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Abstract

This study investigates the use of a multivariate approach, based on Principal Component Analysis
PCA), as software sensor for fault detection and reconstruction of missing measurements in on-
line monitoring of sewer water quality. The analysis was carried out on a 16-months dataset of five
commonly available on-line measurements (flow, turbidity, ammonia, conductivity and
temperature). The results confirmed the great performance of PCA (up to 10 weeks after parameter
estimation) when estimating a measurement from the combination of the remaining four variables,
a useful feature in data validation. However, the study also showed a dramatic drop in predictive
capability of the software sensor when used for reconstructing missing values, with performance
quickly deteriorating after 1 week since parameter estimation. The software sensor provided better
results when used to estimate pollutants mainly originated from wastewater sources (such as
ammonia) than when used for pollutants affected by several processes (such as TSS). Overall, this
study provides a first insight in the application of multivariate methods for software sensors,
highlighting drawback and potential development areas. A combination of (i) advanced methods
for on-line data validation, (ii) frequent parameter estimation, and (iii) automatic method for
classification of dry/wet periods may provide the needed background for a successful application
of these software sensors.

Keywords
On-line water quality monitoring; Principal component analysis; Software sensors; data quality
control;

INTRODUCTION

On-line sensors for monitoring water quality parameters in sewers are getting increasing attention
(Campisano et al., 2013). These devices can provide high-temporal resolution information on
various water quality variables (e.g. turbidity, conductivity, NH,), which can subsequently be used
to analyse and to elaborate statistics on the pollution loads discharged from the urban drainage
systems over long time periods (see for example the dataset collected by Metadier and Bertrand-
Krajewski, 2012). Also, the on-line measurements from these sensors can be integrated within
water-quality based Real Time Control (RTC) strategies, as in the example presented by Lacour and
Schuetze (2011). These RTC applications require a constant flow of information, i.e. fall-back
strategies need to be available in case of sensors failure. In this context, surrogate measurements
can be provided by software sensors, developed for on-line fault detection and data reconstruction
(Kadlec et al., 2009).

Physical sensors are often affected by malfunctioning, drifting, erroneous readings, etc., and these
issues affect the quality of the collected information. Procedures for Data Quality Control (DQC) of
continuous measurements have been developed for on-line monitoring of wastewater treatment
plants and they are now extended to sewer monitoring (e.g. Alferes et al., 2013). The most
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advanced DQC methods utilize multivariate approaches, such as Principal Component Analysis
(PCA). PCA can also be employed as software sensor, i.e. missing data from a sensor can be
reconstructed by using a combination of other on-line measurements.

However, PCA requires measurements from stationary processes, and thus adaptive approaches
have been suggested to ensure their applicability in the highly dynamic field of wastewater systems
(Rosen and Lennox, 2001). Also, adaptive approaches require quality-ensured data, i.e. the PCA
should be tuned on “good data” (e.g. Rosen and Lennox, 2001). Therefore, advanced multivariate
methods, still need to be coupled with simpler univariate DQC approaches, which can both be fully
automatic or semi-automatic (i.e. data validation is carried out automatically, but final validation is
performed by the operator). Univariate data validation is often based on tests including check of
measurement ranges, variation rates, and intervals between maintenance periods.

This study aims at evaluating the performance of multivariate software sensors (using an adaptive
PCA) for fault detection and data reconstruction applied to on-line monitoring of sewage quality.
On-line wastewater quality data collected during the AMOK project (Sharma et al., 2014) were
used in the study, aiming at predicting water quality variables with different characteristics (NHy,
mainly originated by wastewater sources, and Total Suspended Solids — TSS - originated from both
waste- and stormwater and affected by various processes along the drainage network). Firstly, it
was assessed the potential of predicting a water quality variable based on the combination of
existing data. This is a useful feature for fault detection. Subsequently, the performance of the
multivariate software sensor for on-line data reconstruction was assessed by using different
adaptation techniques, resembling automatic and semi-automatic data validation procedures.

MATERIAL AND METHODS

Physical sensors

The AMOK project (Sharma et al., 2014) aimed at collecting water quality data in a Combined
Sewer Overflow, placed at the inlet of the Viby WasteWater Treatment Plant (WWTP), located in
Aarhus (Denmark). The upstream catchment is characterized by a mixed structure, with 607 ha
drained by combined systems and 925 ha drained by separate systems. Overflows take place when
the flow exceeds approximately 1.3 m®/s, with overflowing water being stored in a detention basin
and subsequently pumped to the WWTP after the rain event has ended.

As part of the project, a set of quality sensors were placed in situ, i.e. directly in the monitored
sewage stream (with a set-up inspired to the one described in Gruber et al., 2005): the data used in
this study were collected by these devices from August 2013 to November 2014. The five sensors
which have been regarded as the most robust and reliable were used in this study to develop
software sensors: flow, pH, conductivity, turbidity (converted into TSS in this study), and NH4. A
Standard Operating Procedure (SOP), similar to the one described in Alferes et al., 2013) was
enforced to ensure a good quality of the collected data. The periodical maintenance operations
highlighted several issues (sensor drift) which required sensors re-calibration, resulting in data
characterized by jumps in the recorded values (see an example in Figure 1). In this study, only
simple data validation check (i.e. range checks) were performed, i.e. the data can be affected by
e.g. noise (this is quite evident for turbidity measurements).
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Figure 1. Example of measured flow (above) and on-line NH,4 concentrations (below) between two
calibration periods (highlighted in green). Samples collected by autosampler and measured in the
laboratory are shown in red.

Multivariate Software sensors

Principal Component Analysis. The approach behind the tested software sensors assumes that the
correlations between the measured water quality variables can be mapped by Principal Component
Analysis (PCA), whose results are subsequently used to generate predictions (useful as surrogate
for missing data). Given that there are N measurements available for calibration for m water quality
variable (in this study m=5), let’s consider the matrix X (N X m), which is built from the standard
scores of the available observations obs;,. Each element of X is then calculated by using the
average u; and standard deviation ajz of the j-th measured variable:
obj. . —u.
”_:( J.,J2 #) (1)

Oj

The variable to be predicted (in this study NH,4 or TSS) is stored in the m-th column of matrix X,
which can be decomposed as:

X =TP' 2
where the matrix T (N x m) contains the scores (i.e. the observations projected in the principal
component space) and P is the matrix containing the loadings. Equation 2 can be also written as:

xi,j= Zti,k Pk 3)
k=1

The main assumption behind the software sensor introduced in this study is that the information
provided by the m-1 variables is sufficient to approximate the value of the m-th variable, i.e.

m-1
Xin® Xim = Zti,k P 4)
k=L

Equation 4 can be useful for fault detection: whenever the estimated values x;, shows a significant
deviation from the sensor reading, the latter can be regarded as “doubtful” and not be validated.
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PCA-based interpolation: The sensor utilizes a calibration datasets (of size N) to estimate the
loadings pij , stored in the matrix P. When new set of available measurements x’;_m-1 is available,
the software sensor reconstructs the m-th variable x ', by the following procedure:

1) Create the projection T2 of the available measurements in the space defined by m-1
principal components. This step also requires the estimation of the matrix pmm-1) containing
the loadings in a component space limited to the available measurements

2) Calculate the projection t’ the new point in the same space

3) Identify the g points in T which are the closest point to projection t’. In this study the ten
closest points were used (i.e. g=10).

4) Use the projections of the q points in the m-dimensional space (i.e. their values in T) to
interpolate the projection t'of the new measurement. In this study, a simple Inverse-
Distance-Weight approach (Li and Heap, 2004) was applied.

5) Calculate the value of the missing variable x '’y by re-transforming the interpolated projection

t" into the original coordinate system by using eq. 4.

L L e \ Projection in m-1
/‘7@;? oL + 0(,‘;;\ dimensional pc

‘___\,-:" - A space

\ Identification of g closest projections
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Figure 2. Schematic representation of the steps used by the software sensor to reconstruct a missing
measurement (for visualization purpose, only three variables are considered in this figure, i.e. m=3)
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Adaptive PCA. The performance of the software sensor described in the previous section are clearly
dependent on the information contained in the dataset used for calibration: changes in the monitored
system will rapidly lead to a degradation of the sensor’s predictions. As discussed in Rosen and
Lennox (2001), the limitation of PCA due to non-stationarity of wastewater systems can be
overcome by applying adaptive approaches. These approaches essentially requires a re-estimation
of the model parameters at defined time intervals, i.e. the loadings p;;should be re-calculated based
on an updated dataset.

Among the adaptive approaches listed in Kadlec et al. (2011), moving windows methods have been
judged as the most suitable for the monitoring set-up used in the study. In this study, two possible
approaches are considered: (i) block-wise moving window and (ii) step-size moving window. In the
first case, the parameters of the adaptive methods (i.e. the loadings pi;) are re-estimated at fixed
time interval, e.g. on a weekly or monthly bases. For example, it can be hypothesized that DQC of
data is carried out by the operator on a weekly basis, and that the re-estimation is subsequently
performed by using the newly validated measurements with the same frequency. Conversely, the
data sample in step-size moving windows is updated every time a new validated measurement is
available. Given the high temporal resolution of water quality measurements (usually in the order of
1 minute), this approach can be regarded as computationally expensive, so it is more realistic that
the parameter estimation is carried out at lower temporal resolution (e.g. on hourly or daily basis).
The step-size approach is more suitable for automatic DQC routines, while the block-wise is more
suitable for approaches when the operator interaction is required.

Performance evaluation.

Different aspects were investigated to assess the performance of the sensor:

o Validity of the multivariate approach, i.e. is the hypothesis that a combination of on-line water
quality measurements can be used to estimate another variable valid? This was assessed in an
off-line set-up, where all the observations used for validation were known, i.e. the mean xyand
the variance o”n were calculated over the entire validation period. The m-th variable is
projected in the m-dimensional space, and its value is then calculated by using the m-1
variables as in eq. 4.

e Size of the adaptation window, i.e. how long historical data series are necessary to calibrate the
sensor? This was assessed by increasing the size N of the data sample used to estimate the
loadings pi ).

e Reliability of predictions over time, i.e. for how long does the sensor provide reliable
predictions? This was evaluated by calculating a performance indicator for validation periods
of increasing size. The Mean Absolute Relative Error (MARE — Bennet et al., 2013) was
selected to ensure that both dry and wet weather periods (characterized by different magnitude
of measured concentrations) were weighted equally.

X; m —Obs; |
obs

N
MARE = %Z (5)
i=1

i,m
e Adaptation methods, i.e. which moving window approach ensures better performance of the
sensor: block-wise or step-wise? To test the first approach, the available dataset was subdivided
in 63 weeks (with calibration of sensor used as additional criterion to split the sample, avoiding
that the data before and after calibration were store into the same week). To simulate realistic
procedures, where data are validated by operators on a weekly basis, loadings and data
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statistics um and o”, were calculated based every week. In the step-size approach, assuming an
automatic data validation procedure which does not require user interventions, the loadings and
umand o, were calculated on a daily basis

RESULTS AND DISCUSSION

Validity of the multivariate approach.

Figure 3 below shows the evolution of MARE after the parameter estimation for adaptation
windows of different sizes. The left figure illustrates how the median MARE was below 10% until
6-7 weeks after the parameter estimation, with a clear degradation of the performance of the sensor
over time. Interestingly, better performances were obtained with shorter adaptation windows (2-3
weeks), whereas the longest windows (8 weeks) showing a median MARE above 15% after 10
weeks from parameter estimation. The same value was exceeded by the 2-weeks adaptation window
only after 14-15 weeks. This result is likely to be caused by the quality of the available data: the
changes in the measured concentrations due to sensor degradation and subsequent sensor re-
calibration (such those shown in Figure 1) affect the performance of the multivariate software
sensor. Wider adaptation windows will include data collected during periods which are no longer
representative of the current sensor readings, leading to worse performance. Conversely, shorter
adaptation windows consider only the most recent measurements, thus providing better estimation
of the missing values.

It is important to stress that these considerations are based on median values: the short adaptation
window might not include sufficient information to predict the behaviour of the measured variable
for specific events (for example, if the adaptation window contains only data from dry weather
period, the software sensor could encounter difficulties during a rain event). This is shown in the
Figure 3 (right): the shorter adaptation windows (2-4 weeks) showed a wider spread of MARE
(with cases of MARE up to about 100%), while the wider adaptation windows showed more
consistent performance (i.e. a narrower spread of the results).
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Figure 3. Statistics of software sensor for NHy in an off-line set-up (um and oy known). Left: value
of MARE [%] (median of values estimated over the entire dataset) over time for adaptation
windows of different size. Right: Temporal evolution of MARE (value estimated on a weekly basis)
after parameter estimation for adaptation windows of different size.
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Figure 4. Examples of measured (red) and simulated (blue) TSS concentrations for selected
periods, along with the calculated Absolute Relative Error. The adaptation window is shown in
grey. Above: the period with the best MARE value. Below: period with the worse performance in
the dataset.

The results shown in Figure 3 refer to NH,4, which is a dissolved component of the wastewater flow,
i.e. it can be easily be predicted by using a simple dilution approach (see the examples in Langeveld
et al., 2014 and Sharma et al., 2014). The results obtained for TSS showed also good performances:
the MARE value were generally 10% higher than those obtained for NHy4, but the predicted TSS
concentrations are still acceptable. Figure 4 shows the periods with the best and the worst MARE:
overall, the multivariate software sensor approach seems to be suitable to predict water quality
variables based on a combination of other measurements, i.e. the information carried out by four
water quality variables is sufficient to calculate a fifth variable with an acceptable error. This result
suggests that the multivariate software sensor could be used for on-line data validation, extending
the application of the multivariate approach presented in Alferes et al. (2013), which was applied
off-line, to on-line settings.

Application in on-line conditions

Reliability over time. The use of the software sensor in realistic conditions, when the measurement
is not available and it is interpolated (step 5 in Figure 2), showed an important decrease in the
performance compared to the off-line case (where the measurement was reconstructed from its
projection). In the case of block-wise (Figure 5), the MARE medians for ammonia were above 40%
after 4 weeks since parameter estimation. Similarly to the off-line case, the best median values were
obtained with shorter adaptation window, with wider windows leading to a more rapid deterioration
of the software performance. The TSS sensor showed worse performance than the ammonia sensro,
with median MARE never below 100%.
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The rapid degradations of the software sensor are exemplified in Figure 6: for both ammonia and
TSS the error significantly increases compared to the calibration period, exceeding 100% about 5-7
days after the parameter estimation for NH, and 2-3 days for TSS. This suggest a poor predictive
ability for this approach for the particulate pollutant. Overall, it can be concluded that both software
sensors are not capable of providing reliable results for periods of time greater than one week after
the parameter estimation.
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Adaptation method. When comparing the block-wise and the step-wise approaches, their
performance over the entire dataset is comparable. Figure 7 shows the comparison for the MARE
estimated on the first day after parameter estimation: for ammonia, the step-wise approach provides
slightly better performance when looking at the median value (24.4% and 20.7%, respectively) and
the best MARE (7.52% and 1.64%, respectively). The degradation of the sensor performance for
the block-wise approach is shown in Figure 8, where it can be seen that the daily MARE does not
increase linearly, but it stabilizes 2-3 days after the parameter estimation. The poor performance of
the TSS sensor for both the approaches confirms that the proposed software sensor is not suitable
for on-line prediction of pollutants not strictly linked to wastewater sources. These results suggest
that, whenever possible (i.e. when on-line automatic data validation is available), the step-wise
adaptation method should be preferred.

NH, TSS

350{ ! O 1 1 750[

250 1000
& 100 225
L
T I 150 1
s 50

BN s N B

block-wise step-wise block-wise step-wise

--------- min-max 90% I 50% median
Figure 7. Value of MARE estimated for the first day with different adaptation methods. Note the
different scale on the y-axis for NH,4 (left) and TSS (right).
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Figure 8. Temporal evolution of MARE (daily value) in the period between two parameter
estimations for block-wise adaptation. Note the different scale on the y-axis for NH, (left) and TSS

(right).

Future outlook

The PCA-based software sensor presented in this study is a first attempt to apply in on-line
conditions techniques which are widely applied in an off-line context. A number of limitations of
the presented approach can be identified, which suggest possibilities for further investigation and
development.
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A major factor affecting the results of this study is the quality of the dataset collected during the
AMOK project: the main assumption behind the software sensor is that the data in the adaptation
window are representative of the current situation. This assumption is clearly undermined when
sudden changes in the sensor readings are introduced in the dataset after calibrations (as shown in
Figure 1). Furthermore, short adaptation windows may explain the poor performance in the
prediction of TSS concentrations, especially during wet weather periods. When the adaptation
window includes only a limited number of rain events, the software sensor has not sufficient
knowledge of the interaction between TSS and the other measured variables, leading to poor results
in prediction. A possible solution to this problem may be provided by a piecewise formulation of
the adaptation window: the dataset used to estimate the sensor parameters should be subdivided into
dry- and wet-period, with the data contained in the latter updated only when a new rain events is
recorded.

The application of the software sensor to a dataset of better quality might lead to better results. On
the other hand, everyday operations of on-line sensor in sewer systems do not ensure the same
quality standards of extensive monitoring campaigns (more accurate, but also requiring greater
resources), and they are thus likely to provide data of similar quality to those used in this study. The
performance estimated in this study thus provides an overview on the potential of the software
sensor in real-life conditions.

Similarly, only simple approaches were used to validate the timeseries, leaving an evident noise in
the measurement (e.g. for turbidity measurements), which could affect the performance of the
software sensor. These may be improved by the application of advanced DQC approaches, such as
the univariate method described in Alferes et al. (2013). However, it should be stressed that the
DQC methods should be able to run on-line and with minimum requirement for user interaction.

The PCA-interpolation method used in this study is quite basic. A wide range of more complex
methods are available in literature to estimate missing measurement through PCA (llin and Raiko,
2010). These methods, ranging from iterative to probabilistic approaches may significantly improve
the predictive capability of the multivariate software sensor. However, the need for an on-line
application may pose a barrier for the use of the most computationally expensive approaches.

CONCLUSIONS

This study evaluated the performance of multivariate software sensors (based an adaptive PCA)
when applied for on-line data reconstruction of sewage quality measurements. The results obtained
after the performance evaluation which was carried out on a period of about 15 months suggest that:

e Adaptive PCA methods can provide a good estimation of water quality variables over long
periods of time (10 weeks) when measurements of all the variables are available. This shows
how PCA-based DQC methods, which are widely applied in an off-line context, can
successfully be applied on-line.

e The predictive power of the software sensor was quite limited in time (1 week) when used to
reconstruct missing measurements.

e Methods using a step-wise adaptation window, where the software sensor parameters are re-
estimated on a daily basis, provide better performances than methods using a block-wise
adaptation window, i.e. where the parameters are updated at a lower frequency.

Overall, this study highlights the potential for the development of on-line multivariate software
sensors. These can improve the quality of the water quality measurements collected in sewer
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systems, thus boosting the application of these sensors for on-line optimization of urban drainage
systems.
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