluated across all sub-probes and electrode 

configurations. Reproduced from paper II. 

Fig. 5.7 shows the relative standard deviation of ∆R for A-configuration measurements evaluated 

across the 50 data sub-sets. No clear aging trend is observed. 

 

 
Fig. 5.7: The relative standard deviation of ∆R for A-configuration measurements evaluated across 50 data sub-sets 

containing 100 unique and consecutive measurements in an area scan totaling 5000 points. For each sub-set of data σrel(∆R) 

is evaluated individually for each sub-probe and we show mean-, maximum- and minimum-value of σrel(∆R) evaluated 

across all sub-probes. Reproduced from paper II. 
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5.3 Evaluation of alternative probe design 

During measurements for the study presented above the tool’s fan-filters were turned off. However, in 

a production environment the FFUs of the tool will be running to keep a clean environment, which will 

result in an increased vibration level inside the tool. Other production related sources of vibrations 

includes pumps incorporated in other tools or service facilities of the fab itself. To meet the challenge 

of a vibration intense environment alternative probe designs are being developed and can be compared 

and benchmarked against each other using the characterization strategy presented above. 

Here we present in partial a preliminary, comparative study of the two probe designs. An experimental 

12-point probe incorporating ?-shaped (“question mark”-shaped), SiO2 cantilever electrodes (see Fig. 

5.8) was compared with the straight cantilever probe used above. This probe has mean probe pitches in 

the range from 1.5 µm to 18.5 µm, three of which being obtained using sub-probes exactly matching 

those of the conventional 12-point probe (<s> = 1.5 µm, 3 µm and 4.5 µm).  

Measurements were performed while running the fan-filter of the tool at different speeds (airflows): 

0.49 m/s (low vibration level), 0.65 m/s (medium vibration level) and 0.72 m/s (high vibration level). 

Area scan arrays of 10x10 points with a step size of 100 µm were measured. The results presented in 

Fig. 5.9 covers data obtained at 3 nominally, identical sub-probes (<s> = 1.5 µm, 3 µm and 4.5 µm) for 

the two probe designs. It is clear from the plot that the ?-shaped probe provides a lower relative 

standard deviation even at low vibration level. As the vibration intensity is increased the ?-shaped 

probe retains a relative standard deviation of less than 0.1% at a probe pitch of 1.5 µm, which 

corresponds to the performance of the straight cantilever probe at low vibration level. At high vibration 

level the straight cantilever probe returns a relative standard deviation of 0.22%.   

 

 
Fig. 5.8: Section of a scanning electron micrograph of an experimental 12-point probe with Au-coated, ?-shaped cantilever 

electrodes. 
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Fig. 5.9: The relative standard deviation of the position corrected sheet resistance obtained using two different probe 

designs, straight cantilever and ?-shape cantilever probes, at three different vibration levels (low LV, medium MV and high 

HV). A trend line with a slope of -1 decade/decade is added. 

5.4 Summary 

We have experimentally shown that the dominant sources of error in single configuration micro four-

point probe sheet resistance measurements are in-line probe geometry errors and in-line static position 

errors. These errors were shown to be eliminated very effectively using dual-configuration 

measurements and position error correction algorithms. At the error level observed in this study both 

position error correction algorithms – van der Pauw and the first order approximation by D.C. 

Worledge – are equally effective, this will not be the case at large relative position errors where the van 

der Pauw method is the better choice. 

The standard deviation of the static in-line position error for measurements with Au coated electrodes 

on Ru thin film samples was found to be in the range from 3.9 nm to 7.5 nm. The standard deviation of 

the dynamic in-line position error was shown to be small ~3 Å and only detectable in measurements 

with high measurement current. At lower measurement currents the electrical measurement noise was 

the dominant error source. No significant ageing effect on position errors (except for a very slight 

reduction in position error with measurement age) was observed for a probe in the course of 5000 

measurements. Finally we have demonstrated how new probe designs may be evaluated and 

benchmarked against each other using the same strategy. 
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Chapter 6 

6 Enhanced precision for CIPT 

measurements 

In this chapter focus will be aimed at four-point measurements on MTJ samples and in particular the 

influence of electrode position errors will be described. In section 2.2.1 and 2.2.2 analytical expressions 

covering static in-line errors and their reduction based on first order position correction were presented. 

Here we use Monte Carlo (MC) simulations to unfold the scenario to include static and dynamic, in-

line and off-line errors as well as electrical noise and compare the performance of both vdp and first 

order position correction (here denoted “dcw”) while evaluating all available configuration 

combinations; AB, AC and BC. We show that for all scenarios vdp correction based on AC-

configuration measurements, vdp(AC), outperforms all other correction schemes. 

Based on the results presented in the previous chapter on specific position errors for the M12PP used in 

this project, MC simulations are carried out mimicking the performance of this probe and the available 

corrections schemes on a range of MTJs. This allows us to evaluate the dynamic range of the probe and 

we find vdp(AC) correction to provide the larges dynamic range for the probe. 

Actual four-point resistance measurements recorded on an MTJ sample are compared to simulated 

results indicating that electrode position errors on this sample are roughly one order of magnitude 

larger as compared our findings reported in chapter 5. 

To further enhance the precision of CIPT measurements we propose the use of added sub-probes with 

nominally identical electrode distances. We use theoretical calculations to prove the existence of an 

optimal, overlapping pin combination for two sub-probes. 

Finally, a new equidistant probe design for high precision CIPT measurements is presented.  

6.1 Experimental 

The presented four-point resistance measurements were performed using a current of 2000 µA at 24.11 

Hz and an integration time of 83 ms. The probe itself is described is section 3.1 and for each sub-probe 

the following sequence of measurement configurations was run during each probe-sample engage: A, 

B, C, A’, B’ and C’. This measurement sequence was used to allow for comparison of position 

correction based on AB-, AC- and BC-configurations. 

6.2 Results and discussion 

Since the results presented in this section include several figures, subsections have been added to create 

a better overview and in rare cases a figure is shown prior to its formal introduction in the text. 
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6.2.1 Static position errors 

MC simulations were carried out to determine the influence of static in-line errors, %1/ =sxσ , on the 

measured four-point resistance. Fig. 6.1 shows the relative standard deviation of single configuration 

and position corrected four-point resistances as a function of equidistant electrode spacing, s, 

(normalized to λ) for an MTJ sample with Rt/Rb = 10. Since we consider only static errors, the relation 

 BAC RRR −= holds true also for MTJs [54]–[56]. Thus the position corrections based on the vdp-

method and the first order approximation (dcw) are independent of the specific combination of 

configuration (AB, AC or BC). The plotted results are in excellent agreement with the theoretical 

predictions presented in Fig. 2.10 and it is noted that the vdp method results in a lower relative standard 

deviation as compared to the first order correction. As the Rt/Rb-ratio of the sample is lowered so is the 

influence of static in-line errors on the position corrected results, which is evident from Fig. 6.2 (Rt/Rb 

= 1) and Fig. 6.3 (Rt/Rb = 0.1). This is also in line with theory (see section 2.2.2) predicting single sheet 

behavior for MTJs for Rt/Rb → 0 and at electrode spacing s≪λ or s≫λ, and therefore the position 

correction algorithms completely eliminates static, in-line errors in these regimes. 

 

 
Fig. 6.1: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: 
xσ / s = 1%, 500 iterations). 
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Fig. 6.2: The relative standard deviation of position corrected four-point resistances as a function of equidistant electrode 

spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 1. Position corrections based on the vdp-method (vdp) and the 

first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations (parameters: 
xσ / s = 

1%, 500 iterations). 

 
Fig. 6.3: The relative standard deviation of position corrected four-point resistances as a function of equidistant electrode 

spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 0.1. Position corrections based on the vdp-method (vdp) and 

the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations (parameters: 
xσ / s 

= 1%, 500 iterations). 
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The position correction strategies do not correct for static off-line errors. The results of MC simulations 

for, %1/ =syσ , are presented in Fig. 6.4 and for all s/λ the lowest relative standard deviation is obtain 

for single A-configuration measurements. However, on the absolute scale the influence of off-line 

errors are limited and for realistic scenarios where 
yx σσ ≈  the influence of xσ  will overshadow that of 

the off-line error. 

 

 
Fig. 6.4: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: 
yσ / s = 1%, 500 iterations). 

6.2.2 Dynamic position errors 

Since RA, RB and RC are not measured simultaneously the relation, 
 BAC RRR −= , no longer holds true 

in the presence of dynamic errors, and theory predicts different response to dynamic in-line errors for 

AB, AC and BC correction, respectively (see Eqs. 28-30). The influence of dynamic in-line errors, 

%1/dyn =sxσ , has been simulated for three different Rt/Rb-ratios and the results are plotted in Fig. 6.5 

(Rt/Rb = 10), Fig. 6.6 (Rt/Rb = 1) and Fig. 6.7 (Rt/Rb = 0.1). Comparing the three plots we immediately 

recognize the single sheet behavior of MTJs for Rt/Rb → 0 and at electrode spacing s≪λ or s≫λ. In 

these “single sheet”-regimes the sensitivity to position errors matches the theoretical predictions for 

single sheet samples (see Eqs. 28-30). For the full range of s/λ AC correction yields the lowest relative 

standard deviation, and at an intermediate range around s ≈ λ, the vdp(AC) method performs slightly 

better than the corresponding first order correction, dcw(AC). Single A-configuration measurements 

result in lower relative standard deviation as compared to both AB and BC correction. In particular AB 

correction always yields larger relative standard deviation than any other position correction scheme or 
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single configuration measurements. At intermediate range around s ≈ λ the gap between vdp(AB) and 

single B-configuration measurements is closing for Rt/Rb = 10, but measurements using vdp(AB) and 

dcw(AB) correction remain at a significantly higher relative standard deviation than any other 

measurement scheme. 

 

 
Fig. 6.5: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: 
dyn

xσ / s = 1%, 500 iterations). 
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Fig. 6.6: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 1. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: 
dyn

xσ / s = 1%, 500 iterations). 
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Fig. 6.7: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 0.1. Position corrections based on the 

vdp-method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo 

simulations (parameters: 
dyn

xσ / s = 1%, 500 iterations). 

Simulations of dynamic off-line errors are presented in Fig. 6.8 and the results are almost identical to 

what was observed for static off-line errors (see Fig. 6.4) with the one main difference being the 

significant response to dynamic errors exhibited by AB correction. However, the influence of dynamic 

off-line errors is still negligible as compared to that of in-line errors (static and dynamic). 
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Fig. 6.8: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: 
dyn

yσ / s = 1%, 500 iterations). 

6.2.3 Electrical noise 

In the MTJ “single sheet”-regimes the sensitivity to electrical noise (see Fig. 6.9) is found to match the 

theoretical predictions for single sheet samples (see Eqs. 34-36). The electrical noise is assumed to be 

identical for all measurement configurations and is set to 0.01% with respect to RA (note that the 

standard deviation for RA remains constant at 0.01%). As was the case for off-line errors (static and 

dynamic) single A-configuration measurements yields the lowest relative standard deviation as a 

function of electrical noise. Comparing the different correction schemes also leads to the same 

conclusion as was found in the studies presented above, namely that AC correction and in particular 

vdp(AC) correction yields the lowest relative standard deviation. 
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Fig. 6.9: The relative standard deviation of single configuration and position corrected four-point resistances as a function of 

equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the vdp-

method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo simulations 

(parameters: E-noise = 0.01% (based on RA), 500 iterations). 

6.2.4 Combined errors 

In the previous sections the three main categories of errors influencing the precision of four-point 

resistance measurements have been analyzed separately. In Fig. 6.10 the results of simulations 

combining static position errors, 
yx,σ / s = 1%, dynamic position errors, dyn

, yxσ / s = 0.1%, and electrical 

noise, 0.01% (based on RA), are presented. With this combination of errors all position correction 

schemes yield relative standard deviations that are at least a factor of two lower than the best 

performing single configuration strategy, which is the A-configuration measurement. The vdp(AC) 

correction is consistently delivering the lowest relative standard deviation, which is also true when 

evaluating the results presented in Fig. 6.11. Here simulations were carried out for

%1dyn

,, == ss yxyx σσ  and electrical noise, 0.01% (based on RA). The increase of dynamic errors 

renders AB-correction useless compared to AC- and BC-correction and is surpassed in relative 

standard deviation only by single B-configuration measurements (for s in the range from λ to 3λ). 
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Fig. 6.10: The relative standard deviation of single configuration and position corrected four-point resistances as a function 

of equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the 

vdp-method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo 

simulations (parameters: 
yx,σ / s = 1%, 

dyn

, yxσ / s = 0.1%, E-noise = 0.01% (based on RA), 500 iterations). 
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Fig. 6.11: The relative standard deviation of single configuration and position corrected four-point resistances as a function 

of equidistant electrode spacing, s, (normalized to λ) for an MTJ sample with Rt/Rb = 10. Position corrections based on the 

vdp-method (vdp) and the first order approximation (dcw) were used. The presented data is based on Monte Carlo 

simulations (parameters: 
yx,σ / s = 1%, 

dyn

, yxσ / s = 1%, E-noise = 0.01% (based on RA), 500 iterations). 

6.2.5 Increased dynamic range 

In this section the dynamic range of the M12PP used in this project (see section 3.1) is evaluated 

through series of MC simulations mimicking full static field CIPT measurements (see section 3.3) on 

MTJs with a variation of λ and Rt/Rb-ratios. Throughout the study the sum of Rt and Rb is kept constant 

at Rt + Rb = 10 Ω/□. The simulations also include position errors according to the findings presented in 

chapter 5; 
yx,σ  = 5 nm and dyn

, yxσ  = 0.3 nm as well as electrical noise of 1% (based on RA). Based on 

these simulations we will be able to determine which position correction scheme provides the broadest 

dynamic range for the probe. 

 



80 

 

 
Fig. 6.12: The relative standard deviation of RA as a function of λ for an MTJ sample with Rt/Rb = 1 (a), Rt/Rb = 3 (b) and 

Rt/Rb = 10 (c). RA is extracted from CIPT-model-fits to series of single configuration and position corrected four-point 

resistances. Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The 

presented data is based on Monte Carlo simulations mimicking the measurement conditions for one specific M12PP-design 

(parameters: 
yx,σ  = 5 nm, 

dyn

, yxσ  = 0.3 nm, E-noise = 0.01% (based on RA), 100 iterations). 

In Fig. 6.12 the relative standard deviation of the fitted RA, rel

RAσ , is plotted as a function of λ for 

various CIPT measurement strategies including vdp and first order position correction. Rt/Rb is varied 

in three steps: Rt/Rb = 1 (see (a)), Rt/Rb = 3 (see (b)) and Rt/Rb = 10 (see (c)).  

Similar plots are presented for the other fitting parameters; Rt (see Fig. 6.13) and Rb (see Fig. 6.14). 

For RA the broadest dynamic range with respect to λ is observed for vdp(AC) correction and Rt/Rb = 3. 

In this range the relative standard deviation RA is roughly one order of magnitude lower for vdp(AC) 

correction as compared to single A-configuration measurements. In general the data series plotted in 

Fig. 6.12 (a) and Fig. 6.12 (b) forms parabolas, whereas the position corrected results for Rt/Rb = 3 

seem to rise more slowly for λ → 0. Focusing on the lower values of λ, which pose the greatest 

technical challenge, one might speculate that a slightly different Rt/Rb-ratio could turn out to be even 

more optimal than Rt/Rb =3 for the estimation of RA at low λ.  
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Fig. 6.13: The relative standard deviation of Rt as a function of λ for an MTJ sample with Rt/Rb = 1 (a), Rt/Rb = 3 (b) and 

Rt/Rb = 10 (c). Rt is extracted from CIPT-model-fits to series of single configuration and position corrected four-point 

resistances. Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The 

presented data is based on Monte Carlo simulations mimicking the measurement conditions for one specific M12PP-design 

(parameters: 
yx,σ  = 5 nm, 

dyn

, yxσ  = 0.3 nm, E-noise = 0.01% (based on RA), 100 iterations). 

For Rt no clear trend is observed with respect to the Rt/Rb-ratio. In general the relative standard 

deviation is increasing for λ → 0, which is in good agreement with the trend observed in Fig. 2.4, 

namely that s≪λ essentially Rt is measured. As λ is decreased the less information on Rt is picked up by 

the probe (minimum pitch of the applied probe in this case is fixed at 1.5 µm). In the optimal range, λ ≥ 

10 µm the relative standard deviation on Rt is 20 times lower for vdp(AC) correction as compared to 

single A-configuration measurements. 
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Fig. 6.14: The relative standard deviation of Rb as a function of λ for an MTJ sample with Rt/Rb = 1 (a), Rt/Rb = 3 (b) and 

Rt/Rb = 10 (c). Rb is extracted from CIPT-model-fits to series of single configuration and position corrected four-point 

resistances. Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The 

presented data is based on Monte Carlo simulations mimicking the measurement conditions for one specific M12PP-design 

(parameters: 
yx,σ  = 5 nm, 

dyn

, yxσ  = 0.3 nm, E-noise = 0.01% (based on RA), 100 iterations). 

For Rb the data points form a distinct arrow-shape “pointing” to an optimum value with respect to λ. 

The optimum value changes slightly from λ ≈ 2.3 µm for Rt/Rb = 1, to λ ≈ 1.6 µm for Rt/Rb = 3 and λ ≈ 

1 µm for Rt/Rb = 10. This characteristic behavior is observed because Rb cannot be probed individually 

at any electrode pitch, which is in contrast to the case of Rt. For s≫λ the parallel resistance of Rt and Rb 

is measured but in order to obtain a good precision on the estimated the value of Rb one also needs a 

fairly precise estimate for RA and Rt. The lowest relative standard deviation on Rb is obtained for Rt/Rb 

= 10 and with the application of vdp(AC) correction. For this scenario the relative standard deviation is 

approximately 5 times lower for vdp(AC) correction as compared to single A-configuration 

measurements. 
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6.2.6 Measurements and position errors 

In this section MC simulations are compared to actual four-point resistance measurements recorded on 

the MTJ sample described in section 3.4. Simulations are carried out using MTJ parameters for this 

particular sample and position errors according to the findings presented in chapter 5. The results of 

these simulations are plotted in Fig. 6.15. The relative standard deviation on the measured four-point 

resistance is plotted as a function of pitch (for equidistant probe) and is observed for the vdp(AC) 

correction to range from a value of ~0.1%, for s = 1.5 µm, to 0.02%, for s = 8.3 µm. 

 

 
Fig. 6.15: The relative standard deviation of position corrected four-point resistances as a function of equidistant electrode 

spacing, <s> = s, for a specific MTJ sample (parameters: RAlow = 8.5 Ωµm
2
, Rt = 3.5 Ω/□, Rb = 0.6 Ω/□ and λlow = 1.5 µm). 

Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The presented data 

is based on Monte Carlo simulations (parameters: 
yx,σ  = 5 nm, 

dyn

, yxσ  = 0.3 nm, E-noise = 0.01% (based on RA), 1000 

iterations). 

Experimental four-point resistance measurements were performed in a homogeneous area of the 

sample, in square grid of 10 by 10 measurement points distributed with a step size of 100 µm. Other 

measurement parameters are listed in section 6.1. The measurement results obtained at 8 different mean 

probe pitches, corresponding to the standard sup-probe selection for this probe (see section 3.1), are 

presented in Fig. 6.16. It is clearly observed from the plot, that the relative standard deviation on the 

measured resistance for vdp(AC) correction, which provides the lowest relative standard deviation, is 

roughly an order of magnitude higher than predicted by the simulations. 

By repeated simulations (see Fig. 6.17) the position errors (static and dynamic) matching the 

experimental results were found to be one order of magnitude larger than the position errors reported in 

paper II. 
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Fig. 6.16: The relative standard deviation of position corrected four-point resistance measurements as a function of average 

electrode spacing, <s>, for a specific MTJ sample (parameters: RAlow = 8.5 Ωµm
2
, Rt = 3.5 Ω/□, Rb = 0.6 Ω/□ and λlow = 1.5 

µm). Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The presented 

data are based on 100 measurements carried out using one specific M12PP-design. 
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Fig. 6.17: The relative standard deviation of position corrected four-point resistances as a function of equidistant electrode 

spacing, <s> = s, for a specific MTJ sample (parameters: RAlow = 8.5 Ωµm
2
, Rt = 3.5 Ω/□, Rb = 0.6 Ω/□ and λlow = 1.5 µm). 

Position corrections based on the vdp-method (vdp) and the first order approximation (dcw) were used. The presented data 

is based on Monte Carlo simulations (parameters: 
yx,σ  = 50 nm, 

dyn

, yxσ  = 3 nm, E-noise = 0.01% (based on RA), 1000 

iterations). NOTE: The random variations for single C-configuration measurements observed at <s> = 2 µm is confirmed to 

be an unintended artefact of the MC simulations. 

A conclusion has not been made with respect to what could cause this dramatic difference in position 

errors. Preliminary AFM experiments suggest that the single sheet sample has a higher surface flatness 

on the scale of the probe contact area (100-300 nm in diameter), as compared to that of the MTJ 

sample. This could lead to a more discretized probe sample contact for measurements on the MTJ, 

where only one or a few highly localized contacts (physical and electrical) are established within the 

potential contact area of the probe. This may serve as a plausible explanation for our observations. 

However, further investigations are needed before a conclusion can be made. 

6.2.7 Enhanced measurement precision 

A simple yet effective way to reduce a normal distributed error from an experiment is to simply repeat 

the experiment. In this way one can expect to lower the standard deviation of the average result by a 

factor of n1 , where n, is the number of experiments. In the case of electrode position errors (and 

electrical noise) we do assume a normal distribution, and we therefore propose to include more sub-

probes of nominally identical electrode spacing in the experiment by changing the probe design (see 

section 6.3). 

Since additional measurements will increase the overall measurement time and also require changes to 

the probe design, we will here consider a minimum solution where only one additional sub-probe (= 

one extra position corrected measurement) is included. Fig. 6.18 illustrates that in practice such a 
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solution could be realized by adding just one more electrode to a probe design with four equidistant 

electrodes. Based on the notation in Fig. 6.18 we shall name this option “5 pins” and it allows the 

following combination of sub-probes: [1,2,3,4] and [2,3,4,5]. Adding another electrode enables a new 

combination (“6 pins”) and so on: 

 

4 pins: [1,2,3,4] (included as reference) 

5 pins: [1,2,3,4] and [2,3,4,5] 

6 pins: [1,2,3,4] and [3,4,5,6] 

7 pins: [1,2,3,4] and [4,5,6,7] 

8 pins: [1,2,3,4] and [5,6,7,8] 

 

 
Fig. 6.18: Illustration of the 5 different, equidistant sub-probes of minimum pitch, obtainable from a probe with 8 

equidistant electrodes.  

We will now evaluate if any particular combination of two sub-probes is favorable when it comes to 

reduction of electrode position errors. Here the problem is treated analytically and considering solely 

static in-line errors with standard deviation 
xσ . The relative standard deviation on the average of the 

two position corrected pseudo resistance values, 
rel

avepR ,
σ , estimated based on first order correction, is 

identical for all dual combinations of  
AR , 

BR  and CR  due to reciprocity [54]–[56]. With the notation 

for AB correction the average, position corrected pseudo resistance is given by 
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and the relative standard deviation follows 
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where the geometrical coefficient χ can be expressed for each of the options stated above. 

 

4 pins, [1,2,3,4] (included as reference): 
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5 pins, [1,2,3,4] and [2,3,4,5]: 
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6 pins, [1,2,3,4] and [2,3,4,5]: 
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7 pins, [1,2,3,4] and [2,3,4,5]: 
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8 pins, [1,2,3,4] and [2,3,4,5]: 
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The different options are compared in Fig. 6.19 and the 6 pins option is found to yield the lowest 

relative standard deviation for almost the entire range of s/λ. 

 
Fig. 6.19: Geometrical coefficients p4χ , p5χ , p6χ , p7χ  and p8χ  plotted for Rt/Rb = 10, where Rt = 10 Ω/□ and                

Rb = 1 Ω/□, as a function of equidistant electrode spacing (normalized to λ). 
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6.3 Equidistant probe design 

Based on a more brute force approach we propose a probe design entirely occupied by equidistant 

electrodes. This allows for the highest number of sub-probes with minimum pitch, for which electrode 

positional errors are typically most influential.  

 
Fig. 6.20: Illustration of the different, equidistant sub-probes of pitch 1s (10 sub-probes), 2s (7 sub-probes), 3s (4 sub-

probes) and 4s (1 sub-probe), obtainable from a probe with 13 equidistant electrodes. 

Fig. 6.20 illustrates an example of such a probe with a total of 13 electrodes. Note that the 13
th

 

electrode contributes by enabling a sub-probe with a pitch of 4s. 

With an addition of two pins, the abovementioned probe design (see Fig. 6.20) may include a single 

sub-probe of pitch 12s. Even though only one such sub-probe would be available it may still add 

considerably to the measurement precision and dynamic range. First of all the sensitivity to electrode 

position errors would be very reduced at 12s and in addition one could, depending on the sample λ, 

assume single sheet behavior in this regime, which, justified by the assumption that at 12s Rp = R, 

would allow accurate estimation of the parallel resistance of Rt and Rb solely on the basis of 

measurements at 12s. Knowing the true parallel resistance would allow us to fix the value of Rb (or Rt) 

and leave us with only two variables to fit. 
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6.4 Summary 

In this work we applied MC simulations to study the influence of electrical noise as well as static and 

dynamic, in-line and off-line electrode position errors on four-point resistance measurements on MTJs. 

The irrefutable result of this study points to the vdp(AC) correction scheme as being the most effective 

method to lower the relative standard deviation on the measured resistance. In line with this we find 

that vdp(AC) correction also provides the broadest dynamic range for the M12PP used in this project. 

Actual measurements obtained on an MTJ sample confirms that vdp(AC) correction provides the 

lowest relative standard deviation. However, we find that the electrode position errors on this sample 

are roughly one order of magnitude larger as compared to the position errors reported for 

measurements on a single sheet sample (see chapter 5). Further investigations are needed to establish 

the cause of this. 

As a means to further enhance the measurement precision we propose the addition of more sub-probes 

of nominally identical electrode spacing and show that for one added sub-probe the 6 pins option (two 

sub-probes sharing two pins) yields the most significant reduction of electrode positional errors. 

Finally, a radical probe design entirely occupied by equidistant electrodes is proposed. 
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Chapter 7 

7 Outlook 

So far this thesis has focused on measurements on infinite films, which has been a prerequisite for 

CIPT measurements since the introduction of this metrology. Now, we will look at MTJ metrology for 

discontinued samples, which becomes relevant when the industry moves to large scale production of 

MTJ-based devices. 

This chapter presents selected highlights from ongoing work on CIPT measurements on small test pads 

and direct characterization of magnetic tunnel junction devices using microscopic multi-point probes. 

Section 7.1 is based on and repeats text and figures from papers III, IV and V. 

7.1 CIPT measurements on small test pads 

Measurements on test pads is used for inline production monitoring throughout the semiconductor 

industry as it proves be a cost effective alternative to otherwise expensive, dedicated monitor wafers. 

Small test pads can be conveniently placed in scribe lines areas and as such do not take up any of the 

wafer real estate area available for products. However, in order to lower production costs per chip, 

wafer scribe lines are continuously downscaled and thus the size of test pads also decreases. This 

underlines the need for MTJ metrology that will work even on small test areas where the assumption of 

an infinite sheet does not hold true. 

Here we investigate how CIPT measurements will be affected when performed on test pads with 

insulating boundaries (see Fig. 7.1), and modify the original CIPT model by the method of images to 

derive a new model which is valid for rectangular samples.  

 

 
Fig. 7.1: Picture of a micro 12-point probe positioned over a square test pad of w = 50 µm. Reproduced from paper III. 



92 

 

The original CIPT model is no longer valid when performing measurements near an insulating 

boundary, since the current density normal to the boundary must be zero. In order to fulfil this 

boundary condition the method of images is applied. This method was recently used in studies of four-

point measurements near insulating line defects in single sheet graphene (see paper IV and paper V) 

and involves placing additional current sources and drains at the mirror-positions obtained by mirroring 

the current sources and drains in the boundary lines as shown in Fig. 7.2. Mirror images of the 

additional current sources and drains are also needed, which result in a double infinite sum (see paper 

III). Fig. 7.2 shows a sketch of a rectangular sample with dimensions of length, l, and width, w. The 

insulating boundaries are represented by solid black lines and the two original current source and drain 

are labeled I+ and I-, respectively. The center of the M4PP is positioned at the center of the test pad (x0, 

y0) and only the mirror images closest to the pad are shown. 

 

 
Fig. 7.2: Sketch of a rectangular shaped sample (light blue) of length, l, and width, w, with insulating boundaries (solid 

black lines). A four-point probe is placed on the sample, with the center of the probe at (x0, y0). The eight closest mirror 

images of both the current source and drain are also included. Reproduced from paper III. 

Applying the modified CIPT model significantly increases the measurement accuracy on small 

samples. This is seen from Fig. 7.3, which compares the performance of the traditional CIPT model 

(Inf theory) to that of the modified model for squares (Sq theory). The extracted value of RAlow is 

plotted as a function of probe position along the centerline of a square test pad of w = 30 µm. It is 

clearly observed that while data based on the original CIPT model fluctuate considerably across the 

pad, the values of RAlow extracted with the modified theory remain stable. 
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Fig. 7.3: Extracted RAlow as a function of position along the center line on a square test pad of w = 30 µm. Reproduced from 

paper III. 

7.2 Direct characterization of MTJ devices using a 

microscopic multi-point probe 

Following the general industry trend of downscaling in order to increase memory density MRAM cell 

sizes of down to 20 nm have been reported [80]. The device defining etch process has been pointed out 

as being one of the main challenges in the fabrication of MRAM and specifically etch induced edge 

defects have attracted attention as a limiting factor for the performance of the final device [80]–[82]. 

Characterization of an MTJ at device level has so far required the execution of several process steps in 

which interconnects and contact pads are defined. Here we present a novel method for direct 

characterization of single MTJ cells right after the device defining etch and subsequent passivation and 

chemical-mechanical polishing (CMP) using micro-sized multi-point probes (see Fig. 7.4) in a routine, 

which is independent of the cell size and therefore is able follow the continued downscaling trend. 
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Fig. 7.4: (a) Sample composition. (b) Reactive ion etching of photo resist, hard mask and MTJ stack. The bottom electrode 

is left un-etched. (c) Cross sectional view of the test structure after passivation with SiO2 and subsequent CMP. (d) Top 

electrodes are exposed and may be probed using a micro-sized multi-point probe. 

A novel test pattern (see Fig. 7.5) is written using electron beam lithography and subsequently 

transferred to the MTJ in a reactive ion etch (RIE) leaving the bottom electrode un-etched. The etched 

structure was passivated by deposition of SiO2. Lift-off and planarization with CMP followed to expose 

the top electrode of the test structure. 

The number of cells as well as their size, shape and position in the overall test structure may vary and 

could for instance be correlated to the dimension of available multi-point probes. The general design of 

the test structure does not impose an upper/lower limit on the cell size. In this particular case the 

distribution of cells matches the pin positions of a commercially available 12-point probe (see section 

3.1). From Fig. 7.4 and Fig. 7.5 it is clear that the 2 outermost electrodes are intended to contact the 

two test pads while the remaining electrodes probe the MTJ cells distributed between the two test pads. 

It is also clear that the precision of alignment between test structure and the probe necessary to ensure 

contact to at least one MTJ cell is considerably lower if MTJ cells are distributed along a sloped line 

between the two test pads. Furthermore information on which specific cells have been contacted will 

provide accurate information on the distance to all other cells included in the test structure.  The slope 

of the line could e.g. be optimized according to the number of available electrodes and their effective 

contact area. Other schemes for optimizing the probability of contact between an electrode and an MTJ 

cell may include the option of adding more cells to the structure. 

 

 
Fig. 7.5: Schematic diagram showing test structure (top view). Two sets of 10 MTJ cells (black dots) are distributed at a 

pre-defined variation of pitch between two relatively large test pads (squares). Red circles indicate assumed contact area of 

an M12PP. 
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Preliminary tests have been carried out on MTJ pillars with a diameter of 600 nm using a CAPRES 

CIPTech-M300 (see Fig. 7.6). Characterization is handled in a sequential manner: 1) landing, 2) 

contact check and 3) measurements. Landing is completed once electrical contact has been detected 

between the two outermost probes touching down on the two test pads. Other means of surface 

detection includes the use of a probe with one or more strain gauges [53]. Contact check is performed 

by systematically attempting to pass a small current from one of the outermost electrodes (pin #1 or pin 

#12) to one of the remaining electrodes (pin #2-11). All successful attempts mark a connection between 

an electrode and an MTJ cell, for which numerous properties, including the barrier resistance, can then 

be characterized in various two- and/or three-point measurements. 

  

 
Fig. 7.6: Microscope image showing a 12-point probe landed on a test structure. 
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Chapter 8 

8 Conclusion 

The fundamental goal of this project has been to provide cheaper, faster and more precise metrology 

for MTJs. 

 

This goal has been achieved in part by the demonstration of a static field CIPT method, which allows 

us to reduce the measurement time by a factor of 5, by measuring only RA thus excluding TMR. This 

enhancement is obtained purely by acquiring only half of the data needed for the conventional 

switching field CIPT measurement and particularly by avoiding magnetic field switching. We observe 

that the new method measures essentially the same RA values as compared to the conventional 

strategy. By offering the choice of characterizing either RAlow
 
or RAhigh the static field CIPT method 

has an added advantage over the conventional switching field CIPT method, which relies on the 

characterization of both RA values. This allows for an improved matching of the range of available 

electrode pitches and sample transfer lengths λlow or λhigh, which may effectively increases the dynamic 

range of any given 12-point probe. 

Without the requirement for switching magnetic fields during measurements the static field CIPT 

method has inspired the concept of detached magnet setups for future CIPTech tools. While lowering 

the complexity of the measurement system a detached magnet setup, e.g. a proposed letterbox magnet, 

could provide superior dynamic range and field homogeneity as compared to current state of the art 

solutions. 

We have carried out an extensive characterization of electrode position errors and experimentally 

shown that the dominant sources of error in single configuration micro four-point probe sheet 

resistance measurements are in-line probe geometry errors and in-line static position errors. These 

errors were shown to be eliminated very effectively using dual-configuration measurements and 

position error correction algorithms. The standard deviation of the static in-line position error for 

measurements with Au coated electrodes on Ru thin film samples was found to be in the range from 3.9 

nm to 7.5 nm. The standard deviation of the dynamic in-line position error was shown to be small ~3 Å 

and only detectable in measurements with high measurement current. At lower measurement currents 

the electrical measurement noise was the dominant error source. No significant ageing effect on 

position errors (except for a very slight reduction in position error with measurement age) was 

observed for a probe in the course of 5000 measurements. We have demonstrated how new probe 

designs may be evaluated and benchmarked against each other using the same strategy. 

Based on Monte Carlo simulations we have studied the influence of electrical noise as well as static 

and dynamic, in-line and off-line electrode position errors on four-point resistance measurements on 

MTJs. This study points out the van der Pauw position correction strategy based on combined 

measurement in four-point configuration A and C as being the most effective method to lower the 

relative standard deviation on the measured resistance. In line with this we find that the same method 

also provides the broadest dynamic range for the M12PP used in this project. 
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Actual measurements obtained on an MTJ sample confirm that vdp(AC) correction provides the lowest 

relative standard deviation. However, we find that the electrode position errors on this sample are 

roughly one order of magnitude larger as compared to the position errors reported for measurements on 

a single sheet sample (see chapter 5). Further investigations are needed to establish the cause of this. 

As a means to further enhance the measurement precision we have proposed the addition of more sub-

probes of nominally identical electrode spacing and show that for one added sub-probe the 6 pins 

option (two sub-probes sharing two pins) yields the most significant reduction of electrode positional 

errors. Finally, a radical probe design entirely occupied by equidistant electrodes is proposed. 
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1. Introduction

The need for suitable metrology is increasing as the industry 

moves towards volume production of magnetic random access 

memory (MRAM) and starts focusing on thin �lm homoge-

neity and other performance related factors [1–3]. Thus, to 

identify and maximize the usable area of a wafer is of fun-

damental importance. This involves characterization of the 

resistance area product RA (or equivalently the speci�c con-

tact resistance) in the two spin polarized states from which the 

tunneling magnetoresistance ratio (TMR) can be calculated. 

For several decades, speci�c contact resistance measurements 

have been done using a variety of so-called transmission 

line methods [4–7]. The use of collinear four-point probes 

for speci�c contact resistance measurements was pioneered 

by Severin et al [8] in 1971 and extended in 1991 in a hith-

erto unnoticed paper by Vu et al [9] for the speci�c case of 

two parallel coupled sheets of �nite conductance. They both 

solved for the electrical potential distribution on the surface 

of a two-layer structure with a speci�c contact resistance at 

the interface, and showed how the transfer length could be 

extracted from four-point probe con�guration switching [8] 

and variable electrode pitch [9]. Vu et al also applied the mea-

surement technique to an Al/RuO2/Al stack [10]. Essentially 
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the same technique, Current In-Plane Tunneling (CIPT) [11], 

has in the past decade been the standard method to evaluate 

the two most critical parameters, RA and TMR, associated 

with magnetic tunnel junctions of the unpatterned tunnel junc-

tion stack.

The CIPT metrology method reduces the turnaround time 

in tunnel junction development due to the ability of meas-

uring on unpatterned magnetic tunnel junction (MTJ) stacks. 

However, with a measurement time of 1–2 min per measure-

ment, the technique is commonly used just for research and 

development of novel MTJ stacks, and not for full wafer anal-

ysis with high spatial resolution.

In this work we evaluate the CIPT metrology for optimiza-

tion and production quali�cation of deposition tools. We show 

that the variation of RA is the most critical process param-

eter as compared to the variation of TMR and propose that 

MTJ variability is best characterized by uniformity mapping 

of just RA. This approach reduces the total measurement time 

by a factor of 5 since such data acquisition can be done in a 

static magnetic �eld and thus time-consuming magnetic �eld 

switching and excessive data acquisition are avoided.

2. Experiment

MTJs rely on spin polarized electron transport between two 

ferromagnets across a thin tunnel barrier, which results in 

a ‘low’ and a ‘high’ state for the resistance-area product of 

the junction, RAlow and RAhigh, respectively. The contrast 

between these values is the tunneling magnetoresistance 

TMR = (RAhigh − RAlow)/RAlow. The top and bottom layers 

are characterized by their sheet resistances labeled Rt and Rb, 

respectively.

A microscopic 12-point probe, see �gure 1(a), is landed on 

top of an unpatterned MTJ and a series of four-point measure-

ments at varying electrode pitch is carried out by combining 

different subsets of four electrodes. The theoretical expression 

provided by Vu et al [9] is then �tted to the measurement data 

using Rt, Rb and RA as �tting parameters.

Figure 1(b) shows an electrical model describing the cur-

rent #ow in a small sample volume of width dr placed a radial 

distance, r, away from the current inlet. At some small elec-

trode pitch, s, the current will #ow primarily in the top layer, 

while at some large electrode pitch the barrier resistance will 

be negligible and the current #ow will be limited only by the 

parallel resistance of the top and bottom layers. The latter is 

the case for probe pitches s ≫  λ, where λ = [RA/(Rt + Rb)]
½ is 

the transfer length for a given sample [9–11].

The electrostatic potential of the sample surface a distance 

r − r0 away from a single current source is given by [9]:

⎜ ⎟
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where I is the injected current and K0 is the modi�ed Bessel 

function of the second kind of order zero. In a four-point 

probe setup two current electrodes positioned at r+ and r− can 

be considered using the superposition principle to evaluate the 

potential at position r. The four-point resistance can be de�ned 

as R = V/I, where V is the voltage difference between the two 

potential electrodes and I is the current passed between the 

two current electrodes.

The results reported here are based on an implementation 

of van der Pauw like dual con�guration measurements [12], 

where each subset of four cantilevers measures in both A- and 

B-con�gurations (see below). This method is known to give 

excellent electrode position correction [13]; position correc-

tion can also be obtained using a �rst order correction method 

as suggested by Worledge et al [14]. For a standard four-point 

probe with electrodes at positions r1, r2, r3 and r4 the meas-

ured potential difference can be evaluated as:

Φ Φ Φ Φ= −   −   +  V r r r r r r r r( , ) ( , ) ( , ) ( , ),A 2 1 2 4 3 1 3 4

and

Φ Φ Φ Φ= −   −   +  V r r r r r r r r( , ) ( , ) ( , ) ( , )B 2 1 2 3 4 1 4 3

for A- and B-con�gurations, respectively [13].

The investigated sample was a 200 mm wafer with an 

unpatterned, in-plane (bottom electrode)/PtMn (16 nm)/

Co70Fe30 (2.2 nm)/Ru (0.85 nm)/Co40Fe40B20 (2.5 nm)/MgO 

(1 nm)/Co40Fe40B20 (2.5 nm)/(top electrode) MTJ prepared 

in a magnetron sputtering process with a subsequent thermal 

anneal. This design of the stack ensures that the lower CoFeB 

layer is pinned while the upper CoFeB layer is free. Since the 

Figure 1. (a) Scanning electron micrograph of a 12-point probe. 
(b) Electrical model describing the current #ow in a small sample 
volume of width dr placed a radial distance, r, away from the 
current inlet.
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value of RA depends on the state of the magnetization (par-

allel or anti-parallel) it follows that the transfer length of the 

sample will change accordingly, which can be expressed as 

λlow = [RAlow/(Rt + Rb)]
½ and λhigh = [RAhigh/(Rt +Rb)]

½. The 

respective transfer lengths for the sample investigated in this 

work are nominally λlow = 1.5 µm and λhigh = 2.5 µm. Due to 

shadowing effects of the edge exclusion ring in the processing 

equipment, an area along the perimeter of the sample is left 

unmetalized and has therefore not been probed in this work.

Measurements were carried out on a semi-automatic 

CAPRES CIPTech-M300 using micro 12-point probes with 

electrode pitches in the range from 1.5 µm to 8.3 µm. In the 

conventional switching �eld CIPT measurement [11], variable 

pitch four-point probe resistance measurements are acquired 

at two separate magnetic #ux densities, in this case ±10 mT, 

corresponding to anti-parallel and parallel magnetization of the 

two Co40Fe40B20 layers separated by the MgO barrier. These 

magnetic #ux densities were chosen based on the measured 

hysteresis loop in �gure 2 measured using a micro four-point 

probe with 1.5 µm pitch during a magnetic #ux density sweep.

In this work a static �eld CIPT method is introduced where 

variable pitch four-point probe resistance is acquired only in a 

static magnetic #ux density of either −10 mT or +10 mT. From 

this measurement, either RAlow or RAhigh of the sample can be 

deduced using only half of the dataset required in the conven-

tional switching �eld CIPT method.

3. Results and discussion

While investigating MTJ wafer uniformity, we performed two 

cross-wafer line scans (1 mm step size) presented in �gure 3 

using the conventional switching �eld CIPT measurement 

practice. We only depict RAhigh since RAlow showed equiva-

lent behavior. Whereas the parameters TMR and RA appear 

radially symmetric along the X-axis, a clear gradual change in 

RA is observed along the Y-axis. It is reasonable to assume that 

the asymmetry is related to the fact that the target dimension 

along the Y-axis is smaller than the wafer size while the target 

dimension along the X-axis is much larger than the wafer size. 

As a result good uniformity can be expected along the X-axis 

while on the Y-axis the uniformity is very poor without move-

ment, and even with linear movement of the sample along the 

Y-axis with respect to the static target, which is the case for 

this study, the uniformity is inferior to that along the X-axis. 

Such process variability is observed in most detail by full 

wafer mapping of sample homogeneity, but with the conven-

tional CIPT method this can be very time consuming.

From �gures 3(a) and (b) it is evident that the relative vari-

ation of RA is the dominant factor when estimating the usable 

area of the wafer, here de�ned by a ±10% acceptance band 

centered on the mean value of the central 20  ×  20 mm2 area 

of the sample. Whereas TMR appear constant with an abrupt 

change in close proximity of the edge of the processed area, 

we observe that RA begins to decrease signi�cantly at an 

approximate distance of 50 mm from the wafer center. This is 

in good agreement with previously reported results for MTJs 

of good barrier quality without pinholes [15–18].

Experimental data [15, 19–23] as well as theoretical con-

siderations [15, 16, 19–23] suggest that for thicker tunnel 

barriers the RAlow and RAhigh products both depend expo-

nentially on the thickness of the tunnel barrier with the same 

exponential factor, while the pre-factors to the exponential 

Figure 2. Hysteresis loop of the free layer recorded using a 
micro four-point probe with a pitch of 1.5 µm. Arrows indicate the 
magnetic sweep direction.

Figure 3. Line scan measurements of RAhigh and TMR = 
(RAhigh − RAlow)/RAlow with a step size of 1 mm along the X-axis 
(a) and Y-axis (b) across a 200 mm wafer. The colored regions 
mark a ±10% band with respect to the mean values indicated by the 
dashed lines. While RA and TMR appear radially symmetric along 
the X-axis (a), an asymmetric slope in RA is clearly observed along 
the Y-axis (b).
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depend primarily on the spin polarization of the ferromagnets 

used. As a result the TMR is hardly affected by changes in 

the thickness of the tunnel barrier. For thinner barriers this is 

not true anymore, since pinholes and nanobridges provide an 

alternative current path to tunneling and may for very thin bar-

riers dominate the transport altogether. This has been modeled 

as a parallel resistor network [24] such that

α Τ Φ α= − +ℓ ℓg d g
1

RA
(1 ) ( , )B

low
low leak

α Τ Φ α= − +ℓ ℓg d g
1

RA
(1 ) ( , )B

high
high leak

where T(d, ΦB) is the tunneling probability, which primarily 

depends on the tunnel barrier thickness d and barrier height 

ΦB. The conductances per area glow and ghigh are character-

istic pre-factors for low and high spin states, respectively, and 

gleak is the characteristic leak conductance per area due to pin-

holes and nanobridges. The factor αℓ is the area fraction occu-

pied by pinholes and nanobridges, and this area fraction is of 

course not available for tunneling. As a result, the tunneling 

magnetoresistance ratio becomes

α Φ α

α Φ α

=
−

=
− +

− +
−

g T d g

g T d g

TMR
RA RA

RA

(1 ) ( , )

(1 ) ( , )
1.

B

B

high low

low

ℓ low ℓ leak

ℓ high ℓ leak

Obviously, for a perfect tunnel barrier, with α =ℓ 0, TMR = 

glow/ghigh − 1 and is essentially independent of the tunnel bar-

rier thickness to �rst order, while for a defective barrier, with 

α =ℓ 1, TMR = 0. The transition between these two extreme 

cases happens over a very narrow range of barrier thicknesses 

(a small fraction of 1 nm) depending on the preparation of the 

barrier [25] since αℓ is extremely thickness dependent. As a 

result, cut-off values for RAlow and RAhigh exist, below which 

TMR becomes too small to be useful due to the increase of αℓ.  

This is in line with our observations from �gure 4 showing 

TMR as a function of RA as extracted from a conventional 

switching �eld CIPT wafer mapping. The results in �gure 4 

suggest that variations in RAhigh are most easily evaluated 

due to the larger relative change compared with RAlow. Also, 

evaluating the transfer length requires measurements using 

electrode pitches in a range of the order of λ [11, 25]. For 

typical MTJs intended for MRAM, λ is close to the minimum 

electrode pitch practically achievable, and accurate four-point 

measurements becomes increasingly challenging for reduced 

electrode pitch. Thus, it may be an advantage to measure only 

in the anti-parallel magnetization state, as RAhigh yields the 

most easily accessible and most relevant sample parameter in 

the shortest measurement time possible. On the other hand the 

option of simply applying a strong magnetic �eld and thereby 

ascertaining that the layers are in a well-de�ned, parallel state 

is a unique advantage for measurements in the parallel state. 

Similarly, but more time consuming, �rst applying a strong 

magnetic �eld in one direction to saturate the sample and 

subsequently measuring in a weaker, static magnetic �eld of 

opposite orientation could lead to a more precise characteriza-

tion of the anti-parallel state. In general we shall refer to this 

selective and less comprehensive measurement method as the 

static �eld CIPT method.

While uniformity mapping is possible with conventional 

CIPT measurements on a full wafer, the task turns out to be 

impractical due to the resulting measurement time. The overall 

time spent per measurement point can be split into three con-

tributing factors:

= + +t t t t ,tot meas mov mag

where tmeas is the time spent sampling data, tmov is the time 

spent on stage movement and tmag is the time spent on adjust-

ments of the magnetic �eld.

In a timed comparison of the two methods, a square grid 

of 10  ×   10 points with a step size of 100 µm in a homoge-

neous region of the sample was measured using a current of 

200 µA at a frequency of 25 Hz and an integration time of 

81 ms. The static �eld method was found to be more than 5 

times faster than the conventional CIPT method. Figure  5 

compares the time consumption of the two methods in their 

regular implementation and predicts how they would relate in 

Figure 4. TMR versus RA extracted from a wafer mapping using 
the conventional switching �eld CIPT measurement practice.

Figure 5. Time spent per point, ttot, for conventional CIPT and 
static �eld method respectively are presented for the regular 
implementation of the methods as well as four scenarios for which 
one or more contributing factors are negligible while the other 
factors remain unchanged.
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other scenarios where one or more of the contributing factors 

are negligible while the other factors remain unchanged. In 

the regular implementation tmeas = 5.6 s and 2.8 s for CIPT and 

static �eld methods respectively, tmov, which applies to both 

methods, is 8.9 s and tmag, which applies only to the conven-

tional CIPT method, is 46.1 s. The time reduction observed 

for the regular implementation of the methods is mainly due 

to the lack of magnet adjustments in the static �eld method. 

However, as is seen from �gure 5, changes to other factors 

can greatly in#uence the ratio of time spent with the different 

method implementations.

Thus, when we utilize the proposed static �eld CIPT 

method and measure only RAlow or RAhigh, we can drastically 

reduce the time spent per point, which in turn allows us to map 

the entire wafer within a reasonable timespan. The mapping 

of RA should of course be supplemented by a few switching 

�eld CIPT measurements, e.g. near the wafer centre, to estab-

lish TMR. In �gure 6 we present high resolution wafer maps 

obtained with the static �eld CIPT method for both RAlow 

and RAhigh. The two maps are presented for comparison only, 

since the necessary information for tool optimization can be 

extracted from a single one of them as argued above. Each 

map contains 6510 measurement positions distributed with a 

step size of 2 mm. The asymmetric behavior of RA seen in 

�gure 3(b) is also observable from both maps and the usable 

area based on an acceptance limit of ±10% with respect to the 

mean value at the center of the wafer is also consistent. For 

the particular combination of sample properties and range of 

electrode pitches in question, there is no signi�cant advantage 

from measuring RAhigh as opposed to RAlow. However, we do 

observe a higher density of outliers in the usable area deter-

mined by RAlow, which might be attributed to measurement 

precision.

To allow for a comparison of measurement quality for 

the two different methods, three individual, high density line 

scans each containing 100 measurement points were carried 

out using a step size of only 2 μm. This was done in order to 

reduce the in#uence of local sample variations; otherwise the 

same measurement settings as mentioned above were used. 

One series of traditional switching �eld CIPT measurements 

as well as two series of static �eld CIPT measurements in an 

applied magnetic �eld of respectively +10 mT and  −10 mT 

were performed. A comparison of the measurement results is 

summarized in table 1, and the two methods are found to be 

in good agreement.

4. Conclusion

High density mapping of an unpatterned MTJ sample reveals 

variations of RA and TMR, exceeding by far an acceptance 

limit of ±10%. We �nd the variation of RA to be the most crit-

ical process parameter as compared to the variation of TMR. 

Because of process induced, radial asymmetry in the varia-

tions of RA, we argue that high resolution wafer mapping of 

the entire processed area is necessary for adequate process 

optimization and tool quali�cation. Since the CIPT method 

is a serial characterization technique, the time associated 

with mapping an entire wafer is directly proportional to the 

measurement time per point and resolution. Thus, to enable 

high resolution mapping, we have demonstrated a static �eld 

CIPT method, which allows us to reduce the measurement 

time by a factor of 5, by measuring only RA, thus excluding 

TMR. This enhancement is obtained purely by acquiring only 

half of the data needed for the conventional switching �eld 

CIPT measurement and particularly by avoiding magnetic 

Figure 6. High density maps of RAhigh (a) and RAlow (c) on the full 200 mm wafer obtained with 2 mm step size totaling 6510 
measurement points per map. (b) and (d) The usable wafer area versus edge exclusion zone based on an acceptance limit of ±10% with 
respect to the mean value at the center of the wafer for RAhigh and RAlow respectively.

Table 1. Mean value and relative standard deviation of RAlow and 
RAhigh based on three line scans: one series of traditional switching 
�eld CIPT measurements (CIPT) and two series of static �eld CIPT 
measurements (STATIC).

CIPT STATIC

B (mT) ±10 −10 +10

RAlow (Ω µm2) 8.5 8.6

σ(RAlow) (%) 2.3 2.2

RAhigh (Ω µm2) 23.4 23.6

σ(RAhigh) (%) 1.6 2.0

Note: Each scan contains 100 measurement points distributed with a step 
size of 2 µm.
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�eld switching. In a homogeneous region of the investigated 

sample, we observe that the two methods measure essentially 

the same RA values. By offering the choice of characterizing 

either RAlow or RAhigh the static �eld CIPT method has an 

added advantage over the conventional switching �eld CIPT 

method, which relies on the characterization of both RA 

values. This allows for an improved matching of the range of 

available electrode pitches and sample transfer lengths λlow or 

λhigh, which may effectively increase the dynamic range of any 

given 12-point probe.
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Abstract

Thin-!lm sheet resistance measurements at high spatial resolution and on small pads are 

important and can be realized with micrometer-scale four-point probes. As a result of the small 

scale the measurements are affected by electrode position errors. We have characterized the 

electrode position errors in measurements on Ru thin !lm using an Au-coated 12-point probe. 

We show that the standard deviation of the static electrode position error is on the order of 

5 nm, which signi!cantly affects the results of single con!guration measurements. Position-

error-corrected dual-con!guration measurements, however, are shown to eliminate the effect 

of position errors to a level limited either by electrical measurement noise or dynamic position 

errors. We show that the probe contact points remain almost static on the surface during 

the measurements (measured on an atomic scale) with a standard deviation of the dynamic 

position errors of 3 Å. We demonstrate how to experimentally distinguish between different 

sources of measurement errors, e.g. electrical measurement noise, probe geometry error as 

well as static and dynamic electrode position errors.

Keywords: four-point measurement, four-point probe, sheet resistance, position correction, 

four-point resistance, microprobe, thin !lm

(Some !gures may appear in colour only in the online journal)

1. Introduction

Electrical characterization of thin !lms is of crucial importance 

to obtain and maintain control of fabrication processes in the 

micro- and nanoelectronics industry. The most important ref-

erence metrology has for the past six decades been four-point 

resistance measurements [1]. As the semiconductor industry 

continues to increase the substrate size, the cost of dedicated 

monitor wafers needed for process control also increases. 

Meanwhile, the thickness of the !lms is steadily decreasing 

and more advanced processing applied, which complicates the 

nature of process variations to be monitored. This has led to 

development of metrology based on micrometer-scale four-

point probes (M4PP) [2] with high spatial resolution [3] as well 

as the possibility of performing measurements in micrometer-

sized scribe line test pads on product wafers [4], thus elimi-

nating the need of expensive monitor wafers. However, with 

the micometer-sized electrode spacing the in#uence of elec-

trode position errors increases [5], and different schemes have 

been proposed to compensate for this effect [6, 7].

Measurement Science and Technology

Characterization of positional errors and 

their in!uence on micro four-point probe 
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In this work we characterize position errors for M4PPs, 

and we evaluate the effectiveness of two position-correction 

algorithms. New measurement systems and probe designs 

may be evaluated and benchmarked against each other using 

the same strategy.

2. Theory

The purpose of a four-point probe measurement on a thin 

!lm is usually to determine the sheet resistance, RS, of the 

!lm. The generic measurement is carried out by passing cur-

rent, Iij, through two point-like electrode contacts, (i, j), to the 

sample and measure the voltage, Vkl, across two other point-

like electrode contacts, (k, l). For a uniform thin !lm sample 

the expected four-point resistance, Rkl ij, , is [8]

π
= =

∣ − ∣
∣ − ∣

∣ − ∣

∣ − ∣
R

V

I

R r r

r r

r r

r r2
ln ,kl ij

kl

ij

l i

k i

k j

l j
,

S
 (1)

where rn is the in-plane position vector for the contacts and 

∈ [ ]n m i j k l, , , , . It follows that the sheet resistance can be 

calculated from a measured value of Rkl ij,  by solving equa-

tion  (1) for RS if the four inter-electrode distances, ∣ − ∣r rn m , 

are known accurately. In most practical implementations the 

electrodes are arranged on a single line, a collinear probe, as 

illustrated in !gure 1, where the intended distances between 

neighboring contact points are s1, s2 and s3.

Four-point probe measurements with the collinear probe 

can be arranged in several con!gurations, usually denoted 

A, B, and C and their inverted versions A′, B′, and C′ [9] 

(see !gure 1). Of the resistances RA, RB and RC, measured in 

con!gurations A, B and C, only two are independent since 

= −R R RC A B [6]. Equivalent dependence applies to resist-

ances measured in the inverted con!gurations and in the 

absence of a magnetic !eld, =′R RA A, =′R RB B and =′R RC C, 

due to reciprocity [10, 11]. For the collinear four-point probe 

the expected measured resistances according to equation (1) 

are

π π
=

∣ − ∣
∣ − ∣

∣ − ∣
∣ − ∣

=
+ +
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R R s s
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When the electrode spacings, s1, s2, and s3, become small, the 

actual spacings may differ signi!cantly from their nominal 

value such that e.g. ∣ − ∣ ≠ sr r2 1 1 and then resistances calcu-

lated from equations  (2) and (3) will be inaccurate due to 

the electrode spacing error; this is what we de!ne as general 

position errors. These position errors arise for a number of 

different physical reasons and may have both in-line and off-

line components:

Probe geometry errors. The real probe may be fabricated 

with different electrode spacings than intended.

Static position errors. Each probe-sample engage may 

result in slightly different contact spacing, e.g. induced by 

plastic deformation of the electrode tips.

Dynamic position errors. While the probe is engaged on the 

sample, the contact points may move slightly on the sample 

surface, e.g. due to vibrations.

As a result of these errors the position, rn, of electrode 

∈ [ ]n 1, 2, 3, 4  may be displaced from the ideal position, rn0 

= (xn0, 0), according to

δ δ= ( + Δ + Δ + Δ + Δ + )

= ( + Δ Δ )

x x x x y y y

x

r ,

, ,

n n n n n n n n

n nx ny

0 0 0

0

 (4)

where the ideal y-position is taken as =y 00  without loss 

of generality; Δxn0 and Δyn0 are probe geometry errors and 

Δxn and Δyn are static position errors, while δxn and δyn are 

dynamic position errors; !nally Δnx and Δny are total in-line 

and off-line errors, respectively. As a result the probe spacing, 

∣ − ∣r r2 1 , becomes

− = ( + Δ − Δ ) + (Δ − Δ )

= +
Δ − Δ

+
Δ − Δ

≈ +
Δ − Δ
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(5)

and similar expressions are valid for the other probe spacings 

involved in the measurements. It follows that in-line position 

errors affect four-point probe measurements to !rst order, 

while the effects of off-line position errors are of second order. 

Thus, off-line position errors may be neglected for small elec-

trode position errors relative to the electrode spacing.

When the electrical measurement noise on the extracted 

four-point resistance is smaller than contributions from geo-

metrically induced errors, we may evaluate the extent of 

these geometrical errors. We assume that all electrodes suffer 

from normally distributed static in-line position errors with 

standard deviation σx and dynamic in-line position errors with 

standard deviation σx
dyn. With these assumptions it has been 

shown [12] that the relative standard deviations, σR
rel

A
 and σR

rel
B
, 

on RA and RB, respectively, are

σ α
σ

σ β
σ

= =
s s

  and   ,R
x

R
xrel rel

A B (6)

where = ( + + )s s s s /31 2 3  is the mean electrode pitch. The 

geometrical coef!cients, α and β, can be shown to be

( ) ( ) ( )
( )

( )
α =

− + + + + + −+ +
+ + + +

+ +ln

,
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(7)
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In the case of equidistant electrodes ( =s sn ) the geomet-

rical coef!cients become particularly simple:

σ
σ σ

= ≅ ×
s s

5

ln 4
1.61 ,R

x xrel
A

 (9a)

σ
σ σ

= ≅ ×
s s

4 5

3 ln 3
2.71 .R

x xrel

B
 (9b)

With these equations, static position errors are evaluated 

from repeated measurements of RA and RB, where the probe 

is retracted from the sample and re-engaged between each 

recorded four-point measurement. Similarly, we can evaluate 

the dynamic in-line position errors from the variations of RA 

or RB during probe-sample engage. This gives similar expres-

sions, i.e. σ ασ= s/R x
rel, dyn dyn

A
 and σ βσ= s/R x

rel, dyn dyn
B

.

Rymaszewski has suggested a position correction algorithm 

[6] which eliminates the in#uence of in-line position errors for 

four-point measurements obtained using collinear electrodes. 

Based on the work by van der Pauw [13], he showed that the 

sheet resistance, RS, must be related to RA and RB as follows:

π π
− =

R

R

R

R
exp

2
exp

2
1.

A

S

B

S
 (10)

From this expression (without geometric parameters), the 

sheet resistance can be calculated accurately if the measured 

resistances are only affected by in-line static position errors 

and in-line geometry errors. We shall denote this position cor-

rection scheme the van der Pauw (vdP) method. However, this 

correction scheme will not correct for off-line position errors, 

and it will not correct for dynamic in-line position errors 

since RA and RB are not measured simultaneously. This can be 

understood by substituting equation (1) in equation (10) to get 

the geometry requirement, which must be ful!lled in order for 

equation (10) to be correct:
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where subscripts indicate geometry during the respective 

measurements. The geometry requirement is trivially ful!lled 

under static conditions if the electrode-sample contacts are in-

line. Any off-line component in the geometry will violate this 

condition, as will any dynamic in-line electrode displacement, 

and thus this scheme cannot correct such errors.

The position correction algorithm [7] proposed by Worledge 

uses a linear combination of RA and RB, i.e. γ−R RA B where γ 

is a geometric prefactor introduced to reduce the in#uence of 

position errors. With this method the sheet resistance is cal-

culated from

( ) ( )
π γ

γ

=
( − )

−+ + + +
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with the geometric prefactor de!ned as

γ =
( + + )

( + ) ( + )
s s s s

s s s s
.

1 2 3 2

1 2 2 3
 (13)

Figure 1. Collinear four-point probes and the independent con!gurations A, B, and C, as well as their inverted (dual) versions, A′, B′, and 
C′. The distances between neighboring electrodes are denoted s1, s2 and s3.

and
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Since this method is essentially a !rst-order approximation 

to the vdP method it is expected to correct the same errors, but 

only if they are suf!ciently small that higher-order terms can 

be ignored.

Dynamic position errors are expected to affect the position-

corrected sheet resistance according to

( )
σ

α γ β

γ

σ σ
=

+

−
≅

s s1
5.61 ,R

R

R

R

R

x xrel

2
2

dyn dyn

S

B

A

B

A

 (14)

resulting from a !rst-order calculation valid for both correc-

tion schemes; the numerical value is valid for the equidistant 

probe.

3. Experimental

In order to characterize position errors and test the position-

correction algorithms described above, a series of M4PP sheet 

resistance measurements were performed using a CAPRES 

MicroRSP-M300 [14]. The tool incorporates a multiplexer, 

which allows for four-point measurements at different elec-

trode spacing when a multi-point probe is used. Figure  2 

shows a conventional 12-point probe with Au-coated straight 

cantilever electrodes arranged with an irregular pitch distribu-

tion, which allows a variety of subprobes (individual subsets 

of four electrodes) with mean pitches, s, in the range from 1.5 

to 8.25 µm to be obtained (see table  1). The cantilevers are 

made of SiO2 and have nominal dimensions 0.75, 10 and 1 µm 

(width, length, and thickness). During measurements all canti-

levers simultaneously contact the sample at an angle of 30°. A 

total of eight subprobes were used, some of which have non-

equidistant electrode spacing. The eight subprobe geometries 

and geometric prefactors α, β and γ are summarized in table 1.

The sample measured in this study was a 200 mm silicon 

wafer with a sputter-deposited 100 nm Ru layer. Measurements 

were performed with a lock-in technique using a !xed current 

of either 200 or 2000 µA at 24.11 Hz and an integration time 

of 83 ms. The tool’s fan-!lter units were turned off in order to 

reduce the vibration level. For each subprobe the following 

sequence of measurement con!gurations was run during each 

probe-sample engage: A, B, A′, and B′. For studies of the 

dynamic in-line position error the standard deviation on ΔRA 

= RA  −  ′RA and ΔRB = RB  −  ′RB  were used since variations in 

ΔR are largely unaffected by static position errors and probe 

geometry errors. Possible offsets between measurements in 

A- and A′- and/or B- and B′-con!gurations will not affect the 

relative standard deviation of the results.

4. Results and discussion

Measurements were carried out as a rectangular area scan 

of 10 by 10 points distributed with a step size of 100 µm in 

a homogeneous area of the sample. The scan was repeated 

in the same area to compare measurements at 200 µA and 

2000 µA, respectively. Figure  3 summarizes the results of 

the measurements at 2000 µA; here the sheet resistances, RS, 

with respective errors are shown as a function of the mean 

probe pitch. Sheet resistances extracted directly from A or B 

Figure 2. Scanning electron micrograph of a 12-point probe with 
Au-coated, straight cantilever electrodes.

Table 1. Geometric details of the eight subprobes formed using the 
12-point probe. Distances between neighboring electrodes (s1, s2 
and s3), mean probe pitch, 〈s〉, and geometric prefactors (α, β and γ) 
are listed.

s1 (µm) s2 (µm) s3 (µm) s  (µm) α β γ

1.50 1.50 1.50 1.50 1.61 2.71 0.75

2.00 2.25 2.50 2.25 1.62 2.71 0.75

3.00 3.00 3.00 3.00 1.61 2.71 0.75

4.50 4.50 3.75 4.25 1.56 2.44 0.77

4.50 4.50 4.50 4.50 1.61 2.71 0.75

6.00 6.00 5.25 5.75 1.57 2.50 0.77

7.50 7.75 6.75 7.33 1.55 2.45 0.77

9.00 8.25 7.50 8.25 1.62 2.71 0.75

Figure 3. Mean sheet resistances for A- and B-con!guration 
measurements as well as position-corrected values based on the 
van der Pauw (vdP) method and the !rst-order approximation as 
a function of the mean electrode pitch 〈s〉. Measurements were 
obtained with an applied current of 2000 µA. Error bars indicate the 
standard deviation.

Meas. Sci. Technol. 26 (2015) 095005
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measurements using equation (2) or (3) are shown along with 

position error corrected sheet resistances calculated using the 

same data. From !gure 3 it is clear that both error correction 

schemes result in almost identical extracted sheet resistances 

and a low standard deviation, while sheet resistances extracted 

directly from A or B measurements deviates signi!cantly from 

the position corrected mean and have a much larger standard 

deviation. Measurements at 200 µA are not shown but give 

essentially the same results.

For the static position error analysis, the relative standard 

deviations of the measured resistances are plotted in !gure 4. 

As predicted, we observe a higher relative standard deviation 

for measurements in the B-con!guration as compared to that 

of measurements in the A-con!guration. We observe that the 

standard deviations decreases approximately inversely with 

the mean electrode pitch, which indicates that positional 

errors constitute the dominant source of error in this experi-

ment. Changing the current by an order of magnitude does not 

in#uence the standard deviation signi!cantly.

Applying the expressions of equations (6) to the measure-

ment data in !gure 4 allows the static in-line position error of 

Figure 4. The relative standard deviations of A- and 
B-con!guration measurements at applied currents of 200 and 
2000 µA as a function of the mean electrode pitch 〈s〉. A trend line 
with a slope of  −1 decade/decade is added.

Figure 5. The standard deviation of the in-line electrode positions 
for A- and B-con!gurations respectively at applied currents of 200 
and 2000 µA as a function of mean electrode pitch 〈s〉.

Figure 6. The relative standard deviation of ΔR for A- and 
B-con!guration measurements, respectively, at applied currents of 
200 and 2000 µA as a function of mean electrode pitch 〈s〉. A trend 
line with a slope of  −1 decade/decade is added.

Figure 7. The relative standard deviation of the position corrected 
sheet resistance as a function of the mean electrode pitch 〈s〉. 
Position corrections based on the vdP method and the !rst-order 
approximation were used. The curves represent Monte Carlo 

simulations mimicking the measurement conditions (parameters: 

σ = 5 nmx , σ = 0.3 nmx
dyn  and Vn = 65 nV).

Meas. Sci. Technol. 26 (2015) 095005
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the electrodes to be estimated. From !gure 5 we observe that 

the standard deviations of static in-line position errors are in 

the range from 4.5 to 7.2 nm and without any clear correlation 

to neither the applied current nor the mean pitch. The values 

are signi!cantly lower than what has previously been reported 

(20 nm) in similar experiments [5]. We !nd a remarkable 

agreement between the in-line position errors extracted from 

A- and B-con!guration measurements, respectively. This sup-

ports the validity of equations (6)–(9).

Figure 6 shows a plot of the relative standard deviation of 

ΔR for A- and B-con!guration measurements, respectively. 

The standard deviations at 200 µA are independent on the 

mean electrode pitch and differ from those at 2000 µA that 

are approximately inversely proportional to the electrode 

pitch. The data at 2000 µA are consistent with dynamic posi-

tion errors with a standard deviation of ~3 Å, while the data 

at 200 µA are consistent with electrical measurement noise 

with a standard deviation of ~65 nV. The electrical measure-

ment noise hardly affects the precision of the measurements at 

the higher current level. Again, the relative magnitudes of the 

standard deviations in A- and B-con!guration measurements 

are in agreement with theory.

To the extent that positional errors are indeed static 

throughout the measurement sequence for each subset of four 

electrodes and entirely located along the line of contact points 

they can be compensated for using the position correction 

algorithms, equations (10) and (12). Here we compare the two 

methods by applying them to the measurements presented in 

!gures 3–6. The results are shown in !gure 7 and represent 

statistics on the position corrected sheet resistance results of 

the !rst A–B pair for each subset of four electrodes; the other 

possible A–B pairs give almost identical results.

It is easily recognized that the two position correction algo-

rithms perform equally well. For the measurements at 200 µA 

there is almost no pitch related trend, which implies that for 

this dataset (after position correction is applied) electrical 

noise is the dominant source of residual error. When the cur-

rent is increased to 2000 µA, the position corrected data yields 

a signi!cantly lower relative standard deviation and there is 

a clear trend of decreasing standard deviation for increasing 

pitch, which means that position errors are still dominant. 

These errors cannot be corrected for using the position cor-

rection algorithms and must therefore be a combination of 

the following factors: static off-line errors, dynamic off-line 

errors or dynamic in-line errors, which cannot be corrected 

by the algorithms. The curves in !gure 7 are results of Monte 

Carlo simulations using static position errors with a standard 

deviation of 5 nm, dynamic position errors, with a standard 

deviation of 3 Å and an electrical measurement noise with a 

standard deviation of 65 nV. Both position corrected measure-

ments at 200 and 2000 µA are consistent with these three error 

sources found from the single con!guration analysis.

Figure 8. Static in-line position error evaluated across 50 data subsets containing 100 unique and consecutive measurements in an area 
scan totaling 5000 points. For each subset of data σx is evaluated individually for each subprobe and electrode con!guration and we show 
mean, maximum, and minimum values of σx evaluated across all subprobes and electrode con!gurations.

Figure 9. The relative standard deviation of ΔR for A-con!guration measurements evaluated across 50 data subsets containing 100 unique 
and consecutive measurements in an area scan totaling 5000 points. For each subset of data σ (Δ )Rrel  is evaluated individually for each 
subprobe and we show mean, maximum, and minimum value of σ (Δ )Rrel  evaluated across all subprobes.
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To investigate possible aging effects on the probe position 

errors, a microprobe was engaged at 5000 measurement loca-

tions distributed in a small homogeneous area of the wafer. 

Using a current of 2000 µA measurements with eight sub-

probes were carried out in a sequence containing four electrode 

con!gurations, A, B, A′ and B′, at each measurement position. 

Evaluating data subsets of 100 consecutive measurements the 

individual static in-line position error for each subprobe and 

electrode con!guration, σx
sub,A and σx

sub,B, was found. Figure 8 

shows mean, maximum, and minimum values of σx evaluated 

across all subprobes and electrode con!gurations. The average 

static in-line position error, σx
all, was found to be 5.1 nm with 

minimum position error σ = 3.9 nmx,min
all  and maximum posi-

tion error σ = 7.5 nmx,max
all . A slight decrease in position error is 

seen with increasing measurement age of the probe.

Figure 9 shows the relative standard deviation of ΔR for 

A-con!guration measurements evaluated across the 50 data 

subsets. No clear aging trend is observed.

5. Conclusion

We have experimentally shown that the dominant sources 

of error in single con!guration micro four-point probe sheet 

resistance measurements are in-line probe geometry errors and 

in-line static position errors. These errors were shown to be 

eliminated very effectively using dual-con!guration measure-

ments and position error correction algorithms. At the error 

level observed in this study both position error correction algo-

rithms—vdP and the !rst-order approximation by Worledge—
are equally effective, this will not be the case at large relative 

position errors where the vdP method is the better choice.

The standard deviation of the static in-line position error 

for measurements with Au-coated electrodes on Ru thin !lm 

samples was found to be in the range from 3.9 nm to 7.5 nm. 

The standard deviation of the dynamic inline position error 

was shown to be small ~3 Å and only detectable in measure-

ments with high measurement current. At lower measurement 

currents the electrical measurement noise was the dominant 

error source. No signi!cant aging effect on position errors 

(except for a very slight reduction in position error with meas-

urement age) was observed for a probe in the course of 5000 

measurements.
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We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized
using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance area product
(RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method relies on four-point
probe measurements performed with a range of different probe pitches and was originally developed for
infinite samples. Using the method of images we derive a modified CIPT model, which compensates for the
insulating boundaries of a finite rectangular sample geometry. We measure on square tunnel junction pads
with varying sizes and analyze the measured data using both the original and the modified CIPT model.
Thus we determine in which sample size range the modified CIPT model is needed to ensure validity of the
extracted sample parameters, RA and TMR. In addition, measurements as a function of position on a square
tunnel junction pad are used to investigate the sensitivity of the measurement results to probe misalignment.

Keywords: Magnetic tunnel junctions, Characterization, Four-point-probes, Test pads

I. INTRODUCTION

Since their discovery by Jullière1 magnetic tunnel junc-
tions (MTJ) have attracted considerable interest due to
the multitude of applications as sensors,2 read heads
in hard disc drives3–7 and in particular their use in
magnetoresistive random-access memory (MRAM).4,8–10

MRAM has the potential to become the preferred mem-
ory technology of the future, due to the outstand-
ing technical performance, such as high speed, high
density, non-volatility, reliability, and very low power
consumption.4,9,11

Traditional a MTJ consists of two ferromagnetic layers
separated by a thin tunnel barrier layer; often one ferro-
magnetic layer is pinned while the other is ”free”, i.e. has
a much lower switching magnetic field. As a result the
MTJ can assume two states, where the magnetization
of the ferromagnetic layers are either parallel or anti-
parallel, corresponding to low or high tunnel resistance;
often characterized by the corresponding resistance-area
products RAlow and RAhigh,

12 respectively. The contrast
between RAlow and RAhigh is the tunnel magnetoresis-
tance (TMR), i.e. TMR = (RAhigh − RAlow) /RAlow,
which is of particular importance for MRAM applica-
tions. These key parameters can either be measured
on final devices or on complete films prior to device
fabrication using the current-in-plane tunneling (CIPT)
method.12 A distinct advantage of the CIPT method is
that TMR and RA≡ RAlow can be determined without
performing lithography, etching and inter-connections to

a)Electronic mail: Frederik.Osterberg@nanotech.dtu.dk
b)Electronic mail: Dirch.Petersen@nanotech.dtu.dk

the top and bottom electrodes of the MTJ, and thereby
information about TMR and RA can be obtained at
an earlier stage than that of the final device. On the
other hand, one of the disadvantages of the current CIPT
method is that it requires an ”infinite” sample, which
means it is not possible to monitor whether the processes
following the deposition of the MTJ stack influence the
TMR and RA values.

CIPT measurements on actual device wafers have to
be performed on test pads, that potentially can be placed
in scribe lines to save area. Here, we investigate how the
insulating boundaries of patterned square test pads affect
CIPT measurements when compared to measurements
on a full film. The original theory for the CIPT method
was derived assuming infinite samples. Here, we use the
method of images13,14 to derive a modified model which
is valid for finite samples of rectangular shape.

II. THEORY

CIPT measurements can be performed using a
collinear multi-point probe, where four-point sub-probes
are used for individual measurements. Four-point probe
measurements may be done in several different configu-
rations, and here configurations A and B are of interest.
In configuration A the two outer pins are used as cur-
rent source and drain while the two inner pins used for
measuring the voltage drop as sketched in Fig. 1. For
configuration B the roles of pins 3 and 4 are interchanged
compared to configuration A as shown in Fig. 1.

Worledge et al.12 models the MTJ film as two infinite,
thin conducting sheets of sheet resistances Rt (top) and
Rb (bottom) with a connecting interface specific contact
resistance RA. The potential Φ at the point r from a
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FIG. 1. The probe configurations A and B used for CIPT
measurements.

single current source I0 placed at r0 on an infinite MTJ
film can be written as

Φ(r, r0) =
I0R‖

2π

{

Rt

Rb
K0

(

|r− r0|

λ

)

− ln

(

|r− r0|

λ

)}

,

(1)
where K0 is the modified Bessel function of the second
kind of order 0, and R‖ is the sheet resistance of the two
sheets in parallel

R‖ =
RtRb

Rt +Rb
, (2)

while λ is the transfer length, a characteristic sample
length scale, obtained from

λ =

√

RA

Rt +Rb
. (3)

In Eq. 1 the logarithmic term is reminiscent of the ex-
pression for a single sheet, while the Bessel term is the
correction needed due to the finite specific contact resis-
tance between the sheets.
For a four-point probe on an infinite sample with the

current source I0 placed at ri and drain at rj and the
voltage probes at rk and rl the four-point resistance can
be calculated from Eq. 1 using super-position

R =
Φ(rk, ri)− Φ(rl, ri)− Φ(rk, rj) + Φ(rl, rj)

I0
. (4)

If the four probe pins are equally spaced with the pin
spacing s the expected resistances for CIPT measure-
ments on an infinite sample in probe configurations A
and B are

RAinf
=

R‖

2π

{

Rt

Rb

[

2K0

( s

λ

)

− 2K0

(

2s

λ

)]

+ ln (4)

}

,

(5)

RBinf
=

R‖

2π

{

Rt

Rb

[

K0

( s

λ

)

−K0

(

3s

λ

)]

+ ln (3)

}

, (6)

respectively.
However, in real measurements the probe pins will not

land exactly where expected, each electrode will have
some position error as described by Kjaer et al.15 For
single sheet micro four-point probe sheet resistance mea-
surements it has previously15 been shown that van der
Pauw’s method16,17 effectively reduces the effect of pin

I
+

I-V
+
V -

(xc,yc)
X

(0,0) (l,0)

(l,w)(0,w)

x

y

FIG. 2. Sketch of a rectangular shaped sample of length l and
width w (light blue) with insulating boundaries (solid black
lines). A four-point probe is placed on the sample, with the
center of the probe at (xc, yc). The eight closest mirror images
of both the current source and drain are also shown.

position errors. In van der Pauw’s method a pseudo sheet
resistance RP is defined by the equation

exp
2πRA

RP
− exp

2πRB

RP
= 1. (7)

In the case of a single infinite sheet RP is identical to
the sheet resistance; on a MTJ RP does not have a di-
rect physical interpretation, but it proves useful anyway
and is less affected by pin position errors than both RA

and RB even though perfect error cancellation cannot be
expected.

A. Rectangular Samples

For measurements in vicinity of an insulating bound-
ary the theory derived for an infinite sample is no longer
valid, since the current density normal to the boundary
must be zero. In order to fulfil this boundary condi-
tion the method of images is applied.13,14 In practice
this means that additional current sources and drains are
placed at the positions obtained by mirroring the current
sources and drains in the lines defining the boundaries as
shown in Fig. 2. Mirror images of the additional current
sources and drains are also needed.

Figure 2 shows a sketch of a rectangular sample with
dimensions of length l and width w, the insulating bound-
aries are represented by solid black lines. The original
current source and drain are labelled I+ and I−, respec-
tively. The center of the four-point probe is marked by
an × and is positioned at (xc, yc). For practical reasons
only the mirror images closest to the pad are shown.

The potential for a rectangle, 0 ≤ y ≤ w, 0 ≤ x ≤
l, with insulating boundaries at y = 0, y = w, x =
0 and x = l can be written as a double infinite sum,
since the images of the source or drain are positioned at
±r0 + 2(nw + ml) and ±r0 + 2(nw + ml). Here n and
m are summation integers and the vectors are defined as
w = wey and l = lex; the vector r0 = (x0, y0) is the
position of the source or drain, while r0 = (x0,−y0). As
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a result the potential becomes

Φ(r, r0) = I0
R‖

2π

∞
∑

n=−∞

∞
∑

m=−∞
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(
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. (8)

By inserting Eq. 8 into Eq. 4 the four-point resis-
tances for a rectangular sample with pin configuration
A (RA,rect) and pin configuration B (RB,rect) can be cal-
culated. These values can the be inserted into Eq. 7 to
obtain the pseudo sheet resistance for a rectangular sam-
ple (RP,rect).

B. Resistances on square pads and infinite samples

The impact of insulating boundaries on the resistances
RA, RB and RP can be illustrated by the relative devi-
ation, (Rsq −Rinf) /Rinf , between resistances calculated
for a square sample (Rsq) and those of an infinite sample
(Rinf) with otherwise identical parameters. In Fig. 3 the
relative deviations for RA, RB and RP are shown as a
function of the normalized width (w/s) of the square.
The sample parameters used in the calculation were
R‖ = 1 Ω, Rt/Rb = 1 and λ = 1 µm, while the probe
pitch was s = λ. Any reasonable change of sample pa-
rameters will only cause minor changes to the curves in
Fig. 3, thus the general trends remain the same as do the
orders of magnitude.
Figure 3 shows that the resistances on the square sam-

ple are always larger than those on the infinite sample for
a probe placed at the centre of a pad with the electrodes
parallel to two of the boundaries. The relative deviation
of the resistances are seen to decrease rapidly with in-
creasing size of the square, approximately according to
(w/s)

−2
. Importantly, the relative deviation of RP is ap-

proximately an order of magnitude smaller that those of
RA and RB; this clearly demonstrates how useful it is to
calculate RP. It appears that in order for RP to deviate
less than 1% the pad should be at least 8 probe pitches
wide and to deviate less than 0.1% the width must be at
least 20 probe pitches. Note, this behavior of four-point
probe MTJ measurements differs from similar measure-
ments on a single sheet, where measurements performed
on a mirror symmetry line of a small sample (such as
a square) results in RP exactly identical to that of an
infinite sheet.18

III. EXPERIMENTAL

The measured sample was a 200 mm silicon wafer
with a patterned, in-plane (bottom electrode)/PtMn
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FIG. 3. The relative deviation (Rsq −Rinf) /Rinf between cal-
culated four-point resistances for square samples (Rsq) com-
pared to calculated resistances for an infinite sample (Rinf) as
function of normalized square size w/s. Deviations for RA,
RB and RP are shown. The resistances for the squares were
calculated assuming a four-point probe placed at the centre
of the pad and parallel to an edge of the pad.

(16 nm)/Co70Fe30 (2.2 nm)/Ru (0.85 nm)/Co40Fe40B20

(2.5 nm)/MgO (1 nm)/Co40Fe40B20 (2.5 nm)/(top elec-
trode) MTJ prepared using magnetron sputtering pro-
cesses with a subsequent thermal anneal. The bottom
electrode comprised Ta (5 nm)/CuN (50 nm)/TaN (30
nm)/Ta (5 nm), while the top electrode comprised Ta
(5 nm)/Ru (80 nm). The stack was designed to pin the
magnetization of the lower CoFeB layer while the magne-
tization of the upper CoFeB layer is free. In the parallel
spin polarized state the nominal transfer length of the
sample is λlow = 1.9 µm while anti-parallel spin polar-
ization results in λhigh = 3.2 µm. Square patterns of
nominal widths w = 30, 35, 40, 50, 60, 80, 100, 150, 250,
500, 1000, and 2500 µm were defined on the MTJ wafer
using photolithography and ion beam etching.

Measurements were done on a semi-automatic
CAPRES CIPTech-M200 using a micro 12-point probe
as shown in Fig. 4. For each measurement a sub-probe
with only 4 electrodes was used. This allows for measure-
ments with different probe pitches without replacement
or re-engagement of the probe between measurements.
In a measurement series eight different sub-probes were
used. Only some of the eight sub-probes are equidistant,
thus the average probe pitch 〈s〉 is reported in each case;
the average probe pitch of the eight sub-probes varies
from 〈s〉 = 1.5 µm to 〈s〉 = 8.3 µm. Details of the probe
design can be found in Ref. 15. Non-equidistant probes
are accounted for in the theoretical models, and thus this
fact will not affect the results.

Two series of CIPT measurements were performed
with the eight sub-probes: a series with an applied mag-
netic flux density (Bx = −15 mT) which results in the
low resistance parallel spin state corresponding to RAlow,
and a second series with an applied magnetic flux density
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FIG. 4. Picture of a micro 12-point probe positioned over a
w = 50 µm pad.

(Bx = 15 mT) which results in the high resistance anti-
parallel spin state corresponding to RAhigh. For each
sub-probe and field direction both A and B configura-
tion measurements were done. From the RA and RB

pairs, 16 RP values were calculated and used for least
square fitting of the CIPT models for both infinite sam-
ples and rectangular samples, respectively. From the fits
the model parameters (e.g. Rt, Rb, RAlow, RAhigh) were
extracted.
CIPT measurements were performed on square pads

with 12 different widths ranging from 30 µm to 2.5 mm
with the probe positioned at the centre of the pads and
the line of the probe parallel to an edge of the pads. Four
different pads of each size were measured and two mea-
surements were performed on each pad, i.e. 8 measure-
ments were performed for each of the 12 different sized
squares. Since Rt and Rb does not depend on RA they
are assumed to be independent on the magnetic field di-
rection. This leaves Rt, Rb, RAlow and RAhigh as the
four free fitting parameters assuming that the 12-point
probe is placed exactly at the centre of the pads and that
the dimensions of the pads are accurately known.
CIPT measurement were also performed as function of

y-position on a 30 µm square pad (again with the line
of the probe parallel to an edge of the pad). When the
model was fitted to these measurements Rt, Rb, RAlow,
RAhigh, xc and yc were used as free fitting parameters.
Thus, only the dimension of the pad was assumed known.

IV. RESULTS AND DISCUSSION

A. Measurements on various square pads

In Fig. 5 the measured pseudo sheet resistances for
the eight sub-probes are plotted as function of average
probe pitch for measurements on the pads with widths
of 30 µm, 50 µm and 2.5 mm. As expected the mea-
sured RP increases with decreasing probe pitch, while
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FIG. 5. Measured pseudo sheet resistances RP as function
of average probe pitch for squares with widths of 30, 50 and
2500 µm. Closed symbols signify measurements with Bx =
−15 mT (RAlow), while open symbols signify measurements
with Bx = 15 mT (RAhigh).

the measured resistances are largely independent on the
pad size, and only resistances measured with large pitch
on the small samples deviate a few percent from that on
the large pad; this is in agreement with Fig. 3. Figure 5
also represents an example of the data to which the two
theoretical CIPT models are fitted.

By fitting CIPT models for an infinite sample and a
square sample to the measured RP data the electrical
parameters (Rt, Rb, RAlow and RAhigh) of the stack are
extracted as function of sample size. In Figs. 6 - 7 Rt, Rb,
RAlow and RAhigh are plotted as function of samples size.
The values extracted from both of the CIPT models are
plotted for each parameter. The error bars correspond
to one standard deviation. The horizontal dashed lines
represent the mean values obtained from measurements
on the 2.5 mm pad. The solid lines in Figs. 6 - 7 show
the expected behavior of extracted parameters using the
infinite sample CIPT model on synthetic RP data. The
synthetic data were calculated RP values for square sam-
ples as a function of square size using the experimental
sample parameters extracted from the 2.5 mm sample.

The parameter values extracted from the two models
essentially coincide for samples larger than 100 µm. For
samples smaller than 100 µm the values obtained from
the model for an infinite sample starts to deviate from
the level obtained for large samples. These trends are in
good agreement with the theoretical deviations plotted
in Fig. 3. Since the largest probe pitch used is 8.3 µm
w/s will become less than 12 for samples smaller than
100 µm, which leads to an overestimation of RP by ap-
proximately 0.5 %. As the sample size is decreased this
overestimation along with the overestimation of the resis-
tances for the other sub-probes will increase. Thus, the
extracted parameter results become increasingly different
from parameters from measurements on a large pad.
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FIG. 6. Extracted values of Rt and Rb as function of sample
width. Both the infinite sample CIPT model and the square
sample CIPT model were fitted to the measurements.

From Fig. 6 it is seen that the values of Rt and Rb

obtained using the model for a square sample are inde-
pendent of sample size. The values of RAlow and RAhigh

(Fig. 7) changes slightly as function of sample size. These
small changes are believed to be due to sample varia-
tion across the wafer. Note, the resistance area product
is known to depend exponentially on the tunnel barrier
thickness,19 and thus the observed variation in resistance
area product may be caused by deep sub-nanometer vari-
ations in tunnel barrier thickness. In contrast, the infinite
sample CIPT model results in extracted parameters that
deviate significantly when large and small samples are
compared, in agreement with the expectation (full lines).

B. Sensitivity to probe position on a small pad

Figure 8 shows RAlow and RAhigh extracted from
CIPT measurements on a 30 µm by 30 µm square pad as
function of probe position when the probe was scanned
parallel to an edge of the pad. From the plots it is seen
that RAlow and RAhigh can be extracted within ±1 %
as long as the probe is more than 5 µm from the sample
boundary if the square sample CIPT model is used. Use
of the infinite sample CIPT model leads to larger discrep-
ancies; if the probe is near the centre of the pad RA is
overestimated systematically and close to the boundary
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FIG. 7. Extracted values of RAlow and RAhigh as function of
sample width. Both the infinite sample CIPT model and the
square sample CIPT model were fitted to the measurements.

the error becomes very large.

V. CONCLUSION

We have shown that CIPT measurement can indeed be
performed on small MTJ square pads and that meaning-
ful, accurate sample parameters can be extracted from
the measurements. For this stack and probe design we
found that as long as the square is 100 µm wide and
measurements are performed at the center of the pad, it
does not matter whether the sample is treated as a rect-
angle or an infinite sample. However, for samples smaller
than 100 µm wide the new model for a rectangular sam-
ple should be used to obtain reliable results. We have
demonstrated successfull CIPT measurements on square
samples as small as 30 µm×30 µm. Measurements on a
30 µm×30 µm pad show that RA can be measured within
±1 % as long as the probe lands more than 5 µm from
the boundary parallel to the probe pins; in practice this
means that even on such a small pad the sensitivity to
probe misalignment is small. The results are very promis-
ing and may lead to application of CIPT measurements
at later stages in MTJ fabrication as well as on pads in
scribe lines on fabrication wafers.
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FIG. 8. Extracted values of RAlow (top) and RAhigh (bottom)
as function of y-position on a 30 µm pad.
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The presence of defects in graphene have for a long time been recognized as a bottleneck for its

utilization in electronic and mechanical devices. We recently showed that micro four-point probes

may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will

lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations

based on a finite element method together with a Monte Carlo approach are used to establish the

transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure

on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are

observed at low and high defect densities, respectively, and current density plots reveal the presence

of current channels or branches in defect configurations yielding 1D current transport. A strong cor-

relation is found between the density filling factor and the simulation yield, the fraction of cases

with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with

the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with mac-

roscopic edge contacts is compared to the micro four-point probe conductance measurements and

we find that the micro four-point probe tends to measure a slightly higher conductance in samples

containing defects.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892652]

Since the first demonstrations of single and few-layer

graphene devices,1,2 and later growth of large continuous

graphene films by chemical vapor deposition (CVD), the

issue of defects has been a central research topic.3–6 The rea-

son for this is that defects have been recognized as a bottle-

neck for electronic6 and mechanical7 applications, as well as

for fundamental research. Defects in small pieces of exfoli-

ated single crystal 2D materials can today be avoided almost

entirely,8,9 but it remains an issue for large area graphene

grown by CVD, which is the dominant method for high qua-

lity graphene production. In the broadest sense, defects may

refer to anything from lattice imperfections, substitutional

atoms, vacancies, physi- or chemisorbed adatoms, as well as

extended defects such as grain boundaries,3,10 cracks,11 and

folds,12 and finally regions with different doping and con-

taminants, such as electron-hole puddles.13 Such defects may

be created during growth due to non-optimal growth condi-

tions, differences in thermal expansion coefficients of sub-

strate and graphene, multiple nucleation points for the CVD

growth process, or in the transfer process of graphene onto a

target substrate. Techniques such as Raman spectroscopy14

and field effect measurements are widely used means of

assessing the quality of graphene, but neither of these gives

clear information on the electrical continuity of the graphene

films. Electrical continuity is important to include when

characterizing 2D materials, since the sheet conductance

may vary according to the transport regime relevant at differ-

ent characteristic length scales. At a transport length shorter

than the mean free path of the charge carriers, the transport

is ballistic and sheet conductance undefined, whereas we can

define an intrinsic sheet conductance for a transport length

longer than the mean free path. For a 2D material, a meso-

scopic transport regime can be defined for a length scale cor-

responding to the length of extended defects and for much

larger length scales a macroscopic sheet conductance. A

class of devices where conductance is unlikely to represent

the intrinsic sheet conductance is highly nanostructured gra-

phene, such as nanoribbon arrays15 and nanomesh/antidot

lattices.16 Recent theoretical work shows a quite inhomoge-

nous current flow in disordered antidot lattices.17 In previous

work,18 we demonstrated that a quasi-1D current transport

can exists in the mesoscopic regime as measured with a

micro four-point probe (M4PP). This can be used to evaluate

if a graphene film is 2D or not in the near proximity of the

probe. This was done simply by inspecting the ratio RA/RB

between the measured resistances in two different configura-

tions, A and B, and comparing this ratio to the theoretically

predicted value for a homogeneous infinite 2D conductor,

ln(4)/ln(3)¼ 1.262. It was shown that a 4 � 6mm2 CVD gra-

phene film had the largest deviations from this 2D criterion

near regions with visible defects.

In this work, we use a combined finite element method

(FEM) and Monte Carlo approach to study the effect of an
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extended defect network on the current flow in a 2D conduc-

tor. We demonstrate that the M4PP measurement on a 2D

conductor with increasing number of defects exhibit the

expected transition from 2D to inhomogeneous current flow,

but also in a large number of cases the transition to a 1D cur-

rent flow, though often with quite complex current paths.

The simulations qualitatively explain the statistical distribu-

tion of the RA/RB values,18 with the collapse of the current

flow to 1D channels being directly responsible for the large

fraction of experimental RA/RB values exactly equal to 1.

Using Comsol Multiphysics 4.4, we simulated an applied

current in an M4PP setup and examined the resulting electro-

static potential across a two dimensional conductor. In the

A-configuration, the current is applied from pin 1 to pin 4

(the pin numbers are as shown in Figure 1). In the

B-configuration, the current is applied from pin 1 to pin 3.

The two remaining pins measure the resulting potential drop

in each case, and from the potential difference we can calcu-

late the resistances RA and RB in the A- and B-configuration,

respectively. The graphene sample was modelled as a two

dimensional square with insulating boundaries and a side

length of 10s, where s is the probe pitch. The four probe pins

were introduced as points placed on a straight line in the cen-

ter of the square along the x-direction. Defects were intro-

duced as straight line geometries of length ‘ and set as

electrically insulating. To achieve a specific defect density, q,

a regular grid of defects was constructed. At each grid point,

a line defect was placed, each with random orientation and

random displacements in x- and y-directions; the displace-

ment amplitudes were at most half the grid spacing. Using

this defect grid approach, forces the local defect density to

equal the global defect density, as we avoid major defect

clusters or voids and thus reducing the uncertainty of the

effective defect density locally. An initial coarse free triangu-

lar mesh was used followed by adaptive mesh refinement to

make a fine mesh only where it is strictly needed. Two mesh

refinement steps were found to be enough for the solution to

be within a relative error of less than 1% of the fully con-

verged solution. Using a finer initial mesh, or more than two

mesh refinement steps, dramatically increases the simulation

time, especially for short defects at high densities.

To investigate the change in electrical behaviour of a

2D conductor subjected to extended defects as measured

with an M4PP, simulations with stepwise increasing defect

density and fixed defect length equal to one probe pitch,

‘¼ 1s, were carried out with 1000 simulations per density

step. The result is plotted as a 3D histogram of resistance

ratios for each density step in Figure 2. The histograms show

a distinct 2D peak at low defect density with RA/RB� 1.2

corresponding to the simulated defect free square sample

10� 10s2. The 2D peak quickly broadens and disappears as

the density increases and the conductor is no longer strictly

2D. At intermediate densities, there are no major features or

peaks in the plot, which is a characteristic of inhomogeneous

current transport. A distinctive 1D peak occurs at high defect

densities of around q> 3sÿ2, which is very sharply focussed

around RA/RB¼ 1. At the highest simulated defect density of

q¼ 5.76sÿ2, the peak count is significantly lowered since

current flow from source to drain is completely obstructed in

the majority of simulations, thus making measurements

impossible. It can also be seen that for these extreme cases

the defect overlap is so significant that if a measurement suc-

ceeds, then the current will most likely follow a 1D current

path, which is why only RA/RB¼ 1 values are observed. The

characteristic distribution peaks representing 1D and 2D

transports and broadening of the 2D peak are very similar to

the distribution peaks found experimentally in Ref. 18.

Figure 3 shows an example of the electrostatic potential and

the resulting current density, for an M4PP measurement with

‘¼ 1.5s, in a typical case of 1D current transport. Examining

the simulated electrostatic potential shown in Figure 3(a),

reveals large regions of uniform potential abruptly changing

to neighbouring regions, suggesting the transport between

them is confined to narrow gaps. The electrodes {1, 2} and

{3, 4} are partially isolated from each other through a rela-

tively high resistance path and pairwise connected through

paths of negligible resistance. Consequently, identical resis-

tances can be observed for the A- and B-configuration, which

is a prerequisite for 1D transport. Two equivalent but less

likely situations can occur with electrodes {1, 3} and {2, 4}

or {2, 3} and {1, 4} pairwise short circuited. This would

result in resistance ratios of infinite and zero, respectively,

something which is rarely observed experimentally and in

FIG. 1. An M4PP in the A-configuration measuring on a square sample

yielding 1D transport. The surface map shows the resulting current density.

In this configuration, the pins 1 and 4 are used as current/ground while the

two remaining pins measure the electrostatic potential difference. The

square sample is 10� 10s2, where s is the probe pitch.

FIG. 2. Histograms of the simulated resistance ratio, RA/RB, as a function of

defect density, q, with a defect length of one probe pitch, ‘¼ 1s. Each histo-

gram contains the collected results from 1000 simulations.
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simulations. The current density map shown in Figure 3(b)

reveals that 1D transport also occur through a branched

channel and not only through a single channel as in Figure 1.

A study of how defect length influences the measure-

ment was also carried out with defect lengths ranging

between ‘¼ 0.5s and ‘¼ 3s. Here, data were collected from

100 simulations for each defect length and density together

with the data from the 1000 simulations for ‘¼ 1s. Figure

4(a) shows the simulation yield, that is, the number of suc-

cessful simulated measurements relative to the number of

simulation attempts. Figure 4(b) shows the fraction of suc-

cessful measurements yielding RA/RB¼ 16 10ÿ4 and Figure

4(c) shows the average measured sheet conductance, Gs,

evaluated using the modified van der Pauw expression;19

exp ð2pRAGsÞ ÿ exp ð2pRBGsÞ ¼ 1 and normalized to the

intrinsic sheet conductance, G0. Figure 4(d) shows Gs for

‘¼ 1s found both from M4PP simulations and from simula-

tions of a square sample setup. In all four graphs, the data

are plotted as a function of the filling factor, q‘2.

With respects to yield there are two main situations in

which a simulation output is missing, causing a reduction as

seen in Figure 4(a). One situation is when the current source

is isolated from the current drain in which case no numerical

solution can be found. The other situation is when one of the

voltage measuring pins is isolated resulting in a floating

potential. Measurements of negative resistances also occur in

experiments and are usually not included in the results.

These situations occur more often when a significant overlap

of the defects is possible, thus the overall yield is expected to

decrease when the density of defects becomes large. This

overlapping behaviour is well described in percolation

theory, more specifically by the percolation threshold of

widthless sticks on a 2D surface. Li and Zhang20 found the

percolation threshold value was determined to be

qc‘
2¼ 5.637, where qc is the critical stick density. Below

this value, long-range connection of the sticks cease to exist,

while at values above the threshold, clusters can form, some

of which are comparable in size to the system. This threshold

value is indicated in Figure 4 by the vertical dashed line. The

yield clearly drops before reaching the threshold value as

even short-ranged clusters can isolate a pin but the yield,

however, does converge towards zero near the threshold

value, suggesting that the system behaves as percolation

theory predicts.

In common for all defect lengths investigated is the dis-

play of 1D transport in proximity to the percolation threshold.

This is clearly seen in Figure 4(b) as well as in Figure 2.

FIG. 4. Simulation results as a function of filling factor for all the investi-

gated defect lengths. Every point indicates a defect density that was simu-

lated 100 times except for ‘¼ 1s, where the 1000 simulations were reused.

(a) The overall yield of the simulations. (b) The fraction of simulation

attempts that yields a resistance ratio of 16 1� 10ÿ4. For example, for

‘¼ 0.5s at q‘2¼ 5.5, which corresponds to a defect density of 22sÿ2, only

two simulations did not crash, both exhibiting 1D transport and thus a count

of one hundred percent. (c) The average sheet conductance. (d) The sheet

conductance for M4PP simulations compared to the sheet conductance of

the square sample, both averaged over 100 simulations. The inset illustrates

the setup used to find the square sample conductance, with V0¼ 1V. The

dashed line across all sub-figures indicates the percolation threshold for

sticks on a 2D surface.

FIG. 3. Simulation of a four-point probe measurement in presence of ran-

domly distributed extended defects with length 1.5s and defect density of

2sÿ2. The four white dots represent the point-contact positions of the four

probe pins. (a) The normalized electrostatic potential and (b) the normalized

current density.
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Especially, the data for ‘¼ 0.5s and ‘¼ 0.7s, with all of the

successful measurements yielding RA/RB¼ 1, have similarities

to the results shown in Figure 2, where the simulated measure-

ment yields RA/RB¼ 1 or fails at high defect densities.

In Figure 4(c), all simulations yielding zero sheet con-

ductance are effectively neglected, thus only successful simu-

lations contribute to the mean sheet conductance. When the

filling factor is increased, the mean sheet conductance

decreases. This is expected since adding more defects

obstructs the current transport, resulting in increased resist-

ance and lowered sheet conductance. We also notice that

when the 1D current transport cases starts to appear, at q‘2> 4

the conductance is severely lowered. This fits well with the

observation in Ref. 18 that 1D transport only occurs in highly

damaged areas. Another observation is that at the same filling

factor, long defects tend to cause higher mean sheet conduc-

tances compared to short defects. This can be explained by

considering the limits of the defect lengths at a certain filling

factor. If, for instance, the length of defects goes towards in-

finity, the density q would go towards zero, and the sheet con-

ductance would go toward 1 as the M4PP would effectively

probe the defect free region between defects. If, however, the

defects are infinitesimally short, the density q would approach

infinity, resulting in a completely insulating sample, with a

conductance converging towards zero.

In Figure 4(d), we compare the M4PP simulated sheet

conductance to the conductance of the entire sample, where

a potential V0¼ 1V is applied on one side of the sample and

ground on the opposite side as shown in the inset. Both simu-

lations were carried out on the same 100 defect configuration

samples and it is clear that there is a good agreement

between the two simulation setups. The large standard devia-

tions on the M4PP conductances are due to a few cases

where the defects are placed in such a particular way that the

conductance becomes much higher than the average. The

square setup generally gives a slightly lower conductance

than the M4PP setup. This is attributed to the difference in

area probed and related to the defect density/length versus

electrode pitch. A similar trend is observed in Figure 4(c) for

different defect lengths.

In summary, we have shown through a series of FEM

simulations, used in a Monte Carlo fashion, the transition

from 2D to quasi-1D current transport when measuring with

an M4PP in conductors with low and high defect density,

respectively. The collected data showed a striking resem-

blance in their RA/RB distributions to those found experimen-

tally in Ref. 18, revealing a very sharp distribution of

measurements around RA/RB¼ 1 at defect densities around

q¼ 4.84sÿ2 and a more broad distribution around RA/RB

¼ 1.2 at defect densities below q¼ 0.09sÿ2. Current density

plots of selected 1D transport cases featured single channel

or branch like current transport across the sample. We have

also shown a strong correlation between the filling factor and

the simulation yield, the number of 1D transport cases and

the mean sheet conductance. This showed that systems, de-

spite having very different defect lengths, behaved in very

much the same manner when examined at relatively high

defect density with respects to their size. The upper limit of

the range within which successful measurements were

achieved, was observed between q‘
2¼ 5.5 and 6.3 (depend-

ing on ‘), which was reaffirmed by the percolation threshold

for widthless sticks stating that this should occur at

qc‘
2¼ 5.637. It was also shown here that 1D current trans-

port only occur in proximity of the percolation threshold for

sticks at which point they would make up a significant frac-

tion of the total number of successful measurements. Finally,

the calculated mean sheet conductance showed that the

measured conductance was indeed severely reduced in the

filling factor range where most cases of 1D transport were

observed, which again is very much similar to the conclusion

drawn in Ref. 18. Additionally, it was found that the average

conductance measured with an M4PP was slightly higher

than the conductance of the entire sample in general, but

agreed within the standard deviations of the M4PP results.
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Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials
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We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene
as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using
the sensitivity functions of the two electrode configurations (configurations A and B represents different pairs of
electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point
probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional
conductor, the sensitivity functions for electrode configurations A and B are different. But when the current
is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two
sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence
quasi-1D transport. The sensitivity analysis presents a formal definition of quasi-1D current transport, which was
recently observed experimentally in chemical-vapor-deposition graphene. Our numerical model for calculating
sensitivity is verified by comparing the model to analytical calculations based on conformal mapping of a single
extended defect.

DOI: 10.1103/PhysRevB.90.245432 PACS number(s): 02.60.Cb, 72.80.Vp, 73.23.−b

I. INTRODUCTION

The analysis and control of defects are ongoing topics
for graphene films produced via chemical vapor deposition
(CVD), which is the preferred method for producing cheap,
high-quality graphene suited for large-scale integration. In
graphene, such defects can be anything from lattice im-
perfections (grain boundaries) [1–3], physi- or chemisorbed
adatoms, cracks [4], folds [5], areas with contamination, holes
due to imperfect transfer from growth substrate, and surface
corrugations responsible for various scattering effects reducing
the carrier mobility and causing unintended variations in the
current flow [6,7].

In a recent study we experimentally observed quasi-one-
dimensional (1D) current transport in large area CVD graphene
by micro-four-point-probe (M4PP) measurements [7]. We
demonstrated how this could be qualitatively reproduced in
a two-dimensional (2D) material with randomly distributed
insulating line defects near the percolation threshold charac-
terized by the filling factor ρ�2, where ρ was the defect density
and � the defect length [8]. This was done by inspecting the
ratio of the two four-point resistances, RA/RB, measured by
the electrode configurations shown in Fig. 1. For a material
with uniform intrinsic transport properties, the resistance ratio
solely depends on the sample geometry including electrode
positions and takes on an ideal value of ln(4)/ln(3) = 1.262 for
a homogeneous 2D conductor, i.e., without any form of defects
[7,9]. This was verified experimentally in a concurrent study

*These authors contributed equally to this work.
†dirch.petersen@nanotech.dtu.dk

for graphene without a high density of extended defects [9].
The notion of 1D-like transport or quasi-1D current transport
represents the situation when the resistance ratio approaches
1, i.e., the expected result for a 1D conductor or wire measure-
ment [7,8]. For measurements on an inhomogeneous material,
the sensitivity (or weighting function) of four-point resistance
to small perturbations in the local transport properties has been
studied both numerically[10–13] and analytically [14]. Similar
studies have been conducted for finite point-like perturbations
to include nonlinear effects on the sensitivity [15,16], but the
situation is different for highly nonuniform materials with
extended insulating defects.

In this paper we present a numerical model of current flow
in M4PP measurements in an initially 2D conducting sheet
subjected to a large number of insulating line defects of random
orientation. We show how the numerical model can be verified
for simple situations, involving a single extended defect, using
an analytical expression obtained via conformal mapping. The
results are analyzed by mapping and comparing the sensitivity
of measurements in different probe configurations. Through
this technique, it is shown that the frequently occurring 1D
signature is a result of the different probe configurations
measuring the exact same area on the sample, due to defects
confining the current. The approach can be expanded to a
general framework for analyzing the sensitivity of other types
of defects on electrical measurements.

II. ANALYTICAL MODEL

In a four-point probe measurement, a current I is passed
through the sample, using two of the four electrodes, while
the resulting potential drop over the remaining two electrodes

1098-0121/2014/90(24)/245432(5) 245432-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.245432


MADS BOLL et al. PHYSICAL REVIEW B 90, 245432 (2014)

FIG. 1. Schematic of four different probe configurations (A, B,
A′ and B′). The probe pins are numbered 1 to 4 and are evenly spaced
by a probe pitch s.

is measured. The measured resistance is determined by the
ratio of measured voltage to applied current. The four-point
resistances RA, RB, RA′ , and RB′ are measured with the pin
configurations (A, B, A′, and B′) defined in Fig. 1. Due
to reciprocity, RA = RA′ and RB = RB′ in the absence of a
magnetic field. To analytically model an M4PP measurement
on a sample with a line defect, we turn to conformal mapping.
Here a linear defect of finite length is mapped onto an infinite
border, running along the x axis. Thus the problem is reduced
to that of a semi-infinite sheet, for which the electrostatic
potential can be calculated for any probe position in the upper
half-plane. In the mapping process, the probe pin coordinates
are treated as complex numbers, w = u + iv in real space and
z = x + iy in the conformal image plane, here i = √−1 is
the imaginary unit. In the case of a short defect with length
�, and its center at the origin of the coordinate system, the
transformation of the pin coordinates from the w plane to the z

plane and back is given by z = i

√
w−�/2
w+�/2 and w = �

2
1−z2

1+z2 ,

respectively. An example of this mapping procedure for three
different M4PP pin positions around a defect is shown in
Fig. 2.

The electrostatic potential � (r,r+,r−) at position r with
two point current sources ±I , at the positions r+ and r− in
the upper half-plane of the semi-infinite sheet, is found as a
solution to the Laplace equation for an infinite sheet

� (r,r+,r−) = IR0

2π

(
ln

|r − r−|
|r − r+| + ln

|r − r−|
|r − r+|

)
, (1)

where r± = (x±,y±) = (x±,−y±) are the positions of image
current sources in the lower half-plane and R0 is the sheet
resistance. This image technique ensures that the current
density Js across the boundary between two half-planes is zero,
Js · n = 0, where n is the unit vector normal to the boundary,
which is the correct boundary condition for the semi-infinite
system. A detailed derivation of this potential is presented
in Ref. [17]. The resistances are found using Ohm’s law, for
instance, RA = [� (r2,r1,r4) − � (r3,r1,r4)] /I .

v

u

y

x

FIG. 2. (Color online) An example of conformal mapping.
(a) The probe positions around an insulating line defect, which is
indicated by the black line. (b) The corresponding upper half-plane
solution where the x axis is an infinite border. The situation on the
right can be solved analytically as opposed to the left.

III. NUMERICAL MODEL

With more than one defect there is no simple analytical
solution to the electrostatic problem. To calculate the effect
of a large number of randomly positioned defects, we must
turn to the finite element method (FEM). The numerical
simulations were performed using COMSOL Multiphysics
4.4 with LiveLink for Matlab. The sample was modeled as
a two-dimensional square-shaped area and the four probe pins
were introduced as points placed on a straight line in the
center of the square along the x direction and separated by
the probe pitch s. One pin was modeled as a current source
δ function and one as a current drain δ function, and the two
remaining pins were used to monitor the electrostatic potential
difference resulting from the current flow. Using point source
currents in the calculations is a good approximation when
considering the length scale of the probe pitch, which is in
micrometers, compared to the physical contact size of ∼10 nm.
Defects were introduced as straight insulating lines, as were
the boundaries of the sample, so that in both cases Js · n = 0.
Adaptive mesh refinement was used on an initial extra-coarse
mesh with a maximum of two mesh refinement steps. With
these mesh settings the result was within 1% of the fully
converged solution even for the highest defect densities.

For numerical simulations, a side length of 10s was chosen
to reduce computational time for systems with a large number
of defects. Due to the proximity of the sample edges, the
resistance ratio of the down-scaled system, without added
defects, has the value 1.20. To achieve a given defect density,
the corresponding amount of defect center coordinates were
homogeneously distributed in a square grid, across the sample.
Each defect center was then given a random offset in the x and
y directions and the offset amplitudes were at most half the
distance between two grid points. In addition, each defect was
given a random orientation.
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R
R

FIG. 3. (Color online) Analytically and numerically calculated
resistance ratios for a probe scanned past a single line defect of
length s, as indicated by the sketch in the top inset. The lower right
inset shows the relative difference between the two models.

The validity of the FEM model was verified by setting up
calculations where a probe was scanned past single defects
in various configurations relative to the probe axis and scan
direction. In all cases the calculated probe response was
compared to the analytical result from conformal mapping.
An example is shown in Fig. 3, where the top inset shows
the probe-defect configuration. The probe was aligned and
scanned along the x direction, while the defect of length s was
aligned along the y direction and displaced the distance s in the
y direction from the probe scan axis. The resulting resistance
ratios from numerical and analytical calculations are compared
in Fig. 3. To numerically reproduce the resistance ratio of the
defect-free semi-infinite sheet, RA/RB = 1.262, we found that
the sample side length had to be at least 450s. For this reason,
the sample used in the numerical model for this verification was
450s × 450s. The difference between the numerical and the
analytical result was below 0.1%, as shown in the lower right
inset in Fig. 3, which is evidence of an excellent agreement
between the FEM model and the analytical result and thus
serves to verify the FEM model.

IV. SENSITIVITY ANALYSIS

In this work it is essential to visualize and clarify the
transition from 2D to 1D-like transport. The signature of 1D
transport appears when resistances measured in two different
pin configurations, A and B, become equal. For measurements
in two different pin configurations the resulting sheet current
densities must differ even when the measured resistances are
identical; thus the sheet current densities alone do not clearly
reveal the transport dimensionality. See Supplemental Material
for sheet current densities of 1D-like transport [18]. The
sensitivity as explained below will, however, clearly illustrate
the dimensionality of the transport.

The sensitivity of an M4PP measurement is a very useful
concept that reveals detailed insight into which part of a
sample contributes to the measured transfer resistance RT .
Here we use a dimensionless sensitivity ST defined [13] as
ST = s2δRT /(δR0 δ�), where δR0 is a small local deviation
in sheet resistance R0 within the incremental area δ�, and
δRT is the resulting change in measured transfer resistance.
In the Appendix we show that the sensitivities of A and B
configuration measurements are

SA = s2 JA · JA′

II′ and SB = s2 JB · JB′

II′ , (2)

respectively [13]. Here JA, JA′ , JB, and JB′ are the local sheet
current densities in the respective measurement configurations,
while I and I ′ are the total measurement currents used in
the measurements. Multiplication by the probe pitch squared
renders the sensitivity dimensionless and eases comparison of
absolute sensitivity values for different samples. Specifically,
the sensitivities in a defective sample can be calculated to
reveal details of how defects alter the measurements. By using
the definition of the sensitivity we have for the resistance
difference RA − RB = ∫

�
R0 (SA − SB) d�/s2, and clearly in

cases of identical sensitivities the resistances become identical.

V. 1D MEASUREMENTS

In recent work we found that the numerical model qual-
itatively reproduces both the 2D and 1D current transport
behaviors [8], which were earlier found experimentally [7].
To investigate the cause of the two dominant measurement
signatures we consider two representative cases and use
sensitivity analysis on their simulated sheet current densities.
Sensitivity plots of SA and SB and their difference SA − SB for
the two typical simulations are shown in Fig. 4, where the white
dots indicate the probe pins and the black lines are insulating
defects. Figures 4(a)–4(c) (left column) are for a system
containing a defect density of 1s−2 with RA/RB = 1.205,
corresponding to that of a sample with the current limited only
by the finite area sample boundary, and thus the figures exhibit
2D-like current transport characteristics. For comparison, the
three inset images show the respective sensitivities for pure
2D current transport.

Figures 4(d)–4(f) (right column) are for a system containing
a defect density of 4.84s−2 and RA/RB= 1, corresponding to
1D-like current transport characteristics. Here a larger fraction
of the sheet area is characterized by having a higher value of
sensitivity than in the left column. This can be explained by the
large number of defects obstructing the path of least resistance,
which forces the current on a longer route.

In the 2D-like case (left column) the difference in sensitivity
between the two configurations is clearly visible in Fig. 4(c).
This explains why different resistances are measured in the
two configurations, yielding RA/RB = 1.205. For the 1D-like
case (right column) the difference in sensitivity is mapped
in Fig. 4(f). The largest values found here are on the order
of 10−3 and thus very small compared to the 2D-like case.
This shows that the areas that contribute to the measured
resistances are essentially identical, and therefore identical
resistances were measured, and RA/RB = 1 results. In this
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FIG. 4. (Color online) Sensitivity maps for typical 2D and 1D
signature measurements where the four white dots represent the probe
pin positions, and the black lines are insulating line defects. (a) and
(b) are the A and B configuration sensitivity maps for a 2D signature
case. (c) is the difference between the values SA and SB from (a) and
(b). The inset images are the corresponding sensitivity maps for the
zero-defect case. (d) and (e) are the A and B configuration sensitivity
maps for the 1D signature case. (f) is the difference between the
values SA and SB from (d) and (e), and is on the order of 10−3, which
is very small compared to (c). The scale bar is 2s (s is the probe
pitch).

case RA − RB = ∫
�

R0 (SA − SB) d�/s2 = 0 and thus iden-
tical resistances are measured.

VI. CONCLUSION

We have shown that sensitivity analysis of M4PP measure-
ments on 2D materials with extended defects gives consider-
able insight into the macroscopic transport properties of the
materials. In particular we have shown that the sensitivities
SA and SB in the two M4PP configurations A and B change
dramatically when the defect density is increased. At low
defect densities, SA and SB differ significantly and are localized
to an area in the vicinity of the probe pins. As a result the

measured resistances RA and RB differ, which is characteristic
of 2D transport; the resistance ratio RA/RB then becomes
ln 4/ ln 3 for an infinite sample. In contrast, at high defect
densities SA and SB become essentially identical and localized
to a low dimensional path between the probe pins. As a result,
the measured resistances RA and RB become identical (exactly
the same part of the sample is measured), with the ratio
RA/RB = 1.0, a clear 1D signature. This analysis explains
the similar behavior observed experimentally on defective
graphene in Ref. [7]. The sensitivities were calculated using a
FEM model, which was verified by comparison to an analytical
calculation for the single-defect case, which we solved exactly
by use of conformal mapping.
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APPENDIX

For the derivation of the sensitivities, Eq. (2), we use an
approach similar to that of Paul and Cornils [12]. We now
consider a 2D region � with an insulating boundary ω (shown
in Fig. 5) such that the sheet current density Js · n = 0 on ω,
except at four electrodes (like the four pins in an M4PP) where
a current Ii may flow out of the electrode i ∈ [1,2,3,4] with
the potential Vi . The sheet current densities are considered
divergence free, which means that we can write

∇ · (�J̃s) = ∇� · J̃s + �∇ · J̃s = ∇� · J̃s = −E · J̃s ,

(A1)

where � is the potential in region �, E = − ∇� the electric
field, and J̃s is the sheet current density in another region �̃.
Taking an integral over the region �, and applying Stokes
theorem, we get the following identity:∫

�

∇ · (�J̃s) d� =
∫

ω

�J̃s · n dω = −
∫

�

E · J̃s d�. (A2)

The boundary integral is easily evaluated since the boundary
conditions make the integral vanish except at the electrodes,

Js• n=0

Ω

ω

1

2 3

4

I1

I2 I3

I4V1

V2
V3

V4

FIG. 5. Illustration of a 2D region � with insulating boundary
except for four perfect contacts, Nos. 1–4.

245432-4



SENSITIVITY ANALYSIS EXPLAINS QUASI-ONE- . . . PHYSICAL REVIEW B 90, 245432 (2014)

and thus a sum results:

∫
ω

�J̃s · n dω =
4∑

i=1

ViĨi . (A3)

If we now consider the two regions identical but corresponding
to reciprocal configurations, e.g., A and A′, only two terms
remain in the sum, and from Eqs. (A2) and (A3) we find the
relation

VkĨk + V�Ĩ� = −(Vk − V�)Ĩk� = −
∫

�

E · J̃s d�, (A4)

where i,j,k,� ∈ [1,2,3,4] and i �= j �= k �= �. From this result
the transfer resistance RT = (Vk − V�) /Iij becomes

RT = Vk − V�

Iij

= 1

Iij Ĩk�

∫
�

E · J̃s d�. (A5)

At zero magnetic field the electric field and sheet current
density are related as E = R0Js , where R0 is the sheet
resistance, and thus a general expression for the transfer
resistance as a function of the current densities in the two
configurations becomes

RT = R̃T = 1

I Ĩ

∫
�

R0Js · J̃s d�. (A6)

Now we can define sensitivity as the change in transfer
resistance relative to a change in local direct sheet resistance
(δR0) in a small region δ� as

S = s2 δRT

δR0δ�
= s2 Js · J̃s

I Ĩ
, (A7)

where the sensitivity has been made dimensionless by multi-
plication of s2. This result was also given in Ref. [13] without
proof.
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