

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 02, 2024

Formal computer-aided product family architecture design for mass customization

Bonev, Martin; Hvam, Lars; Clarkson, John; Maier, Anja

Published in:
Computers in Industry

Link to article, DOI:
10.1016/j.compind.2015.07.006

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015). Formal computer-aided product family architecture design
for mass customization. Computers in Industry, 74, 58–70. https://doi.org/10.1016/j.compind.2015.07.006

https://doi.org/10.1016/j.compind.2015.07.006
https://orbit.dtu.dk/en/publications/61c09dad-270a-4ddb-a728-a83cd9ca0351
https://doi.org/10.1016/j.compind.2015.07.006

Formal computer-aided product family architecture design for mass
customization

Authors: Bonev, M., Hvam, L., Clarkson, J., Maier, A.

Keywords: Product family architecture, Design synthesis, Mass customization, Structural analysis,
Generic modelling

Abstract: With product customization companies aim at creating higher customer value and stronger
economic benefits. The profitability of the offered variety relies on the quality of the developed product
family architectures and their consistent implementation in configuration systems. Yet existing methods
are informal, providing limited support for domain experts to communicate, synthesize and document
architectures effectively. In single product design explicit visual models such as design structure
matrices and node-link diagrams have been used in combination with structural analysis methods to
overcome the limitation of the informal approach. Drawing on thereto established best practises, this
paper evaluates and extends the relevant methods and modelling techniques, to create a consistent
and formal approach for the design and customization of entire product families. To validate it’s
applicability, the approach is tested on a case study at a manufacturing company offering bespoke
industrial applications. A generic modelling method termed the integrated design model (IDM) is
developed and complemented with a computational structural analysis method, to assist domain experts
in their daily work. When combined with a configuration system, the presented IDM tool automates the
documentation and formalizes the synthesis of architectures, thereby making any decision about a
preferred solution explicit and transparent.

1 Introduction
 A growing demand towards higher product variety has been reported in many industries (Funke and
Ruhwedel, 2001; Klenow and Bils, 2001). Acting upon this trend, companies aim at obtaining higher
customer value and stronger economic benefits through rapidly responding to individual needs for
customization (Trentin et al., 2011). Nonetheless, high and diverse product mixes are not always
beneficial but often challenge manufacturers with a related increase in operational complexity and
decrease in efficiency in sales, design, production and distribution (Åhlström and Westbrook, 1999).
Platforms and modules built into product family architectures have been reported to facilitate this trade-
off (AlGeddawy and ElMaraghy, 2013). In this context, architectures are defined as an abstract structural
representation of the functional units and the corresponding physical components of engineering
artefacts (Ulrich, 1995). Their development is complex and long lasting and their performance can have
wide-ranging effects on the success of manufacturers (Yassine and Wissmann, 2007). Designing
architectures suitable for customization raises additional difficulties to organizations, since the right
product composition and part compatibility needs to be ensured. With product configuration systems or
configurators, manufacturers are able to handle these demanding requirements for information
processing, storage and retrieval of feasible variant combinations (Trentin et al., 2011).
 Configurators are software-based expert systems that capture the generic architecture of product
families in a computer model, through which users are supported in creating feasible product solutions
with a minimum number of choices (Hvam et al., 2011). If combined with well-designed product family
architectures, companies can utilize configurators to mass customize their offerings, i.e. to automate
operational activities related to product customization and to increase their efficiency to a level which is
close to mass production (Jiao et al., 1998). However, architectures per se are qualitative and current

1

methods supporting their design and documentation are informal and limited (Li et al., 2011; Wyatt et
al., 2011). Hence, it can be difficult to identify ‘good’ architectures during product design and to sustain
their subsequent implementation in a configuration system. At the same time, configuration software
vendors are of no help in this respect, as they are typically not interested in providing a transparent and
easy way to create and communicate the architectures, but rather emphasize consulting services
around their modelling and maintenance (Forza and Salvador, 2008). Consequently, with the
development progress of product families, software experts have problems in keeping an overview of
what had been implemented in the computer model and verifying the obtained architectures with domain
experts, making it one of the main reasons why designing and mass customizing products is still difficult
to achieve (Haug et al., 2012).
 This paper presents a formal computer-assisted approach that addresses the requirements for the
design of product family architecture as identified by academia and industry. Section 2 first discusses
existing approaches from both engineering and software domains, to define a consistent architecture
design framework. Next, the challenges with conventional informal approaches are discussed and
requirements for a formal support method are developed. Section 3 elaborates and further extends
existing modelling techniques and relevant formal architecture support measures. In Section 4 a formal
approach is presented and complemented with a case study of a major plant and machinery provider of
highly customizable products, to develop a concrete example on a real world problem. The introduced
approach combines the capabilities of the utilized configurator with automatically generated grammar
graphs representing the implemented architectures. The graphs are modelled with an integrated design
model (IDM), using the suggested extended modelling techniques for generic structures. A developed
IDM tool is further employed to assist domain experts in synthesising feasible architectures and to
evaluate their structural characteristics computationally through a series of metrics, potentially leading
to better solutions. Finally, Section 6 concludes with an assessment of the proposed approach.

2 Relevant literature
 To evaluate the limitations of existing approaches to architecture design for mass customization, a
literature review on relevant frameworks, methods and modelling techniques is performed and
requirements for a formal method are developed.

2.1 Approaches to architecture design in engineering and software development
 The design of architectures and their subsequent implementation in configurators involves domain
experts from different departments and often physically disconnected teams. Several researchers have
acknowledged the related organizational challenges and have proposed methods on how to arrange
corresponding activities in a more systematic manner (Ardissono et al., 2003; Forza et al., 1994; Hvam
et al., 2004). In engineering domains Pahl et al. (2006) address architecture design on several stages,
from formulating customer needs to the construction of embodiment and detailed design (Pahl and Beitz,
1996). Corresponding to these different phases of development, Jiao et al. (1999) argue for an
architecture modelling framework which in addition considers several views of a product (Jiao and
Tseng, 1999). At the same time frameworks dealing with architecture design for expert systems typically
fall within the area of software systems and base their methods on the life-cycle of object-oriented
software development as introduced by Booch (1986). Booch’s object-oriented procedure was originally
developed to handle the complexity of large software projects by breaking down the development work
into phases of object-oriented analysis, design, implementation and maintenance (Booch, 1986). The
transformation from a real world design into a computer model is organized in several steps, where the
observed reality is gradually abstracted and formalized (Duffy and Andreasen, 1995). To enable the
representation of a large number of physical artefacts with components and variant combinations,

2

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

related frameworks commonly build upon methods for modelling software architectures using the unified
modelling language (UML) (Felfernig et al., 2000).
 Although the UML standard proved to be particular useful for defining entire product families, its
application within engineering design remains limited. In consequence, synergies on coinciding aspects
of architecture design are seldom achieved. For example, the challenge of modelling different
architecture views has been repeatedly addressed within the two domains and has resulted in
comparable outcomes (Brière-Côté et al., 2010; Haug et al., 2010; Jiao and Tseng, 1999). Moreover,
advancements within engineering design are seldom adopted to software design and vice versa, in
particular with regard to the formal computational management of structural properties in complex
architectures (Lindemann et al., 2009). Secondly, the development of a product family architecture for
expert systems is often organized within IT and product data management departments. The process
is regarded as a liberally new modelling approach which is detached from any preceding design activities
of the product development phase (Speel et al., 2001). This means that in praxis the design of
architectures is not coordinated across the organization, leading to computer models which are very
likely to differ from the original design intent of the engineers (Haug et al., 2012). Especially for more
complex products, this lack of consistency increases the risk of providing undesired product variety to
the market (Martin and Ishii, 2002). As a benchmark report with more than 300 manufacturers of custom
tailored products reveals, the top performing companies with engineering intensive portfolios try to
overcome this coordination burden by better involving development engineers in the architecture design
process for their configuration systems (Aberdeen, 2008). This suggests that a more integrated
approach to mass customization is needed, which considers equally both the architecture design
process and the subsequent implementation into configuration systems.

2.2 Challenges with conventional informal architecture design methods
 Fig. 1 illustrates how a consistent framework of the architecture design process and its transformation
into a computer model may be organized. The model is based on the Wyatt et al. (2011) generic scheme
for architecture design in engineering, and combines this with the discussed transformation into a
computer model. The focus of this paper is indicated by the grey area in the model, where design
aspects from engineering are incorporated with the software domain of configurators. The procedure is
initiated by a design or handling problem and ends with a customized solution created by the user of a
configuration system. As expressed in the model, supporting methods can be informal, relying on
subjective interpretations of domain experts, or formal, involving codable and systematic procedures.
The two alternative approaches may be organized along a five phase model of exploration, generation,
evaluation, implementation and communication, which is based on the established development model
of design science (Cross, 2008).

3

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Fig. 1: A consistent model for designing and mass customizing product family architectures
based on informal and formal methods (after Wyatt et al., 2011)

 In analogy to Wyatt et al.’s (2011) architecture design framework, the informal approach can be
described as follows:
• Exploration helps engineers to examine the handling of existing design or the work on a new design

problem. Typically, product information can exist in many different formats, such as diagrams, tables,
formulas, computer aided design (CAD) files, bills of materials (BOMs) etc. Different departments
within a company may even have their own representations of products. By abstracting the relevant
product information (1), engineers develop an understanding of possible architectures (2).

(1) Handling or
Design Problem

(3) Analysis Model

Exploration and
abstraction

(4) Design Model

(6) Solution

Translation

Customization

Evaluation for
quality &
appropriateness

(2) Understanding
possible

architectures

Generation

C
om

m
un

ic
at

io
n:

 re
fin

em
en

t o
f a

rc
hi

te
ct

ur
e

(2a) Formal
representation of

architecturesFormalization

(2b) Synthesised
architecture

Synthesis

Interpretation

R
ef

in
em

en
t o

f f
or

m
al

iz
at

io
n

(5) Computer
Model

Implementation

D
oc

um
en

ta
tio

n

Conventional informal approach
Formal computational approach

C
om

m
un

ic
at

io
n:

 re
fin

em
en

t o
f p

ro
du

ct
 u

nd
er

st
an

di
ng

Research focus

4
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

• Based on a created understanding of possible architectures, engineers generate a specific family
architecture in the form of an analysis model, which may be the same as previous solutions and
further contain errors (3). Discussions on the product architecture during the object-oriented analysis
may involve various domain experts coming from product design to sales and marketing. Since not
all departments are necessarily familiar with the same technical details of a product this is often done
by visually representing the product family in graphical models and describing the combinatorial
possibilities in a way which is similar to natural language. For instance, using pseudo-code for
constraints instead of mathematical expressions, in the form of ‘component A has to be as wide as
component B’, makes the models more appropriate for a cross-disciplinary communication.

• The analysis model has to be translated into a design model (4), which is more suitable for the
subsequent implementation in a computer model (5). The aim of this step is to adjust the
representation language of the analysis model into a format which is common to one of the final
computer models of the configurator. Rules describing the combinatorial feasibility and solution
principles of a product family have to be expressed in mathematical equations, making them readable
and understandable by the software. In addition, the product family architecture may be extended
with information related to the configurator design, such as the user interface, details on the
implemented methods or the interaction with other IT systems. Depending on the experience of the
project stakeholders, in praxis this step may not be strictly separated from creating the analysis
model, but often involves further detailing of the architecture.

• The design model is evaluated for quality and appropriateness to determine whether the created
solution fulfils the problem at hand in the best possible way. Has the architecture been accepted, the
design model can be implemented as a computer model (5) in the configuration system. If not, the
architecture is communicated to the design team, to refine the solution iteratively.

• Users (internal or external) of the configuration system can customize their solution based on the
implemented computer model. If the offered solution space is either faulty (wrong configuration) or
does not reflect the desired variety (missing or unwanted configuration), the computer model may be
communicated to refine the understanding of the problem. Though both aspects are critical for the
acceptance of the configurator, the latter becomes particularly important in markets where demands
are frequently changing and enterprises need to keep pace with these changes. Since with this
informal approach, no mechanism is typically established to ensure the constancy between design
and computer model, the two communication processes illustrated in Fig. 1 do not necessarily
represent the same product architecture and are thus to be considered separately.

 The described informal methods for architecture generation largely depend on human creativity and
may include simple brainstorming principles (Osborn, 1963), and more guided brainwriting concepts
(Heslin, 2009). However, architectures can be created in many different ways (Kimmance et al., 2004).
The qualitative character of the design space makes it difficult for domain experts to develop new
architectures, or even to be able to consider alternative solutions for a product family (Wyatt et al., 2011).
If lacking a systematic guidance, domain experts often base their work on experiences from previous
design problems. When a new design task occurs, they tend to commit early to familiar solutions which
may be premature and not well suited for the underlying problem. This so called fixation effect restricts
practitioners from constructing previously unknown yet potentially better solutions (Purcell and Gero,
1996). In the same way, fixation has a detrimental impact on the quality of the architecture in the
computer model. To guide developers in creating new models, modern configurators contain knowledge
base editors and supportive debugging methods (Liao, 2005). They assist software experts in
constructing executable computer models within the software environment, but fail to abstract,
document and represent the product architecture so that it can be retrieved and communicated
effectively (Li et al., 2011). Hence, configurator experts have little or no possibility to collaborate with

5
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

domain experts when developing computer models, which additively reinforces the fixation problem.
Moreover, they have to go through architecture models with potentially thousands of elements within
the configurator and manually compare them with the previously developed architectures without being
able to abstract adequately the underlying design problem.

2.3 Opportunities with formal architecture design methods
 As acknowledged in the literature, the limitations of the informal approach can be critical for the quality
of the obtained architecture. Especially as the complexity of the designs increases, formal approaches
are becoming increasingly important (Prasad, 1998). In complex design problems they are often based
on computational models which are used to synthesize potential architectures (Cagan et al., 2005). In
order to evaluate a solution based on a formal synthesis, the architecture problem has to be made
explicit, thereby providing a transparent and more reliable form of reasoning. In addition, proper
documentation and knowledge representation methods may enable an intuitive comparison of
architectures and hence increase the reliability of the expert system (Verhagen et al., 2012). The dashed
lines in Fig. 1 illustrate how the challenges with the informal approach can be addressed by a formal
computational solution:
• The understanding of the possible architectures (2) can be formalized through a guided modelling

environment and the representation of alternative architectures (2a).
• The computational methods assist domain experts in synthesizing a possible architecture (2b), which

is then interpreted as an analysis model (3), and further translated into a design model (4). If the
solution does not meet the evaluation requirements of the underlying problem, the development team
may iteratively refine the formalization. Different measures relevant for the assessment of the
particular design problem can be selected and graphically presented.

• Has the design model been accepted, it may be implemented as a computer model (5). To ensure
the consistency between computer and design model, it needs to be documented and compared
against the design model. Communication helps to refine the architecture and/or the product
understanding, which may be internal (towards the development team) or external (towards
customers). Since product architectures are typically developed iteratively over time, for large and
interconnected models proper documentation and communication becomes particularly important
(Maier et al., 2009). In such cases the documentation and communication of already developed
implemented architectures is a prerequisite for any further development.

 Methods representing entire products are often based on ontologies, i.e. grammars applied to graphs
to display architectures (Schmidt and Cagan, 1997). A widely used technique for such graphs is to map
architectures through their structure with nodes and links, i.e. to create an abstract representation of the
underlying elements identified by their type and relations (Andreasen et al., 1995). To obtain a deeper
understanding for a supportive method, the next section uses an illustrative modelling example to
address briefly the limitations of existing grammar graphs.

2.4 Modelling product family architectures with grammar graphs

2.4.1 Adjacency matrices
 As one of the first supporters of an abstract modelling method, Steward (1981) applied adjacency
matrixes also known as design structure matrices (DSMs) to display relationships of entities (functions
or components) of the same type for single products (Steward, 1981). DSMs provide a well-organized
and compact representation, since each element is represented by a row and a column, while entries in
the DSM indicate a link from one node of the matrix to the other. Two different conventions exist in the
literature to describe the direction of a link. The IR/FAD convention uses element inputs shown in rows

6
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

and outputs in columns. The IC/FBD convention of the other hand shows element inputs in columns and
outputs in rows. The two notations are based on the same information, where one is the matrix transpose
of the other (Eppinger and Browning, 2012). To illustrate the functionality of the DSM method, we use
the letter notation in a simplified modelling example of a manufacturer offering customized bicycles. As
model (a) in Fig. 2 shows, our bicycle consists of five main components. All elements have been ordered
alphabetically and their interfaces to each other are shown through the entities of the DSM. In this way
the product structure consists of interconnected components shown as a squared intra-domain matrix.
Alternatively, to represent the structure of two different domains within the matrix, e.g. components and
functions, the additional domain may be listed on the other axis. This variation of the DSM is also called
domain mapping matrix (DMM) and is based on the same modelling notation as the DSM. The DSM
layout requires product elements to be listed strictly on the horizontal and vertical axes, making it a
rather rigid but at the same time very compact and scalable way of describing structures of single
products (Abuthawabeh et al., 2013). This well-defined arrangement has proved to be particular useful
for computational analysis methods. For example, a common way to identify potential modules is to
cluster the links between elements in chunks. This method is illustrated in model (b) of Fig. 2. The order
numbers in the DSM indicate how the elements have been rearranged compared to the alphabetical
order to form a potential module.

Fig. 2: Different analysis models of a hypothetical bicycle, (a) DSM (alphabetical order), (b) DSM
(clustered), and (c) a node-link diagram

2.4.2 Node-link diagrams
 Node-link diagrams offer an increasingly popular alternative graphical representation of product
structures for single products. Initially such graphs widely been used in social network analysis studies
with the purpose of characterizing the nature of social relationships among a set of actors (Freeman,
2004). Each actor (component or function) within a given network is represented in a node and arrows
between the nodes stand for links between them. To display their relationships, the nodes of a model
can be placed freely within the entire two-dimensional space, making this type of graph very flexible in
layout. Especially for large models with many nodes, this flexibility can be very convenient. Model (c) in
Fig. 2 illustrates our bicycle example in form of a standard node-link diagram. As indicated by the layout,
the frame is central for the entire structure of the model. It provides input to all other components and at
the same time is connected through the same number of interfaces from them. Depending on the actual
analysis problem, a rearrangement of the graph allows the user to access visually only relevant network
areas leaving less important aspects unconsidered (Ghoniem et al., 2005). Additional colour and
distance coding may help to display social clusters and the strength of individual relationships. An
extensive study of algorithms for drawing node-link graphs can be found in (Battista et al., 1994) for
example.

Simple Bicycle ↳ 2 5 1 3 4
Frame 2 1 1 1 1
Wheels 5 1 1
Brakes 1 1 1
Saddle 3 1
Steering System 4 1

Simple Bicycle ↳ 1 2 3 4 5
Brakes 1 1 1
Frame 2 1 1 1 1
Saddle 3 1
Steering System 4 1
Wheels 5 1 1

(a) (b) 1

2

3 4

5(c)

Notation Order Element Interface Element Interface

7

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

2.4.3 Generic product models
 Popular models representing entire product families typically include the product family architecture
(PFA) approach (Jiao et al., 1998), the use of class diagrams and CRC cards (Aldanondo et al., 2000),
the frames parts components (FPC) model (Magro and Torasso, 2003), and the product variant master
(PVM) (Hvam et al., 2005). The majority of the so called generic methods utilize variations of object-
oriented modelling based on the UML standard to describe hierarchical composition of elements
(generic part-of-structure), their possible variants (kind-of-structure), and their combinatorial interfaces
to other elements (collaborations) (Felfernig et al., 2000). The UML notation includes the object
constraint language (OCL) as an expression language of how elements in a model are combined with
each other. Due to their additional notation, generic methods can be regarded as an extension to the
structural representation of the grammar graphs discussed above.
 Fig. 3 displays an example of the bicycle model expressed in the PVM notation introduced in Sect.
2.5. Similar to assembly models in computer aided design (CAD) systems, the model imitates the
aggregation of elements through a hierarchical list connected with lines. The different colour codes
represent the element type and the letter size indicates the corresponding hierarchy level. In general
there are four different element types in a model: parts (functions or components), kinds (variants),
attributes (properties), and constraints (rules). Each part and kind element stands for an object or class
in the model. As an example, a wheel is an object in the model and a different wheel type is modelled
as a separate object. The character of an object can be explained by attributes and constraints.
Attributes are defining the properties of an element, i.e. length or with of a wheel, while the constraints
are specifying how these properties operate within the product. An important difference between parts
and kinds is that parts can have both sub-parts and sub-kinds, while kinds may only include other sub-
kinds, e.g. a van may be a family van or a transporter (Haug et al., 2010). The cardinality of parts is
indicated by an index above each part. It defines how many times a particular component is to be found
in the model and whether this component is optional (0,1..n) or mandatory (1..n). To illustrate the
representation of hierarchies and variants, further details have been added to the bicycle model. The
steering system of the bicycle can for example be described as the aggregation of a front fork and a
handle bar. If viewed separately, each of the two components has an individual set of attributes and
constraints. For example, the front fork has a clamp diameter that needs to fit with the wheels and the
handle bar requires a certain type of brake system. Only in combination however, they create the
required functionality for steering. As shown with the DSM technique, without this part-of structure we
would have to decide which level to focus on at the first place, leaving out many other essential aspects
unrevealed.

8

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Fig. 3: PVM example of a hypothetical bicycle family

 The principle of constraints can be illustrated by two additional examples which have been included
on the top level within the model. To obtain a design model (see Sect. 2.2), the constraints use attributes
with mathematical equations to specify the geometrical relationship between the frame, the wheels and
the saddle. Another important feature of such object-based models is the concept of inheritance and
encapsulation. Inheritance means that the sub-kinds of elements inherit the generic properties of the
super-element. For example, all bicycles have the same major components shown in Model (c). A
mountain bike however may have a particular wheel size. Encapsulation on the other hand restricts
objects at the same hierarchy from interfering with each other’s properties. This means that a
relationship between two components from the same hierarchy can only be expressed by constraints
on the parent object. In this case, the bicycle frame has to fit with the wheels and the pole size of the
saddle has to fit with the equivalent size of the frame, which has to be listed directly under the super-
part of the model, as indicated by the dashed arrows in Model (c). In object-oriented modelling these
interfaces are referred to as collaboration or association between two objects. In accordance with the
common modelling environment of modern model-based expert systems (Acatec, 2014; Oracle, 2014;
Tacton Systems, 2014), typically the PVM notation provides no standard visual representation for such
a connection. Hence, because all interfaces between components are expressed though constraints,
the generic approach alone proved to be disadvantageous when it comes to documenting and analysing
the structural properties of product architectures (Bodein et al., 2014). As studies within the automotive
industry show, especially for complex products designers and software engineers found it difficult to

Bicycle
mountain_bike

size [size_24]
city_bike

size [size_26]
Frame.wheel_size = Wheels.size
Frame.saddle_pole_size = Saddle.size

[1]
Frame

Carbon

Ibis, Mojo carbon
brake_system [disc, rim]

wheel_size [size_24, size_26]

[1]
Steering System

 [1]
Front Fork

[1]
Handle Bar

[2]
Wheels

size [size_24, size_26]
[1]

Saddle
[2]

Brakes

Super-part

Description

Sub-kind

Attribute

Constraint

Sub-part

Cardinality

Collaboration

9
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

identify the relevant relationships among product elements, which creates additional challenges for
changing and verifying existing architectures (Salehi and McMahon, 2011). Moreover, the extended
syntax of the generic methods requires some experience in creating valid architectures. Modelling
mistakes can easily occur if no systematic guidance through dedicated modelling tools is provided,
which however is missing to date. As a result, incorrect generic models can even be observed in
examples provided in the literature, where for instance inheritance has been ignored (Haug et al., 2010).

2.5 Requirements for a formal architecture synthesis
 The majority of methods for formal architecture design synthesis are based on engineering design
literature (Chakrabarti et al., 2011). They vary from numerical optimization approaches of partial design
problems for single products (Ziv-Av and Reich, 2005), through heuristics for module optimization in
product families (Jiao et al., 2008), to morphological analysis methods for incremental design
improvements (Kurtoglu and Campbell, 2009). Based on Steward’s work (Steward, 1981), a number of
additional (computational) matrix-based techniques have been proposed over the years (Eppinger and
Browning, 2012). Examples for computational design synthesis using structural grammar graphs can be
found in (Kreimeyer and Lindemann, 2011). They included DSMs and node-link diagrams which can be
used to create entire new architectures or to evolve existing ones. This is particularly useful since
architecture design is typically incremental, where products are upgraded over time and their
components are reused in alternative or later products (Clarkson et al., 2004).
 Research dealing with configuration systems has likewise recognised the need for a formal
architecture design and implementation approach, where for example the handling of complex highly
connected models has been addressed explicitly (Tiihonen et al., 1996; Wielinga and Schreiber, 1997).
In particular the challenge of documenting and communicating entire product family architectures has
been discussed in several studies (Haug et al., 2010; Hvam et al., 2005). The authors conclude that the
complexity of the models makes it infeasible to update and visualize each model manually without any
guidance but requires dedicated methods and software tools. At the same time, comparable computer-
based design synthesis methods as suggested for single product design are still missing. Hence, despite
the advantages of computational synthesis methods, their application in industry has been limited. This
may be partly explained by the mismatch between the needs for such methods in architecture design
praxis and the systems developed hitherto. To overcome this, a related study conducted by Wyatt et al.
(2011) combines systematic literature reviews with empirical investigations to propose general
requirements that address the described aspects of formalization, synthesis, interpretation and
refinement for single architecture design. The identified requirements are summarized in Table 1 and
complemented with discussed context specific aspects of documentation and communication of product
families.

Table 1: Requirements for a formal computational architecture synthesis for mass customization
(after Wyatt et al., 2011)
Category Content
Formalization F1 Incremental design Guided architecture creation as a staring point for synthesis

F2 Problem decomposition Abstract sections and focus on relevant scope
F3 Problem-specific architecture Represent relevant elements in ways that fit the problem
F4 Declarative evaluation Declarative constraint-based representation of the solution space

Interpretation I1 Interpretation support Present synthesised architecture and allow for further evaluation
I2 Feature-based evaluation Specify structural features according to lifecycle objectives

Refinement R1 Refinement of formalization Support modification of the problem formalization
Documentation D1 Consistent architecture design Ensure architecture consistency throughout design and implementation
Communication C1 Complete and correct representation Consider graphically all structural aspects of product families

Requirement

10
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Since the design process is typically incremental, a formal method should guide engineers to specify
initial architectures as a starting point for synthesizing new solutions. The corresponding design
problems may then be decomposed into smaller interlinked sub problems, represented by the relevant
model elements, while the possible solution space should be declared explicitly through constraints. For
instance, architectures representing the energy consumption of diverse production plants might not
necessarily include all elementary machine elements, but rather consider major factors (components
and attributes) and their ranges influencing this value (Orsvärn and Bennick, 2014). Next, synthesized
architectures should be presented and interpreted through their structural features which have
favourable or unfavourable effect on any lifecycle objectives of the product family (Tang et al., 2009).
Frequently used metrics for example investigate the commonality and modularity of different
architectures (Jiao and Tseng, 2000; Sosa et al., 2007). The problem formalization may then be refined
by the engineers as a consequence of their interpretation of the synthesized solution. The obtained
architecture is documented to ensure its consistency throughout development and implementation, and
is communicated in a correct and complete manner to modify the understanding of the problem. For
example, new production lines might need to be added to an implemented model of a plant, for which
the already created architecture would be required. Since the described recommendations and the
underlying graphical methods are reduced to the special case of designing single product architectures,
they have to be tailored to the context of this paper. The most profound aspect arguably addresses the
ability to model, synthesize and communicate entire product family architectures using the discussed
graphical grammar approach. The next section evaluates in more detail the existing informal methods
and proposes ways to address them with a formal approach.

3 Evaluation and extension of formal architecture design methods
 When considered separately, many of the requirements in Sect. 2.5 cannot be fulfilled with the
modelling and synthesis methods discussed in Section 2, in particular:
• Grammar-based methods are by definition procedural and qualitative and need to be supplemented

with constraints to obtain a descriptive explanation of the design problem (Requirement F4).
• While several clustering algorithms exist in the literature (Steward, 1981), our simple example also

shows the limitations of such a method. Despite the small number of major elements, the components
of a bicycle are connected in ways which do not allow creation of any obvious modules. This limitation
is often compensated for by emphasizing on the visual display of structures (Requirement F2). Here,
matrix-based representations have proved to be more suitable for most of the tasks in large and
dense graphs (Ghoniem et al., 2005), which are very likely in the context of this study. Due to their
rather restricted yet scalable layout, DSMs are applicable for products consisting of many
interconnected components. As the layout of node-link diagrams is less prescribed, in complex
product structures nodes and edges tend to overlap in ambiguous ways, making it challenging to
navigate through the network and to identify patterns. However, if used properly in a dedicated
software, a network representation with nodes and links is a still more intuitive graphical
representation and better suited with respect to finding paths between two nodes (Keller et al., 2006)
(Requirement F3). Nevertheless, the two methods do not consider any representation of hierarchical
compositions or variants, making them too simplistic and impractical for modelling product families
or for any form of customization (Requirement C1) (Keller et al., 2006; Malmqvist, 2002).

• The discussed grammar graphs as such do not provide any information about the quality of the
identified architecture. To obtain more detailed understanding about possible features, additional
external metrics (Requirement I2) and interpretation support (Requirement I1) is needed. Yet existing
methods apply only for single products (Lindemann et al., 2009), giving the need to develop new
methods. This may be partly overcome with the extended notation of the generic models, such as
the PVM. However, these models do not visually represent interfaces (collaborations) between

11
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

components (Requirement F2), but rather use mathematical equations to express such through
constraints (Requirement C1). Furthermore, the extended modelling notation requires additional
guidance to obtain correct architectures (Requirement F1).

• Documentation is not explicitly supported by the existing methods but requires additional
mechanisms, increasing the risk for obtaining an inconsistent architecture design (Requirement D1).

 The evaluation of the methods suggests that several of the requirements can be addressed explicitly
by extending the existing notation of the relatively simple grammar based approach of DSMs and node-
link diagrams. Especially Requirement F2, F4 and C1 can be met directly with a modelling technique
which includes aspects of the generic grammar, but which also provides a complete graphical
representation of structures. Fig. 4 presents how such an extension may be realized in correspondence
with the common perception that multiple views of an architecture help to understand better the
underlying design problem (Keller et al., 2005) (Requirement F3). The so called integrated design model
(IDM) combines the different functionalities of DSM, node-link graphs and PVM into a consistent
representation form. Model (a) in Fig. 4 shows the generic structure of the bicycle in a matrix format
(generic DSM). In addition to the main components from Fig. 2, rows and columns in the model may
include sub-parts, kinds, constraints and attributes. Entries in the matrix are used to express existing
interfaces for part-of structures, kind-of-structures and collaborations. The scalable layout of a DSM
further allows to consider two additional types of interfaces. Constraint-links define which attributes are
being used in this particular constraint, while attribute-links display the connection between these
attributes. Accordingly, collaborations exist whenever there are constraints causing an interface
between two objects. It is worth noting that interfaces caused by constraints are by definition
symmetrical, which in our example means that both frame and wheels have to fit to each other. Hence,
entries for attribute-links and collaborations appear on both sides of the matrix diagonal.

Fig. 4: Different views of a generic product structure, (a) generic DSM (partly collapsed), (b)
generic DSM (collapsed), (c) generic node-link diagram

 The extended notation of the generic DSM enables users to abstract the underlying architecture
design problem (Requirement F2), which may be done by: (1) changing the level of detail, i.e.
connections represent the architecture at any level of granularity, and (2) changing the scope, i.e. to
focus on a particular set of elements, without altering the remaining architecture. The principle of
abstraction can be demonstrated by comparing Model (a) and (b) in Fig. 4. While the first model is to
some extent showing a higher level of detail of the entire model, Model (b) displays the same generic
architecture of the bicycle family in a fully collapsed format, which is indicated by the visible elements
and their index numbers. Especially for large graphs it can be very useful to create an initial overview
over architectures by filtering out details in the model, without taking away any existing interfaces

(a) (b) (c)

Super-part

Sub-part

Sub-kind Constraint Attribute

1 Part-of structure 1 Kind-of structure 1 Collaborations 1 Constraint-links 1 Attribute-links

Sub-node

Link

Node

Part Kind Attribute Constraint

Collaboration

Attribute-link

Index number
Constraint-link

12

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

(Elmqvist and Yi, 2013). The same generic structure can be expressed by analogy with a generic node-
link diagram. To limit the discussed risk of having overlapping elements and connections in large and
dense graphs, Model (c) narrows the representation of interfaces to the essential aspects. Hence, part-
of-structures, kind-of-structures, and constraint links are expressed as previously described, leaving out
redundant connection types (dashed arrows). Engineers can benefit from the graphical advantage of
quickly identifying patterns and following important paths in the model (Requirement F2), without losing
the required understanding for the present interfaces. The context of interfaces is preserved by using
the original naming of all elements, which may be particularly important when investigating the cause of
collaborations between two components (Requirement F3-F4).
 Metrics can then be applied to evaluate a quality of a specific aspect of an architecture with respect
to any lifecycle objective of the product (Huang, 1996) (Requirement I2). Key measures addressing
product architectures typically include aspects of variant-oriented design (see Sect. 2.5), i.e. product
complexity (Sinha and de Weck, 2013), normal or weighted modularity (Gershenson et al., 2004; Sosa
et al., 2007), or communality (Thomas, 1992), and may in combination or alone access the considered
design problem. Moreover, the significance of parts to a particular design problem are generally rated
based on their influence on other components (active sum) and the impact other parts have on them
(passive sum) (Lindemann et al., 2009). However, since the majority of metrics proposed in the literature
are based on graph-theoretical characteristics of social networks (Bounova and de Weck, 2012), they
need to be adjusted to the convention of generic structures for product families. Table 2 describes the
adjusted measures with respect to their impact on the design work of the entire architecture of a family
or to a chosen sub-section A. Metrics 1 to 4 in the table represent basic characteristics of the
architecture, i.e. the number of parts, kinds, attributes and collaborations. Metrics 5 to 10 indicate the
discussed structural properties, while measure 11 refers to the classification of how significant a
constraint is with respect to the underlying design problem.

Table 2: Structural metrics in support of a quantitative architecture evaluation

13
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

4 Case study: applying a proposed formal computational synthesis method

4.1 Company background and data collection
 As Sect. 2.2 discussed, the conventional informal approach to architecture design implies a number
of challenges influencing the quality of the implemented computer model. Drawing on the established
insight from Sect. 3, a formal synthesis method addressing these challenges has been developed. To
validate it’s applicability for a real case, the method has been tested in an empirical architecture design
problem at a major provider of plant and machinery applications. The case study was established
throughout 2014 and involved several semi-structured interviews lasting between 1 and 2 hours as well
as half-day workshops with a team of domain experts, one group leader, one engineer and one IT expert.
The three domain experts are part of a larger physically disconnected team, which is responsible for the
coordination of the architecture design and its implementation in a configuration system. In addition, full
access was given to architecture models of selected product families and their development over a
period of 12 months. The objectives for the study were (1) to identify the major concerns for the

Formula Description Normalized by

1 Parts
More parts require more design work (Hodbay, 1998): the sum of
all parts p i in architecture (section) A containing n elements n

2 Kinds
Higher variety requires more design work (Martin et al. 2002): the
sum of all kinds k i in architecture (section) A containing n
elements

n

3 Attributes

More functionality requires more design work (Sinha et al., 2013):
the sum of all unique attributes a (u)

i in architecture (section) A
containing n p parts, with all generic attributes a (g)

j and all
variant attributes a (u)

t

n

4 Collaborations
More interfaces require more design work (Sosa et al. 2007): the
sum of all collaborations c i in architecture (section) A containing
n p parts

Maximum possible
degree
Col(A)max=np*(np-1)

5 Communality

Higher commonality requires less design work (Jiao et al., 2000):
the ratio between all common objects and their properties a i (all
parts times their generic attributes) compared to all objects and
their properties (all parts times their generic attributes plus all
kinds times their variant attributes) in architecture (section) A

Maximum possible
degree Com(A)max for
nk=0 or nv=0

6 Complexity

Higher (structural) complexity requires more design work and
communication effort (Prasad, 1998); it is based on number of
components, their variety and interdependence (Geraldi et al.,
2011): the sum of all parts, kinds and collaborations in
architecture (section) A

-

7 Active sum
Parts with high active sum are more significant in design
(Lindemann et al., 2009): the sum of all interfaces l(a) that
emerge from a part

-

8 Passive sum
Parts with high passive sum are more influenced in design
(Lindemann et. Al, 2009): the sum of all interfaces l(p) that affect
a part

-

9 N-modularity

Higher modularity facilitates variety and concurrent design and
maintenance; modules are tightly connected components inside a
cluster and loosely connected to others (Sosa et al., 2007): the
normal ratio N m (A) between all interfaces l(m) within a selected
section n(m) compared to it's interfaces to other parts l(o) in
architecture (section) A containing n(o) parts

-

10 W-modularity

Modularity may be weighted , to account for multiple connections
between two components (Gershenson et al., 2004): the weighted
ratio W m (A) between all interfaces w(m) within a selected
section n(m) compared to it's interfaces to other parts w(o) in
architecture (section) A containing n(o) parts

-

11
Constraint
active sum

Constraints with high active sum are more significant in design
(after Lindemann et al., 2009): the sum of all constraint links that
emerge from a constraint l(c)

-

Metric

𝑛𝑝(𝐴) = �𝑝𝑖

𝑛

𝑖=1

𝑛𝑘(𝐴) = �𝑘𝑖

𝑛

𝑖=0

𝑛
𝑢
𝑎(𝐴) = �(�𝑎

𝑔
𝑗

𝑛𝑔

𝑗=0

+�𝑎
𝑣
𝑡

𝑛𝑣

𝑡=0

)

𝑎 𝑢 𝑖

𝑛𝑝

𝑖=1

𝐶𝑜𝑙(𝐴) = �𝑐𝑖

𝑛𝑝

𝑖=1

𝐶(𝐴) = 𝑛𝑝(𝐴)+𝑛𝑘(𝐴)+𝐶𝑜𝑙(𝐴)

𝐴𝑠(𝐴) = �𝑙 (𝑎)
𝑖

𝑛

𝑖=0

𝑃𝑠(𝐴) = �𝑙 (𝑝)
𝑖

𝑛

𝑖=0

𝐶𝑎𝑠(𝐴) = �𝑙 (𝑐)
𝑖

𝑛

𝑖=0

𝑁𝑚 𝐴 =
∑ 𝑙 𝑚 𝑖
𝑛𝑚
𝑖=1

∑ 𝑙 𝑜 𝑗
𝑛𝑜
𝑗=1

𝑊𝑚 𝐴 =
∑ 𝑤

𝑚
𝑖

𝑛𝑚
𝑖=1

∑ 𝑤
𝑜
𝑗

𝑛𝑜
𝑗=1

14
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

architecture design and implementation process and (2) to address them with a new approach for
generating architectures through the formal synthesis method in Fig. 5.

Fig. 5: Proposed formal method to support product family architecture design and customization

4.2 Documenting and communicating implemented architectures

4.2.1 Consequences of the informal approach
 At the beginning of the case study, the company employed an informal approach as described in
Sect. 2.2. In response to an increased market demand for rapid and robust customization, a growing
part of the product line was incorporated into the commercial configuration system Tacton (Tacton
Systems, 2014). By the beginning of 2014, more than 30 different product families of highly customizable
industrial applications, e.g. conveyors, pumps and valves, were used internally by product managers

(1) Handling or
Design Problem

(3) Analysis Model

Exploration and
abstraction

(4) Design Model

(6) Solution

Translation

Customization

C
om

m
un

ic
at

io
n:

 re
fin

em
en

t o
f p

ro
du

ct
 u

nd
er

st
an

di
ng

(2) Understanding
possible

architectures

Generation

(2a) Formal
representation
of architecturesFormalization

(2b)
Synthesised
architecture

Synthesis

Interpretation

R
ef

in
em

en
t o

f f
or

m
al

iz
at

io
n

(5) Computer
Model

Generic Product Structures:
PVM, generic DSM and

node-link diagram

Structure-based classification

Individual architectures

PVM-converter in XML with Java

Modelling and visualization with IDM tool: Excel add-
in in C# combined with Node-XL and Gephi

Guided or automated process

Implementation

D
oc

um
en

ta
tio

n

Evaluation for
quality &
appropriateness

Integrated documentation and communication step

Ja
va

-b
as

ed
 c

on
ve

rs
io

n
in

 X
M

L
an

d
G

ep
hi

15
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

and technical salesmen to support customers in specifying their product requirements. Comparable to
other modern configurators, the software provides an object-oriented development environment as
described in Sect. 2.4.3 for the design of generic architectures. A representative product family
architecture consists of several thousand interconnected elements and may include components that
are produced internally or sourced externally by sub-suppliers. The architecture design is generally
organized as an incremental process with regular iterative steps and requires the latest architecture to
be used as a starting point for the new solution. The objective of the design work typically involves
considerations for how increase the reuse of common parts, while maintaining the necessary product
variety or simply for how to document the implemented architectures in order to comply with changing
legal requirements.
 The lack of a formal and/or integrated computer support forced the organization to use a considerable
amount of resources for designing and coordinating developed architectures. Since the computer
models per se can neither be extracted nor visually displayed, design initiatives have to be compared
manually against the implemented architectures within the configurator, making it exhausting to focus
on the significant parts of the relevant scope. Moreover, both product managers and engineers find it
difficult to verify if a committed design objective, e.g. to increase modularity of certain sub-assemblies,
has actually been obtained. Even if substantial rework may be done to achieve this goal, the informal
approach provides no method to demonstrate any positive evidence pointing towards the obtained
result. As the group leader comments “we are forever bound to a system with which we cannot document
or coordinate our work properly, especially if we want to discuss our [architecture] designs with our
developers or external suppliers”. In consequence, the insufficient control mechanism of the informal
approach increases the risks for delayed product launches and inconsistent architectures.

4.2.2 Applying a proposed documentation and communication strategy
 Being aware of this challenging situation, the responsible engineers and configuration software
experts are pressured from several directions. They have to improve their productivity when designing
and implementing architectures and to provide more transparent planning reports to the product
management about their progress, which is further communicated to the board of directors. This may
be achieved by the method illustrated in Fig. 5. The displayed scheme proposes a pragmatic solution
which could be implemented and tested within the limited time of the study. Comparable to many other
computer systems, the employed configurator allows by default to save the computer files in the
Extensible Markup Language (XML). The XML standard is a text-based format which is frequently used
to represent machine-readable structured information, such as documents, configuration status and
invoices (XML Working Group, 2010). The XML files created by the configurator contain the encrypted
product family architecture of the computer model along with other program specific information. This
suggests that the computer models created in Tacton can with relatively little development effort be
decoded or converted in a legible modelling format using XML. However, as no XML standard per se is
capable of representing generic architectures, a format was created which resembles the discussed
PVM notation in Sect. 2.4.3. This was done using a self-developed Java-based application called ‘PVM
converter’. The application utilizes simple data mining techniques to decode the relevant information
within the configurator files and to restructure them in the PVM format. An example of an XML-based
PVM file is indicated in Fig. 5. The illustrated XML syntax uses the integrated identifiers from the XML
language to express part-of-structures, kind-of-structures, attributes and constraints. Apart from
documenting the architecture of the computer model alone, the application complements the
architecture with comments and path references to drawings which have been included within the
knowledge base of the configuration system.
 To obtain consistent design models and to communicate them effectively to various stakeholders,
the created XML-based PVM models need to be expressed graphically with the discussed grammar

16
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

methods. Since no dedicated software tools hitherto exist for creating the required generic architectures,
a modest solution presented in Fig. 5 is to employ of the capabilities of existing open source software
and to adjust it to the context specific requirements. This has been realized through an IDM application,
a Microsoft Excel add-in which has been developed in C#. The IDM software is used to generate
semantically correct PVM and generic DSM models out of the previously created XML-based PVM
model. The software has been further combined with the freeware visualization software NodeXL and
Gephi, which are two very frequently used tools for studying social networks with node-link graphs (The
Gephi Consortium, 2014; The Social Media Research Foundation, 2014). An export function within the
IDM software has been developed to ensure the consistency of the generic structure. It converts the
XML-file into the discussed convention of node-link diagrams and exports it automatically into the
relevant freeware formats, e.g. csv or .gephi. A major advantage of utilising widely accepted standard
software is that the obtained solution can be established with relatively low development costs.
Furthermore, as only little changes are made to the existing IT infrastructure in the company, the
software is more likely to be accepted by the stakeholders.
 The documentation and communication process may alternatively be combined into one integrated
step so that any user of the configurator can directly share and discuss the latest version of a particular
architecture. As shown in Fig. 5 this process has been realised at the case company by integrating a
web-based function within the UI of the configurator, which when selected encodes the underlying
computer model first into the described XML-based PVM file and subsequently decodes it into a node-
link graph in the form of a svg- or pdf-based Gephi model. For an industrial company offering a variety
of custom tailored products this automatic visualization of the entire generic structure proved to be very
valuable in praxis. As the group leader reports “product managers and technical salesmen [using the
configurators] are typically very experienced with the [provided] products. Having a method which allows
them to communicate instantly the [architecture] model in use graphically [through e.g. a web browser]
increases significantly the transparency of the achieved solution and [eventually] enables the
consideration of a larger amount of product experience into our design [process]”. Thus, if used
externally, the method may facilitate companies to engage their customers in co-creating new product
functionalities and thereby to utilize external resources to drive their innovation processes (Martínez-
Torres, 2013).

4.3 Formalization and synthesis of the architecture design
 With the described documentation and visual communication of the computer model, the graphs were
used to create an understanding of the design problem and to narrow the development effort to the
relevant aspects. The design process was supported by the IDM software. Part (a) in Fig. 6 shows the
modelling environment of the IDM tool, where equivalent to the guided knowledge base editor of modern
configurators (Liao, 2005), the user is assisted in creating valid architectures inter alia by following the
generic syntax discussed in Sect. 3. Data mining techniques have been further implemented in the
software to guide the user in formulating feasible constraints and to consider the described aspects of
encapsulation. To abstract the model towards the particular design problem, domain experts may
choose to collapse or filter out unessential elements. CRC cards are automatically generated and
include the implemented drawings, comments and implementation status of the computer model. In
large design projects the latter feature can be very useful, as project experts are supported in keeping
track of the development work and managing the responsibilities of tasks. Depending on the user’s
preferences, architectures can be designed within either the PVM or the generic DSM notation, where
furthermore the user can switch dynamically between the IR/FAD and IC/FBD convention of the matrix.
Eventually, to synthesize feasible architectures within a wider physically disconnected team of domain
experts, each architecture was communicated using the generic models in any of the three grammar
graph techniques. Part (b) in Fig. 6 displays an example of an automatically created generic node-link

17
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

diagram of a dust filtration system. The graph shows a major section of the entire family, which in total
consists of roughly 2000 elements. The product is installed in production environments exposed to
extreme dust and dirt to keep critical manufacturing areas clean during operation and maintenance. In
praxis this is achieved by creating a negative pressure in the production equipment in order to prevent
that generated dust disperses to the surroundings. The major building blocks are illustrated by the
shaded areas in the model and include a fan and a filter system, several pipes, as well as an air sluice.

Fig. 6: IDM software tool showing (a) a collapsed generic DSM model and a CRC card, and (b)
the generic node-link diagram on the example design problem

4.4 Interpretation and refinement of synthesized architectures
 Architectures may be modified either through changing the structure of the model, i.e. by redefining
the connections between elements, or through altering the objects as such. The letter may for example
mean to add new components and/or functionalities to a product. To support domain experts in
comparing architectures of different products or selecting between alternative ones of the same product,
each model was evaluated quantitatively using the set of metrics introduced in Sect 3. Fig. 7 illustrates
with an example how the structural measures can be included by domain experts to explore the
synthesized results towards a preferred solution. To explore structural patterns or ‘interesting’
architecture areas, the information gained from a metric can in general be presented visually with
commonly used chart formats, e.g. bar charts. This exploration process may be further assisted either
by listing the values unsorted within the charts in the sequence of the index numbers in the model (see
Sect. 2.4.1), or by showing them with an ascending or descending order against an absolute scale, e.g.
time. This method was realised within a developed analysis tool for the IDM add-in.
 Fig. 7 displays an extract of the method applied on an example problem of the dust filtration system,
where two kinds of a ‘filter and ladder module’ were compared with each other. To evaluate their
architecture quality and their impact on the remaining elements, the two alternative modules were
assessed based on measures introduced in Section 3. As Part (a) of the graph indicates, both module
types come with a similar overall modularity, yet since modularity is a relative measure of connectivity,
their influence on the remaining architecture can be significantly different. In this case, compared to
‘module v1’, ‘module v2’ possesses both a higher active and passive sum, making it a relatively critical
component for the overall architecture design. The reason for this effect can be explained by the
particular structural difference illustrated in Part (b) of Fig.7. While the total number of elements of

Collabora-
tions

Attributes

Constraints

Sub-
parts

Sub-
kinds

IDM add-in
functions

Responsibility
PVM &

Generic DSM

(a) Modelling editor and CRC card (b) Generic node-link diagram

18
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

‘module v2’ has increased by 355%. Moreover, the disproportional increase in part variety (kinds) and
constraints even rises in structural complexity by 830%. This increase in complexity makes related
design work more substantial to the overall architecture quality. Next, to identify the most significant
interfaces to the connected modules, the related constraints can be ordered according to their active
sum. This interpretation technique for example explicitly reveals that the individual ‘filter position’ creates
considerably more interfaces than the related ‘filter orientation’. The different filter solutions from
suppliers may for example be evaluated based on their alternative position within the module. To reduce
the structural impact of ‘module v2’, the suggested design changes can then be evaluated iteratively
with regard to their consequence on the overall architecture quality. Alternatively, if the obtained
architecture satisfies the requirements of the domain experts, the hereby gained insight may help to
establish a more transparent cost-benefit estimation of the synthesised solution.

Fig. 7: IDM software tool showing (a) a collapsed generic DSM model and a CRC card, and (b)
the generic node-link diagram on the example design problem

5 Conclusions
 Mass customization provides a promising concept to respond rapidly to individual customer needs.
It requires from manufacturers to design effectively, implement and maintain suitable product family
architectures in configuration systems, to support the customization process. Drawing on requirements
as defined by researchers and industry, this paper evaluates the application of related modelling
methods and formal computer-based approaches to facilitate this process. In particular, the paper
argues that architectures can be presented explicitly through appropriate grammar graphs which
consider common generic modelling standards of the UML language. This systematic documentation
and communication of architectures allows the integration of a widespread internal product expertise as
well as stronger customer engagement. Moreover, the quality of architectures may be evaluated
objectively through computational structural analysis methods, making any assumptions about the
obtained solution transparent and thereby accessible. The usability of the presented methods is
demonstrated on an industrial case study of a major plant and machinery provider. The capabilities of a
state-of-the-art configurator utilized at the case company are complemented with automatically
generated grammar graphs using a developed XML-standard and a Java-based converter. Besides, the
architecture design process is assisted through a computer-based modelling and analysis method
termed IDM, consisting of modelling guidelines and visually represented structural metrics. The method
integrates generic DSMs, node-link diagrams and PVMs in a coherent modelling environment. Further,
a set of structural measures (e.g. modularity, communality, complexity, active sum) are used to evaluate
the quality of a particular design problem and to classify the significance of the relevant parts and
interfaces.

Basic
structural
metrics

Advanced
structural
metrics

Part-of-
structure

Export
function

Import
function

Filter
function

Visual metric
representation

Filter & ladder
module v2

Filter & ladder
module v1

Analysis window

Normal & weighted modularity

Passive sum vs. Active sum

(a) Normal and weighted modularity compared to active and passive sum (b) Relative increase in basic structural measures and the related
constraint active sum

high lowSignificance

Constraint active sum

Filter position

Filter orientation

19
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

 While the proposed formal computational approach supports the architecture documentation,
communication and synthesis at the case company, the applied methods have been specifically
designed to fit the particular needs of the studied industrial praxis. Future research may consider
addressing these limitations and thereby extending the relevance of the presented methods.
Specifically, the discussed documentation techniques may be applied to a variety of commercial
configuration systems, for which the created XML-based generic modelling standard was developed. In
addition, a dedicated modelling and analysis system may be developed to obtain a more stable and
scalable software solution, which can be connected to various commercial configurators and
visualization tools.
 Moreover, for more assessable design problems, domain experts may not necessarily rely on any
structural analysis support, but may rather trust their experience towards an improved cost-benefit result
of the architecture. In this case, a structural analysis of the synthesised solution may in addition help to
establish a more accurate estimation of the related design work and to communicate better a particular
design progress. Related research may for example investigate the correlation between architecture
complexity and the related lifecycle cost of a product family, module or component. Finally, depending
on the clarity of the design objective, e.g. minimizing the complexity, and the computational capability,
supplementary mathematical multi-objective optimization models may be developed. Such methods
may help to increase the scalability of the discussed formal approach, by automating aspects of the
architecture synthesis.

References

Aberdeen. (2008), Tailoring Products to Customer Preference: Configuring Products to Order, Aberdeen
Group, Boston, MA, pp. 1–40.

Abuthawabeh, A., Beck, F., Zeckzer, D. and Diehl, S. (2013), “Finding structures in multi-type code
couplings with node-link and matrix visualizations”, 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), Ieee, pp. 1–10.

Acatec. (2014), “Acatec Software GmbH”, available at: http://www.acatec.de.

Åhlström, P. and Westbrook, R. (1999), “Implications of mass customization for operations
management: An exploratory survey”, International Journal of Operations & Production
Management, Vol. 19, pp. 262–275.

Aldanondo, M., Rouge, S. and Veron, M. (2000), “Expert configurator for concurrent engineering:
Cameleon software and model”, Journal of Intelligent Manufacturing, Vol. 11, pp. 127–134.

AlGeddawy, T. and ElMaraghy, H. (2013), “Optimum granularity level of modular product design
architecture”, CIRP Annals - Manufacturing Technology, CIRP, Vol. 62 No. 1, pp. 151–154.

Andreasen, M.M., Duffy, A.H.B. and Mortensen, N.H. (1995), “Relation Types in Machine Systems”,
WDK Workshop on Product Structuring, Delft University of Technology, Delft.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G. and Schäfer, R. (2003), “A
Framework for the Development of Personalized , Distributed Web-Based Configuration Systems”,
Vol. 24 No. 3, pp. 93–110.

20
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Battista, G. Di, Eades, P., Tamassia, R. and Tollis, I.G. (1994), “Algorithms for drawing graphs: an
annotated bibliography”, Computational Geometry: Theory and Applications, Vol. 4, pp. 235–282.

Bodein, Y., Rose, B. and Caillaud, E. (2014), “Explicit reference modeling methodology in parametric
CAD system”, Computers in Industry, Elsevier B.V., Vol. 65 No. 1, pp. 136–147.

Booch, G. (1986), “Object-oriented development”, IEEE Transactions on Software Engineering, Vol. SE-
12, pp. 211–221.

Bounova, G. and de Weck, O. (2012), “Overview of metrics and their correlation patterns for multiple-
metric topology analysis on heterogeneous graph ensembles”, Physical Review E, Vol. 85 No.
016117, pp. 1–11.

Brière-Côté, A., Rivest, L. and Desrochers, A. (2010), “Adaptive generic product structure modelling for
design reuse in engineer-to-order products”, Computers in Industry, Vol. 61 No. 1, pp. 53–65.

Cagan, J., Campbell, M.I., Finger, S. and Tomiyama, T. (2005), “A Framework for Computational Design
Synthesis: Model and Applications”, Journal of Computing and Information Science in Engineering.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N. V and Wood, K.L. (2011),
“Computer-based design synthesis research: An overview”, Journal of Computing and Information
Science in Engineering, Vol. 11, doi:10.1115/1.3593409.

Clarkson, P.J., Simons, C. and Eckert, C. (2004), “Predicting Change Propagation in Complex Design”,
Journal of Mechanical Design, Vol. 126 No. 5, p. 788.

Cross, N. (2008), Engineering Design Methods: Strategies for Product Design, Design, Vol. 1, p. 230.

Duffy, A.H.B. and Andreasen, M.M. (1995), “Enhancing the evolution of design science”, in Hubka, V.
(Ed.),Proceedings of ICED’95, Zürich: Heurista, Praha, pp. 29–35.

Elmqvist, N.. and Yi, J.S. (2013), “Patterns for visualization evaluation”, Information Visualization, Vol.
12, pp. 1–20.

Eppinger, S.D. and Browning, T.R. (2012), Design Structure Matrix Methods and Applications, MIT
Press, Cambridge MA, p. 352.

Felfernig, A., Friedrich, G. and Jannach, D. (2000), “UML as domain specific language for the
construction of knowledge-based configuration systems”, International Journal of Software
Engineering and Knowledge Engineering, Vol. 10 No. 4, pp. 449–469.

Forza, C., Nicola, S.S. and Salvador, F. (1994), “Product configuration and inter-firm coordination : an
innovative solution from a small manufacturing enterprise”.

Forza, C. and Salvador, F. (2008), “Application support to product variety management”, International
Journal of Production Research, Vol. 46 No. 3, pp. 817–836.

21

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Freeman, L.C. (2004), The development of social network analysis, Document Design, Vol. 27, p. 205.

Funke, M. and Ruhwedel, R. (2001), “Product variety and economic growth: empirical evidence for the
OECD countries”, IMF Staff papers, Vol. 48 No. 2, pp. 225–242.

Gershenson, J.K., Prasad, G.J. and Zhang, Y. (2004), “Product modularity: measures and design
methods”, Journal of Engineering Design, Vol. 15 No. 1, pp. 33–51.

Ghoniem, M., Fekete, J.-D. and Castagliola, P. (2005), “On the readability of graphs using node-link and
matrix-based representations: a controlled experiment and statistical analysis”, Information
Visualization, Vol. 4 No. 2, pp. 114–135.

Haug, A., Hvam, L. and Mortensen, N.H. (2010), “A layout technique for class diagrams to be used in
product configuration projects”, Computers in Industry, Elsevier B.V., Vol. 61 No. 5, pp. 409–418.

Haug, A., Hvam, L. and Mortensen, N.H. (2012), “Definition and evaluation of product configurator
development strategies”, Computers in Industry, Elsevier B.V., Vol. 63 No. 5, pp. 471–481.

Heslin, P. a. (2009), “Better than brainstorming? Potential contextual boundary conditions to brainwriting
for idea generation in organizations”, Journal of Occupational and Organizational Psychology, Vol.
82, pp. 129–145.

Huang, G.Q. (1996), Design for X—concurrent engineering imperatives, Chapman & Hall, London, p.
508.

Hvam, L., Bonev, M., Denkena, B., Schürmeyer, J. and Dengler, B. (2011), “Optimizing the order
processing of customized products using product configuration”, Production Engineering, Vol. 5,
pp. 595–604.

Hvam, L., Malis, M., Hansen, B. and Riis, J. (2004), “Reengineering of the quotation process: application
of knowledge based systems”, Business Process Management Journal, Vol. 10, pp. 200–213.

Hvam, L., Pape, S., Jensen, K.L. and Riis, J. (2005), “Development and maintenance of product
configuration systems: requirements for a documentation tool”, International Journal of Industrial
Engineering, Vol. 12 No. 1, pp. 79–88.

Jiao, J. and Tseng, M. (2000), “Understanding product family for mass customization by developing
commonality indices”, Journal of Engineering Design, Vol. 11 No. 3, pp. 225–243.

Jiao, J. and Tseng, M.M. (1999), “A methodology of developing product family architecture for mass
customization”, Journal of Intelligent Manufacturing, Vol. 10 No. 1, pp. 3–20.

Jiao, J., Tseng, M.M., Duffy, V.G. and Lin, F. (1998), “Product family modeling for mass customization”,
Computers & Industrial Engineering, Vol. 35 No. 3-4, pp. 495–498.

22
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Jiao, R.J., Xu, Q., Du, J., Zhang, Y., Helander, M., Khalid, H.M., Helo, P., et al. (2008), “Analytical
affective design with ambient intelligence for mass customization and personalization”,
International Journal of Flexible Manufacturing Systems, Vol. 19 No. 4, pp. 570–595.

Keller, R., Eckert, C.M. and Clarkson, P.J. (2005), “Multiple Views to Support Engineering Change
Management for Complex Products”, Coordinated and Multiple Views in Exploratory Visualization
(CMV’05), Ieee, pp. 33–41.

Keller, R., Eckert, C.M. and Clarkson, P.J. (2006), “Matrices or node-link diagrams: which visual
representation is better for visualising connectivity models?”, Information Visualization, Vol. 5 No.
1, pp. 62–76.

Kimmance, A.G.., Anumba, C.J.., Bouchlaghem, D.M. and Baldwin, A.N. (2004), “The application of
information modelling methodologies: the HIPPY approach to integrated project modelling”,
International Journal of Computer Applications in Technology, Vol. 20, p. 62.

Klenow, J. and Bils, J. (2001), “The Acceleration in Variety Growth”, American Economic Review, Vol.
91 No. 2, pp. 274–280.

Kreimeyer, M. and Lindemann, U. (2011), “Complexity Metrics in Engineering Design”, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 401–403.

Kurtoglu, T. and Campbell, M.I. (2009), “Automated synthesis of electromechanical design
configurations from empirical analysis of function to form mapping”, Journal of Engineering Design,
Vol. 20 No. 1, pp. 83–104.

Li, B.M., Xie, S.Q. and Xu, X. (2011), “Recent development of knowledge-based systems, methods and
tools for One-of-a-Kind Production”, Knowledge-Based Systems, Vol. 24 No. 7, pp. 1108–1119.

Liao, S.H. (2005), “Expert system methodologies and applications-a decade review from 1995 to 2004”,
Expert Systems with Applications, Vol. 28, pp. 93–103.

Lindemann, U., Maurer, M. and Braun, T. (2009), Structural Complexity Management: An Approach for
the Field of Product Design, Springer, Berlin, Heidelberg, p. 248.

Magro, D. and Torasso, P. (2003), “Decomposition strategies for configuration problems”, Ai Edam, Vol.
17 No. August 2003, pp. 51–73.

Maier, A.M.., Kreimeyer, M.., Lindemann, U.. and Clarkson, P.J. (2009), “Reflecting communication: a
key factor for successful collaboration between embodiment design and simulation”, Journal of
Engineering Design, Vol. 20 No. 3, pp. 265–287.

Malmqvist, J. (2002), “A classification of matrix-based methods for product modeling”, 7th International
Design Conference, Dubrovnik, pp. 1–10.

Martin, M. V and Ishii, K. (2002), “Design for variety : developing standardized and modularized product
platform architectures”, Research in Engineering Design, Vol. 13, pp. 213–235.

23

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

Martínez-Torres, M.R. (2013), “Application of evolutionary computation techniques for the identification
of innovators in open innovation communities”, Expert Systems with Applications, Vol. 40, pp.
2503–2510.

Oracle. (2014), “Oracle Configurator”, available at:
http://www.oracle.com/us/products/applications/ebusiness/scm/051314.html.

Orsvärn, K. and Bennick, M.H. (2014), “Tacton: Use of Tacton Configurator at FLSmidth”, in Felfernig,
A., Hotz, L., Bagley, C. and Tiihonen, J. (Eds.),Knowledge-based Configuration – From Research
to Business Cases, Morgan Kaufmann Publishers, Waltham, MA, pp. 211–218.

Osborn, A.F. (1963), Applied Imagination: Principles and procedures of creative problem solving,
Oxford, p. 317.

Pahl, G. and Beitz, W. (1996), Engineering design: a systematic approach, Springer, p. 544.

Prasad, B. (1998), “Designing products for variety and how to manage complexity”, Journal of Product
& Brand Management, Vol. 7 No. 3, pp. 208–222.

Purcell, A.T. and Gero, J.S. (1996), “Design and other types of fixation”, Design Studies, Vol. 17, pp.
363–383.

Salehi, V. and McMahon, C. (2011), “Development and Application of an Integrated Approach for
Parametric Associative CAD Design in an Industrial Context”, Computer-Aided Design and
Applications, Vol. 8 No. 2, pp. 225–236.

Schmidt, L.C. and Cagan, J. (1997), “GGREADA: A graph grammar-based machine design algorithm”,
Research in Engineering Design, Vol. 9, pp. 195–213.

Sinha, K. and de Weck, O.L. (2013), “A network-based structural complexity metric for engineered
complex systems”, 2013 IEEE International Systems Conference (SysCon), Ieee, pp. 426–430.

Sosa, M.E., Eppinger, S.D. and Rowles, C.M. (2007), “A Network Approach to Define Modularity of
Components in Complex Products”, Journal of Mechanical Design, Vol. 129 No. 11, p. 1118.

Speel, P.-H.A., Schreiber, W. and Joolingen, G.B. (2001), “Conceptual models for knowledge-based
systems”, Encyclopaedia of Computer Science and Technology, Marcel Dekker Inc., New York.

Steward, D. V. (1981), “Design Structure System: A Method for Managing the Design of Complex
Systems”, IEEE Transactions on Engineering Management, Vol. EM-28, pp. 71–74.

Tacton Systems. (2014), “Tacton”, available at: http://www.tacton.com/products/modeling/.

Tang, D.., Zhu, R.., Dai, S.. and Zhang, G. (2009), “Enhancing Axiomatic Design with Design Structure
Matrix”, Concurrent Engineering, Vol. 17 No. 2, pp. 129–137.

The Gephi Consortium. (2014), “Gephi”, available at: http://gephi.github.io/.

24
Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

The Social Media Research Foundation. (2014), “NodeXL Network Graphs”, available at:
http://nodexl.codeplex.com/.

Thomas, L.D. (1992), “Functional implications of component commonality in operational systems”, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 22, pp. 548–551.

Tiihonen, J., Soininen, T., Männistö, T. and Sulonen, R. (1996), “State-of-the-practice in Product
Configuration - A survey of 10 cases in the Finish Industry”, Knowledge Intensive CAD, pp. 95–
114.

Trentin, A., Perin, E. and Forza, C. (2011), “Overcoming the customization-responsiveness squeeze by
using product configurators: Beyond anecdotal evidence”, Computers in Industry, Elsevier B.V.,
Vol. 62 No. 3, pp. 260–268.

Ulrich, K. (1995), “The role of product architecture in the manufacturing firm”, Research Policy, Vol. 24
No. 3, pp. 419–440.

Verhagen, W.J.C., Bermell-Garcia, P., van Dijk, R.E.C. and Curran, R. (2012), “A critical review of
Knowledge-Based Engineering: An identification of research challenges”, Advanced Engineering
Informatics, Elsevier Ltd, Vol. 26 No. 1, pp. 5–15.

Wielinga, B. and Schreiber, G. (1997), “Configuration-design problem solving”, IEEE Expert-Intelligent
Systems and their Applications, Vol. 12 No. 2, pp. 49–56.

Wyatt, D.F., Wynn, D.C., Jarrett, J.P. and Clarkson, P.J. (2011), “Supporting product architecture design
using computational design synthesis with network structure constraints”, Research in Engineering
Design, Vol. 23 No. 1, pp. 17–52.

XML Working Group. (2010), “XML Standard”.

Yassine, A. and Wissmann, L. (2007), “The implications of product architecture on the firm”, Systems
Engineering, Vol. 10 No. 2, pp. 118–137.

Ziv-Av, A. and Reich, Y. (2005), “SOS - Subjective objective system for generating optimal product
concepts”, Design Studies, Vol. 26, pp. 509–533.

25

Citation: Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015).
Formal computer-aided product family architecture design for mass customization. Computers in Industry, 74, 58–70. 10.1016/j.compind.2015.07.006

	Formal computer-aided product family architecture design for mass customization
	1 Introduction
	2 Relevant literature
	2.1 Approaches to architecture design in engineering and software development
	2.2 Challenges with conventional informal architecture design methods
	2.3 Opportunities with formal architecture design methods
	2.4 Modelling product family architectures with grammar graphs
	2.4.1 Adjacency matrices
	2.4.2 Node-link diagrams
	2.4.3 Generic product models

	2.5 Requirements for a formal architecture synthesis

	3 Evaluation and extension of formal architecture design methods
	4 Case study: applying a proposed formal computational synthesis method
	4.1 Company background and data collection
	4.2 Documenting and communicating implemented architectures
	4.2.1 Consequences of the informal approach
	4.2.2 Applying a proposed documentation and communication strategy

	4.3 Formalization and synthesis of the architecture design
	4.4 Interpretation and refinement of synthesized architectures

	5 Conclusions
	References

