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Summary: In rotational transformation of constitutive matricesypsopracti-
cal quantities are often termed invariants, but the invenearelates to an un-
changed reference direction. Rotating this referencetitrgdhe practical quan-
tities do change and this point is clarified with derived tiotaal transformation
for these practical quantities. The research backgroundgbmal anisotropic
constitutive matrices is shortly presented. Then desigultgeare applied in a 2D
visualization of optimized constitutive matrices, tha drstributed in a finite el-
ement (FE) model where each element has a specific referameoéiah. The
visualized distributions of physical quantities are;fesf material direction, ma-
terial stiffest longitudinal constitutive component, ééwf anisotropy, absolute
or relative shear stiffness and orthotropy test.

1. INTRODUCTION

In free material optimization (FMO), the components of thastitutive ma-
trices are optimized and they change in the space of a fitaazit (FE) model,
I.e., they are distributed. The constraints for the nonedisional description of
these matrices are; symmetry, positive definite and noz@alio unit trace. The
optimized constitutive matrices should be visualized,thig is not an easy task
and different techniques are applied in the literaturenftioe authors point-of-
view the visualization should be related to the most impunpéysical quantities,
and for 2D problems the traditional lamina analysis is foualdiable.

Analysis and optimization may be performed without rotagiltransforma-
tions in a common coordinate system with theirection as reference. How-
ever, the visualizations of the optimized results involv&tional transformation
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of material behavior, i.e., of the constitutive matricesor Each element in a
FE model, the direction of stiffest material direction ikda as reference direc-
tion with stiffest direction defined as the direction of lesg longitudinal com-
ponents in an optimal constitutive matrix, here termed,)s With ¢ being the
angle counter-clockwise from the commestirection to a direction termed the
f-direction.

The traditional lamina formulas are well suited for locadg 6 for a specific
element. With9, (a1111)s determined for all elements the available further phys-
ical information is calculated, applying practical paraens(as, as, ag, a7)g @s
evaluated for elementin the specific reference directi@p. In the present note
the non-dimensional, normalized practical quantitiesgaren notation, as al-
ternative to the often preferred notatighfor corresponding dimensional quan-
tities. The note shows that the name invariant is not a go&cehdhe practical
parameters depend on the reference direction and theoredats the common
x-direction are derived.

Although written in relation to 2D constitutive matriceBgtapproach is also
valid for 2D structural stiffness matricés], 2D structural flexibility matrices
[F], and 2D strength matrices in stress spgééor in strain spaceG|. Also
laminate stiffness sub-matrices and laminate flexibilitip-snatrices may be an-
alyzed similarly.

The main readers in mind are researchers with interest imitmformula-
tion, but it is found necessary to give a short introductioBection 2. to optimal
constitutive matrices, before the application of lamirfatenulation is detailed
in Section 3. Especially the discussion on "invariant” pagtars should be noted.
Finally, fields for constitutive matrices are exemplifiediwa suggested visual-
ization for the optimal constitutive design obtained in &seén and Pedersen
(2015).

2. OPTIMAL DESIGN OF CONSTITUTIVE MATRICES

In recent research simple formula for design of constieuthatrices are ob-
tained, related to different static as well as to eigenfesmy optimal design
problems. Itis shown that for quite different design ohijexg, the elastic energy
density plays a major role and the results are expressediglitey the current
strains, with unit matrix norms and separated from the arnotimaterial.
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2.1 Separation from the amount of material

The distribution of material in a continuum is separated tato steps: firstly
how much material to be used in a reference volufyfe and secondly how this
local material should be used to obtain an optimal local ttutiye matrix? By
this separation a clear measure of the total amount of nahteqossible.

The total amount of material volumié is constrained and this constraint is
assumed to be active, i.e., all material is assumed to be Uibexlassumption is
essential for the obtained optimality criteria. Wjhas local, non-dimensional
design parameters for density, this is written

Z p.Ve =V with size limits

0 < pmin < pPe < pmaz < 1 and the major constraint is written
g:ZpeVe—V:O = 0g/0p. =V, (1)

In Pedersen and Pedersen (2015) the theory and procedunésrédive opti-
mization to obtain the densitigs are presented and will not be further com-
mented in the present paper.

The separated local (elemeftconstitutive matriXC,| is

(Cin)e  (Cuzm)e  V2(Cina)e
e | @

[Oe] = peEO[Ce] = peEo (Cl~122)e (02322)6 \/§(~C2212
\/5(01112% \/§<02212)6 2(01212)e

whereL, is a fixed value of modulug, a currentlocal, non-dimensional density

and[C,| is a non-dimensional matrix, normalized to unit trace ad a&lto unit
Frobenius norm. The discussion of this matrix is of primautgrest.

2.2 Constraint for the non-dimensional constitutive components

The constitutive matrices are constrained to be symmetdgasitive semi-

definite and furthermore normalized such that the Frobemus: £, = F'([C¢])
is equal to 1 for all elements, here stated in terms of thersguaorm#?

he=F>—1=0 (3)

With a design objectivé and only the constraint (3), the necessary condition
for optimality is proportionality between the gradientstioé objective and the
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gradients of the constraint

0, o @
I(Ciji)e A(Cijnr)e

where for 2D problem(sCNijkl)e is one of the six independent components of the
constitutive matrix and\ is a common factor for all six of these components,
related to a specific constitutive matrix. B

With F? defined as the sum of the squared components of the nj@atfixn

(2)
F62 = (6’12111)8 + (6’22222)8 + 4(512212)8 + 2(5%212>€ + 4(512112)6 + 4<622212)6

)
the gradients of the constraiht = F> — 1 = 0 are directly

Oh. ~ Oh. ~ Oh. ~
= = Q(Cllll)ea = = 2(02222)ea = = 8(01212)ea
8(Cfllll)e 8(02222)6 8(C’1212)e

Oh. ~ Ohe ~ Ohe ~
= = ( 1122)67 = = ( 1112)67 = = 8(02212)6 (6)
8(01122)e a(611112)e 8(02212)6

The gradients of the objective, i.e. the left hand side of¢4 specific opti-
mization objectives are derived below.

2.3 Complianceor total elastic energy as objective

Compliance is, for design independent loads, equal to théd@stic energy
U (twice the total strain energy) and a gradientlgf say with respect to the
constitutive component&’;;; )., can be determined in a fixed strain field (fixed
displacements field)

ou ou O,

~ - ~ )fixed strain — _VvepeEO(fv—)fia:ed strain (7)
a(cijkl>e a(cijkl)e a(Cijkl)e

whereV is the volume in which we have constant straja$. and the constant

constitutive matrixC].. Expanding the non-dimensional matrix produgct=
{}7[Clefe}e with {e}7 = {11, €22, V261 } give

u :(51111%(6%1% + (6'2222%(652)@ + 4(6'1212)3(6%2)e+~
2(Ch122)e(€11)e(€22)e + 4(Crinz)e(€11)e(€12)e + 4(Co212)e(€22)e(€12)e  (8)
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and the gradients are

oU oU
= = pe‘/eEO(Ell)e(ell)ea = = PeVeEO(EQQ)e(Em)e»
d(Chir)e O(C2222)e

oUu oUu
—=—— =4p. VeEo(€12)c(€12)e;, —=—— = 2pcVeLo(e11)e(€22)e,
9(Cha12)e 9(Criz2)e

oUu oUu
——— =4p VeEy(e11)e(€12)e;, —=—— = 4pVeEo(€n)c(€12)e  (9)
8(01112)6 8(02212)6

2.4 Multipleload cases and resulting optimality criterion
for compliance optimizations

With multiple load cases, all design independent, numbered 1,2, ...N,
the gradients (9) holds for each load case. The corresporediains(e;; )y,
(€22), and(e2),, are all determined in the same coordinate system. Therefore
the simple optimization of minimizing a linear combinatiohcompliance’s ex-
pressed in the energiég, is

Minimizing U = n,U, for h.=F’—1=0 (10)

for given weight factorsy,,, say with) 7, = 1.
The design for the multiple load case, that satisfies theragitly criterion is

(Cigr)e =AY tinl(€57)e(Er)e)n (11)

a simple optimal design result. The case of a single loadisdsgher simplified

(Cijr)e = A€ij)e(€rt)e (12)
as seen directly by inserting (6) and (9) in (4).

2.5 Gradientsand resulting optimality criterion
for single eigenfrequency optimization

The local gradient of the Rayleigh quotient with respect eodbmponents of
the local constitutive matrix is simple when the mass dstion is unchanged
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(kinetic energied’ and7, unchanged), here with hat notation as an alternative
to extended index of fixed displacements

—

o  oWUT)  AUJT), OUJT.) 1 dU.  pV.E, Ou.

~ 2 Z)y = O e

I(Cijkr)e  O(Cijrr)e  O(Cijit)e I Cir)e  TeO(Cijr)e 1. 8(5¢jkz)e
with fixed strains inw, = {¢}7[C].{e}e (13)

From the final relation in (13) then follows

0 2 VBD e 2 = VB () (o)

— = €11)el€11)es = = €22)el€22)e,
I(Chir)e T. 9(C2222)e T.

auﬂ pe‘/eEO aw2 pe‘/eEO

= =4 (€12)e(€12)e; = =2 (€11)e(€22)es
9(Ch212)e T, I(Ch122)e Te

Ow? pVeEy Ow? pVeE

= =4 (e11)e(€12)e, —= =4 (€22)c(€12)e  (14)
9(Ci112)e T. 9(Ca212)e I.

that except for a factor is identical to (9).
Comparing with (11) and (12) it is seen that the optimalityezion for the
discussed different 2D plane problems is for all of thenms$iatl for

(Cijia)e = (eizent/ (€4 + €2 + 263)). (15)
now written with the appropriate normalization.
2.6 Proof of unit norms

The result (15) shows thaf,] = {a}{a}” is described by such a dyadic
product. Then by definitions of trace and Frobenius normievd, that the
values of trace and Frobenius norms are always equal@nds semi-positive
definite.

tracéC,] = FrobeniugC,] = {a}"{a}
where {a}"{a} > 0 for {a} # {0} (16)
Omitting the index for element we proceed the discussion of the obtained

constitutive matrix as described directly by the corresiiog strain state. Al-
though a constitutive matrix is not necessary obtainabedsadic product, this
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will be the case for the optimal constitutive matrix, whdre important result in
2D plane problems with normalization to unit norms is

€1 = {aH{a}" with {a}" = {en1 e \/5612}/\/621)1 +e3y+2ef,  (17)

That the optimal constitutive matrix of unit norms in 2D issdebed by only
three parameters (the strain components) limits the piiistbfor a matrix with
normally up to 6 independent parameters. An example is thaadropic|C] is
only possible with zero Poisson’s ratio and for this cas¢” = {11 1}/v/3.

Numerically the rate of change of the constitutive matriaes in each re-
design limited by a non-dimensional step parameter3 < 1 similar to the de-
sign approach for strength optimization in Pedersen aneémBed (2013) where
6 =0.5andg = 0.1 were used, i.e.,

[C] new — 6{C]from 17) + (1 - 6) [C]old (18)
The design approach is initiated wiffi], = [/]/3, i.e., zero Poisson’s ratio
isotropic material, positive definite, non-dimensionadl aormalized. It is con-
cluded that for a given strain state the optimized non-dsm@ral constitutive
constitutive matrix is known with unit trace and Frobeniasm. Note, that with
initial positive definite[C] it will for 5 < 1 stay positive definite through the re-
design iterations. Numerical valye= 0.2 is applied for the visualized example

in Section 4.and even with this rather Igwalue fast convergence is obtained.
3. VISUALIZATION OF FIELD OF CONSTITUTIVE MATRICES

Visualization of fields of 3x 3, symmetric, positive definite constitutive ma-
trices of unit norms is based on formulations from lamin&ieoty. Practical
parameters that often are termed invariants are valuali¢hére seems to be a
need for discussion of the property "invariant".

3.1 Useof laminate for mula

For anisotropic material the anisotropy should be visealjbut without go-
ing into all details of the six 2D components. A 2D materiahrimensional
constitutive matrix/C| is given in a global x, y coordinate system with the x-
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direction as the reference direction by

_ Q1111 oz V20011
[C] = 1122 Q20 V209910 (29)
V22 V2a1e 200910

with the assumed condition thit] is positive definite and the trace of the posi-
tive diagonal elements is normalized to unity, i.e.,

Q1111 + Q2999 + 201012 = 1 (20)

These conditions then hold in any rotated coordinate systanphysical de-
scription of the constitutive matrix is of major interesi,the direction of largest
longitudinal material stiffness must be located.

According to laminate theory;;1; as a function of rotation, terméd; 11 ),
Is given by the six components in thegeference coordinate system, here chosen
in a form linear in trigonometric factors,

(a1111)o =(a1111 + @2292)2/2 + (v2) c0s(20) — (a3).(1 — cos(46))+
(ag),2sin(20) + (az), sin(46) (21)

where the practical parameters are defined by

)e = (1111 — @2222) /2
a3)y = (01111 + Q2292 — 2(a1122 + 2(11212))2 /8
)e = (Q1112 + Q2212) /2
)e = (1112 — @2212)0 /2 (22)

For orthotropic materials,s = a7 = 0 in specific directions, but for the free
material this will not always be the case, so we analyze theergeneral case.
Several extremum solutions f@i;111)s May exist in the intervad < 0 < 7. To
locate the maximum ofa111 ), the function (21) is numerically evaluated at a
number of¢ values (here chosen with increment8 = 7/1800). This can be
done for each elements afidis then the angle for the largest val( ;).
The values of ;111 )¢ has an upper bound of 1 and a lower bound of 1/3. This
follows from the trace being 1, and having positive eigemgalin this interval.
This then also follows for the non-dimensional longitudistiffness. For high
values of(«;111)¢ @ single fiber direction is approached and for lower values of
(c1111)e @n isotropic material with zero Poisson’s ratio materiapproached.
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Similar to (21) the remaining constitutive components whthd-direction as
reference direction may then be evaluated by

(v9299)0 =(0r1111 + 2292) /2 — (2), €08(26) — (). (1 — cos(40))—
(cvg)z2sin(20) + (o), sin(46)

(01122)0 =(01122)2 + (3)2(1 — cos(40)) — (o), sin(46)

(a1212)0 =(1212)2 + (3)2(1 — cos(40)) — (a7), sin(46)

(1112)9 =(a), sin(20)x/2 — (a3), sin(46)) + (). cos(20) + (ar), cos(46)

( o =(a2),sin(20)x/2 + (as), sin(40)) + (ag). cos(20) — (ar), cos(46)

(2212 )0

all this well known from laminate theory.
3.2 Discussion on "invariant” parameters

The definitions of(as)g, (a3)e, (as)e), (a7)e With reference to a specifi¢-
direction are defined by

(042)9 = (041111 - 042222)9/2

(@3)g = (1111 + Q2202 — 2(1122 + 2(@1212) )9 /8

(ag)o = (1112 + 2212)9/2

(047)9 = (041112 - 042212)9/2 (24)

and their numerical values may be different from the paramean (22). The
following relations are derived by inserting (21) and (28)24)

(a9)g = () cos(20) + (ag)2sin(20) (= (ag), for § =0 and )
(a3)o = (av3)s cos(40) + (ar), sin(46) (= (a3), for 6 =0 and )
(ag)g = () cos(20) — (a2),sin(20)/2 (= (ag). for 6 =0 and )
(7)o = (7)), cos(40) — (as), sin(40) (= (a7), for =0 and 7) (25)

Material orthotropy imply zero of the following paramet@mnaebinations
2o = (ar)a(a2)] — 4(a7)(a6) — 4(ag)o(03)a(a2)s
29 = (a7)g(az); — 4(ar)g(as); — 4(as)e(as)s(as) (26)

If z, is zero, then the material is orthotropic and algas zero, because the
condition (26) holds in any coordinate system. The derivetfions(25) fulfills
this, by setting ag), = (a7), = 0.
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The conclusion from the present analysis is that the paesé24) as well
as (22) should be termed practical parameters instead afiamt parameters.

3.3 Important anisotropy quantities

It is suggested for the constitutive matrices of an optimhidesign to present
the following five distributions

e Largest longitudinal stiffness kiyvi111 )¢, for all elements: in a color plot,
noting the limits1/3 < (a1111)9e < 1 with 1/3 for isotropy with zero

Poisson’s ratio and with 1 for unidirectional fiber.

e Direction of largest longitudinal stiffnegg for all elementse by direc-
tional lines, noting the limit$ < 0. < 7. May be combined with the
color plot above.

e Level of anisotropy b2 (as)ge = (a1111)0e — (2202) 0 fOr all elements: in
a color plot, noting the limits 0 and 1 with 1 for high level afisotropy
and 0 for symmetry.

e Relative importance of shear stiffness &)y, for all elements in a
color plot. High shear stiffness corresponds to negatiteasof8(as)g.,
i.e. daviora > Q111 + Q992 — 201122, @S Seen in (24) Alternativelyﬂng
may be directly visualized.

e Test for material orthotropy by, for all elements: in a color plot. Only
places withz, = 0 have orthotropic material. The color plot relates to a
scaled, squared test quantity with a lower limit to identitshotropy.

3.4 Other matriceswith similar rotational transfor mations

The present note written in relation to 2D constitutive nicat, is also valid
for 2D structural stiffness matricds], 2D structural flexibility matriceg#,
and 2D strength matrices in stress spgééor in strain spacéG|. Also lami-
nate stiffness sub-matrices and laminate flexibility sudirioes may be analyzed
similarly.

4. VISUALIZATION EXAMPLE FROM OPTIMAL ANISOTROPY

In Pedersen and Pedersen (2015) a cantilever (with fixedrialede the tip)
Is optimized to maximize the first eigenfrequency. Withqueafying here the
details of analysis and optimization by iterative redesige visualize in Figure
1 the obtained constitutive matrices, as suggested abdedtion 3.3

10
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a) Largest longitudinal stiffness kyt;111)yb) Level of anisotropy by(as)e

9.35x107" 9.03x107"
8.49x107" 7.74x107"
7.63x107" 6.45%107"
16.77x107" I5.16x107"
591x107" 3.87x107"
5.05x107" 2.58x107"
4.19x107" 1.29x107"
I3.33x107" lo

c) Relative shear stiffness Byas)y  d) Orthotropic material, only if2 = 0

2
1.806

1.548 3.097
1.29 2.581
1.032 12.065
7.74x107" 1.549
5.16x107" 1.033
2.58x107" 5.17x107"
lo lo™

Figure 1: Visualization of distributions for constitutive matricadded direction of largest lon-
gitudinal stiffness in Figure la. The white spots near tpeofi fixed material are places of
minimum material density, being the same in all Figures 1&kek further white areas in Figure
1d contains materials classified as orthotropic.

Note, that the quantities in Figures la-c are measured imichal rotated
coordinate systems that are visualized by the directiofrsgare la.

For largest longitudinal stiffness in Figure 1a we see balerqclose to 0.85)
at the upper and lower boundaries, yellow color (close t6)atithe "beam axis"
and green color between these zones. All this as expectethiion to the most
simple bending eigenmode. For direction of largest lortital stiffness added
in Figure la, the 45 degrees at the "beam axis" and paralléletaupper and
lower boundaries also agree with simple bending of a cametile

11
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The distribution of level of anisotropy is visualized Pf), in Figure 1b
and show small relative values @fs,22 )y by blue color close to upper and lower
boundaries, i.e., high level of anisotropy. Close to symyn@tssss)g ~ (a1111)e
by red color close to the "beam axis".

The relative importance of shear stiffness is visualizeddtsgribution of
8(a3)p in Figure 1c. For high relative shear stiffness this quatiil be nega-
tive. For the present case only positive values are found.

The distribution of possible orthotropy is visualized bycalsd:? in Figure
1d, where the zero limit is set to 0.001. The white areas (dvaay the tip) are
thus areas of material orthotropy, without showing theaioms of orthotropy.

5. Conclusion

Visualization of results from optimal design may not be tammgplicated
in traditional size, shape or topology design, but in freg¢amal optimization
(FMO) constitutive matrices in the continuum or structigjphice are part of the
obtained design. A visualization of such distribution ottrizaes for 2D problems
with 6 different matrix components is demonstrated.

From laminate analysis, the formulation for rotationahgs@rmation is ap-
plied and is found useful. Practical parameters that useadtated as invariants
are an important part of this formulation, but the notionainants needs to be
discussed, because it only relates to a specific refereneetion. The visual-
ized distributions of physical quantities are; stiffesttenel direction, material
stiffest longitudinal constitutive component, level oisotropy, absolute or rel-
ative shear stiffness and orthotropy test.

Optimal design of material distribution is often effectivebtained by design
iterations based on a stated optimality criterion. It iserdgty found that the
optimal constitutive matrices (the anisotropy) is sim@hated to the actual strain
field(s). Since this is not well known, it is chosen to shodéscribe the theory
behind this result as an introductory to the visualizatispests.
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