How reliable is the Peak-over-threshold extreme wind assessment method?
On the Peak-Over-Threshold (POT) Extreme Wind estimation as applied at DTU Wind Energy - Recently implemented in WAsP Engineering

Rathmann, Ole Steen; Larsén, Xiaoli Guo; Mann, Jakob; Ejsing Jørgensen, Hans

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):
How reliable is the Peak-over-threshold extreme wind assessment method?

On the Peak-Over-Threshold (POT) Extreme Wind estimation as applied at DTU Wind Energy
- Recently implemented in WAsP Engineering -

Ole Rathmann, Xiaoli Larsén, Jakob Mann, Hans E. Jørgensen
DTU Wind Energy, Denmark
Extreme Wind Prediction - background

• For wind turbine selection, typically the 50-year extreme wind is required

• Annual Max. method 1): Based on Ann.max wind speeds distribution.
 - Requires typically 10Y+ of data
 - Gumbel double-log distribution is used for extrapolating to 50 Y.

• POT (Peak Over Threshold) 2): Based on individual storm winds distribution
 - Potentially, shorter time series should be usable
 - 1000$ Q: How short time series could be used without excessive uncertainty?

POT - Basics

- Based on Peak-wind speeds of individual storms
- Considers the exceedance rate R over a threshold (how many per year?)
 - Use $\min(U_{Ann.Max})$ as reference threshold
- How does R decrease with increasing threshold?

Storms discriminated by
- Lower speed threshold
- Max. storm duration
- Min. storm separation

Exceedance rate R
- Exponential decay
- Extrapolation to a certain return-time to get e.g. U_{50}
- Quality control from statistical test (Poisson statistics)
POT – Demonstration – 4 test cases

- Indication of the reliability of the POT-method from 4 test cases

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Type</th>
<th>Height</th>
<th>Time series length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jylex</td>
<td>Denmark</td>
<td>Inland</td>
<td>24.0 m</td>
<td>16 years</td>
</tr>
<tr>
<td>Sprogoe</td>
<td>Denmark</td>
<td>Off-shore</td>
<td>70.0 m</td>
<td>22 years</td>
</tr>
<tr>
<td>Abu Darag</td>
<td>Egypt/Red Sea</td>
<td>Subtropical high</td>
<td>24.5 m</td>
<td>12 years</td>
</tr>
<tr>
<td>Bloemenfontein</td>
<td>South Africa</td>
<td>Continental</td>
<td>10.0 m</td>
<td>17 years</td>
</tr>
</tbody>
</table>

- Various time series lengths (full length; 6, 7 or 8y; 3y; 2y)
- Compared to ann.max method (full time series length)
POT – Demonstration – 4 test cases (A)

- Indication of the reliability of the POT-method from 4 test cases
 - Uncertainties deduced from Poisson-deduced statistics

POT – Demonstration – 4 test cases (B)

- Indication of the reliability of the POT-method from 4 test cases
POT – Demonstration – 4 test cases (C)

• Indication of the reliability of the POT-method from 4 test cases

![Diagram showing wind speed data for Abu Darag 1991-2003 @24.5m]
POT – Demonstration – 4 test cases (D)

- Indication of the reliability of the POT-method from 4 test cases
POT and Terrain effects

Beware!

• POT may be influenced by terrain effects when predicting 50-year winds at turbine sites by high-wind data from a met-tower:

 – A certain measured “storm wind-peak” may not be a storm wind peak when transformed from mast site to a “predicted” wind turbine site

 – What seems to be a low or moderate wind at mast site may become a “storm wind” when transformed to a predicted wind turbine site.

• Special measures must be exercised to ensure that all relevant high-wind data are transformed to wind turbine sites for the POT-extreme wind estimation there.
Short term data – why do predictions fail? What to do about it?

• Short term data: 1 or a few years
 – Normally represents short-term fluctuations quite well: 10 min. recording interval or better assumed.

• Long term year-to-year variance CANNOT be represented
 – E.g., for a single year: is this a high, average or low year ???
 – Unless you combine with a long term reference data set

• Long-term model wind data from reanalysis data + Mesoscale-model may be used
 – Model data (1h) have an insufficient representation of the dynamics at relatively high frequency
 – Impact of the high frequency dynamics must be corrected for
Model-data high frequency dynamics issue
How to handle this?

- **Power spectrum**
 - Model data 32Y
 - Measured data 1Y
 - Both generalized (*terrain cleansed*)

- **Hybrid spectrum**
 - Low freq.: model l.t. data
 - High freq.: meas. s.t. data

- **Relation between power spectrum and predicted** T_0-extreme wind

- **Spectral correction procedure**':
 - Use model- and hybrid spectra + U_{max} equation to correct U_{max} for all years of l.t. data series.
 - Use set of corrected U_{max} in combination with Ann.max method

\[\bar{U}_{max}(T_0) = \bar{U} + \sigma \sqrt{2\ln \left(\frac{1}{2\pi} \sqrt{\frac{m_2}{m_0} T_0} \right)}, \sigma = \sqrt{m_0} \]

AnnMax – POT - Spectral Correction

- Spectral correction applied to off-shore data: Horns Rev@45m
 - Involves *terrain effects cleansing* and *terrain effects inclusion*
 - Compared to POT and Annual Max

The “Spectral correction” needs further validation
Conclusion

• POT compares well with the annual Max. method
 – Same time series length: same result as Ann.Max. – but with somewhat lower uncertainty
 – Short time series:
 o Agrees largely with l.t. Ann.Max. – but with higher uncertainty, as expected
 o No or slightly negative bias
 o Cannot take long-term variability into account – unless long term reference data are somehow included (trivial)

• Spectral correction is a promising method to combine a short measured time series with long-term wind data derived from re-analysis data set by mesoscale models
 – Being validated at DTU Wind Energy against a number of cases
 • for implementation in WAsP Engineering.
Acknowledgements

Thanks are due to the following organizations and institutions for supplying wind data for this study:

- **Sprogoe:** Storebaelt A/S (*Great Belt Bridge*)
- **Jylex:** DTU Wind Energy (*former Risoe*)
- **Horns Rev:** DONG Energy and Vattenfall
- **Abu Darag:** *Wind Atlas for the Gulf of Suez / Egyptian NREA & DTU Wind Energy* (*former Risoe*)
- **Bloemenfontein:** South African Weather Service
Spectral correction – work flow

1. Long-term Global Reanalysis Data (<time series...>)
 - Mesoscale model
 - Long-term On-site Reanalysis data (<time series...>)
 - Consistent Generalization (mesoscale-terrain cleansing)

2. Short-term On-site Measured data (<time series...>)
 - Generalization (terrain cleansing)
 - Short-term Standard condition Measured data (<time series...>)

3. Spectral Correction Model and Hybrid spectra
 - Standard condition Extreme Wind Climate (<extreme wind time series...>)
 - "Application" (terrain effects inclusion)
 - On-site Extreme Wind Climate (<extreme wind time series...>)

4. On-site 50Y-wind