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Highlights 

 

 We predict facial traits from genetic variants of 1,300 individuals 

 We use information from large sets of SNPs 

 Six facial traits, facial width among others, are predicted significantly 

 This work is a promising addition to previous research into facial trait prediction 
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1 Abstract1

Research into the importance of the human genome in the context of facial appearance is receiving2

increasing attention and has led to the detection of several Single Nucleotide Polymorphisms (SNPs) of3

importance. In this work we attempt a holistic approach predicting facial characteristics from genetic4

principal components across a population of 1,266 individuals. For this we perform a genome-wide5

association analysis to select a large number of SNPs linked to specific facial traits, recode these to genetic6

principal components and then use these principal components as predictors for facial traits in a linear7

regression. We show in this proof-of-concept study for facial trait prediction from genome-wide SNP8

data that some facial characteristics can be modeled by genetic information: facial width, eyebrow width,9

distance between eyes, and features involving mouth shape are predicted with statistical significance10

(p < 0.03).11

2 Keywords12

facial trait prediction; visible trait prediction; normal trait variation; evolutionary genetics; genetic13

association.14

3 Introduction15

Facial features are one of our most distinguishing visible traits, and known to be modeled by combined16

genetic, epigenetic and environmental factors [1]. An example of this are monozygotic twins, often17

so similar in appearance that they can be difficult to tell apart, which concludes that at least partial18

reconstruction of facial features from DNA should be possible.19

Genotypic profiling based on Single Nucleotide Polymorphisms (SNPs) has been successfully implemented20

to predict a person’s amount of freckling, presence of moles, hair texture and skin color [2–8]. In forensic21

science genotyping has been used to predict an individual’s eye color, hair color, sex and ancestry with22

high accuracy [9, 10]. Prediction of facial features from DNA would be very useful in forensic science,23

since this would make it possible to narrow down a list of suspects for a particular crime based on facial24

appearance alone.25

However, this aim is difficult to implement, since Genome-Wide Association Studies (GWAS) have26
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revealed many traits as inherently polygenic [11–13]. One example of this is human height, now believed to27

be shaped by thousands of SNPs [14]. The search for decoding the genetic modeling of facial traits has at28

this time only taken the first steps: three SNPs affecting nose width, nasion position and face width have29

been detected [15,16]; Liu et al. identified five SNPs associated with specific facial phenotypes extracted30

from three dimensional (3D) magnetic resonance images and two dimensional (2D) portrait images [17];31

and a study conducted by Claes et al. established 24 of 76 candidate SNPs in known craniofacial genes as32

having significant effects on facial variation [18]. Nonetheless, lack of SNPs with strong effects and a low33

degree of explained facial variance reveal facial phenotypes as polygenic. Therefore, other methods are34

needed to increase the chance of success for finding a translation from genetics to facial features.35

In this work we attempt to predict 2D facial characteristics from genetic variants across a population36

of 1,266 individuals to establish the presence of a signal in our DNA for the coding of facial features.37

This is a proof-of-concept study focusing on genome-wide SNP data instead of individual SNPs for the38

prediction of facial traits. We construct a statistical shape model of the face by Principal Component39

Analysis (PCA). The facial shape principal components are used as phenotypes in a GWAS to select40

for associated SNPs, whereafter a PCA is performed on these selected SNPs to construct corresponding41

statistical models for the genetic variation. The genetic principal components are then used to predict a42

given facial shape component by linear regression in a repeated stratified nested cross-validation design.43

4 Materials and Methods44

4.1 Ethics Statement45

Subjects were recruited from a large genotyped sample [19]. Encrypted identifiers of genotyped subjects46

were decrypted by a representative of the Icelandic Data Protection Authority and subjects were recruited47

to the study by a clinic overseen by the Icelandic Data Protection Authority. Psychologists and nurses48

phenotyping the participants were blind to genotype. Those working with the genetic data were blind to49

personal identifiers and could only work on the encrypted data set. Only a representative of the Data50

Protection Authority of Iceland holds the key for encrypting and decrypting the personal identifiers.51

Genotypes are only linked to encrypted identifiers. Approval for this study was obtained from the National52

Bioethics Committee of Iceland (VSNb20090900004) and the Icelandic Data Protection Authority. Written53

informed consent was obtained from all participants before blood samples or phenotypic data were obtained.54
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All sample identifiers were encrypted in accordance with the regulations of the Icelandic Data Protection55

Authority.56

4.2 Overview57

This study focuses on the prediction of facial features from genome-wide SNP data. Over twenty million58

genotyped and imputed SNPs were available and therefore feature selection by genome-wide association59

was implemented to ensure genetic models being built with SNPs associated with a given shape component.60

An overview of our method is presented in Figure 1.61

Figure 1. Flow chart giving an overview of our method. A: Participant photographs are
annotated, normalized and a PCA is performed on the face shapes resulting in 37 shape components (95
% explained variance). Participant genotypes are pre-processed and a GWAS is run against each shape
component (N=37) on two-thirds of the data. SNPs with an association p-value < 0.005 are selected and
a PCA is performed on these, resulting in about 670 genetic components per shape component. B: The
remaining one-third of data is used to train and assess the model by repeated stratified nested 40-fold
cross-validation. The final model is assessed by the multiple correlation coefficient on the test set.

4.3 Ascertainment62

The ascertainment of Icelandic participants has been described in detail elsewhere [19]. Of these 1,338 were63

acquired with facial image data, 72 participants were removed due to non-Icelandic ethnicity, non-neutral64

facial expression, or non-frontal face direction to the camera, resulting in a remainder of 1,266 participants.65
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All participants were between 18 and 72 years of age (57% women).66

4.4 Genotyping67

Participants were genotyped using IlluminaHumanHap and IlluminaOmniExpress arrays and long range68

phased for efficient imputation of markers as described earlier [20]. To shortly recap, SNPs identified69

and genotyped through sequencing were imputed into all Icelanders who had been phased with long70

range phasing using the same model as used by IMPUTE [21]. SNPs were excluded if they (i) had71

yield less than 95%, (ii) had MAF less than 1% in the population or (iii) had significant deviation from72

Hardy-Weinberg equilibrium (p < 0.001). All samples with a call rate below 98% were excluded from the73

analysis. Genotyping was performed at deCODE genetics in Reykjavik, Iceland.74

4.5 Image acquisition75

Frontal facial images were recorded in a controlled environment at enCODE and Landspitali University76

Hospital in Reykjavik, Iceland. At both sites identical photo studios were set up and all images were77

taken with a Canon IXUS 95, 10 megapixels camera, mounted on a custom-built rig. All participants were78

recorded sitting on a height-adjustable chair. Lighting was not controlled and therefore we subsequently79

chose to exclude texture information. Images were corrected for distortions, mainly introduced by the80

camera lens, by use of camera calibration [22].81

4.6 Annotation of facial landmarks82

Image analyses were performed in Matlab 2010b [23] and facial images were annotated by in-house83

developed image analysis software employing a semi-automatic annotation scheme. First, face and eyes84

were automatically detected using the Viola-Jones object detection algorithm [24] and then an Active85

Appearance Model placed the remaining annotation points [25]. The annotation scheme consisted of 7386

anatomical landmarks and pseudo-landmarks and was similar to the one used in [26], an example is shown87

in Figure 2. A trained operator manually revised and adjusted all annotations.88
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Figure 2. 73 points annotation scheme. An example of the set of annotation points to determine
the shape model. Anatomical landmarks are points determining homologous parts in a face; like the tip of
the nose. Pseudo-landmarks are points located between anatomical points that are needed to construct a
precise shape model.

4.7 Generating shape components89

A Procrustes Analysis was performed on the annotated faces to align and scale them due to missing90

absolute distances in the 2D images [27]. In a procrustes analysis optimal transformation of annotation91

points is found to minimize distance between points of the same class; e.g. the tip of the nose (Figure 3).92

The mean shape was subtracted from these aligned and scaled shapes and a PCA was performed, resulting93

in a statistical facial shape model with principal components restricted to account for 95% of the variance94

in the original data. Facial shape principal components are further-on referred to as shape components.95

4.8 Generating genetic components96

A GWAS was performed for each shape component, adjusted for gender and age effects, on two-thirds of97

the data, 827 individuals, to detect associated SNPs. To account for relatedness and stratification within98

samples the method of genomic control based on chip markers was applied. SNPs with association p-values99

< 0.005 were selected and genotypes for the selected SNPs were coded to an additive model with missing100

values coded as heterozygous. A PCA was applied to construct statistical genetic models, again with101

principal components restricted to account for 95% of the variance in the original data, and further-on102

referred to as genetic components. Data from the 827 individuals used for the model generation was103

discarded and the remaining one-third of data, 439 individuals, was used for the prediction. Genotypes for104
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Figure 3. Procrustes analysis. A: The original annotation points/landmarks. B: Translation of the
center of gravity into origin. C: Result of the Procrustes analysis; the optimal rigid transformations
(rotation, scaling and translation) that minimize the distance between points of the same class (e.g. left
pupil). The mean shape from the Procrustes analysis is shown in red.

the selected SNPs for the 439 individuals were projected into the PCA spaces of the previously generated105

genetic models.106

4.9 Prediction of facial traits107

Shape components were predicted from genetic components by training and validating linear regression108

models by repeated stratified nested 40-fold cross-validation, where the outer loop estimates performance109

and the inner loop selects the best number of genetic components for the prediction. Due to a setup with110

much fewer observations than genetic components feature selection in the inner loop was performed by111

first ranking all genetic components based on their correlation to their corresponding shape component in112

the training set [28]. Up to fifty of the highest ranked genetic components were used as predictors and the113

best number of predictors was chosen in the inner loop. Linear regression models were trained in the outer114

loop and performance was evaluated on the test set by the correlation coefficient, r, between predicted and115

target values. Cross-validation was repeated a hundred times to report results with standard deviations.116

The prediction was additionally done for each gender separately. Permutation tests were performed with117

10,000 rounds, resampling shape component values each round, to establish the null distribution of the118

test statistic and thereby assess the statistical significance of the predictions. The analyses in this section119
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were performed in R v. 3.1.1 [29].120

5 Results121

In this study it was our goal to predict holistic facial characteristics from a number of complex genetic122

components.123

For this, participants’ images were annotated, procrustes aligned and scaled, whereafter facial shape124

components were extracted by PCA. This resulted in 37 shape components, each describing holistic aspects125

of a face (Figure S1). We ran a GWAS for each shape component controlling for age and gender on126

two-thirds of the data, 827 individuals, to select for associated SNPs. As expected, we did not find SNPs127

with genome-wide significant p-values (< 10−8) due to our small sample size and due to the polygenic128

nature of facial traits where many SNPs have minor effects. We chose a threshold of p < 0.005 to129

capture a large number of possibly associated SNPs across the genome; other thresholds were not tested.130

Thirty-seven genetic models, one for each shape component, were built by a PCA from the selected131

SNPs (p < 0.005, ∼ 95, 000 SNPs). PCA is often done on genetic data from different populations to132

control for population stratification by use of the first few principal components. Our data is from one133

population only and therefore a PCA is in this case appropriate for dimension reduction to capture134

differences in individuals’ genetic data accounting for differences in phenotypes. We retained genetic PCs135

explaining cumulatively up to 95% of the variance (Figure S2). After this initial model generation the136

above two-thirds of data were discarded to ensure full separation between feature selection and prediction.137

Next, genotypes for the associated SNPs of the remaining 439 individuals were projected into the PCA138

spaces of the 37 generated genetic models; one for each shape component. The genetic components were139

then used to predict shape components in a linear regression model by repeated stratified nested 40-fold140

cross-validation, where the inner cross-validation selects for the best number of predictors.141

Prediction was done on three groups: all 439 individuals, only men and only women. This approach142

was chosen due to different facial compositions between genders; e.g. it has been shown that men have a143

larger face width at the cheeks and thicker eyebrows [30]. Adding gender as a covariate would therefore144

introduce an upwards bias on performance for at least some of the shape components. For each shape145

component and each group we ran permutation tests with 10,000 rounds to establish the null distribution,146

giving us a measure of statistical significance for our predictions. We found shape components 1, 3,147
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Table 1. Shape components for each group predicted with statistical significance.

All, n=439
Shape component r ± σ # genetic components p-value

3 0.21± 0.02 6 9.0× 10−3

Men, n=231
Shape component r ± σ # genetic components p-value

27 0.28± 0.03 2 1.1× 10−2

1 0.21± 0.03 4 4.4× 10−2

Women, n=208
Shape component r ± σ # genetic components p-value

11 0.31± 0.00 1 8.0× 10−3

16 0.27± 0.03 3 1.8× 10−2

28 0.25± 0.04 1 2.4× 10−2

Shape components predicted with statistical significance based on permutation tests. The multiple
correlation coefficient, r, is reported with standard deviations together with the number of genetic
components used in the prediction and the p-value gathered from the permutation test.

11, 16, 27 and 28 to be predicted with statistical significance (Table 1). However, correlations between148

observed and predicted shape component scores did not exceed values of 0.31, revealing predictions as149

only approximate.150

In Figure 4 we visualize the changes explained by the shape components. Shape component 3 is seen151

to mainly explain face width. For women component 11 mainly describes fullness of lips, component 16152

distance between eyes and eyebrow width and component 28 eye size. For men component 27 describes153

the shape of the mouth, while component 1 explains face width.154

6 Discussion155

In this work we demonstrate that facial characteristics can be predicted to some degree solely from genetic156

information. This is a proof-of-concept study with the focus on genome-wide SNP data instead of on157

individual SNPs. Despite a modest number of individuals we found six holistic facial characteristics158

predicted with statistical significance. We find face width (found previously to be associated to specific159

SNPs by [15, 17]), fullness of female lips, and a slight variation in mouth width in men as the features160

with the greatest potential in the context of facial trait prediction. For women we additionally find eye161
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Figure 4. Shape components for the three groups all (green), men (yellow) and women
(orange) predicted with statistical significance. The face pairs visualize facial trait components
with a distance of ±2 standard deviations from the mean. Component 3 mainly describes face width;
component 27 aspects of mouth shape; component 1 face width (besides head rotation); component 11
mainly size of lips; component 16 distance between eyes and eyebrow width; and component 28 eye size.
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distance, eye size and eyebrow width as predictable to a smaller degree. The fact that we achieve a162

better performance when predicting on genders separately could be caused by differences in facial features163

between men and women. Generating shape and genetic components for men and women separately164

instead of controlling for gender effects could lead to a higher prediction accuracy due to a more clearly165

defined phenotype.166

An important fact to consider is the polygenic nature of facial traits, which are likely influenced by167

thousands of genetic variants. Such a large number of significant SNPs could therefore benefit from being168

combined to get more clearly defined and reliable predictors for facial features. We attempted this by a169

PCA, a linear dimension reduction, however, other non-linear dimension reduction techniques could in the170

future be shown to perhaps better grasp the interplay between SNPs. Also pre-selecting SNPs in genes171

part of pathways hypothesized to affect cranio-facial development could reveal itself as more appropriate172

for the achievement of clearer facial trait predictions. Not many studies have at this time attempted to173

predict facial traits from SNPs making it difficult to compare our results to others. One relevant study174

predicted from a smaller number of pre-selected SNPs 2.04 % of the variance in nose width in a german175

cohort and 0.28 % of the variance in bizygomatic distance in a dutch cohort [15]. In comparison we were176

able to predict 4.4 to 9.6 % of the variance in our shape components by combining a large number of177

associated SNPs.178

This study has several limitations and is only a first step towards facial trait prediction from genome-wide179

SNP data. Image data was recorded in such a way that we had to disregard texture information and180

absolute head size information. Additionally, our sample size was small for the prediction of a complex181

trait; the GWAS’ were run on only 827 individuals, which could have resulted in important SNPs not being182

detected. We then chose to discard a large part of our sample after initial model generation to ensure full183

separation between feature selection and prediction. Future studies would benefit from using the entire184

sample throughout the analyses by moving all steps into the cross-validation. Such an approach was not185

possible in this study because of a then too excessive computational demand. It should also be noted that186

our results are only applicable to Icelandic individuals, which may have led to inflated predictions due187

to a larger genetic similarity and thereby larger homogeneity in appearance in the Icelandic population188

compared to other populations. In the future it would be necessary to apply this method to diverse189

populations to properly assess generalizability of findings.190

For facial trait prediction to succeed, finding the most appropriate dimension reduction and prediction191
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methods, acquiring standardized, preferably 3D, facial images and gathering larger amounts of data is only192

part of the obstacle. This, because genotype data alone will only enable incomplete prediction of most193

traits, as seen by approaches combining information from large amounts of common SNPs to gauge the194

heredity of traits [14,31]. Therefore, epigenetic and environmental data would be of interest to perhaps195

move towards success in the area of facial trait prediction [32].196

In conclusion, we have in this study shown that specific facial features can be predicted to a small197

extent from genetics, even for traits without known candidate genes. It is necessary to move away from198

approaches using SNPs as single entities and we find our method to hold definite potential for facial trait199

prediction in forensic science. However, a larger data set and refinement of the used methods is needed200

before it will be possible to determine to which extent the coding of facial features can be extracted from201

genome-wide SNP data.202
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