In situ growth of layered carbon

Kling, Jens; Hansen, Thomas Willum; Wagner, Jakob Birkedal

Published in:
Proceedings of the International Microscopy Congress 2014

Publication date:
2014

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In situ growth of layered carbon

Kling J.1, Hansen T. W.1, Wagner J. B.1

1Center for Electron Nanoscopy (DTU Cen), Technical University of Denmark, Kgs. Lyngby, Denmark

Email of the presenting author: jenk@cen.dtu.dk

Nanostructured carbon materials are predicted to play a major role in future electronic applications. Cheaper and smaller components with improved or new functionality and lower power consumption are necessary, where conventional materials reach their limitations. Layered carbon materials, such as graphene or multilayer graphene, can be used for extremely compact devices with outstanding performance \cite{1},\cite{2}. A cheap way to synthesize such materials on a large scale is chemical vapor deposition (CVD) growth on catalysts like copper or nickel \cite{3},\cite{4}. However, the understanding and control of such growth processes are still in their infancy.

Here we present \textit{in situ} transmission electron microscopy (TEM) experiments in a FEI Titan 80-300 Environmental TEM (ETEM) for studying the growth of layered carbon materials on Ni and Cu catalysts. The ETEM allows imaging with controlled gas environments around the sample up to a few mbar. In combination with a MEMS-based heating holder, growth of layered carbon materials is systematically studied at the atomic level using various carbon sources and growth temperature.

As an example, growth of few layer graphene from C\textsubscript{2}H\textsubscript{2} on a Ni catalyst is shown in Fig. 1-4. NiO particles in the size range up to a few hundred nm are reduced in the microscope under H\textsubscript{2} at 500-600°C in order to form a catalytically active Ni surface. Introducing C\textsubscript{2}H\textsubscript{2} at about 650°C leads to growth of layered carbon (Fig. 1-4). By following the appearance of carbon layers, the growth rate dependence on various parameters can be determined directly from the ETEM observations.

\cite{4} X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 (2009).

Acknowledgement: Financial support of the 7th Framework project “GRAFOL” is gratefully acknowledged. The A.P. Møller and Chastine Mc-Kinney Møller Foundation is acknowledged for their contribution toward the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark. Thanks to Søren B. Simonsen and Quentin Jeangros for providing the NiO samples.
Fig. 1: Three layers grown shortly after introduction of C_2H_2.

Fig. 2: Multiple layers grown 79.2s after Fig. 1; the arrow marks next growing layer close to the metal particle surface.

Fig. 3: Multiple layers grown 80s after Fig. 1; the arrows mark next growing layers close to the metal particle surface.

Fig. 4: Multiple layers grown 80.8s after Fig. 1; the arrows mark next growing layers close to the metal particle surface.