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a b s t r a c t

Resveratrol is a natural antioxidant compound, used as food supplement and cosmetic ingredient.
Microbial production of resveratrol has until now been achieved by supplementation of expensive
substrates, p-coumaric acid or aromatic amino acids. Here we engineered the yeast Saccharomyces cer-
evisiae to produce resveratrol directly from glucose or ethanol via tyrosine intermediate. First we
introduced the biosynthetic pathway, consisting of tyrosine ammonia-lyase from Herpetosiphon aur-
antiacus, 4-coumaryl-CoA ligase from Arabidopsis thaliana and resveratrol synthase from Vitis vinifera,
and obtained 2.7370.05 mg L�1 resveratrol from glucose. Then we over-expressed feedback-insensitive
alleles of ARO4 encoding 3-deoxy-D-arabino-heptulosonate-7-phosphate and ARO7 encoding chorismate
mutase, resulting in production of 4.8570.31 mg L�1 resveratrol from glucose as the sole carbon source.
Next we improved the supply of the precursor malonyl-CoA by over-expressing a post-translational de-
regulated version of the acetyl-CoA carboxylase encoding gene ACC1; this strategy further increased
resveratrol production to 6.3970.03 mg L�1. Subsequently, we improved the strain by performing
multiple-integration of pathway genes resulting in resveratrol production of 235.5777.00 mg L�1.
Finally, fed-batch fermentation of the final strain with glucose or ethanol as carbon source resulted in a
resveratrol titer of 415.65 and 531.41 mg L�1, respectively.
& 2015 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International

Metabolic Engineering Society. All rights reserved.
1. Introduction

Resveratrol (trans-3,5,4′-trihydroxystilbene) is a natural poly-
phenolic compound from the stilbene family. In plants, resveratrol
plays a role as a defense compound against pathogens infection
and injury. It occurs naturally in several higher plants, e.g. grapes,
peanuts, blueberries, and knotweed (Mei et al., 2015). In pre-
clinical tests resveratrol has shown a wide range of beneficial
properties, i.e., antitumor, anti-inflammatory, antidiabetic, antith-
rombotic, and antiaging properties (Jeandet et al., 2012; Mei et al.,
2015). The evidence of resveratrol effects on human health is
however so far inconclusive, due to the limited number of clinical
trials and small cohort sizes (Poulsen et al., 2013). Nevertheless,
resveratrol has attracted much attention from pharmaceutical,
g Society Published by Elsevier In
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food and cosmetic industries. Resveratrol is sold as over-the-
counter nutritional supplement; it is included in some cosmetics
products, energy drinks, and other products. The demand for
resveratrol is expected to further increase in the future. The
commercial resveratrol on the market is predominantly extracted
from the Japanese knotweed Polygonum cuspidatum (Mei et al.,
2015). The preparations range widely in purity; some can contain
as low as 50% of the active ingredient. The unpurified knotweed
extracts, however, additionally contain emodin which has a laxa-
tive effect (Srinivas et al., 2007). Thus, there is market demand for
lower cost and high purity resveratrol.

One promising solution is biotechnological production of resver-
atrol by fermentation of genetically engineered microbes (Borodina
and Nielsen, 2014). A number of studies have been published on
microbial production of resveratrol. In all the studies, the production
exclusively relied on using complex medium or supplementing the
minimal medium with resveratrol precursors, p-coumaric acid, tyr-
osine or phenylalanine, which are expensive for industrial applica-
tions. The first study on recombinant resveratrol production described
feeding p-coumaric acid to Saccharomyces cerevisiae, which expressed
c. On behalf of International Metabolic Engineering Society. All rights reserved.
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4-coumaryl-CoA ligase (4CL) and resveratrol synthase (VST1) (Becker
et al., 2003). Deamination of tyrosine or phenylalanine, catalyzed by
tyrosine/phenylalanine ammonia lyase (TAL/PAL), is the first step of
resveratrol biosynthesis pathway in plants. Transcription and enzyme
activity of PAL is reduced by its product, trans-cinnamic acid (Blount
et al., 2000; Bolwell et al., 1988), which means that efficient conver-
sion of trans-cinnamic acid into p-coumaric acid is required to avoid
the accumulation of toxic intermediate. The hydroxylation of trans-
cinnamic acid into p-coumaric acid is catalyzed by cinnamic acid
hydroxylase (C4H), a P450 enzyme, which requires cytochrome P450
reductase for efficient electron transfer. Trantas et al. expressed phe-
nylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and
cytochrome P450 reductase (CPR) in addition to 4CL and VST1 to
produce resveratrol from phenylalanine (Trantas et al., 2009). In the
biosynthesis of p-coumaric acid-derived compounds via phenylala-
nine, C4H was reported as the rate-limiting step (Trantas et al., 2009;
Yan et al., 2005). A reduction of the C4H transcriptional level was
observed to result in an 8-fold decrease of PAL and 2.5-fold decrease
of 4CL activities in tobacco (Kumar et al., 2012). Alternatively, tyrosine
ammonia-lyase (TAL) can be used to directly synthesize p-coumaric
acid from tyrosine (Fig. 1), thus averting the rate-limiting hydroxyla-
tion step. Wang et al. have successfully expressed codon-optimized
TAL from Rhodopseudomonas sphaeroides in yeast to obtain
1.90 mg L�1 resveratrol, when supplemented with 12 mg L�1 tyr-
osine, and 1.06mg L�1 resveratrol without supplementation but in
complex medium, which contained tyrosine (Wang et al., 2011). In
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Fig. 1. Biosynthesis pathways towards resveratrol in engineered yeast. ScAro4p: DAHP
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another case, Shin et al. used a tyrosine/phenylalanine ammonia-lyase
from Rhodosporidium toruloides to produce 5.8 mg L�1 resveratrol in
complex medium supplemented with 2.17 g L�1 tyrosine (Shin et al.,
2012). The highest resveratrol titer reported in yeast from the litera-
ture so far is 391 mg L�1, obtained by supplementing complex
medium with 2.46 g L�1 p-coumaric acid and using a genetically
engineered industrial Brazilian S. cerevisiae strain that overexpressed
4CL1 and STS (stilbene synthase) genes (Sydor et al., 2010).

In the present study, we aimed to achieve de novo biosynthesis
of resveratrol from cheap carbon sources, glucose or ethanol,
without supplementation of aromatic precursors. We chose to
apply S. cerevisiae as the host, due to its safe use status in phar-
maceutical biotechnology and food industry, and due to its high
amenability to genetic manipulations. Here we describe step-wise
metabolic engineered efforts towards obtaining an efficient cell
factory for resveratrol production.
2. Materials and methods

2.1. Strains and growth conditions

The Escherichia coli strain DH5α was used for all the cloning
work. The E. coli transformants were selected and maintained on
Luria-Bertani (LB) plates containing 100 mg mL�1 ampicillin.
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es over-expressed in the described resveratrol-producing strain are highlighted in
ws represent multiple enzymatic steps.



Table 1
List of yeast strains used in the study.

Strains Parent strains Integrative plasmids Genotype Reference

CEN.PK102-5B MATa ura3-52 his3Δ1 leu2-3/112 MAL2-8c SUC2 Entian and Kötte (2000)
ST4120 CEN.PK102-5B pCfB388, pCfB872 PTEF1-4HaTAL, ura- This study
ST4121 CEN.PK102-5B pCfB854, pCfB872 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, ura- This study
ST4122 CEN.PK102-5B pCfB1020, pCfB872 PTEF1-4HaTAL, PTEF1-4At4CL1, PPGK1-4VvVST1, ura- This study
ST4123 CEN.PK102-5B pCfB856, pCfB872 PTEF1-4HaTAL, PTEF1-44CL1::VST1, ura- This study
ST4124 CEN.PK102-5B pCfB855, pCfB872 PTEF1-4HaTAL, PPGK1-4At4CL2, PTEF1-4VvVST1, ura- This study
ST4125 CEN.PK102-5B pCfB1021, pCfB872 PTEF1-4HaTAL, PTEF1-4At4CL2, PPGK1-4VvVST1, ura- This study
ST4126 CEN.PK102-5B pCfB857, pCfB872 PTEF1-4HaTAL, PTEF1-44CL2::VST1, ura- This study
ST4127 CEN.PK102-5B pCfB388, pCfB873 PTEF1-4FjTAL, ura- This study
ST4128 CEN.PK102-5B pCfB854, pCfB873 PTEF1-4FjTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, ura- This study
ST4129 CEN.PK102-5B pCfB1020, pCfB873 PTEF1-4FjTAL, PTEF1-4At4CL1, PPGK1-4VvVST1, ura- This study
ST4130 CEN.PK102-5B pCfB856, pCfB873 PTEF1-4FjTAL, PTEF1-44CL1::VST1, ura- This study
ST4131 CEN.PK102-5B pCfB855, pCfB873 PTEF1-4FjTAL, PPGK1-4At4CL2, PTEF1-4VvVST1, ura- This study
ST4132 CEN.PK102-5B pCfB1021, pCfB873 PTEF1-4FjTAL, PTEF1-4At4CL2, PPGK1-4VvVST1, ura- This study
ST4133 CEN.PK102-5B pCfB857, pCfB873 PTEF1-4FjTAL, PTEF1-44CL2::VST1, ura- This study
ST4158 ST4121 his-, leu-, ura- This study
ST4135 ST4158 pCfB255, pCfB257, pCfB258 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1 This study
ST4136 ST4158 pCfB255, pCfB257, pCfB826 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4ScARO7G141S, PPGK1-4 ScARO4 K229L This study
ST4137 ST4158 pCfB1175, pCfB257, pCfB258 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4 ScACC1S659A, S1157A This study
ST4140 ST4158 pCfB1175, pCfB257, pCfB826 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4ScARO7G141S, PPGK1-4 ScARO4 K229 L, PTEF1-4 ScACC1S659A, S1157A This study
ST4159 ST4121 pCfB1175 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4 ScACC1S659A, S1157A This study
ST4160 ST4159 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4 ScACC1S659A, S1157A, his-, leu-, ura- This study
ST4171 ST4160 pCfB257, pCfB826 PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1, PTEF1-4ScARO7G141S, PPGK1-4 ScARO4 K229 L, PTEF1-4 ScACC1S659A, S1157A, ura- This study
ST4152 ST4171 pCfB2068 Ty-(PTEF1-4HaTAL, PPGK1-4At4CL1, PTEF1-4VvVST1), PTEF1-4ScARO7G141S, PPGK1-4 ScARO4 K229 L, PTEF1-4 ScACC1S659A, S1157A This study
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S. cerevisiae CEN.PK102-5B (MATa ura3-52 his3Δ1 leu2-3/112
MAL2-8c SUC2) (Entian and Kötter, 2007) was used for construc-
tion of resveratrol-producing strains. All the yeast strains used in
this study are listed in Table 1. Yeast cells transformed with inte-
grative plasmids were selected on synthetic complete (SC) drop-
out media.

LB and SC drop-out media were made using pre-mixed pow-
ders from Sigma-Aldrich. The defined minimal medium used for
fermentation in microtiter plates was described as before (Jensen
et al., 2014b).

2.2. Genes and biobricks

Two genes, encoding tyrosine ammonia-lyase from H. aur-
antiacus (HaTAL) and from Flavobacterium johnsoniae (FjTAL), were
described in a previous study (Jendresen et al., 2015). The genes,
encoding 4-coumarate:CoA ligases from A. thaliana (At4CL1 and
At4CL2) and stilbene synthase from V. vinifera (VvVST1) were
synthesized by GeneArt (Life Technologies) in codon-optimized
versions for S. cerevisiae. The feedback-inhibition-insensitive
alleles of ScARO4K229L (3-deoxy-D-arabino-heptulosonate-7-phos-
phate (DAHP) synthase) and ScARO7G141S (chorismate mutase)
were described in the previous study (Rodriguez et al., 2015).
Acetyl-CoA synthase from Salmonella enterica (SeACSL641P), alde-
hyde dehydrogenase from S. cerevisiae (ScALD6) were described in
(Shiba et al., 2007). Inactivation-resistant acetyl-CoA carboxylase
from S. cerevisiae ScACC1S659A,S1157A was described in Shi et al.
(2014). All the biobricks were PCR-amplified using Phu X7 poly-
merase (Norholm, 2010). The biobricks generated in this study are
listed in Table 2 along with the template DNA and primers that
were used for PCR amplification.

2.3. Plasmid and strain construction

The primers used in the study are summarized in Table 3 and
the plasmids in Table 4. All the biobricks were assembled into
integrative EasyClone vectors using USER cloning (Jensen et al.,
2014b). The multiple integrative plasmid pCfB2068 was con-
structed in a different way: plasmid pCfB322 was amplified by PCR
using primers Open_fw and Open_rv. Then biobricks BB293 (o-
At4CL1), BB302 (o-PPGK1-PTEF1-4), and BB295 (VvVST1-4) were
cloned into the opened pCfB322 vector following USER protocol,
resulting in plasmid pCfB2067. Thereafter the plasmid pCfB2067
was PCR-amplified again by the same primers and biobricks BB429
(To -NAT5), BB379 (o-HaTAL), and BB530 (Po -TDH3) were inserted
in the same way to generate plasmid pCfB2068.
Table 2
List of biobricks used in the study.

Biobricks Description Templates

BB008 Promoter, o-PTEF1 pCfB826
BB010 Bidirectional promoter, o-PTEF1-PPGK1-4 pCfB826
BB302 Bidirectional promoter, o-PPGK1-PTEF1-4 pCfB826
BB379 HaTAL from Herpetosiphon aurantiacus pCBJ279
BB380 FjTAL from Flavobacterium johnsoniae pCBJ280
BB293 At4CL1 from Arabidopsis thaliana pCfB757
BB294 At4CL2 from Arabidopsis thaliana pCfB758
BB295 VvVST1 from Vitis vinifera pCfB759
BB304 The front part of 4CL1::VST1 fusion pCfB757
BB305 The latter part of 4CL1::VST1 fusion pCfB759
BB306 The front part of 4CL2::VST1 fusion pCfB758
BB307 The latter part of 4CL2::VST1 fusion pCfB759
BB364 ScARO4K229L from S. cerevisiae pCfB826
BB361 ScARO7G141S from S. cerevisiae pCfB826
BB012 ScACC1S659A, S1157A from S. cerevisiae p474
BB530 Promoter, o-PTDH3 Genomic D
BB429 Terminator, To -NAT5 Genomic D
Colony PCR and sequencing was performed to confirm the
correct cloning. Yeast transformations were carried out following
lithium acetate protocol (Gietz and Woods, 2002). The correct
genomic insertions were verified by yeast colony PCR using the
primers listed in Table 3.

ST4158 and ST4160 were generated by removal of the selection
markers in ST4122 and ST4159 respectively. It was performed by
introducing plasmid pSH65, expressing creA gene under control of
the PGAL10 promoter (Gueldener et al., 2002). Strains harboring
pSH65 were grown in yeast peptone galactose medium for 12–16 h
for induction and then plated on yeast peptone dextrose (YPD)
agar plates. The colonies were replica-plated on SC drop-out plates
to select for the colonies that have lost the markers. The loss of
markers was verified by yeast colony PCR.

2.4. Determination of gene copy number by qPCR

The design of qPCR primers was conducted using the online
PrimerQuests Tool at https://eu.idtdna.com/Primerquest/Home/
Index. All the primers used for qPCR in this study are listed in
Supplementary Table 1.

Genomic DNA of ST4140 and ST4152 were extracted using the
ZR Fungal/Bacterial DNA MiniPrep™ kit (Zymo Research) following
the manufacturer’s manual. The SYBRs Green qPCR MasterMix
from Life Technologies was used to test for the copy number of
HaTAL, At4CL1 and VvVST1. The housekeeping gene ALG9 was used
as the reference. Reactions were performed in a 20 μl volume with
10 μl 2� SYBR Green QPCR master mix, 1 μl of each upstream and
downstream primer, 0.3 μl diluted reference dye and 7.7 μl gDNA
containing serially diluted gDNA template (62.5–1000 pg). A no-
template control reaction (NTC) for each gene was made by
replacement of gDNA with nuclease-free PCR-grade water.

qPCR runs were performed in Stratagene Mx3005P instrument
using the thermocycler program as follows: 10 min of pre-incu-
bation at 95 °C followed by 40 amplification cycles of denaturation
at 95 °C for 20 s, annealing and elongation at 60 °C for 22 s; and a
single final cycle of 95 °C for 1 min, 55 °C for 30 s and 95 °C for
30 s.

2.5. Microtiter plate cultivation of yeast strains

Three biological transformants of each strain were inoculated
in 0.5 mL SC drop-out liquid medium without histidine and leu-
cine supplemented with 2% glucose in a 96-deep well microtiter
plate with air-penetrable lid (EnzyScree, NL). The cultures were
incubated at 30 °C with 250 rpm agitation for 24 h. 50 ml of the
Forward primers Reverse primers

Po -TEF1_fw Po -TEF1_rv
Po -TEF1_fw PPGK1-4_rv
Po -PGK1_fw PTEF1-4_rv
o-HaTAL_fw o-HaTAL_rv
o-FjTAL_fw o-FjTAL_rv
o-At4CL1_fw o-At4CL1_rv
o-At4CL2_fw o-At4CL2_rv
VvVST1-4_fw VvVST1-4_rv
o-At4CL1_fw o-4CL1-VST1_rv
o-4CL1-VST1_fw VvVST1o-_rv
o-At4CL2_fw 4CL2-VST1o-_rv
o-4CL2-VST1_fw VvVST1o-_rv
ScARO4-4_fw ScARO4-4_rv
o-ScARO7_fw o-ScARO7_rv
o-ScACC1_ fw o-ScACC1_rv

NA of CEN.PK102-5B Po -TDH3_fw Po -TDH3_rv
NA of CEN.PK102-5B To -NAT5_fw To -NAT5_rv

https://eu.idtdna.com/Primerquest/Home/Index
https://eu.idtdna.com/Primerquest/Home/Index
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seed cultures were inoculated into 0.5 mL minimal medium con-
taining 5 mM tyrosine in a new 96-deep well plate. The minimal
medium (pH 6.0) was described in (Jensen et al., 2014b). After 72 h
cultivation at 30 °C with 250 rpm agitation, OD600 was measured
with a 20 times dilution in microplate reader BioTek Synergy MX
(BioTek). The remaining cultures were mixed with equal volume of
absolute ethanol and centrifuged at 2272 g for 30 min. The
supernatants were used to analyze resveratrol concentration by
HPLC.
2.6. Batch and fed-batch fermentation of yeast strains in controlled
reactors

Inoculum for bioreactors was prepared as following. Yeast
strains from �80 °C glycerol stock were inoculated into 5 mL of
defined minimal medium with 2% glucose as above, and incubated
in 13 mL tubes at 30 °C with shaking at 250 rpm for 18 h. The
whole culture volume was consequently transferred into 50 mL of
fresh defined minimal medium in a 500 ml baffled shake flask and
incubated at 30 °C with shaking at 250 rpm for 12 h. The culture
OD600 was measured and reactors were inoculated with such a
volume of inoculum that an initial OD600 of 0.02–0.05 was
obtained.
Table 3
List of primers used in the study.

Name

Po -TEF1_fw (ID005)
Po -TEF1_rv (ID006)
PPGK1-4_rv (ID008)
Po -PGK1_fw (ID1562)
PTEF1-4_rv (ID1565)
o-HaTAL_fw (ID1689)
o-HaTAL_rv (ID1690)
o-FjTAL_fw (ID1691)
o-FjTAL_rv (ID1692)
o-At4CL1_fw (ID1548)
o-At4CL1_rv (ID1549)
o-At4CL2_fw (ID1550)
o-At4CL2_rv (ID1551)
VvVST1-4_fw (ID1552)
VvVST1-4_rv (ID1553)
o-4CL1-VST1_rv (ID1588)
o-4CL1-VST1_fw (ID1589)
o-VvVST1_rv (ID1590)
o-4CL2-VST1_rv (ID1591)
o-4CL2-VST1_fw (ID1592)
ScARO4-4_fw (ID1396)
ScARO4-4_rv (ID1397)
o-ScARO7_fw (ID1398)
o-ScARO7_rv (ID1399)
o-ScACC1_fw (ID053)
o-ScACC1_rv (ID054)
o-SeACS _fw (ID1644)
o-SeACS _rv (ID1645)
ScALD6-4_fw (ID738)
ScALD6-4_rv (ID739)
Open_fw (ID1858)
Open_rv (ID2167)
o-TNAT5_fw (ID2164)
o-TNAT5_rv (ID2168)
Po -TDH3_fw (ID2141)
Po -TDH3_rv (ID1853)
ColPCR_DW_fw (ID2220)
Loopout_DW_fw (ID400)
X-2_DW_rv (ID902)
X-3_DW_rv (ID904)
X-4_DW_rv (ID906)
XI-1_DW _rv (ID908)
XI-5_DW_rv (ID2157)

Note: Underlined sequences represent overhangs used in USER cloning.
Batch and fed-batch fermentations were performed in 1
L-DasGip stirrerpros bioreactors (DasGip, Julich, Germany) with
a starting volume of 0.5 L. Batch medium and medium for

batch phase of fed-batch fermentation contained per 1L:30 g
(batch fermentation)/40 g (fed-batch fermentation) glucose, 5 g
(NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4 �7H2O, 2 mL trace metals
solution, and 1 mL vitamin solution, where the composition of
trace metals and vitamin solutions was the same as in (Jensen
et al., 2014b). The medium was adjusted to pH 5.0 before auto-
claving in reactors at 121 °C for 20 min. Filter-sterilized glucose,
trace metal and vitamins solutions were added to the medium
after autoclavation. Fed-batch medium contained 10-fold higher
concentration of all the nutrients in the batch phase, except for
carbon source which was replaced by 200 g L�1 glucose or
150 g L�1 ethanol in the fed-batch medium, but was otherwise
prepared in the same way. The feed was started only after residual
ethanol produced from the glucose phase was completely deple-
ted. A volumetric growth rate constant-dependent feed strategy
(Villadsen et al., 2011) was adopted as described in (Scalcinati
et al., 2012). The fermentations were performed at 30 °C; pH was
maintained at 5.0 with automatic addition of 2 M KOH or 2 M HCl.
The agitation rate was kept at 800 rpm and the air flow was set to
0.5 L per min. The dissolved oxygen concentration was above 30%
Sequence (5′–3′)

ACCTGCACU TTGTAATTAAAACTTAG
CACGCGAU GCACACACCATAGCTTC
ATGACAGAU TTGTTTTATATTTGTTG
ACCTGCACU TTGTTTTATATTTGTTG
ATGACAGAU TTGTAATTAAAACTTAG
AGTGCAGGU AAAACAATGAGCACCACCCTGATTCTG
CGTGCGAU TTAGCGAAACAGAATAAT
AGTGCAGGU AAAACAATGAACACCATCAACGAATATCTGAGC
CGTGCGAU TTAATTGTTAATCAGGTG
AGTGCAGGU AAAACAATGGCTCCACAAGAACAAGCTGTTTCC
CGTGCGAU TCACAAACCGTTAGCCAA
AGTGCAGGU AAAACAATGACTACCCAAGATGTTA
CGTGCGAU TCAGTTCATCAAACCGTT
ATCTGTCAU AAAACAATGGCTTCCGTTGAAGAA
CACGCGAU TCAATTGGTAACGGTTGG
AAACCGTU AGCCAACTTGGCTC
AACGGTTU GGTTCTGGTGCTTCCGTTGAAGAATTCAGAAACGC
CGTGCGAU TCAATTGGTAACGGTTGG
AGAACCGTU CATCAAACCGTTAGCC
AACGGTTCU GGTGCTTCCGTTGAAGAATTCAG
ATCTGTCAU AAAACA ATGAGTGAATCTCCAATGTTCG
CACGCGAU TCATTTCTTGTTAACTTCTCTTCTTTG
AGTGCAGGU AAAACA ATGGATTTCACAAAACCAGAAAC
CGTGCGAU TCACTCTTCCAACCTTCTTAGCAAG
CGTGCGAU TCATTTCAAAGTCTTCAACAATTT
AGTGCAGGU AAAACAATGAGCGAAGAAAGCTTA
AGTGCAGGU AAAACAATGTCACAAACACAC
CGTGCGAU TCATGATGGCATAGCAATAG
ATCTGTCAU AAAACA ATGACTAAGCTACACTTTGACAC
CACGCGAU TCACAACTTAATTCTGACAGCTTTTAC
AGCTGAAGCU TCGTACGCTG
ACGCGATCU TCGAGCGTCC
ATCGCACGAU TTCTTAACAGATGGCTG
AGATCGCGU TCGGGACCATAAAAATTC
AGCTTCAGCU ATAAAAAACACGCTTTTTCAG
ACCTGCACU TTTGTTTGTTTATGTGTGTTTATTC
CCTGCAGGACTAGTGCTGAG
ATCGCGTCAGCTGAAGCTTCGTACGC
GAGAACGAGAGGACCCAACAT
CCGTGCAATACCAAAATCG
GACGGTACGTTGACCAGAG
GAAGACCCATGGTTCCAAGGA
CCCAAAAGCAATCCAGGAAAAACC



Table 4
List of plasmids used in the study.

Name Parent
plasmids

Properties Reference

pCBJ279 HaTAL, Amp (ampicillin resistance) Jendresen et al.
(2015)

pCBJ280 FjTAL, Amp (ampicillin resistance) Jendresen et al.
(2015)

pCfB757 At4CL1a, Amp (ampicillin resistance) This study
pCfB758 At4CL2a, Amp (ampicillin resistance) This study
pCfB759 VvVST1a, Amp (ampicillin resistance) This study
p474 ScACC1S659A, S1157A, CaMCR, KlURA3 Jensen et al. (2014a)
pSH65 PGAL1-creA; bleR (phleomycin resistant) Gueldener et al.

(2002)
pCfB255 Integrative plasmid, X-2-loxP, KlURA3 Jensen et al. (2014b)
pCfB257 Integrative plasmid, X-3-loxP, KlLEU2 Jensen et al. (2014b)
pCfB258 Integrative plasmid, X-4-loxP, SpHIS5 Jensen et al. (2014b)
pCfB388 Integrative plasmid, XI-1-LoxP, KlLEU2 Jensen et al. (2014b)
pCfB391 Integrative plasmid, XI-5-LoxP, SpHIS5 Jensen et al. (2014b)
pCfB322 Multiple integrative plasmid, Ty4, KlURA3 (Maury et al., sub-

mitted for
publication)

pCfB826 pCfB258 Integrative plasmid, X-4-LoxP, SpHIS5, BB0364(o-ScARO7G141S), BB010(o-PTEF1-PPGK1-4), BB0361(ScARO4 K229 L-4) (Prado et al., sub-
mitted for
publication)

pCfB854 pCfB388 Integrative plasmid, XI-1, LoxP, KlLEU2, BB293(o-At4CL1), BB302(o-PPGK1-PTEF1-4), BB295(VvVST1-4) This study
pCfB855 pCfB388 Integrative plasmid, XI-1, LoxP, KlLEU2, BB294(o-At4CL2), BB302(o-PPGK1-PTEF1-4), BB295(VvVST1-4) This study
pCfB856 pCfB388 Integrative plasmid, XI-1, LoxP, KlLEU2, BB3047BB305(o-4CL1::VST1), BB008(o-PTEF1) This study
pCfB857 pCfB388 Integrative plasmid, XI-1, LoxP, KlLEU2, BB3067BB307(o-4CL2::VST1), BB008(o-PTEF1) This study
pCfB872 pCfB391 Integrative plasmid, XI-5-LoxP, SpHIS5, BB379(o-HaTAL), BB008(o-PTEF1) This study
pCfB873 pCfB391 Integrative plasmid, XI-5-LoxP, SpHIS5, BB380(o-FjTAL), BB008(o-PTEF1) This study
pCfB1020 pCfB388 Integrative plasmid, XI-1-LoxP, KlLEU2, BB293(o-At4CL1), BB010(o-PTEF1-PPGK1-4), BB295(VvVST1-4) This study
pCfB1021 pCfB388 Integrative plasmid, XI-1-LoxP, KlLEU2, BB294(o-At4CL2), BB010(o-PTEF1-PPGK1-4), BB295(VvVST1-4) This study
pCfB1175 pCfB255 Integrative plasmid, X-2-LoxP, KlLURA3, BB012(o-ScACC1S659A, S1157A), BB008(o-PTEF1) This study
p380 pCfB257 Integrative plasmid, X-3-loxP, KlLEU2, BB119(o-SeACS L641P), BB010(o-PTEF1-PPGK1-4), BB158(ScALD6-4) Jensen et al. (2014a)
pCfB1176 pCfB322 Multiple integrative plasmid, Ty4, KlURA3, BB379(o-HaTAL), BB008(o-PTEF1) This study
pCfB2067 pCfB1176 Multiple integrative plasmid, Ty4, KlURA3, BB293(o-At4CL1), BB302(o-PPGK1-PTEF1-4), BB295(VvVST1-4) This study
pCfB2068 pCfB2067 Multiple integrative plasmid, Ty4, KlURA3, BB429(To -NAT5), BB379(o-HaTAL), BB530 (Po -TDH3) This study

a Codon optimized for S.cerevisiae and synthesized from GeneArt (Life Technologies).
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throughout the cultivation. The DASGIP fedbatch pros gas analysis
system, equipped with gas analyzer 1 GA4 based on zirconium
dioxide and two-beam infrared sensor (DASGIP), was employed for
monitoring oxygen and carbon dioxide concentration. Samples
were taken at regular intervals to measure OD600. Supernatants
were stored at �20 °C until HPLC analysis for organic acids, gly-
cerol, ethanol, and residual glucose. Another portion of sample
was mixed with an equal volume of absolute ethanol and cen-
trifuged at 12,000 rpm for 2 min. The supernatant was stored at
�20 °C until HPLC analysis for resveratrol and p-coumaric acid.
2.7. Analytical methods

The OD600 was measured on a Genesys 20 Spectrophotometer
(Thermo Scientific). The HPLC quantification of glucose, glycerol,
ethanol, succinate, and pyruvate was performed as before (Oster-
gaard et al., 2000). Resveratrol and p-coumaric acid were quanti-
fied on HPLC (Thermo) equipped with a Discovery HS F5
150 mm�2.1 mm column (particle size 3 mm). The eluent flow
rate was 1.5 mL min�1. Linear gradient from 5% to 60% of solvent A
over 0.5–9.5 min was used. Solvent A was 10 mM ammonium
formate (pH 3.0, adjusted by formic acid). Solvent B was acetoni-
trile. Resveratrol was detected by absorbance at 304 nm with a
retention time of 6.4 min and p-coumaric acid at 277 nm of
4.7 min. Resveratrol and p-coumaric acids concentrations were
calculated from the standard curves, and both resveratrol and
p-coumaric acid standards were purchased from Sigma-Aldrich.
3. Results

3.1. Reconstruction of resveratrol biosynthetic pathway from tyr-
osine precursor

Our previous study showed that tyrosine ammonia-lyases from
H. aurantiacus and Flavobacterium johnsoniae have high activity in
yeast (Jendresen et al., 2015). By over-expressing HaTAL (ST4121)
and FjTAL (ST4128) in S. cerevisiae, we obtained respectively
7.0472.03 and 13.7172.14 mg L�1 of p-coumaric acid in minimal
medium supplemented with 5 mM tyrosine (Fig. 2A and B). Two
versions of 4-coumarate:CoA ligase from A. thaliana (At4CL1 and
At4CL2) and stilbene synthase from V. vinifera (VvVST1) were then
introduced under control of strong constitutive promoters in order
to convert p-coumaric acid into resveratrol. Contrarily to p-cou-
maric acid results, the highest titers were obtained in the strains
carrying HaTAL. At4CL1 consistently resulted in slightly higher
resveratrol titers than At4CL2. The highest titer of 11.667
0.57 mg L�1 resveratrol was obtained in ST4122, over-expressing
HaTAL and VvVST1 under PTEF1 promoters and At4CL1 under PPGK1
promoter. When the direction of the double promoter was
reversed, so that At4CL1 was under control of the PTEF1 promoter
and VvVST1 under control of PPGK1 promoter, resveratrol titer
dropped to 4.4870.22 to mg L�1 (ST4123). This result underlines
the importance of balancing gene expression in the pathway. To
reduce loss of pathway intermediates and improve turnover rates
due to higher local substrate concentration, fusing related
enzymes is a promising strategy (Li and Borodina, 2015). Fusion of
two enzymes, At4CL1 and VvVST1, was previously reported to
improve resveratrol production due to metabolic channeling



Fig. 2. Microbial production of resveratrol from tyrosine. Strains carrying HaTAL from H. aurantiacus (A) and FjTAL from F. johnsoniae (B) together with different combinations
of At4CL1 and VvVST1 were grown in minimal mediumwith 20 g L�1 glucose and 5 mM tyrosine and the cultures were sampled at 72 h of cultivation. Strains ST4124, ST4127,
ST4131, and ST4134 over-express fusions of At4CL1 and VvVST genes. The displayed average values7standard deviations were calculated from three biological replicates.
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(Zhang et al., 2006). We also attempted expressing the fusion of
the two proteins, linked by Gly–Ser–Gly linker, in ST4124. This
however led to a lower resveratrol titer of 4.6970.39 mg L�1 so
we did not pursue this strategy further.

3.2. De novo biosynthesis of resveratrol from glucose

It was observed that p-coumaric acid production continued in
batch cultures after the supplemented tyrosine had been con-
sumed, thus indicating that at least a fraction of p-coumaric acid
was produced de novo from glucose or ethanol (Jendresen et al.,
2015). To investigate if resveratrol also can be produced directly
from glucose and also to test the effect of precursor improvement,
we cultivated the strain ST4135 (analogous to ST4122) with the
resveratrol pathway (HaTAL, At4CL1 and VvVST1) in a minimal
medium with glucose as the only carbon source. Fermentation of
ST4135 resulted in 2.7370.05 mg L�1 resveratrol from 30 g L�1

glucose (Fig. 3A). Interestingly, resveratrol was primarily produced
during the ethanol consumption phase, which indicates that dur-
ing growth on glucose the fluxes towards resveratrol precursors,
tyrosine and malonyl-CoA, were low.

The aromatic amino acids are the least abundant amino acids in
the S. cerevisiae cell, with intracellular concentrations of tyrosine
and phenylalanine being as low as 0.5 and 0.6 mM, respectively
(Braus, 1991). The biosynthesis of aromatic amino acid is strongly
regulated, both at the transcriptional and posttranscriptional
levels. In order to improve the flux towards tyrosine, we over-
expressed feedback-inhibition resistant versions of DAHP synthase
ScAro4pK229L and chorismate mutase ScAro7pG141S. This resulted in
a 78%-improvement of resveratrol titer in batch cultures compared
with that of the strain ST4135 harboring only the resveratrol
pathway, i.e. 4.8570.31 mg L�1 resveratrol was obtained (Fig. 3B).
Another precursor for resveratrol biosynthesis is malonyl-CoA.
Thus, 3 molecules of malonyl-CoA are necessary for biosynthesis of
1 molecule of resveratrol. In S. cerevisiae, malonyl-CoA is synthe-
sized in the cytosol by acetyl-CoA carboxylase (ScAcc1p). The
acetyl-CoA carboxylase can be phosphorylated by the sucrose non-
fermenting protein 1 (Snf1p) and thus targeted for degradation,
which leads to decreased activity of this enzyme in the cell (Shirra
et al., 2001). A double mutation of Acc1p protein at Ser659 and
Ser1157 positions could abolish the phosphorylation (Shi et al.,
2014). We over-expressed the inactivation-resistant version of
acetyl-CoA carboxylase (ScAcc1pS659A, S1157A) in resveratrol-pro-
ducing yeast, which gave 3.5770.18 mg L�1 resveratrol, corre-
sponding to a 31% improvement in comparison with ST4135
(Fig. 3C). Finally, we combined over-expression of ScARO4K229L,
ScARO7G141S, and ScACC1S659A, S1157A genes in strain ST4140, which
improved resveratrol titer by 234% to 6.3970.03 mg L�1 (Fig. 3D).

In order to further improve the flux towards acetyl-CoA,
we also attempted over-expression of acetyl-CoA synthase
(SeACSL641P) from Salmonella enterica and aldehyde dehy-
drogenase ScAld6, in various combinations with ScAro4pK229L and
ScAro7pG141S or ScAcc1pS659A, S1157A. Surprisingly no improvement
was obtained (Supplementary Fig. S1). Further investigation is
needed to determine the reason for the negative effect of this
modification (Fig. 4)

3.3. Increasing resveratrol production via integration of multiple
copies of resveratrol pathway

We hypothesized that the low activity of the resveratrol biosyn-
thetic pathway may be limiting resveratrol biosynthesis. We therefore
introduced multiple copies of the genes HaTAL, At4CL1 and VvVST1
into a strain, over-expressing ScARO4K229L, ScARO7G141S, and
ScACC1S659A, S1157A. The multicopy integration was achieved by using



Fig. 3. Microbial production of resveratrol from glucose. The strains were cultivated on minimal medium with 30 g L�1 glucose in bioreactors. (A) ST4135, the reference
strain expressing HaTAL, At4CL1 and VvVST1; (B) ST4136, over-expressing ScARO4K229L and ScARO7G141S. (C) ST41222, over-expressing ScACC1S659A, S1157A, (D) ST4140, over-
expressing ScARO4K229L, ScARO7G141S and ScACC1S659A, S1157A. The displayed average values7standard deviations were calculated from two biological replicates.

Fig. 4. Optimization of resveratrol pathway by multiple integrations of genes.
Multiple integrative plasmid p2068 carrying HaTAL, At4CL1, and VvVST1 was inte-
grated onto Ty4 elements of ScARO4K229L, ScARO7G141S and ScACC1S659A, S1157A over-
expressing strain. The strain was grown on defined minimal medium with 30 g L�1

glucose in batch bioreactors. The displayed average values7standard deviations
were calculated from two biological replicates.
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an integrative vector that targets Ty4 retrotransposons (Maury et al.,
submitted for publication). As the transformants were expected to
integrate different copy numbers of the expression vector, we ran-
domly screened 8 transformants to select the best producer, named
ST4152. The copy number of the genes in the strain ST4152 was
identified to be 8.4370.85 for HaTAL, 8.6471.60 for At4CL1, and
11.1671.23 for VvVST1 respectively by qPCR.

The strain ST4152 had a longer lag phase and lower biomass
accumulation than the strain ST4140 in batch fermentation.
However, the resveratrol titer in both the glucose and ethanol
phases was greatly improved (Table 5). The final titer was
235.5777.00 mg L�1, 36-fold higher than in the parent strain
ST4140.
3.4. Resveratrol production in fed-batch fermentation

As resveratrol primarily accumulated after glucose depletion in
batch cultivations, we carried out fed-batch cultivations with
feeding of glucose or ethanol. The batch phase was on 40 g L�1

glucose, once all carbon sources were consumed, the carbon-lim-
ited feeding of glucose or ethanol was initiated. The strain ST4152
produced around 200 mg L�1 in the batch phase. In the glucose
feeding phase, 222.08 mg L�1 additional resveratrol was accu-
mulated on the feeding of 15.93 g L�1 glucose (Fig. 5) and resulted
in a final titer of 415.65 mg L�1 resveratrol. In the ethanol feeding
phase, 333.57 mg L�1 resveratrol was additionally produced from
16.63 g L�1 ethanol resulting in a final titer of 531.41 mg L�1

resveratrol. Small amounts of acetate and glycerol and no other
by-products, such as p-coumaric acid or succinate were detected
during the fed-batch process.



Table 5
Comparison of resveratrol titers and kinetic parameters obtained from different resveratrol producing strains in batch cultivations.

ST4135 ST4136 ST41222 ST4140 ST4152

mmax (h�1) Glucose phase 0.4070.01 0.3570.03 0.3670.01 0.3370.04 0.1570.02
Ethanol phase 0.1070.00 0.0970.01 0.0870.01 0.0770.02 0.01870.00

Production (mg L�1) Glucose phase 0.1170.00 0.6470.23 0.1370.02 0.6270.00 61.6978.72
Ethanol phase 2.7370.11 4.3470.68 3.4170.40 6.0170.44 172.04713.12

Yield (mg g�1glucose) Glucose phase 0.0070.00 0.0270.01 0.0070.00 0.0270.00 2.1070.30
(mg g�1ethanol) Ethanol phase 0.2570.00 0.3970.06 0.3170.05 0.5170.01 12.1471.02

Productivity (mg (L�1 h�1)) Glucose phase 0.0170.00 0.0570.01 0.0170.00 0.0470.00 1.6770.24
Ethanol phase 0.2770.01 0.3970.06 0.2470.03 0.2570.02 4.9270.37

Fig. 5. Fed-batch fermentation of the optimized resveratrol-producing strain ST4152. Aerobic fed-batch fermentations were carried out by feeding glucose (A) or ethanol
(B) respectively following carbon source-limited feeding strategy. The cultivations were performed in duplicates (Supplementary Fig. S2); here representative graphs are
shown.
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4. Discussion

In the previous studies resveratrol production was achieved by
supplementing p-coumaric acid (Becker et al., 2003; Beekwilder
et al., 2006; Shin et al., 2011; Sydor et al., 2010; Wang and Yu,
2012), which is an expensive precursor. Besides, tyrosine or phe-
nylalanine were also used as the substrates for resveratrol pro-
duction (Trantas et al., 2009; Zhang et al., 2006). Also several
previous studies described resveratrol production without sup-
plementation of precursor, but in SC-dropout (Wang et al., 2011) or
Yeast extract-Peptone-Galactose (Shin et al., 2012) media, which
contain tyrosine and phenylalanine. This study, for the first time,
demonstrates de novo microbial production of resveratrol from
cheap carbon source (glucose or ethanol) in a minimal medium.
We chose TAL instead of PAL for the first step of resveratrol bio-
synthesis pathway (deamination from tyrosine or phenylalanine),
thus by-passing the P450-dependent step. Although previous
studies failed in producing resveratrol via the TAL-dependent
pathway in yeast (Zhang et al., 2006), our study shows that it is
possible to construct a high-level resveratrol producing yeast
based on the TAL route. The resveratrol production of 530 mg L�1

obtained in this study, to our knowledge, is the highest level
reported in yeast.

This study adopted a push and pull strategy by increasing
precursor supply and multiple integration of resveratrol pathway
to improve resveratrol production. Aromatic amino acids were
shown to have feedback inhibition on the shikimate pathway
(Koopman et al., 2012; Luttik et al., 2008). Deregulation of feed-
back inhibition is a general way to improve production of aromatic
amino acids derivatives. This has been corroborated by over-
expression of aromatic amino acids-insensitive ARO4 and ARO7
alleles in several studies. Koopman et al. overexpressed feedback-
insensitive allele of ARO4 (ARO4G226S), which led to 2-fold increase
of naringenin in S. cerevisiae (Koopman et al., 2012). Another study
by Curran et al. improved muconic acid production by 50%, when
overexpressing tyrosine insensitive ARO4 allele (ARO4K229L) in
S. cerevisiae (Curran et al., 2013). By combining overexpression of
the feedback insensitive alleles of ARO4 and ARO7 (ARO4K229L and
ARO7G141S), Luttik et al. obtained 200-fold increase of the extra-
cellular aromatic amino acids concentration (Luttik et al., 2008).
Thus, the 78% increase of resveratrol we observed upon over-
expression of ARO4K229L and ARO7G141S is consistent with these
studies. Supply of the other precursor, malonyl-CoA, catalyzed by
Acc1p was a well-known limiting step in the fatty acids bio-
synthesis pathway due to posttranslational regulation by Snf1
protein kinase (Tehlivets et al., 2007). Shi et al. found that the
phosphorylation of Acc1p by Snf1 could be diminished by site-
directed mutagenesis at Ser659 and Ser1157 positions (Shi et al.,
2014). Overexpression of ACC1S659A,S1157A in engineered S. cerevi-
siae resulted in 3-fold increase of fatty acid ethyl esters production
and more than 3.5-fold improvement of 3-hydroxypropionic acid
titer (Shi et al., 2014). The 31% improvement was obtained in this
study, when we overexpressed ACC1S659A,S1157A in the engineered
strain. However, it was surprising that further overexpressing
ALD6 and SeACSL641P, which was previously shown to enhance
acetyl-CoA flux (Shiba et al., 2007), decreased resveratrol pro-
duction. We suppose that in the strain with a single copy of
resveratrol biosynthesis pathway the flux control resided mainly
with the downstream of the pathway and therefore the push
strategies had only a limited effect. In case of ALD6 and SeACSL641P

overexpression, the negative result was possibly due to the effect
of acetyl-CoA overproduction, which exhibits genome-wide reg-
ulatory effects (Shi and Tu, 2013; Zhang et al., 2013) and may also
divert to other products than resveratrol especially in glucose
consuming phase. In future studies it would be interesting to
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investigate the effect of increased acetyl-CoA supply in a strain
carrying multiple copies of resveratrol biosynthesis.

High level-expression of the flux controlling enzymes in the
pathway is a common solution to a low enzymatic activity pro-
blem. We chose to integrate multiple copies of the resveratrol
biosynthetic genes into yeast chromosomes as a pull strategy. In
comparison to the high-copy number episomal vectors, e.g.,
2μ-based vectors, integration results in better strain stability. A
36-fold improvement in titer was achieved in this study when
three genes, HaTAL, At4CL1 and VvVST1, were integrated in mul-
tiple copies. This finding highlights that indeed the resveratrol flux
was limited by the activity of the biosynthetic enzymes. At the
same time, the strain fitness decreased, manifested by a longer lag
phase, lower maximum specific growth rate and lower biomass
yield on glucose. This could be expected as multiple integration of
several genes likely resulted in high metabolic burden for the cell.
A solution to the problem could be replacement of constitutive
promoters with regulated ones for control of the resveratrol bio-
synthesis pathway, e.g., one could use a glucose-repressed PHXT7
promoter, so the resveratrol biosynthesis is first turned on in the
fed-batch phase after sufficient biomass has been accumulated in
the batch phase. Moreover, the observation that resveratrol pri-
marily accumulated in the ethanol phase of batch fermentation
inspired us to use ethanol feed for fed-batch fermentation. An
ethanol pulse feed strategy was also successfully applied earlier for
amorphadiene production (Westfall et al., 2012).

Developing a high-producing microbial strain for industrial
production of resveratrol is a serious metabolic engineering chal-
lenge. In our study, we implemented the push strategies first,
followed by the pull strategy. Retrospectively, it would be better to
do it the other way around. Future development of the cell factory
may include optimization of activities of the resveratrol biosyn-
thetic genes (via enzyme engineering, protein scaffolding or
expression level balancing), further improvement of precursor
supply, improvement of reducing co-factor (NADPH) supply,
eliminating product degradation (Koopman et al., 2012), decou-
pling of growth and production phases, and other rational designs.
Additionally genome-scale modeling or –omic data can be used to
predict non-intuitive metabolic engineering strategies (Curran
et al., 2013; Gold et al., 2015).
5. Conclusions

There is an increasing demand for resveratrol in the pharma-
ceutical, food and cosmetic industries. Production of resveratrol
from a cheap carbon source by microbial fermentation is attractive
due to short process time, reduction of production costs, reliable
supply and high purity, when compared to the extraction from
plant materials. In this study we constructed the resveratrol
pathway via tyrosine intermediate in S. cerevisiae and for the first
time demonstrated the possibility of de novo resveratrol bio-
synthesis from glucose. By step-wise metabolic engineering, tar-
geted towards improvement of precursor supply and increased
expression of the biosynthetic genes, we obtained an optimized
strain, which produced around 0.5 g L�1 resveratrol in fed-batch
fermentation on a minimal medium. This strain represents a good
basis for development of microbial resveratrol production process.
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